

Copyright

by

Kangjoo Lee

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211332608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Thesis Committee for Kangjoo Lee

Certifies that this is the approved version of the following Thesis:

Designing An Efficient Test Pattern Generator Using Input Reduction

with Linear Operations

APPROVED BY

SUPERVISING COMMITTEE:

Nur A. Touba, Supervisor

Nan Sun

Designing An Efficient Test Pattern Generator Using Input Reduction

with Linear Operations

by

Kangjoo Lee

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2018

 iv

Acknowledgements

It is indeed a great honor to have Prof. Nur A. Touba as my supervising advisor

throughout my graduate program at the University of Texas at Austin. Without his

consistent support and sincere advice, I doubt that I could accomplish all my works up to

this far. Prof. Touba is more than just academic supervisor to me. He ardently supports

not only to accomplish my Thesis successfully but also to guide me in the right direction

whenever I faced in an obstacle in my life. I would also like to thank Prof. Nan Sun for

being as a reader and reviewing my work.

 v

Abstract

Designing An Efficient Test Pattern Generator Using Input Reduction

with Linear Operations

Kangjoo Lee, MSE

The University of Texas at Austin, 2018

Supervisor: Nur A. Touba

Advances in fabrication technology have resulted in more complicated systems,

being used in ever increasing numbers of applications. The large increase in transistor

counts versus the number of pins on the chip has made VLSI testing much harder than

ever before. Denser integrated circuits chips increase the required test cases enormously

for comprehensive testing of a chip. This results in expensive test cost and long test time.

In this thesis, an improved method for on-chip test pattern generation is proposed. It

generates a complete test set more efficiently by using input reduction with linear

operations. Input reduction for pseudo-exhaustive test pattern generation based on

compatible and inverse-compatible relationships between inputs has been proposed in the

past. This work extends the concept by using linear combinations of inputs to generate

other inputs as a means for further input reduction. Results are presented showing the

improvements that can be obtained.

 vi

Table of Contents

List of Tables ... viii

List of Figures .. ix

Chapter 1: Introdcution ...01

Chapter 2: Background Knowledge on VLSI Testing ..02

Chapter 3: Pseudo-Exhaustive Testing Using a Compatibility Matrix03

3.1 Introdcution for Pseudo-Exhaustive Testing ..03

3.2 Fundamental Concept of Generating Compatibility Matrix05

3.3 Algorithm For Generating Pesudo-Exhaustive Test Set by Input Redcution07

3.4 Experimental Results ..08

3.5 Drawback ..10

Chapter 4: Input Reduction Technique Based on Linear Operations11

4.1 Idea of Using Linear Operations in Pseudo-Exhaustive Testing11

4.2 Using Gauss-Jordan Elimination to Find Basis ..11

4.3 Algorithm For Input Reduction Using Linear Operations13

4.4 Experimental Results ..14

4.5 Drawback ..15

Chapter 5: Combined Method ...16

5.1 Introdcution for Combined Method ..16

5.2 Combined Algorithm ..16

5.3 Experimental Results ..16

 vii

Chapter 6: Conclusion...19

Bibliography ..20

Vita ...21

 viii

List of Tables

Table 1: If two primary inputs are compatible relation...08

Table 2: If two primary inputs are inversely compatible relation08

Table 3: Using compatilibiy matrix for test sets containing average number of

logic 'X' ...09

Table 4: Using compatilbility matrix for test sets containing a lot of logic 'X'10

Table 5: Using Gauss-Jordan Elimination for test sets containg average number

of logic 'X' ...15

Table 6: Using Gauss-Jordan Elimniation for test sets containg a lot of logic 'X'15

Table 7: Using combined method for test sets containg average number of logic

'X' ..17

Table 8: Using combined method for test sets containg a lot of logic 'X'17

 ix

List of Figures

Figure 1: Benchmark circuit for C17..03

Figure 2: Depdence Matrix for benchmark circuit C17 ...04

Figure 3: Test Pattern Generator design with inverted interconnections for C1705

Figure 4: Compatibility Matrix for C17 ...06

Figure 5: Forming Basis using Gauss-Jordan Elimination ...12

Figure 6: Pseudo-exhaustive Test Pattern Generator design using compatibility

matrix ..13

Figure 7: Pseudo-exhaustive Test Pattern Generator design using linear operations ..13

