254 research outputs found

    3D Spatial Data Infrastructures for web-based Visualization

    Get PDF
    In this thesis, concepts for developing Spatial Data Infrastructures with an emphasis on visualizing 3D landscape and city models in distributed environments are discussed. Spatial Data Infrastructures are important for public authorities in order to perform tasks on a daily basis, and serve as research topic in geo-informatics. Joint initiatives at national and international level exist for harmonizing procedures and technologies. Interoperability is an important aspect in this context - as enabling technology for sharing, distributing, and connecting geospatial data and services. The Open Geospatial Consortium is the main driver for developing international standards in this sector and includes government agencies, universities and private companies in a consensus process. 3D city models are becoming increasingly popular not only in desktop Virtual Reality applications but also for being used in professional purposes by public authorities. Spatial Data Infrastructures focus so far on the storage and exchange of 3D building and elevation data. For efficient streaming and visualization of spatial 3D data in distributed network environments such as the internet, concepts from the area of real time 3D Computer Graphics must be applied and combined with Geographic Information Systems (GIS). For example, scene graph data structures are commonly used for creating complex and dynamic 3D environments for computer games and Virtual Reality applications, but have not been introduced in GIS so far. In this thesis, several aspects of how to create interoperable and service-based environments for 3D spatial data are addressed. These aspects are covered by publications in journals and conference proceedings. The introductory chapter provides a logic succession from geometrical operations for processing raw data, to data integration patterns, to system designs of single components, to service interface descriptions and workflows, and finally to an architecture of a complete distributed service network. Digital Elevation Models are very important in 3D geo-visualization systems. Data structures, methods and processes are described for making them available in service based infrastructures. A specific mesh reduction method is used for generating lower levels of detail from very large point data sets. An integration technique is presented that allows the combination with 2D GIS data such as roads and land use areas. This approach allows using another optimization technique that greatly improves the usability for immersive 3D applications such as pedestrian navigation: flattening road and water surfaces. It is a geometric operation, which uses data structures and algorithms found in numerical simulation software implementing Finite Element Methods. 3D Routing is presented as a typical application scenario for detailed 3D city models. Specific problems such as bridges, overpasses and multilevel networks are addressed and possible solutions described. The integration of routing capabilities in service infrastructures can be accomplished with standards of the Open Geospatial Consortium. An additional service is described for creating 3D networks and for generating 3D routes on the fly. Visualization of indoor routes requires different representation techniques. As server interface for providing access to all 3D data, the Web 3D Service has been used and further developed. Integrating and handling scene graph data is described in order to create rich virtual environments. Coordinate transformations of scene graphs are described in detail, which is an important aspect for ensuring interoperability between systems using different spatial reference systems. The Web 3D Service plays a central part in nearly all experiments that have been carried out. It does not only provide the means for interactive web-visualizations, but also for performing further analyses, accessing detailed feature information, and for automatic content discovery. OpenStreetMap and other worldwide available datasets are used for developing a complete architecture demonstrating the scalability of 3D Spatial Data Infrastructures. Its suitability for creating 3D city models is analyzed, according to requirements set by international standards. A full virtual globe system has been developed based on OpenStreetMap including data processing, database storage, web streaming and a visualization client. Results are discussed and compared to similar approaches within geo-informatics research, clarifying in which application scenarios and under which requirements the approaches in this thesis can be applied

    Structure from Motion (SfM) Photogrammetry with Drone Data: A Low Cost Method for Monitoring Greenhouse Gas Emissions from Forests in Developing Countries

