11,063 research outputs found

    A Hardware Security Solution against Scan-Based Attacks

    Get PDF
    Scan based Design for Test (DfT) schemes have been widely used to achieve high fault coverage for integrated circuits. The scan technique provides full access to the internal nodes of the device-under-test to control them or observe their response to input test vectors. While such comprehensive access is highly desirable for testing, it is not acceptable for secure chips as it is subject to exploitation by various attacks. In this work, new methods are presented to protect the security of critical information against scan-based attacks. In the proposed methods, access to the circuit containing secret information via the scan chain has been severely limited in order to reduce the risk of a security breach. To ensure the testability of the circuit, a built-in self-test which utilizes an LFSR as the test pattern generator (TPG) is proposed. The proposed schemes can be used as a countermeasure against side channel attacks with a low area overhead as compared to the existing solutions in literature

    Power Droop Reduction In Logic BIST By Scan Chain Reordering

    Get PDF
    Significant peak power (PP), thus power droop (PD), during test is a serious concern for modern, complex ICs. In fact, the PD originated during the application of test vectors may produce a delay effect on the circuit under test signal transitions. This event may be erroneously recognized as presence of a delay fault, with consequent generation of an erroneous test fail, thus increasing yield loss. Several solutions have been proposed in the literature to reduce the PD during test of combinational ICs, while fewer approaches exist for sequential ICs. In this paper, we propose a novel approach to reduce peak power/power droop during test of sequential circuits with scan-based Logic BIST. In particular, our approach reduces the switching activity of the scan chains between following capture cycles. This is achieved by an original generation and arrangement of test vectors. The proposed approach presents a very low impact on fault coverage and test time

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    Testing of leakage current failure in ASIC devices exposed to total ionizing dose environment using design for testability techniques

    Get PDF
    Due to the advancements in technology, electronic devices have been relied upon to operate under harsh conditions. Radiation is one of the main causes of different failures of the electronics devices. According to the operation environment, the sources of the radiation can be terrestrial or extra-terrestrial. For terrestrial the devices can be used in nuclear reactors or biomedical devices where the radiation is man-made. While for the extra- terrestrial, the devices can be used in satellites, the international space station or spaceships, where the radiation comes from various sources like the Sun. According to the operation environment the effects of radiation differ. These effects falls under two categories, total ionizing dose effect (TID) and single event effects (SEEs). TID effects can be affect the delay and leakage current of CMOS circuits negatively. The affects can therefore hinder the integrated circuits\u27 operation. Before the circuits are used, particularly in critical radiation heavy applications like military and space, testing under radiation must be done to avoid any failures during operation. The standard in testing electronic devices is generating worst case test vectors (WCTVs) and under radiation using these vectors the circuits are tested. However, the generation of these WCTVs have been very challenging so this approach is rarely used for TIDs effects. Design for testability (DFT) have been widely used in the industry for digital circuits testing applications. DFT is usually used with automatic test patterns generation software to generate test vectors against fault models of manufacturer defects for application specific integrated circuit (ASIC.) However, it was never used to generate test vectors for leakage current testing induced in ASICs exposed to TID radiation environment. The purpose of the thesis is to use DFT to identify WCTVs for leakage current failures in sequential circuits for ASIC devices exposed to TID. A novel methodology was devised to identify these test vectors. The methodology is validated and compared to previous non DFT methods. The methodology is proven to overcome the limitation of previous methodologies

    Timing Measurement Platform for Arbitrary Black-Box Circuits Based on Transition Probability

    No full text

    Testing embedded system through optimal mining technique (OMT) based on multi-input domain

    Get PDF
    Testing embedded systems must be done carefully particularly in the significant regions of the embedded systems. Inputs from an embedded system can happen in multiple order and many relationships can exist among the input sequences. Consideration of the sequences and the relationships among the sequences is one of the most important considerations that must be tested to find the expected behavior of the embedded systems. On the other hand combinatorial approaches help determining fewer test cases that are quite enough to test the embedded systems exhaustively. In this paper, an Optimal Mining Technique that considers multi-input domain which is based on built-in combinatorial approaches has been presented. The method exploits multi-input sequences and the relationships that exist among multi-input vectors. The technique has been used for testing an embedded system that monitors and controls the temperature within the Nuclear reactors

    On-Chip Generation of Functional Tests with Reduced Delay and Power

    Full text link
    This paper describes different methods on-chip test generation method for functional tests. The hardware was based on application of primary input sequences in order to allow the circuit to produce reachable states. Random primary input sequences were modeled to avoid repeated synchronization and thus yields varied sets of reachable states by implementing a decoder in between circuit and LFSR. The on-chip generation of functional tests require simple hardware and achieved high transition fault coverage for testable circuits. Further, power and delay can be reduced by using Bit Swapping LFSR (BS-LFSR). This technique yields less number of transitions for all pattern generation. Bit-swapping (BS) technique is less complex and more reliable to hardware miscommunications

    On-chip Generation of Functional Tests with Reduced Delay and Power

    Get PDF
    This paper describes different methods  on-chip test generation method for functional tests. The hardware was based on application of primary input sequences in order to allow the circuit to produce reachable states. Random primary input sequences were modeled to avoid repeated synchronization and thus yields varied sets of reachable states by implementing a decoder in between circuit and LFSR. The on-chip generation of functional tests require simple hardware and achieved high transition fault coverage for testable circuits. Further, power and delay can be reduced by using Bit Swapping LFSR (BS-LFSR). This technique yields less number of transitions for all pattern generation. Bit-swapping (BS) technique is less complex and more reliable to hardware miscommunications

    Testability and redundancy techniques for improved yield and reliability of CMOS VLSI circuits

    Get PDF
    The research presented in this thesis is concerned with the design of fault-tolerant integrated circuits as a contribution to the design of fault-tolerant systems. The economical manufacture of very large area ICs will necessitate the incorporation of fault-tolerance features which are routinely employed in current high density dynamic random access memories. Furthermore, the growing use of ICs in safety-critical applications and/or hostile environments in addition to the prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability. A fault-tolerant IC must be able to detect and correct all possible faults that may affect its operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance, but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing is selected for this research because it achieves better coverage of physical faults and it requires less extra hardware than on-line error detection techniques. Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence generation procedures for the detection of all faults are derived. The test sequences generated by these procedures produce a trivial output, thereby, greatly simplifying the task of test response analysis. A further advantage of the proposed test generation procedures is that they do not require the enumeration of faults. The implementation of built-in self-test is considered and it is shown that the hardware overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques while achieving a much higher fault coverage through-the use of the proposed test generation procedures. The consideration of the problem of testing the test circuitry led to the conclusion that complete test coverage may be achieved if separate chips cooperate in testing each other's untested parts. An alternative approach towards complete test coverage would be to design the test circuitry so that it is as distributed as possible and so that it is tested as it performs its function. Fault correction relies on the provision of spare units and a means of reconfiguring the circuit so that the faulty units are discarded. This raises the question of what is the optimum size of a unit? A mathematical model, linking yield and reliability is therefore developed to answer such a question and also to study the effects of such parameters as the amount of redundancy, the size of the additional circuitry required for testing and reconfiguration, and the effect of periodic testing on reliability. The stringent requirement on the size of the reconfiguration logic is illustrated by the application of the model to a typical example. Another important result concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing can achieve approximately the same level of reliability as on-line testing, even when the time between tests is many hundreds of hours
    corecore