Figure 8: Graphical representation of compression rate with average number of

logic 'X' ...18

Figure 9: Graphical representation of compression rate with a lot of logic 'X'18

 1

Chapter 1: Introduction

Advancement in fabrication technology has allowed more transistors in smaller

area thereby increasing the complexity and density in very-large-scale integration (VLSI)

circuits. The semiconductor industry has boomed for several decades with the world-wide

market increasing rapidly every year. One of the challenges is keeping down test costs as

the number of tests required and the number of transistors per pin has greatly increased.

The time required to bring in all test data from an external tester through the chip pins has

been going up thereby increasing test costs. Better and more efficient ways to test

complex and dense integrated circuits are needed.

In this thesis, we focus on a method to reduce test cost by efficiently designing an

on-chip test pattern generator that avoids the need to bring data from an external tester.

This helps to reduce test time as well as has the capability to perform tests in the field

when no tester is available. A new method for designing an on-chip test pattern generator

using an improved method for input reduction that considers linear combinations of

inputs to generate other inputs is proposed.

The thesis is organized as follows. In Chapter 2, background information on VLSI

testing is presented. In Chapter 3, the conventional method for performing input

reduction based on using a compatibility matrix is described. In Chapter 4, the proposed

methodology for using Gauss-Jordan Elimination to identify linear combinations of

inputs to improve input reduction is presented. Each of those two techniques,

compatibility matrix and linear combinations, has its own distinct strength for a given test

set. However, they also have some drawbacks for certain circumstances as well.

Fortunately, the two design techniques can be used together to complement each other, so

in Chapter 5, our final design implementation using both techniques is presented.

Chapter 6 concludes the thesis.

 2

Chapter 2: Background Knowledge on VLSI Testing

The fundamental procedure of VLSI testing is performed within three main

stages. The first stage is where we need to generate a test sequence or input test stimulus

to apply for a circuit under test (CUT). The second stage obtains the resulting values for

every test sequences applied. Lastly, there is a detector which compares the resulting

values with fault-free cases and determines whether either the CUT passes or fails [1-3].

Therefore, we need to come with better and more efficient methods for the first

two stages to obtain the fundamental goal of VLSI testing, which is producing high test

quality while having low test cost. We also define the first stage as test generation and the

second stage as design for testability (DFT). Test generation refers to a definition of

developing or generating an efficient way to come with a compact and small test stimulus

for a corresponding CUT while improving test quality. DFT is a method of modifying a

circuit design to be easier and simpler in respect to the test scenario so that we can

ultimately reduce total number of test cases and test time for analyzing the circuit design

[4].

 There are numerous different design techniques for test generation and design for

testability. Test generation is mostly computed by an automatic test pattern generation

(ATPG) method for VLSI testing. There are five well-known algorithms for ATPG,

which are the D-Algorithm, PODEM, FAN, TOPS, and Socrates [5]. Design for

testability techniques are mainly categorized into Ad hoc DFT, scan design, or built-in

self-test (BIST) [5]. In this thesis, we are going to focus on developing an efficient built-

in self-test DFT scheme which is based on applying a given test set in a reasonable

amount of time. It is based on designing an efficient test pattern generator by using input

reduction with linear operations.

 3

Chapter 3: Pseudo-Exhaustive Testing Using a Compatibility Matrix

3.1 INTRODUCTION FOR PSEUDO-EXHAUSTIVE TESTING

The goal of designing an efficient test pattern generator (TPG) is to generate a test

set that provides complete fault coverage with a reasonable test length. If we are applying

an exhaustive test set to a circuit under test, this requires 2
n
 test vectors where n is the

total number of primary inputs. An exhaustive test set is guaranteed to provide the

highest percentage of fault coverage for each circuit design. However, test cost and test

time increase dramatically with increasing n because the number of test vectors is

proportional to 2
n
. For this reason, using an exhaustive test set is considered as an

impractical testing methodology for most VLSI testing applications. An alternative is to

use an appropriately generating pseudo-exhaustive test set which can reduce the required

test vectors enormously while still providing same percentage of fault coverage as an

exhaustive test set does.