    Get PDF
    ArticleThis is the final version of the article. Available from MDPI via the DOI in this record.Structure from Motion (SfM) photogrammetry applied to photographs captured from Unmanned Aerial Vehicle (UAV) platforms is increasingly being utilised for a wide range of applications including structural characterisation of forests. The aim of this study was to undertake a first evaluation of whether SfM from UAVs has potential as a low cost method for forest monitoring within developing countries in the context of Reducing Emissions from Deforestation and forest Degradation (REDD+). The project evaluated SfM horizontal and vertical accuracy for measuring the height of individual trees. Aerial image data were collected for two test sites; Meshaw (Devon, UK) and Dryden (Scotland, UK) using a Quest QPOD fixed wing UAV and DJI Phantom 2 quadcopter UAV, respectively. Comparisons were made between SfM and airborne LiDAR point clouds and surface models at the Meshaw site, while at Dryden, SfM tree heights were compared to ground measured tree heights. Results obtained showed a strong correlation between SfM and LiDAR digital surface models (R2 = 0.89) and canopy height models (R2 = 0.75). However, at Dryden, a poor correlation was observed between SfM tree heights and ground measured heights (R2 = 0.19). The poor results at Dryden were explained by the fact that the forest plot had a closed canopy structure such that SfM failed to generate enough below-canopy ground points. Finally, an evaluation of UAV surveying methods was also undertaken to determine their usefulness and cost-effectiveness for plot-level forest monitoring. The study concluded that although SfM from UAVs performs poorly in closed canopies, it can still provide a low cost solution in those developing countries where forests have sparse canopy cover (<50%) with individual tree crowns and ground surfaces well-captured by SfM photogrammetry. Since more than half of the forest covered areas of the world have canopy cover <50%, we can conclude that SfM has enormous potential for forest mapping in developing countries.Leon DeBell flew the QPOD Quest UAV at Meshaw as part of flight testing for the QuestEarthWater project, which was funded by the UK Technology Strategy Board and NERC, and we are also grateful for the field assistance of Naomi Gatis and David Luscombe at this site. The NERC Tellus SouthWest project is acknowledged for providing the LiDAR data used at Meshaw. The authors would also like to thank Mark Buie, Bruce Gittings and Alasdair Mac Arthur for helping out with the UAV fieldwork at Dryden Farm

    Dead men's eyes: embodied GIS, mixed reality and landscape archaeology

    Get PDF
    Archaeology has been at the forefront of attempts to use Geographic Information Systems (GIS) to address the challenges of exploring and recreating perception and social behaviour within a computer environment. However, these approaches have traditionally been based on the visual aspect of perception, and analysis has usually been confined to the computer laboratory. In contrast, phenomenological analyses of archaeological landscapes are normally carried out within the landscape itself, computer analysis away from the landscape in question is often seen as anathema to such approaches. This thesis attempts to bridge this gap by using a Mixed Reality (MR) approach. MR provides an opportunity to merge the real world with virtual elements of relevance to the past, including 3D models, soundscapes and immersive data. In this way, the results of sophisticated desk-based GIS analyses can be experienced directly within the field and combined with phenomenological analysis to create an embodied GIS. The thesis explores the potential of this methodology by applying it in the Bronze Age landscape of Leskernick Hill, Bodmin Moor, UK. Since Leskernick Hill has (famously) already been the subject of intensive phenomenological investigation, it is possible to compare the insights gained from 'traditional' landscape phenomenology with those obtained from the use of Mixed Reality, and effectively combine quantitative GIS analysis and phenomenological fieldwork into one embodied experience. This mixing of approaches leads to the production of a new innovative method which not only provides new interpretations of the settlement on Leskernick Hill but also suggests avenues for the future of archaeological landscape research more generally

    Subglacial topography and landscape evolution from radio-echo sounding data in the Evans-Rutford Region, southern Antarctic Peninsula.

