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ABSTRACT 

Scan based Design for Test (DfT) schemes have been widely used to achieve high fault coverage 

for integrated circuits. The scan technique provides full access to the internal nodes of the device-

under-test to control them or observe their response to input test vectors. While such 

comprehensive access is highly desirable for testing, it is not acceptable for secure chips as it is 

subject to exploitation by various attacks. In this work, new methods are presented to protect the 

security of critical information against scan-based attacks. In the proposed methods, access to the 

circuit containing secret information via the scan chain has been severely limited in order to reduce 

the risk of a security breach. To ensure the testability of the circuit, a built-in self-test which utilizes 

an LFSR as the test pattern generator (TPG) is proposed. The proposed schemes can be used as a 

countermeasure against side channel attacks with a low area overhead as compared to the existing 

solutions in literature. 
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Chapter 1 

                                                          Introduction and Background       

1.1 Motivation and Problem Statement 

The need to increase the processing power and speed of processors, on the other hand reducing the 

price and power consumption of processors has led to decrease in the feature size of the transistors, 

This, in turn, has directly affected the operating clock frequency of microprocessors. For example, 

the operating frequency of current microprocessors is in the gigahertz range as compared to a few 

100 KHz in the 1970s. The reductions in feature sizes and the increased number of transistors per 

chip raises the probability that an IC may have manufacturing or functional defects. With feature 

sizes at the nanometer scale, it is not unusual that some of the transistors in the microchip may not 

work properly, and thus, causing the entire chip to malfunction [1].  

Defects created at the manufacturing stage are unavoidable even if the utmost care is taken in state 

of the art fabrication facilities. A popular rule of ten, which is followed in industry which states 

that the cost of testing goes up as we move from wafer to chip and from chip to board level and 

before it can be adopted for the system level use as shown in figure 1. Due to impossibility of 

infallible design and fabrication processes involved, it is imperative to screen out faulty ICs and 

defective parts so as to prevent the shipping of defective parts to customers. Testing techniques 

have been developed without considering the fact that the circuit added to increase testability can 

also be used to access security sensitive information. Many systems have been attacked using the 

test interfaces currently available.   
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In this thesis, we have proposed a secure design for test techniques to counter the scan based 

attacks. 

1. In the first technique, two modes for testing have been proposed, namely, the secure mode 

of testing and the insecure mode of testing. A controller is designed to control the transition 

from the secure mode to the insecure mode of testing and vice versa. 

2. In the second technique, a secure self-test technique has been proposed keeping in view the 

various stages of testing once the integrated circuit has been launched to the market. 

 

 

Figure 1: Various stages of Testing [90] 
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1.2 Testing of Digital Circuits 

 

Figure 2 shows the flow of testing for the digital circuits. For a given device under test, the binary 

test patterns are applied as the input to the circuit. The respective output responses are then 

obtained. These output responses are then compared with the correct stored responses in a response 

analyzer. If the responses match, then the circuit is considered to be acceptable, else the circuit is 

faulty. Most of the input test vectors are applied by an apparatus called ATE (Automatic Test 

Equipment) [2].The test responses are written and stored in the memory of the test equipment. 

1.3 VLSI Testing Challenges                                                                                                                         

The manufacturing of VLSI devices is a complex and cumbersome process. Figure 3 shows the 

image of a manufactured IC in which the channel length is 120 nm and there are six levels of 

interconnections and wirings. There are many stages in the IC manufacturing process.  In this 

particular process, some random manufacturing imperfections can cause variations in the process,  

 

Figure 2: Flow for testing of Digital Circuits 
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voltage and temperature in the final manufactured IC. Variations affecting transistor channel 

length, the metal interconnect width and thickness, and dielectric thickness can be grouped under 

process variations [11-13]. 

1.4 Types of Testing 

Testing methodology changes depending on the production stage at which an IC being tested. In 

the initial stage of production, for instance, after the wafers have been manufactured, wafer sort 

testing is performed. The motive to test at this stage is to sort out the faulty wafers [3, 4]. The 

remaining wafers which are deemed to be satisfactory are then processed to the next stage for 

packaging. While the sorting of wafers is performed, the characterization test is also conducted. 

Broadly, the test can be classified as follows: 

 

 

Figure 3: CMOS chip by IBM incorporating 6 levels of interconnections [7] 
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1. Functional Tests: In these type of tests, the input test vectors are applied and then the 

responses are compared. The motive is to check the correct functionality of the device 

under test. Many manufacturing faults (stuck at faults) are covered by this technique of 

testing.  

2. Parametric Tests: This type of testing can be categorized as a DC parametric test and an 

AC parametric test. The former consists of an open test, a short test, a leakage test and a 

threshold test whereas the latter entails refresh and pause time tests, rise and fall time tests, 

a speed test, and setup and hold tests. The test standards which have been designed do not 

depend upon the technology node being tested and hence, are independent of the 

technology being tested.  

3. Structural Tests: In this approach, the circuit under test is mainly tested by fault models 

based on the knowledge of the structural information of the device under test. Adopting 

structural testing can save time and increase the test efficiency significantly. Any specific 

fault model adopted in the structural testing does not guarantee the detection of all the 

possible faults in the circuits but can be quantified by the term fault coverage. 

At this point, it is important to highlight the notable differences involved in the testing of ICs and 

memory. The test methodology for memories fall in the paradigm of functional testing, which is 

designed to cover attributes such as address decoder speed, cell coupling, data sensitivity, write 

operation, and address uniqueness. To achieve extensive fault coverage, it demands long test 

vector sequences.  

Chip level testing and board level testing have many differences. In board level testing, the 

components are previously tested and embedded. One of the aims in board level testing is to check 

the contacts and wires used in the routing [5-6].  
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1.5 Test Dynamics and Fault models 

A fault in a manufactured IC can be defined as a defect which results due to a physical condition 

which prevents the circuit from performing in the desired manner. A Failure can be termed as a 

deviation from the expected performance of an IC; it expresses a need for repair so as to obtain the 

intended device output. A circuit error can be defined as the wrong output signal from the 

defective circuit. Fault models are used to generate and compare the test vectors for the device 

under test. When modeling a fault model, it is important to consider the following points: 

1. The fault model should be efficient in terms of the number of test patterns and test vector 

generation. 

2. The fault model must be capable of predicting the behavior of the circuit under test. 

The fault model can be divided into two categories, namely, the single fault model and the multiple 

fault model. The single fault model can be described as  

                                        Number of single faults = 𝑘 × 𝑛                                                      (1) 

where k signifies the type of faults and n signifies the possible fault sites which can be present  in 

the digital circuit. However, in the practical scenario, there are commonly multiple faults in the 

device-under-test and is given by  

                                Number of multiple faults=(𝑘 + 1)𝑛 − 1                                                     (2) 

As shown in the equation 2 the circuit can have the 𝑘 possible faults. The “-1” term represents the 

fault free circuit. In the single fault model two or more faults can result in the same faulty behaviors 

for all the patterns .However, these faults can be termed as equivalent faults. Under this 

assumption the total number of vectors to be actually considered for the given circuit are much 

less than  𝑘 × 𝑛 . This reduction in which the redundant faults are removed by the overlapping test 
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vectors is termed as fault-collapsing. By following the fault collapsing algorithms, fault simulation 

times and the test time for circuits with large value of n are reduced [8-10]. 

1.6 Hardware Attacks and Problem Statement 

Over many years, test interfaces have been built to test digital circuits. It was not known that the 

interfaces for testing could pose a security threat to the device under test. Many systems have been 

attacked using the controllability and observability provided by the advanced test techniques 

developed over past decades. To some level, the designer can prevent the system from being 

hacked by these DfT techniques and thus, can eventually reduce the system exploitation by 

applying various defenses. There is a strong need for the protection of crypto chips and the 

prevention of misuse of intellectual property without the inventor’s knowledge. This thesis focuses 

upon the protection of hardware from scan based attacks and three solutions have been proposed 

for different scenarios of testing.  

1.7 Thesis Contribution 

The contributions of this thesis can be summarized as follows: 

 novel secure design for test techniques have been proposed for digital circuits; 

 the area overhead for the proposed secure test techniques are negligible ; and  

  the proposed secure techniques do not compromise the fault coverage which many 

existing techniques do.  