We will use benchmark circuit C17, which is the simplest one from ISCAS85, to

provide visual explanation and more comprehensive knowledge on pseudo-exhaustive

testing.

Figure 1: Benchmark circuit for C17 [8]

Based on the Figure 1, if we simply apply an exhaustive test set for C17, it will require a

total number of 2
5
 = 32 test vectors because there are 5 primary inputs. We can generate

this with a 5 bit linear-feedback shift register (LFSR) circuit. However, C17 is a partial

dependence circuit (PDC), which means that there are some primary outputs which do

not depend on all primary inputs. Therefore, we can generate a dependence matrix that

 4

defines the direct relationship between primary inputs and primary outputs. The basic

rule for generating dependence matrix is given by

𝐷𝐼,𝐽 = 1 𝑖𝑓𝑓 𝑂𝑢𝑡𝑝𝑢𝑡 𝑖 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑗 [6]

and the corresponding dependence matrix for C17 is shown in Figure 2-a.

Figure 2: Dependence Matrix for benchmark circuit C17 [8]

Based on the dependence matrix, we notice that primary input x1 is only used at y1 and

primary input x5 is only used at y2. Therefore, we can combine those two bits into one test

signal while constructing the LFSR for C17. As a result, we can instead use a 4-bit LFSR

to test C17 by defining the dependence matrix for this circuit and the following result is

shown in Figure 2-b [6].

 There are even more efficient designs to reduce the test set further, as was

proposed by Chen and Gupta in [8]. The idea in their paper was to start with a test set that

detects all faults in a circuit, and then identify compatible or inverse compatible inputs

from that test set. Using their design technique, the number of inputs can be reduced all

the way down to a 2-bit LFSR as illustrated in Fig. 3. The test set is shown in Fig. 3(a)

where each row is a test vector and each column is an input. As can be seen, column 3

and column 5 are identical, so x3 and x5 can be driven by the same test signal. And

columns 2 and 4 are equal to column 1 inverted, so x2 and x4 can be driven by the

complement of the test signal used for x1. The final solution is shown in Figure 3-b.

 5

Figure 3: Test Pattern Generator design with inverted interconnections for C17 [8]

3.2 FUNDAMENTAL CONCEPT OF GENERATING COMPATIBILITY MATRIX

As illustrated in Section 3.1, we would like to obtain a pseudo-exhaustive test

case from an appropriate set of test vectors to test a circuit comprehensively. The goal is

to minimize the total size of the test pattern generator as much as possible which helps to

reduce the test length as well as reduce the area overhead. A detailed explanation of

obtaining a complete test set, which refers to a test set that is guaranteed to have an

optimal size of test set for detecting all single stuck-at fault in a circuit, is explained in

paper [7]. In this paper, we will assume a complete test set is available and use that as our

starting point for designing an efficient test pattern generator.

 The conventional pseudo exhaustive testing with input reduction technique that

was originally proposed in [7] identifies compatible and inverse compatible relationships

among inputs in the test set. This was illustrated in Section 3.1. Based on the test set for

C17, we confirmed that primary inputs x3 and x5 can be merged into one test signal

because they are exactly equivalent each other for all their test vectors from t1 to t4.

Within this following condition, we define x3 and x5 as compatible inputs and only

required to have one test signal in the test pattern generator for testing those two primary

inputs.

 Definition 1 (Compatible Inputs) [8-9] – Two inputs xi and xj that can be shorted

together without introducing any redundant stuck-at fault in the circuit are said to be

compatible.