    Get PDF
    Knowledge of the subglacial bedrock topography of the Antarctic ice sheet is important for understanding modern and past ice flow as well as the present basal conditions. Inferring landscape evolution from the subglacial geomorphology can also provide insight into ice sheet interactions with other processes such as tectonics. This thesis utilises newly released radio-echo sounding data from the British Antarctic Survey GRADES-IMAGE radar survey to geomorphologically interpret the bed topography in the Evans-Rutford Region of Antarctica. The GRADES-IMAGE survey is a legacy radar survey that has not yet been examined in detail in terms of subglacial bed topography. In the work presented here, a new high-resolution Digital Elevation Model of the region has been generated, and the resulting subglacial landscape was mapped to delineate distinct geomorphological features. Hypsometric (area-elevation) analysis was carried out to characterise the landscape morphology, and a flexural isostatic rebounding model was applied in order to help consider the age and evolution of the pre-glacial landscape. The main finding from analysis of the subglacial features is the identification of ten flat plateau surfaces distributed throughout the study region. These plateaux sit under cold-based ice between deep incised glacial troughs, some of which have potential tectonic controls. Two populations of plateaux have been identified as potentially coherent pre-glacial surfaces. Three hypotheses are presented for the evolution of the regional landscape: passive margin evolution associated with the breakup of the Gondwana supercontinent, or an extensive planation surface that may have been uplifted either in association with the West Antarctic Rift System, or cessation of subduction at the base of the Antarctic Peninsula. Regardless of the process of formation, glacial erosion of the surrounding troughs likely coincided with the inception of the West Antarctic Ice Sheet, with the ice flow and erosion patterns topographically controlled by the regional tectonics

    Coastal management and adaptation: an integrated data-driven approach

    Get PDF
    Coastal regions are some of the most exposed to environmental hazards, yet the coast is the preferred settlement site for a high percentage of the global population, and most major global cities are located on or near the coast. This research adopts a predominantly anthropocentric approach to the analysis of coastal risk and resilience. This centres on the pervasive hazards of coastal flooding and erosion. Coastal management decision-making practices are shown to be reliant on access to current and accurate information. However, constraints have been imposed on information flows between scientists, policy makers and practitioners, due to a lack of awareness and utilisation of available data sources. This research seeks to tackle this issue in evaluating how innovations in the use of data and analytics can be applied to further the application of science within decision-making processes related to coastal risk adaptation. In achieving this aim a range of research methodologies have been employed and the progression of topics covered mark a shift from themes of risk to resilience. The work focuses on a case study region of East Anglia, UK, benefiting from the input of a partner organisation, responsible for the region’s coasts: Coastal Partnership East. An initial review revealed how data can be utilised effectively within coastal decision-making practices, highlighting scope for application of advanced Big Data techniques to the analysis of coastal datasets. The process of risk evaluation has been examined in detail, and the range of possibilities afforded by open source coastal datasets were revealed. Subsequently, open source coastal terrain and bathymetric, point cloud datasets were identified for 14 sites within the case study area. These were then utilised within a practical application of a geomorphological change detection (GCD) method. This revealed how analysis of high spatial and temporal resolution point cloud data can accurately reveal and quantify physical coastal impacts. Additionally, the research reveals how data innovations can facilitate adaptation through insurance; more specifically how the use of empirical evidence in pricing of coastal flood insurance can result in both communication and distribution of risk. The various strands of knowledge generated throughout this study reveal how an extensive range of data types, sources, and advanced forms of analysis, can together allow coastal resilience assessments to be founded on empirical evidence. This research serves to demonstrate how the application of advanced data-driven analytical processes can reduce levels of uncertainty and subjectivity inherent within current coastal environmental management practices. Adoption of methods presented within this research could further the possibilities for sustainable and resilient management of the incredibly valuable environmental resource which is the coast

    Regular Hierarchical Surface Models: A conceptual model of scale variation in a GIS and its application to hydrological geomorphometry