1.8 Thesis Organization  

The thesis contains a total of 7 chapters. In chapter 1, the introduction motivation and testing 

challenges is discussed and hardware security is discussed. In Chapter 2 various test techniques 

are discussed. Chapter 3 discusses about IEEE 1149.1 and P1500 standard. In chapters 4 to 6 secure 

hardware methods are discussed. Chapter7 concludes with the summary, conclusion and future 

work. 
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Chapter 2 

                              Testing of VLSI Circuits and Design for Testability                                                                 

2.1 Introduction 

Design for test techniques are used in integrated circuits to make the design testable while reducing 

the cost of testing. To physically realize the design for test techniques, extra hardware is usually 

required; this extra hardware is realized in the form of logic gates which are directly connected to 

the internal logic or the core logic to be tested. The advantages of using the DfT techniques include:  

(a) increased fault coverage; (b) making the circuit easier to control and observe; (c) reduced 

testing time; and (d) supporting the hierarchical testing for logic. 

The product quality of integrated circuits is quantified by various terms such as Defect, Yield and 

Defect Level. A defect can be defined as a fabrication problem caused by the manufacturing 

process. The defect on the wafer can be caused by process variation the impurities in wafer material 

and chemicals, dust particles in the projection system, or mask misalignment. Yield is defined as 

the fraction or the percentage of good chips produced in the system out of the total chips produced 

in a batch of manufacturing chips. Defect level is the metric which is used to characterize the 

effectiveness of the test type and the manufactured product quality achieved. It is the ratio of the 

faulty chips to the chips which have passed the tests. The unit used to measure the defect level is 

parts per million (ppm). 
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2.2   Built in Self-Test 

 

Figure 4 shows a typical setup for built in self-test (BIST), which consists of a test pattern generator 

(TPG) for generating the test patterns, circuit under test (CUT) which needs to be tested, and a 

response analyzer which analyzes the response obtained from the circuit under test and compares 

it with the golden signature. For controlling all the operations of BIST, there is a BIST controller 

which is responsible for switching between the various states. Using BIST is advantageous as; it 

eliminates the need for the external tester, supports at speed testing which helps to detect delay 

faults, and it also helps to reduce test time and tester memory requirements. One of the problems 

associated with built-in self-test as a method of testing is that the BIST should be able to deal with 

the unknown values X [8-9]. 

2.3 Test Pattern Generation 

The most commonly used test pattern generators for BIST applications are linear feedback shift 

registers (LFSRs) which are also used for exhaustive testing, pseudo exhaustive testing, and 

pseudo random testing. To achieve full fault coverage and have the multiple stuck at fault 

 

Figure 4: Flow demonstrating BIST Testing [10] 
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coverage, exhaustive testing is used. The various possible configurations of LFSR are discussed 

in the proceeding sections. [15]. 

2.3.1 Standard LFSR 

Figure 5 shows the configuration of the conventional LFSR. It is made up of n D-flip flops and 

exclusive-OR (XOR) gates. When the XOR gates are placed on the external feedback path, it is 

called external-XOR LFSR [14].  

2.3.2 Modular LFSR 

Figure 6 shows the modular type n stage internal feedback type LFSR with the feedback 

connections in the internal type. The speed of the modular LFSR is faster as compared to the 

conventional LFSR. This is due to the fact that in the conventional type configuration, each XOR 

gate introduces a gate delay [14].  

 

 

Figure 5: The n-stage conventional LFSR [10] 

 

Figure 6: The n stage modular LFSR [10] 
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2.4 LFSR Characteristics 

 

Figure 7 shows the difference in the sequence of the test patterns which is generated by the 

different types of LFSR as discussed above; it is assumed that the initial contents of both types of 

LFSR are set to {0001}. It is clear from the figure that for the type “a” LFSR, the sequence repeats 

after 6 cycles whereas for the type “b” LFSR, the sequence repeats after 10 clock cycles [16]. The 

polynomials which describe the above sequences can be described by 1+x2+x4 and 1+x+x4, 

respectively. Many solutions exploiting the use of LFSR have been proposed using the advanced 

design for test techniques such as broadcast scan method, variable linear decompressors, and 

Illinois scan architecture [10]. 

 

Figure 7: Test pattern generated by different LFSR [10] 
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2.5 Mathematical Modelling of LFSRs 

The various possible forms of LFSRs are shown in Figure 5 and Figure 6;each has Sn flip flops, n 

feedback paths, and is defined by the feedback coefficient hn. The feedback coefficient defines 

whether the feedback path is active or not. 

 If hi = 1, the feedback path is closed or active.  

 If hi = 0, the feedback path is open or inactive , 

The value of the output of the flip-flop is multiplied by its coefficient pi; the result of the 

multiplication depends upon whether the value of hi is 1 or 0.To begin, we can assume that the 

initial value stored in the flip flops is si0, si1,…..sin-1 and the feedback connections can be defined 

as h1, h2,…… hn-1.The output can be defined as sm. 

                                     𝑠𝑚 ≡ 𝑠𝑖0ℎ𝑛−1 + ⋯ + 𝑠𝑖−2ℎ2 + 𝑠𝑖−1ℎ0 𝑚𝑜𝑑 2            

Following this, the next stage of the LFSR is defined as  

 

                        𝑠𝑚+1 ≡ 𝑠𝑖1ℎ𝑛−1 + ⋯ + 𝑠𝑖−1ℎ2 + 𝑠𝑖ℎ0 𝑚𝑜𝑑 2                 

 

The general equation expressing the output of the LFSR can be defined as follows  

 

                 𝑠𝑖+𝑚 ≡ ∑ 𝑠𝑖 ∙ ℎ𝑖+𝑗
𝑚−1
𝑗=0 𝑚𝑜𝑑 2     ; 𝑠𝑖  , ℎ𝑗 ∈ {0, 1}  , 𝑖 = 0,1,2. . ..                                       (3) 

2.5.1 Attacks against the LFSR  

The inputs and the outputs from the LFSR are governed by a linear relationship. The advantage of 

this linear relationship is used in communication systems. On the other hand, as a cryptosystem, 

this opens opportunities for attackers. In this section, the linear relationship of the LFSR is studied 

and possible attacks are also discussed. To attack an LFSR, it is assumed that the position of 

feedback switches is the secret key of the system (hm-1,…., h1, h0). It is also assumed that the 
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attacker knows some bits of the plaintext and the cipher-text, as well as the knowledge of the 

degree of the polynomial form the periodicity of the LFSR polynomial. The bits of the plaintext 

can be described as p0, p1…..  p2m-1 and the cipher-text bits can be written as c0, c1,…..c2m-1.With 

the known cipher-text and plain-text bits, the attacker can construct the 2m bits  

                                                        𝑠𝑖 = 𝑝𝑖 + 𝑐𝑖  𝑚𝑜𝑑 2;    𝑖 = 0,1,2 … .2𝑚 − 1                                                        (4) 

To attack the LFSR, it is imperative to know the feedback coefficients hi and the stream of the 

input bits as defined by Equation 3.With the above knowledge, the attacker can generate the “m” 

equations for “m” values with different values of “i” as shown by the set of equations below.  

 

 𝑖 = 0, 𝑠𝑚 ≡ 𝑠𝑖0ℎ𝑛−1 + ⋯ + 𝑠𝑖−2ℎ2 + 𝑠𝑖−1ℎ0    𝑚𝑜𝑑 2      

𝑖 = 1,       𝑠𝑚+1 ≡ 𝑠𝑖1ℎ𝑛−1 + ⋯ + 𝑠𝑖−1ℎ2 + 𝑠𝑖ℎ0      𝑚𝑜𝑑 2    

                                 :                                    ∶                                         ∶ 

    ∶                                    ∶                                         ∶ 

 

      𝑖 = 𝑚 − 1, 𝑠2𝑚−1 ≡ 𝑠𝑖0ℎ𝑛−1 + ⋯ + 𝑠𝑖−2ℎ2 + 𝑠𝑖−1ℎ0      𝑚𝑜𝑑 2   

 

Thus by solving above linear equations with “m” unknowns the attacker can easily find out the 

feedback coefficients h0, h1,……, hm-1 by applying matrix inversion technique and Gaussian 

elimination algorithm, once the feedback coefficients are found the attacker can build the LFSR 

and obtain the output sequence 

2.6 Cyclic LFSRs 

To reduce the length of the test data, cyclic LFSRs can also be used for test generation. For cyclic 

LFSR, first, the (n, k) have to be defined for n-stage LFSR, and with periodicity of 2k-1. The cyclic 
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LFSRs are generated from the cyclic codes over the GF (2) which contains the 2k different code-

words and the n-bit tuple is realized by rotating the code-word bits to the right. The minimum 

code-word or weight of cyclic LFSR is defined by “d” in cyclic LFSR [17-18]. 

