
Applied Energy 287 (2021) 116601

A
0

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Artificial intelligence based anomaly detection of energy consumption in
buildings: A review, current trends and new perspectives
Yassine Himeur a,∗, Khalida Ghanem b, Abdullah Alsalemi a, Faycal Bensaali a, Abbes Amira c

a Department of Electrical Engineering, Qatar University, Doha, Qatar
b Division Telecom, Center for Development of Advanced Technologies (CDTA), Algiers, Algeria
c Institute of Artificial Intelligence, De Montfort University, Leicester, United Kingdom

A R T I C L E I N F O

Keywords:
Energy consumption in buildings
Anomaly detection
Machine learning
Deep abnormality detection
Energy saving

A B S T R A C T

Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in
residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility
companies in detecting anomalous power consumption and understanding the causes of each anomaly.
Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid
in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior.
In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building
energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which
a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and
parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection
levels, computing platforms and application scenarios. To the best of the authors’ knowledge, this is the first
review article that discusses anomaly detection in building energy consumption. Moving forward, important
findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly
discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated
datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility
and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the
applications and effectiveness of the anomaly detection technology before deriving future directions attracting
significant attention. This article serves as a comprehensive reference to understand the current technological
progress in anomaly detection of energy consumption based on artificial intelligence.
1. Introduction

Climate change is an dangerous predicament affecting the world’s
population. Almost 80% of the overall world energy is produced by
fossil fuels. In addition to find green energy sources, it is of utmost
importance to diminish the total energy consumption percentage [1].
A notable approach into achieving this objective is through informing
end-users of their power usage patterns. Accordingly, consumers can
improve their behavior and change their consumption habits with the
aim of reducing wasted energy and contributing in the promotion of
sustainable and green energy ecosystems [2]. This is quite possible, es-
pecially if recommender systems are combined with anomaly detection
modules. Therefore, personalized and contextual recommendations will
be generated and transmitted the end-user to assist them in adopting a
more sustainable energy use behavior [3,4]. In this line, governments
around the world have realized the importance of energy efficiency and
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the major role that end-users can play to curtail the entire expenditure
on energy [5].

On the other side, the building sector represents a major energy
consumer across the world. Specifically, buildings are responsible of
more than 40% of the overall energy generated globally, which is
converted to more than 30% of the entire worldwide CO2 emission [6,
7]. As such, the reduction of power consumption in building envi-
ronments could absolutely support the urgently-needed diminutions
in the world-wide power consumption and the related environmen-
tal interests. Nevertheless, reducing power consumption in buildings
is not straightforward and is a challenging task since each building
requires electrical energy to operate [8,9]. Even though there is an
increasing interest towards developing zero-energy buildings, related
ideas are only in their nascence and are just tested in limited regions
of developed countries. In this context, the potential option available
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Nomenclature

ANN Artificial neural network
AIN Artificial immune network
ARIMA Autoregressive integrated moving average
CBLOF Cluster-based local outlier factor
CNN Convolutional neural network
DAD Deep abnormality detection
DAE Deep autoencoder
DBN Deep belief network
DBSCAN Density-based spatial clustering of applica-

tions with noise
DODDS Distance-based outlier detection in data

streams
DNN Deep neural networks
DRED Dutch residential energy dataset
DRL Deep reinforcement learning
ELM Extreme learning machines
GAN Generative adversarial networks
GBM Gradient boosting machine
GTB Gradient tree boosting
iForest Isolated forest
IoT Internet of things
KNN K-nearest neighbors
KNNG K-nearest neighbor graphs
LDA Linear discriminant analysis
LDCOF Local density cluster-based outlier factor
LOESS Locally estimated scatterplot smoothing
LOF Local outlier factor
LSTM Long short-term memory
MDA Multiple discriminant analysis
(EM)3 Consumer Engagement towards

Energy saving behavior by means of
Exploiting Micro Moments and Mobile
recommendation systems

MCU Microcontroller unit
MNN Mutual k-nearest neighbor
MLP Multi-layer perceptron
MSCRED Multi-scale convolutional recurrent

encoder–decoder
MSE Multiview stacking ensemble
NILM Non-intrusive load monitoring
NTL Non-technical loss
OCL One-class learning
OCSVM One-class support vector machine
OCNN One-class neural network
OCCNN One-class convolutional neural network
OCRF One-class random forest
PCA Principal component analysis
PGBOD Parallel graph-based outlier detection
PIR Passive-infrared
PCSiD Power consumption simulated dataset
QDA Quadratic discriminant analysis
QUD Qatar university dataset
RBFNN Radial basis function neural network

currently is to promote energy awareness and optimize the operation
of appliances used in buildings, giving that the latter are rigorously
built to consume the amount of energy needed for their expected aims,
2

RBM Restricted Boltzmann machine
RNN Recurrent neural network
ROF Resolution-based outlier factor
SCiForest Isolation forest with split-selection criterion
Semi-SVM Semi-supervised support vector machine
SLFN Single-layer feed-forward neural network
SVM Support vector machine
SVR Support vector regression
STTS Short-term time-series
VFD Variance fractal dimension

i.e. preventing energy waste [10,11]. According to recent studies, peo-
ple could spend up to 80%–90% of their time in indoor environments
(and extensively some unexpected circumstances, such as the COVID-
19 pandemic), which can enormously impact their energy consumption
levels, especially if they show negligence and carelessness [12,13].

Efficient feedback could help in reducing energy consumption in
buildings and lessening CO2 emissions. Accordingly, offering updated
information and personalized recommendations to end-users and build-
ing managers is the initial stage towards setting innovative approaches
to optimize energy usage [14,15]. In addition, for effective power
usage, anomalous consumption behavior must be captured [16]. There-
fore, via implementing energy monitoring systems and benchmarking
strategies, abnormal behavior and footprints can be mitigated. Conse-
quently, smart anomaly detection techniques for energy consumption
should be formulated for identifying new forms of abnormal con-
sumption behaviors [17]. In buildings, an anomalous behavior of an
electrical device or of the end-user could occur either because of a
faulty operation of a device, end-user negligence (e.g. cold loss in a
room by keeping a window open while the air conditioner is on or
refrigerant leak in a fridge via maintaining the fridge door open), a theft
attack, a non-technical loss, etc. [18,19]. An occurrence of anomalous
behavior could lead to higher power consumption, longer operation-
time than its normal behavior/operation-time and/or could result in a
permanent malfunction of the device [20].

It has been demonstrated in various research works that it should be
possible to utilize artificial intelligence (AI) for detecting anomalous en-
ergy consumption behaviors either generated by end-users, appliances’
failures, or other potential causes [9,21]. The AI community has made
every possible effort during the past decade to detect abnormal power
consumption accurately and swiftly. However, it is also of significant
importance to detect when an appliance is not working appropriately
and what are the reasons. Moreover, energy consumption events occur-
ring during a day-off may be genuine, or harder to deal with compared
to recurring events, and thus an anomaly detection algorithm might
consider a recurring fault as “normal”. This makes anomaly detection
in energy consumption very different form other application scenarios,
e.g. intrusion detection, healthcare anomaly detection, etc. [22]. This is
because (i) the other applications are drastically different as they have
acute, serious consequences if the anomaly is not detected, whereas
household energy anomalies might cause extract costs and jumps of the
energy bills every month, but are unlikely to be life threatening; and
(ii) detecting anomalous consumption should be followed by triggering
a set of tailored recommendations to help end-users adjust their energy
consumption habits, replace faulty appliances, identify cyber attackers
on energy infrastructures and carry on legal procedures and take other
measures related to end-users’ negligence (e.g. close the refrigerator
door, close the doors and windows of the rooms while an air condi-
tioner is working, etc.) [23]. Such measures could be quite useful in
different ways since they result in high energy cost savings, and could
further prevent different kind of disasters (e.g. a house fire).

Efficient energy saving systems based on anomaly detection schemes

need to address various issues before reaching a wider adoption. Among
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the challenges is how to design scalable and low cost solutions while
maintaining decentralization and security. Other contemporary issues
include privacy preservation, consumer anonymity, and the real-time
implementation of anomaly detection based systems. A significant ef-
fort has been put in recent years to innovate anomaly detection strate-
gies, a large amount of projects and frameworks are ongoing, which
have been described in scientific journal articles, patents, reports and
industrial white papers and produced principally by the academic com-
munity and industrial partners. Moreover, various AI-based anomaly
detection techniques have been the subject of new energy saving so-
lutions. However, we assert a systemic and comprehensive review
conducted based on different sources is still required to investigate
the challenges, issues and future perspectives of the applicability of
machine learning for anomaly detection in energy consumption. In
this context, this framework strives to fill that knowledge gap via
proposing, to the best of the authors’ knowledge, the first, extensive and
timely survey of anomaly detection of energy consumption in buildings.
Explicitly, with the aim of laying the foundation for this effort, the
following contributions have been proposed:

• First, we present an overview of existing anomaly detection
schemes in building energy consumption, in which a comprehen-
sive taxonomy is adopted to classify them into various categories
based on the nature of machine learning model used to identify
the anomalies, feature extraction, detection level, computing
platform, application scenario and privacy preservation. In ad-
dition, we discuss various system architectures and associated
modules determining the technical properties of anomaly de-
tection systems. A considerable part of current knowledge on
anomaly detection in energy consumption arises not just from
conventional academic sources (i.e. journal articles and con-
ference proceedings), but also from industrial outputs, granted
patents, and whited papers. We focus in the first part of this
framework on distilling valuable information from the afore-
mentioned sources in order to allow the readers comprehending
the technical challenges of energy consumption anomaly detec-
tion. More specifically, the advantages and limitations of every
category is discussed thoroughly along with its competence in
different case scenarios.

• Second, we perform a critical analysis and describe by conduct-
ing an in-depth discussion of the presented state-of-the-art. We
explore current difficulties and limitations issues associated with
the development and implementation of the anomaly detection
systems, in addition to their market barriers.

• Third, we describe current trends and identify new challenges
concerning the enrichment of anomaly detection schemes with
new applications and functionalities that could impact positively
the energy consumption in buildings, among them considering
additional sources of data (e.g. occupancy patterns, ambient con-
ditions, etc.), combining other technologies (i.g. non-intrusive
load monitoring (NILM)), collecting annotated datasets and using
unified assessment metrics.

• Finally, we derive a set of future research directions that require
greater emphasis with regard to four aspects, in order to (i)
overcome the actual drawbacks of anomaly detection algorithms,
(ii) improve the exploitation of anomaly detection solutions for
better energy saving ecosystems, (iii) improve the deployment
of innovative anomaly detection systems in real-world scenarios,
and (iv) preserving the privacy of end-users.

The remainder of this paper is organized as follows. An overview of
tate-of-the-art anomaly detection techniques in building energy con-
umption is presented in Section 2, where an exhaustive taxonomy is
roposed with regards to various aspects. Furthermore, their limitations
nd drawbacks are highlighted. Moving forward, critical analysis and
iscussion are presented in Section 3 as a result of the conducted
3

verview, in which difficulties, limitations and market barriers are
described. Following, Section 4 is divided into two parts, in which
Section 4.1 is reserved to describing open research challenges regarding
novel applications and functionalities of anomaly detection methods.
While, Section 4.2 provides a set of insightful perspectives and emerg-
ing concepts for advancing future anomaly detection systems. Finally,
Section 5 derives relevant concluding remarks.

2. Overview of anomaly detection methods

2.1. Overview

This section describes existing anomaly detection methods based
on the nature of implemented AI algorithms used to detect anoma-
lies. Fig. 1 illustrates the proposed taxonomy of anomaly detection
techniques in building energy consumption with reference to different
aspects.

2.1.1. Unsupervised detection (U)
It aims at detecting formerly unknown rare consumption obser-

vations or patterns without using any a priori knowledge of these
observations. Generally, this kind of detection assumes that the amount
of anomaly patterns to the overall consumption data is small, i.e. less
than 20%. Since the abnormalities represent the outliers that are un-
known to the consumer at the training stage, detecting anomalous
consumption is reduced to the modeling of normal consumption behav-
ior in the large majority of cases, in addition to the definition of specific
measurements in this space with the aim of classifying consumption ob-
servations as abnormal or normal. Unsupervised techniques are mainly
built on clustering, one-class learning and dimensionality reduction
algorithms.

U1. Clustering: it is a machine learning scheme used to split power
consumption data into various clusters and hence helps in classifying
them into normal or abnormal in unlabeled datasets (even with many
dimensions). This anomaly detection strategy has attracted a lot of
interest in different research topics for its simplicity, such as intrusion
detection in networks [24], Internet of things (IoT) [25], sensor net-
works [26], suspicious behavior detection in video surveillance [27],
anomalous transaction detection in banking systems [28] and suspi-
cious account detection in online social networks [29]. In addition,
clustering has the capability for learning and detecting anomalies from
the consumption’s time-series without explicit descriptions [30].

Aiming at distinguishing between actual anomalies and genuine
changes due to seasonal variations, the authors in [31] propose a
two-step clustering algorithm. In the first step, an anomaly score per-
taining to each user is periodically evaluated by just considering his
energy consumption and its variations in the past, whilst this score
is adjusted in the second step by taking into account the energy
consumption data in the neighborhood. In [32], the concept of “col-
lective anomaly” is introduced, instead of the events that refer to an
anomaly, to depict itemsets of events, which, depending on their pat-
terns of appearance, might be anomalous. To achieve this, the frequent
itemset mining and categorical clustering with clustering silhouette
thresholding approaches were applied on smart meters data streams.
In [33] an integrated scalable framework which combines clustering
and classification techniques with parallel computing capabilities is
adopted, by superimposing a k-means model for separating anomalous
and normal events in highly coherent clusters. Moving forward, authors
in paper [34] opt for a time-series to investigate the anomaly detection
in temporal domain, subsequently to categorizing the anomalies into
amplitude and shape related-ones. A unified framework is introduced
to detect both type of anomalies, by employing fuzzy C-means clus-
tering algorithm to unveil the available normal structures within the
subsequences, along with a reconstruction criterion implemented to
measure the dissimilarity of each subsequence to the different cluster
centers. In [35], power data are processed through the mutual k-

nearest neighbor (MNN) and k-means clustering algorithms to reduce
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Fig. 1. Taxonomy of the anomaly detection schemes in energy consumption based on different aspects: (i) AI algorithms, (ii) application scenarios, (iii) detection levels, and (iv)
omputing platforms.
he number of measurement samples, the consumption patterns are
hen analyzed to detect abnormal behaviors and malicious customers.
inally, entropy-based methods for anomaly detection represent an-
ther clustering category, in which a little effort has been devoted
o thoroughly comprehend the detection force of using entropy-based
nalysis, such as [36,37].

2. One-class classification: also named one-class learning (OCL)
relies on considering initial power consumption patterns to be parts
of two groups, positive (normal) and negative (abnormal), then it
attempts to design classification algorithms while the negative group
can be either absent, poorly sampled or unclear [38]. Accordingly,
OCL is a challenging classification problem that is harder to solve than
conventional classification problems, which try to discriminate between
data from two or more categories using training consumption data that
pertain to all the groups [39].

Different schemes have been proposed in the literature to detect
anomalous consumption footprints based on OCL. In [40], one-class
support vector machine (OCSVM) is introduced to identify the small-
4

est hypersphere encompassing all the power observations. In [41], a
kernel based one-class neural network (OCNN) is proposed to detect
abnormal power consumption. It merges the capability of deep neural
networks (DNN) to derive progressive rich representations of power
signals with OCL, building a tight envelope surrounding normal power
consumption patterns. In [42,43], two different approaches of one-
class convolutional neural networks (OCCNN) are proposed. They share
the same idea of using a zero centered Gaussian noise in the latent
space as the pseudo-negative class and training the model based on
the cross-entropy loss to learn an accurate representation along with
the decision boundary for the considered class. Also, one-class random
forest (OCRF) is proposed to identify abnormal consumption when la-
beled data are absent [44,45], it is based on utilizing classifier ensemble
randomization fundamentals [46].

U3. Dimensionality reduction: in different machine learning appli-
cations, dimensionality reduction could be used as a classification
approach with a low computational cost as it can removes irrelevant
power patterns and redundancy [47]. Various techniques are explored
to classify power data as normal or abnormal, such as principal compo-
nent analysis (PCA), linear discriminant analysis (LDA) [48], quadratic
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discriminant analysis (QDA) [49] and multiple discriminant analysis
(MDA) [50].

Despite the fact that PCA has been proposed mainly to reduce
the dimensions of the original data while preserving the relationships
between the data as much as possible, it has been also used as a
classifier. For example, in the anomaly detection problem that is consid-
ered as a two-class classification issue, the PCA classifier estimates the
principal components of both normal and abnormal classes. Following,
the classifier is designed with reference to the projection of the energy
patterns within the subspaces spanned by these principal components
for either normal or abnormal class [51,52]. Moreover, PCA could also
be applied for the case of multi-class anomaly detection, as it is the case
with the micro-moment based anomaly detection approach described
in [19]. Accordingly, the normal energy usage class has been split into
three new classes while abnormal energy consumption class has been
divided into two new classes. Overall, the anomaly detection problem
has become a classification issue of 5 different classes. All in all, PCA
is appropriate for the case in which energy observations of different
categories are distributed in different spaces and directions.

In [53], the Karhunen–Loeve transform-based PCA is used to detect
anomalous power consumption. It relies on estimating principal com-
ponents of every consumption category and then creates a classifier via
projecting power patterns on the subsets distributed by those principal
components related to the two main categories (i.e. normal and abnor-
mal). In [54], LDA is used to classify power consumption patterns by
discriminating between separated sub-categories and design a model
to automatically labeling power consumption patterns with reference
to their corresponding categories. This has been accomplished via the
use of discriminant weights to separate the hyperplanes generated by
the LDA statistical learning. In [55,56], QDA that is a variant of LDA
is deployed to enable a non-linear separation of power consumption
patterns pertaining to both normal and abnormal ensembles. Finally,
MDA is mainly used to build discriminant axes (functions) from linear
combinations of the initial power consumption data. Every axis is
designed to maximize the difference between normal and abnormal
categories while considering them uncorrelated [56,57].

2.1.2. Supervised detection (S)
Supervised anomaly detection in energy consumption necessitates

training the machine learning classifiers (binary or multi-class) using
annotated datasets, where both normal and abnormal power consump-
tion is labeled. Although supervised anomaly detection can achieve
high-accuracy identification results as demonstrated in academic frame-
works, its adoption in the real world is still limited compared to
unsupervised methods, due to the absence of power consumption anno-
tated datasets. Fig. 2 illustrates the main steps to conduct a supervised
anomaly detection approach.

S1. Neural networks: refer to using deep learning or conventional arti-
ficial neural networks (ANN) to detect normal and abnormal consump-
tion patterns. Currently, deep abnormality learning (DAD) has been
used in various research topics, such as detecting fraudulent health-care
transactions [41], identifying abnormalities in video streaming [58]
and detecting credit card frauds [59]. However, the performance of
a DAD based solutions could be sub-optimal in some cases owing to
the imbalance property of power consumption datasets (i.e. power
consumption patterns are not uniformly distributed over the normal
and abnormal categories).

In [60,61], the autoencoder and long short-term memory (LSTM)
neural networks are merged to identify abnormalities in unbalanced
and temporally correlated power consumption datasets. Similarly, in
[62], the authors detect anomalies in time-series power footprints using
a variational recurrent autoencoder. Moving forward, Yuan et Jia [63]
use stacked sparse autoencoder for extracting high-level representa-
tions from large-scale power consumption datasets gleaned using and
IoT-based metering network. Next, they utilize softmax in the classi-
5

fication stage to capture the consumption anomalies before sending e
notifications and alerts to end-users using web applications. Similarly,
in [64] the autoencoder and micro-moment analysis are used to detect
abnormal energy usage.

On the other side, convolutional neural networks (CNN) have
demonstrated its effectiveness in different research applications, and it
has superior performance in comparison with artificial neural network
(ANN) algorithms for detecting abnormalities in time-series data [65].
In [66], the author opted for combining CNN and random forest
to track energy consumption anomalies due to energy theft attacks
and thereby helping energy providers to remedy the issues related to
irregular energy usage and inefficient electricity inspection. Similarly,
Zheng et al. [67] propose a CNN-based solution, which helps mainly
in identifying the non-periodicity of energy theft and periodicity of
normal energy consumption using 2D representations of power con-
sumption signals. Using the same idea, a CNN is developed in [68] via
representing time-series time/frequency energy consumption signals
in 2D space and then learning anomaly features using convolution.
Moving forward, in [69], multi-scale convolutional recurrent encoder–
decoder (MSCRED) is deployed to analyze multivariate time-series
observations and detect abnormalities. In [70], a restricted Boltzmann
machine (RBM) along with a deep belief network (DBN) are merged
to construct a DNN-based abnormality detection framework. Explicitly,
a dimensionality reduction task is performed at the two first RBM
layers before being fed into a fine tuning layer including a classifier
to separate anomalies from normal data.

