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Abstract—An Adaptive geometric features based filtering 

(AGFF) technique with a low computational complexity is 
proposed for removal of impulse noise in corrupted color images. 
The effective and efficient detection is based on geometric 
characteristics and features of the corrupted pixel and/or the 
pixel region. A progressive restoration mechanism is devised 
using multi-pass non-linear operations. Through extensive 
experiments conducted using a wide range of test color images, 
the proposed filtering technique has demonstrated superior 
performance to that of well-known benchmark techniques, in 
terms of objective measurements, the visual image quality and 
the computational complexity. 

I. INTRODUCTION 

Non-linear filtering techniques have been extensively 
researched in the last decade due to their importance in 
restoration of noise corrupted color images. The median filter 
is usually used to remove impulse noise [1], [14]. The most 
well known vector filters for color image denoising include 
the vector median filter (VMF) [2], and the directional 
distance filter (DDF) [3]. 

Unlike the additive noise that contaminates all image pixels, 
the impulse noise destroys only a small portion of an image 
and leaves other pixels noise free. Detection based vector 
filtering techniques such as the adaptive vector median filter 
(AVMF) [6], the adaptive vector LUM smoother (AVLUM) 
[8], modified weighted vector median filter (MWVM) [9], and 
the adaptive selection center weighted vector direction filter 
(ACWVDF) [10], were specially designed to remove the 
impulse noise from color images. They utilize a series of 
weighted median vector filters to perform the binary noise 
detection and switch the output between an identity filter and 
a weighted median vector filter according to the detection 
results. 

In this paper, a fast adaptive geometric features based 
filtering technique (AGFF) with a low computational 
complexity is proposed for restoration of digital color images 
corrupted by the impulse noise. This new technique uses a set 
of novel noise detection criteria for detection of the corrupted 
pixels, which are based on two-dimensional geometric and 
dimension features of the noisy pixel or the noisy region of 

the images. Based on the result of the estimation, an adaptive 
progressive filtering operation is employed in combination 
with optimized dimension and shape of processing windows. 
It is very useful for online applications for fast suppression of 
impulse noise in medium- and large-size color images. 

The organization of this paper is as follows. Section II 
addresses the principles of the proposed filtering technique. 
Experimental results are presented in Section III. Final 
conclusions are drawn in Section IV. 

II. PRINCIPLE OF AGFF TECHNIQUE 

The fast adaptive geometric feature based filtering 
technique (AGFF) is introduced as follows, for the restoration 
of colour images corrupted by the impulse noise. 

A. Dimensional and Geometric Features of the Impulse Noise 

A major problem in restoration of color images to date is 
the destruction of detailed image structures due to inability of 
denoising filters to distinguish a cluster of corrupted pixels 
from a cluster of pixels presenting fine (detailed) image 
structures and the incorrect removal or modification of pixel 
segments. This section proposes a novel technique, which 
detects, exactly and efficiently, impulses in color images. 

Careful examinations of a variety of color images corrupted 
impulse noise models reveal that most of uncorrupted pixels 
or pixel regions in a natural color image always demonstrate a 
certain degree of smoothness.  This means that the color 
intensities of 8-neighbors[12] of a pixel always change 
gradually in all directions (e.g., in a smooth area), and at least 
gradually change in one (edge) direction (e.g., in a boundary 
area). In contrast with normal pixels of images, impulse noise 
corrupted pixels always show their features as an isolate spot 
or cluster by its very un-harmonic colors, shapes and sizes 
compared with those of its neighborhood. It is observed that 
almost all impulses only have sharp step edges and, in contrast, 
almost no uncorrupted object has this type of edges in its 
vicinity. The shapes of the noise regions may be an isolated 
point, a short thin line, a cross of two short thin lines or other 
small round-shaped blocks. In other words, the shape and the 
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size of impulse noise corrupted pixels depend on the noise 
ratio. 