 

To generate the test patterns from the cyclic LFSR, the following steps have to be followed [18]: 

1. The generator polynomial g(x) has to be of greatest degree k’  (or the smallest degree k ) 

for generating (n’, k’)=(n’, n’-k) cyclic code that divides the 1+xn  and has the distance 

(design) of d ≥ w+1 [10]; and 

2. The equation h(x) = (1+xn)/g(x) can be used to generate the (n’, k) cyclic code which is the 

dual code of (n’, n’-k) and is generated from g(x).To construct the (n’, k) cyclic LFSR, the 

following equation can be used: 

                           𝑓(𝑥) = ℎ(𝑥)𝑝(𝑥) =
(1+𝑥𝑛)𝑝(𝑥)

𝑔(𝑥)
   

 

Table 1: Table showing the generator polynomial for cyclic LFSR [10] 
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where h(x) is the parity check polynomial of g(x) which satisfies the equation g(x)*h(x) = 1+xn’.  

 Shortening of the equation (n’, k) cyclic LFSR to (n, k) cyclic LFSR can be achieved by deleting 

the rightmost, middle or the leftmost n’-n stages from the (n’, k) cyclic LFSR which also yields the 

lowest area overhead [19]. 

2.7 Exhaustive Testing  

In exhaustive testing, the total number of 2n test patterns are applied to the circuit under test. 

Generally, exhaustive testing is not preferred for combinational circuits with a large number of 

inputs “n” as it takes a long time to cover all the states. A binary counter can even be used as the 

exhaustive pattern generator (EPG),  but the maximal length LFSRs are more efficient as compared 

to the binary counters; hence, they are generally used to  cover all the 2n -1 states. A right seeding 

is necessary for the LFSR to generate the right test patterns [20]. A right seeding is necessary to 

cover all the zero states in the test patterns of LFSR. The LFSR containing these zero states is 

called the complete LFSR (CFSRs) [21]. The techniques which can be used as the pattern generator 

satisfying the criteria of exhaustive testing are discussed in the proceeding sections. 
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2.7.1 Complete LFSR     

 

Figure 8 (a) and 8 (b) show the application of complete LFSRs for testing a 4-input circuit under 

test. The 4-stage LFSR has a period of 16 cycles. At the last stage of the complete LFSR, an XOR 

gate and a NOR gate take the input from (n-1 stages) and act as a zero-detector. Using this scheme 

is advantageous as it can achieve the zero state for each bit after the state of {0001}. The LFSR 

presented in (a) and (b) can be minimized as shown in Figure 8 (c) and (d). The realizations shown 

in (c) and (d) have the zero state after the sequence of {1000}. The advantage of using exhaustive 

testing is that the detectable faults in the combinational logic will be detected. Furthermore, when 

the number of inputs are small, exhaustive testing is useful, otherwise it is time consuming and not 

feasible for circuits with a large number of inputs [10]. 

 

Figure 8: Complete LFSRs (a) four-stage standard LFSR (b) four stage modular LFSR 

(c) Minimized version of (a) (d) Minimized version of (b) [10] 
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2.7.2 Binary Counter 

Figure 9 shows the example of a binary counter used as the test pattern generator for a 4 input 

combinational logic. The area overhead required by the binary counters is much larger as compared 

to the conventional LFSR used as a test pattern generator [22]. 

2.8 Pseudo Exhaustive Testing  

 This type of testing requires a fewer number of test patterns as opposed to 2n test pattern required 

by the exhaustive test technique for a combinational logic with “n” inputs. All the stuck at faults 

can be covered by this method of testing. 

2.9 Pseudo Random Testing  

In this type of testing, a pseudo-random test pattern generator is used (PRPG) for generating the 

pseudo random test sequences [9, 10, 15]. This type of testing can be used for combinational as 

well as sequential circuits but does not give a clear idea of the fault coverage and the length of test 

sequence to be used for testing. However, many schemes have been proposed to resolve this 

shortcoming in [23, 24]. 

2.9.1 Maximum-Length LFSR 

Maximal Length LFSR can be used as the pseudo random test pattern generator. The sequences 

produced by a maximal length LFSR has 0.5 probability of generating 1’s and 0.5 probability of 

 

Figure 9: Binary counter used as Exhaustive Pattern Generation [10] 
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generating 0’s at the output. The shortcoming of using this technique is that the circuit under test 

may be resistant to the random pattern which means that the probability of certain nodes receiving 

the 0 or 1 value is low assuming the probability of having 0 or 1 in the input sequence is equal 

[25]. 

2.9.2 Weighted LFSR  

To solve the problem of pattern resistant faults and increase the fault coverage in RP-resistant 

circuits, this method of testing is used. It uses an LFSR and a combinational circuit known as the 

weighted pattern generation technique which is described in [26]. The motivation to fit the 

combinational circuit between the output of the combinational circuit and the LFSR is to increase 

the frequency of some patterns and decrease the frequency of certain test patterns; hence, this 

technique increases the probability of detecting those faults which cannot be detected by using 

simple LFSR as the test pattern generation. The method to implement this technique is discussed 

in [27].This technique changes the equal distribution of maximal length LFSR so as to produce the 

equal distribution weighted input sequence containing 0s and 1s which are fed to the combinational 

logic under test. It adjusts the probability distribution to 0.25 or 0.75 instead of 0.5which helps in 

increasing the fault coverage not covered by the 0.5 distribution model. In [28-30], good fault 

coverage was obtained by assuming a probability distribution fault model. 

2.10 Segmentation Testing 

In the circuits where the length of the test pattern is too large or the number of inputs n is too large, 

a segmentation technique or partitioning technique is followed to reduce the test time [31]. By 

dividing the circuit under test into segments or partitions, this technique uses the idea of exhaustive 

testing. The partitioning can be achieved in one of two ways:  hardware partitioning or sensitized 

partitioning [31-32]. In hardware partitioning, multiplexers are inserted and the embedded inputs 
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and outputs of the sub circuits are connected to unused primary inputs and outputs of the sub circuit 

under test. In sensitized partitioning, the circuit partitioning and the sub circuit isolation are 

achieved by applying the input test patterns to the input lines. The process of partitioning the circuit 

and testing it simplifies the overall testing process. Although the multiplexers reduce the operating 

speed, the overall functionality is not altered and hence, this method is still used as an accepted 

technique [33-35].  

2.10.1 Signature Analysis  

Signature analysis is one of the most widely used compaction techniques which is based upon the 

idea of cyclic redundancy checking (CRC) [16]. This technique can be divided into two categories: 

(1) serial signature analysis, which is used for compacting the output responses obtained from 

the circuit under test having a single output and (2) parallel signature analysis, which is used for 

compacting the responses obtained from the logic under test having multiple outputs [36-39]. 

1. Serial Signature Analysis Technique 

In this type of technique, LFSR is used for the signature analysis and XOR gates are used for 

compacting the L-bit output sequence obtained from the logic under test. Figure 10 shows an “L” 

bit modular LFSR used to generate the output signature [10, 16, 43]. 

 

 

 

Figure 10: N-stage single input shift register [10] 
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Let the L-bit message be defined as M= {m0m1m2…..mL-1} and can be written as 

 

                                     𝑀(𝑥) = 𝑚0 + 𝑚1𝑥 + 𝑚2𝑥2 + ⋯ + 𝑚𝐿−1𝑥𝐿−1 

 

As the L-bit sequence is shifted into the modular LFSR, the remainder of the serial shift register 

R is given by {r0r1r2…..rn-1xn-1} expressed below as 

 

𝑟(𝑥) = 𝑟0 + 𝑟1𝑥 + 𝑟2𝑥2 + ⋯ + 𝑟𝑛−1𝑥𝑛−1 

 

The above response analyzer works as the CRC code generator [39]. Assuming that the LFSR is 

defined by the characteristic polynomial f(x) then the polynomial division can be defined as  

𝑀(𝑥) = 𝑞(𝑥)𝑓(𝑥) + 𝑟(𝑥) 

 

The final signature obtained from the SISR is the remainder r(x) of the polynomial division. 

