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Abstract

Environmental and geographical process models inevitably involve parameters that vary
spatially. One example is hydrological modelling, where parameters derived from the
shape of the ground such as flow direction and flow accumulation are used to describe
the spatial complexity of drainage networks. One way of handling such parameters is
by using a Digital Elevation Model (DEM), such modelling is the basis of the science of
geomorphometry.

A frequently ignored but inescapable challenge when modellers work with DEMs is the
effect of scale and geometry on the model outputs. Many parameters vary with scale as
much as they vary with position. Modelling variability with scale is necessary to simplify
and generalise surfaces, and desirable to accurately reconcile model components that are
measured at different scales. This thesis develops a surface model that is optimised to
represent scale in environmental models.

A Regular Hierarchical Surface Model (RHSM) is developed that employs a regular tes-
sellation of space and scale that forms a self-similar regular hierarchy, and incorporates
Level Of Detail (LOD) ideas from computer graphics. Following convention from systems
science, the proposed model is described in its conceptual, mathematical, and computa-
tional forms. The RHSM is assessed using adaptions of the geomorphometric algorithms
flow direction and flow accumulation.

The RHSM has an implicit data model that utilises a variation of Middleton and Sivaswamy
(2001)’s intrinsically hierarchical Hexagonal Image Processing referencing system, which is
here generalised for rectangular and triangular geometries. The RHSM provides a simple
framework to form a pyramid of coarser values in a process characterised as a scaling
function. In addition, variable density realisations of the hierarchical representation can
be generated by defining an error value and decision rule to select the coarsest appropriate
scale for a given region to satisfy the modeller’s intentions.

The effects of scale and geometry on the anistropy and accuracy of model results are ana-
lysed on dispersive and concentrative cones, and Light Detection And Ranging (LiDAR)
derived surfaces of the urban area of Dunedin, New Zealand. The RHSM modelling pro-
cess revealed aspects of the algorithms not obvious within a single geometry, such as,

i



the influence of node geometry on flow direction results, and a conceptual weakness of
flow accumulation algorithms on dispersive surfaces that causes asymmetrical results. In
addition, comparison of algorithm behaviour between geometries undermined the hypo-
thesis that variance of cell cross section with direction is important for conversion of cell
accumulations to point values.

The RHSM development was informed by a categorisation of Geographical Information
Science (GISc) surfaces within a practical framework of geometry, structure, interpolation,
and data model. The positioning of the RHSM within this broader framework made
it easier to adapt algorithms designed for other surface models to conform to the new
model. The ability to analyse algorithms for scale and geometry and adapt algorithms
within a unified conceptual framework offers deeper insight into algorithm behaviour than
previously achieved. The deconstruction of algorithms into geometry neutral forms and
the application of scaling functions are important contributions to the understanding of
spatial parameters within GISc.
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1. Introduction

This chapter introduces the thesis in five sections: Section §1.1 describes the topic, Sec-
tion §1.2 portrays the need for the research, Section §1.3 specifies the research’s objectives
and questions, Section §1.4 summarises the thesis and its contributions, and Section §1.5
outlines the structure of the document.

1.1. Topic

The role that Geographical Information System (GIS) data structures perform in environ-
mental modelling is developing. This development is driven by rapidly improving digital
information about the world and rising expectations about what Geographic Informa-
tion Science (GISc) can achieve to inform and assist communities’ understanding of their
place in the world. The advent of airborne and terrestrial LiDAR, and photogrammetric
technologies; the collation of fine scale spatial information in Geographical Information
System (GIS) databases, and exponentially increasing computing power means that it is
now possible to make effective use of these data to represent complex urban and natural
environments at the appropriate scale to resolve intricate spatial processes.

For instance, the management of stormwater is currently undergoing a step change; it is
moving rapidly away from relatively simplistic approaches that only estimate the peak
volumetric surface water flow rate expected from a particular storm event, and moving
towards an approach that is fully dynamic and capable of predicting the time varying
quantity and quality of stormwater at many points in the network over longer time frames
that may contain several storm events (Kampf and Burges, 2007). Such an approach
demands that our diverse environments be fully represented as spatially-rich 3D surfaces
in numerical models so that the effects on the generation and transport of stormwater of
all elements of our built and natural environment can be fully appreciated.

Therefore, GIS surface models are required that can represent the complexity required to
accurately represent the environment across numerous scales from very coarse to very fine,
whilst retaining sufficient simplicity of structure to reduce the demands of environmental
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Chapter 1 Introduction

modelling to a practical computational workload. The following pages develop, describe,
and assess a surface model that exploits an implicit hierarchical structure to support
variability of key parameters with scale.

1.2. Need for Research

To sustain higher density communities, the human race adapts the natural environment
to its needs by altering environmental systems. Urban consent authorities, planners,
surveyors, engineers, and other professions are concerned with mitigating the effect of
urbanisation on natural systems such that urban development proceeds in a sustainable
fashion. A clear understanding of how urban settlements work, including their interaction
with the surrounding natural and built environments, is fundamental, in order to ensure
that existing and future urban development continues to be viable for future generations.
Also needed are engineering tools for producing effective, appropriate and resilient solu-
tions to the demands of urbanisation.

Continuous distributed two dimensional (2-D) numerical models are useful tools to un-
derstand, develop and manage changing environments because they increase the capacity
of models to capture complex interactions through the inclusion of detailed geospatial
information. One example is Hydrological and Hydraulic (H&H) models, which utilise
detailed surface models to estimate surface water flow depth and discharge at any point
in the landscape.

Reported global economic losses from flooding have increased in recent decades from an
annual median average of about $0.5 billion in the 1980s to around $20 billion in the
first decade of this century (Lamond and Penning-Rowsell, 2014). These rising costs are
driven in part by urbanisation, which concentrates population and wealth in cities. The
United Nations (2010) estimates that more than 50% of the world’s population currently
live in urban areas and projects this figure to grow to nearly 70% by 2050. The rising
economic cost from flooding is likely to accelerate as global urban populations increase
and the effects of climate change on the amount of stormwater that ‘runs off’ the surface
of the built environment during rainstorm events become more pronounced.

The academic discipline of quantitative analysis of the hydrological behaviour of topo-
graphic surfaces is known as geomorphometric hydrological analysis (O’Callaghan and
Mark, 1984; Gallant and Hutchinson, 2011). Geomorphometric hydrological analysis has
evolved from the foundational work of Bevan and Kirkby (1979), Peucker and Douglas
(1975), and others to become packages of modelling tools, such as ArcHydro (Maidment,
2002), TAS (Lindsay, 2005), and TauDEM (Tarboton, 2008), which are used to analyse
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hydrological outcomes on basin-wide spatial scales. Most of the progress in distributed
hydrological modelling until recently has been restricted to relatively coarse scale (10m -
100m spatial resolution) modelling of undeveloped and agricultural catchments. Wilson
et al. (2000) states that DEMs with a spatial resolution of 2m – 10m are required for im-
portant hydrological processes in agricultural landscapes. Urban areas typically contain
significant drainage features that occur at even finer spatial scales.

Traditional geographic data representations were geared toward the representation of
static situations on a planar surface at a specific scale (Wilson et al., 2000). Modelling
hydrologic behaviour using a regular single resolution Digital Elevation Model (DEM)
requires a spatial resolution sufficient to capture the smallest significant features. How-
ever, computer resources may not be used efficiently if the spatial resolution required to
resolve fine scale surface features is applied uniformly across the entire study area. In
addition, methods for determining the appropriate scale to use in H&H models are not
clearly defined nor universally agreed upon. Capturing processes that operate at multiple
spatial scales in environmental models entails a trade-off between the complexity required
to incorporate fine and coarse scale features, and the need for the computational efficiency.
Multi-scale surface models offer a way to resolve this conflict.

Recent developments from the field of 2-D flood inundation modelling have sought to ad-
dress the issues of scale in H&H models by applying new approaches to surface modelling,
examples include triangular unstructured meshes (Tsubaki and Fujita, 2010), adaptive
regular grids (Wang and Liang, 2011), and multi-level coarse grids (Chen et al., 2012).
This research extends and advances these developments by utilising techniques from Level
of Detail (LOD) models originally developed for computer graphics (Danovaro et al., 2006)
that generate realisations of surfaces using hierarchical data structures. These techniques
have not previously been applied to drainage models and have the potential to determine
the appropriate scale to capture hydrological processes in complex environments.

1.3. Objectives and Research Questions

The long-term objective of this research is to contribute to the development of simula-
tion tools and decision support systems for urban hydrology that planners, engineers and
decision makers can use for efficient and effective water resource management. The re-
search described in this thesis was motivated by a perceived need to improve the accuracy
of geomorphometric catchment analysis of urban environments by the development and
utilisation of innovative digital surface models. The central objectives of this research
were;
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1. to identify the characteristics of a surface model that considers scale and geometry
in geomorphometric catchment analysis,

2. to describe a surface model that meets these criteria and develop a mathematical
and computational framework to integrate the proposed surface into a GIS, and

3. to evaluate the performance of the new surface for geomorphometric catchment
analysis with respect to scale and geometry.

The above objectives were refined in the research questions below.

1. What are the characteristics of GIS surface models and how can they be catalogued
and understood?

2. What kind of surface model provides the ability to model hydrological processes
that occur at different scales in different areas?

3. How can a surface model that models processes at different scales in different areas
be implemented?

4. Can the algorithms of flow direction and accumulation be generalised to hexagonal,
triangular, and variable resolution surfaces?

5. How does the surface approximation in geomorphometric catchment analysis affect
model outputs?

6. Can we resolve complex overland drainage networks using multi-scale surface mod-
elling?

1.4. Summary of contribution

The task of modelling scale variation is an important and challenging task for GISc
(Goodchild, 2011). This research approaches the challenge of scale by combining di-
verse concepts from academic literature, primarily, geomorphometric hydrological ana-
lysis (O’Callaghan and Mark, 1984; Gallant and Hutchinson, 2011), hierarchical refer-
encing systems (Middleton and Sivaswamy, 2001) and Level of Detail (LOD) modelling
(de Floriani et al., 2005). These fields are combined within a classical systems modelling
framework (Barnsley, 2007).

An initial task that underpinned this research was a broad review of academic literature
covering three increasingly specific topics, which are presented in Part I of this thesis.
Most general of the topics covered was the science and art of utilising spatial data for
environmental models, a more specific topic was the surface models used in computer

4



1.5 Outline

models, and most specifically was the algorithms associated with geomorphometric hy-
drological analysis. These topics were related to each other by the topic of scale and
the complexity of modelling variables that vary with scale. This question of scale was an
important factor for the development of the Regular Hierarchical Surface Model (RHSM),
which is described in Part II of this thesis.

The surface model described here adapts its spatial resolution to the significance of the
underlying processes whilst retaining a computationally simple and uniform data struc-
ture. The proposed surface is evaluated for the task of hydrological geomorphometry: the
analysis of surface shape to predict flow direction and accumulation. Classical techniques
to determine these parameters were deconstructed and generalised to support hexagonal
as well as rectangular sampling, and multi-scale environments. The decomposition of
surface modelling and geomorphometric algorithms into geometry and scale independent
forms provided interesting insight into the behaviour of these representations of physical
processes and has great potential to guide the refinement of surface based analysis in
GISc.

The techniques introduced in this thesis are promising tools for addressing the challenge
of modelling scale variation. This thesis is an important step in the development of sim-
ulation tools for urban hydrology because it investigates promising techniques of surface
modelling that had not previously been evaluated for drainage models.

1.5. Outline

In addition to this introduction and a brief concluding chapter, the thesis is divided into
three parts and each part is divided into three chapters, giving a total of 11 chapters. The
structure and narrative of the thesis is given below.

Part I, Background, reviews current knowledge in academic literature, and organises the
diverse ideas and sources.

Chapter 2, Distributed environmental modelling, discusses modelling of spatial data. An
approach is described to form computer models in phases: conceptual, mathematical, and
computational. The concept of distributed hydrological models is discussed, scale in a
GIS is defined, and the challenges of modelling distributed variables that vary with scale
are identified.

Chapter 3, Digital Elevation Models, sets out a structured approach to catalogue surface
models by considering separately data sources, structures, geometries, interpolation meth-
ods, and data models. Multi-scale models are also discussed. The systematic approach
to describing surfaces is useful to understand algorithms for deriving surface parameters.
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Chapter 4, Hydrological geomorphometry, describes geomorphometric catchment analysis
including several different approaches for determining flow accumulation and flow direc-
tion, hydrological conditioning, and also references some other important objects and
variables from geomorphometry.

Part II, The Regular Hierarchical Surface Model, is the core of original work in this
thesis. It presents the conceptual, mathematical and computational model of the proposed
Regular Hierarchical Surface Model (RHSM).

Chapter 5, Conceptual Regular Hierarchical Surface Model, proposes a surface model that
supports scale variability. The motivation is to build hydrological models that consider
variability of scale. The surface model has regular structure, regular subdivision of scale
and space, and efficiently supports multi resolution pyramids and graph structured vari-
able resolution representations. Due to the regular structure and inherently hierarchical
referencing system, both position and hierarchy are implicit. The structure supports the
regular tessellations of space: rectangular, hexagonal, and triangular tiles.

Chapter 6, Mathematical Regular Hierarchical Surface Model, describes the indexing
methodology and the mathematical structure of the RHSM.

Chapter 7, Computational Regular Hierarchical Surface Model, describes the file struc-
ture, GIS integration, and catalogues the tools developed to interact with the RHSM.

Part III, Hydrological applications, applies the proposed surface model to geomorphomet-
ric hydrological analysis and evaluates its performance.

Chapter 8, Hydrological modelling in the RHSM, describes how the variables flow direction
and flow accumulation were adapted to the RHSM and how flow direction is used to
control the modelling resolution within the multi-resolution structure. New algorithms are
developed to support flow direction and accumulation determination on variable resolution
surfaces, triangular surfaces, and hexagonal surfaces. These techniques are developed from
the D8 and D∞ methods for square grid rasters.

Chapter 9, Evaluation, examines the efficacy of routing on variable resolution surfaces
by comparison with full resolution outputs on a number of surfaces, both mathematical
and LiDAR generated representations of urban surfaces. The new routing methods are
tested on mathematical surfaces where the desired results can be determined analytically:
convergent cone and divergent cone. Consistency between scales is tested and hexagonal,
rectangular, and triangular tessellations are compared.

Chapter 10, Discussion, reviews the RHSM and the results of the evaluation in the context
of relevant academic literature. Future work is proposed, including improving efficiency,
refining flow accumulation algorithms; applying surface models to deterministic, distrib-
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uted unsteady flow models; exploring other algorithms, and developing more flexible dis-
cretisations of scale and space.

Chapter 11, Conclusion, summarises and concludes the thesis.
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Part I.

Background
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This part consists of three chapters that serve as a background for the subsequent chapters
of this thesis by reviewing and summarising selected literature from the fields of distrib-
uted environmental modelling (Chapter 2), GIS Digital Elevation Models (Chapter 3),
and geomorphometric analysis (Chapter 4). The themes of this literature review are
developed into a conceptual and mathematical model for a proposed new surface data
structure in Part II.
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2. Distributed environmental modelling

This chapter is an overview of distributed environmental modelling with an emphasis on
surface hydrology and scale effects.

2.1. Model development

This section introduces the purpose of modelling and the stages of model development,
and then identifies the types of models used for hydrological modelling.

2.1.1. Purpose of modelling

Producing data for decision makers that is authoritative and understandable is of vital
importance for resource management and environmental decision making in general, and
in water resource management in particular (Liu et al., 2008). Environmental models can
be used to enhance understanding, run simulations, and make predictions about environ-
mental systems (Barnsley, 2007). Hydrological models are used as technical information to
support decision making but, due to their technical complexity, are not easily included in
participatory decision support. However, to be informative to a collection of actor groups
involved in decision making it is insufficient that model outputs are only understandable
to technically proficient individuals.

To be relevant, model outputs need to address the needs of an audience. They need to
provide information pertinent to their intentions, this may involve making predictions in
situations where no measurements exist, giving insight into mechanisms or communicating
knowledge of how systems work. However, all models are approximations of reality and
as such do not accurately represent every aspect of a system. Assumptions are required in
environmental models to reflect the limits of knowledge about the system (Barnsley, 2007).
Therefore, outputs can never be forecast with certainty (Chow et al., 1988). Models are
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Chapter 2 Distributed environmental modelling

approximate tools that continue to develop and modify in response to knowledge gained
from observing the natural system being modelled (Oreskes and Belitz, 2001).

2.1.2. Stages of modelling

To assist the development of mathematical environmental models, Barnsley (2007) em-
phasizes three stages of development, the conceptual model, the mathematical model,
and the computational model. The conceptual model is represented verbally, the math-
ematical model through equations, and the computational model is the implementation of
the mathematical model within a software package or programming language. To these
three stages of model development, some authors add the perceptual model or mental
model that informs the development of conceptual models. When assessing the outputs
of environmental models, people will compare the results of the model to their mental
model of the world. Where there is a discrepancy, the assumptions of the model may be
questioned or the model may inform a change in that person’s mental model (Meadows
et al., 2004).

The mediums in which each stage of the modelling process are represented have inherent
limitations. Conceptual models are constrained by the symbolic language and diagram-
matic systems they are communicated in. Mathematical models follow the structures of
mathematics, computational models are limited by both the syntax of the programming
language they are written in and the digital hardware on which the software is run. It is
reasonable to ask why one should restrain the model with the formalisms of conceptual
and mathematical models on its path from mental model insight to computational model
code. A persuasive response to this question is that in a well developed model, the as-
sumptions made in forming the conceptual model are stated clearly and the mathematical
model is rigorously defined.

Computational models could be developed directly from the conceptual model without
stating the mathematical model, however, this approach would make it difficult to assess
the fidelity of the computational model. In addition, without a mathematical model, it
would be impossible to assess and correct for numerical errors in the computational model
(Clark and Kavetski, 2010). The conceptual model is critical to the overall effectiveness
of the model and its transportability. The field of systems science describes methods that
facilitate the development of conceptual models. Systems science has been criticised for
misuse in social sciences but has proven effective in describing elements of natural systems
and interactions between nature and society (Anderberg, 2005).
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2.1 Model development

2.1.3. Types of models

Hydrological processes can be represented with physical scale models or abstract math-
ematical models (Chow et al., 1988). Barnsley (2007); Skidmore (2002) and others define
several distinctions between different types of mathematical environmental models. Math-
ematical models can be developed empirically or from theory (Clarke, 1973). Empirically
derived models, which are based on experimentally determined relationships, may not be
as easily generalized to other study areas compared to models developed from theory.
Hydrological models derived from equations describing conservation of mass, momentum,
and/or energy are called physically based models (Kampf and Burges, 2007). If it is
sufficient that a model reproduces the behaviour of a process without understanding the
underlying causal structure itself, an empirically determined model is sufficient. Beven
(2001) states that one of the arguments in favour of distributed hydrological models is
that they may be more “realistic” than simpler models that are calibrated to historical
data in a curve-fitting exercise, with no guarantee that they will do as well in simulating
responses in other periods or other conditions.

Mathematical models may be discrete or continuous. Discrete models are solved using
difference equations and divide the process into discrete steps. Continuous models are
solved using differential equations and model processes instantaneously. Mathematical
models can be solved numerically or analytically, that is they can be solved by an iterative
process or through a precise mathematical formulation. Mathematical models may be
linear or non-linear (Clarke, 1973). Mathematical models are linear if some derivative of
their governing equations are constant. Table 2.1 groups the choice between these classes
of mathematical model by the modeller’s preference for principle or practicality.

Table 2.1.: Classes of mathematical model organised by emphasis for principle or practic-
ality. The columns are not exclusive. A specific mathematical model may cross between
columns, include elements of both or be on a continuum between the row dichotomies.

Principled Practical
Development Theoretical Empirical
Equation Form Continuous Discrete
Equation Shape Linear Non-linear

Solution Analytical Numerical

When considering hydrological models Chow et al. (1988) identifies three choices that a
modeller makes when choosing the approach to take to modelling hydrological systems.
Chow et al. (1988) observe that hydrological models are functions of randomness, space
and time. Consequently, modellers can choose which of these parameter classes vary
within the model.
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Chapter 2 Distributed environmental modelling

Randomness Models may be deterministic or stochastic, stochastic models provide prob-
abilities of certain outcomes. Stochastic models are appropriate to represent pro-
cesses that appear random due to a lack of knowledge of system inputs and processes,
or because of genuine randomness within the system.

Space Models may be divided into lumped models, where model parameters are held
constant over large areas, or distributed models where parameters are allowed to
vary on a finer scale, thereby modelling the spatial variation of inputs more closely.
Distributed models can vary in one, two, or three dimensions of geographical space.
Distributed hydrological models are sometimes known as variable contributing area
models. Variable contributing area models acknowledge that some parts of the
terrain will contribute more flow both above and below ground because they have
a propensity to saturate (Quinn et al., 1995; Beven and Kirkby, 1979). Distributed
hydrological models are discussed in more detail in Section §2.2.

Time Models may be constant in time or may vary with time. For instance, a time variant
run-off model would acknowledge that the portion of precipitation contributing to
surface flow increases as a precipitation event continues and storage mechanisms
become saturated (Chow et al., 1988). Models that are invariant and models that
vary with time are sometimes called unsteady and steady respectively. Hydrological
models may be used to represent a single storm event or be continuous over an
extended period of time (Booth, 1991). Extended period models can effectively
capture the effect of past precipitation on storage mechanisms.

Combined, these three choices form a classification tree for hydrological models. A dia-
gram of this tree is reproduced from Chow et al. (1988) as Figure 2.1. Building a model
that addresses all three of these sources of variation is difficult. Therefore, most models
consider only one or two of the three sources of variation. In Section §5.1 a new branch will
be introduced to the classification tree by considering a hydrological model that includes
variability as a function of scale.

2.2. Distributed hydrological models

A specific type of model called a distributed hydrological model is the subject of this
section. The term “distributed” is defined as it relates to modelling and several approaches
to distributed hydrological modelling are described. An aligned discipline to the field
of hydrological modelling is hydraulic modelling, which is concerned primarily with the
flow and conveyance of fluids, including water and sewerage. Models that include both
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2.2 Distributed hydrological models

Figure 2.1.: Classification of hydrological models reproduced from Chow et al. (1988).

hydrology and hydraulic concepts are common and can be described as Hydraulic and
Hydrological models (H&H).

2.2.1. Definition of distributed model

As defined by Chow et al. (1988), distributed models are those that vary in space. How-
ever, the usage of the term distributed hydrological model varies in both academic and
professional literature. For instance, Chow et al. (1988) use the term very generally to
refer to any models that support spatial variability in one or more model parameters.
Kampf and Burges (2007) emphasise the common usage of the term to refer to any model
that represents the spatial variability and pathways of water through a catchment. There-
fore, the emphasis is on the representation of pathways in two or three dimensions in the
model, including 1-D paths in two dimensions. Singh and Woolhiser (2002), on the other
hand, apply a more limited definition of a distributed hydrological model that requires
that all aspects of the model support spatial variability. Todini (1988) divides distributed
approaches into “distributed integral,” which is actually a network of connected lumped
models and distributed differential models which include distributed flow calculations.

It is more accurate to think of distributed models as being on a continuum from, but not
including, fully lumped models in which all variables are averaged to a single value with no
spatial variation to fully distributed models in which all variables vary in three dimensions
of space. Although the exact meaning of the term and whether a particular model is or is
not defined as distributed is of little relevance when considering the efficacy of that model
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for its intended purpose, for clarity in this thesis the term distributed hydrological model
refers to models that represent hydrological processes where at least one variable in the
model varies in at least two geographic dimensions(x, y). It is worth noting that not just
the model inputs and calculations but also model outputs may or may not be distributed.

The subsurface and surface may be considered separate domains within a distributed
hydrological model. However, there is flow between the two domains. Surface flows
infiltrate the subsurface and subsurface flows re-emerge to contribute to surface flows.
Models that account for this two-way interaction are described as coupled. A coupled
model may have different dimensionality in different sub domains. For instance, the
subsurface may be 3-D, the surface hill flow 2-D, and surface channel flow 1-D.

Distributed hydrological models are a branch of Computational Fluid Dynamics and are
increasingly used for scientific research, hydrological forecasting, and engineering design
applications. Distributed models of surface hydrology in particular have great potential
for applications such as non-point source pollutant transport, hydrological responses to
land use or land cover changes, land-atmosphere interactions, erosion, and sediment trans-
port (Kampf and Burges, 2007). Routing of surface water is one of the more promising
applications of distributed hydrological modelling, particularly in areas where gravity
effects dominate inertial effects because in such areas surface hydrology is driven by el-
evation, which can be measured fairly accurately over extensive areas. Modellers can
use the spatially explicit structure of distributed models to incorporate spatial data from
Geographic Information Systems (GIS), remote sensing, and geophysical techniques. For
example, distributed models can incorporate topographic features, the effects of shade and
aspect on hydrological response, geologic and land cover variability, surface friction, and
depression storage, which all have spatial variability. Distributed models are currently
used to incorporate spatially explicit radar rainfall data, snow cover extent, soil moisture,
and land surface temperature data into hydrological models (Kampf and Burges, 2007).

2.2.2. Numerical approaches to distributed hydrological modelling

Mathematical hydrological models typically rely on the definition of a control volume: a
reference frame in three dimensions through which a fluid flows. Frequently, physically
based distributed hydrological models are based on Reynold’s transport theorem. Freeze
and Harlan (1969) and Freeze (1974) introduced and developed a blueprint for physically
based surface-subsurface distributed models using partial differential equations (PDEs)
of fluid flow in three spatial dimensions and time. Solving the governing equations for
representations of water flow in a distributed model analytically is only possible in a
few prismatic geometries with homogeneous isotropic domains and steady state flow,
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or by making simplifying assumptions to derive closed form solutions of the governing
conservation equations (Kampf and Burges, 2007).

Boundary value problems generally employ discretisation methods to solve numerical
approximations of continuous functions. The most common discretisation methods as-
sociated with solving PDEs are the finite difference method, finite volume method, and
finite element method. Finite difference methods represent space in 1, 2, or 3 dimen-
sion domains by a series of points in a structured mesh (i.e. a rectangular point set, see
Subsection 3.5.2). In this method, the values of functions are represented at each grid
point.

Finite volume methods are also discrete, but they divide the domain into volumes and
calculate fluxes averaged across the surface of the volumes, which can be part of an
unstructured mesh (e.g. a TIN, see Subsection 3.4.2). It is unnecessary to know the path
of the fluid through the control volume, it is sufficient to model the properties of the
fluid at the boundary of the control volume (Chow et al., 1988). The governing equation,
expressed in the partial differential equations, is reformulated, at each computational cell,
into a set of linear algebraic equations (Andersson et al., 2011). Finite element methods
can also accommodate unstructured meshes with complex geometries, but in contrast
to the discrete finite difference and finite volume methods, they use continuous base
functions to locally describe the solution of the governing equation to be approximated,
with the simplest of these functions representing a plane (Kampf and Burges, 2007). The
finite-element method aims to minimize the difference between the exact solution and the
collection of base functions (Andersson et al., 2011).

2.2.3. The de St. Venant equations

The physically based equations typically used to represent surface water flow are known
as the de St. Venant (1871) equations for shallow water flow. The de St. Venant equations
include equations of continuity and momentum and have 1-D and 2-D forms. The de St.
Venant equations are derived by depth integrating the Navier Stokes equations, which
define single phase fluid flow.1 The de St. Venant equations assume that if a volume of
fluid is shallow relative to the wavelength of the wave phenomenon, the horizontal velocity

1Stelling and Zijlema (2003) take a different approach to providing solutions to the Navier Stokes
equations. Rather than depth integrating the Navier Stokes equations, the Stelling method solves
3-D Reynolds-averaged Navier-Stokes equations. Therefore, the Stelling method is suitable for the
entire range of water depths relative to wavelength and for simulating wave disturbance in fluid with
rotation and shear. Stelling and Zijlema (2003) demonstrate that their method can accurately simulate
relatively short waves using a small number of vertical layers (in the order of 1–3). The grid based
2-D component of the commercial hydrological modelling package TUFLOW is based on the Stelling
method (BMT WBM, 2015).
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field is nearly constant throughout the depth profile and the velocity in the z direction is
small. The numerical solution to the de St. Venant equations will determine the velocity
of flow from cell to cell, if the elevation of the ground is changing the vertical velocity can
then be calculated using the continuity equation.

The full de St Venant equations in 1 or 2-D are known as the dynamic wave scheme.
The dynamic wave scheme can capture back water effects such as a rise in the surface
elevation of flowing water upstream as a result of an obstruction to flow downstream.
The 1-D dynamic wave is used in several modelling programs including HEC-RAS (Tate
et al., 2002) and WASH 123D (Yeh et al., 1998). Dynamic Wave scheme equations are
difficult to solve, particularly in 2-D, so are frequently simplified using the diffusion and
kinematic wave approximations.

The diffusion wave approximation assumes that the inertial terms of the 2-D momentum
equations are negligible and can be ignored. If configured similarly to the governing equa-
tions for subsurface flow, the diffusion wave scheme facilitates coupled surface-subsurface
flow computation (Panday and Huyakorn, 2004). The diffusion wave approximation does
not model back water effects in time and is inaccurate for fast rising hydrographs partic-
ularly on flat riverbeds (Fread, 1993). The diffusion wave scheme is effective in most hill
slope surface flow situations. Ponce (1978) gives criteria for assessing whether a diffusion
wave model for open channel flow is appropriate.

Kinematic wave approximations only consider the effects of gravity and friction on flow.
In this approach, the friction force and gravity force balance each other, therefore, the
hydraulic gradient is assumed to be equal to the topographic slope. Due to the reduced
number of unknowns, kinematic approximations are computationally robust (Kampf and
Burges, 2007). Kinematic approaches do not account for backwater effects and are not
well suited to represent flows at low slopes or in areas with high lateral inflows (Freeze,
1974). Kinematic approximations are appropriate only for steep terrain, where water
flow directions are largely governed by topography (Kampf and Burges, 2007). Morris
and Woolhiser (1980) provide guidelines to indicate when the kinematic approximation is
valid.

2.2.4. Alternative methods of distributed hydrological modelling

Numerical solutions to de St Venant PDEs require significant computer resources and may
be impractical for fine meshes over large domains. The mathematical techniques used to
solve the PDEs are typically implemented by specialists and applied by modellers who
may not understand the simplifications that have been applied. An alternative approach
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is to simplify overland flow direction calculations by creating flow networks based on
topography using elevation data. Overland flow can be routed through such a network
in one dimension, with a specified width or area accounting for the second dimension
(Kampf and Burges, 2007). This technique falls under the category of geomorphometry, is
discussed in detail in Section §4.1, and forms the basis of the hydrological model developed
in Chapter 8.

Alternatively, empirical schemes could be used. Empirical approaches are based on exper-
imentally determined relationships such as linear regressions (Kampf and Burges, 2007).
Some examples of empirical approaches to hydrological modelling are reservoir schemes,
base flow recession curves, and the Soil Conservation Service curve number method, which
estimates infiltration losses to the subsurface by empirically derived standard curves for
different soil types and moisture conditions (Williams and LaSeur, 1976).

2.3. Scale and aggregation

Scale is an essential dimension of spatial data that transcends specific applications (Atkin-
son and Tate, 2000). Scale is so critical to representations of space that contain spatial
variability that Goodchild (2001) observed that “In as far as a digital representation of
space is a description of reality, that description is incomplete if it does not include its
scale or resolution.” Scale is a complex concept that requires careful definition to avoid
confusion.

This section defines scale in any spatial or temporal dimension as it used in this thesis,
and introduces the concept of appropriate scale. Questions of scale are identified including
scale variability, identification of process scale, and the challenge of aggregation. Examples
of scale dependence in hydrological modelling are also provided.

2.3.1. Definition of scale

Aspects of scale

There are various interrelated concepts within the definition of scale. For example; res-
olution, which is the size of the smallest resolvable feature; extent, which is the limit
enclosing the area included; and zoom, which is the distance between the viewer and the
model2. Zoom and extent are only independent if page (or screen) size can vary. Page

2In its common use, the viewer to model distance, known as zoom, is usually a synthetic distance that
only exists within a computer generated visualisation
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size is however not an independent characteristic of scale because it can be derived from
zoom and extent. Figure 2.2 presents these aspects of scale as bar gradients, where scale
can slide from left (coarse) to right (fine).

An alternative but largely analogous categorisation of scale is presented in Zhang et al.
(2014) who identify three types of scale: geographic (extent), measurement (resolution),
and cartographic (zoom). There are other terms that are essentially analogous to resol-
ution such as measurement scale, grain, and support. “Support” is the integral of space
or time over which a measurement is made. Many distributed variables measure a finite
area, rather than a point, to produce a value.

Other concepts can be derived from the three aspects mentioned above. For instance,
cardinality, which is the total number of distinguishable features, can be determined for
a raster data set as extent (total area covered), divided by resolution (areal cell size).
Another related concept is distribution. The distribution of a spatial dataset can refer
to what is called the geometry of a point set in Chapter 3 but can also represent a form
of scale that varies from dense to sparse. Dense datasets are typified by raster data
models and sparse by vector data models. Judicious use of sparse distribution maximises
information content for a given scale.

Figure 2.2.: Aspects of scale. In an appropriate scale model; resolution, extent, and
zoom are aligned.

When small is large

Scale is often attached to an adjective to indicate relative size or relative resolution. For
instance, both the scale of an effect and the scale of a map may be described as “small
scale” or “large scale”. These phrases are highly ambiguous and a cause of semantic
confusion because in different contexts the phrases can have opposite meanings. A large
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scale effect is typically one which affects a large area. Whereas, a large scale map is one
where the ratio of map distance to real world distance is comparatively large. Therefore,
a large scale map is a map of a small area in great detail. Various forms of this confusion
permeate discussions of scale and resolution. For instance, what does the term “higher
resolution” mean? Many would answer fine resolution but in some contexts it may refer
to higher abstractions of the data: coarser representations high in a pyramid of Levels of
Detail.

To avoid ambiguity, this thesis will avoid the use of the ambiguous terms large/small and
high/low when discussing scale. Instead, the terms fine and coarse will be used, which
are less easily confused. The exceptions to this guideline are those aspects of scale that
fine and coarse do not describe well: extent or domain, which is best described with large
and small; and zoom, for which near and far are more appropriate.

2.3.2. Appropriate scale

The concept scale combines the three aspects depicted in Figure 2.2 to describe a charac-
teristic that is both subjective and relative. It is helpful to consider the question: what
is appropriate scale? If each of the aspects in Figure 2.2 are thought of as ranges of
possibilities and a specific scale is represented by a vertical line some distance along the
interval, an appropriate scale is a scale where the vertical lines of all three aspects are
aligned.

A paper map is a symbolic model of reality that has scale composed of the three aspects. If
that scale is a coarse resolution dataset of a large extent at far zoom, or a fine resolution
dataset of a small extent at near zoom, one would say that was an appropriate scale.
However, if the map depicted a coarse resolution dataset of a small area at far zoom, one
would consider that an inappropriate scale (see Figure 2.3).

Multi-scale online maps provide a way to circumvent scale limitations by storing fine
resolution data over large extents but presenting realisations to map readers at a scale
appropriate for the readers’ zoom level (Muehlenhaus, 2014). This is a pleasing analogy
of the thinking behind the surface model that is proposed in Part II.
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Figure 2.3.: Appropriate scale. The hexagonal elevation surface is shown with appropri-
ate scale in A (Coarse resolution, large extent, and far zoom) and D (Fine resolution,
small extent, and near zoom). All these terms are relative; the resolution of A is coarse
relative to D but may be considered fine in other circumstances. B has a smaller extent
than A and an appropriately nearer zoom, however, the resolution is not finer, there-
fore, there is little information shown and the hexagonal tessellation is out of proportion
with the vector information. C has finer resolution than A and smaller extent, however
the zoom level is unchanged created an irrationally small and difficult to read diagram.
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2.3.3. Questions of scale

Modelling environmental processes involves complex interactions between the process be-
ing modelled and measurement scale, computational scale, and reporting scale. From
these interactions, several questions of scale arise including whether variables vary with
scale, how to aggregate and integrate measurements made at different scales, and how to
select the appropriate scale to represent a process or effect.

