2,731 research outputs found

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    NETWORK TRAFFIC CHARACTERIZATION AND INTRUSION DETECTION IN BUILDING AUTOMATION SYSTEMS

    Get PDF
    The goal of this research was threefold: (1) to learn the operational trends and behaviors of a realworld building automation system (BAS) network for creating building device models to detect anomalous behaviors and attacks, (2) to design a framework for evaluating BA device security from both the device and network perspectives, and (3) to leverage new sources of building automation device documentation for developing robust network security rules for BAS intrusion detection systems (IDSs). These goals were achieved in three phases, first through the detailed longitudinal study and characterization of a real university campus building automation network (BAN) and with the application of machine learning techniques on field level traffic for anomaly detection. Next, through the systematization of literature in the BAS security domain to analyze cross protocol device vulnerabilities, attacks, and defenses for uncovering research gaps as the foundational basis of our proposed BA device security evaluation framework. Then, to evaluate our proposed framework the largest multiprotocol BAS testbed discussed in the literature was built and several side-channel vulnerabilities and software/firmware shortcomings were exposed. Finally, through the development of a semi-automated specification gathering, device documentation extracting, IDS rule generating framework that leveraged PICS files and BIM models.Ph.D

    A Survey on Security for Mobile Devices

    Get PDF
    Nowadays, mobile devices are an important part of our everyday lives since they enable us to access a large variety of ubiquitous services. In recent years, the availability of these ubiquitous and mobile services has signicantly increased due to the dierent form of connectivity provided by mobile devices, such as GSM, GPRS, Bluetooth and Wi-Fi. In the same trend, the number and typologies of vulnerabilities exploiting these services and communication channels have increased as well. Therefore, smartphones may now represent an ideal target for malware writers. As the number of vulnerabilities and, hence, of attacks increase, there has been a corresponding rise of security solutions proposed by researchers. Due to the fact that this research eld is immature and still unexplored in depth, with this paper we aim to provide a structured and comprehensive overview of the research on security solutions for mobile devices. This paper surveys the state of the art on threats, vulnerabilities and security solutions over the period 2004-2011. We focus on high-level attacks, such those to user applications, through SMS/MMS, denial-of-service, overcharging and privacy. We group existing approaches aimed at protecting mobile devices against these classes of attacks into dierent categories, based upon the detection principles, architectures, collected data and operating systems, especially focusing on IDS-based models and tools. With this categorization we aim to provide an easy and concise view of the underlying model adopted by each approach

    Distributed detection of anomalous internet sessions

    Get PDF
    Financial service providers are moving many services online reducing their costs and facilitating customers¿ interaction. Unfortunately criminals have quickly found several ways to avoid most security measures applied to browsers and banking sites. The use of highly dangerous malware has become the most significant threat and traditional signature-detection methods are nowadays easily circumvented due to the amount of new samples and the use of sophisticated evasion techniques. Antivirus vendors and malware experts are pushed to seek for new methodologies to improve the identification and understanding of malicious applications behavior and their targets. Financial institutions are now playing an important role by deploying their own detection tools against malware that specifically affect their customers. However, most detection approaches tend to base on sequence of bytes in order to create new signatures. This thesis approach is based on new sources of information: the web logs generated from each banking session, the normal browser execution and customers mobile phone behavior. The thesis can be divided in four parts: The first part involves the introduction of the thesis along with the presentation of the problems and the methodology used to perform the experimentation. The second part describes our contributions to the research, which are based in two areas: *Server side: Weblogs analysis. We first focus on the real time detection of anomalies through the analysis of web logs and the challenges introduced due to the amount of information generated daily. We propose different techniques to detect multiple threats by deploying per user and global models in a graph based environment that will allow increase performance of a set of highly related data. *Customer side: Browser analysis. We deal with the detection of malicious behaviors from the other side of a banking session: the browser. Malware samples must interact with the browser in order to retrieve or add information. Such relation interferes with the normal behavior of the browser. We propose to develop models capable of detecting unusual patterns of function calls in order to detect if a given sample is targeting an specific financial entity. In the third part, we propose to adapt our approaches to mobile phones and Critical Infrastructures environments. The latest online banking attack techniques circumvent protection schemes such password verification systems send via SMS. Man in the Mobile attacks are capable of compromising mobile devices and gaining access to SMS traffic. Once the Transaction Authentication Number is obtained, criminals are free to make fraudulent transfers. We propose to model the behavior of the applications related messaging services to automatically detect suspicious actions. Real time detection of unwanted SMS forwarding can improve the effectiveness of second channel authentication and build on detection techniques applied to browsers and Web servers. Finally, we describe possible adaptations of our techniques to another area outside the scope of online banking: critical infrastructures, an environment with similar features since the applications involved can also be profiled. Just as financial entities, critical infrastructures are experiencing an increase in the number of cyber attacks, but the sophistication of the malware samples utilized forces to new detection approaches. The aim of the last proposal is to demonstrate the validity of out approach in different scenarios. Conclusions. Finally, we conclude with a summary of our findings and the directions for future work