2. Parallel Signature Analysis Technique 

Other response analysis techniques such as transition count testing, ones counting, and the serial 

signature technique require a significant area overhead for testing an output with n-bit 

combinational logic. Figure 11 shows the n stage multiple input signature registers. In the multiple 

 

Figure 11: N stage multiple input shift register [10] 
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input signature analysis technique, n-XOR gates are used in combination with the modular LFSR 

so as to compact the n L-bit output sequences from M0 to Mn-1. In [40-42], it is shown that the 

MISR with n-inputs can be modeled as the n-input SISR if the input sequence is M(x) and the error 

polynomial is E(x) as written below [41]. 

𝑀(𝑥) = 𝑀0(𝑥) + 𝑥𝑀1(𝑥) + ⋯ . . +𝑥𝑛−2𝑀𝑛−2(𝑥) + 𝑥𝑛−1𝑀𝑛−1(𝑥) 

and 

𝐸(𝑥) = 𝐸0(𝑥) + 𝑥𝐸1(𝑥) + ⋯ + 𝑥𝑛−2𝐸𝑛−2(𝑥) + 𝑥𝑛−1𝐸𝑛−1(𝑥) 
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Chapter 3 

                                     Boundary Scan and Core Based Testing 

3.1 Introduction  

The standard for the Boundary scan based testing is IEEE 1149.1 standard, also known as the 

JTAG standard. The standard was developed for testing of digital circuits on the board level and 

the standard is also used for testing integrated circuits. The standard has also an extension by the 

name of IEEE 1149.6 standard and is used for the prototyping of input/output high speed networks 

[44]. 

          To address the problems related to testing the core based ICs where the intellectual 

properties (IPs) act as the building blocks, a different standard is developed which is analogous to 

the IEEE 1149.1 standard. The standard for core based testing is known as P1500 standard 

approved by IEEE in 2005.Most of the features in this standard are similar to that of the IEEE 

1149.1 standard. Various features are supported by this core based testing standard such as design 

reusability, plug and play features, and hierarchical test features [10].  

           In this chapter, both standards are discussed in detail and a comparison is also made between 

the two widely known industry standards. The attacker can take the advantage of the full 

controllability and observability provided by these standards and attack the device under test while 

the device has been adopted for the infield use or even at the manufacturing stage. 
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3.2 IEEE 1149.1 Boundary Scan Standard 

 

As shown in figure 12, the boards are connected serially as defined by IEEE 1149.1 standard to 

support boundary scan based testing at the board level. The motivation to call it boundary scan 

structure comes from the fact that the circuit under test is surrounded by the boundary scan cells 

serially so as to have good controllability and observability for the circuit under test. Those chips 

which support the IEEE 1149.1 architecture can be fitted in the board level architecture through 

the boundary scan registers. This protocol also supports the normal chip operations and thus, 

enhances the design debugging and testing capabilities [9]. The standard also supports the 

interconnect testing between the different circuits under test connected in a daisy chain architecture 

[45]. 

 

Figure 12: Board level testing in daisy chain architecture [10] 
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3.3 IEEE 1149.1 Test Architecture and Working    

Extra circuitry and memory is included in the IEEE 1149.1 architecture in addition to the boundary 

scan cells so as to support the working of the whole IEEE standard. The internal logic, as shown 

in the figure 13, is the actual circuit under test which is compliant for various designs for test 

techniques such as scan based tests, built in self-test (BIST), and the boundary scan test technique. 

The standard is known to consist of various modules such as  

 a test Access port (TAP)  which is made of 5 terminals called test data input (TDI), test 

data output (TDO), test mode select (TMS), test clock (TCK), and test reset (TRST); 

 a TAP controller (TAPC); 

 an associated decoder and instruction register (IR);  

 many registers such as bypass registers, boundary scan registers, device ID registers and 

specific data registers which are used to control the signal flow; and  

 the TAP controller, which is a 16-bit state machines that controls the working of the state 

machines [9-10]. 

In addition to the test access port which is defined above, the IEEE 1149.1 architecture also 

consists of a 16-bit finite state machine which controls each step of the boundary scan architecture. 

The instruction which needs to be executed is serially loaded onto the instruction register through 

the external available TDI pin to the external user. The test signals which configure the boundary 

scan test for the instruction to be executed is provided by the dedicated decoder [45].  
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Figure 13 shows the detailed structure of the serially connected board as shown in figure 12 above. 

The TAP port defines the standard for the boundary scan as well as additional input/output pins. 

The instructions in the boundary scan architecture are loaded through the test data input (TDI) 

pin.  The associated decoder controls the test instructions so as to perform boundary related scan 

based tests. Additionally, there are test data registers which load the system-specific related 

information (namely company name, device ID instruction). Some of the mandatory test 

instructions such as SAMPLE, BYPASS, PRELOAD and EXTEST and several other instruction 

sets such as RUNBIST, CLAMP, USERCODE, IDCODE, HIGHZ are also included in this 

standard [45]. 

 

Figure 13: IEEE 1149.1 architecture [45] 
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3.4   Boundary Scan Cell, Test Circuitry and Bus protocols  

 

Figure 14 shows the detailed boundary scan cell which forms part of the long boundary scan chain. 

The cell can be configured to acts as an input or output cell. For BSC as an input cell, the IN signal 

is used for the chip input pad whereas for BSC as an output cell, the OUT signal is connected to 

the output signal pad. The Mode signal controls the data driven on the OUT signal line. When 

Mode signal is disabled the boundary scan cell is in the normal mode of operation, data passes 

from IN to OUT directly like a short signal. Conversely, when Mode signal is enabled the boundary 

scan cell is in  test mode of operation,  data stored in the R2 flip flop is shifted from the multiplexer 

through the OUT signal port. The operations which a boundary scan cell can support are clockDR, 

shiftDR and updateDR. When the shiftDR signal is disabled and clockDR signal is enabled, the 

data which is present at IN is captured by the capture flip flop. Similarly, when the shiftDR is 

enabled and the clock pulse is applied to clockDR, the data is shifted from scan input SI to scan 

output SO to feed into the next boundary scan cell [45]. 

 

 

Figure 14: A Boundary Scan Cell [45] 
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3.4.1 TAP State diagram  

 

Figure 15 shows all the state transition of the TAP controller in accordance with the state diagram. 

The states are controlled by the rising edge of the TCLK; on the other hand, the next state is being 

determined by the logic level of TMS. There are nine control signals being solely controlled by 

the TAP controller, namely, clockDR, shiftDR, updateDR, clockIR, shiftIR, updateIR, selectTCK, 

and enable signals. All 16-states are divided into three categories. The leftmost states consist of 

two states, namely, rest and the “Run-Test Idle” state. This is followed by the middle part which 

has 7 states and lastly, the rightmost part which also has 7 states. The functions of the rightmost 

part are analogous to middle part; however, there is a difference between the set of registers being 

used to perform these operations [45]. 

 

 

Figure 15:16-state finite state machine to support Boundary Scan Architecture [45] 
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The important states can be described as follows [45-47]: 

 Test-Logic-rest: The boundary scan circuitry is disabled so that the system can perform in 

the normal mode of operation. If the Logic 0 is applied to the TRST port, then the TAPC 

enters this state. The TAPC can be synchronously reset to logic 1 if the TMS is applied for 

5 clock cycles. If a glitch occurs at the TMS, then the TAP controller is forced into the 

Run/test idle state. In order to return to the normal state, the TAP controller has to be kept 

at 1 for the next 3 clock cycles. 

 Run-Test Idle:  In this state, the boundary scan circuitry waits for some test operations to 

be synchronized with the TCK. 

 Select DR Scan- This is one of the temporary states aimed at initializing the data register 

to enter into the manipulation column. 

 Capture-DR: In this state, the data is loaded in parallel to the specified data registers. This 

state is used to capture the current test results and the normal operation status. 

 Shift-DR: The stored test data is scanned out from the data registers by the current 

instruction. As long as the TMS is 0, the TAP controller will remain in this state.  