Furthermore, looking for innovative deep learning solutions to deal
with the unbalanced property of anomaly detection datasets, genera-
tive adversarial networks (GAN) are employed. It can model complex
and high-dimensional data of different types, including images [71],
time-series [72,73] and cyber security [74]. Unfortunately, its utiliza-
tion to detect anomalous power consumption in buildings is still very
limited [75].

Recurrent neural network (RNN) is very competent in analyzing
time-series data and enables to exhibiting temporal dynamic behav-
iors [76]. It has been used to predict the anomalies occurring during
energy usage and distinguish them from deviations emerging from
seasonality, weather and holiday dependencies [61,77]. For instance,
in [78], an RNN based anomaly detection system is designed, which can
remove seasonality and trends from power consumption patterns, re-
sulting in a better capture of the real abnormalities. In [79], the authors
concentrate on elaborating an abnormality detection scheme having
the ability to face the concept drift, due to family structure changes
(e.g. a household turned to a second family residence). To that end,
an LSTM based RNN model is developed to profiling and forecasting
end-users’ consumption behaviors using their recent/past consumption
data. In [80], abnormal days illustrate suspicious consumption rates are
identified using a hybrid learning model based on RNN and K-means.
Similarly in [81], a hybrid model using RNN and quantile regression is
introduced to predict and detect anomalous power consumption.

On the other hand, in order to provide the reader with more
details on the use of deep learning for anomaly detection in energy
consumption, Fig. 3 illustrates a flowchart of a supervised anomaly
detection scheme proposed in the (EM)3 project, which is performed
sing a DNN model [19]. In this framework, power consumption data
f various appliances and occupancy patterns are gleaned using sub-
eters and smart sensors. Next, collected data are labeled using a
icro-moment paradigm, in which consumption footprints are divided

nto five consumption categories. Following, a DNN model is designed
nd trained using the labeled dataset before testing it on new recorded,
nlabeled data in the test stage.

On the other hand, using ANN for anomaly detection in energy con-
umption is mainly supported by its capability to learn and generalize
rom past consumption data to identify normal and abnormal behav-
or [82]. In addition, ANN could help in solving the anomaly detection
ssue when recorded data is noisy due to various reasons, e.g. noise gen-

rated during data transmission or from electrical appliances connected
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Fig. 2. The main steps used to perform a supervised anomaly detection of energy consumption in buildings.
Fig. 3. Flowchart of a supervised anomaly detection scheme based on DNN used to detect two different anomalies, i.e. excessive consumption and consumption while outside.
to the smart grid [83]. In [84], the identification of power consumption
anomaly is handled by resorting to a multi-stage ANN-based solution.
This latter incorporates a discrete wavelet transform to obtain the
required features, a variance fractal dimension (VFD) operation applied
on those features, an ANN scheme which exploits the VFD output to
perform the training, and finally a threshold-based detection of the
anomalous power consumption pattern. The work in [85] proposes a
6

residential framework comprising a dual hybrid one-step-ahead load
predictor and a rule-engine-based energy consumption abnormality
detector. In order to attain a high anomaly detection precision in linear
and nonlinear regression, the predictor merges the benefits of ANN and
autoregressive integrated moving average (ARIMA) model.

Moreover, the consumption anomalies are tracked through the use
of multi-layer perceptron (MLP) and classification techniques in [86].
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Similarly in [87], with the aim of predicting malicious behavior in
unbalanced data, an MLP-based solution is efficiently tested on two
different datasets to carry out a flow-based control which preserves
the end-users’ privacy. In the same direction, the continuous and fine-
grained monitoring of energy consumption in industrial buildings is
discussed in [88] in order to preserve reliable operation. Explicitly,
an MLP-based anomaly detection scheme is targeted via detecting
sensor data abnormalities in a pharma packaging system. Moreover,
intrusion detection that can be applied in energy theft tracking, is
investigated in [89] by combining artificial immune network (AIN)
and cosine radial basis function neural network (RBFNN), wherein
firstly multiple-granularities version of the former is supported to reveal
the candidate hidden neurons, and subsequently, the latter is trained
based on gradient descent learning process. In addition, different power
consumption anomaly detection frameworks are introduced based on
extreme learning machines (ELM) [90,91]. Specifically, ELM is built
upon a single-layer feed-forward neural network (SLFN) for classifying
the normal and abnormal classes [92].

S2. Regression: refers to identifying the relationship between two or
ore power variable classes in order to produce an ensemble of model
arameters to predict the generation of abnormal power observations.
n this context, the production of anomalous power consumption pat-
erns can be predicted based on other collected abnormal footprints.
arious regression models have been introduced in the literature to

dentify abnormalities in building energy consumption, including linear
egression, support vector regression (SVR), auto-regressive models,
egression trees and regression fitting [93]. The authors in [94] propose
o adopt linear regression-based approaches to determine the anoma-
ous periods for individual premises, and clear them from the premise
ata, such that to provide precise assessments of energy consumption
atterns. In the same direction, a model to find abnormal energy
onsumption patterns is designed in [95] by analyzing the smart meters
emporal data streams. Specifically, to perform the prediction and
ap the non-linearity of data, support vector regression with radial

asis function is retained and correspondingly evaluates the disparity
etween the actual and the expected energy consumption.

Because of the large quantity of stored smart meter data, anomaly
etection with such information brought the big data issue into fo-
us, particularly with the scarcity of adequate and efficient real time
nomaly detection systems capable of handling this huge amount of
ata. In order to remedy this and facilitate energy-related decision-
akings, the studies in [96,97] depict a scalable architecture merg-

ng an autoregressive prediction-based detection method, with a new
ambda scheme to iteratively upgrade the model along with real time
nomaly detection. The work in [98] targets the reduction of anoma-
ous consumption by presenting a new scheme which enabled the
dentification of anomalous power consumption within large sets of
ata. It follows a two-stage processing, namely prediction and then
nomaly detection, where, by the aid of a hybrid neural network
RIMA model of daily consumption, daily real-time consumption is first
redicted in the former step, whereas a two-sigma rule was adopted
o localize the anomalies via the evaluation of the mismatch between
eal and predicted consumption. The framework in [65] address the
nomaly recognition in streaming large scale data, which is a typical
ccurrence scenario in deployed sensors. In this scope, both statistical
i.e. ARIMA) and CNN based approaches were integrated in a residual
ay, such that the fusion was shown to compensate the weaknesses
f each of them and consolidate their strengths. In [88], a data-driven
pproach was pursued since no cyclicity pattern was noted on the ob-
erved data. From comparing three different regressors (i.e. regression
ree, random forest, and MLP) in the prediction phase, the authors
ighlighted the advantages of the regression trees and random forests
esiding in the training time efficiency and model replicability ease.

3. Probabilistic models: are among the most important machine
7

earning tools, they have been instituted as an effective idiom for
describing the real-world problems of anomaly detection in energy con-
sumption using randomly generated variables, such as building models
represented by probabilistic relationships [99,100]. The anomaly pro-
files of time-series patterns are identified using Bayesian maximum
likelihood models for clean data [101] and noisy data [100], while
Bayesian network models are implemented to detect abnormalities
categorical and mixed based power consumption data in [102,103].
In [104,105], statistical algorithms are deployed to identify the anoma-
lies via the identification of extremes based on the standard deviation,
while in [104], the authors use both statistical models and clustering
schemes to detect power consumption anomalies. In [106,107], naive
Bayes algorithms are proposed to detect the abnormalities generated
by electricity theft attacks. Similarly in [108], Janakiram et al. deploy
a belief Bayesian network to capture the conditional dependencies
between data and then identify the anomalies. In [109], a statis-
tical prediction approach based on a generalized additive model is
introduced to timely detect abnormal energy consumption behavior.

S4. Traditional classification: stands for models that rely on detecting
to which power consumption category (sub-population) a new power
consumption sample pertains, with reference to a training ensemble of
consumption footprints that have labels of both normal and anoma-
lous consumptions. K-nearest neighbors (KNN), support vector machine
(SVM), decision tree and logistic regression are the well-known con-
ventional classification algorithms, they have been widely deployed in
the state-of-the art of the energy-based applications or other research
topics.

In [53,104], KNN based heuristics are proposed to detect abnormal
power consumption, while in [86], the authors investigate the perfor-
mance of KNN against other machine learning classifiers to identify
abnormal power observations. In [110,111], SVM is deployed to de-
tect abnormalities due to energy theft attacks. In the same direction,
in [112], a genetic SVM model is proposed to detect abnormal con-
sumption data and suspicious customers, in which a genetic algorithm
is combined with SVM. While in [113], Zhang et al. fuse SVM and par-
ticle swarm optimization for detecting abnormal power consumption
in advanced metering infrastructures. On the other side, in [114], a
decision tree based solution is introduced to learn energy consump-
tion anomalies triggered by fraud energy usage. Similarly in [115],
an improved decision tree model is developed to detect anomalous
consumption data using densities of the anomaly and normal classes.
Moving forward, in [88], a decision tree regressor is presented to detect
abnormal power consumption using sensor data, while in [86], the
anomalies are detected using logistic regression.

2.1.3. Ensemble methods (E)
As it is demonstrated in various frameworks [19,116], none of

the anomaly detection schemes could perfectly identify all abnormali-
ties through low-dimensional subspaces because of the complexity of
power consumption data and other factors influencing power usage
over hourly, daily, weekly, monthly or yearly scales. Accordingly,
the use of ensemble learning can solve some related issues, where
the initial set of power observations is split to multiple subsets and
various models are applied simultaneously on these subsets to derive
the potential abnormalities. Following, anomaly identification scores
are either summarized or the most suitable one is selected to produce
final score.

E1. Boosting: it is a set of meta-algorithms used to principally reduce
bias and variance of unsupervised learning, in which weak classifiers
(learners) are converted into strong ones. Generally, they are structured
in a sequential form. A weak classifier refers to the case where a slight
correlation can be achieved with the true classification [117]. Different
boosting schemes are proposed in literature to detect anomalies, among
them bootstrap, gradient boosting machine (GBM) and gradient tree
boosting (GTB).



Applied Energy 287 (2021) 116601Y. Himeur et al.
In [118], Zhang et al. use a bootstrap strategy to conduct an
unlabeled learning process for detecting anomalies in energy data
in multi-feature data. In [119], a GBM based anomaly detection is
introduced to model power usage of commercial buildings. In the
same manner, in [120], a grid search is deployed to capture the best
parameter configuration of a GBM based anomaly detection. While
in [121], the authors predict energy frauds though the identification
of power consumption anomalies using a GBM based scheme. In [122],
a GTB based anomaly detection is investigated along with other data
mining techniques using power consumption pricing data.

E2. Bagging: also called bootstrap-aggregating, it is a set meta-
algorithms developed for improving the accuracy and stability of
several weak classifiers. Bagging differs from boosting by the fact that
the weak learners are structured in a parallel form [123]. Moreover,
distinct detection schemes can be applied on each sub-ensemble before
aggregating their results as demonstrated in [124]. Random forests,
bootstrap aggregation and their variations are the well-known bag-
ging based ensemble learning methods used for anomaly detection.
For example, in [125], Araya et al. propose a bootstrap aggregation
based abnormality detection scheme, which helps in conducting an
ensemble learning to identify energy consumption anomalies. In [126],
an isolation forest with split-selection criterion (SCiForest) algorithm
is introduced to check if the end-user’s electricity consumption is
anomalous or normal. In [66], non-technical losses (NTLs) occurring in
the energy networks are detected using a random forest scheme. This is
mainly conducted through sensing anomalous power consumption and
learning consumption differences for different periods (i.e. hours and
days).

In [127], a random forest classifier is deployed to detect anomalies
while respecting the performance measure related to the accuracy
and false alarm rates. In [128], a multiview stacking ensemble (MSE)
technique is proposed to learn energy consumption anomalies collected
using different IoT sensors in industrial environments. In [116], an
anomaly detection scheme based on feature bagging is introduced. It
relies on training several classifiers on different feature sub-ensembles
extracted from a main high-dimensional feature set and therefore com-
bining the classifiers’ results into a unique decision. In [129], after
deriving various feature sub-ensembles randomly from the initial fea-
ture, anomalies are identified and the performance is estimated in each
sub-ensemble before fusing them to come out with the final output.

2.1.4. Feature extraction (F)
This part mainly discusses how feature extraction scheme can help

to boost the performance of anomaly detection methods via: (i) repre-
senting the power consumption observations in novel spaces (e.g. high-
dimensional spaces); (ii) utilizing appropriate measures and functions
(e.g. distance, density) to discriminate between normal and abnormal
consumption; and (iii) representing the consumption flowchart using
new representation structures (e.g. graph-based representation) [130].

F1. Distance-based: refers to detecting abnormal consumption pat-
terns by judging each pattern based on its distance to its neighboring
samples. Explicitly, normal consumption observations generally possess
a dense neighborhood while anomalous consumption footprints are
far form their neighboring points (i.e. show a sparse structure). Var-
ious frameworks have been proposed to resolve the issue of distance-
based anomaly detection for energy consumption, where unsupervised
learning methods are usually adopted without having any distributive
presumptions on recorded consumption data. In this regard, in [131], a
distance-based anomaly detection is proposed via analyzing the theoret-
ical properties of the nearest neighbors of each power observation. Ex-
plicitly, anomalous patterns are then detected with reference to a global
quantity named distance-to-measure. Also in [132], power anomalies
in smart grid are detected using a multi-feature fusion that is based
on Euclidean distance and a fuzzy classification approach. In [133],
8

the authors use a cosine similarity approach to estimate similarity dis-
tance between power consumption observations and detect suspicious
patterns. Following, they sort the resulted cosine distance data for
identifying abnormal consumption behavior based on a threshold.

Moreover, in [134], various methods are proposed to resolve the
distance-based outlier detection in data streams (DODDS) issue and
their performance is compared when detecting anomalies without hav-
ing any distributional assumptions on power consumption observations.
In a similar way, in [135], Huo et al. develop an distance-based
abnormality detection method, in which a time–space trade-off strategy
has been deployed for reducing the computational cost. While in [136],
a resolution-based outlier factor (ROF) method is proposed to detect
anomalies in large-scale datasets. It mainly focuses on analyzing the dis-
tances of both local and global features to effectively detect anomalous
data. In [137], the energy consumption anomaly detection process is
performed using an isolated forest (iForest) model. The latter has been
proposed by Liu et al. as a competitive method to ROF and local outlier
factor (LOF) algorithms [46,138].

F2. Time-series analysis: because power consumption data are consid-
ered time-series footprints, it is logical that many studies have focused
on formulating the anomaly detection issue such as to find anomalous
observations based on standard signal analysis [128]. Specifically, this
kind of anomaly detection relies on detecting unexpected spikes, level
shifts, drops and irregular signal forms. For example, in [139], sea-
sonal trend decomposition using locally estimated scatterplot smooth-
ing (LOESS) is proposed to detect anomalous consumption points, in
which a seasonal-trend decomposition scheme based on LOESS is intro-
duced. It helps in splitting the power consumption time series samples
into three components defined as seasonal, trend, and residue [140].

On the other side, it is worth noting that most of the anomaly
detection schemes pertaining to this class are based on short-term time-
series (STTS) analysis. In this line, a log analysis of power consumption
time-series patterns is conducted in [141] to detect real-time anomalies
in early warning systems. Similarly, [142], a feature extraction based
abnormality detection scheme is proposed using canonical correlation.
It can help in detecting the anomalies in different kinds of buildings,
such as households, work spaces and industrial zones. In [143], abnor-
malities occurring in smart meters data are identified using time-series
analysis, in which Cook’s distance is deployed over a thresholding
process to decide whether an observation is normal or abnormal. In
the same vein, in [144], a hierarchical feature extraction method is
proposed in order to capture energy consumption anomalies in time-
series consumption data due to electricity stealing. While in [145], to
identify the abnormal consumption behavior, the authors analyze dif-
ferent STTS features that could offer valuable details about deviations
from a typical behavior.

On the flip side, other techniques use rule-based algorithms to an-
alyze time-series data and detect anomalous power consumption [146,
147]. For example, in [148], Yen et al. introduce a rule-based approach
to analyze the phase voltages and then decide which are the anomalous
patterns using an ensemble of rules. In the same direction, in [149], a
rule-based algorithm is combined with a linear programming approach
to detect anomalous electricity consumption and hence identify the
locations of potential energy theft attacks and/or faulty meters. In [150,
151], the detection of anomalous power consumption is performed
using a rule-based algorithm, which is elaborated based on machine
learning methods and the knowledge of energy saving experts. An
ensemble of energy saving parameters is then introduced to track
abnormalities. While in [152], a rule-based algorithm is combined with
an improved nearest neighbor clustering approach to identify potential
abnormal power consumption behaviors. In [19], a micro-moment
based algorithm is proposed to detect two kinds of power consumption
anomalies, which are due to (i) excessive power consumption, and (ii)
consumption while the end-users are outside. The latter is responsible
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of wasting a large amount of energy for a set of appliances, such as the
air conditioner, heating system, fan, light lamp and desktop/laptop.

F3. Density-based: refers to anomaly detection methods that investi-
ate the density of each power consumption pattern and those of its
eighborhood. Moving forward, a power observation is considered as
nomalous if it has a lower density compared to its neighbors [153].
arious techniques have been proposed in this regard; among them
OF that attempts to derive a peripheral observation by using den-
ity of its surrounding space [154]; cluster-based local outlier factor
CBLOF) that relies on detecting the anomalies using the size of its
ower consumption clusters, and the density between each power
bservation and its closest cluster [155]; local density cluster-based
utlier factor (LDCOF) that represents an improved version of CBLOF,
n which it applies a local density concept when allocating anomaly
cores [156]. In this context, in [157], a density-based spatial clustering
f applications with noise (DBSCAN) approach is introduced to detect
nomalous power consumption in a wind farm environment. Overall,
ensity-based anomaly detection has been widely investigated in other
ields, such as activity monitoring [158], machine fault detection [159],
inancial and banking systems [160], etc., their application to detect
bnormal energy usage has not been very successful since other kinds of
nomalies exist. Specifically, density based schemes could only identify
nergy consumption outliers based on analyzing energy consumption
evels without the possibility to detect other abnormalities, e.g. energy
onsumption of some appliances (e.g. television, air conditioner, lamp,
an, etc.) while the end-user is absent.

4. Graph-based: before applying graph-based methods to detect
ower consumption abnormalities, consumption data should be con-
erted into a graph-based structure. Because there are no common
tandards to model this kind of data, researchers use various schemes
o design such a representation. For instance, the authors in [161,
62], consider the house, power generator, electric network, rooms,
nd appliances as nodes; and edges stand for the existing connection
etween a specific room and the operation of an appliance. Following,
bnormalities resulting in a structural change of the graph topology are
etected, while a graph-based abnormality is defined as an unforeseen
eviation to a normative pattern.

Different graph-based abnormality detection (GBAD) algorithms
ave been proposed [163], where abnormal observations of structural
ata are identified in the information representing entities, actions and
elationships. In [164], the authors propose a graph-based method to
iscover contextual anomalies in sequential data. Explicitly, the nodes
f the graph are clustered into different categories, where each class
ncludes only similar nodes. Following, anomalies are detected via
hecking if adjacent observations pertain to the same class or not.
imilarly, in [165], a parallel graph-based outlier detection (PGBOD)
echnique is introduced for identifying power abnormalities, in which
ata are processed in parallel before extracting abnormal patterns.

.1.5. Hybrid learning (H)
Annotating normal power consumption is much easier than labeling

nomalous patterns, consequently, hybrid or semi-supervised anomaly
etection has been adopted in several frameworks [166]. It leverages
vailable annotated normal footprints (having labels) and pertaining
o the positive class to identify abnormalities from the negative class.
his is the case of deep autoencoder (DAE) architecture when it is only
pplied to learn normal consumption patterns (with no anomalies).
ccordingly, using enough training consumption observations from the
ormal category, the autoencoder could generate low reconstruction
rrors for normal observations over abnormal patterns [167].