According to the above observation and analysis of color, 
shape and sizes of impulse noise corrupted pixels/regions, and 
the type of edges which form the borders of the noise regions, 
a novel impulse noise detection method is proposed here 
based on two dimensional geometric features of the impulses, 
in stead of the one dimensional rank ordered statistical 
information used by other well-known filtering techniques, to 
determine more exactly and efficiently if each pixel in a color 
image is corrupted or clean. One of the geometric properties 
of the impulse noise is the edge feature of its boundary. An 
edge can be defined as a local discontinuity in illumination 
function and the edge orientation is defined as edges of an 
octagonally shaped object whose amplitude is higher or lower 
than its background [12]. Therefore, the proposed criteria for 
identifying the edge feature around the pixel are based on two 
types of derivatives, which are approximated by differences in 
digital color images. Given that 

}1 ,1|)({ 212,1 WcHccccC ≤≤≤≤=≡  denote the pixel 

coordinates of a color image, where H and W are the height 
and width of the image, respectively. If 

T
BGR cxcxcxc )](),(),([)( =x is the illumination function of a 

color image, the two special types of derivative are denoted as 
accx ∂∂ )(  and dccx ∂∂ )( . accx ∂∂ )(  is defined as follows, 

�
�

�

�
�

�

�

+−=∂∂

+−=∂∂

−−=∂∂

−−=∂∂

],[],[)(

],[],[)(

],[],[)(

],[],[)(

4
4

3
3

2
2

1
1

a
a

a
a

a
a

a
a

njixjixccx

jnixjixccx

njixjixccx

jnixjixccx

  (1) 

where, an >0, and the default value of an  is 1. 

When a derivative is only considered in the diagonal 
direction, dcx ∂∂  is defined as follows, 
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where, dn >0, and the default value of dn  is 1. 

The denoted derivatives, accx ∂∂ )(  and dccx ∂∂ )( will be 

used to measure the edge feature (sharpness) and other 
geometric properties to determine whether the center pixel at 

),( jic  is corrupted or not in the proposed filtering technique. 
In detecting and removing impulse noise, a filter can make 

different types of mistakes. Type I error (miss) occurs when 
there is a corrupted pixel, which the filter does not detect. 
Type II error (false alarm) happens when the filter detects an 
impulse noise pixel, which is actually clean. When the filter 
removes an impulse noise and replaces it with a value 
determined by a certain restoration strategy, Type III error 
(over- or under-correcting error) is defined as the difference 

between the resultant value after restoration process and the 
true pixel value as the noise-free pixel was. 

The proposed technique, similar to other well-known 
benchmark techniques and the so-called “switching” filters 
[5,6,11,18], consists of two components, i.e., impulse 
detection and impulse removal.  

A key component of the proposed filtering technique is a 
novel impulse detection scheme based on the two dimensional 
geometric information of the corrupted pixels. The novel 
criteria used by the proposed filtering technique for noisy 
pixel detection are based on a combination of the two-
dimensional edge, geometric and size features of the noisy 
pixel/ region in the images. They depart from traditional noise 
detection techniques used by other existing filters [5,6,2,13], 
which only use some properties of the edge of a noisy pixel or 
one-dimensional rank ordered statistical information around 
the noisy pixel. First, we define the edge feature-identification 
threshold, Te, which represents the value of a derivative to 
distinguish the sharp step edges from other types of edges.  
Since very short thin lines usually form the impulse noise 
pixels, the length of a line is also used as a feature to 
distinguish a short noise line from a fine line in color images. 
The length threshold may be defined as Tl according to the 
noise ratio.  