 Exit-DR: In this state, all parallel loaded or shifted data held in the data registers are 

preparing for the update or pause instruction. 

 Pause-DR: This is used to pause the normal operation so as to perform some external 

operation. This command is useful if the test operation is to be paused so that the tester can 

shift the data serially from the input pin .This can also be used to bring latency into the test 

procedure. 
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 EXIT2-DR: This instruction is used to indicate the completion of the test procedure. In 

addition, it allows the TAPC to enter into the update state or to indicate the end of the 

Pause-DR command such that the Shift-DR can be activated so as to shift more data. 

 Update-DR: In this command, the data is latched so as to obtain the parallel output from 

the selected data registers on the falling edge of the TCLK. The data stored in one data 

register is shifted to another data register in the boundary scan cell discussed above so as 

to perform the operation of a serial shift register.  

3.5 IEEE 1500 Architecture  

 

The IEEE 1500 standard defines the use of wrapper architecture on the boundary of input/output 

terminals of different cores which allows the testing of different types of cores in a standardized 

manner. Figure 16 shows the scenario where the N cores are wrapped by the IEEE 1500 standard 

defined wrapper. The wrapper serial port (WSP) comprises of the wrapper serial instructions which  

 

Figure 16: IEEE P1500 illustrating wrapper on different cores and TAM [48] 
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consist of wrapper serial input (WSI), the wrapper serial output (WSO), and several wrapper 

serial control (WSC) terminals. The individual wrapper has an instruction register called the 

wrapper instruction register (WIR) whose function is to store the instruction to be executed for 

the individual cores [48-50]. The wrapper serial port supports serial test instructions much like the 

boundary test architecture of the IEEE 1149.1 architecture. Moreover, the IEEE 1500 standard also 

supports parallel test access mechanisms. Individual cores can have their own TAM-in and TAM-

out ports consisting of different control lines to support the parallel test access instructions for the 

cores.  Figure 17 shows the both the core interface and the serial and parallel data control as being 

highlighted. Also reflected in figure 17 are the wrapper parallel control (WPC), wrapper port 

input (WPI), maps to the TAM input port and the wrapper parallel output (WPO) which 

corresponds to the wrapper output port. In the IEEE 1500 standard, serial ports are defined to be 

mandatory; on the other hand, the parallel ports are defined to be optional. The parallel interface 

defined in the IEEE 1500 standard leads to significant test time reductions for the SoC based testing 

 

Figure 17: IEEE P1500 Test interface illustrating parallel and serial wrappers [48] 
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as compared to the IEEE 1149.1 standard. In the IEEE 1500 standard, the use of core test language 

is also proposed which supports the usage of different kinds of cores from different vendors on the 

same system on chip. The language defined can capture and express the test related information 

by complying with the defined IEEE 1500 standard [48]. 

Figure 18 shows the detailed architecture of the IEEE 1500 standard and the standard core 

architecture which compromises of the following parts, as described below [48]: 

1.   Wrapper serial port (WSP) which consists of wrapper serial input (WSI), wrapper serial 

output port (WSO), and several wrapper terminals. Analogous to TDI and TDO of the 

IEEE 1149.1 standard, WSP uses WSI and WSO to scan in and out the wrapper instructions 

in the IEEE 1500 standard. The mandatory instructions which are included are WRSTN, 

 

Figure 18: Test circuitry supporting IEEE P1500 architecture [48] 
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WRCK, SelectWIR, CaptureWR, ShiftWR, and UpdateWR with optional instructions 

called TransferDR which are briefly defined below.  

 WRCK- This instruction is dedicated to the operation of the IEEE 1500 standard. 

 AUXCKn- This instruction is used for the auxiliary 1500 clocks and can be used 

for the implementation of wrapper boundary registers. The n signifies the number 

of auxiliary clocks which signifies the number of clock being used. These clocks 

can be shared by the system clocks as well. 

 WRSTN-This instruction resets the wrapper circuitry and takes the system into the 

normal mode of operation, as required. The wrapper bypass instruction is analogous 

to the wrapper instruction defined in the IEEE 1149.1 standard. 

 SelectWIR- This instruction is used to determine an instruction or the data type of 

operation to be performed. If the selectWIR =1, then it signifies the connection 

between WSI and WSO, else only some data registers are connected between WSI 

and WSO.  

 CaptureWR-This instruction is used to enable capture operation for the selected 

data registers. 

 ShiftWR- This instruction enables the shift operation for the selected registers. 

 UpdateWR- As the name suggests, it is used for the update operation of the data 

registers. 

 TransferDR-This is used for the transfer operation for of the selected registers 

implementing the transfer function. 
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2. Wrapper Parallel Port (WPP) comprises of the user defined wrapper parallel input (WPI), 

wrapper parallel output (WPO), and wrapper parallel control (WPC) signals. All of these 

terminals are optional and a WPP may include clock terminals of the WSC. 

3. Wrapper Instruction Register (WIR) is used to store the information which needs to be 

executed in the IEEE 1149.1 standard. When the WSC is set to 1, the WIR is selected 

unconditionally. It is implemented using a two stage design which supports the loading and 

shifting of the instruction in the data registers. The broad differences between the IEEE 

1149.1 and IEEE 1500 standard can be outlined as follows: 

 There is no state machine used in the IEEE 1500 standard and the control signals 

used are provided by the WIR, which get the instruction form the WSC terminals. 

Figure 28 shows the image of the wrapper instruction register which consists of 

shift stage and decode/update stage as well; and 

 IEEE 1500 optionally provides a parallel load mode as shown in figure 24, which 

allows the WIR to capture the control information directly or to capture data that 

can be used to test WIR or other IEEE 1500 circuitry. 

4. Wrapper Bypass Register (WBY) - is used similarly to the bypass register used in the IEEE 

1149.1 architecture. The WBY register is selected and connected between the WSI and 

WSO if the current instruction of the wrapper bypass register is being executed. It can also 

act as the default register between the WSI and WSO.   

5. Wrapper Boundary Register (WBR) - It consists of wrapper boundary cells analogous to 

the boundary scan registers of the IEEE 1149.1 standard. There are 4 terminals in each 

Wrapper boundary register (WBR),  namely, cell functional input (CFI), cell functional 
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output (CFO), cell test input (CTI), and cell test output (CTO) which is shown in figure 

18.The functional modes are further classified as follows : 

 Normal Mode: The WBR is transparent to the system and core executes the normal 

function of operation. 

 Inward Facing Mode: The test access is for the core and the functional inputs of 

the core are controlled by WBR and also observed by the WBR.  

 Outward Facing Mode: The test access is used for the external test circuitry where 

the wrapper functional outputs and wrapper functional inputs are controlled and 

captured by the Wrapper boundary register (WBR). 

 Nonhazardous (safe) mode- The functional inputs and outputs of the core are 

controlled by the wrapper boundary register (WBR) to a safe state. 
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Chapter 4 

A Hardware Security Solution against Scan-based Attacks utilizing LFSR 

4.1 Introduction to Hardware attacks  

In this chapter, the possible hardware attacks on the IEEE 1149.1 standard and a secure method of 

testing resilient to hardware attacks are presented and discussed. Scan based designs for test 

techniques have been widely adopted and used for many years. Though such access is desirable 

for testing the circuit under test, it is not acceptable for secure chips as it can lead to their 

exploitation. In the proposed method, a secure way of testing the circuit under test is presented and 

the access to the circuit under test is severely limited so as to reduce the risk of scan based attacks. 

To address the testability issue, a built in self-test is proposed so as to thwart off against scan based 

and side channel analysis attacks. 

4.2 Literature Survey and Existing solutions in Literature 

Scan based testing provides a good control over the controllability and observability of the circuit 

under test. Such access is not desired for the secure circuit under test. Scan chain based testing can 

also be exploited for cryptanalysis attacks as they give direct access to the circuit under test [51-

52]. Also, various other attacks such as differential power analysis attacks [52], timing analysis 

attacks [53], and fault injection attacks [54-55] may present themselves when using scan chain 

based testing. Many well-known encryption algorithms such as the RC4 stream cipher and the 

AES encryption algorithm have been attacked by the use of scan based testing techniques [56]. 

Thus, a tradeoff needs to be maintained between the security and testability of the chip under test. 

