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Abstract 

 

Designing An Efficient Test Pattern Generator Using Input Reduction 

with Linear Operations 

 

Kangjoo Lee, MSE 

The University of Texas at Austin, 2018 

 

Supervisor:  Nur A. Touba 

 

Advances in fabrication technology have resulted in more complicated systems, 

being used in ever increasing numbers of applications. The large increase in transistor 

counts versus the number of pins on the chip has made VLSI testing much harder than 

ever before. Denser integrated circuits chips increase the required test cases enormously 

for comprehensive testing of a chip. This results in expensive test cost and long test time. 

In this thesis, an improved method for on-chip test pattern generation is proposed. It 

generates a complete test set more efficiently by using input reduction with linear 

operations. Input reduction for pseudo-exhaustive test pattern generation based on 

compatible and inverse-compatible relationships between inputs has been proposed in the 

past. This work extends the concept by using linear combinations of inputs to generate 

other inputs as a means for further input reduction. Results are presented showing the 

improvements that can be obtained. 
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Chapter 1:  Introduction 

Advancement in fabrication technology has allowed more transistors in smaller 

area thereby increasing the complexity and density in very-large-scale integration (VLSI) 

circuits. The semiconductor industry has boomed for several decades with the world-wide 

market increasing rapidly every year. One of the challenges is keeping down test costs as 

the number of tests required and the number of transistors per pin has greatly increased.  

The time required to bring in all test data from an external tester through the chip pins has 

been going up thereby increasing test costs. Better and more efficient ways to test 

complex and dense integrated circuits are needed.  

In this thesis, we focus on a method to reduce test cost by efficiently designing an 

on-chip test pattern generator that avoids the need to bring data from an external tester.  

This helps to reduce test time as well as has the capability to perform tests in the field 

when no tester is available. A new method for designing an on-chip test pattern generator 

using an improved method for input reduction that considers linear combinations of 

inputs to generate other inputs is proposed. 

The thesis is organized as follows. In Chapter 2, background information on VLSI 

testing is presented. In Chapter 3, the conventional method for performing input 

reduction based on using a compatibility matrix is described. In Chapter 4, the proposed 

methodology for using Gauss-Jordan Elimination to identify linear combinations of 

inputs to improve input reduction is presented. Each of those two techniques, 

compatibility matrix and linear combinations, has its own distinct strength for a given test 

set. However, they also have some drawbacks for certain circumstances as well. 

Fortunately, the two design techniques can be used together to complement each other, so 

in Chapter 5, our final design implementation using both techniques is presented.  

Chapter 6 concludes the thesis. 
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Chapter 2:  Background Knowledge on VLSI Testing 

The fundamental procedure of VLSI testing is performed within three main 

stages. The first stage is where we need to generate a test sequence or input test stimulus 

to apply for a circuit under test (CUT). The second stage obtains the resulting values for 

every test sequences applied. Lastly, there is a detector which compares the resulting 

values with fault-free cases and determines whether either the CUT passes or fails [1-3]. 

Therefore, we need to come with better and more efficient methods for the first 

two stages to obtain the fundamental goal of VLSI testing, which is producing high test 

quality while having low test cost. We also define the first stage as test generation and the 

second stage as design for testability (DFT). Test generation refers to a definition of 

developing or generating an efficient way to come with a compact and small test stimulus 

for a corresponding CUT while improving test quality. DFT is a method of modifying a 

circuit design to be easier and simpler in respect to the test scenario so that we can 

ultimately reduce total number of test cases and test time for analyzing the circuit design 

[4].  