 6

We also confirmed that primary inputs x1 and x2 can be merged into one test signal since

they are exactly inverted from each other for all test vectors from t1 to t4. Within this

given condition, we define x1 and x2 are inversely compatible inputs each other.

 Definition 2 (Inversely Compatible Inputs) [8-9] – Two inputs that can be

shorted via an inverter without introducing any redundant stuck-at fault in the circuit are

said to be inversely compatible.

If primary inputs are neither of those two given definitions, we call them unrelated to

each other or incompatible to each other.

Definition 3 (Unrelated Inputs) [8-9] – Two inputs that cannot be shorted

without introducing any redundant stuck-at fault in the circuit are said to be unrelated

inputs.

Based on the definitions 1 to 3, we can generate a compatibility matrix for any complete

test set and a detail explanation for deriving a compatibility matrix is explained in

Definition 4. The compatibility matrix for C17 is shown in Figure 4.

Definition 4 (Compatibility Matrix) [8-9] – The compatibility matrix for an n-

input CUT is an n x n matrix. The upper triangular matrix represents the compatibility

relations, while the lower triangular matrix represents the inverse compatibility relations.

The entry (i, j) is 1 (0) if the inputs xi and xj are (inversely) compatible. A “-” in the entry

(i, j) indicates that the input xi and xj are incompatible. The compatibility matrix contains

a total of 2 (
𝑛
2

) = 𝑛2 − 𝑛 entries.

Figure 4: Compatibility Matrix for C17 [8]

 7

3.3 ALGORITHM FOR GENERATING PSEUDO-EXHAUSTIVE TEST SET BY INPUT

REDUCTION

In Section 3.2, we discussed the basic concept of an efficient test pattern

generator design using a compatibility matrix for a given test set. With the given theory,

we understood that by analyzing the relationship of inputs in a test set, we can reduce the

size of a pseudo-exhaustive test pattern generator to a more compact size while

maintaining the same fault coverage. The compatibility matrix concept is an effective

technique especially when there are a lot of logic ‘X’ (i.e., don’t cares) in the test vectors.

In this case, its input reduction rate increases dramatically because logic ‘X’ can be

treated as either logic ‘0’ or logic ‘1’ when defining compatibility relationships. A detail

algorithm for input reduction using a compatibility matrix concept is shown below.

1. Fetch a complete test set and store those data in a 2-D array.

2a. Analyze reference column X and compare with column Y to see if they are

compatible. Increment counter by 1 if their test bits are equal and loop through until it

reaches the last test vector. If any incompatible bits are found along the way, break out of

the loop and reset the counter back to 0.

2b. Analyze reference column X and comparing column Y for inversely

compatible relation. Increment counter by 1 if their test bits are opposite to each other

and loop through until it reaches the last test vectors. In any compatible bits are found

along the way, break out of the loop and reset the counter back to 0.

 3. If we find either compatible or inversely compatible inputs from step 2,

combine those inputs to one test signal. If there is any logic ‘X’ values in a reference

column, recalculate and replace the logic ‘X’ value with the corresponding one that is

explained in Table 1 and 2. Lastly, replace comparing column with ‘3’ to indicate that its

column has already been merged with others.

 8

Table 1: If two primary inputs are compatible relation

Initial Value Final Value

Column X

(Reference Column)

Column Y

(Comparing

Column)

Column X

(Reference Column)

Column Y

(Comparing

Column)

X 0 0 3

X 1 1 3

X X X 3

Table 2: If two Primary Inputs are inversely compatible relation

Initial values Final values

Column X

(Reference Column)

Column Y

(Comparing

Column)

Column X

(Reference Column)

Column Y

(Comparing

Column)

X 0 1 3

X 1 0 3

X X X 3

4. Repeat step 2 and step 3 for column Y (Comparing Column) and loop through

until the last primary input.

5. Find the next column X (Reference Column) that has not been merged yet with

others and repeat step 2 to step 4.

6. Repeat step 2 to step 5 until column X (Reference Column) reaches the total

number of columns in a test set.