Scale variability

The fractal nature of geographic phenomena causes some measurements to be affected
by scale. The most well known example is the surprising conclusion that the length of
a coastline is a function of the scale at which it was measured (Goodchild and Mark,
1987; Mandelbrot, 1967). Goodchild (2001) observes that a variable is scale dependent
if a length is inherent in the definition of the variable. Parameters involving slope are
particularly affected by measurement scale (Wang and Yin, 1998). The slope of a surface
depends on the length over which it is measured. Take for example a rocky plateau; over
a length of 100m it may be comparatively flat with little variation in elevation. However,
over the length of a metre, the variation of large rocks and boulders becomes significant
and the slope will be much steeper.

Scale dependent variables do not necessarily approach a limit with finer resolution. Look-
ing closely at the surface of a rocky plateau may reveal a similar shape of surface variability
at a finer scale, perhaps at centimetre support. Plausibly, if the fractal model holds, the
same pattern may be seen again at millimetre scales and so on. Hence, all scales of a
fractal phenomena are generalisations, which ignore finer scale variability. Scale depend-
ence of terrain can be quantified by fractal dimension (a measure of the proportion of
fine to coarse scale relief), semi-variance (the correlation of relief with distance), or the
power spectrum (a technique of waveform analysis) (Pike and Kimberly, 2005). Altern-
atively, some variables may not exist at all outside certain ranges. A trivial example is
that slope does not exist at 100 000km support; the spherical shape of the Earth makes
such measurements meaningless.

Process scale

Use of appropriate scale is necessary but not sufficient for distributed modelling. It is also
necessary to consider the scale at which a process operates in the environment. This is
process scale, also known as operational, or intrinsic scale (Blöschl and Sivapalan, 1995).
To optimise representative power of a model, appropriate scale must correspond with
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process scale i.e. data resolution should be equal to information granularity. How to
identifying process scale is one of the critical questions of scale in GISc.

One way to identify process scale is to identify the scale where there is the greatest variab-
ility in the data. The classic approach is the Geographic Variance Method (Moellering and
Tobler, 1972), which identifies the scale where the sum of squared variances is greatest.
The general principle is that at scales finer than the process scale, the measured vari-
ables will vary less due to the measurement scale being finer than the rate of change with
space. At coarser than process scales, the averaging implicit in the larger computational
scales causes reversion to the mean and reduced variability. The Geographic Variance
Method assumes underlying homogeneity of the dataset rather than fractal self-similarity
or significant noise at the finest scales.

Variograms are another way to identify process scale (Peckham et al., 2009). Variograms
model the correlation of pairs of point measurements for a selection of lag distances. The
range of a variogram, where variability stops increasing with distance, gives an upper
limit for process scale.

In Part II, Level of Detail methods for modelling surfaces described in Section §3.8 are
proposed as a means to identify process scale for distributed hydrological models.

The aggregation challenge

To accurately portray geographical phenomena, such as hydrology, it is necessary to un-
derstand processes that occur over a range of temporal and spatial scales. The challenge
of scale is achieving a realistic description of a spatial process that accounts for spatial
variability, which involves both choosing an appropriate scale and conversion of hetero-
geneous data inputs to this scale. Coarse scale modelling requires aggregating processes
that occur at finer scales. The difficulty of aggregation depends on the degree of spatial
variability of spatial processes (Famiglietti and Wood, 1994). For non-linear processes in
heterogeneous environments, aggregation is very challenging.

It is a common desire to represent a phenomena at a coarser scale than that at which
the measurements from which the process is being modelled were made. A modeller may
desire to use point measurements to inform attributes that will be applied to a region,
or to reduce the number of calculations required to find a mathematical solution, or to
combine the results with processes that are modelled at a different scale. For example,
comparatively fine scale hydrological models are often combined with atmospheric climate
models that have a much coarser scale.

A scaling function would allow the definition of grid or element scale equations and para-
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meter values on the basis of knowledge of the parameter values at finer scales, in cases
of non-linear processes this is not simple or generally sound (Beven, 2001). If a system
is linear, equations for processes at fine scales can be integrated over a larger specified
domain to give the relationships at coarser scales (Dooge, 1986). In non-linear systems,
even if mean parameters are available, it is unsafe to assume mean responses will be pro-
duced (Overgaard et al., 2006). The ramifications of generalising variables for non-linear
models is illustrated in Figure 2.4. Hydrological process are largely non-linear, so issues
of scale in hydrological modelling are an inescapable challenge (Kampf and Burges, 2007).

Figure 2.4.: Generalisation of non-linear functions. In this hypothetical example, a
spatially distributed variable has been measured at points A and B. The measured
variable contributes to the graphed non-linear model. If a model value was required
for the entire rectangle it may be tempting to average the two measurements before
applying the model. However, as the dotted line shows this would provide a very
misleading result.

There continues to be debate about the scale at which the physically based distributed
models of the Freeze and Harlan (1969) blueprint are appropriate (Beven, 1996; Kavvas,
1999; Singh and Woolhiser, 2002). The difficulties presented by the need for scaling
functions to transfer processes accurately between scales has led to calls to abandon the
Freeze and Harlan (1969) blueprint, either in favour of semi-lumped models like TOP-
MODEL (Beven and Kirkby, 1979), where lumped properties are informed by spatial
analysis (rather than the process itself being modelled spatially) or for the development
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of scale free governing mass and momentum conservation equations that convert the
spatial gradients into fluxes across the boundary of coarse scale representative elements
(Reggiani and Schellekens, 2003; Cherkauer et al., 2003; Wood, 1998). This task is made
difficult by the heterogeneity of hydrological domains and difficulty of measuring mass or
energy fluxes across large surfaces.

2.3.4. Scale dependence of hydrological parameters

Numerous research groups have analysed the dependence of derived hydrological para-
meters on spatial resolution using a number of different surface models including rect-
angular tessellations (Garbrecht and Martz, 1994; Li and Wong, 2009; Wang and Yin,
1998; de Sousa et al., 2006; Walker and Willgoose, 1999; Quinn et al., 1995; Gyasi-Agyei
et al., 1995), hexagonal tessellations (de Sousa et al., 2006), and TIN data sets (Vivoni
et al., 2005a) to name a few. For more references about the impact of DEM error and
grid spacing on terrain modelling applications see Pike (2002). Not surprisingly, many
studies have found that the required resolution of a hydrological model depends on the
terrain. However, model resolution cannot be governed solely by desired output charac-
teristics, precision of input data are also a critical limiting factor. Anderson et al. (2006)
investigated the Resolution of LiDAR data required for various grid DEM cell resolutions.

Resolution in the vertical axis has also been studied and constrains plausible horizontal
resolution. Gyasi-Agyei et al. (1995) suggest using vertical resolution where the ratio of
average drop per pixel and vertical resolution is greater than unity, thus placing a lower
bound on cell size. Walker and Willgoose (1999) show that reducing grid size below the
vertical accuracy will result in DEM noise being mapped rather than actual information.

Shary et al. (2002) identify the need to find scale-free parameters by identifying limits as
resolution increases. Processes need to be highly automated and efficient to allow recal-
culation on multiple scales (Lacroix et al., 2002). Variables need to be scale free in order
to allow comparisons between different scale results (Shary et al., 2002). Generally, mod-
ellers are striving for the coarsest resolution possible to reduce computational workload.
Coarse resolution can be sufficient in areas of complex terrain, provided the resolution is
fine enough to capture the terrain (Li and Wong, 2009; Wang and Yin, 1998).

Vivoni et al. (2005a) term the effect of spatial aggregation of terrain attributes on hydro-
logical parameters “hydrologic sensitivity” and propose a system to consider hydrological
sensitivity in TIN surface creation. Florinsky and Kuryakova (2000) describe a statistical
method to estimate the appropriate grid size to represent a process by maximizing cor-
relation between outputs and landscape characteristics. Chapter 5 formalises these ideas
by introducing a generalised conceptual model for capturing scale variability.
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Alternatively, surfaces can be investigated for wave signals using fast Fourier analysis
(Harrison and Lo, 1996). It is possible to use fast Fourier transforms to analyse scale
effects but this technique is limited because it assumes stationary of signal, uses a fixed
sample window, and assumes landforms can be represented by sine waves (Gallant and
Hutchinson, 1997). Gallant and Hutchinson (1997) argue that wavelets are more suitable
because they adjust window size as required.

This chapter began with a generic discussion of the modelling process and has explored the
concepts of distributed parameters, scale, and aggregation. One of the most ubiquitous
digital representations of distributed parameters is the Digital Elevation Model (DEM),
which is the topic of the next chapter.
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3. Digital Elevation Models

Digital Elevation Models (DEMs) are digital representations of elevation surfaces in 2.5
or 3-D reference frames. DEMs have many uses in map making, visualisation, and data
analysis techniques. The DEMs frequently encountered in GIS are square grid rasters,
Triangular Irregular Networks (TINs), contours, and point clouds. Of these, square grid
rasters are the most common. However, these models are only a subset of the possible
combinations of structures, geometries and data models that can store elevation data.
Each have distinctive characteristics, which may make them more, or less, suitable for
specific applications

The purpose of this chapter is to catalogue the DEMs in common use within a consistent
framework. Treating the models as part of a cohesive framework as opposed to a collection
of distinct types provides insight into the assumptions made in algorithms that rely on
specific elevation surfaces and suggests ways that they could be generalised to other
surfaces. A detailed discussion of the hydrological variables and objects generated from
geomorphometric analysis of DEMs follows in Chapter 4.

Section §3.1 summarises the primary considerations of the conceptual models of DEMs.
Section §3.2 outlines the ground, aerial, and orbital sources of data for DEMs and sum-
marises techniques for validating surfaces. The remaining sections define four distinct
aspects of a cohesive framework for cataloguing surface models.

1. Structure. Structures define the relationship between data points. Section §3.3 de-
scribes the structures used for DEMs: point sets, network graphs, and tessellations.

2. Geometry. Geometry describes the spatial arrangement of data points. Section §3.4
discusses and compares irregular geometries used in DEMs: ad-hoc, Voronoi dia-
grams and Delaunay Triangulation, irregular triangles, and boundary fitted grids.
Section §3.5 discusses and compares regular geometries used in DEMs: triangular,
rectangular, and hexagonal.

3. Interpolation. Section §3.6 discusses the interpolation methods used to produce val-
ues away from known data points, their application to resampling and restructuring,
and distinguishes them from generalisation.
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4. Data model. Section §3.7 summarises three categories of data model utilised to
encode, process, and communicate elevation data: raster, vector and tree models.

Section §3.8 concludes the chapter by introducing the structures, geometries, and data
models of multi-scale surface models.

3.1. Conceptual models

This section addresses three questions that must be answered to form a conceptual model
for a DEM. What is elevation? What is an elevation surface? What should be included
in the elevation surface? Notwithstanding the great variety of possible responses to these
questions, some answers are given that correspond to common practice within the GISc
community.

3.1.1. What is elevation?

An elevation is the height of a point above a reference surface known as a datum. The
reference surface could be a plane, sphere, ellipsoid, or geoid model. The geoid is an
equipotential surface of the Earth’s gravity field, which coincides with mean sea level. A
height can be defined as the difference between two elevations. Therefore an elevation is
a height but heights are not necessarily elevations. Height is frequently used to denote
the distance between the top of geographic feature and its base.

Hannah (2009), citing a French language paper (Heiskanen and Moritz, 1967), identifies
four types of heights in common use. One that does not reference gravitational potential
and three that do:

1. An ellipsoidal height is the distance between a point and an ellipsoid along a line
that intersects that point and is normal to the ellipsoid. Ellipsoidal heights do
not reference gravitational potential. Global Navigation Satellite System (GNSS)
receivers determine ellipsoidal elevations.

2. An orthometric height is the distance along the plumb line between a point and
a reference surface. Elevations for everyday use are typically orthometric heights
relative to local datums derived from mean sea level as measured by continuous
long term tide gauges. Mean sea level deviates from the geoid by up to ±2m due
to oceanographic and meteorological effects. Ellipsoidal heights can be converted to
orthometric heights using a geoid model.
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3. A dynamic height is the difference in gravitational potential along the plumb line
between a point and a reference surface. Dynamic heights indicate the direction
water will flow.

4. A normal height is the difference in normal gravity along the plumb line between
a point and a reference surface. Normal heights are important to modern geodesy
but are rarely used outside of the scientific community.

3.1.2. What is an elevation surface?

Most DEMs take a functional approach and consider terrain as a bi-variate scalar field.
A DEM consists of a set of points with associated elevation values and interpolation
rules to define the values between the points (Gerstner, 2003). By convention, x and y

specify location on a horizontal plane and z or h (x, y) represents the height or elevation
at that location. Functional models are continuous: they have values everywhere and the
values are the same regardless of the direction from which the location is approached. A
functional surface model can only store one elevation value per (x, y) location. The land
surface could theoretically be described as:

f (x, y) = z (3.1)

However, for most surfaces what this equation would look like or how it could be determ-
ined is unclear. Instead, the land surface equation is approximated using a DEM.

Functional surface models are sometimes called 2.5-D models. An alternative approach
is solid (3-D) models that represent surfaces as the two dimensional faces of three dimen-
sional objects. Some examples of solid models are multipoint patch, voxel, and polyhed-
ral; which are 3-D versions of vector, raster and TIN surface models respectively. The
remainder of this section focuses on 2.5-D models.

3.1.3. What should be included in an elevation surface?

DEMs can be subdivided into Digital Terrain Models (DTMs) and Digital Surface Models
(DSMs). DTMs represent “bare earth” with buildings, trees and other features removed.
DSMs represent the highest elevation surface including features such as buildings and tree
canopies, where these exist. Whether a specific feature is included in a DEM depends on
both the use for which it is intended, and the scale of the DEM. The conceptual model of
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a surface assumes a certain amount of abstraction: only objects which are relevant to the
intended purpose of the models should be modelled. For example, a spot height that falls
on a fine scale feature like a power pole should be ignored when constructing a surface
model for modelling stormwater flows.

3.2. Data sources

This section surveys data sources for elevation data, divided into ground based and aer-
ial methods (including space), followed by an introduction to surface validation. For a
summary of data sources and accuracies see (Garbrecht and Martz, 2000). The data
sources discussed below have distinctive characteristics that affect model results. In fact,
Li and Wong (2009) demonstrated that data source is more important than resolution in
determining inundation results.

For hydrological modelling, existing databases of spatial data are a good source for con-
structing DEMs. In addition to raster DEMs and TINs, GIS databases frequently contain
useful vector data including road centre and kerb lines, catch pits, contours, stream-
lines, digitized maps, and Building Information Modelling. Orthophotos are visually rich
sources of information and can be analysed digitally to extract various objects of hydrolo-
gical significance such as the presence of structures, roads, stream networks, lakes, catch
pits etcetera. A commonly available global square grid DEM GTOPO30 , has a 30” (ap-
proximately 1 km) spacing and is compiled from many maps and several raster and vector
sources. If it is necessary to combine different existing elevation models, Doytsher et al.
(2009) recommend using rubber sheeting methods that match objects not coordinates.

Urban surface models require a sampling of elevation values over extensive areas. Surface
sampling can be random based on a regular pattern or feature driven, where the data
collector deliberately selects points of topographic significance. Points of topographic
significance are typically ridge lines, streamlines, changes of grade, and tops of banks. A
system of break lines and spot heights is formed to capture the landscape. Feature driven
elevation sampling is usually performed by ground observations, whereas aerial methods
are generally based on regular sampling schemes.

3.2.1. Ground based

Ground observations were traditionally collected using theodolites, spirit levels, and meas-
uring chains. Electronic distance measurement (EDM) has replaced chaining and modern
surveyors use total station instruments that combine a digital theodolite with an EDM.
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Total station measurements of topography are usually restricted to small areas due to the
time required to collect the data and the requirement for inter-visibility.

Another important technology for feature driven data collection is Global Navigation
Satellite System (GNSS) also known as Global Positioning System (GPS), although GPS,
strictly speaking, applies only to the GNSS system operated by the United States military.
GNSS data collection is quicker than total station data collection, and with careful pro-
cedures can produce high accuracy positions (<10mm horizontal, <30mm vertical) over
large distances. GNSS receivers can be mounted on vehicles to expedite data collection
in a semi automated procedure. GNSS surveys yield ellipsoidal heights so a geoid model
is needed to combine GNSS elevation data with orthometric heights from other sources.

The most accurate form of terrestrial elevation data collection is spirit levelling. Spirit
levelling only produces height differences, therefore, horizontal position must be determ-
ined independently by another method, for instance GNSS or total station. Elevation
accuracy can be achieved at sub-millimetre level over hundreds of metres, although, data
density is typically very low due to the time required to collect elevation by spirit level.
Due to the high costs, levelling is generally only suitable for high accuracy control sur-
veys. Ground based data collection is difficult in urban areas because there may be many
land owners to consult and request entry rights from; and many obstacles to inhibit the
inter-visibility required for total stations and spirit levels, and the sky visibility required
for GNSS.

Ground based remote sensing devices can also collect elevation data. Terrestrial laser
scanning can be tripod mounted or handheld. Handheld laser scanning can achieve sub
millimetre precision over small (sub metre) areas.

Another potential source of DEM data are ground based digital photos (Dowling et al.,
2009). Small high resolution DEMs can be made using structure from motion techniques
popularised by Photosynth (Microsoft Corporation, 2009). Microsoft has discontinued
Photosynth, however, the surface generation algorithms are available as opensource pro-
jects, such as, bundler (Snavely et al., 2006).

3.2.2. Aerial and space

Surface information can be collected remotely from conventional aircraft, unmanned
drones, or spacecraft. Remote sensing can be active or passive. Active remote sensing
technologies emit and receive pulses of electromagnetic radiation or sound, whereas, pass-
ive technologies utilise ambient illumination. Remotely sensed data frequently samples
land surfaces using a regular sampling structure rather than concentrating data collection
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on areas of increased importance. Surface models and estimates of impervious surfaces
are often generated from remotely sensed data.

Traditional photogrammetry is a passive technology where stereo-pairs of orthorectified
images are used to determine local elevations. Outputs from photogrammetry are fre-
quently stored as contour surfaces or point clouds and can be further refined for surface
analysis into rectangular grid DEMs or other structures. Modern Structure from Motion
photogrammetry extracts 3-D surfaces from large numbers of images taken from a moving
platform (Bolles et al., 1987).

LiDAR, also known as Aerial Laser Scanning (ALS), is an active data collection technology
that measures surfaces based on the return time and wavelengths of pulses of ultraviolet,
visible or near infra-red electromagnetic energy. LiDAR produces point clouds with a
regular sampling, very fine density (1m or less), and good vertical accuracy (Hutchinson
et al., 2009). LiDAR is typically more expensive than photogrammetry for a given area,
however, it achieves finer resolution results and is being collected routinely in many cities.

In addition to LiDAR, Sound Navigation And Ranging (SONAR), which utilises sound
waves, and Radio Detection And Ranging (radar1), which utilises microwave frequency
electromagnetic radiation can be used to generate elevation data. SONAR is particu-
larly useful for hydrographic data collection. Synthetic Aperture Radar (SAR) utilises
the motion of the platform to capture finer images than traditional radar by increasing
the effective antennae size. Interferometry Synthetic Aperture Radar (InSAR) analyses
the phase differences of multiple SAR images to produce surface models or deformation
surfaces. Persistent scatterer InSAR (PSI) has been used to monitor ground deformation
in urban areas (Terrafirma, 2011).

Photogrammetric data from conventional aircraft provides coarser horizontal and vertical
precision than Light Detection and Ranging (LiDAR), however, price advantages and
large existing databases will ensure continued use. Photogrammetric capture of elevation
data from unmanned drones is widely used due to the fine resolution that can be achieved
and lower cost compared to LiDAR. Fixed wing drones can survey larger domains than
rotor based systems but are unable to hover. An error analysis for LiDAR and automated
photogrammetry is given in Höhle and Höhle (2009).

LiDAR collects multiple returns so it is possible to determine both vegetation returns and
land returns (Evans and Hudak, 2007; Evans, 2003). LiDAR is qualitatively different to
sparse point data with very different error profiles and techniques for realizing surface
models (Hutchinson et al., 2009). LiDAR is better at detecting ground surfaces through
vegetation than photogrammetry. There are many examples of studies which use LiDAR

1Originally RADAR but typically no longer capitalised.
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data for urban surface modelling (Smith et al., 2005; MacMillan et al., 2003; Bandaragoda,
2008).

Remotely sensed elevation data can be collected from space based platforms. Space based
remote sensing is very good for collecting regional and continental scale datasets. Space
based platforms benefit from high temporal resolution and a consistent schedule of data
capture. Historically, the resolution of surface models generated from space based plat-
forms has been too coarse for fine scale urban drainage modelling. However, the current
generation of satellites such as Worldview3 and 4 capture panchromatic imagery at 0.31m
Satellite Imaging Corporation (2014). Some commonly used DEMs are derived from Ad-
vanced Space-borne Thermal Emission and Reflectance Radiometer (ASTER) and Shuttle
Radar Topography Mission (STRM), which utilized InSAR.

3.2.3. Validation of DEMs

Elevation data will inevitably contain errors. Errors can be categorised as random, sys-
tematic, or blunders. Errors can be from the underlying sample data or the interpolation
process. For a discussion of surface errors see Schneider (2002). It may be useful to assess
the errors of derived variables rather than the elevation values; for instance, derivatives
such as slope and curvature. Assessment of DEMs needs to consider shape rather than
merely vertical accuracy. Wise (2000) reviews methods of assessing DEMs.

There are a range of validation techniques to estimate the error created interpolating
DEMs including split-sample, cross-validation, and jackknifing (Smith et al., 2005; Evans
and Hudak, 2007). In principle, these methods work by randomly sampling the surface
then reinterpolating from the sample and comparing surfaces; or by ignoring some points
in the interpolation and using those points for the validation. Systematic errors may be
identified by locating unexpected variations of the spatial structure, on the assumption
that the surface being modelled is relatively smooth. Such variations can be investigated
by elevation histograms, spectral analysis, semi-variograms, and principal component ana-
lysis (Wise, 2000).

The error of a DEM can be quantified by checking a random sample of heights against
known heights from a more accurate source. The error can then be reported as a Root
Mean Square Error (RMSE), calculated as:

RMSE =

√√√√√ n∑
i=1
d2
i

n
(3.2)
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where d is the height difference between the DEM and test point, and n is the number
of test points. However RMSE is sensitive to outliers, does not indicate the spatial
distribution of errors, gives no indication as to the source of errors, may rely on a small
number of test points, and relies on the existence of appropriate higher accuracy data
for comparison. In addition, an object heighted in the reference data may have been
intentionally ignored in the surface model due to the scale of the conceptual model.
Comparing a point reading of elevation with a value in a DEM that is representative of
an area is an example of the issues of scale and aggregation discussed in Section §2.3.

Fisher (1998) compares DEM values to known higher accuracy elevations and uses val-
ues and spatial variation of errors in a DEM as input to Monte-Carlo modelling. Smith
et al. (2005) compare the gridded DEM with raw ALS data. Erdogan (2009) examines
the distribution and magnitude of elevation errors in fine scale DEMs. They find errors
are concentrated in areas of steep terrain and relate errors to terrain using ordinary and
geographically weighted least squares (Erdogan, 2009). Höhle and Höhle (2009) present
methods to assess the accuracy of bare Earth DEMs. They identify median, normal-
ized median absolute deviation, and sample quartiles as appropriate accuracy assessment
measures and provide guidelines for the appropriate sample size.

3.3. Structures

Given a set of n points in 2-D space with associated height values (h) that vary spatially:

(xi, yi, h (xi, yi)) , i ∈ Z : 1 ≤ i ≤ n (3.3)

there are three distinct structures that define the relationship between the points to create
a surface model. These structures are described below and illustrated in Figure 3.1.

1. Point set models consider the points as separate entities and treat the remaining
space as a void.

2. Network graph models connect the data points using line segments to form a network
of points and treat the remaining space as a void.

3. Tessellated models consider the data points as the centres of regions of space that
collectively cover the entire space without gaps or overlaps.
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Figure 3.1.: Surface model structures. Column A shows a 2-D plan of (1) a point set,
(2) a network graph, and (3) a tessellation of elevation values. Column B shows 3-
D perspective representations of the same structures. The direction of view of the
perspective images is shown by the arrow in the plan views.

39



Chapter 3 Digital Elevation Models

The three structures may be combined with an interpolation method to estimate values
between data points using defined mathematical functions (see Subsection 3.6.1). In this
discussion, “mesh” is used as a general term for both networks and tessellations. For a
summary of structures of surface models Gold (2009).

Goodchild et al. (2007) calls the components of spatial discretisation geo-atoms and defines
them as a property, location tuple. Geo-atoms the basis of a general theory of geographic
representation, including geo-fields and geo-objects. The structures described below are
forms of geo-fields. Geo-fields are grouped by a common but varying property. A surface
discretisation is a collection or integration of geo-atoms across a domain that vary in the
value of some characteristic.

Goodchild et al. (2007) further characterises six common 2D surface discretisations; poly-
gons, TINs, grids, irregular points, regular points, and contours. However, Goodchild
et al. (2007) do not analyse the qualities that distinguish these different discretisation:
structure, geometry, interpolation, and data model.

3.3.1. Point sets

A point set DEM consists of a collection of geo-atoms located in a two or three dimensional
reference frame. There are no specified relationships between the points of a point set,
nevertheless, relationships are often perceived by the viewer, based on relative proximity
(Gold, 2009). Each node in a point set DEM has a single value representing the elevation
at that point. Point sets are the primary building blocks for other surface models. Point
sets can be used as nodes in a network graph, as generator points in a tessellation, or as
the sample points from which a spatial function is formed. Point sets may have regular
or irregular geometries (see Section §3.4 and Section §3.5). Regular point sets can be
efficiently stored using a raster format, however, irregular point sets are more easily stored
using the vector data model (see Section §3.7).

A point set DEM is known as a point cloud. Point clouds typically consist of a large
number of points in a 3-D reference frame. Point clouds are the initial product of most
laser scanning systems, including airborne LiDAR, terrestrial laser scanning, and hand-
held scanners (see Section §3.2). Point clouds are frequently further processed to form
grid rasters, triangulations, or 3-D objects. Point clouds can be combined with break-lines
before generating grid or triangulation surfaces to produce better results. Contours are
characterised below as an example of a network graph; however, they can also be con-
ceptualised as a point set of lines where each line is an independent object with a single
value.
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3.3.2. Network graphs

A network graph connects the nodes of a point set into a network using line segments (often
called edges) to indicate which nodes are connected. The edges are generally straight lines
but can also be curved. The topographic surface is created by assigning(x, y, z) values
to each node. For a DEM, the (x, y) values typically define the position of the node in
the network graph. Network graphs are node centred meshes as opposed to cell centred
meshes, which are tessellations. Network graphs are the object of study of a branch of
discrete mathematics known as graph theory (Biggs et al., 1998).

A network graph can be formed from a regular or irregular point set. Each node may
have a consistent number of connections or the number of connections may vary between
nodes. The number of cells connected to a given node is known as the connectivity or
valence of the node. If a graph contains loops it is a cyclic graph. Graphs without loops
are acyclic. The edges of graphs may be assigned direction to form a directed graph.
Nodes and edges may be weighted with a cost value. If any two vertices in an undirected
graph are connected by exactly one path it is a tree graph. If a directed acyclic graph has
only one node from which all nodes can be reached it is a directed tree graph. A forest is
a disjoint union of trees.

Network graphs can be tailored to describe the important points of topography, for in-
stance, Morse-smale complexes (Comić et al., 2005; Danovaro et al., 2006, 2003). Both the
nodes and the edges of a network graph can be positioned to follow topographic features
(Vivoni et al., 2004).

Two commonly used network graph surface models are Triangular Irregular Networks
(TINs) and Contours. A TIN surface model consists of nodes connected by lines that
form the edges of adjacent triangles. TINs are generally formed from irregular point sets,
however, Triangular Regular Networks are also possible, for instance, Agüero et al. (2003)
form a Triangular Regular Network using structured total least squares. The triangular
facets formed by the edges of a TIN can be treated as a plane to form a functional surface
(see Subsection 3.6.1).

Contours represent elevation using lines, which may be curved. Each contour line is the
intersection of the surface being represented with a plane of equal elevation. For large
areas the plane is a curved portion of an ellipsoid or an equipotential surface of the Earth’s
gravity field. Contour based elevation models were used in the 18th century. Dupain-Triel
compiled a contour map of France in 1791 (Imhof, 2007). Today, large databases of both
digital and analogue contours form an important repository of elevation information.

Contours are visually rich and easy to interpret for experienced users. Contours are
frequently used as the source data for other forms of DEMs, particularly rectangular grid
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DEMs (Hutchinson, 1989). Elevation contours are generally considered functional surface
models as an interpolation along lines of steepest descent can be assumed. Contour
surfaces are commonly used for manual hydrological analysis. However, contours would
need to have very fine resolution to capture urban drainage structures unless ancillary
data are used. Contours have also been used for automated hydrological analysis. For
instance, Moore et al. (1988) show contours can be useful to divide areas into consistent
hydrological areas.

The flow paths or slope lines formed of lines orthogonal to contour lines form a network
graph surface model in themselves. Flow paths represent lines of steepest descent and
are useful in hydrological analysis. Oloughlin (1986) describes methods to determine flow
paths from digitized contours. It is possible to form a cyclic network graph, which is also
useful for hydrology, consisting of quadrilaterals and triangles formed by the intersections
of slope lines and contour lines (Pike and Kimberly, 2005; Orlandini and Moretti, 2009).
Triangles occur at peaks.

3.3.3. Tessellations

A tessellation or tiling subdivides space into tiles. Every point in space is assigned to
one and only one tile except for edges, which are the intersection between two tiles; and
vertices, which are the intersections of three or more tiles. A tessellation of 2-D space is
called a tessellation of the plane. The tessellations most commonly used in GIS are square
grids, Voronoi diagrams, and various ad-hoc tessellations. In addition to hydrological
flows, tessellated surfaces have been utilised to model a diverse range of flows including
fire (Hernández Encinas et al., 2007), population movement (Holland et al., 2007), and
cosmic flux (Romano-Díaz and Van De Weygaert, 2007). Tessellations are also useful for
indexing spatial data.

Tessellations are cell centred meshes as opposed to node centred network graphs. Tiles
are sometimes called cells or pixels. Although the following nuances are not universally
followed, the term cell suggests that there is some interaction between the cell and its
surroundings and a central point associated with the cell. The term pixel suggests that
the tile is part of a regular tessellation. Tilings cover infinite space, however, DEMs are
usually finite in extent. Therefore, tilings utilised for DEMs must be bounded. Tiles that
are adjacent to the perimeter of a bounded tessellation are edge cells and often require
special handling in spatial analysis procedures.

The shapes of tiles can be compared by the number and length of their sides, and by the
magnitude of their internal angles. A regular polygon is a polygon formed of edges the

42



3.3 Structures

same length and internal angles of the same measure. Two tiles are identical if and only
if they have have the same number of sides, the same internal angles, the same length
of sides, and the same position. The shapes of tiles can be classified as equivalent, con-
gruent, or similar based on which of the transformations translation, rotation, reflection,
and scaling are required to make them identical. If two tiles can be made identical by
translation alone they are equivalent. If they can be made equivalent by rotation and/or
reflection they are congruent. If they can be made congruent by scaling they are sim-
ilar. If two tiles can be made identical by translation and/or scaling they have the same
orientation, for examples see Figure 3.2.

Figure 3.2.: The purple triangles are equivalent. The purple and red triangles are
congruent. The green triangle is similar to both the purple and red triangles.

Tessellations can be characterised by the combination of tiles intersecting at each vertex.
Connectivity (called valence in de Floriani et al. (2005)) is a measure of the number of
tiles intersecting at each vertex. Connectivity is also relevant to network graphs. Tes-
sellations that form a repeating pattern are known as periodic tessellations. All periodic
2 tessellations can be assigned to one of 17 wallpaper groups (Fedorov, 1891; Grunbaum
and Shephard, 1977).

The neighbourhood of a tile is the set of tiles that share at least one vertex with that
tile. Adjacency indicates the spatial relationship between neighbouring tiles. Depending
on the geometry of the tessellation, all the neighbours of a tile may be adjacent across
an edge or some may be adjacent across a vertex. If all the edges of a tessellation are

2Mathematicians also consider colour in the period of tilings. However, colour is ignored here.
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the linear boundary of two or fewer tiles, it is a conforming or edge-to-edge tessellation
((de Floriani et al., 2005).

The distance of a neighbour is defined as the distance between centroids of the tiles. The
neighbours of a tile may all be the same distance away or their distances may vary. The
way that a tessellation packs space affects the stability and the density of the tessellation
for a given cell to cell distance of tessellation.

It may be possible to decompose or aggregate the tiles of a tessellation of the plane into
other shapes that also tessellate the plane. A tessellation is self-similar if tiles can be
aggregated or decomposed into a shape that is similar to the initial shape.

For every tessellation, there is a dual network graph that can be formed by connecting
the centroids of the cells with the centroids of the cells that share a linear boundary.
Voronoi diagrams and their dual Delaunay Triangulations are described in more detail in
Subsection 3.4.2. A different graph can be generated from a tessellation using the vertices
and edges of the tiling. This alternative graph is what Winter and Frank (2000) call the
skeleton of the raster. Conversely, a tessellation can be formed from a network graph
using the cells formed by the edges of the network, and defining a value for a cell.

3.4. Irregular Geometries

The geometry of a surface model describes the spatial arrangement of data points within
the surface. An irregular tessellation is a space-filling configuration of polygons of varied
shape and size. Irregular arrays can be used for finite volume and finite element analysis
(Mark, 1988). This subsection describes the characteristics of four irregular tessellations:
ad-hoc, Voronoi diagrams, Triangular Irregular Networks (TINs), and boundary fitted
grids; the following section discusses three regular geometries: triangular, rectangular,
and hexagonal. For each geometry, the shape refers to the Voronoi cell created from the
data point rather than the shape created by the edges of a network graph.

An irregular mesh may have an irregular distribution of points but regular or semi-regular
connectivity; for instance, a TIN may consist of triangles of varying shape and size but
there are always 6 triangles meeting at each vertex. An irregular mesh with regular
valence is called a semi-regular mesh (de Floriani et al., 2005). Semi-regular meshes often
contain some extraordinary nodes, which have a different valency. The distribution of the
points in an irregular mesh may be irregular but determined by a mathematical formula
as is the case for Boundary Fitted Grids or they may be ad-hoc constructions.

When addressing problems that involve computation on a regular point set, a trade off
occurs between reducing the number of cells to avoid excessive computational time and
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increasing the number of cells for increased accuracy (Jin and Wu, 1997). Using a fine
scale surface over the entire domain may be computationally infeasible or unwarranted
by the available data (Kampf and Burges, 2007). For hydrological problems, a finer
spatial resolution is required in some areas to resolve flow fields, for instance, in areas of
converging flow. Irregular geometries resolve this trade off by permitting greater density in
areas that require it. The greater flexibility of irregular geometry comes at the expense of
more complicated supporting structures and corresponding algorithms (Gerstner, 2003).
Irregular geometries are normally associated with explicit data structures.

3.4.1. Ad-hoc

In an ad-hoc geometry, not only are the points not regularly distributed but the edges
of the network graph or tessellation are not created in accordance with a set of rules
but arbitrarily to suit on an ad-hoc basis. A regular point set could also be used to
generate ad-hoc tessellations by arbitrarily positioning the edges. Also an ad-hoc network
graph can be generated from a regular point set by arbitrarily connecting nodes to form
a network.

3.4.2. Voronoi diagrams and Delaunay Triangulation

A tessellation of particular importance to spatial science is the Voronoi diagram, also
known as Thiessen polygons, proximal polygons or Dirichlet cells. Using a 2-D example,
given a set of points or “generators” in 2-D space, a Voronoi diagram is formed by assigning
an area to each point such that everywhere in that area is closer to that point than any
other point in the set of generators (see Figure 3.3). If the generators are regularly
spaced, the resulting Voronoi diagram may be degenerate, meaning some Voronoi vertices
are shared by more than three polygons. Gold (2009) characterises Voronoi diagrams as
a spatial model that unifies the concepts of objects and fields by answering the question:
what is closest to here? In contrast to the question: what is here?

The dual of the Voronoi diagram is the Delaunay Triangulation. Voronoi diagrams and
their dual the Delaunay Triangulation have useful properties and are implemented in nu-
merous applications. Some GIS algorithms utilise both the tessellation and dual network
graph (Gold, 2009). Both regular and irregular point sets or the nodes of a network graph
may be used as generators to form a Voronoi tessellation or connected in a unique way to
form a Delaunay Triangulation. The Voronoi diagram is unique for any set of generators.