 There are numerous different design techniques for test generation and design for 

testability. Test generation is mostly computed by an automatic test pattern generation 

(ATPG) method for VLSI testing. There are five well-known algorithms for ATPG, 

which are the D-Algorithm, PODEM, FAN, TOPS, and Socrates [5]. Design for 

testability techniques are mainly categorized into Ad hoc DFT, scan design, or built-in 

self-test (BIST) [5]. In this thesis, we are going to focus on developing an efficient built-

in self-test DFT scheme which is based on applying a given test set in a reasonable 

amount of time. It is based on designing an efficient test pattern generator by using input 

reduction with linear operations. 
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Chapter 3:  Pseudo-Exhaustive Testing Using a Compatibility Matrix 

3.1 INTRODUCTION FOR PSEUDO-EXHAUSTIVE TESTING 

The goal of designing an efficient test pattern generator (TPG) is to generate a test 

set that provides complete fault coverage with a reasonable test length. If we are applying 

an exhaustive test set to a circuit under test, this requires 2
n
 test vectors where n is the 

total number of primary inputs. An exhaustive test set is guaranteed to provide the 

highest percentage of fault coverage for each circuit design. However, test cost and test 

time increase dramatically with increasing n because the number of test vectors is 

proportional to 2
n
. For this reason, using an exhaustive test set is considered as an 

impractical testing methodology for most VLSI testing applications. An alternative is to 

use an appropriately generating pseudo-exhaustive test set which can reduce the required 

test vectors enormously while still providing same percentage of fault coverage as an 

exhaustive test set does.  

We will use benchmark circuit C17, which is the simplest one from ISCAS85, to 

provide visual explanation and more comprehensive knowledge on pseudo-exhaustive 

testing. 

 

Figure 1: Benchmark circuit for C17 [8] 

Based on the Figure 1, if we simply apply an exhaustive test set for C17, it will require a 

total number of 2
5
 = 32 test vectors because there are 5 primary inputs. We can generate 

this with a 5 bit linear-feedback shift register (LFSR) circuit. However, C17 is a partial 

dependence circuit (PDC), which means that there are some primary outputs which do 

not depend on all primary inputs. Therefore, we can generate a dependence matrix that 
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defines the direct relationship between primary inputs and primary outputs. The basic 

rule for generating dependence matrix is given by 

𝐷𝐼,𝐽 = 1 𝑖𝑓𝑓 𝑂𝑢𝑡𝑝𝑢𝑡 𝑖 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑗 [6] 

and the corresponding dependence matrix for C17 is shown in Figure 2-a.  

 

Figure 2: Dependence Matrix for benchmark circuit C17 [8] 

Based on the dependence matrix, we notice that primary input x1 is only used at y1 and 

primary input x5 is only used at y2. Therefore, we can combine those two bits into one test 

signal while constructing the LFSR for C17. As a result, we can instead use a 4-bit LFSR 

to test C17 by defining the dependence matrix for this circuit and the following result is 

shown in Figure 2-b [6]. 

 There are even more efficient designs to reduce the test set further, as was 

proposed by Chen and Gupta in [8]. The idea in their paper was to start with a test set that 

detects all faults in a circuit, and then identify compatible or inverse compatible inputs 

from that test set. Using their design technique, the number of inputs can be reduced all 

the way down to a 2-bit LFSR as illustrated in Fig. 3. The test set is shown in Fig. 3(a) 

where each row is a test vector and each column is an input. As can be seen, column 3 

and column 5 are identical, so x3 and x5 can be driven by the same test signal. And 

columns 2 and 4 are equal to column 1 inverted, so x2 and x4 can be driven by the 

complement of the test signal used for x1. The final solution is shown in Figure 3-b. 
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Figure 3: Test Pattern Generator design with inverted interconnections for C17 [8] 

3.2 FUNDAMENTAL CONCEPT OF GENERATING COMPATIBILITY MATRIX 

As illustrated in Section 3.1, we would like to obtain a pseudo-exhaustive test 

case from an appropriate set of test vectors to test a circuit comprehensively. The goal is 

to minimize the total size of the test pattern generator as much as possible which helps to 

reduce the test length as well as reduce the area overhead. A detailed explanation of 

obtaining a complete test set, which refers to a test set that is guaranteed to have an 

optimal size of test set for detecting all single stuck-at fault in a circuit, is explained in 

paper [7]. In this paper, we will assume a complete test set is available and use that as our 

starting point for designing an efficient test pattern generator.  