3.4 EXPERIMENTAL RESULTS

We performed experiments using the compatibility matrix algorithm for two

different test scenarios. Table 3 shows the results for the scenario where the test set for

each benchmark contains an average number of logic ‘X’ values in the test vectors, and

 9

Table 4 shows the results for the scenario where the test set for each benchmark contains

a lot of logic ‘X’ values in the test vectors. Note that the number of test vectors goes up in

Table 4 when the number of X’s is increased. As can be seen in the results, the input

reduction rate is heavily depended on the number of logic ‘X’ as we have discussed

earlier in Section 3.3. By comparing and analyzing the two different test scenarios, we

are able to perceive a weakness for the compatibility matrix algorithm and understand

more clearly what other conditions could be added to compensate for this issue.

As we have discussed in Section 3.3, a test set that contains a lot of logic ‘X’

values in the test vectors results in higher input reduction compared to the test set when it

contains a smaller number of logic ‘X’ values in the test vectors. This difference is indeed

seen in the results in Tables 3 and 4. If no input reduction is used, then there is one test

bit for each primary input in the circuit, thus the number of initial test bits is shown in the

fourth column in Tables 3 and 4. And the final number of required after applying input

reduction using the compatibility matrix approach is shown in the fifth column. These are

compared in the sixth column. As can be seen from the Table 3 and 4 results, the size of

the test pattern generator can be reduced by 34% to 93% using this method.

Table 3: Using compatibility matrix for test sets containing average number of logic ‘X’

Circuit Number of

Primary

Inputs

Number of

Test Vectors

Initial

Width

Final Width Width

Reduction

(%)

s5378.x 214 111 214 136 36.45

s9234.x 247 159 247 162 34.41

s13207.x 700 236 700 212 69.71

s15850.x 611 126 611 275 54.99

s38417.x 1664 99 1664 538 67.67

s38584.x 1464 136 1464 702 52.05

 10

Table 4: Using compatibility matrix for test sets containing a lot of logic ‘X’

Circuit Number of

Primary

Inputs

Number of

Test Vectors

Initial

Width

Final Width Width

Reduction

(%)

s5378.32s 214 196 214 44 79.44

s9234.64s 247 205 247 97 60.73

s13207.44s 700 266 700 52 92.57

s15850.46s 611 269 611 64 89.53

s38417.100s 1664 376 1664 113 93.21

s38584.100s 1464 296 1464 146 90.03

3.5 DRAWBACK

The major drawback of using the conventional compatibility matrix algorithm is

that this algorithm is heavily dependent on the number of logic ‘X’ in the test vectors. If a

test set only contains logic ‘0’ or logic ‘1’, it is unlikely to identify many compatible and

inversely compatible relations among the primary inputs. As mentioned previously, the

compatible matrix approach is more effective as the test vectors contain a greater number

of logic ‘X’ because logic ‘X’ value gives us the extra option to choose either logic ‘0’ or

logic ‘1’ when evaluating compatibility relationships. The probability of merging primary

inputs goes up with more logic ‘X’ values in the test set. In the next chapter, we are going

to propose a different way of performing input reduction that is not as dependent on the

number of logic ‘X’ values and thus can compensate for the weakness part of

compatibility matrix algorithm.

 11

Chapter 4: Input Reduction Technique Based on Linear Operations

4.1 IDEA OF USING LINEAR OPERATIONS IN PSEUDO-EXHAUSTIVE TESTING

As we mentioned in Chapter 3, the conventional on-chip test pattern generator

design technique using input reduction based on a compatibility matrix has one critical

drawback which is that its performance is heavily depended on the number of logic ‘X’

values in the test vectors. A new technique based on linear operations is proposed here

which can solve this problem. By using linear operations, we are able to perform input

reduction while handling the major drawback of the previous algorithm.

The key idea in the proposed method is to systematically identify inputs which

can be driven by linear combinations of the other inputs. This can be done by treating the

test set as a set of Boolean vectors that span a linear subspace, and then finding a basis

for that linear subspace. Test signals are only needed for each primary input in the basis

while all other primary inputs can be generated as linear combinations of the test signals.