    Architecting Data Centers for High Efficiency and Low Latency

    Full text link
    Modern data centers, housing remarkably powerful computational capacity, are built in massive scales and consume a huge amount of energy. The energy consumption of data centers has mushroomed from virtually nothing to about three percent of the global electricity supply in the last decade, and will continuously grow. Unfortunately, a significant fraction of this energy consumption is wasted due to the inefficiency of current data center architectures, and one of the key reasons behind this inefficiency is the stringent response latency requirements of the user-facing services hosted in these data centers such as web search and social networks. To deliver such low response latency, data center operators often have to overprovision resources to handle high peaks in user load and unexpected load spikes, resulting in low efficiency. This dissertation investigates data center architecture designs that reconcile high system efficiency and low response latency. To increase the efficiency, we propose techniques that understand both microarchitectural-level resource sharing and system-level resource usage dynamics to enable highly efficient co-locations of latency-critical services and low-priority batch workloads. We investigate the resource sharing on real-system simultaneous multithreading (SMT) processors to enable SMT co-locations by precisely predicting the performance interference. We then leverage historical resource usage patterns to further optimize the task scheduling algorithm and data placement policy to improve the efficiency of workload co-locations. Moreover, we introduce methodologies to better manage the response latency by automatically attributing the source of tail latency to low-level architectural and system configurations in both offline load testing environment and online production environment. We design and develop a response latency evaluation framework at microsecond-level precision for data center applications, with which we construct statistical inference procedures to attribute the source of tail latency. Finally, we present an approach that proactively enacts carefully designed causal inference micro-experiments to diagnose the root causes of response latency anomalies, and automatically correct them to reduce the response latency.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144144/1/yunqi_1.pd

    Proposed Model for Real-Time Anomaly Detection in Big IoT Sensor Data for Smart City

    Get PDF
    A smart city represents an advanced urban environment that utilizes digital technologies to improve the well-being of residents, efficiently manage urban operations, and prioritize long-term sustainability. These technologically advanced cities collect significant data through various Internet of Things (IoT) sensors, highlighting the crucial importance of detecting anomalies to ensure both efficient operation and security. However, real-time identification of anomalies presents challenges due to the sheer volume, rapidity, and diversity of the data streams. This manuscript introduces an innovative framework designed for the immediate detection of anomalies within extensive IoT sensor data in the context of a smart city. Our proposed approach integrates a combination of unsupervised machine learning techniques, statistical analysis, and expert feature engineering to achieve real-time anomaly detection. Through an empirical assessment of a practical dataset obtained from a smart city environment, we demonstrate that our model outperforms established techniques for anomaly detection

    IoT Anomaly Detection Methods and Applications: A Survey

    Full text link
    Ongoing research on anomaly detection for the Internet of Things (IoT) is a rapidly expanding field. This growth necessitates an examination of application trends and current gaps. The vast majority of those publications are in areas such as network and infrastructure security, sensor monitoring, smart home, and smart city applications and are extending into even more sectors. Recent advancements in the field have increased the necessity to study the many IoT anomaly detection applications. This paper begins with a summary of the detection methods and applications, accompanied by a discussion of the categorization of IoT anomaly detection algorithms. We then discuss the current publications to identify distinct application domains, examining papers chosen based on our search criteria. The survey considers 64 papers among recent publications published between January 2019 and July 2021. In recent publications, we observed a shortage of IoT anomaly detection methodologies, for example, when dealing with the integration of systems with various sensors, data and concept drifts, and data augmentation where there is a shortage of Ground Truth data. Finally, we discuss the present such challenges and offer new perspectives where further research is required.Comment: 22 page
    • …
    corecore