 The conventional pseudo exhaustive testing with input reduction technique that 

was originally proposed in [7] identifies compatible and inverse compatible relationships 

among inputs in the test set. This was illustrated in Section 3.1. Based on the test set for 

C17, we confirmed that primary inputs x3 and x5 can be merged into one test signal 

because they are exactly equivalent each other for all their test vectors from t1 to t4. 

Within this following condition, we define x3 and x5 as compatible inputs and only 

required to have one test signal in the test pattern generator for testing those two primary 

inputs.  

 Definition 1 (Compatible Inputs) [8-9] – Two inputs xi and xj that can be shorted 

together without introducing any redundant stuck-at fault in the circuit are said to be 

compatible. 
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We also confirmed that primary inputs x1 and x2 can be merged into one test signal since 

they are exactly inverted from each other for all test vectors from t1 to t4. Within this 

given condition, we define x1 and x2 are inversely compatible inputs each other.  

 Definition 2 (Inversely Compatible Inputs) [8-9] – Two inputs that can be 

shorted via an inverter without introducing any redundant stuck-at fault in the circuit are 

said to be inversely compatible. 

If primary inputs are neither of those two given definitions, we call them unrelated to 

each other or incompatible to each other. 

Definition 3 (Unrelated Inputs) [8-9] – Two inputs that cannot be shorted 

without introducing any redundant stuck-at fault in the circuit are said to be unrelated 

inputs. 

Based on the definitions 1 to 3, we can generate a compatibility matrix for any complete 

test set and a detail explanation for deriving a compatibility matrix is explained in 

Definition 4. The compatibility matrix for C17 is shown in Figure 4. 

Definition 4 (Compatibility Matrix) [8-9] – The compatibility matrix for an n-

input CUT is an n x n matrix. The upper triangular matrix represents the compatibility 

relations, while the lower triangular matrix represents the inverse compatibility relations. 

The entry (i, j) is 1 (0) if the inputs xi and xj are (inversely) compatible. A “-” in the entry 

(i, j) indicates that the input xi and xj are incompatible. The compatibility matrix contains 

a total of 2 (
𝑛
2

) =  𝑛2 − 𝑛 entries. 

 

Figure 4: Compatibility Matrix for C17 [8] 
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3.3 ALGORITHM FOR GENERATING PSEUDO-EXHAUSTIVE TEST SET BY INPUT 

REDUCTION  

In Section 3.2, we discussed the basic concept of an efficient test pattern 

generator design using a compatibility matrix for a given test set. With the given theory, 

we understood that by analyzing the relationship of inputs in a test set, we can reduce the 

size of a pseudo-exhaustive test pattern generator to a more compact size while 

maintaining the same fault coverage. The compatibility matrix concept is an effective 

technique especially when there are a lot of logic ‘X’ (i.e., don’t cares) in the test vectors.  

In this case, its input reduction rate increases dramatically because logic ‘X’ can be 

treated as either logic ‘0’ or logic ‘1’ when defining compatibility relationships. A detail 

algorithm for input reduction using a compatibility matrix concept is shown below. 

1. Fetch a complete test set and store those data in a 2-D array. 

2a. Analyze reference column X and compare with column Y to see if they are 

compatible. Increment counter by 1 if their test bits are equal and loop through until it 

reaches the last test vector. If any incompatible bits are found along the way, break out of 

the loop and reset the counter back to 0. 

2b. Analyze reference column X and comparing column Y for inversely 

compatible relation. Increment counter by 1 if their test bits are opposite to each other 

and loop through until it reaches the last test vectors. In any compatible bits are found 

along the way, break out of the loop and reset the counter back to 0. 