In [168], a semi-supervised support vector machine (semi-SVM)
ased anomaly detection solution is proposed, where a small number
f annotated power consumption patterns are required to train the
earning model. This system can also generate alarms if suspicious
9

onsumption patterns are detected, which are different to usual energy
consumption habits of the end-users. While in [169], DAE and ensemble
k-nearest neighbor graphs (KNNG) are combined to develop a semi-
supervised anomaly detection system, in which only normal events with
their labels are used to train the learning model.

2.1.6. Other techniques (O)
In addition to what has been presented in the aforementioned

subsections, there are other types of anomaly detection techniques that
are built on completely different strategies, including visualization and
compressive sensing.

O1. Visualization: offers effective tools to comprehend consumption
behavior of end-users through mapping consumption footprints with
visual spaces. In this line, visual experts make use of perceptual skills
for helping end-users perceive and decipher their consumption patterns
within data. Moreover, visualization of load usage footprints could
efficiently aid in detecting anomalous consumption behaviors, faulty
appliances and suspicious consumption fingerprints that may be due
to energy theft attacks. Accordingly, this enables end-users and energy
managers to fix related issues and reduce wasted energy.

For example, in [170], the authors propose an anomaly detec-
tion framework based on providing various time series visualization
schemes, which helps in analyzing and understanding energy consump-
tion behavior. Moreover, it also enables visualizing resulting anomaly
scores to direct the end-user/analyst to important anomalous periods.
In the same way, an interactive visualization approach that helps
in capturing power consumption anomalies is proposed in [171]. It
focuses on analyzing and visualizing spatio-temporal consumption foot-
prints gleaned using various streaming data sources. This method has
been developed with respect to two prerequisites of real-world anomaly
detection systems, which are the online monitoring and interactivity.
Moreover, an interactive dashboard is designed in [172] using an
early warning application, which can automatically analyze energy
consumption footprints and provide end-users with timely abnormal
consumption visualizations based on data recorded from smart meters
and sensors. While in [173], a graphical visualization tool for support-
ing the detection and diagnosis of power consumption abnormalities
using a rule-based approach is proposed.

O2. Compressive sensing: represents a signal processing strategy for
effectively analyzing and reconstructing time-series data using their
sparsity. It has been widely used in different research fields, such as fa-
cial recognition, holography and monitoring of bio-signals. In addition,
compressive sensing puts all the appropriate qualities to detect anoma-
lies in energy consumption [174]. For instance, in [175], the authors
prove the relevance of applying compressive sensing in sparse anomaly
detection, it relies on the fact that the number of anomalous patterns
is generally smaller than the total number of events. In the same
direction, in [176], separable compression sensing is combined with
PCA to identify anomalous power data. In [177], anomalous events in
smart grid are detected using a sparse approximation paradigm.

2.2. Anomaly detection level

The anomaly detection level of power consumption data plays a
major role in developing effective solutions because it describes either
the level of resolution in which power anomalies have been detected
and treated. Correspondingly, tailored recommendations could be gen-
erated to resolve the associated issues and promote energy efficient
behavior.

L1. Aggregated level: it refers to detecting anomalous power consump-
tion using data of the main supply in a specific building, i.e. without
any information about individual consumption of the different ap-
pliances connected to the electrical network. Although this kind of

anomaly detection has been used in various works, it has the main
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drawback of not being able to provide the end-user with information
about which appliance is responsible for a specific anomaly.

L2. Appliance level: it stands for the case where anomaly detection is
performed using appliance power consumption data gathered using in-
dividual sub-meters. This kind of anomaly detection is widely adopted
because it supports a fine-grained tracking of abnormalities occurring
during the operation of each electrical device [23].

L3. Spatio-temporal level: much attention has been devoted recently
to the collection of continuous spatio-temporal power consumption pat-
terns from different devices and sources. This affords new opportunities
to timely understand consumption fingerprints in their spatio-temporal
context [178,179]. Overall, detecting anomalous consumption behav-
iors using conventional data collection methods present considerable
challenges since the boundary between normal and anomalous obser-
vations is not obvious. Therefore, a straightforward solution to those
challenges is to interpret consumption abnormalities in their multi-
faceted and spatio-temporal context. Specifically, detecting abnormal
consumption related to specific hours in the day, or what are the severe
days presenting anomalous consumption and how to identify them in
the timestamps (weekdays, weekends, holidays, etc.) will be valuable
to provide end-users with a personalized feedback to reduce wasted
energy [180,181].

2.3. Applications

The applications of anomaly detection of energy consumption in
buildings are no longer limited to energy efficiency, but they are
finding themselves in various novel application contexts. Explicitly,
they could be used for detecting (i) abnormal consumption behaviors,
(ii) faulty appliances, (iii) occupancy information, (iv) non-technical
losses, and (v) at-home elderly monitoring. In addition, the same
anomaly detection system, within a building can be used for multiple
applications without the need for installing other systems (e.g. to detect
occupancy or non-technical losses). Therefore, this could effectively
reduce the hardware implementation costs and decrease the complexity
of installed systems.

A1. Detection of abnormal behavior of end-users: it is the main
application for which anomaly detection has been proposed since the
final objective is to reduce wasted energy and promote sustainable and
energy efficiency behaviors [19,150]. In this context, detecting anoma-
lous consumption behavior of end-users allows a better and accurate
assessment of power usage, which can be translated into providing
them with useful and personalized recommendations [182,183].

A2. Detection of faulty appliance: using various kinds of appliances
at indoor environments has made people’s lives more convenient. How-
ever, these electrical appliances could be faulty in different ways or
could suffer from inefficiencies, and hence leading to several issues,
such as the events resulting in a massive energy waste and triggering
electrical fires [184,185]. To that end, detecting faulty appliances and
providing the end-users with customized recommendations to replace
them is of significant importance in reducing the operation cost and
boosting energy saving in buildings [23,149].

A3. Occupancy detection: detecting whether a building or one of
its parts is occupied by the end-users is essential to allow a set of
building automation tasks. Although actual tools for detecting the
indoor occupancy typically need to install specialized sensors, including
passive-infrared sensors (PIR), reed switches actuated by magnets, or
cameras, their installation is very costly and further labor charges
could be added for maintenance [186,187]. Therefore, a solution to
overcome the high-cost pitfall is to explore the aptitude of electrical
sub-meters, which are installed in most of the houses around the
globe to detect occupancy patterns [188,189]. For example, the authors
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in [190] investigate both appliance specific and aggregated load usage
footprints to detect the occupancy of residents [191].

A4. Non-technical loss detection: it mainly refers to (i) detecting
unintentional sub-meters’ dysfunctions and electricity theft attacks at-
tempting to bypass sub-meters; (ii) braking and/or stopping sub-meters;
(iii) identifying faulty sub-meters’ records; and (iv) capturing appli-
ances having illegal connections [110,192]. Non-technical loss in en-
ergy consumption has negatively affected most of the economies over
the globe [35]. For instance, more than 10% of produced energy could
be lost every year in Europe due to non-technical loss and billions
of dollars are lost every year because of theft energy attacks [149,
193]. To that end, detecting non-technical-loss and electricity theft
have been introduced as an information technology related challenge,
which requires novel methods based on AI, data mining and forecast-
ing [106,111]. Moreover, separating between behavioral consumption
anomalies, fraud and unintentional consumption deviations is reported
as a current research trend to provide an accurate feedback to end-users
and energy providers [121,151].

A5. At-home elderly monitoring: modern societies face significant
issues with the monitoring of their elderly people at home environ-
ments [194]. This problem could have considerable social and eco-
nomic effects. However, one solution to overcome it is via (i) moni-
toring appliance consumption of elderly people in real-time; (ii) identi-
fying abnormal consumption behaviors that could be occurring due to
some critical situations (e.g. falls); and (iii) predicting faulty operations
of some appliances, which can result in dangerous situations (e.g. floods
or gas leaks) [195,196].

2.4. Computing platforms

As presented previously, most of the anomaly detection methods
have been built upon the use of machine learning techniques. How-
ever, although the use of these approaches has helped in developing
the of anomaly detection technology, it also opens serious challenges
related to computing resources, data processing speed and scalability.
In this regard, describing and discussing available solutions used to
implement anomaly detection systems is essential to understand the
current challenges.

• P1. Edge computing platforms: refer to distributed computa-
tional models that allow to drop the computing resources and
information storage capabilities close to the end-user applica-
tion, where it can directly be used, e.g. in energy consumption
applications this can be done on the smart sensor platforms or
smart plug devices, as it is the case in (EM)3 [199]. Specifically,
a smart plug is being developed to incorporate different sensors
to collect consumption and contextual data along with a micro-
controller to pre-process data, segregate the main consumption
signal into device specific footprints, and detect abnormal behav-
iors. This helps in improving output, accelerating data processing
and saving bandwidth [200].

• P2. Fog computing platforms: stand for decentralized compu-
tational infrastructures, where data pre-processing, computing,
storage and analysis are conducted in the layer located between
the data collection devices and the cloud [201]. In this line, the
computational ability of the anomaly detection solution is carried
out close to both the data recording devices and the cloud, in
which data are produced and handled [202].

• P3. Cloud computing platforms: concern the cases when the
computing and storage resources are ensured using distant
servers, in which the end-users deploying the anomaly detection
solutions are required to connect them through an internet link
to be able to execute the anomaly detection algorithms [105].
Put differently, the platforms used to implement these algorithms
become as the access points for running the anomaly detection
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Table 1
Summary of research frameworks conducted in energy consumption anomaly detection.

Reference (year) Application Category Implemented technique Learning Computing Privacy Sampling
process platform preservation rate

[35] (2017) A1 U1 MNN and k-means clustering Unsupervised – – 1 h
[45] (2020) A1 U2 OCRF Unsupervised P1 – 1 h,
[54] (2020) A1 U2,U3 OCSVM, DBSCAN, LOF, LDA, IKNN Supervised P1,P3,P4 No 1 s, 3 s
[60] (2019) A1 S1 Autoencoder and RNN Unsupervised P3 – 1 min
[62] (2018) A1 S1 Variational recurrent autoencoder Supervised P3 – 15 min
[66] (2019) A4 S1 CNN and random forest Supervised P3 No 1 h
[67] (2018) A4 S1 CNN Supervised P3 – 1 h, 1 day
[75] (2020) A1 S1 Recurrent GAN Supervised P3 No 1 h
[77] (2019) A1 S1 RNN and negative selection Supervised P2 No 30 min
[80] (2019) A1 S1 RNN and K-means Unsupervised P3 – 1 h
[81] (2020) A1 S1 RNN and quantile regression Unsupervised P4 – 1 h
[85] (2020) A1 S1 ANNs and ARIMA Supervised P1 No 1 h
[86] (2020) A2 S1 MLP Supervised P1,P2 – 1 h
[22] (2019) A1 S2 Linear regression + rule-based algorithm Supervised P1 No 1 h
[97] (2017) A1 S2 autoregressive prediction Semi-supervised P1,P2 – 30 min
[106] (2020) A4 S3 Bayes algorithms Supervised P1 No 5 min
[103] (2020) A4 S3 Bayesian networks Supervised P1 No 15 min
[105] (2016) A4 S3 Gaussian distribution Supervised P1 – 1 h
[173] (2018) A1 O2 Graphical visualization Unsupervised P3 – 30 min, 1 h
[111] (2019) A4 S4 SVM Supervised P1,P2 No 1 h
[19] (2020) A1 S4,S1 SVM, KNN, decision tree, EBT, DNN Supervised P1,P3,P4 No 1/6 s, 1 s
[119] (2018) A1 E1 GBM Supervised P1 – 15 min
[121] (2019) A4 E1 GBM and grid search Supervised P1 – -
[125] (2017) A1 E2 Bootstrap aggregation Supervised P1,P2 – 5 min
[126] (2019) A1 E2 SCiForest Supervised P1 No 30 min
[133] (2016) A1 F1 Distance-based approach Unsupervised P1,P2 - –
[142] (2019) A1 F2 Time-series analysis Supervised P1,P2 No 1 min
[167] (2018) A1 H DAE Semi-supervised P3,P4 – 30 min
[168] (2019) A1 H Semi-SVM Semi-supervised P1 – 1 h
[195] (2017) A5 F1 Rule-based algorithm Unsupervised P1 No 30 s
[191] (2019) A4 F2, S1 Time–frequency features + OCRF Supervised P1,P2 – 10 min, 1 h
[184] (2019) A2 S3 Rule based statistical model Unsupervised P1 No 10 min
[197] (2019) A4 S1 CNN Supervised P3 Yes 30 min
[198] (2019) A4 S1 CNN Supervised P3 Yes –
applications and visualize the data held by the servers. The
cloud architectures are described by their flexibility, which allows
the providers to constantly adjust the storage capability and
computing power to the end-users’ requirements [203].

• P4. Hybrid computing platforms: refer to the cases where the
computing power is guaranteed by various layers, including the
cloud, fog and edge as explained in [204]. In this context, based
on the computing requirement of the anomaly detection solution
and the existing computing resources, the algorithms could be
executed either on the edge and/or fog when they need a low
computation cost, otherwise they could be implemented in the
cloud when high computing cost is required [205,206].

Table 1, presents a comparison of several aforementioned anomaly
etection frameworks in building energy consumption. They are com-
ared with reference to various parameters, such as the (i) application
cenario, (ii) category, (iii) implemented technique, (iv) learning pro-
ess, (v) computing platform used (or required) to implement the
nomaly detection algorithm, (vi) privacy preservation, and (vii) sam-
ling rate. This helps in easily understanding the properties of each
ramework and difference between existing solutions.

.5. Example of anomaly detection using AI

In order to explain how anomalies of energy consumption have
een considered in the literature and how AI could be used to detect
bnormal usage, we present in this section, three different scenarios
or anomaly detection using (i) AI-based prediction, (ii) AI classifica-
ion of energy micro-moments and occupancy data and (iii) one-class
lassification of energy data. It is worth noting that with the use of AI,
t becomes possible to detect more advanced kinds of anomalies using
ther types of data, such as occupancy patterns and ambient conditions.
11

Scenario I. Anomaly detection using AI-based prediction:
In [207], a power consumption dataset is provided to validate
anomaly detection algorithms. AI tools for predicting future energy
consumption are combined with a rule-based algorithm for detecting
anomalous energy consumption. This method relies on using an RNN
model to predict energy consumption for the next timestamp and then
the difference between real and predicted consumption is calculated to
measure the level of “surprise”. In this regard, if a significant gap is
detected, either (i) an anomalous energy usage behavior has occurred,
or (ii) the model has made a mistake. Moving forward, the investigation
is then continued using a rule-based algorithm and by filtering the
abnormalities identified by the predictive system with reference to a
set of statistical criteria. The rule-based algorithm helps in detecting
percentile of power consumption for each timestamp with regard to
the (i) hour, (ii) outside temperature, and (iii) type of day (working
day vs. holiday). Fig. 4 illustrates an example of anomalies detected
when analyzing time-series energy consumption.

Scenario II. Anomaly detection using AI and micro-moment
analysis:

In the (EM)3 framework [54], anomalous energy consumption is
detected by analyzing energy consumption footprints and occupancy
patterns using micro-moments analysis. Following, a DNN model is
deployed to automatically classify each consumption observation as
normal or abnormal. Specifically, energy consumption samples are
clustered into five classes; three of them are named “class 0: good
usage”, “class 1: turn on a device” and “class 2: turn off a device”, which
represent normal usage; and the other two classes are called “class
3: excessive consumption” and “class 4: consumption while outside”,
which refer to abnormal usage. Fig. 5 illustrates an example of time-
series energy traces collected in the DRED dataset for the case of a
television [208], and the corresponding normal and abnormal energy
patterns identified using a DNN model and micro-moment analysis.
Because of occupancy data consideration in the anomaly detection

stage, it was possible to detect a new consumption anomaly that
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Fig. 4. Example of anomaly detection in time-series energy consumption using AI-based prediction applied on anomaly detection dataset provided in [207].
corresponds to the absence of the end-user when the television is on
(this abnormality could also be considered for other specific appliances,
such as the air conditioner, heater, fan, etc.), this was not possible
using conventional anomaly detection techniques that are based only
on analyzing energy fingerprints.

Scenario III. Anomaly detection using one-class classification:
Another important anomaly detection solution is based on conven-

tional one-class classification, which has been widely utilized in other
applications. Fig. 6 shows an example of an anomaly detection of
energy consumption applied on DRED dataset [208] using the one-class
autoencoder. It has clearly been seen that this scheme divides energy
observation into two main classes based on the analysis of the energy
consumption levels in a new representation space, in which the power
and time have been normalized [64].

3. Critical analysis and discussion

3.1. Discussion

Anomaly detection in building energy consumption is of paramount
importance to developing powerful energy management systems, iden-
tifying energy theft attacks, inefficiencies and negligence. However, in
most cases it is difficult to separate consumption abnormalities from
the normal usage deviations occurring owing to seasonal changes and
variation of personal settings (e.g. holidays, family parties, unexpected
changes of due new circumstances, etc.). Moreover, one of the limita-
tions of available anomaly detection methods is related to the fact that
12
diverse unidentified context data, including seasonal changes, could
impact the power usage of end-users in a manner to be as abnormal
when existing time-series based anomaly detection techniques are used.
In addition, a set of important findings can summarized as follows:

• AI-based solutions focus mainly on developing real-time or near
real-time (e.g. at a hourly sampling rate or lower) although
they can also provide an insight analysis for time long periods
(e.g. days, weeks, months and years). This is due to the capa-
bility of AI to analyze big data, especially when high frequency
sampling rates are considered and also thanks to the IoT de-
vices, smart-meters and smart sensors, which help tremendously
in collecting accurate data. On the other hand, this represents
the main difference between actual AI-based anomaly detection
techniques and those used twenty or thirty years ago, where it
was not possible to process data in real-time or near real-time. In
addition, almost all the reviewed frameworks have focused on the
analysis of power consumption data either on kWh or Wh. This
depends on whether the anomaly detection has been conducted
at the aggregated-level (using kWh) or an appliance-level (using
Wh).

• Most of existing approaches of anomaly detection in energy con-
sumption attempt only to flag out power samples that are remark-
ably higher or lower than usual consumption footprints, as it is
the case in other applications, such as bank card fraud detec-
tion, network intrusion detection and electrocardiogram anomaly
detection. Unfortunately, this is not the correct case to detect
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Fig. 5. Example of anomaly detection based on DNN and micro-moment analysis with reference to energy data and occupancy patterns. These visualization plots are derived using
DRED dataset (for the case of a television): time-series energy consumption traces, and bottom) micro-moment detection scheme based on deep learning [54].

Fig. 6. Example of anomaly detection in time-series energy consumption using autoencoders applied on DRED dataset [208].
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anomalous power consumption because the definition of anomaly
in energy consumption can be quite different, other kinds of
anomalies are available and their detection requires other infor-
mation sources, e.g. occupancy patterns, and appliance operation
data.

• By using AI, it becomes possible to develop real-time or near
real-time energy consumption anomaly detection systems, which
could identify timely anomalous usage and alert the end-users by
sending warnings and notifications. Accordingly, recommender
systems could then be deployed to help the end-users with a better
decision-making to reduce their wasted energy through providing
them with personalized and contextual recommendations. For
instance, the EM3 project1 combines anomaly detection and a
recommender system to help end-users in reducing their wasted
energy using both real-time or near real-time strategies.

• According to recent works [20,23], using aggregated-level con-
sumption data is not the best way to detect anomalies of en-
ergy consumption because they are general and cannot provide
precise information on the causes of each anomaly. Therefore,
using appliance-level data generated either by sub-meters or using
NILM systems is more appropriate since this helps in detecting the
anomalies of each appliance [22,209].

• In some cases, the entirety of a given power consumption behav-
ior could be considered as abnormal and not only some specific
observations, which make it difficult to detect the exact anoma-
lous parts. Therefore, this requires comparing current consump-
tion footprints with the past and ideal consumption cycles and
not only using outlier detection algorithms, which can detect the
anomalies at the sample level.

• In terms of the effectiveness of existing methods, although un-
supervised anomaly detection is easy to implement since it does
not require annotated datasets to learn the anomalies, it presents
serious drawbacks because it can only detect one kind of anoma-
lies, which is related to excessive consumption. This is also the
same with ensemble methods and feature extraction-based tech-
niques. In contrast, supervised methods are not very popular as
unsupervised ones as they require using labeled datasets to learn
the abnormalities. However, using methods pertaining to this
category allows to detect other types of anomalies. This is because
they could be defined a priori by human experts using training
data collected from different sources, e.g. consumption footprints,
occupancy patterns, indoor conditions and appliance operation
parameters.