    Get PDF
    Environmental and geographical process models inevitably involve parameters that vary spatially. One example is hydrological modelling, where parameters derived from the shape of the ground such as flow direction and flow accumulation are used to describe the spatial complexity of drainage networks. One way of handling such parameters is by using a Digital Elevation Model (DEM), such modelling is the basis of the science of geomorphometry. A frequently ignored but inescapable challenge when modellers work with DEMs is the effect of scale and geometry on the model outputs. Many parameters vary with scale as much as they vary with position. Modelling variability with scale is necessary to simplify and generalise surfaces, and desirable to accurately reconcile model components that are measured at different scales. This thesis develops a surface model that is optimised to represent scale in environmental models. A Regular Hierarchical Surface Model (RHSM) is developed that employs a regular tessellation of space and scale that forms a self-similar regular hierarchy, and incorporates Level Of Detail (LOD) ideas from computer graphics. Following convention from systems science, the proposed model is described in its conceptual, mathematical, and computational forms. The RHSM development was informed by a categorisation of Geographical Information Science (GISc) surfaces within a cohesive framework of geometry, structure, interpolation, and data model. The positioning of the RHSM within this broader framework made it easier to adapt algorithms designed for other surface models to conform to the new model. The RHSM has an implicit data model that utilises a variation of Middleton and Sivaswamy (2001)’s intrinsically hierarchical Hexagonal Image Processing referencing system, which is here generalised for rectangular and triangular geometries. The RHSM provides a simple framework to form a pyramid of coarser values in a process characterised as a scaling function. In addition, variable density realisations of the hierarchical representation can be generated by defining an error value and decision rule to select the coarsest appropriate scale for a given region to satisfy the modeller’s intentions. The RHSM is assessed using adaptions of the geomorphometric algorithms flow direction and flow accumulation. The effects of scale and geometry on the anistropy and accuracy of model results are analysed on dispersive and concentrative cones, and Light Detection And Ranging (LiDAR) derived surfaces of the urban area of Dunedin, New Zealand. The RHSM modelling process revealed aspects of the algorithms not obvious within a single geometry, such as, the influence of node geometry on flow direction results, and a conceptual weakness of flow accumulation algorithms on dispersive surfaces that causes asymmetrical results. In addition, comparison of algorithm behaviour between geometries undermined the hypothesis that variance of cell cross section with direction is important for conversion of cell accumulations to point values. The ability to analyse algorithms for scale and geometry and adapt algorithms within a cohesive conceptual framework offers deeper insight into algorithm behaviour than previously achieved. The deconstruction of algorithms into geometry neutral forms and the application of scaling functions are important contributions to the understanding of spatial parameters within GISc

    An investigation into semi-automated 3D city modelling

    Get PDF
    Creating three dimensional digital representations of urban areas, also known as 3D city modelling, is essential in many applications, such as urban planning, radio frequency signal propagation, flight simulation and vehicle navigation, which are of increasing importance in modern society urban centres. The main aim of the thesis is the development of a semi-automated, innovative workflow for creating 3D city models using aerial photographs and LiDAR data collected from various airborne sensors. The complexity of this aim necessitates the development of an efficient and reliable way to progress from manually intensive operations to an increased level of automation. The proposed methodology exploits the combination of different datasets, also known as data fusion, to achieve reliable results in different study areas. Data fusion techniques are used to combine linear features, extracted from aerial photographs, with either LiDAR data or any other source available including Very Dense Digital Surface Models (VDDSMs). The research proposes a method which employs a semi automated technique for 3D city modelling by fusing LiDAR if available or VDDSMs with 3D linear features extracted from stereo pairs of photographs. The building detection and the generation of the building footprint is performed with the use of a plane fitting algorithm on the LiDAR or VDDSMs using conditions based on the slope of the roofs and the minimum size of the buildings. The initial building footprint is subsequently generalized using a simplification algorithm that enhances the orthogonality between the individual linear segments within a defined tolerance. The final refinement of the building outline is performed for each linear segment using the filtered stereo matched points with a least squares estimation. The digital reconstruction of the roof shapes is performed by implementing a least squares-plane fitting algorithm on the classified VDDSMs, which is restricted by the building outlines, the minimum size of the planes and the maximum height tolerance between adjacent 3D points. Subsequently neighbouring planes are merged using Boolean operations for generation of solid features. The results indicate very detailed building models. Various roof details such as dormers and chimneys are successfully reconstructed in most cases

    Implications of mountain shading on calculating energy for snowmelt using unstructured triangular meshes