 3. If we find either compatible or inversely compatible inputs from step 2, 

combine those inputs to one test signal. If there is any logic ‘X’ values in a reference 

column, recalculate and replace the logic ‘X’ value with the corresponding one that is 

explained in Table 1 and 2. Lastly, replace comparing column with ‘3’ to indicate that its 

column has already been merged with others. 
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Table 1: If two primary inputs are compatible relation 

Initial Value Final Value 

Column X  

(Reference Column) 

Column Y 

(Comparing 

Column) 

Column X  

(Reference Column) 

Column Y 

(Comparing 

Column) 

X 0 0 3 

X 1 1 3 

X X X 3 

 

Table 2: If two Primary Inputs are inversely compatible relation 

Initial values Final values 

Column X  

(Reference Column) 

Column Y 

(Comparing 

Column) 

Column X  

(Reference Column) 

Column Y 

(Comparing 

Column) 

X 0 1 3 

X 1 0 3 

X X X 3 

 

4. Repeat step 2 and step 3 for column Y (Comparing Column) and loop through 

until the last primary input. 

5. Find the next column X (Reference Column) that has not been merged yet with 

others and repeat step 2 to step 4. 

6. Repeat step 2 to step 5 until column X (Reference Column) reaches the total 

number of columns in a test set. 

3.4 EXPERIMENTAL RESULTS 

We performed experiments using the compatibility matrix algorithm for two 

different test scenarios. Table 3 shows the results for the scenario where the test set for 

each benchmark contains an average number of logic ‘X’ values in the test vectors, and 
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Table 4 shows the results for the scenario where the test set for each benchmark contains 

a lot of logic ‘X’ values in the test vectors. Note that the number of test vectors goes up in 

Table 4 when the number of X’s is increased. As can be seen in the results, the input 

reduction rate is heavily depended on the number of logic ‘X’ as we have discussed 

earlier in Section 3.3. By comparing and analyzing the two different test scenarios, we 

are able to perceive a weakness for the compatibility matrix algorithm and understand 

more clearly what other conditions could be added to compensate for this issue. 

As we have discussed in Section 3.3, a test set that contains a lot of logic ‘X’ 

values in the test vectors results in higher input reduction compared to the test set when it 

contains a smaller number of logic ‘X’ values in the test vectors. This difference is indeed 

seen in the results in Tables 3 and 4. If no input reduction is used, then there is one test 

bit for each primary input in the circuit, thus the number of initial test bits is shown in the 

fourth column in Tables 3 and 4. And the final number of required after applying input 

reduction using the compatibility matrix approach is shown in the fifth column. These are 

compared in the sixth column. As can be seen from the Table 3 and 4 results, the size of 

the test pattern generator can be reduced by 34% to 93% using this method. 

  

Table 3: Using compatibility matrix for test sets containing average number of logic ‘X’  

Circuit Number of 

Primary 

Inputs 

Number of 

Test Vectors 

Initial 

Width 

Final Width Width 

Reduction 

(%) 

s5378.x 214 111 214 136 36.45 

s9234.x 247 159 247 162 34.41 

s13207.x 700 236 700 212 69.71 

s15850.x 611 126 611 275 54.99 

s38417.x 1664 99 1664 538 67.67 

s38584.x 1464 136 1464 702 52.05 
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Table 4: Using compatibility matrix for test sets containing a lot of logic ‘X’  

Circuit Number of 

Primary 

Inputs 

Number of 

Test Vectors 

Initial 

Width 

Final Width Width 

Reduction 

(%) 

s5378.32s 214 196 214 44 79.44 

s9234.64s 247 205 247 97 60.73 

s13207.44s 700 266 700 52 92.57 

s15850.46s 611 269 611 64 89.53 

s38417.100s 1664 376 1664 113 93.21 

s38584.100s 1464 296 1464 146 90.03 

3.5 DRAWBACK 

The major drawback of using the conventional compatibility matrix algorithm is 

that this algorithm is heavily dependent on the number of logic ‘X’ in the test vectors. If a 