Second, in terms of the pixel coordinates of a color image, 
C, a set of corrupted pixels is defined as  

S1 = {c | (( accx ∂∂ )( < (- Te )) ∧ ( dccx ∂∂ )( <((- Te ))) ∨  

(( accx ∂∂ )( > Te ) ∧ ( dccx ∂∂ )( > Te )), Nd= {1, 2, 3,…Tm}, 
i
dn ∈Nd, i=1,…,4)    (3) 

where Tm = (Tl +1)/2. The default value of Tm is 2.  This 
corrupted pixel set includes individual impulse pixels, slant 
noise lines with one-pixel width and the pixels of the lines 
only adjacent to each other in diagonal direction within the 
defined length of Tl. 

Third, a set of corrupted pixels, which include individual 
impulse pixels, straight noise lines with one-pixel width and 
the pixels of the lines being only 4-connected[12] to each 
other within the defined length of Tl, is defined as  

S2 = {c | (( accx ∂∂ )( < (-Te )) ∧ ( dccx ∂∂ )( <(- Te ))) ∨   

(( accx ∂∂ )( > Te ) ∧ ( dccx ∂∂ )( > Te )), Na= {1 ,2, 

3,…Tm}, i
an ∈  Na,  i=1,…,4}    (4) 

where Tm = (Tl +1)/2. The default value of Tm is 2. 
Finally, a set of corrupted pixels, which include noisy 

pixels/regions within 3-pixel width in any direction except the 
noisy pixels c∈S1∪S2, is defined as S3.  
If  S = {c| (( accx ∂∂ )( < (-Te )) ∧ ( dccx ∂∂ )( <(- Te ))) ∨  

(( accx ∂∂ )( > Te ) ∧ ( dccx ∂∂ )( > Te )), dn = an  = 2 or 3 } 

 (5) 

where the default value for dn and an is 2 in (5).  Thus, S3 

can be represented as  
S3 = S – (S1∪ S2)    (6)  

248

Authorized licensed use limited to: RMIT University. Downloaded on July 01,2010 at 04:24:37 UTC from IEEE Xplore.  Restrictions apply. 



where Tm = 2 for S1 and S2 in (8). Since an impulse noise 

ratio Ip <1, �
n

i
iS

1=

 ⊂ C, where n = 3, in the current case. Te in 

(3), (4) and (5) could be set in different values. 
Since the shapes and the sizes of corrupted pixels depend 

on the noise ratio, and the restoration of the corrupted pixels 
requires the statistical information about the noise density, the 
estimation of noise ratio and noise type is important in order 
to minimize both Type I and Type II errors. The criteria for 
classifying the degree of impulse noise in the proposed 
filtering technique are the ratio and the size of the largest 
noise corrupted region, and the vales of corrupted pixels. 

The strategy of the progressive restoration for the proposed 
filtering technique is first to restore corrupted individual 
pixels or noise regions of small size. If it made either Type II 
or Type III error, it should not introduce any new impulse 
noise region of bigger size than the existing ones. Then, 
further operations are carried out around big noise corrupted 
regions, to restore areas of the images associated with big 
noise regions more reliably. 

In order to make use of merits of the median filter and to 
avoid its drawbacks (causing a number of artifacts for 
uncorrupted pixels) [14], a detection scheme described in this 
section is employed before the median filtering for restoration. 
As a result, the proposed restoration method based on the 
restricted median can keep the image unchanged when the 
filter processing window moves across the uncorrupted image 
details. 

A novel progressive multi-pass filtering algorithm/process 
with low computational complexity is proposed, in order to 
implement the principles of proposed filtering technique. 

The restoration technique used in this work is based on the 
modified median where the destruction of uncorrupted images 
(i.e., Type II error) increases with the increase of the 
processing window size, while decreases with the increase of 
the edge feature threshold Te. In order to achieve the best 
performance of the proposed filter, in terms of both visual 
quality and objective measurements, the design of the 
processing windows has to depend on the shapes and sizes of 
corrupted pixels/pixel regions. 