• In terms of the computing resources, most of the deep learning
based anomaly detection frameworks require high-performance
computing capabilities to conduct the learning process. Therefore,
most of them use cloud computing to integrate and manage large
datasets. While for conventional machine learning based anomaly
detection, edge and fog computing have been successfully used in
various frameworks and applications.

• Privacy preservation: developing anomaly detection systems to
promote energy saving in buildings is of paramount importance
at all levels of the society. This can be performed using local and
temporal fine-grained records of power consumption fingerprints,
occupancy patterns and ambient conditions to identify abnormal-
ities and unnecessary power consumption [210]. Unfortunately,
using this kind of fine-grained records enables disclosing infor-
mation on the presence of the end-users based on their energy
usage footprints. In this context, we have noticed that the privacy
preservation has been ignored or not reported in most of the
anomaly detection frameworks, only very few have tried to touch
on this issue [197,198].

1 http://em3.qu.edu.qa/.
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3.2. Relevance of AI-based anomaly detection techniques

The relevance and robustness of AI-based anomaly detection does
not rely only on the accuracy of detecting anomalous energy usage,
but also on the type and number of the consumption abnormalities
that could be detected. In this regard, it was clear that most of the
unsupervised anomaly detection techniques (i.e. clustering, one-class
classification and dimensionality reduction) could detect only one type
of energy usage anomalies, which corresponds to excessive energy
consumption. This is because they are based on identifying rare con-
sumption observations or outliers, which raise suspicions by differing
considerably from the majority of the consumption footprints. In addi-
tion, they only analyze energy consumption data without considering
other relevant factors that impact energy usage, such as occupancy, am-
bient conditions and users’ preferences. On the other hand, supervised
anomaly detection presents more advantages since they can be uti-
lized to detect different kinds of energy consumption abnormalities by
considering the impact of the presence/absence of end-users, ambient
conditions, outdoor weather data and users’ preferences on energy us-
age [22,64]. This was possible through the use of rule-based algorithms
to define abnormal consumption and annotate multi-modal datasets.
In this context, deep anomaly detection techniques that are based on
adopting deep learning models presents promising performance and in
terms of the accuracy of detecting abnormal usage and also because of
their capability to process and analyze multi-modal data, as described
in [19]. Table 2 presents a summary of relevant AI-based anomaly
detection techniques, including their strengths and weaknesses.

3.3. Challenges and limitations

There are several common and domain-specific challenges and
limitations of anomaly detection systems in energy consumption, which
hinder developing efficient solutions, render their implementation
costly and limit their widespread. They can be outlined in the following
points:

• Absence of annotated datasets: among the serious pitfalls to de-
velop and validate abnormality detection schemes is the absence
of annotated datasets, which provide labels for both normal and
abnormal consumption. Most of the supervised algorithms are
validated on a small quantity of data, which cannot be con-
sidered as comprehensive datasets and are not accessible for
the energy research community. Specifically, repositories that
label the events of abnormal consumption and their types al-
most do not exist and its creation is difficult and costly [22].
Therefore, creating various datasets for different kinds of build-
ings that reflect real consumption behaviors will help effectively
the energy research community in testing and improving the
detection of consumption abnormalities in different application
scenarios [211].

• Imbalanced dataset: refers to the distribution of anomalies
through data classes, i.e. anomalous data might usually be the
minority amongst the overall dataset. Indeed, the anomaly data
are very rare in reality, forming together with the major normal
data an extreme unbalanced set. The class imbalanced charac-
teristic of most of the anomaly detection datasets results in a
sub-optimality of the algorithms’ performance. Therefore, to deal
with this issue, some pre-processing techniques are required,
among them (i) using resampling procedures to oversample the
minority classes or undersample the majority classes, and (ii)
generating synthetic power consumption data [19]. Moreover,
in other topics, the anomaly classes are generally represented as
minor classes, but in energy consumption this is not always the
case, especially if a high energy wasting behavior is observed. In
this regards, applying unsupervised anomaly detection methods
is less efficient.

http://em3.qu.edu.qa/
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Table 2
A summary of relevant AI-based anomaly detection techniques, including their strengths and weaknesses.

Ref. Implemented technique Advantages Drawbacks

[35] MNN and k-means No need for annotated data Low detection accuracy, detection of only
clustering excessive consumption

[45] OCRF No need for annotated data Low detection accuracy, detection of only
excessive consumption

[54] OCSVM, DBSCAN, LOF Detection of Two kinds of anomalies, Absence of annotated data.
LOF, LDA, IKNN high detection accuracy

[60] Autoencoder and RNN No need for annotated data Detection of only excessive consumption,
low detection performance

[62] Variational recurrent No need for annotated data Difficulty to assess the performance
autoencoder

[66] CNN and random forest High anomaly detection Analyze only energy consumption data,
performance high computational cost

[67] CNN Capture the abnormal electricity Lack of annotated data, detection of excessive
usage with a high accuracy consumption, high computational cost

[77] RNN and negative Predict excessive consumption Low detection performance, only excessive
selection anomalies consumption is detected

[81] RNN and quantile High detection performance, no need Detection of only excessive consumption,
regression for annotated data weak interpretability

[85] ANNs and ARIMA Anomaly detection and energy usage High training cost, detection of only
prediction, high detection accuracy excessive consumption

[22] LR + rule-based algo Low training cost Difficulty to annotate data, low detection accuracy

[97] Autoregressive prediction Anomaly detection and power usage Low prediction performance, detection of only
prediction excessive consumption

[105] Gaussian distribution Low training cost Low detection performance, lack of annotated
data, detection of excessive consumption

[19] SVM, KNN, DT, Detection of Two kinds of anomalies, Lack of annotated data
EBT, DNN high detection performance

[119] GBM Anomaly detection and power usage Detection of only suspicious consumption
prediction levels, weak interpretability

[121] GBM and grid search Low training cost Low detection performance, weak interpretability,
one type of anomalies is detected

[125] Bootstrap aggregation High detection performance Difficulty to set the optimal threshold, detection
of only suspicious consumption level

[133] Distance-based approach Low training cost Weak interpretability, low detection performance

[142] Time-series analysis Low training cost Low detection accuracy, detection of only
excessive consumption

[167] DAE Anomaly detection and power usage High computation cost, detection of only
prediction, high detection accuracy excessive consumption

[168] Semi-SVM Anomaly detection and power usage Weak interpretability, detection of only
prediction suspicious consumption levels

[184] Rule-based statistical Anomalous appliances detection, Low detection accuracy, detection of only
model Low training cost excessive consumption

[197] CNN Privacy-preservation, high detection Detection of only suspicious consumption
accuracy levels, weak interpretability
• Definition of anomalies: traditional definition of an anomaly sig-
nifies that an anomalous observation is an outlier or deviant.
However, this definition could not be enough to define anoma-
lies in energy consumption because other forms of abnormalities
could exist, e.g. keeping an appliance on (i.e. air conditioner, fan,
television, etc.) while end-users are outside, keeping windows and
doors open when an air conditioner/heating system is switching
on, which leads to a high power consumption, etc. Therefore, to
efficiently detect anomalies of energy consumption, it is required
to analyze not only the power consumption data but also other
information sources, including the occupancy patterns, ambient
conditions, outside weather footprints and appliance operation
parameters.

• Sparse labels: on the one hand, the labels denoting whether
an instance is normal or anomalous is in many applications
time-consuming and prohibitively expensive to obtain. This is es-
pecially typical for time series data, where the sampling frequency
could reach 1000 Hz or the time could range over decades, gen-
15

erating an enormous amount of data points. On the other hand,
anomalous data is often not reproducible and fully concluded in
reality.

• Detecting appliance-level anomalies is still not receiving the nec-
essary attention, although it is more important than detecting
aggregated-level anomalies. In effect, a failure in the electronics
of an appliance could not only increase energy consumption, but
in some cases, other kinds of failures may cause new forms of
faulty appliances that could be fatal, e.g. a faulty device can cause
an electrical short that sparks a fire.

• Concept drift: this phenomenon usually occurs in time series data,
where the common independent and identically distributed (i.i.d)
assumption for machine learning models is often violated due to
the varying latent conditions [212]. Since the observations and re-
lations in power consumption data evolve over time, they should
be analyzed near real-time, otherwise the systems implemented to
analyze such data rapidly become obsolete over time [213,214].
In machine learning and data mining, this phenomenon is referred
to as concept drift.
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• Absence of platforms to reproduce empirical results: one of the
main issues of the anomaly detection in energy consumption
is the absence of platforms for reproducing the results of ex-
isting solutions. This may hinder the performance comparison
between existing algorithms and make it difficult to understand
the state-of-the-art.

• Most of the frameworks differentiate between normal or abnormal
power observations in general through separating them into two
principal classes (normal and abnormal) without further details.
However, in real-world scenarios, there exist different kinds of
anomalous consumption, e.g. anomalies due to excessive con-
sumption of an appliance are different from those due to keeping
a door of the refrigerator open or those due to the absence of
the end-user, as it is demonstrated in [54]. In this line, without
providing the end-user with the nature of anomalies and their
sources, it is very difficult to trigger a behavioral change and
promote energy saving.

.4. Market drivers and barriers

The frameworks reviewed in this article show that the anomaly de-
ection topic is a promising strategy for a large number of services and
pplications in the energy field. On the other hand, it is worth noting
hat the building energy monitoring market in general, comprises a
ulti-billion USD global opportunity. This market appears to be grow-

ng at a robust rate, in which the anomaly detection takes a significant
art [215]. The decision-making of energy saving systems in buildings
epends on data, however, with the wide use of sub-meters and smart
ensors, the data produced is very huge which can frequently provoke
he loss or misunderstanding of relevant information [216]. Various
ctive energy companies and utilities actually involved in providing
nomaly detection and energy monitoring solutions, markedly illus-
rate the increased importance of this technology to promote energy
fficiency. Table 3 summarizes a set of commercial anomaly detection
f energy and energy management solutions developed by different
ompanies, which are used for different kinds of buildings. Specifically,
t provides a description of each solution, company name, frequency of
nergy monitoring and anomaly detection (real-time or near real-time),
ountry and targeted building environments.

In spite of the availability of the aforementioned solutions, different
ssues still require answers before enabling a widespread deployment of
he anomaly detection technology in the energy industry. First and fore-
ost, anomaly detection solutions should demonstrate that they could
rovide the scalability, speed and privacy preservation needed for the
onsidered application scenarios. Research efforts on distributed con-
ensus algorithms, which are crucial to achieving these objectives, are
till ongoing, however a solution that combines all desired characteris-
ics cannot yet be achieved without significant trade-offs [230]. Albeit
nomaly detection systems could be installed using existing electric
nfrastructures, another crucial issue of these systems is that they have
ctually high implementation costs. Most of the solutions are built upon
he latest machine learning methods, which require high-performance
omputing resources, e.g. using cloud platforms. Therefore, this slows
own the commercialization of these solutions. Moreover, resistance
o security attacks resulting from unintentionally inappropriate system
evelopment or theft attacks are not seriously addressed in most of the
nergy consumption anomaly detection solutions.

. Current trends and new perspectives

After reviewing anomaly detection frameworks, discussing their
imitation and drawbacks, and describing important findings, it is of
tmost importance to describe the current trends of this niche and
erive the new perspectives that could be targeted. This aids the
nomaly detection community in understanding the current challenges
nd future opportunities to improve the anomaly detection technology
f energy consumption in buildings. Fig. 7 summarizes the current
16

rends and new perspectives that are identified in this framework.
4.1. Current trends

Anomaly detection in energy consumption presents various chal-
lenges, which are mainly domain-specific. For instance, there is not a
unique definition of normal versus anomalous consumption and there
is inexplicit frontiers that separate normal and anomalous behaviors.
Moreover, there is an absence of ground-truth data and unified met-
rics that could be deployed to evaluate the performance of anomaly
detection algorithms. In addition, other data sources could result in
triggering non conventional energy consumption anomalies, such as:
presence/absence of end-users, opening of windows/doors when some
specific appliances are on. To that end, this section discusses a set
of current trends that should be considered to enhance the anomaly
detection technology for energy saving applications.

4.1.1. Considering other data sources
In traditional anomaly detection schemes deployed for energy con-

sumption, the anomalies are generally detected using only power con-
sumption data gleaned from the main circuit or from individual devices,
without paying any attention to other factors that can affect the con-
sumption. However, in order to conduct an accurate anomaly detection,
all the data that impact power consumption should be gleaned and
stored along with energy consumption patterns. Following, anomaly
detection algorithms should be built with reference to all these data,
which can be summarized as follows:

D1. Appliance parameters: each appliance has specific parameter set-
tings that are responsible for its well functioning, such as the minimum
standby consumption, maximum standby consumption and maximum
operation time. These parameters are important to define normal and
abnormal consumption of appliances and further to detect whether an
appliance is working perfectly or is faulty.

D2. Occupancy patterns: the presence or absence of end-users could
highly affect energy usage and results in some anomalous consumption
behaviors that are not directly linked to excessive consumption of
appliances. For example, turning on an air conditioner, television, fan
or desktop when end-users are absent should be considered as an ab-
normal consumption behavior. To that end, recording occupancy data
allows detecting unconventional anomalous consumption behaviors.

D3. Ambient conditions: energy consumption could be extremely
impacted by indoor conditions, such as the temperature, humidity and
luminosity since the operation of some appliances depends mainly on
these factors (e.g. air conditioners, heating systems, fans, light lamps,
etc.). Therefore, collecting this kind of data aids in capturing abnormal
energy consumption.

4.1.2. Non-intrusive anomaly detection
Starting from the advantage of NILM as a good alternative to sub-

metering for collecting itemized billing, its use for detecting appliance-
specific anomalies is very appreciated. Specifically, using NILM will
remove the need to install individual sub-meters for each appliance
and hence helps in significantly reducing the cost of anomaly detection
solutions [18,231]. The use of NILM to detect abnormal consumption
results in the development of a new kind of non-intrusive anomaly
detection systems [232]. In [20,233], the authors have attempted to
investigate if device-specific consumption fingerprints detected using
NILM could be utilized directly to identify anomalous consumption
behaviors and to what extent this could impact the accuracy of the
identification. Accordingly, even though the performance of NILM to
identify abnormal consumption is not yet as accurate as using sub-
metering feedback, its performance could be further improved to allow
a robust identification of faulty behavior. Moving forward, more ef-
fort should be put in this direction to develop non-intrusive anomaly
detection of sufficient fidelity without the need to install additional

sub-meters [23,234].
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Table 3
A summary of existing AI-based energy monitoring and anomaly detection commercial solutions for buildings.

Product Manufacturer Description Country Implementation
environment

Enetics SPEED [182] Enetics Faulty appliances identification and abnormal USA Public and domestic
consumption detection buildings

In Between [217] Ecoisme Connected to the local Wi-Fi network and provides Poland Households
consumption statistics via mobile app

Informetis [218] Informetis Near real-time energy monitoring and analysis using IoT Japan Households
and big data mining technology

Verv Energy [219] Verv Energy Real-time electricity consumption monitoring with iOS UK Households
and Android app

Neurio [220] Neurio Real-time anomaly detection and notification Canada Households
(appliances ≥ 400 W)

WiBeee HOME [221] WiBeee Real-time consumption visualization, anomaly detection Spain Households
using cloud and energy saving recommendation

Smart Impulse [222] Smart Impulse Building’s energy consumption identification by end-use France Public buildings
(lighting, IT, heating, etc.) and anomaly detection

Verdigris [223] Verdigris Energy consumption monitoring and real-time fault USA Industrial and commercial
detection buildings

Voltaware [224] Voltaware Real-time energy monitoring and anomaly detection using UK Commercial, industrial
load disaggregation and tailored recommendations and domestic buildings

HOMEpulse [225] HOMEpulse Real-time energy disaggregation and anomaly detection France Households
(1–10 s sampling rate)

Hive Starter Pack [226] AlertMe Electricity monitoring, appliances control using a mobile app UK Households

DiG Energy [227] Intelen Near real-time consumption monitoring, anomaly detection USA Commercial and domestic
End-users education about energy efficient practices buildings

Hark [228] Harksys Real-time anomaly detection and cost saving through UK Residential and public
buildings

EnerTalk [229] ENCORED Energy disaggregation, prediction and abnormal Korea Commercial and domestic
usage detection buildings
Fig. 7. List of current trends and new perspective of anomaly detection in energy consumption.
4.1.3. Collection of annotated datasets
As mentioned previously, the absence of annotated datasets impedes

the development of power anomaly detection solutions. To that end,
greater effort should be put to collect and annotate power consumption
datasets at different building environments (households, workplaces,
public buildings, and industrial buildings), and further to share them
publicly. This can help researchers to speed up the process of testing
and validating their algorithms. In this context, the authors in [19]
launch two new datasets for anomaly detection. The former, called
17
Qatar university dataset (QUD) is collected in an energy lab and offers
the consumption of four appliance categories along with the occupancy
patterns for a period of three months. While the latter, named power
consumption simulated dataset (PCSiD), produces consumption finger-
prints of six devices and occupancy data for a period of two years. Both
datasets provide power consumption footprints with their associated la-
bels, where the overall data is split into five consumption classes. Three
of them represent normal consumption classes, they are called “good
consumption”, “turn on device” and “turn off device”, while the two



Applied Energy 287 (2021) 116601Y. Himeur et al.

q

remaining classes refer to anomalous consumption groups, which are
defined as “excessive consumption” and “consumption while outside”.
Fig. 8 resumes the assumption and labeling process of micro-moment
classes, which is applied in QUD and PCSiD.2

4.1.4. Unified metrics to measure the performance
In addition to what has been presented and based on analyzing the

state-of-the-art, it is worth mentioning that there is no unified metrics
and schemes to evaluate the performance of the anomaly detection
algorithms. By contrast, a fair comparison between different anomaly
detection approaches should be conducted using an ensemble of stan-
dard metrics, and should be performed under the same conditions,
e.g. using the same dataset including appliance fingerprints collected
at the same sampling rate [22].

4.2. New perspectives

Recently, governments, end-users, utility companies and energy
providers pay a significant interest to the anomaly detection technology
as a sustainable solution that could help in achieving the energy
efficiency targets. In this section, we provide a general overview of new
perspectives in anomaly detection in energy consumption.

4.2.1. Explainable deep anomaly detection
Deep learning based anomaly detection solutions receive an in-

creasing attention in current frameworks. However, despite their good
performance, the black-box property of deep learning models repre-
sents a disadvantage in practical implementation [235]. Particularly,
in energy consumption anomaly detection schemes, explanations of
abnormalities detected using deep learning are critical. To that end,
developing deep learning based abnormality detection techniques pro-
viding explanations why a power consumption observation/event is
abnormal supports end-users/experts in focusing their investigations on
the very crucial abnormalities and can boost their trust in the adopted
solutions [236,237].

For instance, one important orientation could be through develop-
ing a novel generation of explainable deep one-class learning models
to effectively detect different kinds of energy consumption anoma-
lies [238]. Specifically, this category of models helps in (i) learning a
mapping to concentrate normal consumption observations in a feature
space, (ii) pushing abnormal patterns to be mapped away, and (iii)
providing appropriate explanations for the anomalies detected, or more
exactly, a human-readable prescription presenting helpful information
on the causes that have led to the anomaly. Moreover, this enables
generating tailored recommendations endorsing end-users to reducing
their wasted energy and energy providers to detecting non-technical
losses through the use of explainable recommender systems (RS) [239].

4.2.2. Deep anomaly detection on the edge
Deep learning is one of the promising solutions to implement power-

ful anomaly detection solutions, however, a couple of years ago, it had
been pretended that deep learning could just be implemented on high-
end computing platforms, while the training/inference is conducted at
the edge and carried out by edge servers, gateways or data centers. It
had been a legitimate presumption at that period since the tendency
was through the distribution of computing resources among the clouds
and the edge serves. However, this situation is changed completely cur-
rently owing to recent R&D achievements performed by academic and
industrial partners [240]. Accordingly, the alternative considers the
use of novel microcontrollers that include integrated machine learning
accelerators. This could bring machine learning and specifically deep
learning to the edge devices. The latter could not just execute machine

2 Both QUD and PCSiD datasets could be accessed via http://em3.qu.edu.
a/.
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learning algorithms, but they do that while consuming very low power
and they need to connect to cloud just if required. Overall, this kind of
microcontroller with embedded machine learning accelerators provides
promising opportunities to offering computation capability for energy
sub-meters and sensors collecting ambient conditions (i.e. temperature,
humidity and luminosity), which gather data to enable various IoT
applications [241].