    Get PDF
    In many parts of the world, the snowmelt energy balance is dominated by net solar shortwave radiation. This is the case in the Canadian Rocky Mountains, where clear skies dominate the winter and spring. In mountainous regions, solar irradiance at the snow surface is not only affected by solar angles, atmospheric transmittance, and the slope and aspect of immediate topography, but also by shadows from surrounding terrain. Many hydrological models do not consider such horizon-shadows. The accumulation of errors in estimating solar irradiance by neglecting horizon-shadows can lead to significant errors in calculating the timing and rate of snowmelt due to the seasonal storage of internal energy in the snowpack. A common approach to representing the landscape is through structured meshes. However, such representations introduce errors due to the rigid nature of the mesh, creating artefacts and other constraints. Unstructured triangular meshes are more efficient in their representation of the terrain by allowing for a variable resolution. These meshes do not suffer from the artefact problems of a structured mesh. This thesis demonstrates the increased accuracy of using a horizon-shading model with an unstructured mesh versus standard self-shading algorithms in Marmot Creek Research Basin (MCRB), Alberta, Canada. A systematic basin-wide over-prediction (basin mean expressed as phase change mass: 14 mm, maximum: 200 mm) in net shortwave is observed when only self-shadows are considered. The horizon-shadow model was run at a point scale at three sites throughout MCRB to investigate the effects of scale on the model results. It was found that small triangles were best suited for this topographic region and that shadow patterns were captured accurately. Large triangles were found to be too easily shaded by the model, created many disjointed regions. As well, model results were compared to measurements of mountain shadows by timelapse digital cameras. These images were orthorectified and the shadow regions extracted allowing for a quantitative comparison. It was found that the horizon-model produced results within 10 m of the measured shadows, and properly captured shadow transits. A point-scale energy balance model SNOBAL was run via The Cold Regions Hydrological Model, an HRU based hydrologic model. It was found that in the highly shaded valleys, snowpack ablation could be incorrect by approximately 4 days. Although MCRB was generally not significantly impacted by the over-estimation in irradiance in this study, insight into the horizon-shadowing process was possible as a result of the existing network of radiometers and other meteorological stations at MCRB. Because down-stream processes such as flooding depend on correct headwater snowmelt predictions, quantitative results demonstrating inaccuracies in a modelled component of the surface energy balance can help improve snowmelt modelling

    Quantification théorique des effets du paramétrage du système d'acquisition sur les variables descriptives du nuage de points LiDAR

    Get PDF
    La cartographie de la ressource forestière se concrétise par la réalisation d’inventaires sur de vastes territoires grâce à des méthodes de mesure automatiques ou semi-automatiques à grandes échelles. En particulier, le développement du LiDAR (light detection and ranging) aéroporté a ouvert la voie à de nouvelles perspectives. Bien que le LiDAR aéroporté ait fait ses preuves comme outil d’inventaire et de cartographie, l’étude de la littérature scientifique sur le sujet met en évidence que les méthodes de traitement de l’information ont des limites et ne sont généralement valides que dans une région donnée et avec un système d’acquisition donné. En effet, un changement dans le dispositif d’acquisition entraîne des variations dans la structure du nuage de points acquis, rendant lesmodèles de cartographie de la ressource non généralisables. Dans le but de créer des modèles de cartographie de la ressource qui soient moins dépendants de la région d’étude et du dispositif d’acquisition utilisé pour les construire, il est nécessaire de comprendre d’où viennent ces variations et comment, à défaut de les éviter, les corriger. Nous explorons dans cette thèse comment des variations dans la configuration des systèmes d’acquisition de données peuvent engendrer des variations dans la structure des nuages de points. Ces questions sont traitées grâce à des modèles mathématiques théoriques simples et nous montrons, dans une certaine mesure, qu’il est possible de corriger les données de LiDAR aéroporté pour les normaliser afin de simuler une acquisition homogène réalisée avec un dispositif d’acquisition « standard » unique. Cette thèse aborde l’enjeu de proposer et d’initier, pour le futur, des méthodes de traitement de données reposant sur des standards mieux établis afin que les outils de cartographie de la ressource soient plus polyvalents et plus justes à grandes échellesThe mapping of the forest resource is currently achieved through inventories made across large territories using methods of automatic or semi-automatic measurements at broad scales. Notably, the development of airborne LiDAR (light detection and ranging) has opened the way for new perspectives in this context. Despite its proven suitability as a tool for inventories and mapping, the study of the scientific literature on airborne LiDAR shows that methods for processing the acquired information remain limited, and are usually valid only for a given region of interest and for a given acquisition device. Indeed, modifying the acquisition device generates variation in the structure of the point cloud that often restrict the range of application of resource evaluation models. With the aim of moving towards models for resourcemapping that are less dependent on the characteristics of both the study area and the of acquisition device, it is important to understand the source of such variation and how to correct it. We investigated, how variations in the settings of the data acquisition systems may generate some variation in the structure of the obtained point clouds. These questions were treated using simple theoretical and mathematical models and we showed, to a certain extent, that it is possible to correct the LiDAR data, and thus to normalise measurements to simulate homogeneous acquisitions with a “standard” and unique acquisition device. The challenge pursued in this thesis is to propose and initiate, for the future, data processing methods relying on better established standards in order to build more accurate and more versatile tools for the large-scalemapping of forest resources