A principle for designing the following operations is to use 
as small a size of the windows and as less a number of the 
passes as possible, as long as the impulse noise can be 
removed (to ensure perceptual image quality). The number of 
passes was determined to remove noise region based on the 
worst case scenario within the estimated maximal size of the 
noise region. Actually, the adaptive filter is very robust and 
tolerant to the estimation deviations for impulse noise ratio of 
corrupted images.  

For the proposed filter (AGFF), in contrast with other 
filters, only comparison and addition/subtraction operations 
are involved, and the computational complexity of the AGFF 
is mainly dependent on the restoration operations. Although 
the proposed filter uses multi-pass operation and the time 

consumed by the filter is dependent on the noise ratio, the 
computational complexity of its algorithm is actually very low. 

III. EXPERIMENTS 

Without losing generality, the recommended the definition 
of the corrupted pixel sets in color images were tested by 
experiments using typical test images, which included 
different types of real-life images [17]. Table I presents the 
experimental results for detection of random impulse noise 
using S1, S2 and S3 on a variety of original clean (without 
corruption) real life images, which include well-known 
standard test images such as, Airplane, Boats, Flower, Girl, 
Goldhill, Moon, Pen, Soccer, Zelda, and Yacht with an image 
resolution of 500x362 or 512x512 or 787x576 or 720x576 or 
768x512 or 1986x1986 pixels. In Table 1, FA (false alarm) 
stands for Type II error, and FA(S1), FA(S2) and FA(S3) 
denote false alarm ratios (the number of false alarm to the 
number of pixel for the tested color image) by S1, S2 and S3, 
respectively.  The false alarming ratios are very low for the 
test images, especially for the high resolution color images. 

The proposed filtering technique has been evaluated by an 
extensive range of tests and its performance is compared with 
a number of prior-art filtering techniques in the area of 
removing impulse noise from color images. Several objective 
criteria are used in the tests to measure the distortion in 
restored images. The objective criteria include the Mean 
Square Error (MSE) and the Mean Absolute Error (MAE) 
defined in the RGB color space [4,10], and the Normalized 
Color Difference (NCD) [4,10] which measures the color 
distortion in perceptual uniform CIELUV color space.      

All impulse corruptions were generated according to the 
noise model in [11], using the random impulse noise or the 
salt-and-pepper noise, and a noise ratio pI [11] varied from 0% 
to 20%.  The evaluation of impulse suppression was 
conducted using three 24-bit RGB images [17], “Lena”, 
“Parrots ” and “Peppers”, with image resolutions of 256x256, 
512x512, and 1536x1024 pixels, respectively, which have 
been widely used by prior-art impulse filtering techniques due 
to their representative color characteristics and image 
structure. 

The filters are used in the impulse suppression tests 
includes the state-of-the-art techniques recently developed for 
the impulse and the mixed noise suppression, including 
AVMF, MWC[16], SAA[19], AVLUM, ACWVDF, 
SCWVDF[10], ACWMF[15], SWVDF[20], HBTM[7], 
SAHVF[5] and PBTVM[11]. 

Besides the excellent objective performance measurements, 
the proposed filter also achieved a consistently better 
performance in perceptual image quality than other impulse 
filtering techniques. Figures 1 have demonstrated the 
performance of the proposed AGFF compared with other 
typical and state-of-the-art techniques. A test image “Lena” 
with 20% random impulse corruption generated by noise 
model in [11] was selected to reveal the detail preservation 
capability of the proposed filter (see Fig.1) 
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TABLE I
  THE PERFORMANCE OF THE PROPOSED THE DEFINITION OF THE CORRUPTED PIXEL SETS FOR DETECTING RANDOM IMPULSE NOISE IN A VARIETY OF 

ORIGINAL COLOR IMAGES  
Images Airplane Boats Flower Girl Goldhill Parrots Moon Pen Soccer Yacht Zelda 
FA(S1)10-3 0.009 0.003 0.001 0.001 0.034 0.029 0.062 0.000 0.003 0.007 0.003 
FA(S2)10-3 0.020 0.051 0.019 0.018 0.119 0.076 0.122 0.025 0.094 0.104 0.012 
FA(S3)10-3 0.056 0.007 0.008 0.002 0.047 0.026 0.081 0.056 0.065 0.064 0.022 

 

 

 

II  
The impulse suppression performance of the proposed AGFF filter compared with other techniques.  