test set only contains logic ‘0’ or logic ‘1’, it is unlikely to identify many compatible and 

inversely compatible relations among the primary inputs. As mentioned previously, the 

compatible matrix approach is more effective as the test vectors contain a greater number 

of logic ‘X’ because logic ‘X’ value gives us the extra option to choose either logic ‘0’ or 

logic ‘1’ when evaluating compatibility relationships. The probability of merging primary 

inputs goes up with more logic ‘X’ values in the test set. In the next chapter, we are going 

to propose a different way of performing input reduction that is not as dependent on the 

number of logic ‘X’ values and thus can compensate for the weakness part of 

compatibility matrix algorithm.   
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Chapter 4:  Input Reduction Technique Based on Linear Operations 

4.1 IDEA OF USING LINEAR OPERATIONS IN PSEUDO-EXHAUSTIVE TESTING 

As we mentioned in Chapter 3, the conventional on-chip test pattern generator 

design technique using input reduction based on a compatibility matrix has one critical 

drawback which is that its performance is heavily depended on the number of logic ‘X’ 

values in the test vectors. A new technique based on linear operations is proposed here 

which can solve this problem. By using linear operations, we are able to perform input 

reduction while handling the major drawback of the previous algorithm.  

The key idea in the proposed method is to systematically identify inputs which 

can be driven by linear combinations of the other inputs. This can be done by treating the 

test set as a set of Boolean vectors that span a linear subspace, and then finding a basis 

for that linear subspace. Test signals are only needed for each primary input in the basis 

while all other primary inputs can be generated as linear combinations of the test signals.  

This corresponds to a pseudo-exhaustive test pattern generator whose width is equal to 

the number of primary inputs in the basis, and then adding XOR gates to combine these 

test signals together to drive the remaining primary inputs. 

One complication that arises is handling ‘X’ logic values in the test set. Each 

value in the test set is required to be either logic ‘0’ or logic ‘1’ to form a basis, and this 

is a problem for our case since we should allow test vectors to contain logic ‘0’, ‘1’, and 

‘X’. There is a way that we can address this issue by following a certain rule which we 

will discuss further in Section 4.3. 

4.2 USING GAUSS-JORDAN ELIMINATION TO FIND BASIS 

To identifying linear combinations of inputs that can be used to drive another 

input, the test set matrix can be considered as a linear subspace. For example, in Figure 5, 

the transpose of the test matrix is shown where each row corresponds to a primary input, 

and each column corresponds to a test vector.  If we treat this as a linear subspace, then 

Gauss-Jordan Elimination can be used to find a basis for the linear subspace. Gauss-
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Jordan Elimination creates one pivot in each column. Every vector in the subspace can be 

generated by taking a linear combination of the basis vectors. In Figure 5, the matrix on 

the right shows a set of 4 pivot vectors which were obtained by performing Gauss-Jordan 

Elimination. As can be see, the pivot vectors depend only on I1, I2, I3, and I6. This means 

that I4 and I5 can be expressed as linear combinations of a subset of those 4 inputs. In 

particular, I4 is the same as the first pivot vector which is equal to I1. I5 is equal to the 

XOR of the first and third pivot vector which is equal to (I1  I3). Using a compatibility 

matrix would only have identified I1 and I4 as being directly compatible, so would 

achieve an input reduction of 6 down to 5. Whereas the proposed method would achieve 

an input reduction of 6 down to 4 since it would need only 4 test signals for I1, I2, I3, and 

I6, and would generate I4 and I5 from those. The pseudo-exhaustive test pattern generators 

for using the compatibility matrix and using the proposed method are shown in Fig. 6-7. 

 

 

Figure 5: Forming Basis using Gauss-Jordan Elimination 
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Figure 6: Pseudo-exhaustive Test Pattern Generator design using compatibility matrix 

 

Figure 7: Pseudo-exhaustive Test Pattern Generator design using linear operations  

4.3 ALGORITHM FOR INPUT REDUCTION USING LINEAR OPERATIONS 

Now, we are going to present an algorithm for implementing input reduction 

using linear operations. The detailed algorithm for constructing the on-chip test pattern 

generator is shown below.  