On the other side, the edge is widely regarded as the furthest point
in any IoT network that could be an advanced gateway (or edge server).
Furthermore, it terminates at the sub-meters/sensors near the end-user.
Thus, placing more analytical power near the end-user has become
rational, where microcontrollers could be very convenient. Explicitly,
this allows the inference and eventually the training, to be performed
on tiny and resource-constrained low-power devices, instead of the
large computing platforms (e.g. desktops, workstations, etc.) or the
cloud. It is worth noting that to implement deep learning models, their
size needs to be reduced in order to adapt the moderate computing,
storage, and bandwidth resources of such devices, while maintaining
the essential functionality and accuracy. Fig. 9 illustrates an example
of the anomaly detection solution embedded on a microcontroller based
smart plug, which is under development in the (EM)3 project [242].

4.2.3. Deep reinforcement learning
Reinforcement learning is a promising topic of AI that has received

a significant attention recently. Its concept is related to comprehending
the human decision-making procedure before developing algorithms for
enabling agents to determine the proper anomaly behavior using trial-
and-error in parallel with the reception of feedback form of reward
power consumption signals [243]. In this regard, deep reinforcement
learning (DRL) is then proposed as a merge of deep learning and re-
inforcement learning to detect more complex consumption anomalies.
Detecting such abnormalities involves handling high-dimensional con-
sumption patterns and environmental conditions, uncertainties of the
agent’s observations and sparse reward power consumption signatures.
DRL techniques have been proposed lately to resolve a broad variety
of issues, including detecting abnormalities video surveillance, traffic
management and anomaly detection [244,245], communication and
networking [246] and energy consumption prediction [247].

Overall, DRL shows promising opportunities to resolve effectively
the problem of energy consumption anomaly detection since the latter
is considered as a decision-making task. Following, an agent is designed
to learn from the consumption and environmental data via a continuous
interaction with them and reception of rewards for detected anomalies,
i.e. the process is similar to the natural human learning via their
experiences.

4.2.4. Multimodal anomaly visualization
As explained previously, the capability to interpreting anomalous

and normal power consumption behaviors is of utmost importance
since the essential intrinsic challenges in the abnormality detection
issue are mainly related to (i) the absence of obvious boundaries
between anomalous and normal consumption observations and (ii) the
complexity to obtain annotated power consumption datasets to train
and verify developed solutions. To that end, the knowledge and expe-
rience of human experts are highly esteemed to judge the consumption
scenarios. A subjective, comprehensive and interactive visualization
of power consumption patterns and resulted analytic is hence greatly
helpful to support the interpretation and facilitate an optimal decision-
making. In this context, great attention has been devoted recently to
using innovative visualization tools and visual analysis methods to
detect anomalous data in other research fields, such as the spreading
of rumors on social media [248] and user behavior [249,250].

In this regard, using visualization and interactivity for detecting
anomalous power consumption behaviors and supporting end-users’
interpretability and interactivity represent a promising research direc-

tion, especially to understand sense-making of anomalous consumption

http://em3.qu.edu.qa/
http://em3.qu.edu.qa/
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Fig. 8. Micro-moments assumption and labeling used in [19] to cluster normal and abnormal energy consumption data using a rule-based algorithm.
Fig. 9. Example of an edge-based anomaly detection solution used to develop a novel smart plug in the (EM)3 framework.
footprints and explain why an anomaly occurs. For instance, novel
visualization plots are designed in the (EM)3 framework to portray
anomalous consumption patterns using a scatter plot, in which two kind
of anomalies, i.e. “excessive consumption” and “consumption without
the presence of the end-user” along with normal data are traced over
the day time.

Furthermore, another notable visualization plot developed in (EM)3,
which could provide end-users with consumption analytics and
anomaly detection capabilities at an appliance-level is the stacked
bar [251]. It enables to select devices and stack various models of
the same device altogether (e.g. televisions from distinct brands).
Visualizing multi-level power consumption could help end-users in
effectively detecting anomalies and faulty devices, and hence could
19
allow them to perform better decision-making towards reducing wasted
energy [252]. Fig. 10 portrays our perception of a multimodal visu-
alization based anomaly detection of energy consumption, in which
visualization feedback (either at the aggregated level or the appliance
level) could be used to improve the accuracy of anomaly detection.

4.2.5. Platforms for reproducible research
Despite the advance achieved in developing anomaly detection

methods for energy consumption, principally, three aspects affect re-
producibility, and thus a fair and experimental comparison of anomaly
detection algorithms: (i) it is difficult to evaluate the generality
anomaly detection techniques as most of the frameworks are generally
assessed on a unique dataset, (ii) there is an absence of frameworks
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Fig. 10. A novel architecture of visualization based anomaly detection in energy consumption to (i) improve the accuracy of detected anomalies, and (ii) help end-users in
comprehending their energy consumption footprints.
comparing existing solutions under the same conditions, because of
the lack of available open-source anomaly detection datasets and
(iii) distinct and standardized assessment criteria are used in the
state-of-the-art with regard to the considered scenario [253].

To overcome this issue, there is an urgent need to release an open
source anomaly detection toolkit, which includes challenging energy
consumption datasets and existing anomaly detection algorithms. This
will allow a fair and easy comparison of anomaly detection algo-
rithms in a reproducible manner. Furthermore, this will support the
foundations for future anomaly detection competitions [254].

4.2.6. Privacy-preserving machine learning
The wide use of machine learning methods for anomaly detec-

tion in energy consumption is actually limited by the lack of open-
access anomaly detection datasets to train and validate algorithms,
due to strict legal and ethical requirements to protect end-user pri-
vacy. Aiming at preserving end-user privacy while promoting scien-
tific research while using power consumption datasets, implementing
novel approaches for federated, secure and privacy-preserving ma-
chine learning is an urgent need. In this context, removing private
information (anonymization) and replacing of vulnerable inputs with
artificially produced ones while permitting a reattribution based on a
look up table (pseudonymization) are among the solutions that could
be targeted [255]. Furthermore, using federated machine learning,
which helps in training algorithms over various decentralized edge-
devices/servers holding local power consumption patterns without
sharing them seems very promising for anomaly detection in energy
consumption [256].

4.2.7. Explainable RS and the COVID-19 pandemic
Power consumption in buildings has been completely changed in

the COVID-19 pandemic due to the constraints on movement. This has
widely triggered remote working and e-learning, and hence has shifted
activities and energy usage to domestic residents [257]. Therefore,
the need for smart solutions to detect energy consumption anomalies
with reference to the actual situation and other changes that could be
occurred at any time is a current challenge [258]. To that end, the
use of RS for supporting human decision making has recently received
increased interest [259,260]. However, with the aim of increasing
20
the end-user trust and improving the acceptance of the generated
recommendations, these systems should provide explanations [261].

In this context, developing mechanisms for explainable and per-
suasive energy consumption recommendations that could be tailored
based on the end-user preferences, habits and current circumstances
will promptly reduce wasted energy and promote energy saving [262].
Specifically, the explanations could justify the reasons for recommend-
ing each energy efficiency act [263]. On the other hand, the persua-
siveness of fact-based explanations could be improved using persuasive
and incentive aspects, such as emphasizing ecological impacts and
economical saving benefits. Fig. 11 illustrates a general flowchart of an
explainable energy RS proposed in the (EM)3 framework [4]. Moreover,
it is worth noting that explainable RS are much appropriate to unex-
pected energy consumption situations (e.g. the COVID-19 pandemic)
since the recommendations could be generated in real-time in addition
to providing the end-user with more details (using contextual data) on
each recommended action to increase its acceptance [264].

5. Conclusion

In this article, a systemic and technically-informed survey of
anomaly detection methods in building energy consumption has been
presented. A taxonomy that classifies these approaches with reference
to different aspects has been presented, such as artificial intelligence
models, application scenarios, detection level and computing platforms.
To conclude, anomaly detection strategies can evidently benefit energy
saving systems, energy providers, end-users and governments via reduc-
ing wasted consumption and energy costs. Specifically, they provide
insight information on abnormal consumption behavior, anomalous
appliances, non-technical loss and electricity theft cyberattacks, but
most significantly, anomaly detection systems offer smart and powerful
solutions for promoting energy saving. They also play a major role in
the energy monitoring market.

We have showed that the majority of anomaly detection solutions
in energy consumption are still in their nascence. To promote their
widespread utilization and maturity, a set of challenges and limitations
should be overcome, among them the lack of annotated datasets,
absence of the reproducibility platforms, and the lack of standard
metrics to assess the performance developed solutions. On the other
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Fig. 11. Example of the flowchart of an energy saving system based on the combination of anomaly detection and RS, in which the output of the anomaly detection module
serves as an input for the RS to help end-users in correcting their energy consumption behaviors.
hand, energy consumption is impacted by other factors such as, occu-
pancy (presence/absence of the end-user), ambient conditions, outdoor
temperatures and end-user’s preferences. Therefore, it is of utmost
importance to consider these data to develop powerful and reliable
anomaly detection models, which could detect more advance kinds of
abnormal energy usage. All in all, a significant research effort should
be made in the near future to confront the aforementioned issues and
improve the quality of anomaly detection systems.

In addition, further investigations are still ongoing in future di-
rections, which could permit developing power anomaly detection
systems in terms of the scalability, decentralization, low power con-
sumption, easy implementation and privacy preservation. Finally, we
believe that more research contributions, projects and collaborations
with industrial partners should be performed to help anomaly detection
technology reach its entire potential, proving its commercial feasibility
and facilitating its mainstream adoption in residential buildings.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This paper was made possible by National Priorities Research Pro-
gram (NPRP) grant No. 10-0130-170288 from the Qatar National Re-
search Fund (a member of Qatar Foundation). The statements made
herein are solely the responsibility of the authors. Open Access funding
provided by the Qatar National Library
21
References

[1] Himeur Y, Alsalemi A, Bensaali F, Amira A, Sardianos C, Varlamis I, et al. On
the applicability of 2d local binary patterns for identifying electrical appliances
in non-intrusive load monitoring. In: Arai K, Kapoor S, Bhatia R, editors. Cham:
Springer International Publishing; 2021, p. 188–205.

[2] Varlamis I, Sardianos C, Dimitrakopoulos G, Alsalemi A, Himeur Y, Bensaali F,
et al. Reshaping consumption habits by exploiting energy-related micro-
moment recommendations: a case study. In: Communications in computer and
information science. Cham: Springer International Publishing; 2020, p. 1–22.

[3] Sardianos C, Varlamis I, Dimitrakopoulos G, Anagnostopoulos D, Alsalemi A,
Bensaali F, et al. Rehab-c: recommendations for energy habits change. Future
Gener Comput Syst 2020;112:394–407.

[4] Sardianos C, Varlamis I, Dimitrakopoulos G, Anagnostopoulo D, Alsalemi A,
Himeur Y, et al. The emergence of explainability of intelligent systems:
Delivering explainable and personalised recommendations for energy efficiency.
Int J Intell Syst 2020;1–22.

[5] Rau H, Moran P, Manton R, Goggins J. Changing energy cultures? household
energy use before and after a building energy efficiency retrofit. Sustain Cities
Soc 2020;54:101983.

[6] Ngarambe J, Yun GY, Santamouris M. The use of artificial intelligence (ai)
methods in the prediction of thermal comfort in buildings: energy implications
of ai-based thermal comfort controls. Energy Build 2020;211:109807.

[7] Himeur Y, Elsalemi A, Bensaali F, Amira A. Efficient multi-descriptor fusion for
non-intrusive appliance recognition. In: The IEEE international symposium on
circuits and systems (ISCAS). 2020, p. 1–5.

[8] Pham A-D, Ngo N-T, Ha Truong TT, Huynh N-T, Truong N-S. Predicting energy
consumption in multiple buildings using machine learning for improving energy
efficiency and sustainability. J Clean Prod 2020;260:121082.

[9] Luo X, Oyedele LO, Ajayi AO, Akinade OO. Comparative study of machine
learning-based multi-objective prediction framework for multiple building
energy loads. Sustain Cities Soc 2020;61:102283.

[10] Himeur Y, Alsalemi A, Al-Kababji A, Bensaali F, Amira A. Data fusion strategies
for energy efficiency in buildings: overview, challenges and novel orientations.
Inf Fusion 2020;64:99–120.

[11] Alsalemi A, Sardianos C, Bensaali F, Varlamis I, Amira A, Dimitrakopou-
los G. The role of micro-moments: A survey of habitual behavior change and
recommender systems for energy saving. IEEE Syst J 2019;13(3):3376–87.

[12] fei Chen C, Zarazua de Rubens G, Xu X, Li J. Coronavirus comes home? energy
use, home energy management, and the social-psychological factors of covid-19.
Energy Res Soc Sci 2020;68:101688.

http://refhub.elsevier.com/S0306-2619(21)00140-9/sb1
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb1
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb1
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb1
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb1
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb1
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb1
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb2
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb2
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb2
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb2
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb2
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb2
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb2
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb3
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb3
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb3
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb3
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb3
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb4
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb4
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb4
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb4
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb4
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb4
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb4
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb5
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb5
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb5
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb5
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb5
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb6
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb6
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb6
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb6
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb6
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb7
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb7
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb7
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb7
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb7
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb8
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb8
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb8
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb8
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb8
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb9
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb9
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb9
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb9
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb9
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb10
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb10
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb10
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb10
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb10
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb11
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb11
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb11
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb11
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb11
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb12
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb12
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb12
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb12
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb12


Applied Energy 287 (2021) 116601Y. Himeur et al.
[13] Magazzino C, Mele M, Schneider N. The relationship between air pollution
and covid-19-related deaths: an application to three french cities. Appl Energy
2020;279:115835.

[14] Brlisauer M, Goette L, Jiang Z, Schmitz J, Schubert R. Appliance-specific
feedback and social comparisons: evidence from a field experiment on energy
conservation. Energy Policy 2020;145:111742.

[15] Himeur Y, Elsalemi A, Bensaali F, Amira A. Improving in-home appliance iden-
tification using fuzzy-neighbors-preserving analysis based QR-decomposition. In:
International congress on information and communication technology (ICICT).
2020, p. 1–8.

[16] Himeur Y, Alsalemi A, Bensaali F, Amira A. Robust event-based non-intrusive
appliance recognition using multi-scale wavelet packet tree and ensemble
bagging tree. Appl Energy 2020;267:114877.

[17] Elsalemi A, Himeur Y, Bensaali F, Amira A. Appliance-level monitoring with
micro-moment smart plugs. In: The fifth international conference on smart city
applications (SCA). 2020, p. 1–5.

[18] Rashid H, Singh P. Monitor: An abnormality detection approach in buildings en-
ergy consumption. In: 2018 IEEE 4th international conference on collaboration
and internet computing (CIC). 2018, p. 16–25.

[19] Himeur Y, Alsalemi A, Bensaali F, Amira A. A novel approach for detecting
anomalous energy consumption based on micro-moments and deep neural
networks. Cogn Comput 2020;12(6):1381–401.

[20] Rashid H, Singh P, Stankovic V, Stankovic L. Can non-intrusive load monitoring
be used for identifying an appliance’s anomalous behaviour?. Appl Energy
2019;238:796–805.

[21] Wang A, Lam JC, Song S, Li VO, Guo P. Can smart energy information inter-
ventions help householders save electricity? a svr machine learning approach.
Environ Sci Policy 2020;112:381–93.

[22] Gaur M, Makonin S, Bajić IV, Majumdar A. Performance evaluation of tech-
niques for identifying abnormal energy consumption in buildings. IEEE Access
2019;7:62721–33.

[23] Rashid H, Stankovic V, Stankovic L, Singh P. Evaluation of non-intrusive load
monitoring algorithms for appliance-level anomaly detection. In: ICASSP 2019
- 2019 IEEE international conference on acoustics, speech and signal processing
(ICASSP). 2019, p. 8325–9.

[24] Kumar KSA, Chacko AMMO. Clustering algorithms for intrusion detection: A
broad visualization. ICTCS ’16, New York, NY, USA: Association for Computing
Machinery; 2016.

[25] Ariyaluran Habeeb RA, Nasaruddin F, Gani A, Amanullah MA, Abaker
Targio Hashem I, et al. Clustering-based real-time anomaly detection—A
breakthrough in big data technologies. Trans Emerg Telecommun Technol
2019;1–27.

[26] Vanem E, Brandster A. Unsupervised anomaly detection based on clustering
methods and sensor data on a marine diesel engine. J Mar Eng Technol
2019;1–18.

[27] Verma K, Singh B, Dixit A. A review of supervised and unsupervised ma-
chine learning techniques for suspicious behavior recognition in intelligent
surveillance system. Int J Inf Technol 2019;1–14.

[28] Ahmed M, Mahmood AN, Islam MR. A survey of anomaly detection techniques
in financial domain. Future Gener Comput Syst 2016;55:278–88.

[29] Feng B, Li Q, Pan X, Zhang J, Guo D. Groupfound: An effective approach to
detect suspicious accounts in online social networks. Int J Distrib Sens Netw
2017;13(7):1550147717722499.

[30] Pastore V, Zimmerman T, Biswas S, Bianco S. Annotation-free learning of
plankton for classification and anomaly detection. Sci Rep 2020;10:1–15.

[31] Arjunan P, Khadilkar HD, Ganu T, Charbiwala ZM, Singh A, Singh P. Multi-user
energy consumption monitoring and anomaly detection with partial context
information. In: Proceedings of the 2nd ACM international conference on
embedded systems for energy-efficient built environments. BuildSys 15, New
York, NY, USA: Association for Computing Machinery; 2015, p. 35–44.

[32] Rossi B, Chren S, Buhnova B, Pitner T. Anomaly detection in smart grid data:
An experience report. In: 2016 IEEE international conference on systems, man,
and cybernetics (SMC). 2016, p. 002313–8.

[33] Henriques J, Caldeira F, Cruz T, Simes P. Combining K-means and xgboost
models for anomaly detection using log datasets. Electronics 2020;9(7):1–16.

[34] Izakian H, Pedrycz W. Anomaly detection in time series data using a fuzzy
c-means clustering. In: 2013 joint IFSA world congress and NAFIPS annual
meeting (IFSA/NAFIPS). 2013, p. 1513–8.

[35] Yeckle J, Tang B. Detection of electricity theft in customer consumption using
outlier detection algorithms. In: 2018 1st international conference on data
intelligence and security (ICDIS). 2018, p. 135–40.

[36] Nychis G, Sekar V, Andersen DG, Kim H, Zhang H. An empirical evaluation
of entropy-based traffic anomaly detection. In: IMC ’08, New York, NY, USA:
Association for Computing Machinery; 2008, p. 151–6.

[37] BereziÅski P, Jasiul B, Szpyrka M. An entropy-based network anomaly detection
method. Entropy 2015;17(4):2367–408.

[38] Shi Z, Li P, Sun Y. An outlier generation approach for one-class random forests:
An example in one-class classification of remote sensing imagery. In: 2016 IEEE
international geoscience and remote sensing symposium (IGARSS). 2016, p.
5107–10.
22
[39] Ruff L, Vandermeulen R, Goernitz N, Deecke L, Siddiqui SA, Binder A, et al.
Deep one-class classification. In: Dy J, Krause A, editors. In: Proceedings of
Machine Learning Research, vol. 80, Stockholmsmässan, Stockholm Sweden:
PMLR; 2018, p. 4393–402.

[40] Jakkula VR, Cook DJ. Detecting anomalous sensor events in smart home data
for enhancing the living experience.. In: Artificial intelligence and smarter
living. AAAI Workshops, WS-11-07, AAAI; 2011.

[41] Chalapathy R, Menon AK, Chawla S. Anomaly detection using one-class neural
networks. 2018, arXiv:1802.06360.

[42] Oza P, Patel VM. One-class convolutional neural network. IEEE Signal Process
Lett 2019;26(2):277–81.

[43] Zhang M, Wu J, Lin H, Yuan P, Song Y. The application of one-class classifier
based on cnn in image defect detection. Procedia Comput Sci 2017;114:341–8,
complex Adaptive Systems Conference with Theme: Engineering Cyber Physical
Systems, CAS October 30 November 1, 2017, Chicago, Illinois, USA.

[44] Dsir C, Bernard S, Petitjean C, Heutte L. One class random forests. Pattern
Recognit 2013;46(12):3490–506.

[45] Ghori K, Imran M, Nawaz A, Abbasi R, Ullah A, Szathmary L. Performance
analysis of machine learning classifiers for non-technical loss detection. J Ambi-
ent Intell Humaniz Comput 2020;1–16. http://dx.doi.org/10.1007/s12652-019-
01649-9.