Okabe et al. (1992) provide mathematical definitions of the Voronoi polygon based on
the nearest generator method on a plane and extends the definition to higher dimensions
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,

Figure 3.3.: A bounded Voronoi tessellation generated from the black generator points.
The brown lines are the dual Delaunay Triangulation. The blue lines are the skeleton
network graph.

using the intersecting planes definition. In an ordinary Voronoi diagram, each Voronoi
polygon is associated with a single generator, the interior of each polygon encompasses
all points nearer to its generator than all other generators, and the edges of a Voronoi
diagram are equidistant between at least two points. In an open Voronoi set the borders
are not part of the subset. In a closed one they are. Outer Voronoi diagram edges are
assumed to extend to infinity. Augmented geometric graphs bound the whole area with
a circle whose arcs close off outer polygons.

Voronoi diagrams were first described explicitly by Dirichlet in 1850 in two and three di-
mensions. Voronoi generalized the tessellations to m-dimensions in 1908. Both Dirichlet
and Voronoi dealt with regularly spaced points. Delaunay is credited with developing
Voronoi polygons’ dual, Delaunay Triangulations. The useful properties of Voronoi poly-
gons saw them used frequently in a range of natural and social sciences including frequent
rediscoveries. However, the lack of efficient computing methods restricted their use until
the mid-seventies. A detailed history of Voronoi diagrams and their dual the Delaunay
tessellation is given in (Okabe et al., 1992).

Okabe et al. (1992) define the Delaunay tessellation provided the set of generator points
is not co-linear. This is done by joining the generators that share a common Voronoi edge.
If this consists of only triangles, it is a triangulation otherwise it is a pretriangulation.
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Delaunay tessellations and Voronoi diagrams have a number of distinctive properties. For
instance, circum-circles formed by the nodes of Delaunay triangles contain no other nodes.
Lexicographically maximum triangulation theorem states that Delaunay Triangulations
minimise variance in edge length and maximise the largest minimum angles in each tri-
angle (Okabe et al., 1992). Therefore, considering the possible triangulations of a point
set of nodes, the triangles of a Delaunay Triangulation are the closest to equilateral, with
fewer long thin triangles.

The Naive Method to generate a Voronoi diagram is to draw lines from each generator
point to its nearest neighbours, divide each of these lines into two equal parts with a
perpendicular line and then join the perpendicular bisectors to create a polygon. Voronoi
diagrams can be developed from their generator points by a number of more efficient
methods, including the divide and conquer method (Shamos, 1975), a refined incremental
method (Ohya et al., 1984) and the “dream transformation” plane sweep method (Fortune,
1987).

Voronoi diagrams have been generalized in a number of ways including weighted, higher
order (Voronoi with more than one point for each cell), farthest point, Voronoi of various
lines and arcs, and Voronoi on shapes. For details and references see Okabe et al. (1992).
Recent developments in Voronoi diagrams include a generalization of constrained Voronoi
diagrams into higher order constrained tessellations (Silveira and van Oostrum, 2007), a
fractal Voronoi surface (Dobrowolski, 2007), application of Voronoi for modelling three
dimensional fields (Ledoux and Gold, 2008), and an application of Voronoi diagrams to
optimal path planning (Priyadarshi, 2007).

3.4.3. Triangular Irregular Networks

Triangulated Irregular Networks (TINs) are especially useful for terrains. As the name
suggests, TINs are network graphs consisting of irregular triangular cells. TINs are gen-
erally but not always based on Delaunay Triangulations. TINs are useful because they
are variable density, can be constructed to fit all data points, can be adapted to conform
to known linear and point features, are edge-to-edge conforming, can readily be extended
to a functional surface by fitting planes to the triangular facets, and easily support the
addition or removal of nodes.

Hydrological models on TIN structures support variable resolution (Liu and Snoeyink,
2005). While TIN structures are not generally adaptive to hydrological properties, Vivoni
et al. (2004) describe a method of forming hydrologically adaptive TIN surfaces, using a
preliminary raster analysis to define regions of similarity.
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Triangles are the 2-simplex. Therefore, triangular meshes are the simplex mesh of 2-D
space. A k-simplex is the smallest convex set containing k + 1 points, where k is the
number of dimensions of the reference frame. A k-simplex has k + 1 boundaries which
are known as k-facets, which are k− 1-simplexes de Floriani et al. (2005). The 3-simplex
is a tetrahedron. k-simplexes are the building blocks of many Level of Detail models (see
Section §3.8) and also generalise 2-D TIN spatial analysis methods to higher dimensions.

3.4.4. Boundary Fitted Grids

A compromise between regular and irregular grids are boundary fitted grids (BFGs) (Jin
and Wu, 1997), which consist of a regular array of rows and columns, which is applicable
to raster data storage but the mesh is distorted to conform to the outer boundary of the
study area. Zegeling (2004) describes tensor product adaptive grids, which also utilise a
regular approach to define an adaptive grid. BFGs are quadrilateral network graphs with
curvilinear non orthogonal coordinates that can be mapped onto an orthogonal grid in
computational space. The distribution of interior grid points is a function of boundary grid
points (Thompson et al., 1985). Boundary fitted grids are widely used in aerospace and
computational fluid dynamics and are well suited to finite difference numerical schemes
(Hoffmann and Chiang, 1993; Thompson et al., 1985).

The area for each cell in a BFG and the distance between adjacent cells varies. Therefore,
these variables need to be stored for each grid cell. However, if there are a large number
of parameters in the spatial process being modelled, the extra parameters that need to
be stored to describe geometry of the cells are compensated for by avoiding cells located
outside the study area, assuming that the area of interest is not rectangular (Jin and Wu,
1997).

Another benefit of the BFG approach is that it is possible to construct the grid to conform
to linear features within the study area by subdividing the area at the linear feature,
creating a boundary from the linear feature. This is clearly applicable to river basins.
It is less obvious how such a process would be undertaken in urban areas due to large
number of features that need to be modelled. However, roads and buildings are features
that could be modelled in this fashion.

3.5. Regular Geometries

If all tiles in a tessellation have congruent shape it is a regular tiling. A semi-regular
tiling contains incongruent shapes but the combination of tiles at each vertex is the same.
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There are only three regular tilings of the plane that can be formed from regular polygons.
They are the tilings formed by equilateral triangles, squares and hexagons (see below).
There are eight semi-regular tilings that can be formed with regular polygons. These are
known as the Archimedean tessellations (Grunbaum and Shephard, 1977).

A regular geometry in 2-D space can be described by two 2× 1 basis vectors r1, r2 ∈ R2.
The distances and directions between the points of a regular geometry can be derived
from the basis vectors. Condat et al. (2008) showed that with the basis vectors grouped
in a 2× 2 matrix R =

[
r1 r2

]
, the coordinates of all points in the point set is:

Rk,k ∈ Z2 (3.4)

A regular tessellation can be characterised by its Schläfli symbol, which is also used to
describe polygons and regular polytopes. Schläfli symbol indicates the number of tiles that
intersect at each vertex (connectivity) and the number of vertices in each of those tiles in
the form {c, v} where c is the connectivity and v is the number of vertices. Semi regular
polygons can be characterised by their vertex configuration, which lists the number of
vertices of each tile that intersects at each vertex (Grunbaum and Shephard, 1977) in the
form (vi, vi+1, ..., vn) where v is the number of vertices in tile i and n is the number of
tiles intersecting at a vertex. The vertex configuration can be shortened to (vn) if v is the
same for all tiles intersecting at the vertex. The vertex configuration can also be nested
to represent more variable periodic tessellations.

Surface models with a regular geometry have the benefit that you do not need to expli-
citly store (x, y) data for every point as position is implied. Therefore, regular arrays are
more efficient for data storage. Topology is also implicit because the connectivity and
adjacency can be easily inferred because, except for edge tiles, neighbourhoods are con-
sistent between tiles. Consistent neighbourhoods also simplify neighbourhood operations.
However, surface models with regular geometries introduce geometric bias to some spatial
analysis including population dispersion models (Holland et al., 2007) and hydrological
flow direction algorithms (Tarboton, 1997).

3.5.1. Regular Triangles

Regular equilateral triangular tilings have vertex configuration (36), Schläfli symbol {3, 6}.
The dual graph of an equilateral triangle tessellation forms hexagonal tiles. Rtri can be

characterised as two vectors
 √3/2

1/2

, and
 0

1

, which each represent the direction and

spacing of an infinite set of collinear points, except every third point is omitted.
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An equilateral triangle point set is characterised by the matrix:

Rtri =
 √3/2 0

1/2 1

 (3.5)

The coordinates of all points in the point set can be found with:

Rtrik,k ∈ Z2 - 3 (3.6)

The integers that are divisible by three are excluded to recreate the periodic variance
in spacing. Combining both series of points generates an infinite array of triangular
generators in 2-Dimensions.

Figure 3.4.: The geometry of regular triangular tessellation. The black dots are the tile
generators. The grey lines are the perimeter of the triangular cells. The black arrows
represent the basis vectors of Rtri. The neighbourhood of the yellow cell is coloured:
the point neighbours are green, and the line neighbours are orange. The dual network
is shown in dashed lines. The network lines associated with the yellow cell are shown
thicker. The different length network lines are coloured differently. The network lines
associated with the line neighbours (red) form the skeleton of a hexagonal array.

The neighbourhood geometry of a regular triangular tessellation is shown in Figure 3.4.
There are two different orientations of the triangles in an equilateral triangular tessellation.
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The neighbourhoods of triangles are not consistent. Triangles have three edge adjacent
and nine point adjacent neighbours. There are three different adjacency distances in
a triangular neighbourhood. The inconsistent neighbourhood of triangular tessellations
complicates neighbourhood operations.

There are five variations of regular tessellations that can be formed with triangles: equi-
lateral, isosceles, right angle, and two scalene triangle variations. Tessellations consisting
of, equilateral, isosceles, and 30-60 right angle triangles can form self-similar hierarchies.
The self similar agglomerations are formed from n2 tiles, where n is any integer > 0.

The length (ω) of the projection of an equilateral triangle on a line in direction (Θ) varies
according to;

ω = h (cos ((Θ%π/3)− π/6)) (3.7)

where h is the height of the equilateral triangular array element whose base is aligned
with the y-axis.

3.5.2. Regular Rectangles

Two dimensional space can be tessellated into rectangles. Conforming regular rectangular
geometries have (44) vertex configuration. Square grids have Schläfli symbol {4, 4}. The
dual network graph of a rectangular tessellation forms rectangular tiles translated by half
a cell size in x and y (see Figure 3.5).

A conforming rectangular point set is characterised by the matrix:

Rrec =
 m 0

0 n

 {m,n ∈ R : m,n > 0} (3.8)

If m = n, it is a square point set. The coordinates of all points in the point set can be
found by :

Rreck,k ∈ Z2 (3.9)

The orientations of the rectangles in a regular rectangular tessellation are consistent.
However, rectangles have four edge adjacent and four point adjacent neighbours. There are
two different adjacency distances in a rectangular neighbourhood. Some neighbourhood
algorithms on rectangular arrays consider only the four edge adjacent neighbours. This
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Figure 3.5.: : The geometry of regular rectangular tessellation. The black dots are the
tile generators. The grey lines are the perimeter of the rectangular cells. The black
arrows represent the basis vectors of Rrec. The neighbourhood of the yellow cell is
coloured: the point neighbours are green, and the line neighbours are orange. The
dual network is shown in dashed lines. The network lines associated with the yellow
cell are shown thicker. The different length network lines are coloured differently. The
network lines associated with the line neighbours (red) form the skeleton of a translated
rectangular array.

is known as rook’s case neighbourhood. Alternatively, some algorithms use the queen’s
case neighbourhood, which considers all eight neighbours. However in the queen’s case
neighbourhood algorithms often need to treat the diagonal neighbours differently from
how the rook’s case neighbours are treated; this disparity is known as the connectivity
problem (Golay, 1969). The connectivity problem is discussed in the context of the
geomorphometric parameter flow direction in Subsection 4.3.1.

Rectangular grids are self similar. Any agglomeration of cells is self similar provided the
number of cells in the x-dimension is the same as the number of cells in the y-dimension,
i.e. self similar agglomerations are formed from n2 tiles, where n is any integer > 0.
Rectangular grids can be decomposed into isosceles triangles or right angle triangles.

The length of a cross section of a rectangle varies depending on the direction of transit.
For a square, the cross section varies from 1 to

√
2 multiplied by the cell size. More
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generally the cross section of a cell (ω) in a rectangular mesh can be computed as:

ω = | cos (Θ) |∆x+ | sin (Θ) |∆y (3.10)

where Θ is the direction of transit referenced to the x-axis and ∆x and ∆y are the edge
lengths of a rectangular element aligned with the x and y axes.

Rectangular grids can be aligned with Cartesian axes which makes indexing simple and
facilitates alignment with display monitors and data collectors that use rectangular grids.
Large grids can be processed using data tiling (McCormack and Hogg, 1997). Brick bond
tessellations are a non-conforming variation of rectangular arrays; vertices occur part way
along the perimeter of a neighbouring tile. Brick bond tessellations do not exhibit self
similarity.

A DEM composed of a regular array of rectangles, each with a single elevation, was
proposed by Miller and Laflamme (1958). Widespread availability of rectangular grid
DEMs first occurred in the 1980s. This form of DEM is so ubiquitous it is frequently
called DEM without further explanation. Rectangular grid DEMs are the most frequently
used datasets in geomorphometry (Hengl et al., 2009).

3.5.3. Regular Hexagons

Two dimensional space can be tessellated with hexagons (see Figure 3.6). Hexagonal
tessellations have (63) vertex configuration and Schläfli symbol {6, 3}. The dual network
graph of a regular hexagon tessellation forms equilateral triangular tiles. For a general
summary of hexagonal arrays, see Middleton and Sivaswamy (2005a).

A hexagonal point set is characterised by :

Rhex =
√

2√
3

 1 1/2

0
√

3/2

 (3.11)

The coordinates of all points in a hexagonal point set can be found by:

Rhexk,k ∈ Z2 (3.12)

All tiles in a hexagonal point set have the same orientation. The neighbourhoods of
hexagonal tessellations are consistent. All neighbours are adjacent across edges and are
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Figure 3.6.: The geometry of regular hexagonal tessellation. The black dots are the tile
generators. The grey lines are the perimeter of the hexagonal cells. The black arrows
represent the basis vectors of Rhex. The neighbourhood of the yellow cell is coloured
orange. All neighbours are adjacent across lines. The dual network is shown in dashed
lines. The network lines associated with the yellow cell are shown thicker. All network
lines are the same length. The network lines form the skeleton of a triangular array.

equally distant from the central cell. The edge only adjacency removes the connectivity
problem. Adjacent neighbours of a given cell are separated by lines that are covered by
a line radiating from the centre of the central cell. Hexagonal Voronoi diagrams are not
degenerate.

Hexagons can be decomposed into six equilateral triangles or aggregated into rosettes
that approximate hexagons. If the aggregation process is repeated, the perimeter of
the aggregation becomes increasingly fractal as the number of tiles in the aggregation
increases. Voronoi tessellations formed from the centroids of the rosettes are true hexagons
with their orientation rotated (Middleton and Sivaswamy, 2005a).

The projection of a hexagon onto a line in direction θ can also be determined using
Equation 3.7 where h is instead the distance between any two line adjacent neighbours.
The similarity with triangular cross sections is due to the decomposition of hexagons into
triangles. The cross section of a hexagon varies from 1 to 2/

√
3 multiplied by the cell size.
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Hexagonal tessellations are not as commonly used as regular rectangular tessellations or
irregular triangular networks, partly due to the ubiquity of rectangular display and sensor
hardware. Hexagonal sensors are available, although uncommon (Condat et al., 2008).
Snyder et al. (1999) describe a hexagonal coordinate system based on tilted axes (u, v) and
conversion to Cartesian (see also Subsection 3.8.3). Notwithstanding the predominance
of rectangular and triangular tessellation, numerous advantages of hexagonal geometries
are described in research papers; the remainder of this section details some of these.

The local neighbourhood isotropy facilitates neighbourhood operations (de Sousa et al.,
2006), and the implementation of circularly symmetric kernels (Snyder et al., 1999).
Hexagons are the closest of the regular tessellations to a circle. Therefore, the length
of the cross section changes least with direction of transit. This is discussed with refer-
ence to flow direction in Subsection 8.3.1. Voronoi cells of uniform randomly generated
points tend toward hexagonal geometry because they have on average six sides.

Hexagonal sampling generates finer spatial resolution than rectangular sampling for a
given number of samples (Snyder et al., 1999; de Sousa et al., 2006), and the unit hexagon
requires the least length of sides of the alternatives (Brimkov and Barneva, 2001). Hexagon
are highly economical at packing space; if a collection of tangent circles with flexible
boundaries are subjected to pressure a hexagonal grid is the lowest energy solution. There
are many naturally occurring structures that utilise hexagonal packing including beehives
and the human retina (Snyder et al., 1999). The Nobel Prize in Physiology or Medicine,
2014, was awarded to John O’Keefe, May-Britt Moser, and Edvard I. Moser for research
that showed that mammalian brain cells use a hexagonal map of space to sense location
(Nobel Media AB, 2014).

Brimkov and Barneva (2001) demonstrate that the discretisation of a line into hexagonal
tiles is thinner than rectangular or triangular discretisations provided that the discrete
line is tunnel free, i.e. the line can be traversed from end to end via only edge adjacent
neighbours. Hexagons are good for pattern recognition in aerial photos or other objects
without predetermined preferred directionality (Golay, 1969). Finally, flow directions are
better preserved when up-scaling a hexagonal array compared to up-scaling a rectangular
DEM (de Sousa et al., 2006).

3.6. Interpolation, resampling, conversion, and
generalisation

In addition to geometry and structure, the third aspect of a surface model is the method
of interpolation of values away from the point set (Subsection 3.6.1). Interpolation can be
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used for resampling, for instance, converting between meshes with different geometry or to
convert between different resolutions of the same mesh ( Subsection 3.6.2). Interpolation
can also be used to convert between different structures, for instance, converting from a
TIN to a regular tessellation ( Subsection 3.6.3). Subsection 3.6.4 discusses generalisation
and distinguishes it from resampling.

3.6.1. Interpolation

2.5-D Surface models frequently provide estimates for values at locations outside the point
set by interpolating values using appropriate functions of (x, y). Given a set of values at
sample points, interpolation is the process of producing estimates for values at points not
included in the original set.

Functional surfaces for interpolation can be generated from point sets, network graphs or
tessellations. Rarely, a global function may be applied to the entire domain, for instance
Yue et al. (2007) present a global surface interpolation method based on the fundamental
Theorem of Surfaces. However, more usually, the interpolated surface will be formed
piecewise from local functions. Whether global or piecewise, functional surfaces that are
based on fitting equations to sample points generally do not follow the points exactly;
they are smoother than the underlying data. Alternately, some functional surface models
respect all points. Surface models that respect all points are useful for updating, inserting,
and deleting points because the changes only have local effect (Gold, 2009). A large vari-
ety of equations may be used for interpolation including polynomial (local and global),
bilinear, nearest neighbour, Inverse Distance Weighted (IDW), splines and regularized
spline with tension (RST) (Chaplot et al., 2006). Interpolations that preserve shape and
consider drainage structure, such as those used by the ANUDEM gridding algorithm dis-
cussed below in Subsection 3.6.3, produce surfaces that are more suitable for hydrological
modelling than those that consider only local elevation.

A piecewise interpolation may be subdivided by the edges of a network or tessellation.
Tessellations are effectively nearest neighbour interpolations of point sets. However, tes-
sellations are not truly functional unless you ignore the edges and vertices or apply a rule
to produce a single elevation value in these places. A continuous surface can be conveni-
ently created from a conforming TIN by fitting a plane to the three vertices of each facet.
Triangular conforming meshes avoid discontinuities at facet borders. Fitting planes to
TINs is a bilinear interpolation; nearest neighbour, bi-cubic and bi-quintic interpolations
are also used (Watson, 1992).

Interpolations may be developed using techniques from geostatistics, such as, point kri-
ging, ordinary kriging, and universal kriging (Mitas and Mitasova, 1999). Geostatisticical
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methods propagate errors in source data and provide information about the probability
of the fit between the model and the sample points and can be used to create equal prob-
ability simulations (Hengl et al., 2008). Functional surface models can also be formed
using functions that are defined in frequency space, such as, wavelets or methods related
to the Discrete Fourrier Transform (Gallant and Hutchinson, 1997). Frequency space
surfaces are often used to compress data and lend themselves to multi-scale analysis (see
Section §3.8). Huang and Chen (2009) describe a fractal DEM interpolation method.

3.6.2. Resampling

Resampling produces a “target” point set from a “source” point set. The target and
source point sets may differ in geometry and density but are both approximations of the
same underlying surface. Resampling between a source point set and a target point set
can be accomplished using a generator function that estimates the unknown underlying
function by means of its samples in the source point set. The generator function is then
sampled on the target point set (Condat et al., 2008). On 2-D Cartesian point sets,
generator functions are typically obtained as tensor-product extensions of 1-D versions
(Condat et al., 2008).

On non-Cartesian point sets, such as the hexagonal one, intrinsically 2-D generator func-
tions are deployed: hex-splines (Van De Ville et al., 2004) or box-splines (Condat and
Van De Ville, 2008). Middleton and Sivaswamy (2005a) summarises methods for res-
ampling between hexagonal and rectangular arrays, including least squares spline res-
ampling presented in Van De Ville et al. (2002). Faille and Petrou (2010) use splines
to reconstruct images on hexagonal grids from samples. These methods require com-
putationally expensive pre-filtering to produce interpolations more advanced than linear
(Condat et al., 2008).

Generator function methods cause image degradation and are not reversible. They are
not reversible because the generator function is intrinsically linked to the source point set
only. Condat et al. (2008) present an alternative approach for regular arrays where source
and target arrays are the same density, which seeks to achieve “Symmetric reversibility”.
The Condat et al. (2008) method consists of a maximum of three shear operations (see
Figure 3.7) combined with a 1-D fractional delay operation to interpolate the values. In
addition to converting between Cartesian and hexagonal arrays, it can convert between
any two regular arrays, including rotations (Condat et al., 2008). The Condat et al. (2008)
method is implemented to convert between rectangular and hexagonal arrays in Part III.
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Figure 3.7.: Shear operations required to resample from rectangular to hexagonal geo-
metry (from Condat et al. (2008)).

3.6.3. Structure Conversion

Gridding

Converting a point set into a tessellation can be as simple as determining the Voronoi dia-
gram. Although, if a regular grid is sought it may be necessary to resample the geometry
using the techniques listed in Subsection 3.6.1. There are a variety of techniques used
to generate regular rectangular DEMs from source data, which are typically vector data
consisting of points, break lines, and contour lines. Here, a vector to raster interpolation
is called a gridding procedure. Methods for interpolating raster data from point or TIN
are now being developed to use streaming techniques so very large data sets that do not
fit in main memory of commodity computers can be processed (Isenburg et al., 2006;
Agarwal et al., 2006).
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Gridding procedures developed specifically for modelling terrain often include constraints
that cause the generator function to conform to land forms. However, such methods are
not necessarily suited for areas where the terrain is modified by human activity. Niemann
et al. (2003) introduced a physically based model that simulates topography in dynamic
equilibrium including the effects of tectonic uplift, fluvial incision, and hill slope diffusion.
Agreement between the simulated topography and the elevation data is improved by
iteratively adjusting a spatially varying erodibility parameter. Mass Balance (Grimaldi
et al., 2005) extends the steady state physically based erosion model so that it produces
slopes with variable curvature and 2nd moment self similarity, thus generating realistic
profiles from sparse data.

Hutchinson (1989) introduced ANUDEM, which is a very popular algorithm for creating
hydrologically enforced grid DEMs from sparse point and break line data. ANUDEM is
a locally adaptive elevation gridding procedure that involves an iterative finite difference
interpolation technique and a hydrological enforcement algorithm over successively finer
grid divisions until the final resolution is reached. The ANUDEM procedure incorporates
a variety of roughness penalties composed of surface curvature and potential that can be
tuned to different data sources. The strength of the ANUDEM procedure is that it has
proven effective in determining surface drainage structure even from relatively sparse data
points. Hutchinson (2000) suggests a method of determining optimum resolution based
on the available data. Yang et al. (2007) compares ANUDEM and TIN interpolation and
optimizes ANUDEM parameters.

Over the years the ANUDEM algorithm has been improved to incorporate a greater
range of data including contour data and LiDAR data and the hydrological enforce-
ment algorithm, which seeks to create a connected drainage structure, has been altered
(Hutchinson et al., 2009). The emergence of LiDAR data (Subsection 3.2.2) has motiv-
ated changes to the ANUDEM algorithm because the original algorithm assumed sparse
noise free data. However, LiDAR datasets are frequently as dense or possibly denser than
the desired grid resolution and LiDAR data are known to contain significant noise and
systematic biases (Hutchinson et al., 2009). MacMillan et al. (2003) discusses some of the
challenges of making DEMs from LiDAR.

Techniques from the field of geostatistics can also be used to grid elevation data. However,
geostatistics are used to form topographic surfaces less commonly than splines because
the results of geostatistical techniques are sensitive to sampling density and local extreme
values (Hengl et al., 2008). Regression kriging is presented as an option to splines in
Hengl et al. (2008). This method permits the use of auxiliary predictors, such as river
lines, in the interpolation.
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Triangulation

Triangulation is an umbrella term for the creation of TINs from a set of points. Zhu
et al. (2001) and Braun and Sambridge (1997) describe generation of TIN from contours.
TINs are often generated from grid DEMs, in fact, grid DEMs can be treated as a TINs
(Palacios-Vélez and Cuevas-Renaud, 1986; Agüero et al., 2003). However, GRID to TIN
triangulation is typically preceded by culling of grid cell centres to produce a subset of
points for triangulation. Point selections are constrained to preserve slopes within a set
tolerance. Common methods for selecting points for triangulation are Drop Heuristic and
Very Important Point. Vivoni et al. (2004) compared Drop Heuristic and Very Important
Point and found Drop Heuristic performed better. Wang et al. (2001) found that iterative
point selection and triangulation is more effective than one pass methods.

Generally selected points are triangulated using Delaunay Triangulation (see Subsection
3.4.2). Delaunay Triangulation only considers the horizontal position; alternative data
dependent triangulations such as Lawson’s local optimization procedure also consider
the z-value. Two non-Delaunay alternatives are constrained Delaunay Triangulations,
which introduce linear features to constrain the edges of some triangles; and Greedy
Triangulation, which minimises edge length.

Abdelguerfi et al. (1998) analyse triangulation and identify a good triangulation as one
that represents the surface accurately, retains edge to edge connectivity; avoids slivers,
which occur when the triangulation produces thin and slivery triangles; and avoid streaks,
which appear when there are too many triangles at a given vertex. A variant of Scarlatos
and Pavlidis (1992)’s algorithm shows the best overall performance (Abdelguerfi et al.,
1998). However, Wang et al. (2001) compare existing methods of triangulation and find
Delaunay to be the best.

3.6.4. Generalisation

Generalisation, in the field of spatial science, is a broad concept that encompasses various
techniques that convert dense data into a more sparse form. One example of generalisa-
tion is up-scaling a raster dataset to a coarser resolution to form a multi-scale pyramid
(Subsection 3.8.1). Alternatively, generalisation is used to describe both the cartographic
techniques whereby vector data are simplified by removing nodes to represent objects with
appropriate complexity for a given scale, and the substitution of data with a symbol for
the same purpose. Due to the limited spatial accuracy of measurement and the finite but
greater than point area required to measure distributed properties, all geographic data
are generalisations (Zhang et al., 2014).
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The conversion from a dense DEM to a sparse format, such as the conversion from grid
Raster to TIN (Subsection 3.6.3), is also a form of generalisation. Generalisation is also
required to integrate a fine dataset with coarse data from the same domain, such as
adding LiDAR data to existing DEM models (Dalyot et al., 2008). Various methods that
have been developed for simplifying polygonal surfaces (such as TINs) are summarised
in Heckbert and Garland (1997). A summary of adaptive thinning techniques is given in
Demaret et al. (2005).

Generalisation is not synonymous with resampling from a dense source point set to a
sparse target point set because generalisation addresses scale. Even if the target point set
of a resampling is less dense than the source, resampling will generate only point values.
In contrast, a generalisation seeks to aggregate or integrate the values so that the new
values are representative of a larger region than the original ones. Ai and Li (2009) assert
that DEM generalization should be governed by geographic significance not geometric
properties. Their proposed method preserves major valley structure while filling minor
ones. Therefore, their method leaves resolution the same but removes complexity from
terrain.

Generalizing can be applied selectively to different wavelengths within the terrain. For
instance, Jenny and Hurni (2010) use Laplacian pyramids to interactively control gener-
alisation levels at multiple scales using a graphic equalizer interface for 3-D perspective
visualization. Döll and Lehner (2002) describe up-scaling methods for grid based out-
puts of hydrological geomorphometry, including drainage vectors. de Sousa et al. (2006)
up-scale drainage vectors on a hexagonal grid.

3.7. Data models

Regardless of the structure and geometry employed to describe a surface, a data model
must be employed to store, query, and update the surface description within a computer’s
memory. There are a great many ways to store digital spatial data, with new methods
being developed all the time. A comprehensive survey is beyond the scope of this thesis.
Instead, three broad categories will be described in a general sense: vector, raster, and
tree structures.
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3.7.1. What is a data model?

Digital data

Computer memory consists of strings of binary information: 0s and 1s; that encode stand-
ard data types, such as text, and numerical values. Binary representations of numerical
values, such as floats and integers, have limited size, precision, and in the case of floats,
accuracy. Memory must be allocated according to the type of data stored, therefore,
storing 1 as a long integer requires the same amount of memory as storing 1000. Data
structures are built to access these bits to produce data that is useful to people. Data
models need to facilitate the storage, deletion, alteration, and querying of data to meet
the need of users. Spatial data models are designed to minimise the computational ex-
pense of the simplest and most common spatial operations e.g. overlay and adjacency,
whilst also providing versatility. There is an inevitable trade off between versatility and
optimisation for a given application.

To be representative of a geographical area, a spatial reference is required to relate the
(x, y, z) positions of the model to locations in geographical space. This is usually accom-
plished by equating (y, x) in computational space to Northing and Easting in a projected
coordinate system or Latitude and Longitude in a geographic coordinate system. The
coordinates are then related to a position on an ellipsoid via a projection. The ellipsoid
is accurately fixed at some locations on the Earth. Alternatively, positions may be de-
termined in three dimensions based on an Earth Centred, Earth Fixed reference frame.
Typically, a spatial reference indicates the projection used and the precision with which
coordinates are stored.

Conceptually, GIS data are generally in the form of “fields” or “objects” (Gold, 2009).
Object data consists of unconnected entities such as hill tops or rivers as opposed to field
data, which describes spatially continuous properties such as elevation or rainfall. Object
data are typically stored in vector form and field data in raster form. DEMs are no
exception and typically conform to these two primary data models of GIS.

Data models are related to but distinct from the structures and geometries of surface
models. Some data models are closely associated with certain structure/geometry com-
binations, for instance, raster data model and square grid tessellations. However, they
are not the same thing. It may be inefficient, but it is possible to store a square grid
tessellation in a vector format.

The data model of a representation of a DEM can also differ from the underlying model.
For instance, a computer screen visualises a vector contour layer as a raster image. Various
styles of diagrams, tables, profiles and maps can display information derived from DEMs.
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3.7 Data models

DEMs are typically displayed as 2-D maps in colour or grey tone. However, 1-D profiles
and 3-D views are also common. Histograms can be used to show the frequency distri-
bution of terrain measures, semi-variograms and spectral functions can be used to show
scale dependence, output tables from correlation and factor analysis reveal redundancy
among measures (Pike and Kimberly, 2005).

Implicit and explicit data models

Gerstner (2003) identifies four classes that can be used to describe the data structures of
DEMs based on whether the coordinates and interpolation of the data models are implicit
or explicit. Gerstner (2003)’s division is used below to classify the structure/geometry
combinations discussed in this chapter. The nomenclature is slightly adapted to follow this
thesis. A data model is implicit if the additional storage required is of an order < O (N),
explicit otherwise. Implicit data models are less flexible but have have lower overheads for
storage and analysis. Global transformations do not change the class (Gerstner, 2003).

1. Coordinate and interpolation implicit: regular point sets and meshes.

2. Coordinate implicit, interpolation explicit: Quad trees, adaptive tensor product
grids.

3. Coordinates explicit, interpolation implicit: TINs, Delaunay Triangulations, Semi
regular networks.

4. Coordinates explicit, interpolation explicit. Data dependent triangulations, ad hoc
tessellations.

3.7.2. Raster

The raster data model is analogous to writing words on a page (Goodchild and Mark,
1987). The term raster comes from the German raster, which means screen. The term
implies that the data are stored as a series of rows, similar to the set of parallel lines
that make up a television picture. Each row has the same number of entries so that
the series of rows forms an array of rows and columns. The geographical location of the
data value is encoded implicitly by the index of the value within the array, provided the
position of at least one cell in the raster is known. The single known position can be
combined with cell size in both the x and y dimension to determine the location of all
tiles in the projected geographic space. Rarely, the array may also be rotated or otherwise
systematically transformed between the computational and projected geographic space.
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The term raster is usually used to denote a regular tessellation stored as a 2-D array, with
rows being the first and columns being the second dimension. The data are in fact a linear
sequence of values of the same type. However, because every row has the same number
of columns it is very easy to traverse the second dimension. The number of columns in
the array is the “stride” required to visit values in a given column. For instance, lets say
we have a 2-D array with 5 rows and 10 columns. The stride is 10, therefore the values
of one column are found by taking every 10th value.

Rasters are sometimes known as images. The most common coordinate system for raster
images is (row, col), which corresponds to (-N,E) with the origin at the top left hand
corner. Multi-band images may be formed by combining several raster layers representing
different bands. For instance true colour images contain three raster layers.

Raster datasets are typically used to represent fields. Rasters can represent both continu-
ous or discrete data. Rasters cannot efficiently represent sparse data because a value is
required for every cell. A number is designated to represent No Data, often the highest or
lowest value for the numeric data type used. Raster datasets are always rectangular. If the
study area is not rectangular the remaining cells are filled with the No Data value. The
inclusion of grid cells that represent non-study areas requires added computer memory
and increased computational time. This problem is further compounded if a fine grid cell
size is used to accurately represent landscape features (Jin and Wu, 1997).

The traditional raster format scans in row order horizontally from left to right across the
page like reading in English. However, there are other space filling curves that linearise
spatial data differently. These methods are motivated by a desire to group data together
in computational space that is near in geographic space. One can reorder the row by row
order of the raster into a fractal curve, which is still linear. Some space filling curves
that are alternatives to the row order described above are: row prime order, N (morton)
order, or Pi (Hilbert-Peano) order (Goodchild and Mark, 1987). Space filling curves are
often related to hierarchical structures and can be the basis for a recursive subdivision of
space (Goodchild and Mark, 1987). Raster data are often compressed to save disk space
by various methods. Run order encoding can be applied to any space filling curve to save
storage space.

3.7.3. Vector

The vector data model is analogous to drawing a map with a pen (Goodchild and Mark,
1987). Vector models are typically used to represent discrete objects. Data stored using
the vector model encodes discrete objects with Cartesian (or other) coordinates in 2, or 3
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dimensional reference frames to form points, lines, polygons, or polyhedra. Point clouds
and contours are typically stored as vector data sets.

In a GIS, vector geometry data are often associated with attribute information by in-
cluding the vector geometry as a geometry field in a relational database. Vector data
can represent elevation either within the geometry field by providing a z-value to the
vertices, or by attaching elevation values to each record as an attribute. Vector datasets
may include several points, lines, or polygons in a single record to create multi-point,
multi-line, and multi-part polygons respectively. Vector objects are frequently stored in a
format that includes topological information to facilitate answering various spatial quer-
ies. Topology may be as simple as a way of storing which points are connected to form
geometric networks or which polygons are adjacent.

Vector data has effectively arbitrary precision; although, it is practically limited by the
precision of the spatial reference. When you consider the resolution of the coordinates
used to define the nodes of the geometries, the vector model is comparable to an ad-
hoc network graph with the majority of the nodes left unconnected and unattributed.
However, attributes are associated to whole connected graphs not individual nodes.

Some surface models such as TINs do not neatly fit vector or raster formats. TINs require
explicit encoding of position for each node, like the vector model, but are more suitable
for representing fields, like the raster model. Representations of field data with irregular
geometry, such as irregular TINs or Voronoi tessellations, are not compatible with raster
data formats; the coordinates of the vertices need to be stored. Voronoi diagrams and
TINs are usually structured as indexed arrays such as the winged-edge data structure.
The identity of the neighbours is very important so data formats require explicit storage
of topological information. The Quad-Edge data structure (Guibas and Stolfi, 1985)
represents both the Voronoi and the dual at the same time.