This corresponds to a pseudo-exhaustive test pattern generator whose width is equal to

the number of primary inputs in the basis, and then adding XOR gates to combine these

test signals together to drive the remaining primary inputs.

One complication that arises is handling ‘X’ logic values in the test set. Each

value in the test set is required to be either logic ‘0’ or logic ‘1’ to form a basis, and this

is a problem for our case since we should allow test vectors to contain logic ‘0’, ‘1’, and

‘X’. There is a way that we can address this issue by following a certain rule which we

will discuss further in Section 4.3.

4.2 USING GAUSS-JORDAN ELIMINATION TO FIND BASIS

To identifying linear combinations of inputs that can be used to drive another

input, the test set matrix can be considered as a linear subspace. For example, in Figure 5,

the transpose of the test matrix is shown where each row corresponds to a primary input,

and each column corresponds to a test vector. If we treat this as a linear subspace, then

Gauss-Jordan Elimination can be used to find a basis for the linear subspace. Gauss-

 12

Jordan Elimination creates one pivot in each column. Every vector in the subspace can be

generated by taking a linear combination of the basis vectors. In Figure 5, the matrix on

the right shows a set of 4 pivot vectors which were obtained by performing Gauss-Jordan

Elimination. As can be see, the pivot vectors depend only on I1, I2, I3, and I6. This means

that I4 and I5 can be expressed as linear combinations of a subset of those 4 inputs. In

particular, I4 is the same as the first pivot vector which is equal to I1. I5 is equal to the

XOR of the first and third pivot vector which is equal to (I1 I3). Using a compatibility

matrix would only have identified I1 and I4 as being directly compatible, so would

achieve an input reduction of 6 down to 5. Whereas the proposed method would achieve

an input reduction of 6 down to 4 since it would need only 4 test signals for I1, I2, I3, and

I6, and would generate I4 and I5 from those. The pseudo-exhaustive test pattern generators

for using the compatibility matrix and using the proposed method are shown in Fig. 6-7.

Figure 5: Forming Basis using Gauss-Jordan Elimination

 13

Figure 6: Pseudo-exhaustive Test Pattern Generator design using compatibility matrix

Figure 7: Pseudo-exhaustive Test Pattern Generator design using linear operations

4.3 ALGORITHM FOR INPUT REDUCTION USING LINEAR OPERATIONS

Now, we are going to present an algorithm for implementing input reduction

using linear operations. The detailed algorithm for constructing the on-chip test pattern

generator is shown below.

1. Fetch a test set and store those data in a 2-D array.

2. Transpose the test set.

The column of given each test set represents information of primary inputs and row of

given test set represents information of test vectors. Because our goal is to reduce the

total number of primary inputs in each test set using Gauss-Jordan Elimination method,

we need to transpose the test set.

 14

3. Find the first logic ‘1’ in a column and copy the entire row into new 2-D array.

Perform XOR operation for the entire row with the pivot row if other rows in the column

also have logic ‘1’. If the other rows have logic ‘X’, then simply set to logic ‘0’.

4. If there is no logic ‘1’ that is being used as pivot for a column, set the first logic

‘X’ that we find to logic ‘1’ so that it can be used as a pivot for the corresponding

column. Store the entire row information into next position in the new 2-D array and

perform XOR operation with each row that was already stored in the new 2-D array to

convert as an identity matrix. Set rest of logic ‘X’ to logic ‘0’ if there is more logic ‘X’ in

the other rows.

5. Perform step 3 and step 4 continuously until we reach the last primary input

column.

Applying linear transformation theory can provide powerful input reduction for fully

specified data. However, it cannot handle logic ‘X’ values since linear transformation

does not allow us to have any unknown values. Given that we can use logic ‘X’ as either

logic ‘0’ or logic ‘1’, we can appropriate set logic ‘X’ values to specified values as

explained in the above algorithm.