[46] Liu FT, Ting KM, Zhou Z-H. Isolation-based anomaly detection. ACM Trans
Knowl Discov Data (TKDD) 2012;6(1):1–39.

[47] Huang T, Sethu H, Kandasamy N. A new approach to dimensionality re-
duction for anomaly detection in data traffic. IEEE Trans Netw Serv Manag
2016;13(3):651–65.

[48] Valko M, Kveton B, Valizadegan H, Cooper GF, Hauskrecht M. Condi-
tional anomaly detection with soft harmonic functions. In: 2011 IEEE 11th
international conference on data mining. 2011, p. 735–43.

[49] Naveen P, Ing WK, Danquah MK, Sidhu AS, Abu-Siada A. Cloud computing for
energy management in smart grid - an application survey. IOP Conf Ser: Mater
Sci Eng 2016;121:012010.

[50] Brown CE. Multiple discriminant analysis. Berlin, Heidelberg: Springer Berlin
Heidelberg; 1998, p. 115–28.

[51] Wu J, Zhang X. A pca classifier and its application in vehicle detection. In:
IJCNN’01. international joint conference on neural networks. Proceedings (Cat.
No. 01CH37222), Vol. 1. IEEE; 2001, p. 600–4.

[52] Kudo T, Morita T, Matsuda T, Takine T. Pca-based robust anomaly detection
using periodic traffic behavior. In: 2013 IEEE international conference on
communications workshops (ICC). 2013, p. 1330–4. http://dx.doi.org/10.1109/
ICCW.2013.6649443.

[53] Sial A, Singh A, Mahanti A. Detecting anomalous energy consumption using
contextual analysis of smart meter data. Wirel Netw 2019;1–18..

[54] Himeur Y, Elsalemi A, Bensaali F, Amira A. Smart power consumption ab-
normality detection in buildings using micro-moments and improved K-nearest
neighbors. Int J Intell Syst 2020;1–25.

[55] Kamaraj K, Dezfouli B, Liu Y. Edge mining on IoT devices using anomaly
detection. In: 2019 Asia-Pacific signal and information processing association
annual summit and conference (APSIPA ASC). 2019, p. 33–40.

[56] Alheeti KM, Gruebler A, McDonald-Maier K. Application of multiple discrim-
inant analysis (mda) as a credit scoring and risk assessment model. Int J
Emerging Mark 2011;6:132–47.

[57] Chijoriga M. Application of multiple discriminant analysis (MDA) as a credit
scoring and risk assessment model. Int J Emerging Mark 2011;6:132–47.

[58] Kiran BR, Thomas DM, Parakkal R. An overview of deep learning based methods
for unsupervised and semi-supervised anomaly detection in videos. J Imaging
2018;4(2):1–25.

[59] Wang R, Nie K, Wang T, Yang Y, Long B. Deep learning for anomaly detection.
WSDM ’20, New York, NY, USA: Association for Computing Machinery; 2020,
p. 894–6.

[60] Weng Y, Zhang N, Xia C. Multi-agent-based unsupervised detection of energy
consumption anomalies on smart campus. IEEE Access 2019;7:2169–78.

[61] Wang X, Zhao T, Liu H, He R. Power consumption predicting and anomaly
detection based on long short-term memory neural network. In: 2019 IEEE 4th
international conference on cloud computing and big data analysis (ICCCBDA).
2019, p. 487–91.

[62] Pereira J, Silveira M. Unsupervised anomaly detection in energy time series
data using variational recurrent autoencoders with attention. In: 2018 17th
IEEE international conference on machine learning and applications (ICMLA).
2018, p. 1275–82.

[63] Yuan Y, Jia K. A distributed anomaly detection method of operation energy
consumption using smart meter data. In: 2015 international conference on
intelligent information hiding and multimedia signal processing (IIH-MSP).
2015, p. 310–3.

[64] Himeur Y, Elsalemi A, Bensaali F, Amira A. Detection of appliance-level
abnormal energy consumption in buildings using autoencoders and micro-
moments. In: The fifth international conference on big data and internet of
things (BDIoT). 2021, p. 1–13.

[65] Munir M, Siddiqui SA, Chattha MA, Dengel A, Ahmed S. Fusead: Unsupervised
anomaly detection in streaming sensors data by fusing statistical and deep
learning models. Sensors 2019;19(11).

http://refhub.elsevier.com/S0306-2619(21)00140-9/sb13
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb13
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb13
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb13
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb13
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb14
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb14
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb14
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb14
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb14
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb15
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb15
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb15
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb15
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb15
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb15
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb15
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb16
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb16
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb16
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb16
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb16
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb17
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb17
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb17
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb17
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb17
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb18
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb18
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb18
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb18
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb18
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb19
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb19
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb19
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb19
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb19
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb20
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb20
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb20
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb20
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb20
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb21
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb21
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb21
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb21
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb21
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb22
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb22
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb22
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb22
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb22
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb23
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb23
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb23
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb23
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb23
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb23
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb23
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb24
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb24
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb24
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb24
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb24
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb25
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb25
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb25
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb25
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb25
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb25
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb25
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb26
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb26
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb26
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb26
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb26
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb27
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb27
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb27
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb27
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb27
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb28
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb28
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb28
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb29
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb29
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb29
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb29
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb29
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb30
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb30
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb30
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb31
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb31
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb31
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb31
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb31
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb31
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb31
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb31
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb31
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb32
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb32
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb32
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb32
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb32
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb33
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb33
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb33
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb34
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb34
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb34
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb34
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb34
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb35
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb35
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb35
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb35
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb35
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb36
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb36
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb36
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb36
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb36
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb37
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb37
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb37
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb38
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb38
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb38
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb38
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb38
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb38
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb38
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb39
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb39
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb39
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb39
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb39
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb39
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb39
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb40
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb40
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb40
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb40
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb40
http://arxiv.org/abs/1802.06360
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb42
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb42
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb42
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb43
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb43
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb43
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb43
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb43
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb43
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb43
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb44
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb44
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb44
http://dx.doi.org/10.1007/s12652-019-01649-9
http://dx.doi.org/10.1007/s12652-019-01649-9
http://dx.doi.org/10.1007/s12652-019-01649-9
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb46
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb46
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb46
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb47
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb47
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb47
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb47
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb47
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb48
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb48
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb48
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb48
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb48
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb49
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb49
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb49
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb49
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb49
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb50
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb50
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb50
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb51
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb51
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb51
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb51
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb51
http://dx.doi.org/10.1109/ICCW.2013.6649443
http://dx.doi.org/10.1109/ICCW.2013.6649443
http://dx.doi.org/10.1109/ICCW.2013.6649443
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb53
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb53
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb53
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb54
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb54
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb54
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb54
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb54
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb55
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb55
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb55
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb55
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb55
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb56
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb56
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb56
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb56
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb56
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb57
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb57
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb57
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb58
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb58
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb58
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb58
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb58
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb59
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb59
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb59
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb59
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb59
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb60
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb60
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb60
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb61
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb61
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb61
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb61
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb61
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb61
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb61
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb62
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb62
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb62
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb62
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb62
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb62
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb62
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb63
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb63
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb63
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb63
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb63
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb63
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb63
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb64
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb64
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb64
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb64
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb64
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb64
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb64
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb65
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb65
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb65
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb65
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb65


Applied Energy 287 (2021) 116601Y. Himeur et al.
[66] Li S, Han Y, Yao X, Yingchen S, Wang J, Zhao Q, Pai P-F. Electricity theft
detection in power grids with deep learning and random forests. J Electr
Comput Eng 2019;2019:1–12.

[67] Zheng Z, Yang Y, Niu X, Dai H, Zhou Y. Wide and deep convolutional neural
networks for electricity-theft detection to secure smart grids. IEEE Trans Ind
Inf 2018;14(4):1606–15.

[68] Tang Z, Chen Z, Bao Y, Li H. Convolutional neural network-based data anomaly
detection method using multiple information for structural health monitoring.
Struct Control Health Monit 2019;26(1):e2296, e2296 STC-18-0112.R1.

[69] Zhang C, Song D, Chen Y, Feng X, Lumezanu C, Cheng W, Ni J, Zong B, Chen H,
Chawla N. A deep neural network for unsupervised anomaly detection and
diagnosis in multivariate time series data. In: The thirty-third aaai conference
on artificial intelligence (AAAI-19). 2018, p. 1409–16.

[70] Alrawashdeh K, Purdy C. Toward an online anomaly intrusion detection system
based on deep learning. In: 2016 15th IEEE international conference on machine
learning and applications (ICMLA). 2016, p. 195–200.

[71] Choi Y, Lim H, Choi H, Kim I. Gan-based anomaly detection and localization
of multivariate time series data for power plant. In: 2020 IEEE international
conference on big data and smart computing (BigComp). 2020, p. 71–4.

[72] Sun Y, Yu W, Chen Y, Kadam A. Time series anomaly detection based on
GAN. In: 2019 sixth international conference on social networks analysis,
management and security (SNAMS). 2019, p. 375–82.

[73] Li D, Chen D, Jin B, Shi L, Goh J, Ng S-K. Mad-gan: multivariate anomaly
detection for time series data with generative adversarial networks. In: Tetko IV,
Kůrková V, Karpov P, Theis F, editors. Artificial neural networks and machine
learning – ICANN 2019: Text and time series. Cham: Springer International
Publishing; 2019, p. 703–16.

[74] Huang S, Lei K. Igan-ids: an imbalanced generative adversarial network towards
intrusion detection system in ad-hoc networks. Ad Hoc Netw 2020;105:102177.

[75] Fekri MN, Ghosh AM, Grolinger K. Generating energy data for machine learning
with recurrent generative adversarial networks. Energies 2020;13(1).

[76] Bontemps L, Cao VL, McDermott J, Le-Khac N-A. Collective anomaly detection
based on long short-term memory recurrent neural networks. In: Dang TK,
Wagner R, Küng J, Thoai N, Takizawa M, Neuhold E, editors. Future data and
security engineering. Cham: Springer International Publishing; 2016, p. 141–52.

[77] daSilva A, Guarany IS, Arruda B, Gurjão EC, Freire RS. A method for anomaly
prediction in power consumption using long short-term memory and negative
selection. In: 2019 IEEE international symposium on circuits and systems
(ISCAS). 2019, p. 1–5.

[78] Hollingsworth K, Rouse K, Cho J, Harris A, Sartipi M, Sozer S, et al.
Energy anomaly detection with forecasting and deep learning. In: 2018 IEEE
international conference on big data (Big Data). 2018, p. 4921–5.

[79] Fenza G, Gallo M, Loia V. Drift-aware methodology for anomaly detection in
smart grid. IEEE Access 2019;7:9645–57.

[80] Chahla C, Snoussi H, Merghem-Boulahia L, Esseghir M. A novel approach for
anomaly detection in power consumption data. In: 8th international conference
on pattern recognition applications and methods, Prague, Czech Republic; 2019.

[81] Xu C, Chen H. Abnormal energy consumption detection for GSHP system
based on ensemble deep learning and statistical modeling method. Int J Refrig
2020;114:106–17.

[82] Chen H, Fei X, Wang S, Lu X, Jin G, Li W, Wu X. Energy consumption data
based machine anomaly detection. In: 2014 second international conference on
advanced cloud and big data. 2014, p. 136–42.

[83] Santolamazza A, Cesarotti V, Introna V. Anomaly detection in energy con-
sumption for condition-based maintenance of compressed air generation
systems: an approach based on artificial neural networks. IFAC-PapersOnLine
2018;51(11):1131–6, 16th IFAC Symposium on Information Control Problems
in Manufacturing INCOM 2018.

[84] Ghanbari M, Kinsner W, Ferens K. Anomaly detection in a smart grid using
wavelet transform, variance fractal dimension and an artificial neural network.
In: 2016 IEEE electrical power and energy conference (EPEC). 2016, p. 1–6.

[85] Wang X, Ahn S-H. Real-time prediction and anomaly detection of electrical load
in a residential community. Appl Energy 2020;259:114145.

[86] Mulongo J, Atemkeng M, Ansah-Narh T, Rockefeller R, Nguegnang GM,
Garuti MA. Anomaly detection in power generation plants using machine
learning and neural networks. Appl Artif Intell 2020;34(1):64–79.

[87] Van Efferen L, Ali-Eldin AMT. A multi-layer perceptron approach for flow-based
anomaly detection. In: 2017 international symposium on networks, computers
and communications (ISNCC). 2017, p. 1–6.

[88] Kammerer K, Hoppenstedt B, Pryss R, Stökler S, Allgaier J, Reichert M. Anomaly
detections for manufacturing systems based on sensor data—Insights into two
challenging real-world production settings. Sensors 2019;19(24):1–18.

[89] Zeng Y, Zhuang J. Construction cosine radial basic function neural networks
based on artificial immune networks. In: Cao L, Zhong J, Feng Y, editors.
Advanced data mining and applications. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2010, p. 134–41.

[90] Janakiraman VM, Nielsen D. Anomaly detection in aviation data using extreme
learning machines. In: 2016 international joint conference on neural networks
(IJCNN). 2016, p. 1993–2000.
23
[91] Bose SK, Kar B, Roy M, Gopalakrishnan PK, Basu A. ADEPOS: Anomaly
detection based power saving for predictive maintenance using edge computing.
2018, arXiv:1811.00873.

[92] Imamverdiyev Y, Sukhostat L. Anomaly detection in network traffic using
extreme learning machine. In: 2016 IEEE 10th international conference on
application of information and communication technologies (AICT). 2016, p.
1–4.

[93] Kromanis R, Kripakaran P. Support vector regression for anomaly detection
from measurement histories. Adv Eng Inform 2013;27(4):486–95.

[94] Zhang Y, Chen W, Black J. Anomaly detection in premise energy consumption
data. In: 2011 IEEE power and energy society general meeting. 2011, p. 1–8.

[95] Fahim M, Sillitti A. An anomaly detection model for enhancing energy
management in smart buildings. In: 2018 IEEE international conference
on communications, control, and computing technologies for smart grids
(SmartGridComm). 2018, p. 1–6.

[96] Liu X, Nielsen PS. Scalable prediction-based online anomaly detection for smart
meter data. Inf Syst 2018;77:34–47.

[97] Cui W, Wang H. A new anomaly detection system for school electricity
consumption data. Information 2017;8(4).

[98] Chou J-S, Telaga AS. Real-time detection of anomalous power consumption.
Renew Sustain Energy Rev 2014;33:400–11.

[99] Bacciu D, Lisboa PJ, Sperduti A, Villmann T. Probabilistic modeling in machine
learning. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015, p. 545–75.

[100] Roberts E, Bassett BA, Lochner M. Bayesian anomaly detection and classification
for noisy data. In: Abraham A, Siarry P, Ma K, Kaklauskas A, editors. Intelligent
systems design and applications. Cham: Springer International Publishing; 2021,
p. 426–35.

[101] Akouemo HN, Povinelli RJ. Probabilistic anomaly detection in natural gas time
series data. Int J Forecasting 2016;32(3):948–56.

[102] Rashidi L, Hashemi S, Hamzeh A. Anomaly detection in categorical datasets us-
ing Bayesian networks. In: Artificial intelligence and computational intelligence,
Vol. 7003. 2011, p. 610–9.

[103] Saqaeeyan S, Haj Seyyed Javadi H, Amirkhani H. Anomaly detection in smart
homes using Bayesian networks. KSII Trans Internet Inf Syst 2020;14:1796–816.

[104] Jakkula V, Cook D. Outlier detection in smart environment structured power
datasets. In: 2010 sixth international conference on intelligent environments.
2010, p. 29–33.

[105] Liu X, Iftikhar N, Nielsen PS, Heller A. Online anomaly energy consumption
detection using lambda architecture. In: Madria S, Hara T, editors. Big data
analytics and knowledge discovery. Cham: Springer International Publishing;
2016, p. 193–209.

[106] Hock D, Kappes M, Ghita B. Using multiple data sources to detect manipulated
electricity meter by an entropy-inspired metric. Sustain Energy Grids Netw
2020;21:100290.

[107] Coma-Puig B, Carmona J, Gavaldà R, Alcoverro S, Martin V. Fraud detection
in energy consumption: A supervised approach. In: 2016 IEEE international
conference on data science and advanced analytics (DSAA). 2016, p. 120–9.

[108] Janakiram D, Kumar AVUP, Reddy V. AM. Outlier detection in wireless sensor
networks using Bayesian belief networks. In: 2006 1st international conference
on communication systems software middleware. 2006, p. 1–6.

[109] Chen B, Sinn M, Ploennigs J, Schumann A. Statistical anomaly detection in
mean and variation of energy consumption. In: Proceedings of the 2014 22nd
international conference on pattern recognition. ICPR 14, USA: IEEE Computer
Society; 2014, p. 3570–5.

[110] Depuru SSR, Wang L, Devabhaktuni V. Support vector machine based data
classification for detection of electricity theft. In: 2011 IEEE/PES power systems
conference and exposition. 2011, p. 1–8.

[111] Amara korba A, El Islem karabadji N. Smart grid energy fraud detection using
SVM. In: 2019 international conference on networking and advanced systems
(ICNAS). 2019, p. 1–6.

[112] Nagi J, Yap KS, Tiong SK, Ahmed SK, Mohammad AM. Detection of abnormal-
ities and electricity theft using genetic support vector machines. In: TENCON
2008 - 2008 IEEE region 10 conference. 2008, p. 1–6.

[113] Zhang L, Wan L, Xiao Y, Li S, Zhu C. Anomaly detection method of smart meters
data based on GMM-lda clustering feature learning and PSO support vector
machine. In: 2019 IEEE sustainable power and energy conference (ISPEC). 2019,
p. 2407–12.

[114] Cody C, Ford V, Siraj A. Decision tree learning for fraud detection in consumer
energy consumption. In: 2015 IEEE 14th international conference on machine
learning and applications (ICMLA). 2015, p. 1175–9.

[115] Reif M, Goldstein M, Stahl A, Breuel TM. Anomaly detection by combining
decision trees and parametric densities. In: 2008 19th international conference
on pattern recognition. 2008, p. 1–4.

[116] Xu X, Liu H, Yao M. Recent progress of anomaly detection. Complexity
2019;2019:1–11.

[117] Bahri E, Harbi N, Huu HN. Approach based ensemble methods for better and
faster intrusion detection. In: Herrero A, Corchado E, editors. Computational
intelligence in security for information systems. Berlin, Heidelberg: Springer
Berlin Heidelberg; 2011, p. 17–24.

http://refhub.elsevier.com/S0306-2619(21)00140-9/sb66
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb66
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb66
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb66
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb66
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb67
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb67
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb67
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb67
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb67
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb68
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb68
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb68
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb68
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb68
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb69
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb69
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb69
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb69
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb69
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb69
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb69
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb70
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb70
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb70
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb70
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb70
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb71
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb71
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb71
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb71
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb71
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb72
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb72
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb72
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb72
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb72
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb73
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb73
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb73
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb73
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb73
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb73
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb73
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb73
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb73
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb74
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb74
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb74
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb75
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb75
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb75
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb76
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb76
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb76
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb76
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb76
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb76
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb76
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb77
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb77
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb77
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb77
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb77
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb77
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb77
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb78
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb78
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb78
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb78
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb78
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb79
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb79
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb79
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb81
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb81
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb81
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb81
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb81
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb82
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb82
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb82
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb82
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb82
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb83
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb83
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb83
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb83
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb83
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb83
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb83
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb83
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb83
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb84
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb84
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb84
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb84
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb84
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb85
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb85
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb85
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb86
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb86
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb86
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb86
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb86
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb87
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb87
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb87
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb87
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb87
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb88
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb88
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb88
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb88
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb88
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb89
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb89
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb89
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb89
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb89
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb89
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb89
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb90
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb90
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb90
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb90
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb90
http://arxiv.org/abs/1811.00873
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb92
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb92
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb92
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb92
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb92
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb92
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb92
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb93
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb93
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb93
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb94
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb94
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb94
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb95
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb95
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb95
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb95
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb95
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb95
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb95
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb96
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb96
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb96
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb97
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb97
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb97
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb98
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb98
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb98
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb99
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb99
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb99
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb100
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb100
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb100
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb100
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb100
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb100
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb100
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb101
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb101
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb101
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb102
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb102
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb102
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb102
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb102
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb103
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb103
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb103
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb104
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb104
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb104
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb104
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb104
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb105
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb105
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb105
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb105
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb105
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb105
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb105
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb106
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb106
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb106
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb106
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb106
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb107
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb107
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb107
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb107
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb107
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb108
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb108
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb108
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb108
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb108
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb109
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb109
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb109
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb109
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb109
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb109
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb109
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb110
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb110
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb110
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb110
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb110
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb111
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb111
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb111
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb111
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb111
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb112
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb112
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb112
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb112
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb112
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb113
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb113
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb113
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb113
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb113
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb113
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb113
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb114
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb114
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb114
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb114
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb114
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb115
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb115
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb115
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb115
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb115
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb116
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb116
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb116
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb117
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb117
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb117
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb117
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb117
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb117
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb117


Applied Energy 287 (2021) 116601Y. Himeur et al.
[118] Zhang J, Wang Z, Meng J, Tan Y, Yuan J. Boosting positive and unlabeled
learning for anomaly detection with multi-features. IEEE Trans Multimed
2019;21(5):1332–44.

