In this paper we present a new model for the generation of orientation
preference maps in the primary visual cortex (V1), considering both orientation
and scale features. First we undertake to model the functional architecture of
V1 by interpreting it as a principal fiber bundle over the 2-dimensional
retinal plane by introducing intrinsic variables orientation and scale. The
intrinsic variables constitute a fiber on each point of the retinal plane and
the set of receptive profiles of simple cells is located on the fiber. Each
receptive profile on the fiber is mathematically interpreted as a rotated Gabor
function derived from an uncertainty principle. The visual stimulus is lifted
in a 4-dimensional space, characterized by coordinate variables, position,
orientation and scale, through a linear filtering of the stimulus with Gabor
functions. Orientation preference maps are then obtained by mapping the
orientation value found from the lifting of a noise stimulus onto the
2-dimensional retinal plane. This corresponds to a Bargmann transform in the
reducible representation of the SE(2)=R2×S1 group. A
comparison will be provided with a previous model based on the Bargman
transform in the irreducible representation of the SE(2) group,
outlining that the new model is more physiologically motivated. Then we present
simulation results related to the construction of the orientation preference
map by using Gabor filters with different scales and compare those results to
the relevant neurophysiological findings in the literature