3.7.4. Tree structures

An alternative to the raster data model and other space filling curves is the tree data
model. Tree data structures use pointers to relate information in a hierarchical fashion.
Tree graph structures, consist of nodes, branches, and leaves. Tree structures can be
combined with space filling curves so that the branches on each node represent a hier-
archical subdivision of space. Tree structures allow position variant resolution for data
types that would otherwise be regular and are also conducive to multi-scale analysis (see
Section §3.8).

Grid DEMs can be stored hierarchically using Quad-trees or N-trees (Goodchild and
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Mark, 1987). Quad-trees divide space recursively until a desired level of consistency is
reached. Therefore they support variable resolution. Quad-trees can be searched more
effectively than rasters and generally require less storage space. The Quad-tree address
is in Base 4. In a Linear Quad-tree, base 4 addresses are stored at leaf level and directly
accessed. In a pointer-based quad-tree, four descendent nodes are connected by pointers
to each parent, each branch of the tree represents a single digit of the quad-tree index. A
binary representation of a Quad-tree index is a Morton address. Morton addresses can be
converted to Cartesian coordinates by efficient bit operations. Conversion from Morton to
Cartesian is accomplished by undoing bit interleaving (y first, then x) to get the Cartesian
index, see also quadkeys used to index tiles in Bing maps (Microsoft Corporation, 2013).

In addition to Quad-trees, some other memory efficient hierarchical trees that can be
used to represent surfaces are Point Quad-trees, Bi-trees, Hilbert Quad-tree, Four-Two
tree, Sierpinski Bin-tree (Valle and Ortiz, 2011), Multi-resolution pyramid, Tiled pyramid
(Platings and Day, 2004), and Gaussian and Laplacian pyramids (Jenny and Hurni, 2010).

Hexagons can be stored in a tree structure using recursive subdivision of hexagon like
fractals (Lundmark et al., 1999). A hexagon rosette based tree data structure can be
indexed using Generalised Balanced Ternary (GBT) spatial addressing system (Gibson
and Lucas, 1982), or the HIP indexing system (Middleton and Sivaswamy, 2001). Altern-
atively, a hexagon point set can form the basis of an HoR quad-tree hierarchy (Bell et al.,
1989). Recursive tree structures that form regular hexagonal, rectangular, and triangular
arrays are described in Chapter 6 and form part of the datamodel of the RHSM.

3.8. Multi-scale models

A multi-scale surface model provides multiple representations of a surface at different
scales. It is very likely that a given parameter at a given location will vary at different
scales due to the effect of aggregation and the fractal nature of geographic phenomena
(see Section §2.3). A common application of multi-scale surface models is to enhance
visualisation of surfaces by varying the resolution depending on the location of the viewer
relative to the surface model. A multi-scale hierarchical surface model can be used to
generate realisations that meet a specified degree of precision. This section describes
the structures, geometries and data model of hierarchical surfaces. Hierarchical adaptive
methods for interpolation and surface modelling are summarised in Gerstner (1999).
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3.8 Multi-scale models

3.8.1. Hierarchical structures

There are three basic types of multi-resolution DEMs, pyramidal, incremental, and graph
structured (Gerstner, 2003). Hierarchical structures can also be formed in frequency
space.

Pyramid models

Pyramidal models consist of a number of DEMs with different resolutions. The different
levels are effectively different datasets that share a common spatial location, which can
be layered to form a pyramid. The simplest such models are raster pyramids that have
multiple representations of the same area at different cell sizes. Raster pyramids may be
combined with data tiling to support very large data sets. The most common use for
raster pyramids is to rapidly redraw raster data sets in an interactive map as the viewer
“zooms” in to see fine details or “zooms” out to get a coarser overview. The values for
raster pyramids are generated by summarising the cells in the finest resolution layer using
statistical methods; such as, nearest neighbour, maximum value, minimum value, mean,
or median. However, mathematical interpolation can also be used.

Incremental and graph structured models

Incremental models encode a series of individual steps to transform between the coarsest
and finest representation; therefore, many more intermediate resolutions are possible than
when using a pyramid structure. Graph structured models are formed by identifying and
encoding the hierarchical dependencies of the individual steps in an incremental model.
Graph structure allows local refinement, which means that the resolution can vary across
the object (Gerstner, 2003). For instance, the resolution may become coarser with distance
from the viewer. Such method are known as Level of Detail models (LOD). Usually, LOD
models are used for real time or online applications and often for complicated objects.
Therefore the data structures need to be very efficient.

LOD models can be built from irregular or regular point sets. Continuous approximation
can be reconstructed from the vertices using radial basis functions, by making k-simplices
(triangles in 2-D) with the points as vertices (de Floriani et al., 2005), or by visualising
the points as splats, which are ellipses, hexagons, or rectangles (de Floriani et al., 2005).
For an overview of LOD models, see de Floriani et al. (2005).

The process of extracting a realisation from an LOD consists of either top down refinement
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or bottom up decimation to achieve a desired Level of Detail (LoD) (Gerstner, 2003).3

The LoD may be uniform or variable in space (if graph structured). If the LoD is variable,
the refinement is selective. Selective refinement applies the refinements required to achieve
a user defined LoD in a user defined region of interest (Danovaro et al., 2006).

The LoD criterion can be represented as an equation with true or false outputs. For ex-
ample, given the LoD criterion ‘T ’ apply the minimum number of refinements required to
satisfy T (de Floriani et al., 2005). Refinements may involve adding edges, nodes, and/or
splitting and removing existing edges. Significant breakpoints represent new elevation
data and are introduced to achieve the required accuracy. Insignificant breakpoints break
an edge to maintain conformity but do not alter the elevation (Abdelguerfi et al., 1998).
Regular meshes and semi-regular meshes are formed by subdividing a regular network or
irregular network with the recursive application of the same basic refinement operator.
Regular and semi-regular meshes are usually stored as trees or directed acyclic graphs
(DAGs) (de Floriani et al., 2005).

Frequency space

Frequency space models are a very different approach. Bjørke and Nilsen (2003) demon-
strate wavelet surface smoothing by altering the character of the fundamental wavelets.
Wu and Amaratunga (2003) describe a multi-resolution wavelet TIN based on linear es-
timation and modified butterfly subdivision, intended for transmitting DEMs for web
based services. Non manifold and variable dimension meshes are described in Danovaro
et al. (2006). A generalised framework for integrating different resolutions based on fuzzy
sets is described in Worboys (1998). This system allows modelling of imprecision due to
finite resolution.

3.8.2. Hierarchical geometries

A hierarchical multi-scale surface model relates cells at different levels of detail. Usually,
with a one to many relationship where one “parent” at a coarse level of resolution relates
to many “children” at the finer level of resolution, thereby, forming a tree structure.
The finest scale level, which has the most and smallest cells, may be called level 0, the
atomic level, or reference mesh. The coarsest level may be called the base or root mesh
(de Floriani et al., 2005). 4 The number of levels in a hierarchical tessellation is limited to

3Note the distinction between LODs, which are multi-resolution models and LoDs, which are realisations
at a specific resolution.

4However, care is required as some authors call the finest mesh the base mesh. In Parts II and III the
finest mesh is referred to as the base level.
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the number of levels required for the coarsest level to be only a single tile and no further
agglomeration is possible.

Sahr et al. (2003) define various characteristics of hierarchical tessellations including con-
gruent, nested, aligned, aperture, and self similarity. If the hierarchy is congruent, the
borders of a coarser level parent are covered by the borders of its finer level children. A
hierarchy is nested if all the children are completely covered by the parent (Abdelguerfi
et al., 1998). Generally, if a hierarchy is congruent it will be nested. If the hierarchy is
aligned, the centroid of the parent is covered by the centroid of one of its children. The
aperture of a hierarchy is the ratio of the size of the parent and the size of the child.
Aperture is only applicable to regular tessellations because it assumes all tiles of a given
LoD are the same size. Tessellation Parameter is a more general term used by Tsui and
Brimicombe (1997) that indicates the number of child tiles in the parent. A hierarchy is
self similar if the children and parents have similar shapes.

For both regular and irregular tessellations, many hierarchies are possible. Quad-trees
have an aperture 4 agglomeration that forms congruent, non aligned, self similar hier-
archies from regular, conforming, rectangular tessellations (Figure 3.8 1A). Another reg-
ular rectangular hierarchy is the non-tree, which is an aperture 9, congruent, aligned,
self similar hierarchy (Figure 3.8 1B). Regular hexagonal tessellations can form aperture
7, congruent, aligned, non self similar hierarchies (Figure 3.8 2A) or aperture 7, non
congruent, aligned, self similar hierarchies (Figure 3.8 2B) among others. Non congruent
hierarchies can permit a wide range of apertures (Sahr et al., 2003). The HoR quadtree sub
division consists of either four hexagons or four rhombi tessellations based on a hexagonal
point set. HoR combines desirable geometric properties of both hexagons and rhombi:
the uniform adjacency of hexagons, and the divisibility and uniform orientation between
hierarchy levels of rhombi (Bell et al., 1989).

A recursive Voronoi method presented by Boots and Shiode (2003) and further developed
in Feick and Boots (2005), involves using the elements of the tessellation as well as some of
the original generators to create the next set of generators. Tsui and Brimicombe (1997)
introduce Adaptive Recursive Tessellation (ART). ART decomposes space into an aligned
rectangular hierarchy. However, the cell shapes and aperture varies between levels.
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Figure 3.8.: Hierarchical geometries.1A is the quadtree structure, it is self similar, aper-
ture 4, non-aligned, congruent and nested. 1B is the non-tree structure it is self similar,
aperture 9, aligned, congruent and nested. 2A is non-self similar, aperture 7, aligned,
congruent and nested. 2B is self similar, aperture 7, aligned, non-congruent and non-
nested, however, it is semi-nested in the sense that the centroids of the children are
invariably contained by the parent, although great-grandchildren may not be.
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Hierarchical triangulation

Several common methods of refining triangular structures are listed below. In addition,
the Scarlatos and Pavlidis (1992) algorithm uses five different strategies for dividing a
triangle by mixing centre splits with edge splits. However, this introduces a variable tree
structure as each triangle may be treated differently and is not conforming.

1. Right Angle Binary Tree Triangulation (RA-BTT) forms two right angle triangles
by splitting one edge of the parent triangle and connecting it to the opposite corner.

2. Ternary Tree Triangulation (TTT) involves splitting the parent triangle into three
parts by finding an internal point and connecting the original vertices to this point.
TTT is conforming and has simple tree structure (always 1:3) but streaks and slivers
are produced. Also if the internal point is too close to an existing edge, a sliver will
be created.

3. Quaternary Tree Triangulation (QTT) involves splitting a triangle into four parts by
finding the midpoints of each side and connecting them to form a central triangle and
three edge triangles. Aperture four, self similar, regular triangular hierarchies are
an example of QTT. QTT Makes near equilateral triangles, which are aesthetically
pleasing with no streaks and slivers, and has a simple tree structure (always 1:4).
However, all triangles need to be decomposed to the same level, otherwise it is not
conforming.

4.
√

3 Subdivision divides triangles instead of edges. One subdivision generates a ro-
tated non congruent mesh. A second subdivision generates a non aligned, congruent
aperture 9 mesh (Kobbelt, 2000).

5. Delaunay Pyramid Triangulation is formed by adding another node to an exist-
ing triangulation and recalculating the Delaunay Triangulation de Floriani (1989).
Delaunay Triangulations are useful for many purposes but as a hierarchy they do
not satisfy the nesting property; therefore, they are not easy to store and the entire
mesh may be affected by a single insertion. A constrained Delaunay can be used to
enforce nesting.

Hierarchical triangulation can also be based on regular geometries, effectively combining
quad-trees with TINs (Von Herzen and Barr, 1987). Pajarola (2002) presents a summary
for terrain visualisation of tiled blocks and nested regular grids, quad-trees and triangle
bin-trees triangulations, as well as cluster-based approaches. Regular meshes are more
space efficient due to implicit encoding (de Floriani et al., 2005). Not withstanding
the storage benefits of regular structures, retaining conformity in regular hierarchical
triangulation generates many additional triangles and accuracy is restricted.
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Global Hierarchical geometries

Hierarchical surface models can be referenced to an approximation of the entire earth,
for instance, an ellipsoid or platonic solid (Sahr et al., 2003). Of the platonic solids,
the icosahedron and dodecahedron are the most spherical. However, these polyhedra are
not symmetrical and do not align with the poles and equator. The octahedron provides
symmetry and has nodes and edges that align with the poles and equator. Sahr et al.
(2003) define and describe a general process for choosing a Discrete Global Grid System
based on five design choices, that lead to an appropriate structure. Global Hierarchical
tessellations tend to have some extraordinary nodes, which cause a small number of tiles
to have a different shape (Goodchild and Shiren, 1992; Sahr et al., 2003).

One example of global hierarchy is the Quaternary Triangular Mesh (QTM) global location
coding model (Goodchild and Shiren, 1992). In the QTM the globe is projected onto
the surface of an octahedron. Each face of the octahedron is an equilateral triangle,
which is recursively subdivided into four smaller equilateral triangles by Quaternary Tree
Triangulation (QTT). Other global level of detail models are presented in Platings and Day
(2004). Hexagonal hierarchies can be applied globally including the polar regions using
icosahedron-based Geodesic DGGS, with less areal distortion than rectangular systems
(Sahr et al., 2003). The Open Geospatial Consortium has recently published a Discrete
Global Grid System Standard (Purss et al., 2016).

3.8.3. Hierarchical data models

LOD Data models

LOD data models have benefited from considerable development within the field of com-
puter visualisation. As discussed in Section §3.7, when designing data models, there is a
trade-off between efficient storage and querying on one hand, and generality and flexibility
on the other (de Floriani et al., 2005). Danovaro et al. (2006) identify three data model
considerations:

1. generality and flexibility,

2. efficiency (query performance), and

3. compactness.

Other considerations are out of core models and client/server architectures (de Floriani
et al., 2005).

The information that needs to be stored consists of coordinates, structure, and attributes.
Multi-triangulation is a general framework for explicit irregular structures (Puppo, 1998;
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Cignoni et al., 1997). Multi tessellation extends multi-triangulation into three or more
dimensions (de Floriani et al., 2005). The basic model of an LOD data structure consists of
a base mesh (coarse), a reference mesh (fine), a set of updates, and a dependency relation
among the updates, usually stored as a directed acyclic graph (DAG) (de Floriani et al.,
2005). Other attributes can be attached such as error measures, textures and normals
(Danovaro et al., 2006).

A given update (u) consist of two sets of cells (u+ and u−) that are finer and coarser
resolution representations of a given area. Explicit data structures encode the vertices of
the updates in an indexed data structure, which requires large storage overheads. Implicit
structures encode procedural updates required to form triangles. Implicit structures are
more compact but can take longer to perform selective refinement (Danovaro et al., 2006).

Triangulation can be encoded edge-based or triangle-based. The most common data
models are the indexed data structure and index data structure with adjacencies, including
winged edge, doubly connected edge, and half edge structures (de Floriani et al., 2005).
Oct-trees and binary partitions are the most common, usually built top down (de Floriani
et al., 2005).

Platings and Day (2004)) describe a tiled quad tree (TQT) for level of detail rendering
global terrains, which stores tiles on each branch rather than a single value. TQT uses
external memory. The balance between using smaller and larger tiles in TQT is a balance
between fewer large tiles that bring unnecessary data and more smaller tiles that create
more reads. Gerstner (2003) describes binary bit operations to resolve common nodes in a
triangular bit tree, and methods to compress multi resolution data and extract realisations
without decompressing.

Linear hierarchical reference systems

DAG models are explicit systems that store coordinates. However, Implicit LOD models
based on regular hierarchies can be created using linear referencing systems. For instance,
several indexing systems have been described that exploit aperture seven hexagonal hier-
archies to concisely represent position including the Hexagonal Image Processing (HIP)
system described in Middleton and Sivaswamy (2001) and a system based on Generalised
Balanced Ternary (GBT) (Gibson and Lucas, 1982). Both HIP and GBT referencing sys-
tems aggregate rosettes of seven hexagons into larger pseudo-hexagons. Another example
is the aperture-4 rectangular hierarchy, known as Quadkey that is used in the Bing Maps
Tile System (Microsoft Corporation, 2013). Quaternary encoding of linear hierarchical
systems was developed by Gargantini (1982) as a data compression method.
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All these systems describe two-dimensional location with a single ordinate, the length
of which is proportional to the LoD. In addition, each position ordinate begins with the
ordinate of the corresponding pixel of the coarser LoD that contains it (Wright et al.,
2014). Such systems are implicit because the values can simply be stored in a linear
sequence with the index of the value in the list being translated into position. The
hierarchy is also implicit because omitting the last digit of an ordinate gives the ordinate
of its parent. The HIP referencing system is described in more detail in Section §6.1.

This discussion of hierarchical data models concludes this review of DEMs. The next
chapter will explore algorithms that derive parameters from surface models and reinforce
the understanding of specific DEMs as examples from the range of possible structures,
geometries, interpolations, and data models introduced in this chapter.
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4. Hydrological geomorphometry

The previous chapter discussed DEMs: the models that store digital approximations of
elevation surfaces. With the emergence and widespread application of technologies to
capture and store DEMS, a set of procedures and methods for the quantitative analysis
of DEMs has developed; this developing science is variously known as geomorphometry,
topographic analysis, terrain analysis, or digital terrain analysis (Gallant and Hutchinson,
1997). Geomorphometry is aligned with the practice of surveying but updated with
the prevalence of modern data collection, processing techniques, and equipment. For
a brief history of terrain analysis, see Pike (2002). See Wood et al. (2009) for detail
on geomorphometry software packages, such as Whitebox GAT (Lindsay, 2005), and
TARDEM/TauDEM (Tarboton, 1997, 2008).

The outputs of geomorphometry can be classified as variables or objects. Variables are
quantitative fields. Section §4.1 describes classification of variables and identifies and
describes some geomorphometric variables that are relevant to hydrology. Objects are
defined features in the landscape. Section §4.2 identifies and describes some geomorpho-
metric objects that are relevant to hydrology.

Section §4.3 outlines a process of geomorphometric catchment analysis involving the vari-
ables flow direction (Subsection 4.3.1) and flow accumulation (Subsection 4.3.2), which
are adapted for a hierarchical DEM in Chapter 8. Section §4.4 details hydrological con-
ditioning, which is a collection of techniques that adjust surface models to improve the
results of geomorphometric catchment analysis.

4.1. Geomorphometric variables

This section categorises geomorphometric variables1 and describes some variables that are
relevant to hydrology. Further variables related to catchment analysis are described in

1The terms variable and parameter are sometimes used interchangeably but it is useful to distinguish
them in the context of hydrological models. Variables are representations of fields that vary during a
model run and are not usually modified during model calibration. For instance, simulated factors in the
model such as heads or fluxes; or external factors input as time series such as precipitation. Whereas,
parameter can be defined as any factor that is not calculated by the model but is instead input prior
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detail in Section §4.3. Variables are quantitative fields that are continuous over a given
domain and are frequently modelled in GISc as raster layers. Variables can be determined
from elevation data as fully distributed fields or as summary values of a larger area. It
has been proposed that, given a lack of direct information, geomorphometric variables
could be used as substitutes for other data types such as soil types (Shary et al., 2002) or
land class (Franklin, 1987).

4.1.1. Categorisation of variables

Strahler (1952) introduced the distinction between gravity geomorphological processes
and molecular ones. This division was refined by Shary et al. (2002) ) to field specific
variables that reference a field, usually gravity or solar radiation; and field invariant,
which do not. Gravity on the surface of the Earth is a pervasive and constant force
pulling liquids and solids toward a lower energy state, resisted by friction of the surface
and subsurface; consequently, most of the variables relevant to hydrology are field specific.
Field specific and field invariant variables represent the land surface or geometrical form
respectively (Shary et al., 2002).

Shary et al. (2002) further categorised geomorphometric variables as belonging to three
classes based on the area that must be considered to determine them. The area classes
are local, regional, and global. The field classes are field specific and non-field specific.
Therefore, there are six classes in all. Local variables are based on analysis of an area which
was defined prior to determination; for instance, a 3 × 3 grid neighbourhood. Regional
variables consider an area that is not defined until the variable is calculated, and global
variables require consideration of the whole Earth.

4.1.2. Shape variables

Slope

Slope is the first derivative of elevation. Slope is field specific and is usually determined
relative to gravity. Slope is important for Hydrological and Hydraulic modelling because
it influences the velocity of surface water flow. The slope of a 2-D surface is direction
dependent: it varies with direction of travel in the horizontal plane. Jones (1998) defines
slope as the gradient, in the direction of a flow path, of a plane tangent to a surface. A flow

to the model’s simulation and may be subject to alteration during calibration. Parameters are usually
constant within a single run of a model but can vary with time (e.g. seasonal). Under this definition,
the geomorphometric variables described here act as parameters in hydrological models. Therefore,
geomorphometry is a method to deduce spatially variable parameters from measured elevation data.
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path is a path of of maximum slope. Slope can be determined analytically on differentiable
surfaces or estimated on other surfaces by a local analysis of a surface approximation from
generated sample heights. Consequently, on non-differentiable surfaces, slope also varies
with the sample spacing used to form the surface approximation.

Jones (1998) compared several methods for slope determination on grid DEMs and found
that the method of Fleming and Hoffer (1979), which is given as an algorithm in Ritter
(1987) performed best. Raaflaub and Collins (2006) undertook a Monte-Carlo analysis
of the sensitivity of slope algorithms to elevation errors and found that algorithms that
consider neighbourhoods with more members are less sensitive than those that consider
fewer neighbours. Meyer et al. (2001) described slope calculation from irregularly spaced
data points. Mizukoshi and Aniya (2002) presented a method for slope calculation from
contours.

Curvature

Curvature is the second derivative of elevation. Shary et al. (2002) set out a system of
twelve curvatures based on three primary curvatures, which are mean curvature, difference
curvature, and unspherecity. Of the twelve curvatures, seven are field specific and five are
field invariant.

4.1.3. Accumulation variables

Contributing area

Contributing area is a regional, field specific variable that represents the area that po-
tentially contributes surface flow to a specified line or point. Contributing area is the
magnitude of the area as opposed to the spatially defined region, which is a catchment
object (see Subsection 4.2.3).

Contributing area is sometimes referred to as up slope area or upstream area and is
analogous to flow accumulation, which is discussed in Subsection 4.3.2. Contributing
area can be subdivided into Total Contributing Area (TCA), and Specific Contributing
Area (a). TCA is the area of catchment contributing flow to a segment of contour line.
Whereas a is the TCA at a point. Hutchinson and Dowling (1991) defined a as:

a =
lim

w → 0 A
w

(4.1)
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where A is the area of land surface vertically projected onto the horizontal plane, between
two slope lines that originate at a common hilltop, bounded at the lower end by a contour
segment of length w. For a section of contour, a can be approximated without the limit
as:

a ≈
A

w
(4.2)

In contrast to contributing area, the dispersal area or downstream area is the area that
a point, line, or area flows into. Catchment and dispersal area estimates for hydrological
modelling should also consider weighting areas that are more and less likely to produce
run-of (Tarboton et al., 1991).

Topographic Wetness Index

Introduced by Beven and Kirkby (1979) the Topographic Wetness Index (TWI) is regional
variable derived from slope and Specific Contributing Area (see Subsection 4.3.2). TWI is
a measure of an area’s propensity to become saturated and is also related to soil strength
and surface run-off. TWI is calculated as:

ln
(

a

tan p

)
(4.3)

where a is the upslope Specific Contributing Area per unit contour and tan p is local slope
angle.

4.1.4. Fractal variables

Another class of geomorphometric variable that has attracted academic interest is related
to fractal geometry. For a list of references on self-similar and fractal properties of streams
and topography see Pike (2002). Some fractal geomorphometric variables are fractal
dimension (D), Hurst Exponent (Cieplak et al., 1998), and Rank-size property (Goodchild
and Mark, 1987). D can be estimated using various methods, including cell counting,
variogram, dividers, and Fourier. There are some differences between D values determined
with different methods.

Klinkenberg and Goodchild (1992) and Goodchild and Mark (1987) argue fractal proper-
ties should be used as spatial norms not verifiable models due to inconsistent fit between
topographic data and fractal models; i.e. self similarity models are a good fit in some
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areas and a poor fit in others (Klinkenberg and Goodchild, 1992). Poor fit of topographic
data to fractal models could be due to poor estimation method or inappropriateness of
the model (Klinkenberg and Goodchild, 1992).

4.2. Geomorphometric objects

Geomorphometric objects are discrete entities that can be determined by analysis of
elevation surfaces. Objects are defined features in the landscape such as hills or rivers
and are conveniently represented in GIS databases as vector objects. Objects can have
both positional error and categorical error (Hagen, 2003). Examples of geomorphometric
objects that are relevant to hydrology include pits, catchments, river networks, hills, and
buildings. Deng (2007) gives an ontological classification of map objects. MacMillan et al.
(2004) define a hierarchy of spatial entities.

There are many approaches to define land form objects from DEMs including both su-
pervised and unsupervised classification. MacMillan et al. (2003) describes extraction of
objects from high resolution DEMs. Unsupervised classification by vector agent is dis-
cussed in Borna et al. (2014). Dřaguţ et al. (2011) examine multi-scale analysis of variance
to extract objects. Burrough et al. (2000) suggested that fuzzy techniques, for instance
fuzzy-k means, are appropriate because land form classes overlap.

4.2.1. Pits

Pits, also known as sinks, are local minima in the surface. In tessellations, pits are cells
with no lower neighbours. In the context of surface hydrology, pits are pixels water can
flow into but not out of. Pits form discontinuities in drainage and affect hydrological
models by trapping flows. Pits are typically removed from surface models prior to hy-
drological geomorphometric analysis (see Subsection 4.4.1). Pits are one of the critical
features of land surfaces defined by Pike and Kimberly (2005); the others are peak, pass,
pale (a high point between two pits), ridge, and course (channel). Not all pits are false;
pits in urban areas may coincide with the presence of catchpits.

4.2.2. River networks

All catchments have a drainage network that concentrates the flow along various paths.
River networks represent the part of a drainage network dominated by channel flow as
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opposed to hill flow. It is often assumed that below ground networks roughly follow
surface networks.

For a list of references regarding research on extracting drainage lines and catchments
from DEM see (Pike, 2002). Olivera et al. (2000) and Renssen and Knoop (2000) describe
examples of automated river routing extended to global scale. Liu and Snoeyink (2005)
define river networks on a TIN as local channels and the trickle paths of discharges
from saddle points. The self similarity exhibited by river bifurcation suggests that river
networks should be suitable for analysis by fractal geometry. Cieplak et al. (1998) describe
self similar and self affine fractal models of river networks.

Channel networks in natural catchments can be further characterised numerically using
the Horton-Strahler system. The composition of the stream system of a drainage basin
can be expressed quantitatively in terms of stream order, drainage density, bifurcation
ratio, and stream-length ratio (Horton, 1945). Strahler (1952) refined the Horton order
to avoid ambiguities creating the Horton-Strahler stream number. This principle was
extended to other hydraulic properties by Leopold and Miller (1956), Shreve (1966) and
others, see Tarboton et al. (1991) for more detail.

Algorithms to detect river networks are sometimes called channelisation. There are two
main categories of river network algorithms: stream-head methods and cell classification.

Stream-head methods

Stream-head methods involve identifying stream-heads, which are the locations on a drain-
age network where channel flow becomes dominant, and then reclassifying all the down-
stream cells in the network as channel. Stream-heads can be viewed as scale dependent
(Band, 1986; Quinn et al., 1995) but are frequently described as distinct geomorpholo-
gical features (O’Callaghan and Mark, 1984). Stream-head methods require a connected
network. Lin et al. (2008) discuss software that lets users define channel heads on screen.

A typical strategy for defining stream-heads is to use a constant threshold for contributing
area (O’Callaghan and Mark, 1984; Garbrecht and Martz, 1993). Constant threshold
techniques can be combined with minimum stream length to avoid short side chains. Maps
are used to tune parameters in Garbrecht and Martz (1993) and Wang and Yin (1998),
who adjust thresholds to calibrate stream length. This technique is of questionable utility
if automated generation depends on the pre-existence of authoritative maps, unless the
parameters are applicable to other areas.

Rather than using a constant stream threshold for the entire DEM, Vogt et al. (2003)
use additional environmental characteristics from other data sources about climate, ve-
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getation cover, terrain morphology, soils and lithology to create land classifications which
have different stream threshold values applied. Tarboton et al. (1991) suggest identifying
stream-heads as the smallest area where elevation related scaling laws, slope scaling and
constant drop still apply. However, Gandolfi and Bischetti (1997) found poor correlation
between slope and stream-head threshold.

Cell classification

An alternative technique to stream head identification on networks are cell classification
methods, which date back to Peucker and Douglas (1975). Cell classification methods
involve classifying all cells in the dataset as stream or non-stream based on some criteria
and then connecting the stream cells to form a river network. Cell classification can be
combined with thinning (Band, 1986; Dinesh, 2008) or Skeletonisation (Meisels et al.,
1995) to produce stream networks.

Pirotti and Tarolli (2010) utilise land form curvature as an approach for channel network
extraction from LiDAR data. Smoothing and window size need to be matched to feature
size. Heine et al. (2004) determine whether a cell in an array is a stream based on a
logistic regression of head area slope, mean slope, mean plan curvature, and mean profile
curvature. Franklin (2010) suggests defining rivers by their higher dimensional structure;
i.e. whether they are local minima of a V-shaped cross section. Chorowicz et al. (1992)
add a profile scan technique to network flow routing methods to produce networks that
include areal features based on local concavity.

4.2.3. Catchments

A catchment is the area covered by a connected drainage network defined by its outlet,
which may be arbitrary, e.g. the confluence of channels, the low point of a basin from which
water cannot escape, or the point at which a certain upstream area threshold is reached.
Watershed is an alternative term for a catchment that is often used interchangeably. A
catchment defined by a pit is called a basin (Liu and Snoeyink, 2005). The outlet of a
catchment or basin is also known as a pour point. The lowest point on the perimeter of
a basin is called the pour point of the basin. A basin’s pour point is the point where pits
will overflow and therefore is used for breaching (see Subsection 4.4.1).

The determination of catchment boundaries was traditionally done manually by inter-
preting surface contours on an appropriately scaled topographic plan. Modern techniques
typically involve automated processing of a Digital Elevation Model (DEM). Excessive
quantities of small catchments in a raster image can be considered over segmentation
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(Moga and Gabbouj, 1998) caused by false minima (pits). Algorithms to determine
catchments can be used to define hills by multiplying elevations by -1 before running
the algorithm (Shary et al., 2002).

Catchments are typically defined from flow direction arrays. Any technique that creates
an all inclusive connected drainage network (such as the Single Restricted Flow Direc-
tion algorithms described in Subsection 4.3.1) can conveniently be used to determine the
catchment. In a connected flow network, any point on a surface that is not a catchment
boundary or a pit is part of the drainage network and all points on the drainage network
flow to exactly one pit or pour point.

Some specific implementations include the one pass method (Fairfield and Leymarie, 1991)
and flow climbing recursion (Lin et al., 2008). Magalhàes et al. (2012) employ an efficient
Queue based method to determine catchments and flow accumulation concurrently. Such
methods are easily extendible to to other regular tessellations, Voronoi diagrams, and
network graphs.

Techniques that rely on the identification of a continuous downhill path are collectively
called steepest path techniques. However, flow paths cannot usually be defined math-
ematically in a discrete digital environment (Vincent and Soille, 1991). Digital discrete
algorithms rely on their definition and should seek to closely match analogue solutions.
Wright and Leonard (2012) found that multiple applications of the stochastic Rho8 flow
routing model (see Subsection 4.3.1) can provide important information on the uncer-
tainty of catchment boundary locations caused by modelling errors. An alternative tech-
nique models catchment boundaries as the result of inundation. These techniques may be
called immersion techniques (Couprie et al., 2005; Roerdink and Meijster, 2000; Vincent
and Soille, 1991).

A triangulated catchment algorithm is presented in McAllister (1999). An example of
hierarchical catchments from TINs is presented in Liu and Snoeyink (2005). A contour
catchment algorithm is presented in Menduni and Riboni (2000).

Getirana et al. (2009) ) describe statistics for comparing catchments: added area, sub-
tracted area, total mismatched area, and relative area (%). Wright and Leonard (2012)
described a catchment comparison method developed from a method to quantify contour
differences in Reinoso (2010).

4.2.4. Buildings

Automated delineation of buildings from elevation data is useful for hydrological model-
ling. Weidner and Förstner (1995) discuss extracting buildings from DEMs. Borna et al.
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(2014) discuss a vector agent approach that combines both imagery and elevation data.
Tse et al. (2007) discuss extracting buildings from Voronoi/TIN data structures.

4.3. Catchment analysis

Geomorphometry has developed a collection of tools and work flows that process elevation
data to produce hydrological variables and objects. A typical example of geomorphometric
hydrological analysis may involve the following steps2:

1. Hard hydrological conditioning, which alters elevation values to remove sinks and/or
incorporate ancillary data (Section §4.4).

2. Flow direction, which determines the expected direction water would flow on the
surface under the influence of gravity at a specific location (Subsection 4.3.1).

3. Soft hydrological conditioning, which alters flow direction or other derived properties
of the DEM to remove sinks and/or incorporate ancillary data (Section §4.4).

4. Flow accumulation, which determines the magnitude of the area that could poten-
tially contribute flow to a given region, point, or line (Subsection 4.3.2).

5. Catchment, which is a nominal classification that identifies the sink or outlet to
which a region potentially contributes flow (Subsection 4.2.3).

Various algorithms have been published in the literature to perform this analysis. Some
algorithms combine two or more of the above steps into a single process. For instance,
RWflood (Magalhàes et al., 2012) combines sink filling, direction, and accumulation in
a single process. Further steps may be added to the five step process or some steps
omitted, particularly hydrological conditioning. Deterministic flow direction algorithms
provide precise, repeatable catchment boundary definitions for a given DEM. However,
despite this level of precision, various data and modelling uncertainties can affect the
accuracy of the result (Wright and Leonard, 2012). For summaries and assessments of
geomorphometric hydrological flow routing, see Wilson et al. (2008) and Erskine et al.
(2006).

The five step hydrological analysis produces two variable fields: flow direction and flow ac-
cumulation; and two object sets: pit locations and catchments. These fields and objects
can be further processed to determine catchment boundaries, channel networks, topo-
graphic wetness index, and more. These parameters are important inputs to distributed
hydrological models (Gruber and Peckham, 2009). The computed flow direction, flow

2In the following discussion, the catchment analysis steps are ordered thematically; not in the order
they are listed here, which is the approximate order of execution.
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accumulation, and catchment rasters provide the spatial location and extent of a given
catchment, and identify those pixels to which the majority of other pixels “flow into”.
These pixels represent situations where saturation and channel formation are most likely
to occur (Wright and Leonard, 2012).

The above process is a static analysis, which can be extended to time dependent modelling
using decay modelling or the de Saint Venant equations (Section §2.2). Geomorphometric
analysis does not typically consider momentum or pressure and, therefore, is commen-
surate with the kinematic simplification of the de Saint Venant equations (Kampf and
Burges, 2007). The process can also be extended to include randomness.

Catchment analysis algorithms are often presented as complete packages and compared
on this basis. Frequently, however, they can be broken into the steps above, which can
be assessed separately. Breaking algorithms into stages can be beneficial to better assess
what parts of an algorithm work well and to combine effective parts of different algorithms.
By making such a separation the range of possible techniques increases.

A systematic understanding of surface models helps to categorise algorithms by the sur-
face model they are designed for: point, tessellation, or network; and the connectivity
and geometry of the element neighbourhoods. Understanding the type of surface model
assumed by the algorithm is helpful to abstract and generalise the techniques utilised to
define direction, accumulation, and catchment so that they can be applied to other sur-
faces. Differences between the results of comparable algorithms determined on different
surfaces may suggest improvements to both the algorithm and the surfaces.

4.3.1. Flow direction

Flow direction is a field dependent geomorphometric variable that indicates the direc-
tion that water will flow, provided momentum and pressure are insignificant (Gallant
and Hutchinson, 2011). In In H&H models, flow direction algorithms are usually coupled
with flow accumulation algorithms to form a flow routing algorithm. However, it is fre-
quently possible to separate the direction and accumulation components of a flow routing
algorithm. This subsection deals only with flow direction algorithms, flow accumulation
follows in Subsection 4.3.2.