1. Fetch a test set and store those data in a 2-D array. 

2. Transpose the test set. 

The column of given each test set represents information of primary inputs and row of 

given test set represents information of test vectors. Because our goal is to reduce the 

total number of primary inputs in each test set using Gauss-Jordan Elimination method, 

we need to transpose the test set.  
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3. Find the first logic ‘1’ in a column and copy the entire row into new 2-D array. 

Perform XOR operation for the entire row with the pivot row if other rows in the column 

also have logic ‘1’. If the other rows have logic ‘X’, then simply set to logic ‘0’. 

4. If there is no logic ‘1’ that is being used as pivot for a column, set the first logic 

‘X’ that we find to logic ‘1’ so that it can be used as a pivot for the corresponding 

column. Store the entire row information into next position in the new 2-D array and 

perform XOR operation with each row that was already stored in the new 2-D array to 

convert as an identity matrix. Set rest of logic ‘X’ to logic ‘0’ if there is more logic ‘X’ in 

the other rows.  

5. Perform step 3 and step 4 continuously until we reach the last primary input 

column.  

Applying linear transformation theory can provide powerful input reduction for fully 

specified data. However, it cannot handle logic ‘X’ values since linear transformation 

does not allow us to have any unknown values. Given that we can use logic ‘X’ as either 

logic ‘0’ or logic ‘1’, we can appropriate set logic ‘X’ values to specified values as 

explained in the above algorithm.  

4.4 EXPERIMENTAL RESULTS 

We tested the proposed approach for input reduction with linear operations on two 

different scenarios similar to what was done in Section 3.4. Table 3 shows the results for 

the scenario where the test set for each benchmark contains an average number of logic 

‘X’ values in the test vectors, and Table 4 shows the results for the scenario where the 

test set for each benchmark contains a lot of logic ‘X’ values in the test vectors. 

As we mentioned previously, the proposed approach can somewhat compensate 

for the drawback of using the compatibility matrix method and its effect is clearly shown 

in Table 5 and Table 6. We have seen that using a compatibility matrix was not showing 

great performance for input reduction when a test set contains a small number of logic 

‘X’ values. However, the proposed approach is effective on these test sets. 
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Table 5: Using Gauss-Jordan Elimination for test sets containing average number of logic 

‘X’ 

Circuit Number of 

Primary 

Inputs 

Number of 

Test Vectors 

Initial 

Width 

Final Width Width 

Reduction 

(%) 

s5378.x 214 111 214 111 48.13 

s9234.x 247 159 247 159 35.63 

s13207.x 700 236 700 236 66.29 

s15850.x 611 126 611 126 79.38 

s38417.x 1664 99 1664 99 94.05 

s38584.x 1464 136 1464 136 90.71 

 

Table 6: Using Gauss-Jordan Elimination for test sets containing a lot of logic ‘X’ 

Circuit Number of 

Primary 

Inputs 

Number of 

Test Vectors 

Initial 

Width 

Final Width Width 

Reduction 

(%) 

s5378.32s 214 196 214 173 19.16 

s9234.64s 247 205 247 205 17.00 

s13207.44s 700 266 700 257 63.29 

s15850.46s 611 269 611 269 55.97 

s38417.100s 1664 376 1664 376 77.40 

s38584.100s 1464 296 1464 296 79.78 

4.5 DRAWBACK 

The proposed method of input reduction with linear operations is relatively more 

effective when the test set contains fewer logic ‘X’ values. However, it can be less 

effective when a test set has a lot of logic ‘X’ values. To address this, it can be combined 

with the conventional approach of using a compatibility matrix as will be discussed in the 

next chapter. 
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Chapter 5:  Combined Method 

5.1 INTRODUCTION FOR COMBINED METHOD 

In Chapter 3, we discussed that we can achieve input reduction for a test set using 

the conventional compatibility matrix algorithm. It provides better input reduction for test 

sets containing lots of logic ‘X’ values, but is less effective for test sets containing few 

logic ‘X’ values. In Chapter 4, we proposed a methodology for performing input 

reduction using linear combinations. The method can also be used to compress a test set. 