[119] Touzani S, Granderson J, Fernandes S. Gradient boosting machine for
modeling the energy consumption of commercial buildings. Energy Build
2018;158:1533–43.

[120] Adhi Tama B, Rhee KH. An in-depth experimental study of anomaly detection
using gradient boosted machine. Neural Comput Appl 2019;31:955–65.

[121] Albiero B, Santos R, Uyrá E, Vilarino R, Silva J, Souza T, et al. Employing
gradient boosting and anomaly detection for prediction of frauds in energy
consumption. In: Anais do XVI encontro nacional de inteligência artificial e
computacional. Porto Alegre, RS, Brasil: SBC; 2019, p. 916–25.

[122] Kim T, Lee D, Choi J, Spurlock A, Sim A, Todd A, et al. Extracting baseline
electricity usage using gradient tree boosting. In: 2015 IEEE international
conference on smart city/socialcom/sustaincom (SmartCity). 2015, p. 734–41.

[123] Gaikwad DP, Thool RC. Intrusion detection system using bagging ensemble
method of machine learning. In: 2015 international conference on computing
communication control and automation. 2015, p. 291–5.

[124] Nguyen HV, Ang HH, Gopalkrishnan V. Mining outliers with ensemble of
heterogeneous detectors on random subspaces. In: Kitagawa H, Ishikawa Y,
Li Q, Watanabe C, editors. Database systems for advanced applications. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2010, p. 368–83.

[125] Araya DB, Grolinger K, ElYamany HF, Capretz MA, Bitsuamlak G. An ensemble
learning framework for anomaly detection in building energy consumption.
Energy Build 2017;144:191–206.

[126] Wun Z, Shi P, Luo D, Luo J. Research on anomaly detection method for electro-
data. In: 2019 IEEE sustainable power and energy conference (ISPEC). 2019,
p. 477–81.

[127] Primartha R, Tama BA. Anomaly detection using random forest: A performance
revisited. In: 2017 international conference on data and software engineering
(ICoDSE). 2017, p. 1–6.

[128] Ouyang Z, Sun X, Chen J, Yue D, Zhang T. Multi-view stacking ensemble for
power consumption anomaly detection in the context of industrial internet of
things. IEEE Access 2018;6:9623–31.

[129] Lazarevic A, Kumar V. Feature bagging for outlier detection. In: Proceedings of
the eleventh ACM SIGKDD international conference on knowledge discovery
in data mining. KDD ’05, New York, NY, USA: Association for Computing
Machinery; 2005, p. 157–66.

[130] Araya DB, Grolinger K, ElYamany HF, Capretz MAM, Bitsuamlak G. Collec-
tive contextual anomaly detection framework for smart buildings. In: 2016
international joint conference on neural networks (IJCNN). 2016, p. 511–8.

[131] Gu X, Akoglu L, Rinaldo A. Statistical analysis of nearest neighbor methods for
anomaly detection. In: The 33rd conference on neural information processing
systems (NeurIPS 2019). 2019, p. 1–17.

[132] Zhang C, Wang F. Multi-feature fusion based anomaly electro-data detection
in smart grid. In: 2018 15th international symposium on pervasive systems,
algorithms and networks (I-SPAN). 2018, p. 54–9.

[133] Yijia T, Hang G. Anomaly detection of power consumption based on waveform
feature recognition. In: 2016 11th international conference on computer science
education (ICCSE). 2016, p. 587–91.

[134] Tran L, Fan L, Shahabi C. Distance-based outlier detection in data streams. Proc
VLDB Endow 2016;9(12):1089–100.

[135] Huo W, Wang W, Li W. Anomalydetect: an online distance-based anomaly
detection algorithm. In: Miller J, Stroulia E, Lee K, Zhang L-J, editors. Web
services–ICWS 2019. Cham: Springer International Publishing; 2019, p. 63–79.

[136] Fan H, Zaïane OR, Foss A, Wu J. Resolution-based outlier factor: Detecting
the top-n most outlying data points in engineering data. Knowl Inf Syst
2009;19(1):31–51.

[137] Mao W, Cao X, zhou Q, Yan T, Zhang Y. Anomaly detection for power
consumption data based on isolated forest. In: 2018 international conference
on power system technology (POWERCON). 2018, p. 4169–74.

[138] Liu FT, Ting KM, Zhou Z. Isolation forest. In: 2008 eighth IEEE international
conference on data mining. 2008, p. 413–22.

[139] Lee S, Kim HK. Adsas: comprehensive real-time anomaly detection system. In:
Kang BB, Jang J, editors. Information security applications. Cham: Springer
International Publishing; 2019, p. 29–41.

[140] Gao J, Song X, Wen Q, Wang P, Sun L, Xu H. Robusttad: Robust time series
anomaly detection via decomposition and convolutional neural networks. 2020,
arXiv:2002.09545.

[141] Qiu H, Tu Y, Zhang Y. Anomaly detection for power consumption patterns in
electricity early warning system. In: 2018 tenth international conference on
advanced computational intelligence (ICACI). 2018, p. 867–73.

[142] Petladwala M, Ishii Y, Sendoda M, Kondo R. Canonical correlation based feature
extraction with application to anomaly detection in electric appliances. In:
ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and
signal processing (ICASSP). 2019, p. 2737–41.

[143] Andrysiak T, Saganowski u, Kiedrowski P. Anomaly detection in smart metering
infrastructure with the use of time series analysis. J Sensors 2017;2017:1–15.
24
[144] Ouyang Z, Sun X, Yue D. Hierarchical time series feature extraction for power
consumption anomaly detection. In: Li K, Xue Y, Cui S, Niu Q, Yang Z, Luk P,
editors. Advanced computational methods in energy, power, electric vehicles,
and their integration. Singapore: Springer Singapore; 2017, p. 267–75.

[145] Zyabkina O, Domagk M, Meyer J, Schegner P. A feature-based method for
automatic anomaly identification in power quality measurements. In: 2018 IEEE
international conference on probabilistic methods applied to power systems
(PMAPS). 2018, p. 1–6.

[146] Mookiah L, Dean C, Eberle W. Graph-based anomaly detection on smart grid
data. In: The thirtieth international flairs conference. 2017, p. 1–6.

[147] Lipcak P, Macak M, Rossi B. Big data platform for smart grids power consump-
tion anomaly detection. In: 2019 federated conference on computer science and
information systems (FedCSIS). 2019, p. 771–80.

[148] Yen SW, Morris S, Ezra MA, Huat TJ. Effect of smart meter data collection
frequency in an early detection of shorter-duration voltage anomalies in smart
grids. Int J Electr Power Energy Syst 2019;109:1–8.

[149] Yip S-C, Tan W-N, Tan C, Gan M-T, Wong K. An anomaly detection framework
for identifying energy theft and defective meters in smart grids. Int J Electr
Power Energy Syst 2018;101:189–203.

[150] Pea M, Biscarri F, Guerrero JI, Monedero I, Len C. Rule-based system to detect
energy efficiency anomalies in smart buildings, a data mining approach. Expert
Syst Appl 2016;56:242–55.

[151] Jain S, Choksi KA, Pindoriya NM. Rule-based classification of energy theft and
anomalies in consumers load demand profile. IET Smart Grid 2019;2(4):612–24.

[152] Linda O, Wijayasekara D, Manic M, Rieger C. Computational intelligence based
anomaly detection for building energy management systems. In: 2012 5th
international symposium on resilient control systems. 2012, p. 77–82.

[153] Chen C, Cook D. Energy outlier detection in smart environments. In: Artificial
intelligence and smarter living. AAAI Workshops, WS-11-07, AAAI; 2011.

[154] Breunig MM, Kriegel H-P, Ng RT, Sander J. Lof: Identifying density-based local
outliers. SIGMOD Rec 2000;29(2):93–104.

[155] He Z, Xu X, Deng S. Discovering cluster-based local outliers. Pattern Recognit
Lett 2003;24(9):1641–50.

[156] Giannoni F, Mancini M, Marinelli F. Anomaly detection models for IoT time
series data. 2018, p. 1–10, arXiv:1812.00890.

[157] Zhou Y, Hu W, Min Y, Zheng L, Liu B, Yu R, Dong Y. A semi-supervised anomaly
detection method for wind farm power data preprocessing. In: 2017 IEEE power
energy society general meeting. 2017, p. 1–5.

[158] Kim S, Cho NW, Lee YJ, Kang S-H, Kim T, Hwang H, et al. Application of
density-based outlier detection to database activity monitoring. Inf Syst Front
2013;15(1):55–65.

[159] Hou J, Xiao B. A data-driven clustering approach for fault diagnosis. IEEE
Access 2017;5:26512–20.

[160] Ahmed M, Mahmood AN, Islam MR. A survey of anomaly detection techniques
in financial domain. Future Gener Comput Syst 2016;55:278–88.

[161] Mookiah L, Dean C, Eberle W. Graph-based anomaly detection on smart grid
data. In: Proceedings of the thirtieth international florida artificial intelligence
research society conference. 2017, p. 306–11.

[162] Akoglu L, Tong H, Koutra D. Graph based anomaly detection and description:
A survey. Data Min Knowl Discov 2015;29(3):626–88.

[163] Davis M, Liu W, Miller P, Redpath G. Detecting anomalies in graphs with
numeric labels. New York, NY, USA: Association for Computing Machinery;
2011.

[164] Rahmani A, Afra S, Zarour O, Addam O, Koochakzadeh N, Kianmehr K, et al.
Graph-based approach for outlier detection in sequential data and its application
on stock market and weather data. Knowl Based Syst 2014;61:89–97.

[165] Farag A, Abdelkader H, Salem R. Parallel graph-based anomaly detection
technique for sequential data. J King Saud Univ Comput Inform Sci 2019;1–9..
http://dx.doi.org/10.1016/j.jksuci.2019.09.009.

[166] Ruff L, Vandermeulen RA, Görnitz N, Binder A, Müller E, Müller K-R, Kloft M.
Deep semi-supervised anomaly detection. 2019, p. 1–23, arXiv:1906.02694.

[167] Fan C, Xiao F, Zhao Y, Wang J. Analytical investigation of autoencoder-based
methods for unsupervised anomaly detection in building energy data. Appl
Energy 2018;211:1123 – 1135.

[168] Wang X, Yang I, Ahn S. Sample efficient home power anomaly detection in
real time using semi-supervised learning. IEEE Access 2019;7:139712–25.

[169] Song H, Jiang Z, Men A, Yang B. A hybrid semi-supervised anomaly detection
model for high-dimensional data. Comput Intell Neurosci 2017;2017:1–9.

[170] Janetzko H, Stoffel F, Mittelstädt S, Keim DA. Anomaly detection for visual
analytics of power consumption data. Comput Graph 2014;38:27 – 37.

[171] Cao N, Lin C, Zhu Q, Lin Y, Teng X, Wen X. Voila: Visual anomaly detection
and monitoring with streaming spatiotemporal data. IEEE Trans Vis Comput
Graphics 2018;24(1):23–33.

[172] Chou J-S, Telaga AS, Chong WK, Gibson GE. Early-warning application for
real-time detection of energy consumption anomalies in buildings. Journal of
Cleaner Production 2017;149:711 – 722.

[173] Capozzoli A, Piscitelli MS, Brandi S, Grassi D, Chicco G. Automated load pattern
learning and anomaly detection for enhancing energy management in smart
buildings. Energy 2018;157:336 – 352.

http://refhub.elsevier.com/S0306-2619(21)00140-9/sb118
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb118
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb118
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb118
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb118
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb119
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb119
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb119
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb119
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb119
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb120
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb120
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb120
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb121
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb121
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb121
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb121
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb121
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb121
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb121
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb122
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb122
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb122
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb122
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb122
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb123
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb123
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb123
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb123
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb123
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb124
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb124
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb124
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb124
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb124
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb124
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb124
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb125
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb125
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb125
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb125
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb125
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb126
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb126
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb126
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb126
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb126
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb127
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb127
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb127
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb127
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb127
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb128
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb128
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb128
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb128
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb128
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb129
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb129
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb129
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb129
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb129
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb129
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb129
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb130
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb130
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb130
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb130
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb130
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb131
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb131
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb131
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb131
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb131
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb132
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb132
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb132
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb132
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb132
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb133
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb133
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb133
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb133
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb133
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb134
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb134
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb134
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb135
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb135
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb135
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb135
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb135
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb136
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb136
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb136
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb136
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb136
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb137
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb137
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb137
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb137
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb137
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb138
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb138
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb138
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb139
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb139
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb139
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb139
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb139
http://arxiv.org/abs/2002.09545
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb141
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb141
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb141
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb141
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb141
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb142
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb142
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb142
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb142
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb142
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb142
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb142
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb143
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb143
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb143
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb144
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb144
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb144
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb144
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb144
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb144
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb144
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb145
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb145
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb145
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb145
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb145
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb145
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb145
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb146
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb146
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb146
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb147
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb147
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb147
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb147
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb147
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb148
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb148
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb148
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb148
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb148
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb149
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb149
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb149
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb149
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb149
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb150
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb150
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb150
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb150
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb150
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb151
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb151
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb151
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb152
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb152
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb152
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb152
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb152
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb153
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb153
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb153
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb154
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb154
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb154
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb155
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb155
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb155
http://arxiv.org/abs/1812.00890
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb157
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb157
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb157
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb157
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb157
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb158
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb158
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb158
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb158
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb158
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb159
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb159
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb159
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb160
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb160
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb160
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb162
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb162
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb162
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb163
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb163
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb163
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb163
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb163
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb164
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb164
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb164
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb164
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb164
http://dx.doi.org/10.1016/j.jksuci.2019.09.009
http://arxiv.org/abs/1906.02694
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb167
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb167
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb167
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb167
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb167
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb168
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb168
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb168
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb169
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb169
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb169
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb170
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb170
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb170
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb171
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb171
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb171
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb171
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb171
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb172
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb172
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb172
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb172
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb172
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb173
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb173
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb173
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb173
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb173


Applied Energy 287 (2021) 116601Y. Himeur et al.
[174] Saragadam V, Wang J, Li X, Sankaranarayanan AC. Compressive spectral
anomaly detection. In: 2017 IEEE International Conference on Computational
Photography (ICCP). 2017, p. 1–9.

[175] Xia Y, Zhao Z, Zhang H. Distributed anomaly event detection in wireless
networks using compressed sensing. In: 2011 11th International Symposium
on Communications Information Technologies (ISCIT). 2011, p. 250–5.

[176] Wang W, Wang D, Jiang S, Qin S, Xue L. Anomaly detection in big data with
separable compressive sensing. In: Liang Q, Mu J, Wang W, Zhang B, editors.
Proceedings of the 2015 International Conference on Communications, Signal
Processing, and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016,
p. 589–94.

[177] Levorato M, Mitra U. Fast anomaly detection in smartgrids via sparse ap-
proximation theory. In: 2012 IEEE 7th Sensor Array and Multichannel Signal
Processing Workshop (SAM). 2012, p. 5–8.

[178] Liu C, Ghosal S, Jiang Z, Sarkar S. An unsupervised anomaly detection
approach using energy-based spatiotemporal graphical modeling. Cyber-Phys
Syst 2017;3(1–4):66–102.

[179] Munawar A, Vinayavekhin P, De Magistris G. Spatio-temporal anomaly detec-
tion for industrial robots through prediction in unsupervised feature space. In:
2017 IEEE Winter Conference on Applications of Computer Vision (WACV).
2017, p. 1017–25.

[180] Yang Z, Japkowicz N. Anomaly behaviour detection based on meta-morisita
index for large scale spatio-temporal data set. J Big Data 2018;5:1–28.

[181] Bosman HH, Iacca G, Tejada A, Wörtche HJ, Liotta A. Spatial anomaly detection
in sensor networks using neighborhood information. Inform Fusion 2017;33:41
– 56.

[182] Enetics. 2020, Accessed: 2020-06-23, Available online: https://www.enetics.
com/Products/Software/Non-Intrusive-Load-Monitoring-NILM.

[183] Dilraj M, Nimmy K, Sankaran S. Towards behavioral profiling based anomaly
detection for smart homes. In: TENCON 2019 - 2019 IEEE Region 10 Conference
(TENCON). 2019, p. 1258–63.

[184] Rashid H, Batra N, Singh P. Rimor: Towards identifying anomalous appliances
in buildings. In: BuildSys ’18, New York, NY, USA: Association for Computing
Machinery; 2018, p. 33–42.

[185] Kabler RB, Lutes RL, Briançon AC, Crawford CS, Giacoponello CA, Johnson JF,
Jara-Olivares VA, Epard MA, Goldberg SJ, Lancaster JB. Monitoring and fault
detection of electrical appliances for ambient intelligence. In: United States
Patent, no. US9476935B2. 2014, p. 1–24.

[186] Sardianos C, Varlamis I, Chronis C, Dimitrakopoulos G, Himeur Y, Alsalemi A,
Bensaali F, Amira A. A model for predicting room occupancy based on motion
sensor data. In: 2020 IEEE International Conference on Informatics, IoT, and
Enabling Technologies (ICIoT). 2020, p. 394–9.

[187] Laaroussi Y, Bahrar M, Mankibi ME, Draoui A, Si-Larbi A. Occupant presence
and behavior: a major issue for building energy performance simulation and
assessment. Sustain Cities Soc 2020;63:102420.

[188] Kleiminger W, Beckel C, Staake T, Santini S. Occupancy detection from
electricity consumption data. In: BuildSys’13, New York, NY, USA: Association
for Computing Machinery; 2013, p. 1–8.

[189] Akbar A, Nati M, Carrez F, Moessner K. Contextual occupancy detection for
smart office by pattern recognition of electricity consumption data. In: 2015
IEEE International Conference on Communications (ICC). 2015, p. 561–6.

[190] Gao Y, Schay A, Hou D. Occupancy detection in smart housing using both
aggregated and appliance-specific power consumption data. In: 2018 17th IEEE
International Conference on Machine Learning and Applications (ICMLA). 2018,
p. 1296–303.

[191] Violatto G, Pandharipande A, Li S, Schenato L. Classification of occupancy
sensor anomalies in connected indoor lighting systems. IEEE Internet Things
J 2019;6(4):7175–82.

[192] Nabil M, Ismail M, Mahmoud M, Shahin M, Qaraqe K, Serpedin E. Deep
recurrent electricity theft detection in AMI networks with random tuning
of hyper-parameters. In: 2018 24th International Conference on Pattern
Recognition (ICPR). 2018, p. 740–5.

[193] Krishna VB, Lee K, Weaver GA, Iyer RK, Sanders WH. F-DETA: A framework for
detecting electricity theft attacks in smart grids. In: 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). 2016,
p. 407–18.

[194] Visconti P, Costantini P, de Fazio R, Lay-Ekuakille A, Patrono L. A sensors-
based monitoring system of electrical consumptions and home parameters
remotely managed by mobile app for elderly habits’ control. In: 2019 IEEE
8th International Workshop on Advances in Sensors and Interfaces (IWASI).
2019, p. 264–9.

[195] Patrono L, Primiceri P, Rametta P, Sergi I, Visconti P. An innovative approach
for monitoring elderly behavior by detecting home appliance’s usage. In: 2017
25th International Conference on Software, Telecommunications and Computer
Networks (SoftCOM). 2017, p. 1–7.

[196] Patrono L, Rametta P, Meis J. Unobtrusive detection of home appliance’s usage
for elderly monitoring. In: 2018 3rd International Conference on Smart and
Sustainable Technologies (SpliTech). 2018, p. 1–6.

[197] Nabil M, Ismail M, Mahmoud MMEA, Alasmary W, Serpedin E. PPETD: Privacy-
preserving electricity theft detection scheme with load monitoring and billing
for AMI networks. IEEE Access 2019;7:96334–48.
25
[198] Yao D, Wen M, Liang X, Fu Z, Zhang K, Yang B. Energy theft detection
with energy privacy preservation in the smart grid. IEEE Internet Things J
2019;6(5):7659–69.