4.4 EXPERIMENTAL RESULTS

We tested the proposed approach for input reduction with linear operations on two

different scenarios similar to what was done in Section 3.4. Table 3 shows the results for

the scenario where the test set for each benchmark contains an average number of logic

‘X’ values in the test vectors, and Table 4 shows the results for the scenario where the

test set for each benchmark contains a lot of logic ‘X’ values in the test vectors.

As we mentioned previously, the proposed approach can somewhat compensate

for the drawback of using the compatibility matrix method and its effect is clearly shown

in Table 5 and Table 6. We have seen that using a compatibility matrix was not showing

great performance for input reduction when a test set contains a small number of logic

‘X’ values. However, the proposed approach is effective on these test sets.

 15

Table 5: Using Gauss-Jordan Elimination for test sets containing average number of logic

‘X’

Circuit Number of

Primary

Inputs

Number of

Test Vectors

Initial

Width

Final Width Width

Reduction

(%)

s5378.x 214 111 214 111 48.13

s9234.x 247 159 247 159 35.63

s13207.x 700 236 700 236 66.29

s15850.x 611 126 611 126 79.38

s38417.x 1664 99 1664 99 94.05

s38584.x 1464 136 1464 136 90.71

Table 6: Using Gauss-Jordan Elimination for test sets containing a lot of logic ‘X’

Circuit Number of

Primary

Inputs

Number of

Test Vectors

Initial

Width

Final Width Width

Reduction

(%)

s5378.32s 214 196 214 173 19.16

s9234.64s 247 205 247 205 17.00

s13207.44s 700 266 700 257 63.29

s15850.46s 611 269 611 269 55.97

s38417.100s 1664 376 1664 376 77.40

s38584.100s 1464 296 1464 296 79.78

4.5 DRAWBACK

The proposed method of input reduction with linear operations is relatively more

effective when the test set contains fewer logic ‘X’ values. However, it can be less

effective when a test set has a lot of logic ‘X’ values. To address this, it can be combined

with the conventional approach of using a compatibility matrix as will be discussed in the

next chapter.

 16

Chapter 5: Combined Method

5.1 INTRODUCTION FOR COMBINED METHOD

In Chapter 3, we discussed that we can achieve input reduction for a test set using

the conventional compatibility matrix algorithm. It provides better input reduction for test

sets containing lots of logic ‘X’ values, but is less effective for test sets containing few

logic ‘X’ values. In Chapter 4, we proposed a methodology for performing input

reduction using linear combinations. The method can also be used to compress a test set.

The proposed method is most effective when the test set has a small number of logic ‘X’

values. So we ultimately decided to combine both algorithms together to get the best

overall input reduction regardless of the characteristics of the test set.

5.2 COMBINED ALGORITHM

We can first use the compatibility matrix approach (as described in Section 3.3) to

achieve as much input reduction as possible, and then use the proposed algorithm based

on linear operations (as described in Section 4.3) to try to achieve further input reduction.

5.3 EXPERIMENTAL RESULTS

Table 7 and Table 8 show the results for the combined method. Clearly, it

achieves better or equal input reduction than using only one of two methods individually.

Table 7 shows that the combined method is better in all cases. In Table 8, in comes cases,

the final result ended up the same as using the compatibility matrix by itself because for

those testbenches there were so many logic ‘X’ values that the compatibility matrix

method was able to maximally optimize the input reduction.

 17

Table 7: Using combined method for test sets containing average number of logic ‘X’

Circuit Number of

Primary

Inputs

Number of

Test Vectors

Initial

Width

Final Width Width

Reduction

(%)

s5378.x 214 111 214 111 48.13

s9234.x 247 159 247 159 35.63

s13207.x 700 236 700 87 87.57

s15850.x 611 126 611 93 84.78

s38417.x 1664 99 1664 99 94.05

s38584.x 1464 136 1464 136 90.71

Table 8: Using combined method for test sets containing a lot of logic ‘X’

Circuit Number of

Primary

Inputs

Number of

Test Vectors

Initial

Width

Final Width Width

Reduction

(%)

s5378.32s 214 196 214 44 79.44

s9234.64s 247 205 247 97 60.73

s13207.44s 700 266 700 52 92.57

s15850.46s 611 269 611 64 89.53

s38417.100s 1664 376 1664 113 93.21

s38584.100s 1464 296 1464 146 90.03

We have included Figure 6 and Figure 7 to provide more direct comparison results for

each method. The Y-axis represents the percentage of input reduction that was achieved

from each initial test set, while the X-axis has one entry for each different test set. Lower

number of percentage in Y-axis indicates that it has less compression rate and higher

number of percentage indicates that it has higher compression rate for each test set.