The proposed method is most effective when the test set has a small number of logic ‘X’ 

values. So we ultimately decided to combine both algorithms together to get the best 

overall input reduction regardless of the characteristics of the test set.   

5.2 COMBINED ALGORITHM 

We can first use the compatibility matrix approach (as described in Section 3.3) to 

achieve as much input reduction as possible, and then use the proposed algorithm based 

on linear operations (as described in Section 4.3) to try to achieve further input reduction. 

5.3 EXPERIMENTAL RESULTS 

Table 7 and Table 8 show the results for the combined method. Clearly, it 

achieves better or equal input reduction than using only one of two methods individually. 

Table 7 shows that the combined method is better in all cases. In Table 8, in comes cases, 

the final result ended up the same as using the compatibility matrix by itself because for 

those testbenches there were so many logic ‘X’ values that the compatibility matrix 

method was able to maximally optimize the input reduction. 
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Table 7: Using combined method for test sets containing average number of logic ‘X’ 

Circuit Number of 

Primary 

Inputs 

Number of 

Test Vectors 

Initial 

Width 

Final Width Width 

Reduction 

(%) 

s5378.x 214 111 214 111 48.13 

s9234.x 247 159 247 159 35.63 

s13207.x 700 236 700 87 87.57 

s15850.x 611 126 611 93 84.78 

s38417.x 1664 99 1664 99 94.05 

s38584.x 1464 136 1464 136 90.71 

 

Table 8: Using combined method for test sets containing a lot of logic ‘X’ 

Circuit Number of 

Primary 

Inputs 

Number of 

Test Vectors 

Initial 

Width 

Final Width Width 

Reduction 

(%) 

s5378.32s 214 196 214 44 79.44 

s9234.64s 247 205 247 97 60.73 

s13207.44s 700 266 700 52 92.57 

s15850.46s 611 269 611 64 89.53 

s38417.100s 1664 376 1664 113 93.21 

s38584.100s 1464 296 1464 146 90.03 

 

We have included Figure 6 and Figure 7 to provide more direct comparison results for 

each method. The Y-axis represents the percentage of input reduction that was achieved 

from each initial test set, while the X-axis has one entry for each different test set. Lower 

number of percentage in Y-axis indicates that it has less compression rate and higher 

number of percentage indicates that it has higher compression rate for each test set. 
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Figure 6: Graphical Representation of Compression Rate with average number of logic 

‘X’ 

 

Figure 7: Graphical Representation of Compression Rate with a lot of logic ‘X’ 
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Chapter 6:  Conclusion 

Applying an exhaustive test set for testing a circuit is generally not a feasible 

approach due to having exponential test time with respect to the number of primary 

inputs. However, pseudo-exhaustive testing can achieve the same goal of detecting all 

combinational faults with a much shorter test. Input reduction has been proposed in the 

past as a way to achieve a practical test length for pseudo-exhaustive testing. This thesis 

proposed a new methodology for input reduction based on using linear combinations. It 

was shown that this approach is able to further increase the amount of input reduction 

that can be achieved compared with the conventional approach of using a compatibility 

matrix. Furthermore, it was shown that the proposed approach is effective even when the 

numbers of ‘X’ values in the test set is small. It was also shown that the proposed method 

can be used together with a compatibility matrix to achieve good results regardless of the 

characteristics of the test set. Pseudo-exhaustive testing with input reduction offers a 

number of advantages in terms of thorough testing, no need for an external tester, and 

avoiding the test time bottleneck of needing to bring data through the chip pins. 
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