[199] Himeur Y, Elsalemi A, Bensaali F, Amira A. The emergence of hybrid edge-cloud
computing for energy efficiency in buildings. In: Proceedings of SAI Intelligent
Systems Conference. 2021, p. 1–12.

[200] Zhang C, Ji W. Edge computing enabled production anomalies detection
and energy-efficient production decision approach for discrete manufacturing
workshops. IEEE Access 2020;1–11.

[201] Luo Y, Li W, Qiu S. Anomaly detection based latency-aware energy consumption
optimization for IoT data-flow services. Sensors 2020;20(1):1–20.

[202] Scarpiniti M, Baccarelli E, Momenzadeh A, Uncini A. Smartfog: Training the fog
for the energy-saving analytics of smart-meter data. Appl Sci 2019;9(19):1–14.

[203] Liu Y, Pang Z, Karlsson M, Gong S. Anomaly detection based on machine
learning in iot-based vertical plant wall for indoor climate control. Buil Environ
2020;183:107212.

[204] Zhang J, Zhou Z, Li S, Gan L, Zhang X, Qi L, Xu X, Dou W. Hybrid
computation offloading for smart home automation in mobile cloud computing.
Pers Ubiquitous Comput 2017;22:121–34.

[205] Anjomshoaa A, Duarte F, Rennings D, Matarazzo TJ, deSouza P, Ratti C. City
scanner: Building and scheduling a mobile sensing platform for smart city
services. IEEE Internet Things J 2018;5(6):4567–79.

[206] Izumi S, Azuma S. Real-time pricing by data fusion on networks. IEEE Trans
Ind Inf 2018;14(3):1175–85.

[207] Power laws: Detecting anomalies in usage. 2020, Available online: https://
www.drivendata.org/, Accessed: 2020-12-25.

[208] Uttama Nambi AS, Reyes Lua A, Prasad VR. Loced: Location-aware energy
disaggregation framework. In: Proceedings of the 2Nd ACM International
Conference on Embedded Systems for Energy-Efficient Built Environments.
BuildSys ’15, New York, NY, USA: ACM; 2015, p. 45–54.

[209] Himeur Y, Alsalemi A, Bensaali F, Amira A. Effective non-intrusive load moni-
toring of buildings based on a novel multi-descriptor fusion with dimensionality
reduction. Appl Energy 2020;279:115872.

[210] Salinas S, Li P. Privacy-preserving energy theft detection in microgrids: A state
estimation approach. IEEE Trans Power Syst 2016;31(2):883–94.

[211] Himeur Y, Alsalemi A, Bensaali F, Amira A. Building power consumption
datasets: survey, taxonomy and future directions. Energy Buil 2020;227:110404.

[212] Liu A, Zhang G, Lu J. Concept drift detection based on anomaly analysis. In:
Loo CK, Yap KS, Wong KW, Teoh A, Huang K, editors. Neural Information
Processing. Cham; 2014, p. 263–70.

[213] Tian H, Khoa NLD, Anaissi A, Wang Y, Chen F. Concept drift adaption for online
anomaly detection in structural health monitoring. In: Proceedings of the 28th
ACM International Conference on Information and Knowledge Management.
CIKM ’19, New York, NY, USA: Association for Computing Machinery; 2019, p.
2813–21.

[214] Xie X, Jin Z, Wang J, Yang L, Lu Y, Li T. Confidence guided anomaly
detection model for anti-concept drift in dynamic logs. J Netw Comput Appl
2020;162:102659.

[215] Akhavan-Hejazi H, Mohsenian-Rad H. Power systems big data analytics: an
assessment of paradigm shift barriers and prospects. Energy Rep 2018;4:91 –
100.

[216] Himeur Y, Alsalemi A, Bensaali F, Amira A, Varlamis I, Bravos G, Sardianos C,
Dimitrakopoulos. Techno-economic analysis of building energy efficiency sys-
tems based on behavioral change: A case study of a novel micro-moments based
solution. Appl Energy 2020;1–18.

[217] Ecoisme. 2020, Accessed: 2020-12-21, Available online: https://ecoisme.com.
[218] Informetis. 2020, Accessed: 2020-12-23, Available online: https://www.

informetis.com/en/.
[219] Verv energy. 2020, Accessed: 2020-12-23, Available online: https://verv.

energy/.
[220] Neurio. In: Neurio Sensor W1TM Overview, Product specification. Vancouver,

BC, Canada: Neurio Technology Inc; 2019.
[221] Wibeee. 2020, Accessed: 2020-12-23, Available online: https://wibeee.com/en/.
[222] Smart impulse. 2020, Accessed: 2020-12-25, Available online: https://www.

smart-impulse.com/en/nilm-technology/.
[223] Verdigris. 2020, Accessed: 2020-12-27, Available online: https://verdigris.co/.
[224] Voltaware. 2020, Accessed: 2020-12-28, Available online: https://voltaware.

com/support/my-disaggregation.
[225] Homepulse: Creating value from energy data: the disaggregation challenge.

2020, Accessed: 2020-12-29, Available online: https://www.homepulse.fr/.
[226] Hive starter pack. 2020, Accessed: 2020-12-21, Available online: https://www.

hivehome.com.
[227] Dig, your energy consultant. 2020, Accessed: 2020-12-27, Available online:

https://intelen.com/us/.
[228] Real-time energy monitoring software. 2020, Accessed: 2020-12-28, Available

online: https://harksys.com/.
[229] Enertalk: Energy monitoring with big data analysis. 2020, Accessed:

2020-12-28, Available online: https://www.enertalk.com/home/.

http://refhub.elsevier.com/S0306-2619(21)00140-9/sb174
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb174
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb174
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb174
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb174
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb175
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb175
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb175
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb175
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb175
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb176
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb176
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb176
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb176
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb176
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb176
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb176
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb176
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb176
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb177
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb177
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb177
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb177
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb177
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb178
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb178
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb178
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb178
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb178
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb179
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb179
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb179
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb179
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb179
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb179
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb179
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb180
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb180
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb180
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb181
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb181
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb181
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb181
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb181
https://www.enetics.com/Products/Software/Non-Intrusive-Load-Monitoring-NILM
https://www.enetics.com/Products/Software/Non-Intrusive-Load-Monitoring-NILM
https://www.enetics.com/Products/Software/Non-Intrusive-Load-Monitoring-NILM
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb183
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb183
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb183
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb183
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb183
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb184
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb184
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb184
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb184
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb184
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb185
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb185
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb185
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb185
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb185
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb185
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb185
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb186
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb186
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb186
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb186
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb186
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb186
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb186
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb187
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb187
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb187
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb187
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb187
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb188
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb188
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb188
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb188
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb188
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb189
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb189
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb189
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb189
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb189
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb190
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb190
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb190
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb190
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb190
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb190
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb190
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb191
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb191
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb191
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb191
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb191
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb192
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb192
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb192
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb192
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb192
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb192
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb192
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb193
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb193
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb193
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb193
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb193
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb193
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb193
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb194
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb194
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb194
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb194
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb194
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb194
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb194
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb194
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb194
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb195
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb195
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb195
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb195
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb195
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb195
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb195
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb196
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb196
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb196
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb196
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb196
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb197
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb197
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb197
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb197
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb197
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb198
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb198
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb198
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb198
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb198
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb199
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb199
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb199
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb199
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb199
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb200
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb200
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb200
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb200
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb200
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb201
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb201
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb201
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb202
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb202
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb202
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb203
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb203
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb203
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb203
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb203
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb204
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb204
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb204
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb204
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb204
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb205
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb205
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb205
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb205
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb205
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb206
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb206
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb206
https://www.drivendata.org/
https://www.drivendata.org/
https://www.drivendata.org/
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb208
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb208
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb208
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb208
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb208
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb208
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb208
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb209
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb209
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb209
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb209
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb209
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb210
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb210
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb210
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb211
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb211
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb211
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb212
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb212
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb212
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb212
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb212
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb213
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb213
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb213
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb213
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb213
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb213
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb213
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb213
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb213
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb214
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb214
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb214
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb214
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb214
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb215
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb215
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb215
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb215
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb215
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb216
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb216
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb216
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb216
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb216
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb216
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb216
https://ecoisme.com
https://www.informetis.com/en/
https://www.informetis.com/en/
https://www.informetis.com/en/
https://verv.energy/
https://verv.energy/
https://verv.energy/
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb220
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb220
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb220
https://wibeee.com/en/
https://www.smart-impulse.com/en/nilm-technology/
https://www.smart-impulse.com/en/nilm-technology/
https://www.smart-impulse.com/en/nilm-technology/
https://verdigris.co/
https://voltaware.com/support/my-disaggregation
https://voltaware.com/support/my-disaggregation
https://voltaware.com/support/my-disaggregation
https://www.homepulse.fr/
https://www.hivehome.com
https://www.hivehome.com
https://www.hivehome.com
https://intelen.com/us/
https://harksys.com/
https://www.enertalk.com/home/


Applied Energy 287 (2021) 116601Y. Himeur et al.
[230] Andoni M, Robu V, Flynn D, Abram S, Geach D, Jenkins D, McCallum P,
Peacock A. Blockchain technology in the energy sector: a systematic review
of challenges and opportunities. Renewable and Sustainable Energy Reviews
2019;100:143 – 174.

[231] Himeur Y, Elsalemi A, Bensaali F, Amira A. An intelligent non-intrusive load
monitoring scheme based on 2D phase encoding of power signals. Int J Intell
Syst 2020;1–22.

[232] Himeur Y, Alsalemi A, Bensaali F, Amira A. Smart non-intrusive appliance
identification using a novel local power histogramming descriptor with an
improved k-nearest neighbors classifier. Sustainable Cities Soc 2020;1–19.

[233] Rashid H, Singh P. Energy disaggregation for identifying anomalous appliance.
In: Proceedings of the 4th ACM International Conference on Systems for
Energy-Efficient Built Environments. Association for Computing Machinery;
2017.

[234] Himeur Y, Elsalemi A, Bensaali F, Amira A. Appliance identification using a
histogram post-processing of 2D local binary patterns for smart grid applica-
tions. In: Proc. 25th International Conference on Pattern Recognition (ICPR),
2020. p. 1–8.

[235] Amarasinghe K, Kenney K, Manic M. Toward explainable deep neural network
based anomaly detection. In: 2018 11th International Conference on Human
System Interaction (HSI). 2018, p. 311–7.

[236] Kauffmann J, Ruff L, Montavon G, Müller K-R. The clever hans effect in anomaly
detection. 2020, p. 1–17, arXiv:2006.10609.

[237] Antwarg L, Miller RM, Shapira B, Rokach L. Explaining anomalies detected by
autoencoders using SHAP. 2019, p. 1–37, arXiv:1903.02407.

[238] Liznerski P, Ruff L, Vandermeulen RA, Franks BJ, Kloft M, Müller K-R.
Explainable deep one-class classification. 2020, p. 1–24, arXiv:2007.01760.

[239] Sardianos C, Chronis C, Varlamis I, Dimitrakopoulos G, Himeur Y, Alsalemi A,
Bensaali F, Amira A. Real-time personalised energy saving recommenda-
tions. In: The 16th IEEE International Conference on Green Computing and
Communications (GreenCom). 2020, p. 1–6.

[240] Bose SK, Kar B, Roy M, Gopalakrishnan PK, Basu A. ADEPOS: Anomaly
detection based power saving for predictive maintenance using edge computing.
In: ASPDAC ’19, New York, NY, USA: Association for Computing Machinery;
2019, p. 597–602.

[241] Sayed A, Elsalemi A, Himeur Y, Bensaali F, Amira A. Endorsing energy effi-
ciency through accurate appliance-level power monitoring, automation and data
visualization. In: The 4th International Conference on Networking, Information
Systems & Security (NISS 2021). 2021, p. 1–13.

[242] Alsalemi A, Himeur Y, Bensaali F, Amira A, Sardianos C, Varlamis I, Dimi-
trakopoulos G. Achieving domestic energy efficiency using micro-moments and
intelligent recommendations. IEEE Access 2020;8:15047–55.

[243] Aberkane S, Elarbi M. Deep reinforcement learning for real-world anomaly
detection in surveillance videos. In: 2019 6th International Conference on Image
and Signal Processing and their Applications (ISPA). 2019, p. 1–5.

[244] Shabestary SMA, Abdulhai B. Deep learning vs. Discrete reinforcement learning
for adaptive traffic signal control. In: 2018 21st International Conference on
Intelligent Transportation Systems (ITSC). 2018, p. 286–93.

[245] Gregurić M, Vujić M, Alexopoulos C, Miletić M. Application of deep reinforce-
ment learning in traffic signal control: An overview and impact of open traffic
data. Appl Sci 2020;10(11):1–25.

[246] Luong NC, Hoang DT, Gong S, Niyato D, Wang P, Liang Y, Kim DI. Applications
of deep reinforcement learning in communications and networking: A survey.
IEEE Commun Surv Tutor 2019;21(4):3133–74.

[247] Liu T, Tan Z, Xu C, Chen H, Li Z. Study on deep reinforcement learn-
ing techniques for building energy consumption forecasting. Energy Buil
2020;208:109675.
26
[248] Zhao J, Cao N, Wen Z, Song Y, Lin Y, Collins C. #FluxFlow: Visual analysis
of anomalous information spreading on social media. IEEE Trans Vis Comput
Graphics 2014;20(12):1773–82.

[249] Shi Y, Liu Y, Tong H, He J, Yan G, Cao N. Visual analytics of anomalous user
behaviors: A survey. 2019, p. 1–24, arXiv:1905.06720.

[250] Guo S, Jin Z, Chen Q, Gotz D, Zha H, Cao N. Visual anomaly detection in event
sequence data. In: 2019 IEEE International Conference on Big Data (Big Data).
2019, p. 1125–30.

[251] Al-Kababji A, Alsalemi A, Himeur Y, fernandez R, Bensaali F, Amira A,
Fetais N. Interactive visual analytics for residential energy big data. Inform
Vis 2020;1–18.

[252] Al-Kababji A, Alsalemi A, Himeur Y, Bensaali F, Amira A, Fernandez R, Fetais N.
Energy data visualizations on smartphones for triggering behavioral change:
Novel vs. Conventional. In: 2020 2nd Global Power, Energy and Communication
Conference (GPECOM). 2020, p. 312–7.

[253] Batra N, Kukunuri R, Pandey A, Malakar R, Kumar R, Krystalakos O, Zhong M,
Meira P, Parson O. Towards reproducible state-of-the-art energy disaggregation.
In: BuildSys ’19, New York, NY, USA: Association for Computing Machinery;
2019, p. 193–202.

[254] Batra N, Kelly J, Parson O, Dutta H, Knottenbelt W, Rogers A, Singh A, Sri-
vastava M. NILMTK: An open source toolkit for non-intrusive load monitoring.
In: Proceedings of the 5th International Conference on Future Energy Systems.
e-Energy ’14, New York, NY, USA: Association for Computing Machinery; 2014,
p. 265–76.

[255] Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving
and federated machine learning in medical imaging. Nature Mach Intell
2020;2:305–11.

[256] Hao M, Li H, Xu G, Liu S, Yang H. Towards efficient and privacy-preserving
federated deep learning. In: ICC 2019 - 2019 IEEE International Conference on
Communications (ICC). 2019, p. 1–6.

[257] Elavarasan RM, Shafiullah G, Kannadasan R, Mudgal V, Arif M, Jamal T,
Senthilkumar S, SriRajaBalaguru V, Reddy K, Subramaniam U. Covid-19:
impact analysis and recommendations for power sector operation. Appl Energy
2020;115739.

[258] Sardianos C, Chronis C, Varlamis I, Dimitrakopoulos G, Himeur Y, Alsalemi A,
Bensaali F, Amira A. Smart fusion of sensor data and human feedback for
personalised energy-saving recommendations. Int J Intell Syst 2021;1–20.

[259] Nilashi M, Asadi S, Abumalloh RA, Samad S, Ibrahim O. Intelligent recom-
mender systems in the COVID-19 outbreak: The case of wearable healthcare
devices. J Soft Comput Decis Support Syst 2020;7(4):8–12.

[260] Budd J, Miller B, Manning E, Lampos V, Zhuang M, Edelstein M, Rees G,
Emery V, Stevens M, Keegan N, Short M, Pillay D, Manley E, Cox I, Heymann D,
Johnson A, McKendry R. Digital technologies in the public-health response to
COVID-19. Nature Med 2020;26:1–10.

[261] Alsalemi A, Himeur Y, Bensaali F, Amira A, Sardianos C, Chronis C, Varlamis I,
Dimitrakopoulos G. A micro-moment system for domestic energy efficiency
analysis. IEEE Syst J 2020;1–8.

[262] Himeur Y, Alsalemi A, Bensaali F, Amira A, Sardianos C, Dimitrakopoulos,
Varlamis I. A survey of recommender systems for energy efficiency in buildings:
Principles, challenges and prospects. Inf Fusion 2020;1–33.

[263] Zhang Y, Chen X. Explainable recommendation: A survey and new perspectives.
Found Trends® Inform Retr 2020;14(1):1–101.

[264] Sardianos C, Varlamis I, Chronis C, Dimitrakopoulos G, Himeur Y, Alsalemi A,
Bensaali F, Amira A. Data analytics, automations, and micro-moment based
recommendations for energy efficiency. In: 2020 IEEE Sixth International
Conference on Big Data Computing Service and Applications (BigDataService).
IEEE; 2020, p. 96–103.

http://refhub.elsevier.com/S0306-2619(21)00140-9/sb230
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb230
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb230
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb230
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb230
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb230
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb230
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb231
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb231
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb231
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb231
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb231
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb232
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb232
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb232
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb232
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb232
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb233
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb233
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb233
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb233
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb233
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb233
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb233
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb235
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb235
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb235
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb235
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb235
http://arxiv.org/abs/2006.10609
http://arxiv.org/abs/1903.02407
http://arxiv.org/abs/2007.01760
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb239
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb239
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb239
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb239
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb239
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb239
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb239
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb240
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb240
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb240
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb240
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb240
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb240
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb240
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb241
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb241
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb241
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb241
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb241
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb241
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb241
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb242
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb242
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb242
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb242
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb242
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb243
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb243
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb243
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb243
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb243
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb244
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb244
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb244
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb244
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb244
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb245
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb245
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb245
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb245
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb245
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb246
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb246
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb246
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb246
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb246
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb247
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb247
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb247
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb247
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb247
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb248
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb248
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb248
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb248
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb248
http://arxiv.org/abs/1905.06720
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb250
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb250
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb250
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb250
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb250
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb251
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb251
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb251
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb251
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb251
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb252
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb252
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb252
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb252
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb252
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb252
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb252
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb253
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb253
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb253
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb253
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb253
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb253
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb253
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb254
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb254
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb254
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb254
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb254
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb254
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb254
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb254
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb254
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb255
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb255
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb255
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb255
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb255
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb256
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb256
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb256
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb256
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb256
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb257
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb257
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb257
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb257
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb257
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb257
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb257
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb258
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb258
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb258
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb258
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb258
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb259
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb259
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb259
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb259
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb259
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb260
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb260
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb260
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb260
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb260
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb260
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb260
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb261
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb261
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb261
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb261
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb261
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb262
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb262
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb262
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb262
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb262
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb263
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb263
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb263
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb264
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb264
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb264
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb264
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb264
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb264
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb264
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb264
http://refhub.elsevier.com/S0306-2619(21)00140-9/sb264

	Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives
	Introduction
	Overview of anomaly detection methods
	Overview
	Unsupervised detection (U)
	Supervised detection (S)
	Ensemble methods (E)
	Feature extraction (F)
	Hybrid learning (H)
	Other techniques (O)

	Anomaly detection level
	Applications
	Computing platforms
	Example of anomaly detection using AI

	Critical analysis and discussion
	Discussion
	Relevance of AI-based anomaly detection techniques
	Challenges and limitations
	Market drivers and barriers

	Current trends and new perspectives
	Current trends
	Considering other data sources
	Non-intrusive anomaly detection
	Collection of annotated datasets
	Unified metrics to measure the performance

	New perspectives
	Explainable deep anomaly detection
	Deep anomaly detection on the edge
	Deep reinforcement learning
	Multimodal anomaly visualization
	Platforms for reproducible research
	Privacy-preserving machine learning
	Explainable RS and the COVID-19 pandemic


	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