Flow direction is the path of steepest descent and is analogous to aspect. Flow direction
can be calculated using formulae for determining aspect such as that described in Ritter
(1987). However, flow direction and aspect are distinct due to the application of flow
direction to flow routing. It is important to avoid loops in flow direction algorithms
because loops would generate areas of infinite upstream area.
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Point values for flow direction can be determined analytically if the terrain model is differ-
entiable. However, in 2-D tessellated surface models flow direction is typically estimated
for a finite but non zero area using a local neighbourhood operation. There are many flow
direction algorithms for tessellated surfaces in academic literature; there are also some for
networks, however, due to the dual nature of tessellations and networks, the difference is
often a matter of perception and framing rather than one of substance.

Outside of tessellations, Mizukoshi and Aniya (2002) describe algorithms to generate flow
lines and aspect from contours. Alternately, instead of routing cell to cell, flows can
be routed directly from source to sink (Olivera et al., 2000). Sicilia and Judice (2010)
describe techniques for animation of water flows in computer games using networks.

Directions can be defined in various ways and measured using various units. For instance,
direction may be defined using geographic directions clockwise from north (or the y-axis);
or mathematical directions anticlockwise from east (or the x-axis). The direction could
be recorded in radians, degrees, or with a code derived from 8-bit binary encoding such
as that in Figure 4.1. One benefit of 8-bit binary encoding is that all combinations of
cells have a unique sum, which is useful for representing multiple flow directions with a
single number.

Flow direction algorithms are usually applied to datasets that have been pretreated with
a sink filling or breaching algorithm. Otherwise the flow direction results may need
adjusting using soft hydrological conditioning. The edge cells of a flow direction raster
must be treated as a special case. They may be calculated with a reduced neighbourhood,
left undefined, assigned as sinks, or routed off the dataset.

The following discussion systematically classifies flow direction algorithms based on the
algorithms’ specification: what the algorithm purports to achieve, not the computational
implementation. Tessellated flow direction algorithms can be categorised in a four dimen-
sional matrix with each dimension representing a systematic classification of the algorithm.
The four dimensions are listed below.

(1) Neighbourhood: Line adjacent, or line and point adjacent.

(2) Direction: restricted or unrestricted.

(3) Count: single or multiple; this is referring only to flow direction not flow accumulation,
which can also be single or multiple.

(4) Geometry: Rectangular, hexagonal, triangular, irregular...

Further elements can then be added to meet certain objectives, such as stochastic mod-
elling. Table 4.1 gives an example from academic literature (where such exists) of each
class for rectangular raster DEMs.
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Figure 4.1.: D8 flow directions. The centre cell is assigned a number representing
the direction of the steepest down slope neighbour. GIS software symbolizes the flow
direction values using nominal colours to aid visual interpretation. The above colour
scheme is used in Figure 4.3. Reproduced from Wright and Leonard (2012).

Within each class in Table 4.1 there are distinctive algorithms, which differ in their method
for determining direction. Frequently, it is possible to apply these distinctive methods to
classes other than the one they were described in, yielding a very large panel of possibilities
from which to select the “best” flow direction. “Best” flow direction depends on desired
use. For instance, dispersive algorithms such as D∞ are better for determining flow
accumulation whereas non dispersive such as D8-LTD are better for determining flow
paths and hence catchment perimeter (Gallant and Hutchinson, 2011).

Single restricted

Single Restricted Flow Direction (SRFD) algorithms identify a single direction represent-
ing all flow passing through that cell. In addition, the directions are restricted only to
those that correspond to the direction from the centroid of the cell in question to the
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Table 4.1.: : Classification of flow direction algorithms with selected examples from
academic literature.

Line Adjacent Line and Point Adjacent
Single Restricted D4 D8
Single Unrestricted - D∞
Multiple Restricted M4 MD8
Multiple Unrestricted MFM MD∞

centroids of the cell’s neighbours. The square tessellation example is shown in Figure 4.1.
Restricted algorithms form connected networks and are, therefore, suitable for producing
catchment boundaries. SRFD arrays are effectively Directed Tree Graphs (see Subsection
3.3.2. If multiple catchments are included they are forests.

The archetype SRFD algorithm for rectangular meshes is D8 (O’Callaghan and Mark,
1984). D8 considers all neighbours and direction is assigned to the steepest down slope
neighbour. D4 is the equivalent single restricted flow direction algorithm where only
neighbours adjacent across a linear boundary are considered. Some algorithms, motivated
by computational speed, assign flow to the lowest elevation neighbour rather than the
steepest down slope (Magalhàes et al., 2012).

In a cell centred mesh that has both point and edge adjacent neighbours the connectivity
problem arises. In certain situations it is not clear whether an arrangement allows draining
or is dammed. D8 implicitly assumes draining, D4 implicitly assumes damming but it is
not obvious which is the correct approach without ancillary information.

D8 and D4 can be generalised to other geometries of tessellation: regular triangles, regular
hexagons, and irregular tessellations. D6 is the hexagonal grid form of D8 (de Sousa et al.,
2006; Wright et al., 2014). Triangular mesh equivalents of D8 and D4 would be D12 and
D3 respectively. D8 analogues can be determined using irregular Voronoi diagrams. For
instance, local difference run-off modelling with Voronoi cells is presented in Dakowicz
and Gold (2007). The length of Voronoi edge in Voronoi D8 analogues can be used as
flow width to do 2-D modelling (Tucker et al., 2001).

SRFD algorithms are highly approximated representations of flow fields, which has con-
sequences when they are used to form flow accumulation fields or catchment boundaries.
For instance, when SRFD algorithms are accumulated they cannot generally model dis-
persion.

There are distinct and predictable errors in D8 generated flow directions. The D8 al-
gorithm has a direction bias because it can only select from eight possible directions, so
any terrain features that naturally drain between these directions are modelled poorly
(Tarboton, 1997). On some surfaces, these inaccuracies cancel out along the flow path,
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preventing the flow from departing too far from the true location. However, the plane
surface (Figure 4.2 A1) demonstrates how this is not always so. As flow descends along
the plane’s surface, the flow lines diverge farther and farther from the theoretical lines.
D8 also tends to create parallel streams that do not converge. For example, the cone sur-
face (Figure 4.2 A2), which contains areas of parallel lines and only localised convergence
(Wright and Leonard, 2012).

There are several variations to the generic D8 algorithm intended to address directional
bias. For instance, Orlandini et al. (2003) describe two methods that carry discrepan-
cies of flow direction from the D8 method along the flow path known as D8-LAD (eight
drainage directions, least angular deviation) and D8-LTD (eight drainage directions, least
transversal deviation) that create non-dispersive connected networks. When the accumu-
lated discrepancy reaches 45 degrees the direction is altered. The discrepancies carried
forward by these methods are the difference between D8 and D∞ directions (see Sub-
section 4.3.1). The difference between D8-LAD and D8-LTD is whether the discrepancy
is angular difference or linear difference.; this difference is described in more detail in
Subsection 8.5.2.

Fairfield and Leymarie (1991) proposed the Rho8 flow direction method that introduced
a random factor to the steepest neighbour calculation so that the probability of selecting
the steepest or second steepest downslope path has an expected value that is equivalent
to aspect. Rho8 introduces randomness into the process by multiplying the elevation
difference between the cell and its diagonal neighbours by a random factor, ρ8 given as:

ρ8 = 1
2− σ (4.4)

where σ is a uniform random variable between zero and one. The expected value of
ρ8 ≈ 1/

√
2. Compared to D8, if ρ8 < 1/

√
2, the cardinal neighbour (non-diagonal) is

favoured, if ρ8 > 1/
√

2 the diagonal neighbour is favoured, if ρ8 = 1/
√

2 the D8 solution is
applied. Subsection 8.3.3 optimises Equation 4.4 so that ρ8 is closer to 1/

√
2 .

Rho8 differs from adding random noise to the DEM because it results in no information
loss and flows cannot travel uphill. However, flows converge randomly (Fairfield and
Leymarie, 1991), and the results differ between individual runs. Figure 4.3, Row 5 shows
examples of Rho8 flow direction arrays on planes, concentrative cones and helical surfaces.
Unlike the D8 results (see Figure 4.3, Row 4), the Rho8 flow lines do not consistently flow
in one direction. Some cells randomly select alternative directions, with this occurring at
a frequency proportional to the gradient difference between the two options, thus creating
a mottled appearance.
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The random variable in Rho8’s flow direction calculations produces non-deterministic
behaviour. The randomness is non-repeatable, so results will differ between model runs.
Different runs of Rho8 produce flow direction rasters with approximately the same relative
proportions of selected flow directions, but due to the random factor, the calculated flow
direction for an individual cell may change from run to run. Wright and Leonard (2012)
evaluated D8 and Rho8 for determining catchment boundaries and found that if the
results of multiple Rho8 runs are averaged the stochastic model can reveal hydrologically
significant aspects of the topography that are not apparent from the application of a
deterministic model, such as areas where bimodal behaviour is apparent.

A related issue with Rho8 is that flows on parallel paths merge and cannot separate, so
downstream errors will accumulate, with more and more flow erroneously concentrated
onto some cells (Costa-Cabral and Burges, 1994). Figure 4.2 confirms that the degree of
flow convergence in Rho8 differs from the expected behaviour for a theoretical surface. In
the plane example shown in Figure 4.2, Row 1, Column B, the original 18 flows converge to
only five flows at the bottom of the plane. Convergence is a common occurrence in natural
flows, but on plane and helical surfaces, convergence in Rho8 flow directions is caused by
randomness, not underlying topography. Random convergence causes some downstream
cells to receive inflated flow accumulation values (Wright and Leonard, 2012).
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Figure 4.2.: Flow paths of D8 and Rho8 (shown in red). Theoretical results are shown
in grey. Only the flow paths for the edge cells are shown. Column A represents D8
results. Column B represents Rho8 results. Row 1 shows results for a plane surface,
Row 2: a cone surface, and Row 3: a helical surface. The surfaces are further described
in Figure 4.3.

90



4.3 Catchment analysis

Figure 4.3.: Restricted flow directions on plane, cone surfaces, and helical surfaces.
Each column presents results from a different surface. Column A is a plane that slopes
downhill at a direction of 170º from the top of the diagram, Column B is a cone shaped
pit, Column C is a helical curve descending anti-clockwise. Row 1 shows 3-dimensional
representations of the surfaces. Row 2 shows raster DEMs of the surfaces where lower
elevations are darker. Row 3 shows theoretical flow paths originating at evenly spaced
points at the top of the surfaces. Row 4 shows D8 flow direct results. Row 5 shows
Rho8 flow direction results. Rows 4 and 5 use the colour scheme in Figure 1 with white
arrows overlaid to illustrate direction. Reproduced from Wright and Leonard (2012).
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Single unrestricted

Single Unrestricted Flow Direction (SUFD) algorithms determine a single direction for
the cell but it can be any direction. If D8 is the archetypal single restricted flow direction
it is probably fair to say that D∞ (Tarboton, 1997) is the archetypal single unrestricted
flow direction. D∞ defines flow direction as the aspect of the steepest down slope path on
the set of triangles formed out of the cell and its eight neighbours. The slope is calculated
for all 8 triangles and the steepest is assigned as the direction. D∞ directions could also
be resolved using only 4 neighbours; in fact, the Max Flux Method (MFM) proposed by
Gruber and Peckham (2009) does something similar; however, MFM is a multiple flow
direction. A generalised version of D∞ for any geometry of tessellation is introduced in
Subsection 8.3.2.

Unrestricted flow direction is generally determined by fitting one or several planes to
the neighbourhood of the cell and determining the steepest direction on the plane(s).
There are various plane fitting methods that could be applied, such as that used by
DEMON (Costa-Cabral and Burges, 1994), box centred variations in Endreny and Wood
(2001), plane fitting with least squares (Lee, 1991; Costa-Cabral and Burges, 1994); fitting
quadratic trend surfaces, for instance using the Evans-Young formula (Shary et al., 2002);
and Lea’s Method (Lea, 1992). Methods that fit single planes to a neighbourhood of more
than three points cannot, generally, fit exactly, so there are discontinuities at edges and
potential for loops (Tarboton, 1997). D∞ does not create loops because it fits surfaces
to only three points, therefore, avoiding discontinuities.

Multiple restricted

Multiple restricted direction methods distribute flow only in the directions of neighbouring
cells but may include more than one neighbour. Quinn et al. (1991) described such models
on a regular rectangular mesh under the term MD8. MD8 may direct flows to one, several,
or all downstream neighbours. Multiple direction algorithms resolve ambiguity in ridges
and peaks (Peckham et al., 2009). Multiple restricted algorithms can readily be applied
to other geometries.

Multiple unrestricted

Multiple unrestricted direction methods are represented by MD∞ (Seibert and McGlynn,
2007), which combines D∞ with MD8; and the Mass-Flux Method (MFM) (Gruber and
Peckham, 2009). MFM forms D∞ like unambiguous facets with only the 4 edge adjacent
neighbours to create 4 independent continuous directions. These can be summarised to
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a whole pixel direction by finding the sum of the quarter-pixel flow vectors (Gruber and
Peckham, 2009). MFM requires further conditioning to resolve crossing flow paths.

Flow direction on TINs can be taken as steepest downhill slope on the triangle surface (Liu
and Snoeyink, 2005). Other examples of TIN flow direction include Palacios-Vélez and
Cuevas-Renaud (1986), Jones et al. (1990) and Liu and Snoeyink (2005). TIN faces are
effectively MD∞ generalised to irregular Voronoi tessellations because the TIN structures
are generally the dual of a Voronoi tessellation. TIN models can distinguish between flows
within and between triangles (Tucker et al., 2001). Triangle based flow routing flags as
channels anywhere that two triangles slope together (Tucker et al., 2001).

4.3.2. Flow accumulation

Flow accumulation is the contributing area (see 4.1.3) of a cell in a tessellation. Flow
accumulation is a kinematic simplification of physical hydrological process because it only
considers elevation. Variables other than contributing area can also be accumulated such
as slope and aspect (Heine et al., 2004). The relationship between the flow accumulation
of a cell in a tessellation and Specific Contributing Area a as defined in Equation 4.1 is
discussed further in Subsection 8.5.1.

Flow accumulation algorithms calculated on a grid raster typically require a flow direction
raster as an input. Such algorithms usually determine the number of cells that contrib-
ute flow to a given cell, which can be presented as a count or as a normalized area by
multiplying the count by the cell area. Flow accumulation rasters are often equalised for
display purposes, as a small number of cells often end up having a much greater flow
accumulation than the bulk of the cells (Wright et al., 2014).

Cell based flow accumulation algorithms perform two interrelated functions:

1. They define how flow is routed from one cell to another based on the flow direction.

2. They sum the flow reaching each cell in the flow accumulation raster.

Function 2. is commonly accomplished using a recursive flow climbing algorithm. In
restricted flow direction algorithms, such algorithms can also assign pixels to catchments
(Lin et al., 2008). Flow accumulation on large datasets can be difficult due to memory
constraints because it is a regional algorithm, necessitating parallel solutions to break up
the data. Gong and Xie (2009) describe data decomposition by catchment in multi-scale
DEMs. The remainder of this subsection is concerned with function 1. i.e. how flow
accumulation routes flow.

Flow routing on tessellated surfaces divides the accumulated flow of a cell between its
neighbours in accordance to the flow direction of the cell. The sum of flow from one cell
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to its neighbours cannot exceed the flow entering that cell (including the flow for that cell).
Algorithms must specify whether the flow accumulation reported for a cell includes the
cell’s own area. A Single Flow Accumulation (SFA) assigns all flows to a single neighbour
and will, therefore, create a one dimensional network. However, many grid and TIN-based
models use a Multiple Flow Accumulation (MFA) that partitions flow from a single grid
cell into one or more surrounding model elements creating a two-dimensional network
(Kampf and Burges, 2007). MFAs can be limited to only two cells as in D∞ or extended
to all downhill cells (Freeman, 1991).

Routing of restricted flows

SRFD algorithms inherently assign flow entirely to one neighbouring cell, therefore, flow
routing is trivial. The D8 and Rho8 flow direction algorithms are usually routed with
SFA, where flow from each cell is routed to one or no other cells. SRFD algorithms do
not model dispersion.

MRFD arrays are typically determined using a MFA, where all downstream recipient cells
receive flows. MFA creates divergence, meaning flows spread as they descend. Divergence
is an inherent characteristic on some surfaces. However, dispersion beyond the limit of
geometric convexity is inconsistent with up slope area definition (Tarboton, 1997).

MFA can be distributed proportional to slope (Quinn et al., 1991) or proportional to
slope to an exponent (Freeman, 1991; Quinn et al., 1995; Seibert and McGlynn, 2007).
Adjusting the exponent fine tunes the behaviour of multiple MFA algorithms. At the
extremes, exponent controlled MFA distributes flow evenly to all downstream neighbours
or only to the most down stream, i.e. SFA D8. Endreny and Wood (2001) and Tarboton
(1997) suggest that the MFA exponent should be left as an adjustable parameter. Quinn
et al. (1995) vary MFA exponent based on distance from channel network.

Routing of unrestricted flows

In D∞ flow accumulation is apportioned to the two neighbours closest to the direction
of flow. The accumulation is apportioned proportional to the angular distance from
the direction (see Subsection 8.3.1). D∞ avoids excessive dispersion but is anisotropic
because there is more dispersion away from 45◦. An alternative to angular offset used in
D∞ is linear offset (Orlandini et al., 2003). The difference between angular and linear
offset influences the extent to which the steeper cells are favoured. Linear offset places
relatively more flow toward the steeper neighbours.
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MFM essentially applies a MFA to multiple D∞ flow directions determined on linear
neighbours. In MFM, flow accumulation is apportioned from the quarter pixels defined
by two adjacent linear neighbours to the recipient whole pixel proportional to the decom-
position of the flow vector into its x and y components (Gruber and Peckham, 2009).

Other flow accumulation methods

The multiple and single flow accumulation algorithms discussed above model flow as a line
from one cell into another. DEMON (Costa-Cabral and Burges, 1994) ) is an alternative
to the linear assumption. DEMON models flow as a two dimensional flow tube. DEMON
areal flow routing has separate algorithms for up and downstream flows. In DEMON
downstream flow, every cell is modelled individually to its outlet or sink. Costa-Cabral
and Burges (1994) proposed DEMON with surface fitting but it could easily be applied
to other flow direction algorithms. Another example of flow routing that does not fit
the MFA/SFA model is Lee’s method, which models flow as a rolling ball, recording
where flows enter and exit each cell, starting from the centre of the cell they originated
in Lee (1991). Lee (1991) uses plane fitting for flow direction. However, a variation of
Lee’s method is used in the commercial software CatchmentSIM Catchment Simulation
Solutions (2008) that does not use plane fitting to calculate directions, illustrating how
flow direction and accumulation are distinct steps that can be abstracted from each other.

A two dimensional method that captures the effects of buildings at a scale finer than the
modelling scale is presented in Chen et al. (2012). Their method captures flow paths on
multiple vertical levels where the effect of buildings is incorporated in other levels, effect-
ively representing finer scale effects where required. Their method uses a cellular automata
method to identify areas were buildings create flow interactions that need modelling across
multiple levels and also allows the possibility to model factors such as underpasses. For
flow algorithms on TINs, refer to Vivoni et al. (2004) and Liu and Snoeyink (2005).

Analytical flow accumulation for assessment

Specific catchment area (a), can be determined from first principles analytically on conver-
gent and divergent cones, and inclined planes. Formulas for accomplishing this are given
in Gallant and Hutchinson (2011). Outside these mathematical shapes, methods of as-
sessment generally consist of comparison between methods and with intuitive expectation
of results. More computationally intensive methods for determining flow accumulation
that are useful for accuracy assessment include stream tubes (Orlandini et al., 2003) and
a differential method (Gallant and Hutchinson, 2011).
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Gallant and Hutchinson (2011) develop the Orlandini et al. (2003) and Orlandini and Mor-
etti (2009) contour and flow line network approach into a differential equation method
that can analytically determine a anywhere an equation can be defined from the DEM
that forms a surface that has continuous first derivatives and piecewise continuous second
derivatives. Surfaces built with quadratic splines have piecewise continuous 2nd derivat-
ives, which allow the numerical solution of a (Gallant and Hutchinson, 2011). Gallant
and Hutchinson (2011) define rate of change of a along a slope line (l) as a function of a
and plan curvature (kc):.

∂a

∂l
= 1− akc (4.5)

Integrating along the slope line yields a at every point.

Gallant and Hutchinson (2011)’s method is accurate in the sense that it is accurately
representing the mathematical surface, not that it accurately represents the flow lines of
the real surface. The result is removed from the real world both by the limitations of the
accuracy of the DEM and the accuracy of the mathematical surface that has been fitted
to it (Gallant and Hutchinson, 2011). In addition, further approximation comes from the
numerical solution of differential equations. However these can be managed to negligible
levels with care (Gallant and Hutchinson, 2011).

A selection of flow routing methods was described and evaluated on mathematical surfaces
in Pan et al. (2004): Single Flow Direction (SFD) (O’Callaghan and Mark, 1984), Bi-Flow
Direction (BFD) (Tarboton, 1997), Multiple Flow Direction (MFD) (Quinn et al., 1991),
and MFD*, which includes a minor alteration of the weighting of diagonals of MFD
(Wolock and Mccabe, 1995). Pan et al. (2004) found MFD to be the most accurate.
Erskine et al. (2006) compare five flow direction/accumulation methods (D8, M8, MFD,
DEMON, and D∞) and explore differences between them, eventually determining trends
between multiple and single flow algorithms. Erskine et al. (2006) found that relative
differences between accumulation values estimated using single- and multiple-direction
algorithms increased with decreasing grid cell size. Relative differences were greatest
along ridges and side slopes, and differences decreased where the terrain became more
convergent. Erskine et al. (2006) recommend Multiple-direction algorithms on undulating
terrains because they allow for flow divergence. The sensitivity of flow routing methods
to elevation errors is studied in Endreny and Wood (2001).
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4.4. Hydrological conditioning

In order to create DEMs with realistic drainage properties, modellers sometimes apply
hydrological enforcement techniques during data interpolation, or condition the surface
after interpolation to improve hydrological behaviour. Callow et al. (2007) make a distinc-
tion between hard hydrological conditioning, which modifies the DEM and soft hydrolo-
gical conditioning that relies on algorithms to adjust the outputs of hydrological analysis
without affecting the DEM. Hard hydrological conditioning can compromise later ana-
lysis (Callow et al., 2007). However, so can soft hydrological conditioning if later analysis
involves both altered and unaltered inputs, for instance adverse flows could be generated
when examining channel gradients. This section divides hydrological conditioning into
two broad categories, pit removal (Subsection 4.4.1) and ancillary data (Subsection 4.4.2).
Hydrological Conditioning on TIN surfaces (Subsection 4.4.3) and in urban environments
(Subsection 4.4.4) are discussed separately.

4.4.1. Pit removal

Pit removal involves removing pits (see Subsection 4.2.1) and flat areas from the data-
set. Pit removal in the field of image segmentation is described as prevention of over
segmentation (Moga and Gabbouj, 1998). For either steepest path or immersion catch-
ment techniques to work, datasets need to be lower complete, that is, each cell must
have a lower neighbour unless it is an edge cell or a genuine local minima (Roerdink and
Meijster, 2000). Sinks are removed from DEMs on the assumption that they are rare in
nature (Hutchinson, 1989; Goodchild & Mark, 1987) and therefore an artefact of data
collection or interpolation. If pits are not real features of the landscape, they should be
removed from the model or accounted for during the flow direction, flow accumulation
process.

This section describes techniques for removing pits from regular arrays, although many
of the techniques described could also be applied to irregular arrays. For further inform-
ation, see Kenny et al. (2008) for an overview of pit removal methods and Lindsay and
Creed (2005b) for an assessment of the effect that filling methodology has on hydrological
outputs. It is important to recognise that adding higher resolution to tessellated surfaces
does not necessarily resolve sinks even if the shape of the surface is known to an extent
that the sink is not present. This is because sinks can be created by the interplay of the
tessellation geometry and the surface topography. To resolve such sinks, there needs to
be some process of breaching or filling.

Pits are generally assumed to be spurious. However, genuine sinks play an important
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role in landscape evolution so should not be removed without considering whether they
are real (Temme et al., 2006). Genuine pits are fairly common in the built environment;
the development of land creates sinks, which are then typically drained into underground
pipe networks. For obvious reasons, these sinks should not be removed for the purposes
of modelling urban hydrology (Wright and Leonard, 2012). It is, therefore, necessary to
distinguish actual and spurious depressions before removal. Lindsay and Creed (2006)
examine some methods to do this. The method of Hutchinson (1989) effectively distin-
guishes between real and spurious pits.

Arnold (2010) shifts the assumption away from pits always being false and resolves them
on the assumption they are real and need to flood and outlet. Arnold (2010) also presents
arguments for determining the likelihood of erroneous pits in a DEM by statistical analysis.
Monte-Carlo modelling has also been used to determine if sinks could be the result of data
inaccuracy (Zandbergen, 2010; Lindsay and Creed, 2006).

Several techniques for removing pits are presented in the literature. The most prominent
techniques are filling and breaching. Filling raises the elevation of cells within the basin
formed by the pit creating a flat area at the elevation of the basin pour point (O’Callaghan
and Mark, 1984; Meisels et al., 1995). Breaching lowers the elevation of cells on the
perimeter of the basin allowing flow to escape.

Planchon and Darboux (2002) present an efficient filling algorithm based on flooding and
removing excess water. Jenson and Domingue (1988)’s D8-topaz software utilizes a filling
technique. Wang and Liu (2006) demonstrate an O(NlogN) efficient filling technique.
Magalhàes et al. (2012) describe an efficient algorithm that combines sink filling with flow
routing. An alternative filling method uses ancillary data in the form of known stream
channels as pour points if such pass through the pit’s basin (Mark, 1988).

Martz and Garbrecht (1999) applied breaching to grid DEM. Soille et al. (2003) describe
a breaching technique, called carving which creates sloped paths in the DEM to allow pits
to outlet and discusses resolving flat areas. Breaching can also be effected during flow
accumulation as a soft hydrological conditioning method leaving the DEM unaltered.
Fairfield and Leymarie (1991), Chorowicz et al. (1992), and Chou et al. (2004) all take
the soft breaching approach. Soft breaching can be as simple as changing the direction
of flow from the pit to the lowest elevation cell on the basin’s catchment. Flow reversal
techniques do not usually adjust the DEM to match the reversal so will create adverse
flows. Lin et al. (2008) apply a fuzzy logic rule to flow direction pit removal taking into
account distance to the outlet and depth change between a cell inside and outside the
basin. Kenny et al. (2008) describe Iterative Enhanced Flow Direction Grid (EFDG) pit
removal using flow direction altering.
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Filling assumes pits are caused by local underestimation, breaching assumes local overes-
timation. Filling some pits and breaching others based on the source of the error would
be ideal. However, this approach is impractical as the source of the error is generally
unknown. Pit removal techniques can be optimized for impact reduction (Lindsay and
Creed, 2005a). Soille (2004) describes a mixed filling and carving approach that minim-
izes the sum of differences between processed and unprocessed cells. Generally breaching
has less impact than pit filling. Applying the least impact approach to each individual
depression is recursive and hard to implement (Lindsay and Creed, 2005a). Martz and
Garbrecht (1999) propose a method by which breaches are applied up to a maximum
horizontal distance and the remainder is filled. The intention of Martz and Garbrecht
(1999)s technique is to breach only in areas that are blockages in a defined watercourse.

Flat areas within a DEM, whether from filling, extrapolation, or source data need to
be assigned flow directions either by imposing relief or by algorithmically resolving flow
direction. Flat areas can be resolved using the nearest resolved cell method (Tarboton,
1997) but this often creates unrealistic parallel flows. Garbrecht and Martz (1997) create
a converging technique based on a gradient from upslope and gradient to downslope.
Kenny et al. (2008) resolve flats in EFDG by extending surrounding flow direction into
flat areas without altering the DEM. Filling can also leave behind slopes if required for
drainage. Pem4pit filling (Grimaldi et al., 2007) considers geomorphological processes of
erosion and uplift. Pem4pit uses a continuity of mass equation within the filling process to
create more realistic surfaces compared to flat planes from traditional filling techniques.

4.4.2. Ancillary data

Hydrological conditioning is often accomplished by incorporating ancillary data into the
surface model. Similar to pit removal, ancillary data can either be incorporated through
the interpolation process, as hard conditioning of the DEM after interpolation, or using
soft algorithms.

A common ancillary data technique is stream burning. Stream burning lowers the cells
of a DEM in the vicinity of a known stream (Maidment, 2002). For a summary of stream
burning methods, see Saunders (2000) and Jones (2002). Enhanced stream burning pro-
cedures include AGREE surface reconditioning of riparian zone (Hellweger and Maidment,
1997), floodplains (Getirana et al., 2009), exponential stream bed (Saunders, 2000), power
law (Getirana et al., 2009), priority-first-search weighted-graph algorithm (Jones, 2002),
and adaptive stream burning that only enforces drainage properties where there is signi-
ficant disagreement between known and derived networks (Soille et al., 2003). Renssen
and Knoop (2000) apply stream burning to lakes, distinguishing between lakes that are
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part of drainage to the sea and those that are not. Turcotte et al. (2001) added a Digital
River and Lake Network (DRLN) to flow directions then altered the DEM as a function
of distance to DRLN.

Stream burning can be accomplished as a soft algorithm by altering the flow direction,
see for example the method of Kenny and Matthews (2005), which was extended to
resolving flats in Kenny et al. (2008). In a different approach, the commercial software
described in Catchment Simulation Solutions (2008) uses vector overlays to model channel
positions, where array cells behave differently if they are overlapped by the vector features.
Ancillary data can also be introduced during interpolation, such as streamlines and break
lines in ANUDEM (Hutchinson, 1989). Hengl et al. (2008) use geostatistical regression
to incorporate ancillary data into the interpolation process.

Other elements of the built environment with known position and hydrological character-
istics can be burnt into the raster DEM in processes similar to stream burning. Surface
features such as roads, drainage ditches and kerb and channel that are included this way
can capture and divert large volumes of surface water, despite often being smaller than
the resolution of the raster DEM. In such cases, the features being modelled need to be ex-
aggerated sufficiently to be represented in the output before “burning” into the elevation
data (Wright and Leonard, 2012).

Despite generally being of fine spatial resolution, DEMs produced from LiDAR data still
require hydrological conditioning. LiDAR data are often captured at a spatial resolution
that makes it possible to resolve road drainage features, but this is not always the case.
This can have an adverse effect on road burning processes as inaccurately positioned an-
cillary data such as road centrelines could potentially create undesirable artefacts when
combined with LiDAR elevation data containing information on drainage features (Goep-
fert and Rottensteiner, 2009).

Duke et al. (2006) adapted stream burning techniques to model roads (Road Enforcement
Algorithm (REA)) and canals (Canal Enforcement Algorithm (CEA)), then combined
REA and CEA to make RIDEM which alters flow direction to capture anthropological,
scale hydrological controls without affecting the DEM. Roads can be incorporated into
2.5D GIS DEMs by combining vector data and LiDAR data using an adaptive snake
(Goepfert and Rottensteiner, 2009). Using dynamic contours, vector object data can be
matched to the implicit object information in the LiDAR surface. Roads can be recognised
based on their low intensity texture and gradient changes.

Other examples of incorporating ancillary data are: Schäppi et al. (2010), who introduce
measurements of river cross sectional data into the DEM, and Lindsay et al. (2008), who
position gauge data to match derived stream networks using topology and names. This
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technique could be applied to fit stormwater drains to channels.

Callow et al. (2007) study the effect of stream burning on hydrological outputs. Getirana
et al. (2009) focused on stream burning and parameters for floodplain burning, attempting
to achieve acceptable networks with minimum alteration of a DEM. ANUDEM was the
best performing algorithm. Grimaldi et al. (2004) show that ANUDEM mimics known
river shape with the least disruption to the DEM compared to stream burning, AGREE,
and Grimaldi et al. (2004)’s physically based model.

4.4.3. TIN hydrological conditioning

TIN data sets are also affected by spurious sinks. Liu and Snoeyink (2005) discuss filling
sinks in TINs. Sinks are filled sequentially based on one of several proposed criteria,
area of sink, volume of sink, and spill time, which is volume divided by contributing
area. The order in which pits are filled and catchments dissolved is recorded allowing
different limits to be applied to the time function thus generating greater or smaller
levels of pit resolution from the same run of the algorithm (Liu and Snoeyink, 2005).
Their experiments showed catchment sequence defined by area produced results closest
to manually defined catchments. These sequential rules are comparable to height to be
filled limitations used in some grid algorithms, for example, Lin et al. (2008) and could be
applied to other data structures. Sinks in polyhedral terrains are addressed using elevation
alteration of vertices in Silveira and van Oostrum (2007). Koch and Heipke (2006) discuss
introducing ancillary 2D GIS data into a 2.5D TIN in a semantically correct way.

Vivoni et al. (2004) develop a hydrological similarity interpolation, which use TWI (to-
pographical wetness index) instead of slope for preservation. This method is a form of
hydrological enforcement in the interpolation of TINs from DEMs. Vivoni et al. (2004)
identify three ways of making TINs, traditional, hydrographic (includes basins, rivers, re-
tains slopes), and hydrological similarity. Hydrological similarity controls the resolution
of the DEM to represent areas of high topographic wetness index with higher resolution.
Therefore, using hydrological similarity one can preserve hydrologically significant fea-
tures with fewer points. Hydrological similarity is further developed and tested in Vivoni
et al. (2005b). Hydrographically constrained triangulation includes river networks as
hard break lines and catchment boundaries as soft break lines. The river and catchment
information can be calculated from a DEM, generalized, and then included in a TIN.
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4.4.4. Urban hydrological conditioning

Urban surfaces have a number of characteristics that need to be considered in order to
accurately model the direction of flow in urban areas. Urban surfaces are discussed in
detail from a hydrological standpoint in Appendix B.3. Assumptions regarding surface
flows that are generally sound in undeveloped areas do not always apply to urban areas.
Therefore, hydrological conditioning must be adapted for urban environments.

Urban surface features such as engineered drainage channels and stormwater reservoirs
can have large, but highly localised, effects on a catchment’s surface water hydrology
by redirecting water from natural pathways despite only being metres or centimetres
in width. Due to artificial channels, flows may appear to run along contour lines, and
surface flows may arrive from and disperse to multiple different directions. An urban
surface model must be capable of capturing important fine scale land surface features
such as roofs, roads, ponds, pumps, drainage ditches, impervious surfaces, and kerb and
channels (Panday and Huyakorn, 2004; Yeh et al., 1998). Spatial models can model fine
scale features by using very fine grids, using unstructured grids with variable density,
coupling grids of different density, by considering sub cell size topography, by multi-scale
modelling, or by utilising special hydrological conditioning methods.

To be effective in urban areas hydrological models also need to consider interactions with
pipe networks. Pipe networks increase complexity for hydrological models in urban areas
because they introduce small subcatchments, genuine pits at the interfaces with pipe
network inlets, and intermittent overland flow paths (Smith et al., 2006). In addition,
the pipe network may become overloaded during heavy rain and stop receiving flow and
become a flooded pit. Meierdiercks et al. (2010) found using computer modelling that
drainage infrastructure is actually more important than impervious surfaces in predicting
rainfall response in urban catchments.

For effective urban hydrological conditioning, pipe networks must be considered in order
to determine if pits are genuine. However, false sinks from, for instance, bridges being
treated as ridges still need to be removed. Software that combines 2-D overland flow with
1-D pipe modelling are frequently termed 1-D/2-D models (Bandaragoda, 2008). 1-D/2-D
models are a form of hydrological conditioning of the 2-D model. In a 1-D/2-D model
some pits are the interfaces between the 2D surface and the 1D pipe network.

The implementation, operation, and results of algorithms that determine variables and
objects from surface models, such as the geomorphometric algorithms and hydrological
analysis outlined in this chapter are influenced by the characteristics of surface models
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that were described in the previous chapter. In the interests of good modelling practise,
as introduced in Section §2.1, it is necessary to be as clear as possible about how these
interactions between surface and algorithm affect model results. However, the interaction
can also go the other way, just as the surface model will affect the analysis algorithm,
the algorithm and the modeller’s intentions may affect the surface model. Part II will
describe a surface model that has characteristics that allow modellers to adapt the scale
and geometry of a tessellated surface model to minimise error.
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Part II.