In [57], authors have discussed how the scan chains can be used to retrieve the secret key from the 

chip under test even when the critical registers containing the secret key are not included in the 

chip. In [58], authors have used scan based design for the test method from the perspective of 
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physically unclonable functions (PUF).The variations present in terms of process, voltage and 

temperature in addition to the intrinsic characteristics of PUFs have all been studied and discussed 

by the authors. Yu Zheng et.al. [59-60], have discussed how scan chains can be used from the 

perspective of PUF and how unique signatures can be obtained from scan chains. To counter scan 

based attacks various solutions have been proposed such as using built-in-self-test for testing, 

hybrid designs which are combination of BIST and scan chains [61]. Yang et.al. [57, 62] have 

discussed attacks against the Advanced Encryption Standard hardware implementation by using 

scan chains as the tool for information leakage and for the recovery of the crypto key of the 

Advanced Encryption Standard. To mitigate the problem of scan based attacks, authors have also 

introduced a solution which uses the mirror key registers for the insecure mode of testing and a 

different set of registers for the secure mode of testing. Authors have also concluded that even if 

the key register are not directly scannable, the attackers can still build the key and hence, attack 

the system. In [63], authors have proposed a scan chain scrambling technique which, provided that 

the right key is given, the assignment of key registers is static, else the semi-random values are 

assigned to the key registers. Lock and key technique is proposed in [64] to mitigate the problem 

of scan based attacks. Here, they have used a linear feedback shift register so as to input the right 

test vectors in the circuit under test. A right test key is needed to switch from the insecure mode to 

the secure mode of testing. If the test key entered by the user is not authentic, the LFSR assumes 

the semi random values which can mislead the attacker. Low cost secure scan (LCCS) has been 

proposed as a solution for the protection of intellectual property information in [65]. In this 

solution, dummy flip flops are used in addition to the normal D flip flops in the scan based testing 

technique. At the time of testing, the right test key needs to be entered in the right sequence with 

the dummy D flip flops. If the right test key is not integrated in accordance with the position of the 
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dummy flip flops, then random values are assigned in the scan based testing technique and random 

responses are shifted out from the flip flops. In [66], authors have proposed a scan based 

architecture in which the subsequent values are changed dynamically at each stage of scan flip 

flops and hence, creates a secure way of testing the circuit under test.  

4.3 Scan Based Attacks 

Scan chains provide full access to the circuit under test (CUT) through the test access port of the 

CUT in the test phase. The test responses obtained from the circuit under test are used for the 

evaluation. The scan based testing operation can be described in the following four steps. 

a) Scan In: In this step, the test vectors are serially loaded into the scan flip flops which are 

directly connected to the circuit under test. The known test values can even be fed to the 

critical registers in the scan based test technique. 

b) Response Capture: The response of the applied test vectors to the circuit under test is 

captured at the output by the scan flip flops. 

c) Scan Out: The response captured by the scan flip flops are shifted out and are available at 

the output pin TDO. 

d) Response Evaluation: The responses obtained for the circuit under test are analyzed by 

the attacker to unfold the test circuitry and hence, decode the position of the critical 

registers. 

To counter this type of scan based attack and make the data obtained from scan based testing less 

prone to attacks, a solution has been proposed in [56] to introduce random invertors in the scan 

chain path. For a total number of m flip flops, the proposed solution can have 2m various possible 

configurations and the probability of attack would then be 1/2m.The shortcoming of this technique 

is that after fabrication, the positon of invertors cannot be changed and it remains fixed forever. A 
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spy flip flop scheme has been proposed in [67] which prevents the switching from one mode to 

another mode of testing. This scheme requires the use of a secure test controller and the overhead 

area of the proposed scheme is also very significant. The architecture discussed above is not prone 

to fault injection or side channel power analysis attacks which are different types of attacks to leak 

out critical information from scan based testing. 

4.4 Proposed Method 

In the proposed method of testing, the secret code is generated by an array of flip flops which can 

be used for the purpose of encryption or identification as shown in figure 19. The flip flops are 

hard wired to generate the secret key at the power-on state of the array of flip flops. To protect the 

secret key created by the array of flip fops against scan based attacks, direct access to the flip flops 

is not given in the proposed technique. Instead, a built in self-test is used as the design for test 

method to test the circuit under test. There are two modes of operation in the proposed method: (a) 

the secure mode or the safe mode of operation and (b) the test mode or the insecure mode of testing. 

In the test mode of operation of scan based testing, the first three flip flops are configured to work 

as the test pattern generator (TPG) which generates the code for the testing of the circuit under test 

and is shifted through the array of flip flops. The proposed scheme does not allow switching from 

insecure mode to secure mode; on the other hand, if the system switches from secure mode to 
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insecure mode, then the following steps are sequentially taken [68]:  

 a reset signal is applied to the array of flip flops containing the secret key to clear the 

content of all flip flops; 

 the first three flip flops are converted to a 3 bit-LFSR to act as an Automatic Test pattern 

generator (ATPG) for the array of flip flops configured as the shift register in this mode of 

testing;  

 the access to the output of the shift register is granted to the scan chain which will allow 

the scan chain to capture the data and perform the response evaluation operation; and lastly 

 the data captured by the scan chain is compared against the response of a fault free circuit 

to determine whether or not the circuit generating the secret key is faulty.. 

 

 

Figure 19: First 3 flip flops configured as test pattern generator [68] 
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It is not necessary to power off the circuit while switching from the secure mode to the test mode 

as the reset signal is applied to the array of flip flops. The proposed architecture in the secure mode 

of testing is shown in the figure 20. The test patterns which are generated by the test pattern 

generator are shown in the figure 21 and are determined by the number of D flip flops required for 

the purpose of testing. As compared to the test techniques proposed in [65], no separate set of 

registers is needed for the different modes of testing and it reduces the area overhead by a large 

amount. A fault in the circuit generating the secret code changes the output data captured by the 

scan chain. The transition from the secure mode to insecure mode sends a reset signal through the 

chain of flip flops as shown in the figure 22.The control circuit prevents the attackers from access 

to the key through the shifting of the data right after changing the mode of operation. To address 

the testability issue of the key generating circuit a built in self-test (BIST) is developed in the figure 

19 [68]. 

 

Figure 20: Stored hard wired key in array of D flip flops [68] 
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The first three flip flops are configured to form the shift register which generates the test patterns 

represented by the equation [68] 

                                              𝐹𝐿𝐹𝑆𝑅 = 𝑥3 + 𝑥 + 1 

The pattern generated by the LFSR is applied to the rest of the flip flops and the response by the 

last flip flop is captured by the scan chain for the evaluation. The test patterns generated by the 

LFSR is shown in the figure 21. It can cover all the stuck at faults since the output of each flip flop 

has to switch from the high to low and low to high. It can also be used cover the delay faults due 

to the successive number of transitions between the adjacent test patterns. A fault in the circuit 

generating the secret code changes the output data captured by the scan chain. To support the 

proposed architecture, one state can be added to the IEEE 1149.1 boundary scan architecture as 

shown in figure 23. The states of the TAP controller has to accommodate one extra state to support 

the secure mode of testing.  

 

Figure 21: 3-bit LFSR configured to act as test pattern generator [68] 



42 
 

As the Test Mode select (TMS) switches to the high level, it enters the safe mode and remains in 

this mode as long as the TMS is high. In this state, the N bit secret key loads while the access to 

the main scan chain is disabled. As soon as the TMS switches to low, it will change state and enters 

the scan mode. Before switching to the scan mode, the control circuit generates a pulse to reset the 

flip flops [68]. 

 

 

Figure 22: Test Controller for switching between various modes of testing [68] 

 

Figure 23: Modified 16-bit state machine supporting IEEE 1149.1 architecture [68] 
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4.5 Simulation Results 

The proposed architecture in [68] was implemented in the Cadence environment with 65nm 

technology. The results were also compared to the existing solutions in literature and are shown in 

the Table 2. The effect on increasing area overhead has also been studied. The layout of the 

proposed architecture is also shown figure 24. The proposed architecture consumes 1571 µm2 of 

Silicon. The proposed architecture is almost linearly scaled with the use of 256 bit secret key, 

which is double of the 128 bit key [68].  