    Diffuse Minewater Pollution: Quantification and Risk Assessment in the Tamar Catchment

    Get PDF
    Merged with duplicate record: 10026.1/2901 on 01.02.2017 by CS (TIS)Abandoned metal mines in the Tamar catchment, south west England, represent a significant threat to surface water quality via generation of acid mine waters. Currently the River Tamar fails environmental quality standards (EQS) established under the Water Framework Directive (2000/60/EC) for dissolved Cu (x ̅ = 0.19 ± 0.05 μmol L-1) and Zn (x ̅ = 0.19 ± 0.06 μmol L-1, both 1997-2007) downstream of historic mining area of Gunnislake. The aim of this study was to quantify the risk to surface water quality by diffuse drainage generated by mine waste tips. For the first time, a GIS model was compiled and used to generate a priority list of known areas of mine waste, based on physical and environmental factors. The methodology was consistent with European guidance documentation published to meet the requirements of the Mining Waste Directive (2001/21/EC) and has since been applied, in a modified form, to other catchments in south west England. Two study sites, with contrasting mineralogy and hydrology, scored highly in the model and were the subject of field investigations from 2007-2009. These were Devon Great Consols (DGC), an abandoned Cu-As mine near Gunnislake and Wheal Betsy (WB), an abandoned Pb-Ag mine, near Mary Tavy. At each site, surface waters and shallow groundwaters were sampled and analysed for dissolved metals (including Al, Cu, Zn, Mn, Pb, Ni, and Cd), metalloids (As, Sb), major ions and anions. Samples of four selected mine waste tips were also gathered and subjected to a range of laboratory leaching experiments including the novel application of a dynamic upflow percolation test, based on an existing European method (CEN TS 14405). Leachates generated by the waste tips in the field were highly variable and elevated with respect to EQS for Al (up to 1850 μmol L-1), Cu (570 μmol L-1), Zn (34 μmol L-1), Ni (3.8 μmol L-1), Cd (0.17 μmol L-1), Mn (216 μmol L-1), Fe(537 μmol L-1) , As (380 μmol L-1) and Sb (5.4 μmol L-1). Estimated annual fluxes of dissolved metals were predicted using average rainfall data and catchment areas calculated in ArcHydro9 to estimate the annual discharge of waters from the tip. These calculations showed annual contaminant flux from the tips to exceed, or be of the same order of magnitude to, major adit discharges in the catchment (e.g. Cu 50900-66900 mol y-1 at DGC and 470 mol y-1 Cd at WB) and represented a significant contributor to metal flux in the Tamar catchment. Primary sulphide minerals in the waste were generally highly altered and metals (Pb, Cu, Zn, and Mn) and As were found to be strongly associated with secondary iron minerals, precipitated under oxic conditions. In finer wastes, sorption to clay minerals was also found to be very important for the retention of dissolved metals, particularly Pb. Concentrations of contaminants in column field leachates were similar for most metals (Cu, Zn, Mn, Ni and Cd) and may provide a useful tool for prediction of leachate composition. However, sorption and release of metals and As to the secondary phases and clays were highly sensitive to pH change and where laboratory experiments did not replicate field pH, discrepancies between in situ and laboratory results were observed up to two orders of magnitude in scale (particularly for As and Pb).Great Western Research, Environment Agency, University of Exete
    corecore