The Regular Hierarchical Surface Model
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In this Part, questions raised in Chapter 2 regarding modelling scale in surface models
are answered by assembling selected components of the surface modelling framework con-
structed in Chapter 3 into a Regular Hierarchical Surface Model (RHSM), that in Part III
will be applied to the geomorphometric hydrological analysis described in Chapter 4.
Chapter 5 discusses the conceptual model of the proposed RHSM, Chapter 6 details the
mathematics underpinning the surface, and Chapter 7 covers aspects of the computational
model.
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5. Conceptual Regular Hierarchical
Surface Model

This chapter documents the conceptual model of the Regular Hierarchical Surface Model
(RHSM) and explains its rationale. As such, it forms a conceptual bridge between the
background information in Part I and the mathematical (Chapter 6) and computational
(Chapter 7) details of the new surface model.

Section §5.1 identifies and expands on the questions of scale that were encountered in
the literature review and proposes that the questions of scale should be addressed using
multi-scale surface modelling. Section §5.2 discusses the advantages and disadvantages
of modelling spatially distributed phenomena by dividing space into a regular discrete
mesh and proposes that forming multi-scale models by subdividing scale using a regular
discrete hierarchy has similar advantages.

Section §5.3 illustrates the benefit of hierarchical referencing of multi-scale spatial data
in implicit pyramids. Section §5.4 proposes adapting the Level Of Detail (LOD) models
used in computer graphics to capture scale dependence in distributed models of geographic
data. Section §5.5 outlines the RHSM.

5.1. Questions of scale

This section identifies the issues of scale dependence that were discussed in a variety of
contexts in Section §2.3 and elsewhere in Part I. This section proposes adding a branch
to the modelling decision tree presented in Section §2.1. The new branch represents the
option to model the variation of parameters with scale.

Philosophers from the time of Aristotle have recognised and described the fallacy of com-
position (Aristotle, 4th Century BCE). It is a fallacy of composition to claim that what is
true of the parts is necessarily true of the whole. The complement of the fallacy of com-
position is the ecological fallacy: the process of inferring the characteristics of individuals
from data about aggregates (Robinson, 1950).
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A trivial example of the fallacy of composition is the claim that every person in New
Zealand weighs less than an elephant, therefore, all people in New Zealand collectively
weigh less than an elephant. This is clearly a fallacy. However, not all such claims are
false. For instance, the claim that all people in New Zealand collectively weigh more than
a mouse follows logically from the observation that all people in New Zealand individually
weigh more than a mouse. The extent to which the properties of the parts can be applied
to properties of the whole varies depending on the nature of the properties, and the objects
or fields to which they apply.

In Section §2.3, the fallacy of composition was encountered in reconciling measuring and
sampling scale with computational scale within hydrological models. In addition, it was
recognised that many geomorphometric parameters, such as slope, change with spatial res-
olution. Therefore, it is necessary to describe surfaces with geomorphometric parameters
that approach a limit when varied by changing spatial resolution.

Measurement of objects with fractal properties also reveals variation of parameters with
scale (see Section §2.3 and Section §4.1). For instance the length of the perimeter of an
object with fractal geometry, such as a coastline, varies depending on the resolution of
measurement (Mandelbrot, 1967). Goodchild (2001) observed that a variable is scale de-
pendent if a length is inherent in the definition of the variable. Therefore, many measured
values are only relevant for a given scale.

When modelling a process in a GIS there are three interrelated questions of scale that
arise: Do variables change with scale? And if so, how do you integrate variables (or
processes) to form a generalised value (or process)? From these questions arises the third;
if model outputs are affected by scale of measurement, what scale should we use?

Multi-scale data structures provide a mechanism to deal with issues of scale and ag-
glomeration by explicitly modelling variables that vary with scale. Accommodating scale
dependent variables in geographical models effectively adds a new layer to the modelling
decision tree tree illustrated in Chow et al. (1988). The new layer asks whether the model
should account for variation with scale (see Figure 5.1).1

The extra branch of the decision tree could be applied to any of the model types depicted
as leaves in Figure 2.1. However, Part III considers scale variation in deterministic,
distributed, steady flow hydrological models. Distributed modelling is the form of model
which is most likely to vary with spatial scale. It is difficult to conceive of multi-scale
lumped models that do not imply that the finer scale models are in fact distributed.
Stochastic and unsteady models are avoided initially to simplify the modelling process

1Alternatively, due to the fact that multi-scale models are effectively both lumped and distributed, the
decision to include scale variance in a geographic model could be conceptualised as an additional
option on the spatial variation branch: lumped, distributed or multi-scale.
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because, as Chow et al. (1988) indicated, it is difficult to capture all types of variation
in a single model. By focusing on models that vary only spatially and with scale, the
implications of scale dependent modelling can be isolated and investigated.

Figure 5.1.: Modelling decision tree with an additional option to account for scale vari-
ation.

5.2. Regular discrete subdivision of space and scale

This section reiterates the advantages of subdividing space in distributed models using
regular geometries (Section §3.5) and implicit data models (Section §3.7), and extends
the concept to the discretisation of scale. It identifies a regular hierarchy of regular tes-
sellations as an efficient way of subdividing space and scale because such hierarchies have
similar shapes, fixed aperture, congruent centres, and aligned boundaries (Section §3.8).
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5.2.1. Regular discrete space

Not withstanding the Planck constant2, the real world as experienced by humans is con-
tinuous. However, in computer models of fields, it is convenient to subdivide space into
discrete entities within a tessellation or network graph. Fields can be modelled continu-
ously using equations that interpolate values between discrete data points. However, sur-
face modelling by discretisation of space is often more achievable, which is why numerical
techniques, for instance, often solve continuous equations using discrete approximations.
Even vector representations of objects in space do not typically represent location with
analogue precision due to the underlying grid implicit in the resolution used to store the
coordinates of vertices (Subsection 3.7.3).

A 2-D square raster is a typical example of a regular subdivision of space. A regu-
lar point set is created by sampling a surface at set intervals in linearly independent
dimensions(x, y).If these sample points are treated as generators for a degenerate Voro-
noi tessellation, a regular rectangular tessellation is formed. The tessellation is square if
the sample distance in x equals the sample distance in y. As discussed in Section §3.5,
other regular point sets can be generated by tilting the axes, and changing the sampling
distances.

Subdividing space with a regular geometry is advantageous for geographical modelling
because it reduces computational overhead for storage and analysis due to the implicit
position and shape of regular meshes. Algorithms designed to perform analysis on regu-
lar meshes can be simpler than those designed for irregular meshes due to the constant
connectivity and adjacency of cells within a regular mesh. In this regard, one particu-
larly useful geometry is the isotropic hexagonal Voronoi diagram. Hexagonal tessellations
have no point adjacent neighbours, which resolves the connectivity problem, and equal
distances to all neighbours (see Subsection 3.5.3).

A counter argument in favour of irregular geometries is that irregular geometries can alter
their resolution spatially to generate variable density sampling. However, irregular geo-
metries require explicit position and shape to be stored. The storage and computational
overhead for modelling with irregular meshes is greater than for regular meshes because
each cell has unique values for its area, number of neighbours, length of edge shared with
each neighbour, and distance to each neighbour. Subsection 5.2.2 describes how regular
hierarchical division of scale allows variable density meshes to be formed from regular
geometries.

2The Plank constant, 6.626 × 10−34 joules, is the energy of a quantum of electromagnetic radiation
divided by its frequency. Quantization of energy implies that only certain energy levels are allowed,
and values in between are forbidden; therefore, at extremely fine scales, energy is not continuous.
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Another argument in favour of irregular geometries is that they avoid the accumulation
of errors, known as geometric bias that affects regular structures (Holland et al., 2007). If
regular geometries are used for modelling, it is judicious to use geometries that minimise
geometric bias and have geometric characteristics that are suitable for the processes that
will be represented on them. One method to mitigate geometric bias is to repeat the
analysis with rotated arrays, and/or adjusted origin. Chapter 9 investigates hexagonal,
rectangular, and triangular sampling for forming regular surface models. Each of these
tessellations may have advantages within specific problem domains.

5.2.2. Regular discrete scale

The capacity for subdivision with a regular structure is not unique to the dimensions of
Euclidean space. For instance, time and numerical attribute data can be treated as a
dimension and modelled with a regular structure. A model that allows parameters to
vary with scale effectively treats scale as dimension, which, like space, can be modelled
continuously or discretely. If modelled discretely, scale too can be subdivided with regular
or irregular structures.

A model with continuous scale variation provides parameter values for any resolution;
a defined and solvable scaling function could provide this. Alternately, discrete scale
models provide only a subset of possible scales. The range of scales in a discrete system
can be described by a sequence of values representing the area of an individual tile in each
successively coarser scale relative to the area of tiles in the finest or “base” scale. These
scale ranges effectively describe pyramid layers or hierarchies. This suggests a number of
possible classes of discrete scale ranges. Discrete scale ranges could have no pattern and
thus be irregular or the scale range could conform to a regular pattern.

For instance, a linear discrete scale range would have cell sizes equivalent to:

1 + ni {i ∈ Z ≥ 0} (5.1)

where n ∈ R > 0.

An exponential discrete scale range could conform to:

in {i ∈ Z ≥ 1} (5.2)
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or:

ni {i ∈ Z ≥ 0} (5.3)

The hierarchies formed by linear scale ranges such as Equation 5.1 would not generally
be aligned or congruent. The hierarchies formed by Equation 5.2 could be made to be
congruent but not generally aligned. The hierarchies that are formed by Equation 5.3 can
be made to be aligned and congruent by choosing values of n equivalent to the aperture of
self-similar hierarchies of the regular tessellations. The lowest value of n that can generate
aligned congruent self-similar hierarchies depends on the geometry of the tiles; this value
is 9 for rectangular tessellations, 7 for hexagonal, and 4 for triangular.

The self-similar, aligned, congruent hierarchies have characteristics that are distinctive to
their geometries. For instance, the correspondence between neighbourhood and hierarchy
can only be achieved for all three regular geometries by being flexible with the definition of
neighbourhood. The rectangular geometry needs to include the point adjacent neighbours,
whereas, the triangular geometry only includes the line adjacent neighbours. In addition,
the aperture-7 hierarchy for hexagons is only somewhat self-similar and approximately
congruent.

Congruent hierarchies make aggregating values easier and also make it possible to form
variable density “realisations” (see Subsection 5.4.2) because cell boundaries are always
congruent with finer resolution neighbours. Aligned hierarchies, with a single central child
cell that is co-located with the parent, ensure that there is a clearly defined fine-resolution
equivalent of the parent cell and create a correspondence between the geometry of a cell’s
neighbourhood and the geometry of the self similar unit, which facilitates hierarchical
indexing and identifying neighbours.

The lower the value of n the denser the range of resolutions achieved, creating what could
be described as a fine resolution of resolutions. An argument against schemes based on
self-similar hierarchies is that the scale resolution is comparatively coarse. This objection
is evaluated in Chapter 9.

A Regular Hierarchical Surface Model is a regular tessellation (and its dual network)
of regular polygons, which employs an exponential sequence of scales (Equation 5.3).
It may seem naive to reduce the complexity of the multi-scale world to such a simple
scheme. However, the simplicity of the raster data model has not prevented its widespread
application. Indeed, the simplicity of the raster data model has encouraged many complex
operations to be built on its elementary scaffold.
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5.3. Hierarchical referencing and pyramids

This section discusses hierarchical referencing and forming pyramids. Hierarchical refer-
encing and pyramids are related because cells can be referenced and stored using the same
groupings as are aggregated into pyramids. Hierarchical referencing efficiently organises
the values required to form the agglomeration and implicitly associates values between
different resolutions without storing links.

5.3.1. Hierarchical referencing of spatial data

As discussed in Section §5.2, the regular division of scale facilitates implicit hierarchy in
the same way that the regular division of space facilitates implicit position and shape.
Referencing systems can exploit this hierarchy to organise spatial data in a way that
facilitates tiling and memory management.

Regular subdivision of space can be represented in linear arrays using space filling curves
such as the HIP referencing system (Middleton and Sivaswamy, 2001). Linear storage
using the HIP index is implicitly hierarchical because it does not require pointers. Another
way of conveniently storing a nested hierarchy is in a tree data structure where the
branches represent the decomposition of space into finer parts via a regular subdivision
(Section §3.7). An advantage of the tree structure is that not all branches need be present,
therefore, there is potential for sparse or variable density surfaces. However, explicit tree
structures also require some overhead due to the need to direct branches to appropriate
memory locations.

Storing values in tree structures in secondary memory demands a significant number of
disk reading operations. The number of operations can be reduced by tiling, where rather
than placing individual values in memory, arrays of values that are spatially adjacent can
be stored in a tree structure (Platings and Day, 2004). This need not sacrifice the integrity
of the hierarchical structure because the array can employ an equivalent hierarchical
referencing system to the tree (see Section §6.2). Section §6.1 details the hierarchical
referencing system used by the RHSM, which is an adaptation of the HIP system applied
to both tree and array structures.

5.3.2. Pyramids and scaling functions

A pyramid data structure consists of a set of spatial representations that have the same
extent but successively coarser resolutions. Therefore each subsequent layer has fewer
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cells. Hierarchical referencing systems help create pyramid data structures because the
values that need to be aggregated to form the coarser resolution share a common reference
and can be made adjacent in system memory. In addition, a hierarchical referencing
system easily relates values between levels of resolution because spatially coincident cells in
different layers of the pyramid will share the same index except that the coarser resolutions
will have shorter references (see Section §6.1).

If the value of a variable is represented in a model at more than one spatial scale
(multiscale), a scaling function presumably exists to relate values at different scales. Such
a scaling function would model the variation of parameters with scale. A simple example
of scaling function is aggregation with a spatial average.

Broadly speaking, there are three ways to find parameter values for a pyramid. They
could be measured at different supports, they could be calculated at a single level and then
generalised using a scaling function, or they could be calculated at different resolutions
from other parameters that have been measured or generalised with a scaling function.
The scaling function of a multi-scale model can be stored as a function and solved on
demand or calculated at a range of resolutions and stored as multi-scale values in an
appropriate data structure. However, as noted in Section §2.3, scaling functions may be
unknown and difficult to determine for non-linear processes. Under these circumstances,
if multi-scale values cannot be determined by appropriate measurements they may be
modelled with an approximation of the true scaling function.

Interpolating a surface from sample points and resampling a surface more sparsely is not
the same as representing a value or process at a different scale using a scaling function.
The process of fitting a surface and then resampling creates a new point value at a
precise location but does not necessarily represent a new scale because it is still a point
measurement. However, some scaling functions may involve interpolation.

5.4. Level of Detail Modelling

This section applies the concept of Level of Detail (LOD) surface models to the task of
interpreting hierarchical spatial data for distributed geographic models: selecting spatial
resolutions and forming adaptive realisations.

5.4.1. Choosing appropriate scale

Occam’s razor is a heuristic for choosing simpler explanations that retain the required
explanatory power. Cartographic generalisation is choosing simpler representations that

116



5.4 Level of Detail Modelling

are still effective descriptions. Forming adaptive realisations from a LOD distributed
model is choosing coarser scales that continue to represent a process within acceptable
limits of accuracy.

For instance, cartographers depict a bridge on a map with a bridge symbol not a collection
of symbols for the bridge’s parts. This is question of scale and purpose; the cartographer
must ensure their symbol is clear enough to tell the map reader that they can cross the
river here. A similar philosophy applies to computer modellers of environmental process.
It is neither practical nor advantageous to model every detail.

A chosen scale may be too coarse if it disguises sub-pixel heterogeneity that is important
to process representation but also too fine for two reasons. Firstly, the resolution may
be creating unnecessary computations and secondly, the resolution may be representing
information at a resolution for which the true value is unknown and has therefore been
interpolated, possibly erroneously.

LOD modelling is a computationally efficient way to produce variable resolution 2.5-D,
or 3-D surfaces where the surface resolution varies depending on the distance to the
viewer (see Subsection 3.8.3). LOD modelling for distributed geographical models applies
a similar principle and methodology. An appropriate scale is selected from multi-scale
datasets in three steps.

1. A hierarchical pyramid is formed by a scaling function.

2. An error value is associated with each value in the pyramid.

3. A decision rule is then evaluated against the error value to identify the appropriate
scale.

An adaptive resolution realisation is generated from the coarsest cells that satisfy the
decision rule (Subsection 5.4.2).

Scaling functions

If the sampling scale or measurement scale of the parameters in a model differ from the
model grid scale, interpolation or generalisation are required, which can be accomplished
with a scaling function. Caution is required when utilising model elements derived using
a scaling function due to a subclass of the fallacy of composition that is well known in
statistics.

As noted by Peckham et al. (2009), if X is some model parameter that varies spatially,
f is a non-linear function, and Y = f (X) is a computed quantity; then the following
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generally holds:

E [f (X)] 6= f (E [X]) (5.4)

In the above formula, E is the expected value, which is akin to the spatial average (Peck-
ham et al., 2009). In other words, the result of applying a function to the spatial average
of its parameters and variables is not necessarily the same as finding the spatial average of
the results of the function evaluated separately from the original distributed values. This
is similar to the notion of data support in spatial statistics. Data support is the domain
within which linear averages were computed (Dungan, 2001). As the support changes so
do the computed values. However, the extent to which Inequality 5.4 holds varies with
the nature of the function. In some instances the following holds.

E [f (X)] ≈ f (E [X]) (5.5)

provided X does not vary too greatly. Due to Tobler’s law3 (Tobler, 1970), if Equation
5.5 holds for limited domains of X, it can be inferred that for sufficiently restricted spatial
domains, the fallacy of composition does not apply. This can be exploited to generate
simplified LOD realisations.

Error values

In all but entirely uniform surfaces, the generalisation involved in moving from fine to
coarse scale entails the loss of sub-pixel variability. The aggregated parent value will
diverge from the extreme values of its children. It would be desirable to know the extent
to which sub-pixel heterogeneity has been disguised or the extent to which supra-pixel
ambiguity has been realised by interpolation for a given resolution, in order to assess the
applicability of the generalisation. The extent to which the generalised value disguises
the underlying variation can be represented by an error value.

A simple example of an error value is maximum deviation from the value determined by
the scaling function. Such an error value compares the parent value to the values of its
associated children on the finest level of resolution to give an indication of the quantity
of error associated with the realisation compared to the reference layer.

3Tobler’s First Law of Geography: Everything is related to everything else, but near things are more
related than distant things.
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Decision rules

The error value can be investigated with a decision rule to assess the appropriateness of
the resolution for the purpose to which it is applied. A simple example is to set a threshold
which represents the largest acceptable error value. Provided the threshold value is set
appropriately, utilising the generalised value in the model will produce results sufficiently
similar to applying the model to its parts.

More complex models may require more complex scaling rules, error values, and decision
rules. For instance, the decision rule may involve more than one spatially distributed
multi-scale variable or the decision rule may include parameters that change spatially in a
process analogous to how LOD 3-D visualisation resolution becomes coarser with distance
from the observer.

5.4.2. Adaptive realisations

An LOD realisation is a variable resolution surface that has been generated from a mul-
tiresolution dataset, typically in real time for visualisation. RHSM adaptive realisation
extends the methods of LOD modelling to distributed geographical modelling. Variable
resolution modelling involves identifying the coarsest resolution at which a process is
represented accurately. RHSM realisations utilise the largest cell in the multi-resolution
pyramid at which the error value meets the decision rule.

It could be argued that the proposed RHSM is not multi-scale in the sense that once it
has generated the realisation it is a flat surface with a single LoD at every point. However,
the underlying operation of the decision rule, threshold value, scaling function and error
value are multi-scale and offer a framework to investigate scale effects.

The resolution of adaptive surfaces used in a GIS, such as TINs, are typically defined
by the complexity of the underlying surface that is being modelled. The spatial extent
of the model element is therefore a function of the variation of the surface. The greater
the variation of the surface, the finer the resolution required to represent the surface
accurately. Conversely, for a given surface complexity; the greater the cell size, the greater
the underlying complexity that is disguised. A variable resolution discretisation of a field
in 2-D or 3-D space attempts to minimise sub-pixel heterogeneity whilst using as few cells
as possible. RHSM realisations do not necessarily minimise surface variation because the
error value may be formulated to capture other aspects of the spatial model.

Not withstanding the variable resolution, an RHSM realisation is a regular structure.
Therefore, it is not necessary to encode point locations or tile division processes. The
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realisations can be stored on trees similar to quad trees. On a given LoD, each branch
may be either a leaf (containing a value) or a node (containing links to child nodes or
leaves). The number of nodes between the root to the leaf represents the spatial extent
of the value and the labels of the nodes represent its location through a hierarchical
referencing system described in detail in Section §6.1.

Unlike irregular triangular LOD models, the proposed model uses regular geometries. The
study area is covered without gaps or overlaps by tiles that are similar but not congruent in
shape. Variable density realisations formed by RHSM datasets will not have conforming
edges. However, variable resolution distributed modelling involves interaction between
different resolutions. Therefore, model processes designed to operate on LOD realisations
must be structured to be robust to nonconforming edges (see Chapter 8 for hydrological
geomorphometry examples).

5.5. Proposed Regular Hierarchical Surface Model
(RHSM)

This section draws this chapter to a close by outlining the proposed RHSM.

The criteria of the proposed model are that the surface should:

1. Represent different values of variables at different scales.

2. Provide a way to identify appropriate scale for a given process.

3. Support multi-scale analysis and intra-scale comparisons.

4. Facilitate local neighbourhood operations across multiple scales.

5. Support large datasets, data tiling, and parallel processing.

6. Be applicable to multiple geometries.

7. Minimise computational overheads from delineation of position and scale.

The characteristics of the proposed model are:

1. The RHSM is a functional, multi-scale, regular, implicit model.

2. The geometry of the RHSM has implicit position, shape and hierarchy.

a) The RHSM employs a regular discretisation of both space and scale.

b) The RHSM hierarchies are congruent, aligned, and self-similar.

c) RHSM parent cells have the same geometry as cell neighbourhoods.
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d) The RHSM datasets support array rotation and translation.

3. The RHSM supports three regular geometries:

a) Triangular, RHSM-tri;

b) Rectangular, RHSM-rec,

c) Hexagonal, RHSM-hex.

4. The RHSM supports scale variation.

a) The RHSM has different values for the same area at different resolutions. (pyr-
amids)

• The RHSM generates pyramids with a scaling function

b) The RHSM can generate level of detail realisations (variable density).

• The RHSM generates realisations using an error value and decision rule.

5. The RHSM data model is an array tree.

a) The RHSM data model consists of array structures as leaves of a tree.

• The tree/array threshold is user defined.

b) The RHSM is referenced using an adapted Hierarchical Image Processing (HIP)
system.

• The referencing is common to both array and tree components.

• Hierarchy is stored implicitly.

• Hierarchically agglomerated values are adjacent in memory.

c) Sparse realisations are stored in a tree structure.

This chapter has described a conceptual model a Regular Hierarchical Surface Model that
addresses the questions of scale. The next chapter will detail the mathematical techniques
required to implement it.
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6. Mathematical Regular Hierarchical
Surface Model

This chapter describes the mathematics of the RHSM. The indexing method is detailed in
Section §6.1, the array-tree data model is presented in Section §6.2 and the procedure for
LOD modelling including pyramids, scaling rule, error value, and adaptive realisations is
described in Section §6.3. The computational model follows in Chapter 7 and hydrological
applications are detailed in Chapter 8.

6.1. Indexing

The RHSM indexes individual tiles using an adaption of the HIP system, the mathematics
of the adapted system are described in this section.

6.1.1. The HIP ordinate

Middleton and Sivaswamy (2001) introduced a Hexagonal Image Processing (HIP) system,
which included a linear, hierarchical indexing method called the HIP index. The HIP index
is only applicable to aperture-7 hexagonal hierarchies. The RHSM described here applies
the HIP indexing system to aperture-9 rectangular and aperture-4 triangular hierarchies
as well. Therefore in the context of the RHSM, the abbreviation “HIP” is generalised from
Hexagonal Image Processing to Hierarchical Image Processing (HIP ). The specific form
of HIP index is indicated by a superscript number that matches the aperture (a) of the
geometry it relates to. Therefore HIP 7, HIP 9, and HIP 4 are the indexing systems for
the hexagonal RHSM-hex, rectangular RHSM-rec, and triangular RHSM-tri respectively.

Some noteworthy characteristics of the HIP index are that

• it expresses 2-D location with a single ordinate,

• the length of the index indicates the number of parts into which the whole has been
partitioned,
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• the length of the base vector is the resolution of the dataset,

• a self similar hierarchy can be formed by agglomerating the cells that share the same
HIP index with the last digit removed, and

• the centre of each HIP cell is the centre of the 0 cell of its children, i.e. it is an
aligned hierarchy.

Digits of the HIP ordinate

AHIP ordinate consists of a sequence of numbers that represents the location of a specific
value within a HIP dataset. The HIP ordinate indicates both the value’s location in
memory and the location on Earth that it represents. The cardinality (n) or number of
cells in a HIP dataset is fixed by the number of digits (λ) in the ordinate according to:

n = aλ (6.1)

Middleton and Sivaswamy (2005b) call λ the level of the HIP dataset. Equation 6.1 places
an upper limit on the number of LoDs that are possible within a given RHSM dataset
(see Subsection 6.3.1).

Each digit in the HIP ordinate (HIPi) is restricted to:

HIPi ∈ 0 ≤ Z ≤ a− 1 (6.2)

Like the Hindu-Arabic numeral system, the individual digits read from left to right from
coarsest to finest. However, the individual digits are indexed from finest to coarsest as:

HIPλ−1...HIP1HIP0 (6.3)

For example, a 5-level (5λ) HIP 7 ordinate will have 5 digits, HIP4HIP3...HIP0 that can
take a value from 0 to 6, i.e. 24043.

Determination of location from HIP ordinate

Each digit in a HIP ordinate represents a transformation of a base vector (C). The
transformation has two components that are described by distortion matrices: (1) a trans-
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formation indicated by the value of the digit that may involve rotation and scaling but is
here called a rotation matrix (A), and (2) a transformation indicated by the place value
of the digit which may also involve rotation and/or scaling but is here called the scaling
matrix (B).

A, B, and C vary depending on the geometry and are given below in the descriptions for
the different geometries.

C can be scaled to produce the desired cell size. The cell size of an RHSM is defined as
the distance between the cell centres of line adjacent neighbours.

The vectors formed by the sequence of transformations contained in a HIP ordinate are
summed to give a vector that represents a translation from the origin of the dataset to
the location of the value. The location determined from the HIP ordinate is the centre
of the tile. The shape of the tile may be assumed from the type of tessellation. The origin
is the centre of the central cell. The origin of the HIP dataset is coordinated in a spatial
reference system to locate the entire dataset on the surface of the Earth.

The (x, y) vector between the origin of the RHSM dataset and a given value (
 x4

y4

)
can be determined from the HIP ordinate by:

 x4

y4

 =
λ−1∑
i=0

AdBiC (6.4)

where i is the index of the HIP digit and d is the value of the HIP digit at index i. If

the origin of the RHSM dataset has projected coordinates
 x0

y0

 the location of the value

is:

 x

y

 =
 x4

y4

+
 x0

y0

 (6.5)

Examples of HIP 7 and HIP 4 location determination are given in Appendix C.1.

Interpretation of distortion matrices

It is useful to note that the distortion matrices can be interpreted conceptually as the
unit vectors in the direction of the x and y axes after the required rotation and/or scaling.
This interpretation is shown in the equation below and illustrated in Figure 6.1.
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Unit vector (1, 0)→
 xx

yx



Unit vector (0, 1)→
 xy

yy



Distortion matrix

 xx xy

yx yy

 (6.6)

Figure 6.1.: Distortion matrix. The Cartesian unit vectors in (x, y) (black arrows on
the left) are converted into the (u, v) unit axes associated with λ2 HIP 7 by tilting
the y-axis π/6 radians clockwise into the hexagonal v-axis, stretching both axis by
a factor of

√
7 and rotating both anticlockwise by tan

(√
3/2
)
. The resulting vectors

are Unit vector (1, 0) →
[

5/2√
3/2

]
, Unit vector (0, 1) →

[
1/2

3
√

3/2

]
, therefore we have

Distortionmatrix

[
5/2 1/2√
3/2 3

√
3/2

]
. The Cartesian coordinates the larger black dot can

be converted from the location in the left to that in the right using matrix multiplication:[
5/2 1/2√
3/2 3

√
3/2

] [
1
1

]
=
[

3
4
√

3/2

]
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HIP arithmetic

HIP indices represent vector quantities because they define the distance and direction
from the origin of the dataset to the cell centre. Therefore arithmetic operations can
be defined within the HIP ordinate system (Middleton and Sivaswamy, 2005b). HIP

addition is represented with the symbol ⊕, and subtraction with 	. Middleton and
Sivaswamy (2005b) also define HIP multiplication, however, this is not described here.

In each of the geometry sections below, tables are given to show the full range of pos-
sibilities for HIP addition of single digits. Following Middleton and Sivaswamy (2005b),
HIP addition can then be calculated similar to ordinary base 10 addition. The HIP
addition tables show the result of adding the digit in the first column to the digit in the
first row; where the result is two digits, the first digit is carried.

Subtraction can also be performed by determining the value that represents the opposite
vector, which is the negation, and then performing the addition of the negation. Negation
tables are also given for each geometry below. The neighbourhood of a cell in an RHSM
dataset can be calculated by addition (Middleton and Sivaswamy, 2001). Examples of
HIP arithmetic are given in Appendix C.2.

6.1.2. Hexagonal

The RHSM-hex uses the HIP 7 referencing system, which is essentially equivalent to
the HIP referencing system described in Middleton and Sivaswamy (2001). HIP 7 forms
aligned aperture-7 hierarchies.

The value of each digit within a HIP 7 ordinate ranges from 0 to 6 and represents the
rotation of the base vector by multiples of π/3 radians anticlockwise from the x-axis, except
0, which defines the centre of the agglomeration. Rotation matrices (A) for HIP 7 are
given in Table 6.1 along with the scaling matrix (B) and base vector (C). These matrices
are not unique, for instance Middleton and Sivaswamy (2001) use a slightly different
formulation. Part of a 3λ RHSM-hex tessellation is shown in Figure 6.2.

HIP 7 hierarchies are not congruent because the 7 hexagon agglomerations are not strictly
self-similar. Rather than being hexagons, the agglomerations have a complex shape that
tends toward a fractal as the number of agglomerated cells increases. However the ag-
glomerations can be simplified into hexagonal forms by determining the Voronoi diagram
of the centroids of the agglomerations. Hexagonal tessellations formed by this method
rotate between levels by tan−1 √3/2 (see dashed lines in Figure 6.2). The fractal shapes
are further discussed in Subsection 7.3.5
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Chapter 6 Mathematical Regular Hierarchical Surface Model

Figure 6.2.: The HIP 7 referencing system for part of a 3λ RHSM-hex partition of space.
Hexagons are grouped into aggregates of 7 for each coarser LoD. Voronoi tessellations
are shown for all three levels (dashed lines). Reproduced from Wright et al. (2014)

6.1.3. Rectangular

HIP 9 was developed for the RHSM-rec based on an aligned, congruent, aperture-9 hier-
archy (Figure 6.3). RHSM-rec hierarchies are self-similar. A, B, and C for HIP 9 are
given in Table 6.2. In the RHSM-rec the scaling matrix is in fact a scalar. For the line
adjacent neighbours (HIP 9 values 1, 3, 5, and 7) the rotation matrix only rotates, for the
point adjacent neighbours (2, 4, 6, and 8), the rotation matrix scales and rotates. Part of
a 3λ RHSM-rec tessellation is shown in Figure 6.3.
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6.1 Indexing

Table 6.1.: HIP 7 parameters. cs is the cell size of the HIP 7 dataset.

(a) HIP 7 conversion to (x, y)

HIP digit (d) Rotation (Ad)

0
[

0 0
0 0

]

1
[

1 0
0 1

]

2
[

1/2 −
√

3/2√
3/2 1/2

]

3
[
−1/2 −

√
3/2√

3/2 −1/2

]

4
[
−1 0
0 −1

]

5
[
−1/2

√
3/2

−
√

3/2 −1/2

]

6
[

1/2
√

3/2

−
√

3/2 1/2

]

Scaling (B) Base vector (C)[
2 −

√
3√

3 2

] [
cs
0

]

(b) HIP 7 Addition table (⊕).

0
1
2
3
4
5
6

0 1 2 3 4 5 6
0 1 2 3 4 5 6
1 63 15 2 0 6 64
2 15 14 26 3 0 1
3 2 26 25 31 4 0
4 0 3 31 36 42 5
5 6 0 4 42 41 53
6 64 1 0 5 53 52

(c) HIP 7 Negation table (	).

0 1 2 3 4 5 6
0 4 5 6 1 2 3
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Table 6.2.: HIP 9 parameters. cs is the cell size of the HIP 9 dataset.

(a) HIP 9 conversion to (x, y)

HIP digit (d) Rotation (Ad)

0
[

0 0
0 0

]

1
[

1 0
0 1

]

2
[

1 −1
1 1

]

3
[

0 −1
1 0

]

4
[
−1 −1
1 −1

]

5
[
−1 0
0 −1

]

6
[
−1 1
−1 −1

]

7
[

0 1
−1 0

]

8
[

1 1
−1 1

]

Scaling (B) Base vector (C)

3
[
cs
0

]

(b) HIP 9addition table (⊕).

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
1 15 14 2 3 0 7 8 16
2 14 26 38 37 3 0 1 51
3 2 38 37 36 4 5 0 1
4 3 37 36 48 52 51 5 0
5 0 3 4 52 51 58 6 7
6 7 0 5 51 58 62 74 73
7 8 1 0 5 6 74 73 72
8 16 15 1 0 7 73 72 84

(c) HIP 9negation table (	).

0 1 2 3 4 5 6 7 8
0 5 6 7 8 1 2 3 4
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6.1 Indexing

Figure 6.3.: The HIP 9 referencing system for RHSM-rec. The top line is the HIP 9

ordinate and the bottom line is the Cartesian (x, y) coordinates. The origin is the
centre of the central rectangle in both systems. Two levels of a 3λ dataset are shown.
Reproduced with corrections from Wright et al. (2014).

6.1.4. Triangular

HIP 4 was developed for the RHSM-tri based on an aligned, congruent, aperture-4 hier-
archies (see Figure 6.4). RHSM-tri hierarchies are self similar. A, B, and C are given in
Table 6.2.

The base vector in HIP 4 differs from HIP 7 and HIP 9 due to the alternating orienta-
tion of the cells in the tessellation. Within a single LoD of an RHSM-tri there are two
different orientations for both cells and their neighbourhoods. The central cell in each
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agglomeration points in the opposite direction to its neighbours. In contrast, rectangular
cells do not vary in orientation and hexagonal tessellations are consistent on a single LoD
but rotate between levels.

RHSM-tri neighbourhoods consist of a central cell and its three line adjacent neighbours.
The vectors that describe the translation from a cell to its neighbours differ depending
on the orientation of the central cell. To describe the tessellation using only four rotation
matrices it is necessary to first identify whether λ is odd or even and then change the sign
of the base vector for every zero index to the left (coarser) of the index being considered
(see Table 6.3).

Table 6.3.: HIP 4 parameters. cs is the cell size of the HIP 9 dataset.

(a) HIP 4 conversion to (x, y)

HIP digit (d) Rotation (Ad)

0
[

0 0
0 0

]

1
[

0 −1
1 0

]

2
[
−
√

3/2 1/2

−1/2 −
√

3/2

]

3
[ √

3/2 1/2

−1/2
√

3/2

]

Scaling (B) Base vector (C)

[
2 0
0 −2

]


if

(
λ−

HIPλ∑
HIPi

1 [HIPi = 0]
)
is even

 −cs
0



if

(
λ−

HIPλ∑
HIPi

1 [HIPi = 0]
)
is odd

 cs

0



(b) HIP 4 addition table
(⊕). HIP 4 addition
is not commutative as
indicated by the asym-
metry of the addition
table. The table is read
row⊕column i.e.2⊕1 =
13.

0
1
2
3

0 1 2 3
0 1 2 3
1 0 23 32
2 13 0 31
3 12 21 0

(c) HIP 4 neg-
ation table
(	). Due to
the direction
flip, HIP 4

digits are
their own
negation.

0 1 2 3
0 1 2 3
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6.2 The array tree

Figure 6.4.: The HIP 4 referencing system for the RHSM-tri. The top line is the HIP
index and the bottom line is the Cartesian (x, y) coordinates.The origin is the centre of
the central triangle in both systems. Three levels are shown. The base vector is aligned
with the x-axis. The base vector of the central “0” cells changes sign for each level.