 

 

 

Figure 24: The implemented design on cadence 65nm suite [68] 

 

Table 2: Comparison of proposed architecture with existing solutions [68] 
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Chapter 5 

A Secure Test Solution using BIST for Crypto-Cores  

5.1 Introduction to Core based attacks 

A common system-on-chip (SoC) can have many embedded cores. Generally, the cores embedded 

on the system-on-chip can come from various chip vendors .The cores embedded on the chip can 

be in the form of soft cores or hard cores. Testing of system on chips by itself has become a 

problem the security related concerns add another dimension to the complexity of system on chip 

(SoC) testing. Scan based design for testability is one of the popular test techniques but this method 

compromises the security of the device under test. The system utilizing scan chains are prone to 

various types of attacks.  

5.2 Scan based attacks and countermeasures  

Many encryption algorithms such as Data Encryption Standard (DES), Advanced Encryption 

Standard (AES), and Triple DES are key based algorithms and involve either the use of a private 

key or a public key in the encryption and decryption of the plaintext. Attackers can analyze and 

access the key involved in these algorithms and thus, attack the whole system [69]. The AES 

algorithm is a widely accepted standard by NIST [70]. AES can use a 192, 128 or 256 bit input to 

encrypt or decrypt the data. The plaintext data is processed and computed on two dimensional 

arrays. As the first round, also known as the initial round, is completed using the round function, 

the plaintext message is copied to an array.  It is then XOR-ed with a secret key contained in the 

algorithm. The array is later transformed by implementing the round function and repeating it 10 

times. 
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The final state is then copied as the output. The round function of AES can be parameterized by 

the key expansion and it is capable of generating a variation of the original secret key for another 

round. A single AES round consists of many operations such as SubBytes, ShiftRows, 

MixColumns, and the AddRoundkey operations. Once the first round is completed, the computed 

value of the round register is used in the second round. For testing the functionality of a chip, it is 

mandatory to include the round register. The attacker takes advantage of the chip using the scan 

chain embedded in the chip to retrieve the secret key used in the encryption algorithms. Figure 25 

illustrates the steps involved in AES encryption operation, and figure 26 shows how an attacker 

can attack the round operation of AES using the internal scan chains. The round register also stores 

the intermediate cipher-text before and after the pre-round operation. The attacker switches the 

chip implementing the AES algorithm many times between the normal mode and the test mode to 

build the entire structure of the cryptosystem and control the system as required 

 

Figure 25: Steps involved in AES Encryption [70] 
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by an attacker [71]. An attacker may also resort to a side channel attack [69] or a signature attack 

[72] to obtain the secret key from the encryption algorithms. In [73], a fake key method is 

presented. In the system on chip environment, even though various protection measures are used, 

the critical information can still be obtained through the primary input or output pin. The scan 

based attacks can compromise the security of TV satellite boxes as well, which can lead to the 

shipping of many defective systems to customers. In [74-75], it is shown that the security of the 

crypto system can be compromised if the required steps are not taken to increase the level of system 

security. In [76], the authors have successfully attacked the trivium cipher and have generalized 

the attack to various other stream ciphers as well. Different attacks have been proposed against 

various stream ciphers using scan chain designs [74]. The authors implemented the trivium cipher 

scan chain design on the Spartan FPGA board and proposed the XOR- chain architecture as the 

countermeasure to prevent scan based attacks. In the proposed XOR scan chain 

 

Figure 26: Scan based attack on AES round operation [72] 
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architecture, random XOR gates are inserted in the normal scan chain. In the modified architecture, 

one of the inputs of the XOR gate is the input of the flip flops preceding the normal output of the 

scan chain as shown in figure 27. In the proposed scheme, the XOR gates serve as the invertor and 

invert the previous value of data fed in the scan chain. In Figure 27, the authors have discussed the 

placement of XOR gates at specific positions between the normal D flip flops and discuss the effect 

on the final output pattern obtained from the scan_out pin. In the end, the security and area 

overhead analyses of the proposed technique are also performed with respect to the previous 

published works in literature. By taking advantage of side channel information obtained from the 

scan based attack, many recent encryption algorithms such as RSA [77], ECC [78] can be attacked 

successfully using the scan chains. The proposed secure testability method does not deviate much 

from the normal scan based testing and does not compromise the fault coverage provided by the 

normal scan based test technique. 

 

Figure 27: Architecture showing the XOR gate at random places [76] 
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5.3 Proposed Method 

 

In the proposed method, the access to the crypto-core containing security sensitive information is 

not provided through the scan chain in the operation mode as shown in Figure 28. A BIST is 

considered to perform tests on the crypto-core.  As a result, the boundary scan cannot be used to 

access the critical information in the crypto-core. The BIST controller for the proposed method 

consists of test pattern generators, the circuit under test, and the response analyzers. The BIST 

controller test pattern generator is designed in such a manner that it achieves the required fault 

coverage. The test pattern generated by BIST is fed into the circuit under test and the responses 

obtained from the circuit under test are then compared by the output response analyzer, which 

compares the output with the stored “golden” test patterns. The obtained test responses determines 

whether the circuit under test is faulty or fault free. To shift the responses to the test access port, 

the switches needs to be closed. The proposed method only makes use of the offline BIST i.e. 

when the circuit under test is not in its normal mode of operation. The proposed BIST for testing 

the circuit under test generates the timing control signals and the scan enable signals. All clocks 

are generated by the proposed logic BIST controller to coordinate the BIST operation among the 

TPG, CUT, and ORA, as well. As the test operation is completed, the BIST then sends the final 

 

Figure 28: Proposed Architecture showing the signature analysis 
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done command to indicate the process is complete. The advantage of the proposed solution is 

summarized below. 

 The proposed BIST method can effectively test and find the errors of the system. It can 

also provide the diagnostic information about the circuit under test without the need of an 

external tester. 

 The proposed BIST supports the on-chip implementation and testing of the circuit under 

test which can support at-speed testing for the circuit under test. 

 Using the proposed BIST effectively reduces the dependency on external testers, the test 

time, and test costs as BIST itself acts as the tester for the circuit under test.  

While designing the proposed BIST, much care was taken to deal with the unknown blocking 

values used in the output response analyzer for signature analysis. Any unknown values (X), if fed 

to the output response analyzer, can corrupt the response analyzer and thus, the whole BIST can 

malfunction. In the fault injection attack, the attacker deliberately alters the correct functioning of 

the circuit under test by resorting to different methods such as analyzing the variations in the power 

traces, inducing faulty clocks in the circuit, overheating the device, and sometimes exposing the 

device to particular types of radiation. In one of the methods, an attacker lowers the chip power 

supply level and then injects transient faults by starting from a single bit error and increasing the 

number of faulty bits later. The above methodology is proven to be successful in the ARM 9 

processors [79-80] and in the ASIC implementation of the stream ciphers [81-82].  

5.4 Complexity Analysis  

To successfully attack the proposed crypto system, the following assumptions need to be made by 

an attacker: 
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1. The attacker first needs to find the circuit under test as the different circuits under test may 

have their own specific built in self-test on the system on chip (SoC); 

2. The attacker is aware of the P1500 standard and has the full control of the system on chip;  

3. The attacker has control over the internal scan chain of the circuit under test on the system 

on chip and the pin to the internal scan chain of the circuit under test is not fused out; and 

4. The attacker understands and comes to the fact that the proposed test technique can only 

be used for the offline testing of the circuit under test.   
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Chapter 6 

A Hardware Secure Solution for Scan enabled Circuits using access Control 

6.1 Introduction 

As human society is progressing towards technological advancement and relying more and more 

on electronic devices, there has been an ever-increasing demand to constantly improve the 

technology available. Since integrated circuits form the heart of electronic devices, there has always 

been demand to have tiny ICs with millions of transistors embedded on them. Testing forms an 

important step which needs to occur before an IC can be released in the market for public use or 

before it can be used for board level applications [83-84]. Over past years, many techniques have 

been developed to test integrated circuit systems at various levels such as the board level or the 

system level.  