(a) Color image Peppers corrupted by different levels of random impulse[11]. 

 5%   10%   20%  
Filters 

MSE MAE NCD MSE MAE NCD MSE MAE NCD 
SAA 17.5 0.511 0.0045 33.5 0.829 0.0086 73.0 1.782 0.0185 
AVLUM 22.1 0.465 0.0042 44.6 0.926 0.0083 93.2 1.875 0.0178 
HBTM 19.3 0.466 0.0039 36.4 0.880 0.0078 73.4 1.702 0.0172 
AVMF 25.6 0.556 0.0045 38.8 0.999 0.0089 89.2 1.982 0.0189 
ACWVDF 21.1 0.693 0.0072 59.7 1.212 0.0127 180.2 2.774 0.0296 
SCWVDF 20.5 0.666 0.0070 52.8 1.110 0.0120 145.5 2.361 0.0254 
SWVDF 18.1 0.962 0.0142 43.1 1.381 0.0196 132.5 2.615 0.0314 
PBTVM 16.8 0.476 0.0044 32.5 0.869 0.0082 65.4 1.652 0.0167 
SAHVF 29.8 0.946 0.0074 48.8 1.240 0.0104 74.9 2.191 0.0171 
AGFF 18.0 0.451 0.0041 30.2 0.804 0.0054 45.9 1.320 0.0088 

 
(B) COLOR IMAGE PARROTS CORRUPTED BY DIFFERENT LEVELS OF SP(SALT-AND-PEPPER) IMPULSE. 

 5%   10%   20%  
Filters 

MSE MAE NCD MSE MAE NCD MSE MAE NCD 
AVMF 2.659 0.540 0.0004 3.234 0.614 0.0005 5.16 0.769 0.0008 
DDF 3.925 0.609 0.0004 4.496 0.668 0.0005 7.265 0.812 0.0008 
HBTM 0.586 0.061 0.0001 1.026 0.121 0.0002 2.434 0.255 0.0004 
MWC 2.731 0.612 0.0004 2.522 0.393 0.0007 4.292 0.517 0.0011 
FAGFF 0.346 0.040 0.0001 0.623 0.081 0.0002 1.368 0.169 0.0004 

 
 

   

              

a) Original image Lena    b) 20% random corruption     c) DDF output 
 

TABLE

 

   
              d) HBTM output    e) ACWMF output       f) AGFF output 

Fig. 1. The reconstruction of proposed filter compared with other techniques, where the test image “Lena” is corrupted by random impulse with pI =20% [11]. 
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IV. CONCLUSION 

A geometric features based filtering technique with very low 
computational complexity is proposed for removing impulse 
noise in corrupted digital color images. The special 
contribution of the proposed filtering technique is its novel 
impulse detection, which uses two dimensional geometric 
features (shape and edge type) and size of the impulse 
pixel/pixel region, in stead of one dimensional statistical 
information, to identify the impulse in a more exact and 
efficient manner. The other novelty of the proposed filtering 
technique is its progressive adaptive restoration mechanism to 
recover the corrupted pixels step by step in a reliable way 
through a multi-pass process with low computational 
complexity. Through extensive experiments conducted using a 
wide range of natural color images, the proposed filtering 
technique has demonstrated superior performance to that of 
well-known benchmark techniques, in terms of standard 
objective measurements, visual image quality and the 
computational complexity, in removing different types of 
impulse noise commonly considered in color image 
restoration. The types of impulse noise include the salt-and-
pepper and the random impulse noise. It is very useful for 
online applications to suppress impulse noise especially for 
medium and large sized color images. 
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