6.2. The array tree

The HIP ordinate provides a convenient and intrinsically hierarchical way of indexing
spatial data. But what data model should be used? Two options were considered: a
linear array or a tree structure. It is also possible to use an explicit key-value database
but that would require unnecessary overheads and a separate DBM system, besides, the
HIP index lends itself to intrinsic storage.

The selected structure combines tree and array data storage. The RHSM decomposes
the HIP dataset into consistently indexed tree and array components. Separated by an
aggregation value, the coarser elements of the HIP ordinate form the tree structure, the
finer elements form the array structure. However, the array component is not linear but
instead multi-dimensional. The array tree structure is described here from a mathematical
perspective, for the computational implementation see Section §7.2.
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6.2.1. The tree

The coarsest digits of the HIP ordinate are used as labels for the nodes of a tree structure.
If values are stored on the leaves of the tree, the HIP index can be determined by tracing
the branches back to the root, and, if required, the HIP index can be converted into an
(x, y) location using Equation 6.4. An example of how location is encoded by the tree
branches is shown in Figure 6.5. The initial branch is marked L0 to indicate that this is
the base level to distinguish it from other LoDs in a pyramid (see Subsection 6.3.1).

This storage method is very similar to a quad-tree except that for RHSM-tri the four
branches divide space into triangular geometry, and for hexagonal and rectangular geo-
metries there are seven and nine branches respectively. The tree data structure can be
sparse or have variable density, however, if a regular tree is used where each node has a
children, a regular structure is generated that reflects the RHSM hierarchy aperture.

Figure 6.5.: The tree component of the HIP 7 referencing system. The grey node
corresponds to the grey hexagon and has 2λHIP 7 reference 24.

6.2.2. The array

The RHSM does not store individual values on the tree, instead the RHSM stores arrays1

attached as leaves to a tree data structure. The array tree is similar to the tree and
tile division used by Platings and Day (2004) and the Bing Maps Tile System (Microsoft
Corporation, 2013). However, those systems use the hierarchical index only for the tree;

1In this description an array is a table of fixed dimension that contains homogeneous data, typically
floats or integers.
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6.2 The array tree

the arrays are conventional images with implicit row, column coordinates; whereas, the
RHSM utilises the hierarchical indexing method in the array component as well.

The HIP index is implemented in the array by treating the HIP index as the coordinates
of a value in an array with λ dimensions and length a in each dimension. Therefore, a
λHIP a array has dimension aλ. For instance, a value with a 3λHIP 7 index of 043 would
be stored as a value at (0, 4, 3) in an array with dimension 73. This example is shown
in Figure 6.6. There is a minimum of one array in each RHSM. Large datasets can be
broken into multiple arrays.

Utilising the multidimensional array ensures that the same referencing system is used
throughout the dataset and that the hierarchical structure is implicit in both the tree
and array components. This is useful not just for spatial analysis that relies on the
hierarchical nature of the data, such as variable resolution flow direction arrays, but also
when combining datasets and dividing arrays into new branches (Wright et al., 2014). In
addition, it is very simple to select the set of values that are children of a given node or
to find summary statistics of the finest children to create a smaller, coarser array. This is
useful for forming pyramids (see Subsection 6.3.1).

6.2.3. The aggregation value

A user defined aggregation value (α) separates the tree and array and components of a
HIP ordinate in the RHSM. An n level RHSM dataset, with an aggregation value of x
and aperture of a can be specified as nλaxα.

The aggregation value sets the maximum size for the array component in an RHSM. The
digits of HIP ordinate whose indices are larger (coarser) or equal to the aggregation value
are stored as node labels in the tree component. Those that are finer than the aggregation
value form the coordinates of an array. Choosing an appropriate aggregation value is a
trade-off between using few large tiles that entails reading unnecessary data or many small
tiles that create more reads. Excessively small or large tiles adversely affect performance.

A schematic of an RHSM-hex data structure with five levels of detail and an aggregation
value of three is shown in Figure 6.7. The RHSM-rec data structure is similar except that
there are nine branches on each node of the tree, and nine values in each dimension of the
array. In the RHSM-tri, there are four branches on each node, and four values in each
dimension.
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HIP 9

Figure 6.6.: Array component of the HIP 7 referencing system. The grey square cor-
responds to the grey hexagon and has 3λHIP 7 index 043.
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6.2 The array tree

Figure 6.7.: A five level RHSM-hex data structure with an aggregation value of three
(5λ73α). The grey square matches the grey hexagon and has HIP ordinate 24043.
The rotation between levels causes the discrepancy of location of the grey tile with
Figure 6.5.
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6.3. Level of Detail modelling

This section discusses the mathematical aspects of Level of Detail modelling in the RHSM:
pyramid calculation, error values, and adaptive realisations.

6.3.1. Pyramid calculation and referencing

Pyramids are a series of representations of a given region at successively coarser resolu-
tions. Pyramid layers are a form of generalisation. They are often used to facilitate rapid
visualisation of raster datasets with changing viewer position or zoom. However, within
the RHSM they are used to store different scale datasets for modelling.

A pyramid dataset requires values to store. In general terms, these data are created
by a scaling rule. Some simple examples of a scaling rule are the summary statistics:
arithmetic mean, median, or mode. For some processes more complex scaling functions
may be required. Summary statistics are an approximation, therefore, an error value is
also required, which can be investigated to ensure the suitability of using the generalised
value for modelling (see Subsection 6.3.2).

A coarser LoD RHSM pyramid layer consists of a new array with 1/a as many cells. A
λ level dataset can generate up to λ+ 1 pyramid layers including the base layer and the
coarsest layer, which consists of a single cell (see Figure 6.8, which shows the pyramid
layers of a 5-level RHSM-hex data structure, with an aggregation value of three). From
finest to coarsest the LoDs in an RHSM pyramid are labelled

Lx{0 6 x < λ, x ∈ Z} (6.7)

The RHSM treats all LoD of the pyramid as separate branches of a network tree at root
level. However, it would also be possible to place pyramid values on nodes of the base
LoD because the length of the HIP ordinates would indicate the LoD resolution.

In all LoD except the base level, each cell has a child cells. The parent-child relationship
is expressed implicitly by the HIP reference. The coarser parent pixel’s HIP ordinate is
the same as the beginning of its children in the finer levels of detail, making it a trivial
task to relate cells in different LoDs to their descendent and ascendants. For example,
the L2 in a 5λ7 with the HIP 7 ordinate of 240 has the set of finer children: {2400, 2401,
2402, 2403, 2404, 2405, 2406}.
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6.3 Level of Detail modelling

Figure 6.8.: A five level RHSM-hex data structure with pyramids and an aggregation
value of three (5λ73α).

The aggregation value is enforced in the pyramid levels, therefore the LoDs are divided into
array-trees to ensure that the individual arrays are no larger than the aggregation value.
The aggregation level should be set to reflect memory limitations. Arrays on coarser LoD
pyramid layers have the maximum number of dimensions allowed by the aggregation value.
Enforcing the aggregation value in the pyramid levels in this way proved to be problematic
because processing operations are computationally complicated by the presence of coarser
arrays that bridge multiple finer arrays. An alternative approach, that may be more
effective, is to allow the dimensionality of the array to reduce until they are only single
values and then combine them to form a single array at the level corresponding to the
aggregation value: effectively defining the maximum tree size instead of the maximum
array size.
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6.3.2. Error values

The error value is an indication of the difference between a generalised value and the
underlying non-generalised values. Error values are evaluated recursively with a decision
rule to assess how suitable a given LoD is for variable density realisation (see Subsection
6.3.3). Error values in the RHSM are stored in array-trees very similar to the array-trees
that store the values. The only difference is that the branch at the root level is labelled
Ex to distinguish it from the values, which are labelled Lx (see Figure 6.9).

A simple example of an error value, which is implemented in Chapter 9, is maximum
deviation of a value from its descendent. In the following equation, L0HIP is an array of
size ai. All members of L0HIP are evaluated to determine the maximum variation. The
error value is compared to L0 not L (i− 1) because L (i− 1) is already generalised.

EiHIP = max (|LiHIP − L0HIP,j,k...| {j, k... ∈ 0 ≤ Z ≤ a, }) (6.8)

Equation 6.8 implies that L0 values have no errors and are, therefore, the true scale of
the data. However, fractal surfaces do not have a true scale; all scales of fractal surfaces
are approximations. Alternatively, error values could be determined from variograms or
fractal dimension. However, such approaches have not been considered in this study.

6.3.3. Adaptive realisation

An adaptive realisation is a variable density surface extracted from a multi-resolution,
hierarchical dataset where the element size in the realisation is adapted to ensure the
error value conforms to a decision rule. Adaptive realisations in LOD models are usually
intended for real-time visualisation of large datasets. In the RHSM they are generated
for geographic modelling.

Decision rule

The adaptive realisation is generated by a recursive process. Starting at the coarsest
resolution, the error values are assessed by evaluating a decision rule D (E). If the de-
cision rule evaluates to True, the resolution is acceptable and the value is assigned to the
realisation. If the decision rule evaluates to False the children are assessed. The process
continues until all branches have been assessed as True or the base resolution has been
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reached, in which case the base resolution is used. Alternatively, if the base resolution
has non-zero error, No Data could be returned.

A simple example of a decision rule that is used in Chapter 9 is to introduce a threshold
value (T ). If the error value is below the threshold value the decision rule evaluates to
true in accordance with:

D (EiHIP ) =

 EiHIP ≤ T

EiHIP > T

True

False
(6.9)

The decision rule can include parameters that vary spatially; for instance, in LOD models
for visualisation, it is typical for the threshold value to increase with distance from the
observer. An example from geomorphometric hydrological analysis is that the threshold
could decrease with increasing flow accumulation.

Sparse tree

The adaptive realisation is stored in a sparse tree structure. There is no array component
of the sparse tree because arrays imply a regular distribution. The adaptive realisation
tree is labelled S on a branch at root level. There is only one S branch at any given
time and generating a new one will overwrite the existing one. There are no LoD in the
S branch. An RHSM-hex dataset including error values and a sparse tree is shown in
Figure 6.9.

Each node in the sparse tree contains either a branches or is a leaf value. The HIP
ordinate of a sparse value determines the labels of the nodes it is attached to in the same
way as the Li and Ei trees determine the coarse element of HIP ordinates. It is the values
in the sparse tree that are used for variable density hydrological modelling in Chapter 9.

The areal extent of each cell in the sparse tree (As) can be determined from the length
of its HIP ordinate (h) as defined by its node labels as:

As = Aba
λ−h (6.10)

where Ab is the area of the cells in the base layer.
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Figure 6.9.: Array tree including error values and a sparse arrays. The tree structure
shows a RHSM-hex 5λ7.

This chapter has detailed the mathematical tools required to implement the surface model
described conceptually in Chapter 5; it has described the indexing method, the array
tree data model, and the Level of Detail techniques required to generate pyramids and
variable density realisations. The next chapter details how these concepts were realised
in the computational model.
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7. Computational Regular Hierarchical
Surface Model

This chapter describes the computational model of the RHSM. Section §7.1 gives an
overview of the components of the RHSM computational model and the remaining sections
describe those components in more detail: Section §7.2 describes the implementation
of the datafile, Section §7.3 describes how the RHSM was integrated with a GIS, and
Section §7.4 details the Python object class.

Implementation and tests were conducted on a machine with an AMD Athlon(tm) II X4
640 Processor @ 3 GHz , 4.00 Gb RAM, with SATA 6.0 Gb/s 3.5˝disk storage @ 7200
RPM, using Windows 7 Professional 64-bit operating system with an NTFS file system.
This computer is henceforth described as a “commodity computer.” In this chapter RAM
is termed “main memory”, and hard drive is termed “secondary memory”.

7.1. RHSM Overview

There are four components of the RHSM computational model, the user, the datafile,
the GIS representation of the data, and an object class encoded in Python that connects
the other three parts. The datafile stores the spatially distributed parameter as NumPy
arrays in a hdf5 (hierarchical data format version-5) file, which can be accessed in a Python
script using the PyTables package. The RHSM was integrated with the commercial GIS
ArcGIS. The data are displayed in the GIS as ArcGIS feature classes, either polygon or
point. The GIS representation allows data visualisation and interaction with other data
inside a GIS. The Python object stores metadata, manages the relationship between the
datafile and the GIS feature classes, and provides methods for the user to interact with
the data. The overall structure is shown in Figure 7.1.
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Figure 7.1.: Overview of the components of the RHSM. The black arrows indicate in-
teraction.

7.2. Hierarchical data file

Various options were considered for storing and accessing the data. Several considerations
were important in choosing the final data model and scripting module for the implement-
ation. The hierarchical structure needed to be efficiently implemented so that the data
can be rapidly accessible and searchable (Subsections 7.2.1 and 7.2.1), and large datasets
needed to be supported (Subsection 7.2.3).

7.2.1. PyTables and NumPy

The RHSM mathematical model defines the data model structure to consist of a tree
and an array component. This array tree structure is compatible with hdf5 file structure,
which organises arrays in a hierarchical tree. The Python module PyTables was chosen
to implement the RHSM. The implementation uses PyTables to manipulate a hdf5 tree
with NumPy arrays hanging off the nodes. The entire tree and the associated arrays are
a single file.

Python was chosen due to ease of development and cohesion with the scientific code
biosphere that has developed around Python. Python is optimised for easy writing and
rapid development, not for fast computation. Scripts will execute quicker if processing
is performed using the tools provided by PyTables and NumPy, where possible, as these
modules wrap around C libraries that execute more efficiently than Python. Subsection
10.4.1 suggests ways to further improve RHSM performance.
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The Python module PyTables (Alted et al., 2002) is a multi-purpose software module de-
signed to manage hierarchical datasets and efficiently cope with extremely large amounts
of data. This format combines the computational abilities of the NumPy module and
PyTables’ efficient algorithms for memory optimisation, search speed and I/O efficiency,
including automatic balancing of nodes in main memory.

The RHSM is able to generate pyramid layers very quickly because the values of each
agglomeration at the finest LoD in a λ-level RHSM are stored adjacent in dimension
λ of the array. NumPy tools are designed to efficiently perform calculations on the
λth dimension of an array. This can be exploited to quickly summarize values in each
agglomeration along dimension λ to create a new smaller array, which can be summarised
the same way.

It is possible to only save the base level (L0) and determine the pyramid values on the
fly. Such a system needs more processing time and may need to repeat calculations but
also ensures that the data are consistent and uses less memory. However, the RHSM
calculates the pyramid and stores the values on disk. This saves time if the pyramid layer
is used repeatedly but risks data conflicts. Using the predetermined pyramid levels, if L0
is altered, the user must then recalculate the pyramid. The hierarchical structure can be
used to restrict the recalculation to only affected areas.

7.2.2. Representing HIP ordinates in Python scripts

The RHSM stores position implicitly. However, even though the HIP ordinate is not
stored explicitly, during processing it is sometimes necessary to explicitly represent a
HIP ordinate. The Python tuple data type was chosen for this purpose.

There are a number of built in data-types that could have been used to represent HIP
ordinates in Python including numerical types, integer or float; and compound types such
as string, tuple, list, or dictionary. Integer would be the least memory intensive. However,
integers and floats cannot readily be indexed (you cannot directly investigate what the
ith value is). Lists and dictionaries were excluded because they are unhashable, therefore,
they cannot be used as keys in python dictionaries. Although the core data model does
not use python dictionaries, some processing tools may benefit from organising parts
of an RHSM in a dictionary with the HIP ordinate as key. Strings are hashable but
would require type conversions to be used in calculations. Therefore, tuple is the most
appropriate built-in Python data type.

The tuple data-type can be used to index NumPy arrays directly and matches the conven-
tional way of writing Cartesian coordinates. However, PyTables does not support tuple
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names for nodes or as paths expressions, therefore, conversions are required to convert
HIP ordinates expressed as tuples into a PyTables address format, which takes a where,
node, index form.

7.2.3. Memory management

The RHSM can support very large datasets. PyTables uses the C library hdf5 for sec-
ondary and NumPy for main memory processing to efficiently manage arrays that are
much larger than those that can be stored in a system’s main memory. The data are
stored in secondary memory and individual arrays are transferred into main memory dur-
ing processing1. The task of managing the nodes in memory is undertaken by PyTables,
which retains the most recently used nodes. The array component must be small enough
to be stored in main memory. To allow for operations that involve multiple arrays it is
necessary to accommodate several arrays in main memory. Therefore, to prevent memory
errors, the maximum array dimension should be reduced by 1λ.

The tree component of an RHSM dataset is generated using an intermediate array. This
places an upper limit on the tree size, which is similar to the array size (although somewhat
higher as the tree array need not be float). Therefore, the RHSM can theoretically support
datasets with cardinality up to a2(m−1) where m is the number of dimensions of the largest
array that can be stored in main memory and a is the aperture of the dataset. Although
the exact size of the array that can be used will depend on available computer power,
Figure 7.2 indicates that the theoretical maximum is unrealistically large for a commodity
computer. Generating array-trees becomes very slow for large trees but is also slow for
large arrays. Peak performance occurs around an aggregation value of 4 for small RHSM
datasets and then increasing with λ after that.

For a commodity computer running 4GB RAM, RHSM-hex can theoretically support up
to 16λ8α datasets. This equates to a HIP 7 structure consisting of 716 (approx 33 trillion)
hexagons, which would require 260 TB of Hard Drive space to store in an hdf5 file (this
is less space than required to store the NumPy array because PyTables compresses the
data). Such file sizes are not readily accommodated by commodity computers.

A manageable but still large file size of 100 GB would comfortably contain a λ11HIP 7

dataset. However, datasets of this cardinality would be impractically slow to process
on a commodity computer. Therefore, processing speed is the practical restriction on

1PyTables is safer for write-once/read-many applications and can only read or write one process at
a time. Alted et al. (2002) advise to use locking to ensure data security. Working with secondary
memory, risks corrupting it. Therefore, backing up is essential. Working in main memory, storage is
effectively backed up.
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Figure 7.2.: Size of RHSM datasets on disk. The size represents the size in memory of
a 64bit float NumPy array. For a given λ, a lower a will result in fewer array elements
and less memory requirements.

RHSM dataset size not main memory. Figure 7.3 indicates the extent and λ of RHSM
datasets required to cover central Dunedin, New Zealand with 0.1 metre cell size, which,
is a resolution common in ortho-imagery and achievable in DEMs generated by LiDAR
or drone based photogrammetry.
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Figure 7.3.: Extent of RHSM datasets covered by comparatively large (but still less
than 100GB) RHSM datasets. L0 cells have a cell size of 0.1 metres (not shown).
λ − 1 shown. The extent of the datasets is compared to the Dunedin urban area, a
city of approximately 100 000 people. A dataset one level larger would be required to
completely cover the entire Dunedin urban area.
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7.3 GIS integration

7.3. GIS integration

Given that the RHSM does not comply with GIS data model standards, existing general
purpose GIS packages are not able to interact directly with RHSM data without custom
coding. Therefore, the RHSM is integrated in a GIS using a three tier structure, the data
model in hdf5, the RHSM object as a Python class, and the GIS representation as an
ArcGIS feature class.

The GIS used was ArcGIS 10.1. ArcGIS is a proprietary software package with closed
source code, which limits possible functionality. ArcGIS was chosen for three reasons: (1)
to demonstrate the RHSM within the constrictions of a conventional GIS, (2) to develop
the software in an application with a large pool of potential users, and (3) to access the
diverse range of tools available in ArcGIS.

This section describes how the RHSM was integrated with ArcGIS. Subsection 7.3.1 ex-
plains the GIS data model employed, Subsection 7.3.2 explains how RHSM representa-
tions are converted to ArcGIS feature classes, Subsection 7.3.3 examines the graphical
techniques used to represent the RHSM in a GIS, Subsection 7.3.4 explains how data
are updated and deleted, Subsection 7.3.5 considers how the complex shapes created by
hexagonal agglomerations should be represented, Subsection 7.3.6 details the interpola-
tions that were implemented to convert GIS data into RHSM format.

7.3.1. GIS data model

RHSM datasets are represented in ArcGIS using feature classes. Feature classes are
vector datasets supporting polygon, line, and point structures. RHSM datasets can be
represented in ArcGIS as a tessellation of polygon features or as a set of point features.
Representing RHSM datasets in GIS using vector layers facilitates vector analysis opera-
tions, such as overlay and select by attributes. Feature classes store attribute data in an
attribute table. The attribute table of an RHSM feature class contains the HIP ordinate
with each index in a separate field. This can be used to select cells or agglomerations of
cells according to HIP ordinates using select by attributes.

Feature classes nominally have very large size limits (1TB by default), but they are
restricted to 4,294,967,295 features, which is still a very large number. However, using a
commodity computer, feature classes struggle at much smaller sizes. For example, feature
classes with many features are very slow to redraw at far zoom, and their attribute tables
lag, do not show all values, and do not show the correct values. These problems only affect
the display; tools like select by attributes work correctly. This performance issue occurs
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for datasets significantly smaller than the 4GB main memory limit of the commodity
computer. For instance, RHSM-hex struggles at λ7 (823,543 hexagons); whereas, λ6 works
well (117,649 hexagons). It is, therefore, necessary to limit the size of RHSM datasets
displayed as feature classes. It is practical and convenient to utilise the aggregation value
from the RHSM to limit the feature class size.

A single RHSM can create numerous feature classes. For example, if α < λ, multiple
feature classes may be required for each LoD, for several pyramid levels, an equivalent
number of error levels, and a sparse realisation. It will not always be necessary to draw
all the feature classes. The RHSM module allows the user to choose which LoD to draw,
in part or in entirety; or the user may choose to draw only the sparse feature class. Only
one sparse realisation is generated at any given time. If a new one is generated it will
overwrite the existing sparse feature class. If the user wishes to retain sparse feature
classes, the user must copy the sparse layer to a different location.

To more easily manage the collections of feature classes that represent an RHSM dataset,
the feature classes are included in a Feature Dataset, which also ensures that a common
spatial reference is maintained. The purpose of each feature class is indicated by a naming
convention: each feature class is named according to the RHSM filename appended by an
underscore followed by a letter to indicate type (L=data values, E= error values, and S=
sparse) and a number to indicate the LoD2.

Another option would have been to use a raster data model for the GIS representa-
tions. Using the raster data model would lessen memory restraints because rasters are
already optimised for large datasets and rapid redrawing using pyramids. Within the
ESRI software suite, Tile Packages could be developed to allow user control of the layer
development. However, only the RHSM-rec would be easily represented as raster. The
other geometries could only be represented using finer resolution raster images. In addi-
tion, fine resolution rasters would not recognise the actual model elements making tasks
like selecting elements with a mouse difficult. Polygon selection is more intuitive because
whole polygons are selected.

The above GIS representations assume a tessellated structure for the GIS representation
of the RHSM, in accordance with the conceptual model. However, if the dual network
was used for the GIS representation, the following options could be utilised:

• Line feature classes could represent RHSM as networks.

• TINs could represent RHSM-rec and RHSM-hex as networks but not RHSM-tri
networks, which are hexagonal.

2The implementation then appends a series of 0s that also indicate level but these are largely redundant
and can be ignored.
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• Terrain structures, which are a multi resolution TIN dataset implemented in ArcGIS,
could be used to represent the multi-scale structure.

Further suggestions for for development of the GIS integration are described in Subsection
10.4.1.

7.3.2. Drawing feature classes

RHSM datasets consist of several classes of data: a base layer, a series of pyramids,
associated error layers, and a sparse dataset. The RHSM “draws” feature classes by
determining the geometry from the HIP ordinate and then defining the geometry and
other fields line-by-line using the insert cursor. This method does not take full advantage
of the implicit nature of the data and is very slow for large feature classes with a large
number of vertices.

Drawing RHSM feature classes using the insert cursor is very inefficient because the geo-
metries could readily be defined for the whole feature class due to the implicit regular
point set. Unfortunately, ArcGIS 10.1 does not offer a means to assign multiple rows of
geometry simultaneously. An alternative method involves translating pre-existing tem-
plates. Unfortunately there are no scripting tools that can translate vector datasets in
ArcGIS 10.13. That leaves two options, utilising projection tools to adjust the data or
using an update cursor to move the location of points in the geometry. Resorting to the
update cursor to translate data is unlikely to be significantly faster than drawing the data.

The projection method involves taking an appropriately sized template in a default pro-
jection, creating a custom projection to represent the required translations and rotations,
running the projection tool to move the data and then resetting the projection to the ori-
ginal projection leaving the data in the adjusted position. Translations can be achieved
by adjusting the false origin, and scaling and rotation can be achieved by adjusting trans-
formation parameters. The re-project method was developed but, although marginally
quicker for large datasets, it was not as fast as anticipated. However, this approach may
be useful in the future if different tools are made available or if the RHSM is implemented
in a different GIS.

3Shift, rotate and rescale functions are available for raster data (Toolboxes\System Toolboxes\Data
Management Tools.tbx\Projections and Transformations\Raster) and the equivalent transformations
can be performed using the spatial adjustments tool-bar. The adjust function in the spatial adjust-
ments tool-bar can also be called from a saved text file of transformation vectors. However, there
appears to be no way to call these functions from a script.
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7.3.3. Visualisation: symbology and scale ranges

GIS representations of RHSM data consist of either point or polygon feature classes.
Point feature classes can be symbolised as points, or appropriately sized and rotated point
symbols to create a pseudo-tessellation point feature classes. Point feature classes could
be generated with pyramid values included in the attributes of the base layer features
and symbolised with different sized symbols depending an the pyramid layer required,
circumventing the need for multiple data sets.

RHSM feature classes represent their parameter values with colour. If the dataset is
separated into multiple feature classes, the colour range needs to be stretched across the
entire dataset. The colour scheme is implemented with a representation layer. ArcGIS
representations permanently store symbology options such as colour so they can be applied
to multiple datasets. The template consists of 32 colours + 1 transparent for no-data,
which creates an effect similar to a stretched choropleth.

There are frustrating redraw pauses when viewing fine resolution vector data from far
zoom. This can be partially mitigated by not displaying the finest resolution data or
by only drawing the sparse dataset. In addition, visible scale ranges can be applied if
multiple pyramid layers are present so that fine resolution data are not displayed when
zoomed out.

7.3.4. Deleting data / Transferring / Updating data

A weakness of the three tier structure is that it risks data conflicts because data are
duplicated. There is data in the form of feature classes and data in the form of an hdf5
file. The hdf5 file can be stored anywhere, however, it is currently implemented to be
stored in the same Geodatabase as the Feature Dataset, with the same name.

The dangers of duplicate data are two-fold. Firstly, edits in the feature class will not
automatically be reflected in the hdf5 file and, secondly, data may be orphaned if feature
classes or the hdf5 files are deleted. This could be prevented by storing the data only
in a feature class and converting to RHSM for processing. However, memory constraints
make this infeasible, which is why the hdf5 data layer is used as the primary data layer.

One solution to the orphan data problem is to require the user to delete the hdf5 file in
addition to the feature dataset. Alternatively, a delete RHSM tool could be provided that
deletes all associated files. Both of these options depart from the normal work-flow and
may not be adhered to, potentially resulting in junk files accumulating in geodatabases.
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7.3.5. RHSM-hex: Voronoi or fractal

The geometry of the underlying data in an RHSM-hex dataset consists of fractal hexagonal
rosettes that are formed by dissolving hexagons together (see Figure 7.4). These fractal
shapes can be simplified into rotated hexagons by finding the Voronoi tessellation of the
centre of each cell at a given level of detail. GIS representations of RHSM-hex datasets
are visualised as hexagons at all LoDs rather than the fractal shapes. The symbol used to
represent RHSM-hex tiles is not important; for example, a circle could be used instead.
The hexagonal simplification is used because it represents the array structure more clearly
by identifying its neighbours via a line boundary. A downside of using the hexagonal
simplification is that sparse realisations are not tessellations: both gaps and overlaps
occur.

The Voronoi simplification of hexagon-like fractal shapes misidentifies the location of some
cells within the RHSM hierarchy. In datasets with more than 3 levels, the centres of some
cells are located within the hexagonal simplification of the neighbouring super cell rather
than the one to which it is assigned by the HIP 7 referencing system and to which its value
is contributing. The number of cells misallocated in this way increases with λ. In a 4λ
dataset 96 cells are misallocated out of 2401 or 4%, 5λ : 1440/16,807 or 8.5%, : 6λ 15,672
/117,649 or 13%. This creates a discrepancy between the visualisation and the underly-
ing data, however, coarser resolutions are only used where the underlying geography is
largely homogenous so it is unlikely that the misidentification would substantively affect
modelling results.

Fractal rosettes are not good for GIS representations because they have very complex
shapes for coarser LoDs. Rotated hexagons have only six vertices; whereas, the fractal
agglomeration has 6 × 3n vertices, where n is the LoD (n = 0 being the reference level).
For coarse representation, the number of vertices in each polygon becomes impractical
for visualisation. The memory restraints from the number of vertices are similar to the
restraints from the number of records, which makes the fractal rosettes too complex to
display.
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Figure 7.4.: Fractal hexagonal rosettes for an λ6 RHSM-hex with Voronoi patterns also
shown. Not to scale: finer cells have been enlarged.
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7.3.6. GIS to RHSM Interpolation

This subsection describes how data are transferred from GIS datasets to RHSM data-
sets. GIS data will typically be available in vector, raster, TIN, or contour form. These
data are the source data that needs to be resampled to the target RHSM geometries by
interpolation.

The simplest interpolation is to assign to the RHSM tile the value of the source DEM
or TIN at the tile’s centroid. However, unless the source data are reasonably smooth
and at a finer resolution than the target geometry, centroid based interpolation creates
significant artefacts. These artefacts can be mitigated by considering a larger area in the
interpolation; for instance by averaging the values from the tile’s corners in addition to
the centre. It is necessary to weight the corners according to the number of cells they
contribute to.

The analysis in Chapter 9 is largely restricted to mathematically defined surfaces where
exact values can be defined at point locations; therefore, interpolation is not required.
Where real surfaces are analysed, simple interpolation methods are employed. More
accurate interpolation methods should be developed to advance the work into real world
environments.

For accurate work, two methods are appealing: Kriging, because it provides statistical
information on the likely errors of the interpolation; and the Condat method because it is
reversible. The Condat method can only be employed for regular arrays where the density
of points is the same between the target and source datasets, which includes rotation of
rasters and rectangular to hexagonal conversions. Another option is first or second order
least squares spline interpolation. For hydrological applications interpolations should
consider drainage structure.

The following methods were implemented in the RHSM:

• centre sampling from square raster and tin,

• corner sampling from square raster,

• areal projection (first order spline) from square raster,

• Condat method from square raster to RHSM-hex,

• and synthetic values from equations.

Interpolation directly from point, or contour layers was not implemented; an intermediate
raster or TIN are required.

Real world data are not usually shaped in one of the RHSM geometry agglomeration
patterns. Therefore, a No Data value is required. Like the raster data structure, RHSM
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datasets have a pre-defined shape and the cells that are outside the study area still exist
on disk. Such cells need to be classified as No Data cells and ignored in calculations. The
RHSM assigns a value to No Data, this is typically the lowest possible value but it could
take a different value.

7.4. RHSM class specification

In order to implement the RHSM, three core objectives were identified. These objectives
were:

1. To develop an RHSM python object class that,

a) contains the variable field being modelled in the form of a HIP indexed array-
tree in hdf5,

b) contains any other attributes required including cell-size, number of levels of
detail, origin and file name,

c) provides tools to create pyramids and variable density realisations, and

d) provides methods to analyse the data in an RHSM file, including hydrological
analysis.

2. To develop Python scripts to efficiently generate an RHSM dataset from given input
GIS data: point, raster, or TIN.

3. To develop Python scripts to produce polygon or point feature class representations
of RHSM.

These objectives were achieved using the structure and methodology described below.
The hydrological modelling tools are described separately in Section §8.6. The description
below is not exhaustive, some technical details are skipped for brevity, and segments of
code that were used in development but later made redundant are also omitted. The full
code is available for download on GitHub (Wright, 2017).

7.4.1. RHSM class structure

The Python class structure is depicted using Unified Modelling language (UML) con-
vention in Table 7.1. The computational model was implemented using Python 2.7,
PyTables 2.4.0 and NumPy 1.8.2 in accordance with the mathematical model described
in Chapter 6.
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The RHSM superclass stores the attributes required to interpret the h5 file such as level
and aggregation (agg) values; and those that place it in space such as projection, origin
(x0, y0), cellsize, and rotation. The subclasses hex, rec, and tri store class variables
that are geometry specific, such as the variables required for indexing (Section §6.1), and
drawing polygons (cnr).

Two other classes are encapsulated for specific purposes. Both take an RHSM object as
a variable. One, calcRHSM, performs calculations specific to individual cells within an
RHSM, the other, openRHSM stores an open hdf5 file. They are encapsulated to prevent
repeatedly generating arrays and reopening datasets for common tasks.

Table 7.1.: RHSM UML Class Specification

7.4.2. RHSM class use

Methods are provided in the main RHSM to manage the data. CreateRHSM generates
an hdf5 file in accordance with the agg and level attributes, which is initially set to
NoData. The RHSM can then be given values using ValuesFromTIN, ValuesFromDEM, or
ValuesFromEq; PyrTree, generates the pyramid layers, and Sparse generates the variable
resolution realisation. The RHSM is converted to an ESRI GIS representation using
DrawLevels or DrawSparse. Finally copy produces a copy of an RHSM dataset and
arithmetic performs a function similar to a raster calculator. Any cell by cell calculations
implemented in NumPy can be performed with the arithmetic method.
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This chapter has described the computational model of the RHSM in general terms in
Section §7.1 and as a detailed UML diagram in Section §7.4. It has also described how
the hierarchical data-structure was implemented (Section §7.2) and how the model was
integrated with a GIS (Section §7.3). This exposition of the computational model of the
RHSM concludes Part II, which introduced a new surface model that seeks to address the
question of scale using LOD techniques. The following and final Part III evaluates and
assesses the RHSM by utilising it for geomorphometric hydrological analysis.
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Part III.

Hydrological Applications
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The Regular Hierarchical Surface Model introduced in Part II is assessed in this part
by utilising it for a geomorphometric hydrological analysis similar to that described in
Chapter 4 of Part I. Chapter 8 adapts the geomorphometric hydrological analysis for an
RHSM environment. Chapter 9 evaluates the performance of the RHSM and the adapted
hydrological model on a range of synthetic and LiDAR derived surfaces. Chapter 10
discusses the key findings and proposes further development of the RHSM. Chapter 11
concludes this thesis.
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8. Hydrological modelling in the RHSM

This chapter adapts the geomorphometric hydrological modelling techniques that were
outlined in Chapter 4 for the RHSM. The techniques are generalised to apply to triangular
and hexagonal structures, where possible; and adapted to support variable resolution
regular tessellations, including non-conforming edges. These techniques are evaluated in
Chapter 9.

The RHSM described in Part II could represent surface information from any problem
domain that features variability of parameters with scale, which arguably includes all
domains that involve spatially distributed variables. However, Subsection 4.4.4 identifies
urban hydrology as a field where multi-scale modelling is potentially advantageous due to
the characteristics of the landscape of urban areas.

Section 8.1 examines the role of flow direction in generating RHSM sparse realisations
for hydrological models. Section 8.2 outlines geomorphometric hydrological analysis on
a variable density surface. The following sections: Section 8.3, Section 8.4, and Section
Section 8.5 detail flow direction, variable density flow direction, and flow accumulation
on the RHSM. Section 8.6 concludes the chapter with the hydrological class specification.

8.1. Resolution indicators from geomorphometry

The hydrological variables and parameters of geomorphometry outlined in Section 4.3 are
an effective form of analysis of elevation data. This section summarises the role of elevation
data in hydrological models (Subsection 8.1.1) and proposes that the geomorphometric
parameter of flow direction (Subsection 8.1.2) is the critical parameter for determining
the spatial resolution for hydrological models that involve the discretisation of the plane
into subsets of space that have consistent properties.

8.1.1. Data driven resolution

As discussed in Chapter 4, DEMs provide the source data used to estimate many variables
used in hydrological modelling, including slope, curvature, flow direction, flow accumula-
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tion, down slope area, topographic wetness index, and surface water depth. Surface water
is affected by gravity. Therefore hydrological variables are in general field specific (see
Section 4.1). Elevation data can also be used to identify hydrologically important ob-
jects in the landscape such as sinks, rivers, catchments, hills, and buildings. In addition,
combining elevation data with knowledge of geological and anthropogenic processes can
characterise an area in the absence of other information.