6.2 Literature Survey and Existing Solutions 

To test a circuit, an access mechanism has to be developed to control the internal nodes and observe 

their response to applied test vectors. Scan is a widely used technique which increases the 

testability of the device under test. An unrestricted access provided by the scan architecture raises 

a conflict between the security and testability of devices. Though scan based testing offers many 

advantages in controlling and observing the internal nodes of the circuit under test, it also suffers 

from disadvantages as listed below: 

 conventional scan can be used to extract sensitive information such as private key from 

embedded crypto-cores; 

 area overhead increases if the full circuit is to be tested using the scan based testing 

technique; 
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 the volume of the test patterns increases considerably as the design becomes more and 

more complex and hence, the test patterns have to be compressed before they can be applied 

to the circuit under test; and lastly 

 in order to reduce complexity, test time and power consumption, partial scan design can be 

used at the cost of low fault coverage.  

To have a secure test solution against scan based attacks, many methods have been proposed. In 

[85], authors have proposed a new secure solution to protect the secret data from scan based 

attacks. The authors in the proposed architecture have recommended a dedicated architecture to 

control the data fed to the Logic under Test (LUT). The dedicated architecture consists of security 

blocks called reset controllers and scan enable integrity controllers to control a state machine. The 

state machine satisfies two main principles i.e. robust encoding and redundancy. To prevent a 

physical attack on the scan chain, the proposed method also embeds the scan enable integrity block. 

To bypass this block, an attacker has to know the correct position of critical scan flip flops which 

is not an easy task. In [86], Ross et.al. have proposed different attacks against smart cards, TV 

systems, and security processors. It is shown how tamper resistant attacks can easily demean 

security systems. From a variety of available tamper resistant techniques, the designers settled with 

the four layer wrapping of 40 gauge (80 µm) nichrome wire which surrounded the processor, 

battery, memory, and even the sensory circuitry. The authors in [87] have proposed a secure design 

flow for securing ICs against the scan based side channel analysis attacks. To have a secure design, 

rather than using the full custom layout with the iterative design process, the authors have proposed 

a few modifications on the logic synthesis, the place and route step, and the stream out step to have 

a secure design flow. In [88], a secure design for test has been developed for the pipelined 

Advanced Encryption standard. The proposed method provides a good tradeoff between security 
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and testing of crypto ICs, it provides a high test quality, and good fault diagnosis while protecting 

the key of the implemented crypto hardware. In [89-90], various secure scan based designs for test 

are discussed and a secure design for a test technique is proposed by using a popular hash function 

called CRC-MAC (cyclic redundancy check-message authentication algorithm) which performs a 

stream oriented operation on the input stream data. The authors have implemented the CRC-MAC 

algorithm to have a secure design for a test solution. In [91], Chang et.al. have discussed the 

watermarking of ICs as a countermeasure against IP fraudulence by unauthorized foundries. A 

secure solution is proposed in the above paper which protects against the counterfeiting of ICs by 

foundries, the above watermarking scheme bridges the gap between IP protection and IP 

management. The increased area overhead by the proposed method has also been reduced by the 

nearest neighbor algorithm. The authors in [92] have proposed scan based side channel attacks 

against the symmetric stream ciphers, in which the attacker have inserted the scan chains in the 

Light Encryption Device (LED) stream cipher. The 64-bit key was recovered by just applying 73 

different plaintext vectors.  

6.3 Proposed Method 

 

 

Figure 29: Proposed Architecture for controlled access 
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In the proposed method a secure controller is used to control the transitions from an insecure mode 

to a secure mode. The controller consists of a hardwired key comparator as shown in figure 29. To 

protect the internal circuit under test against attacks using the scan chain, direct access to the circuit 

under test is not provided in the insecure mode of testing. There are two modes of operation, one 

being the vulnerable or insecure mode in which the key is not provided. The scan chain in this 

mode shifts random data from randomly seeded LFSR as shown in figure 29. The input test vector 

from TDI is XOR-ed with the pattern from the LFSR and consequently, the input test vector at 

TDI needs to be modified accordingly based on the pattern generated by the LFSR. In the proposed 

method a different LFSR has been used if the user is not verified, the purpose of using the different 

LFSR is that attacker is not able to build LFSR from known patterns by Berlekamp Massey 

algorithm. When the device is switched from the vulnerable mode to the secure mode, the 

following operations which take place are summarized below.  

a) A reset signal is applied to the LFSR to erase the contents of the flip flop. 

b) The test key is compared with the hardwired key embedded in the controller at the time of 

manufacturing. 

c) Once the test-key is verified, the scan chain is granted access to the circuit under test. The 

test patterns are XOR-ed with the output of LFSR and then applied to the circuit under test. 

d) After the verification of the key, the user is asked to seed the LFSR; if the seeding of the 

LFSR is wrong, it produces the wrong test patterns 

If the test key is not right, the randomly seeded LFSR delivers random patterns to mislead the 

attackers. The reset signal applied before switching to the secure mode from the vulnerable 

mode ensures that any previous patterns from the LFSR obtained are cleared. 
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6.4 Measurement Results 

 

The above proposed method was implemented on the Altera FPGA DE2 115 board as shown in 

figure 30. The system illustrates the area of the proposed method on the chip planner of the Altera 

Board and the measurement set-up. The hardwired key was implemented using switches on the 

FPGA board and the user key was provided through the input port. When the input key was right 

as compared to the hardwired key, a signal was generated which allowed the circuit to enter the 

secure mode of operation. In the secure mode, the input test patterns were XOR-ed with the LFSR 

data and then applied to the CUT. This is needed to reduce the probability of reverse engineering 

through input and output data analysis. As the input test pattern was applied, the coded output was 

seen at the output as shown in figure 31. However, as shown in figure 33, when the user is not 

verified, access to the main scan chain and the circuit-under test is disabled and the semi-random 

data from the randomly seeded LFSR is shifted out through the TDO pin. However, the variation 

is observed when the length of the implemented LFSR is increased for the purpose of high security.  

 

Figure 30: Measurement setup for the proposed architecture 
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The proposed solution is compared with the existing solutions in literature in Table 3. To switch 

from the insecure mode to the secure mode and vice versa, a controller is proposed which is shown 

in Figure 32. 

 

 

Figure 31: Waveform if user is granted access to scan chain 

 

Figure 32: Proposed Secure controller to switch modes 
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6.5 Conclusions 

The proposed solution in this section reduces the area overhead as compared to the existing 

solutions as shown in table 3. The proposed solution checks the authenticity of tester at two levels. 

 

Figure 33: Waveform to support if the user is not granted access 

 

Table 3: Area overhead and comparison with existing solutions 
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Chapter 7 

                                     Summary, Conclusions and Future Work 

Scan based design as a test method is an effective technique that provides strong controllability 

and observability which, in turn, provides a high fault coverage for the circuit under test. Using 

scan chains for testing opens the opportunity for a scan-based attack. In this thesis, three solutions 

for different applications have been proposed to protect a circuit-under-test against scan-based 

attacks.   

A fully testable circuit may not be secure as it grants the full controllability and observability of 

the circuit nodes to the tester. To address the trade-off between security and testability, an LFSR 

based solution was proposed. The proposed solution operates in two modes (a) the secure mode of 

testing and (b) the test mode or the insecure mode of testing. In the secure mode, the circuit under 

test is isolated from the scan chain and even an indirect access is not provided to the circuit under 

test. An embedded LFSR was used to generate the test patterns for the circuit under test. Denying 

access to enter any input pattern in the secure mode of testing wards off the opportunity to mount 

any successful attacks on the circuit under test. In the insecure mode of testing, access to the circuit 

under test is given but the access to the key is disabled in this mode of testing.   

In the second method, a built-in self-test solution for the cores embedded in a system on chip (SoC) 

has been proposed. The proposed solution does not need an advanced external tester to perform 

the tests on the system-on-chip.  If the circuit is tested at the manufacturing stage, full access to 

the device-under-test is granted. On the contrary, if the device is tested in-field, access to the CUT 

is disabled.  
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In the third method, a secure control test solution is presented. In this method, a test key is used to 

grant access to the CUT.  If the test key is verified, then access to the main scan chain is given, 

else random data is shifted out from a random pattern generator to mislead the attacker. 

With the emergence of new technologies, new test solutions have to be developed to ensure 

security and prevent security threats against hardware through the scan architecture. TSV based 

3D stacked ICs are expected to present significant performance improvements compared to the 

conventional 2D ICs. The potential of this new technology will not be fully materialized if the 

security related issues are not properly addressed. A hardware security solution against side-

channel attacks and scan-based attacks for 3D ICs is a great research topic for future work.    
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