 18

Figure 6: Graphical Representation of Compression Rate with average number of logic

‘X’

Figure 7: Graphical Representation of Compression Rate with a lot of logic ‘X’

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Compatibility Matrix

Gauss-Jordan
Elimination

Combined Method

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Compatibility matrix

Gauss-Jordan
Elimination

combined

 19

Chapter 6: Conclusion

Applying an exhaustive test set for testing a circuit is generally not a feasible

approach due to having exponential test time with respect to the number of primary

inputs. However, pseudo-exhaustive testing can achieve the same goal of detecting all

combinational faults with a much shorter test. Input reduction has been proposed in the

past as a way to achieve a practical test length for pseudo-exhaustive testing. This thesis

proposed a new methodology for input reduction based on using linear combinations. It

was shown that this approach is able to further increase the amount of input reduction

that can be achieved compared with the conventional approach of using a compatibility

matrix. Furthermore, it was shown that the proposed approach is effective even when the

numbers of ‘X’ values in the test set is small. It was also shown that the proposed method

can be used together with a compatibility matrix to achieve good results regardless of the

characteristics of the test set. Pseudo-exhaustive testing with input reduction offers a

number of advantages in terms of thorough testing, no need for an external tester, and

avoiding the test time bottleneck of needing to bring data through the chip pins.

 20

Bibliography

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital Systems Testing and

Testable Design,” Piscataway, New Jersey: IEEE Press, Revised Printing, 1994.

[2] M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for Digital,

Memory & Mixed-Signal VLSI Circuits,” New York: Springer Science, 2000.

[3] L. -T. Wang, C. -W. Wu, and X Wen, Eds., “VLSI Test Principles and Architectures:

Design for Testability’, San Francisco: Morgan Kaufmann, 2006.

[4] X. Wen, “VLSI Testing and Test Power,” 2011 International Green Computing

Conference and Workshops, Orlando, FL, 2011, pp. 1-6.

[5] T. Kirkland and M. R. Mercer, “Algorithms for automatic test-pattern generation,” in

IEEE Design &Test of Computers, vol. 5, no.3, pp. 43-55, June 1988.

[6] E. J. McCluskey, “Verfication Testing – A Pseudoexhaustive Test Technique,” IEEE

Transactions on Computers, C-33(6): 541-546, June 1984.

[7] S. S. Yau and Yu-Shan Tang, “An Efficient Algorithm for Generating Complete Test

Sets for Combinational Logic Circuits,” in IEEE Transactions on Computers, vol.

C-20, no. 11, pp. 1245-1251, Nov. 1971.

[8] Chih-Ang Chen and S. K. Gupta, “A methodology to design efficient BIST test

pattern generators,” Proceedings of 1995 IEEE International Test Conference

(ITC), Washington, DC, 1995, pp. 814-823.

[9] Chih-Ang Chen and S. K. Gupta, “Efficient BIST TPG design and test set compaction

via input reduction,” in IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 17, no. 8, pp. 692-705, Aug 1998.

 21

Vita

Kangjoo was born in South Korea. His technical study area is integrated circuits

and systems and earned his Bachelor’s degree in Electrical Engineering at the University

Texas at Austin at May 2016. He is currently pursing Master of Science in Electrical

Engineering with Thesis program at the University of Texas at Austin.

Permanent address: 2808 Wisdom Creek Dr. Flower Mound, Texas, 75022

This thesis was typed by Kangjoo Lee.