Traditionally, the computational scale of geomorphometry was driven by the resolution
of the DEM, which for more complex cell based methods of analysis, such as a surface
water depth calculation, may be unnecessarily and impractically dense. Lumped models
ameliorate this by summarising properties over a larger area to provide cohesive areas for
computational modelling. Due to its pivotal role in H&H models, elevation is the logical
basis to inform the resolution of the computational surface for hydrological modelling.
However, it need not be elevation itself that controls resolution; it could be a variable or a
combination of variables derived from elevation using the techniques of geomorphometry
that informs the subdivision of space into lumped entities.

It is proposed that DEMs can provide not just the elevation data, which is a parameter in
hydrological models, but also the information to determine the size of the computational
units within the discretisation of space. The discretisation should be fine enough to avoid
significant sub-pixel heterogeneity but coarse enough to minimise computational load and
be commensurate with other measurements contributing to the model.

8.1.2. Why flow direction?

To reduce computations, we need to employ resolution indicator variables that can be
calculated easily. The options from hydrological geomorphometry are elevation, flow
direction, and flow accumulation. This subsection uses a 1-D surface to illustrate the
importance of direction to provide a restraint to upscaling. This is extended to 2-D
surfaces in Section 8.4.

Computational scale affects the determination of direction and slope in discrete space.
Consider, for example, the slope of a 1-D surface in the form of a cross section or long
section as in Figure 8.1. On differentiable surfaces, slope is the gradient of the tangent
to the curve at a given point. However, topographical surfaces do not generally contain
well defined tangents (Mandelbrot, 1977). In fact, fractal surfaces do not tend to a fixed
value with finer resolution. On non-differentiable surfaces, the slope of the surface can
be estimated by finding the rise over run from sample points. Unsurprisingly, the local
slope estimated in this way varies depending on the spacing of the sample points. The
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Nyquist-Shannon sampling theory from communication theory states that the minimum
sampling rate required to accurately reconstruct a signal from discrete samples is twice
the highest frequency in the signal (Jerri, 1977).

Four possible sample intervals are shown of a synthetic surface in Figure 8.1. The structure
of the sampling forms an aligned 1-D hierarchy. The sample sites are covered by sample
sites at finer resolutions and can be converted into an aligned 1-D tessellation of slope by
assigning single slope values to the line segments between data points. The slope value at
a coarser resolution is equivalent to the mean of the signed slope of its children. In this
context a “signed” slope is relative to a direction. In the case of Figure 8.1, this is the
direction of the x-axis.

Figure 8.1.: Slope at four resolutions. Slope is calculated from the continuously varying
thick brown line at four sampling resolutions. From finest to coarsest the slopes are
coloured red, blue, black, and green. The steepest sections of the finest resolution (red
line) coincide with the flattest part of the second finest resolution (blue line). The line
segments are hierarchically indexed with a binary tree index shown with red text.

The coarse scale representations in Figure 8.1 are not always accurate representations of
the underlying fine resolution slopes. For instance 0000 and 0001 are the steepest cells.
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However, due to their opposing sign, their parent in L1 (000) is the equal flattest1. If a
variable resolution surface was developed from these samples, it would need to represent
000 at the finest resolution (0000 and 0001) in order to accurately represent the slope. A
decision rule could be introduced to define acceptable resolution by introducing a threshold
for deviance of the parent’s value from the child value; the parent is only used where the
deviance is within the threshold.

For arguments sake, let us propose a deviance value of 0.3, 010 would pass and therefore
be represented as 010 rather than 0100 and 0101. However, this would miss an import-
ant hydrological feature because surface water would be trapped in the shallow channel.
Possibly this area is part of a channel that transmits water a significant distance. There-
fore, the decision rule should consider changes in sign as important features or, in other
words, flow direction should be conserved rather than (or in addition to) slope. The slope
may only differ slightly in some areas, whereas, the direction is opposed. For this reason
conservation of flow direction is proposed as the decision rule for sparse realisations for
geomorphometric modelling as opposed to elevation, slope, or flow accumulation.

8.2. RHSM flow modelling

The hydrological applications described in this chapter are an extension of the geomorpho-
metric hydrological analysis described in Chapter 4. Except that multiple resolutions,
variable density, and three different geometries of tessellation are used. Geomorphomet-
ric flow models represent static, kinematic surface flow (see Section 2.2). This arguably
removes the true complexity of hydrological flow modelling and generates results that are
not easily confirmed by observation of hydrological catchments.

The proposed RHSM flow modelling has the following steps:

1. Extract surface information from observation data at base resolution.

2. Perform hydrological conditioning: sink removal and inclusion of ancillary informa-
tion, such as, buildings and drainage features.

3. Determine flow direction using derivatives of D8 or D∞ with adaptations to incor-
porate triangular and hexagonal geometries (Section 8.3).

4. Perform LOD analysis on flow direction by forming pyramids and extracting a vari-
able density realisation (Section 8.4).

5. Determine flow accumulation in the variable density realisation using algorithms
adapted for the purpose (Section 8.5).

1Due to an unintended optical illusion, 010 appears flatter but, in fact, has the same slope.
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6. Determine catchment boundaries. Catchment boundaries require non-dispersive
flow routing methods to prevent ambiguity; for instance, D8-LTD (Orlandini and
Moretti, 2009).

The novel aspects that RHSM introduces into flow modelling most strongly influence
steps 3, 4, and 5, therefore those steps are the focus of this chapter and the assessment
in Chapter 9.

8.3. Flow direction

This section describes the adaption ofD8 (Subsection 8.3.1) andD∞ (Subsection 8.3.2) to
other geometries of tessellation and also considers Rho8 optimisation (Subsection 8.3.3).

8.3.1. Dx: D8, D6, and D3

TheD8 flow direction algorithm that was discussed in Subsection 4.3.1 is a neighbourhood
operation utilising a 3 × 3 neighbourhood. D8 defines a single restricted direction by
identifying the steepest downslope neighbour; the direction to the identified neighbour is
the D8 flow direction. The distance to neighbours is considered in calculating the slope.

The corollaries of D8 in RHSM-hex and RHSM-tri are D6 and D3 respectively. D8, D6
and D3 are, here, collectively known as Dx. D3 is actually a corollary of the rectangular
D4 because it ignores the point adjacent neighbours. The direct D8 corollary, D12, was
not developed further because it lacks the self similar neighbourhoods required for the
HIP referencing system. The neighbourhoods and directions for D8, D6, D3, and D12
are shown in Figure 8.2. Dx algorithms are evaluated in Section 9.2.

The flow direction can be represented in RHSM by the vector name corresponding to the
direction (see Figure 8.2). The RHSM vector direction (Dx) can be converted to radians
(Dradians):

Dradians = 2π
a− 1 (Dx− 1) (8.1)

Where a is the aperture of the RHSM dataset. However, for RHSM-tri the varying base
vector must be allowed for.
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Figure 8.2.: D8, D6, D3, and D12 directions and neighbourhoods. Cells are numbered
with their RHSM vector indices. A1 is D8, B1 is D6, A2 is D3, B2 is D12. D12 was
not pursued because it lacks self similar neighbourhoods.
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8.3.2. D∞ in RHSM

The D∞ flow direction algorithm was introduced in Subsection 4.3.1. D∞ is described
here in more detail as it relates to the RHSM. D∞ is a neighbourhood operation util-
ising a 3 × 3 neighbourhood. D∞ flow directions are determined as an angle in radians
anticlockwise from the x-axis and, in the RHSM, are then converted to RHSM directions
before running the flow accumulation algorithm. D∞ determines single unrestricted dir-
ections utilising triangular facets formed by connecting the centre of the cell and the
centres of adjacent neighbours (see Figure 8.3). The direction and slope of the line of
steepest descent is calculated on each triangular facet. If the direction for a specific facet
is not within the arc formed by the two edges radiating from the centre, the direction
and slope for that facet is assigned to the nearest edge. D∞ direction for the cell is the
steepest downslope of the directions calculated for the facets.

D∞ facets for rectangular, hexagonal, and triangular facets are shown in Figure 8.3. An
example of a hexagonal D∞ flow direction is shown in Figure 8.4. The determination of
D∞ in RHSM-hex is given below first as an adaptation of the method of Tarboton (1997)
and then as a generalised method. The figures in this section and Section 8.5 illustrate
D∞ determination only in hexagonal tessellation. However, rectangular and triangular
equivalents are not significantly different. The reader may also refer to Tarboton (1997)
for rectangular D∞.

D∞ for hexagonal tessellation

D∞ can be implemented in RHSM-hex by considering the facet in Figure 8.5. Following
the method of Tarboton (1997) adapted for hexagonal grid structure, downward slope for
a single facet is represented by the vector (S1, S2):

S1 = (e0−
e1+e2

2 )/
√

3
2 d

S2 = (e1−e2)/d
(8.2)

where d is the distance between cell centres and ex is the cell elevation as shown in Figure
8.5. The slope direction (r) and magnitude (s) are determined as:

r = tan−1
(
s2

s1

)
(8.3)

s =
√
s2

1 + s2
2 (8.4)
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Equation 8.3 uses the 2-parameter tangent function sometimes known as tan2. If r is not
in the range (−π/6, π/6), r is set as the direction of the nearest edge of the facet and s is
set to the slope of that edge according to:

r <
−π
6 r = −π

6 , s = (e0−e1)/d

r > π
6 r = π

6 , s = (e0−e2)/d
(8.5)

The six facets in Figure 8.4 can be mapped to the facet in Figure 8.5 by appropriate
selection of corner elevations (e0, e0, e2) and rotation constant (ac). For the facet number
in Figure 8.4, Table 8.1 indicates the values of e0, e0, e2, ac to use. The multiplier required
to account for the difference in distance to the edge and point adjacent neighbours in
rectangular D∞ is unnecessary in hexagonal D∞ due to the rotational symmetry of
the triangular facets in RHSM-hex. The facet with the highest slope magnitude (s) is
selected as the direction angle (r′). Calculated angle r′ can be converted to D∞ direction
measured anti clockwise from east by applying:

D∞ = r′ + acπ/3 + π/6 (8.6)

Finally, if required, the angle can be converted toHIP ordinate by dividing by the angular
difference between successive HIP values, which in the case of RHSM-hex is done using:

D∞RHSM = D∞/π3 + 1 (8.7)

If the magnitude of the slope (s) is negative, D∞ is set to 0 to indicate that the flow
direction is toward itself i.e. a sink.2

Table 8.1.: Facet elevations and factors for slope and angle calculations.

facet 1 2 3 4 5 6
e0 0 0 0 0 0 0
e1 1 2 3 4 5 6
e2 2 3 4 5 6 1
ac 0 1 2 3 4 5

2Tarboton (1997) uses -1 to represent sinks.
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8.3 Flow direction

Figure 8.3.: D∞ facets and neighbourhoods. The edges of the triangular facets used by
D∞ are shown in dashed lines. The cell edges are shown in solid lines.
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Figure 8.4.: D∞ flow direction (black arrow) is defined on a hexagonal grid as the
steepest downslope direction on triangular facets created by connecting the centres of
the hexagonal grid cells. The heavy solid lines are the edges of the facets. Tarboton
(1997) defined D∞ as the anticlockwise direction in radians as shown by the thin
two-headed arrow.
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8.3 Flow direction

Figure 8.5.: Variables for calculation of D∞ direction and slope for a single facet in
RHSM-hex.
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General method

The slope for a plane can be determined from any three points on that plane; therefore,
D∞ can be generalised for any geometry of tessellation. Using the generalised method
there is no difference between the algorithms for the different geometries. Therefore they
are not assigned individual names (unlike D8 and corollaries).

Using the notation from Figure 8.5, and given the Cartesian coordinates of point e in R3,
(e0x, e0y, e0z) for each triangular facet, the following equation uses the coordinates of the
cell centres to create two vectors u,v that represent the edges of the facet radiating from
the centre point (e0).

u = (e1x − e0x, e1y − e0y, e1z − e0z)
v = (e2x − e0x, e2y − e0y, e2z − e0z)

(8.8)

The normal (n) is then found by determining the cross product which is converted to a
unit normal (n̂) using Equation 8.9.

n = u× v
n̂ = n

‖n‖
(8.9)

The direction of steepest descent on a plane is equivalent to the direction of the projec-
tion (g) of a reference vector onto the plane. The reference vector represents the down
direction. In a planar projection of geographic space, the down reference vector (r̂) is
typically (0, 0, -1). The projection of a line onto a plane can be found using:

g = r̂− n̂ (r̂ · n̂) (8.10)

The slope direction (r) and magnitude (s) are determined using:

r = tan−1
(
gy
gx

)
(8.11)

s = g2
z√

g2
x + g2

y

(8.12)
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Note that the equation for r is sensitive to the sign of the divisors. If your software
produces angular results that can be both positive and negative, you need to convert the
output to a positive result between 0 and 2π, for instance, by using the mod function (%)
as in:

r′ = (2π + r) %2π (8.13)

Hence forth, the use of the ′ notation indicates that an angle has been normalise to
between 0 and 2π.

If r′ is outside the limits of the angular facet it is necessary to convert the direction and
slope to those of the nearest edge using:

r′1 = tan−1
(
uy
ux

)
, s1 = u2

z√
u2
x + u2

y

r′2 = tan−1
(
vy
vx

)
, s2 = v2

z√
v2
x + v2

y

4r′i = min (2π − |r′ − r′i| , |r′ − r′i|)

max (4r′1,4r′2) ≥ h

4r
′
1 ≤ 4r′2 r′ = r′1, s = s1

4r′1 > 4r′2 r′ = r′2, s = s2

(8.14)

where 4r′1 = 4r′2, the values are arbitrarily set to the first case. However, this situation
cannot be the steepest downslope direction as it only occurs when the slope direction is
pointing exactly opposite from the direction of the facet.

Equation 8.14 identifies the greatest angular difference between r′ and the direction of the
two edges of the facet radiating from the central point (r′1, r′2,). If this angle is greater
than the interior angle of the edges of the facet (h), the direction is “outside” the facet
and should be adjusted. For RHSM-hex h = π/3, RHSM-rec h = π/4 and for RHSM-tri
h = 2π/3.
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The facet with the highest slope magnitude (s) is selected as the direction angle (D∞)
expressed as a direction in radians. Where more than one facet has the steepest slope,
the smallest direction angle is assigned. It was assumed that this would occur rarely.
However, Section 9.3 showed that this assumption is consequential for dispersive cone
surfaces.

8.3.3. Rho8 formula optimization

D8 flow direction has predictable, well understood direction bias toward theD8 directions.
D∞ is one approach to reduce this bias. An alternative approach is Rho8 (Fairfield and
Leymarie, 1991). Rho8 was introduced in Section 4.3.

This section suggests an alternative formulation of Rho8 that further reduces bias and
provides an additional parameter to control the impact of the random variable. Rho8
attempts to reduce D8 direction bias by multiplying the elevation difference between
the central cell and its diagonal neighbours by a random factor, ρ8, given by Fairfield
and Leymarie (1991) as Equation 4.4. D8 multiples the elevation difference between
the central cell and diagonal neighbours by 1/

√
2 ≈ 0.7071 to account for the increased

distance to the diagonal neighbour. Therefore, compared to D8, if ρ8 < 1/
√

2, it favours
the cardinal (non-diagonal) neighbour, if ρ8 > 1/

√
2 the diagonal neighbour is favoured,

whereas, if ρ8 = 1/
√

2 the D8 solution is invariably applied. Fairfield and Leymarie (1991)
state that the expected value of ρ8 = 1/

√
2. However, the expected (or median) value of

ρ8 (Eρ8), occurs when σ = 0.5 i.e. when the following holds true.

Eρ8 = 1
2− 0.5 = 2

3 ≈ 0.6666 (8.15)

However, the expected arithmetic mean value (µρ8) of a large population of ρ8 values is:

µρ8 =
1ˆ

0

1
2− σ dσ = log 2 ≈ 0.6931. (8.16)

Therefore Eρ8 < µρ8 <
1√
2 , which means that ρ8 generally favours the cardinal neighbours

but when it does favour the diagonal neighbours it does so by a greater amount, thus
raising the average. However, this effect does not fully offset the bias toward the cardinal
neighbours. The value of ρ8 does not in itself set the direction of flow for a particular cell
in a raster processed by Rho8, it is merely the extent to which the diagonal or cardinal
neighbour is favoured in that instance. The flow direction result depends on both the
value of ρ8 and the elevation differences. Therefore, the distribution of results from an
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unbiased version of ρ8 would be symmetrical around 1√
2 i.e. Eρ8 = µρ8 = 1√

2 . The obvious
candidate is:

ρ′8 = σ′√
2

(8.17)

where σ′ is a symmetrically distributed random variable within the interval 1±x, 0 < x ≤
1. Values of x > 1 are excluded on the grounds that this would permit uphill flows, x = 0
reduces to the D8 algorithm. The value of x needs to be sufficiently large to overcome
the directional bias toward the D8 directions. Potential variations of ρ′8 include uniform,
normal, or student t distributions and x = 0.5 or x = 1.

Some questions arise that have not been answered here.

1. Can the cardinal directional bias of Rho8 be confirmed experimentally?

2. How well do the alternative Rho8 algorithms perform?

3. How large a value of x is required to overcome the D8 direction bias and is this
quantity terrain dependent?

4. Does the magnitude of x influence the number of runs required to generate a con-
sistent, bias-free mean?

5. How robust are the Rho8 algorithms to data errors?

6. How can Rho8 be adapted to other geometries?

8.4. LOD Flow direction generalisation and realisation

Having established a direction for each cell in an RHSM, whether using Dx, D∞ or Rho8,
the next step of the analysis is to generalise the flow direction array and realise a variable
density surface. Section 8.5 addresses flow accumulation on flow direction realisations.

The LOD flow direction analysis has four parts:

1. Pyramid layers. Pyramid layers are generated using a scaling rule described below
in Subsection 8.4.2, which relies on generalising directions (Subsection 8.4.1).

2. Error values. An error value is associated with each cell in each level of the pyramid.
For RHSM flow direction arrays, the proposed error value is the maximum difference
between the pyramid value and its finest level children.

3. Decision rule. The decision rule used to define the spatially variable resolution in
the realisation is described in Subsection 8.4.3.
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4. Realisation. Finally, the values associated with the coarsest resolution that meets
the decision rule are stored on the appropriate branch of the sparse tree to create
the variable density realisation. Further hydrological modelling is then conducted
on the realisation.

8.4.1. Generalising directions

To determine variable density realisations of flow direction arrays, it is necessary to gen-
eralise directions. Generalisation of distributed values may be undertaken by determining
a spatial mean for a given region. In general, the arithmetic mean of the children of an
RHSM parent cell is equivalent to the spatial mean because all children are the same size.
However, generalising directions involves circular arithmetic and requires care. Circular
means are an example of statistics in non-Euclidian space. For instance, to determine the
mean of a set of directions in radians, one needs to ensure that the equivalences of 0 and
2π, and -π and π are respected.

Care must be taken to accurately define what is being calculated when determining cir-
cular means. There is no one right way of finding circular means but various techniques
that are more or less applicable to different situations. For instance, there is a difference
between turns and directions. The mean of turning 1◦ and turning 359◦ degrees is turning
180◦ degrees; whereas, the mean direction of the directions 1◦ and 359◦ is 0◦. Also mean
direction is undefined in some situations. For instance, the mean of directions 0◦ and 180◦

is 90◦ or 270◦. The mean of 120◦, 240◦, and 360◦ is 0◦, 60◦, 120◦, 180◦, 240◦, 300◦, or
360◦!

Three methods of determining circular means are described below. The methods below
have different conceptual models and do not all generate the same results for some sets
of directions.

The cosine method

The cosine method is a computationally simple way to determine mean direction that
provides reasonable results. The cosine method treats angles as unit vectors, converts
them to Cartesian vectors and then finds the mean of these vectors. Given the angles
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α1, ..., αn the angular mean can be calculated as:

ᾱ = tan−1


n∑
j=1

sinαj

n
,

n∑ cos
j=1

αj

n

 (8.18)

However, this method treats angles as vectors, which for some applications is unsound
and produces unintuitive results. For instance, using Equation 8.18 the mean of 0◦, 0◦

and 90◦ equates to 26.565◦ not 30◦. The cosine method is not a true arithmetic mean
because the sum of the differences between the result and the sample set is not 0. The
difference between the arithmetic mean and the cosine method increases with the spread
of angles.

The Mitsuta method

The Mitsuta method of finding mean direction is commonly used to generalise wind
direction. The Mitsuta method starts with an initial direction and then determines the
amount each subsequent direction is turned from that direction. The turns are then
averaged and the result added to the original direction. However the Mitsuta method
does not work if the range of directions exceeds 180◦ (Mori, 1987). In addition, the
Mitsuta method can give different results depending on the order of the directions and is
known to fail if the standard deviation of the direction samples is greater than 25◦.

Minimum variance method

The Minimum Variance method (MV) is a more robust technique that finds the arithmetic
mean (ᾱ) by minimising (αj − ᾱ)2. That is, MV finds the most likely value by ordinary
least squares. However, to appreciate the challenge of finding a least square estimate of a
circular mean, consider Figure 8.6 on page 180, which depicts a set of directions α1, ..., αn.
If the mean of the directions clustered around 0◦ is anticlockwise of zero, the 180◦ direction
pulls the mean further anticlockwise and all the directions clockwise of 0◦ (αcw) should be
included in the mean as (αcw + 360◦).If the mean is greater then zero, it pulls the mean
clockwise and the directions anticlockwise of 0◦ (αacw) should be included in the mean
as (αacw − 360◦). In this case, there is only one direction that exhibits this ambiguous
behaviour; however, if the directions are evenly spread, the only way to determine the true
minimum variance mean is to calculate the variance of all possible combinations. Given
that each angle has two forms: αacw and αcw± 360◦, which affect the mean differently, we
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can determine which version of each angle to use by determining which version minimises
the variance of α1, ..., αn.

Figure 8.6.: The challenge of circular means. If the mean of the directions clustered
around 0◦ is clockwise of 0◦, the 180◦ direction will pull the mean further clockwise. If
the mean is anticlockwise of 0◦, it will pull the mean further anticlockwise.

Determining the circular mean by minimising variance is computationally intensive if
determined such that the result is robust to a wide spread of angles. Fortunately, the
task of generalising flow direction arrays allows us to make an important assumption
that simplifies the calculation. We can assume that the spread of directions is less than
180◦. This assumption is sound because it is clearly unacceptable to generalise opposing
directions with a direction that resembles neither, therefore the generalised pyramid cell
that contains angles with such a spread will never be used in a realisation.

If it were necessary to determine means for widely spread directions, an alternative method
could be used when the spread exceeds 180◦. For instance, an alternative method to deal
with widely spread directions would be to divide the directions into sectors and then
assign the mode sector as the generalised value.

The RHSM implementation of Restricted Minimum Variance (RMV) method generalises
the circular mean to any interval: radians [0, 2π], degrees [0, 360], or HIP indices [1, a],
is robust for signed values and values outside the interval. If the range of the input array
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is greater than half the interval, this method is unreliable, therefore, the RMV method
should be employed along with a decision rule limiting the spread to below half the interval
to prevent erroneous mean values being used in models.

The RMV method assumes that either all the values closest to the upper interval (αacw)
must be moved by subtracting the interval or none of them should be moved. This
assumption is sound if the spread is less than half the interval. If the spread is less than
half the interval and is contained within the interval, no values need be moved. If the
range is only less than half the interval if it includes the limits of the interval, the values
closest to the upper interval (αacw) are moved if moving them decreases the variance. The
final step is to return the final mean to the interval.

8.4.2. Pyramid layers

Pyramid layers are produced using a scaling rule. For a flow direction RHSM, pyramid
values are determined by finding a circular mean using the restricted minimum variance
(RMV) method described in Subsection 8.4.1.

If RHSM-hex directions are represented using RHSM values it is necessary to allow for
level rotation. Each level rotates by tan−1 √3/2. The difference between each direction
vector is tan−1√3 therefore rotation of the base vector (rot) for a given pair of levels (L2,
L1) can be calculated in radians as:

rot = (L2 − L1) tan−1 √3/2 (8.19)

or in RHSM units as:

rotRHSM = (L2 − L1) tan−1 √3/2

tan−1√3
(8.20)

where L2 and L1are represented by the level numbers.

The rotation is particularly problematic for D6 as opposed to D∞. The D6 flow direc-
tion algorithm is complicated by the angle of rotation between HIP levels because the
directions of the neighbours at a given LoD are not represented in the neighbourhoods of
coarser and finer LoDs. Section 9.4 addresses this issue by adjusting the direction to the
nearest valid direction in the coarser LoD.
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8.4.3. Decision rule

A decision rule is defined and evaluated to determine the resolution to use in the variable
density realisation for a given region of the tessellation. For a flow direction RHSM, the
decision rule is that the error value is less than a user defined threshold number. For
RHSM flow direction arrays, the proposed error value is the maximum difference between
the pyramid value and its finest level children. Applying such a rule is similar to a
quad-tree division of space.

The threshold number represents the greatest permissible spread of directions for a cell
and provides a restraint on upscaling. The threshold value must be less than π radians
otherwise the assumptions behind the RMV method are unsound. The threshold value
could itself be spatially variable. For instance, a second condition could be applied that
the direction threshold decreases with increasing flow accumulation.

It is possible to apply the simplification algorithm at various stages of the hydrological
analysis. For instance, elevation, flow direction, or flow accumulation arrays could be
simplified. This study aims to preserve hydrological significance by applying the decision
rule to the flow direction array in order to minimise cell numbers without losing accuracy
in representing hydrological behaviour.

There is an underlying assumption in the application of the decision rule that the direction
for a region approaches a defined limit as the size of that region decreases. If that is not
the case, and arbitrarily precise information is available, the decision rule would never be
met. In such instances the finest resolution data are used by default.

8.5. Flow accumulation

Flow accumulation algorithms on tessellated surfaces were discussed in Subsection 4.3.2;
these algorithms are well defined and are broadly applicable to alternate geometries of
tessellation. Subsection 8.5.1 investigates what flow accumulation algorithms actually
measure, in order to allow comparison with analytically defined Specific Catchment Area.
Subsection 8.5.2 describes three methods of apportioning flows using D∞. A significant
difference between a flow accumulation array calculated on a single resolution and one
calculated on a variable resolution realisation of a LOD model is the interaction between
different LoDs. Some options for dealing with these inter-level interactions are presented
in Subsection 8.5.3.

Flow direction algorithms rely on two assumptions:

1. The kinematic assumption that the flow direction must always be downhill.
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2. The conservation of area. The flow accumulation of an outlet should not be more
than nor less than the total area of the catchment or at least the nearest cell size
unit. In reality there may be small discrepancies between the analogue shaped
catchment and the digital version but the planimetric area of a catchment in its
digital representation should equal the flow accumulation of the cell at its outlet.

The RHSM-tri is not compatible with D∞ because the triangular facets have an internal
angle of greater than 90◦, which may cause a portion of flow to be directed uphill thus
creating a looped flow path and infinite accumulations. Apportioning flow to an uphill
cell violates the core assumption of kinematic hydrological modelling, that flows are gov-
erned by gravity. For this reason, RHSM-tri flow accumulation is not discussed after this
subsection. However, one possible solution to the problem of infinite flows in RHSM-tri
flow accumulation is solving the D∞ direction using the D3 neighbourhood as described
in Section 8.3 but applying the accumulation using D12 neighbourhoods (see Figure 8.3).

8.5.1. What does flow accumulation measure?

It is necessary to know what flow accumulation algorithms determine in order to assess
their accuracy by comparison with analytically defined results. One target for comparison
is Specific Catchment Area (a) as defined by Gallant and Hutchinson (2011) and discussed
in Subsection 4.3.2. It is possible that some flow accumulation algorithms could derive
an estimate for a at the centre of the cell directly. However, typically flow accumulation
algorithms do not determine a, instead they determine the upslope area associated with
an areal cell.

The D8 flow accumulation algorithm is conceptually very clear about what it measures.
D8 determines the number of upstream cells linked to a given cell by the D8 network.
D∞ is more opaque; generally speaking, D∞ measures the quantity of cells or part cells
that can contribute flow to a given cell using the D∞ definition of flow paths. But how
does flow accumulation relate to specific catchment area? One approach is to assume
D∞ flow accumulation (AD∞) is equivalent to upstream area (A) and the cell size (wc)
is equivalent to the contour length (w), thereby, producing an estimate for a:

a ≈
A

w
≈
AD∞
wc

(8.21)

However, there are several debatable assumptions in this interpretation. Flow accumula-
tion and upstream area are not exactly the same. Upstream area is defined as the area
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upstream of a length of contour. In contrast, flow accumulation is the area contributing
flow to the area represented by a cell in a tessellation. Reducing a cell to a contour ig-
nores the areal nature of the cell. For instance, it is possible that the dimension of the
cell along the flow line is also important. a will also vary in 2-D across the cell, whereas,
Equation 8.21 produces a point value. Therefore, another interpretation is that the flow
accumulation is the integration of a along the flow path through the cell.

The assumption that contour section is equal to cell size assumes that the contour is
linear or nearly so. Typically, the contour curvature is unknown so is merely assumed
to be linear. In highly convergent or divergent terrains, the linear contour assumption is
unsound. However, the employment of LOD analysis based on flow direction will preserve
the validity of this assumption because a cell which does not include subpixel variation
of direction will also not include significant contour curvature.

It may be tempting to apply a scaling factor to the flow accumulation to bring the result
in line with a. However, due to the assumption of conservation of area, it is important
that such a scaling factor is recorded as an adjustment to the estimation of the contour
length, as adjusting the area directly would undermine the conservation of area. A further
complication is that, in addition to whether the contour curvature is considered, there
are at least four possible interpretations for how the cell size should be converted into the
contour length:

1. The cell size without adjustment; effectively the cell is approximated as a circle and
the flow width is held constant. Gallant and Hutchinson (2011) assumed that flow
width is constant with respect to aspect for D∞. This assumption is more sound
in hexagonal sampling than rectangular sampling.

2. The cell boundary projected onto the contour that passes through the centre.

3. The intersection of the cell and the contour that passes through the centre.

4. The area of the cell divided by the length of the cell perimeter projected on the flow
line, which, for simplicity, is assumed to be straight.

Of these four interpretations 1. assumes no relation between cell projection and flow
accumulation, 2. and 3. assume positive correlation and 4. assumes negative correlation.
These questions of what flow accumulation measures and what adjustments are required
to the cell width are addressed for cone surfaces in Section 9.3.
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Figure 8.7.: Interpretations of cell width. For a given cell geometry (yellow tiles), several
estimations of contour length are shown as a red line. The actual contour passing
through the centre of the cell is shown as a green line. The four rows correspond to
the four options in Subsection 8.5.1. Option four shows the flow length in red, which
is the divisor of the area in this formulation and thus negatively correlated to contour
estimate.
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8.5.2. Angular, linear, and areal ratios

Given a single unrestricted direction there are a number of ways that flow can be appor-
tioned between downslope neighbours, three of which are highlighted below. D∞methods
are restricted to two neighbours; D∞ apportions flow to only the cell centres that are
closest to a line emanating from the centre of the cell in the direction of flow. If such a
line intersects a neighbour’s cell centre, that cell receives the entire flow.

Following mathematical convention, D∞ is recorded as a radian direction anti-clockwise
from the x-axis. In RHSM systems, flow direction can conveniently be represented by a
decimal (D∞RHSM) in which the integer component (i) matches the HIP vector of the
clockwise neighbour toward which it is flowing (i = 2 in the example shown in Figure 8.8)
and the fractional part is the proportion of flow credited to the anti-clockwise neighbour
(α1). The proportion of flow allocated to the clockwise neighbour (α2, i = 3 in Figure
8.8) can be found using:

α2 = 1− α1 (8.22)

D∞RHSM is convenient because the apportionment algorithm can thus be abstracted
away from both the direction algorithm and the accumulation algorithm. A given cell
will receive all the flow from a neighbouring cell3 in HIP direction i, if the D∞RHSM of
the neighbouring cell is the HIP negation (	) of i, The proportion of flow (pi) received
from a neighbour in direction i can be accumulated as :

ri =
∣∣∣i−D∞RHSM(i)

∣∣∣
pi = 1−min (r′′i , 1)

(8.23)

where D∞RHSM(i) is D∞RHSM of the cell in direction i. If D∞RHSM(i) directs flow away
from the cell being accumulated, ri will be greater than 1 and that cell will contribute no
flow to this cell. In order to close the circular subtraction, ri is normalised to the range
[−1, a− 2] using:

ri > (a− 2) r′′i = a− 1− ri
ri ≤ (a− 2) r′′i = ri

(8.24)

3To be clear, the flow direction governs flow out of the cell. Therefore, the flow received by a cell is
governed by the flow directions of its neighbours. The flow direction of the cell itself plays no part.
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′′ is used because the range differs from that defined for r′ in Subsection 8.3.2. The
different range is required to make the algorithm robust to values near the 1 = a equality.
The accumulation of flow received from direction i (Qi) is determined as:

Qi = Q0ipi (8.25)

where Q0i is the total accumulation for the cell in direction i.

D∞ can be converted into D∞RHSM using the following procedure. Here i is the integer
component of D∞RHSM .

γ = 2π
a−1

i = bD∞
γ

+ 1
β1 = D∞− (i− 1)γ

β2 = γ − β1

α1 = f (β1, β2)
D∞RHSM = i+ α1

(8.26)

a is the aperture of the tessellation. β1 and β2 are the angles formed between the D∞
direction and the clockwise and anticlockwise facet edges respectively. For, example, in
Figure 8.8 (β1, β2) = (α1, α2).

f (β1, β2) can be varied to affect different apportionment algorithms. Three variations of
f (β1, β2) are detailed below: Angular, Linear, and Areal.

Angular

The classic D∞ approach from Tarboton (1997) is to apportion the flow between the two
neighbouring recipients in proportion to the ratio of the angles subtended between the
flow line and the edges of the facet in accordance with Figure 8.8. The proportion of flow
to cell 2 is α2/(α1+α2). The proportion of flow to cell 3 is α1/(α1+α2). The determination of
α1 is trivial:

α1 = f (β1, β2) = β1 (8.27)
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Figure 8.8.: Angular D∞ apportionment for RHSM-hex.

Linear

D∞ accumulations can be determined by using linear ratios instead of angular ratios.
This is equivalent to the linear displacement of Orlandini and Moretti (2009). The linear
method apportions flow between the two receiving neighbours according to the ratio of
the linear distance between the flow direction and the edges of the facet (see Figure 8.9).

D∞RHSM−hex with linear weighting is calculated using:

α1 = f (β1, β2) = sin (β1)
sin (β1) + sin (β2) (8.28)

Assuming D∞ is in radians anti-clockwise from the x-axis.

D∞RHSM−rec with linear weighting needs to account for the varying distances to adjacent
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cells. This can be done using:


i = 0, 2, 4, 6 α1 = sin(β1)

sin(β1)+
√

2 sin(β2)

i = 1, 3, 5, 7 α1 =
√

2 sin(β1)√
2 sin(β1)+sin(β2)

(8.29)

Note that i is the index of the triangular facet that the direction falls in and the integer
component of D∞RHSM .

Figure 8.9.: Linear D∞ apportionment for RHSM-hex.
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Areal

A third option is to also consider the length of the flow line by forming a ratio of the
areas of the triangles in Figure 8.10 on page 191:

α1 = f (β1, β2) = sin (β1) cos (β1)
sin (β1) cos (β1) + sin (β2) cos (β2) (8.30)

However, for RHSM-rec the diagonal neighbours need to be weighted, therefore,D∞RHSM−rec

with areal weighting is calculated using:


i = 0, 2, 4, 6 α1 = sin(β1) cos(β1)

sin(β1) cos(β1)+
√

2 sin(β2) cos(β2)

i = 1, 3, 5, 7 α1 =
√

2 sin(β1) cos(β1)√
2 sin(β1) cos(β1)+sin(β2) cos(β2)

(8.31)

8.5.3. Variable resolution accumulation

Variable resolution realisations of RHSM arrays contain non-conforming edges, for which
the D∞ flow accumulation algorithm must be adapted to accommodate. There are two
basic scenarios; flow could be directed from coarse to fine, or fine to coarse. There are
several possibilities to deal with flow from coarse to fine. Flow from coarse to fine could
be evenly applied to all child cells, it could be directed only to those child cells that are
neighbours of the coarse resolution cell, or it could be applied to only the child cell with
the lowest elevation. The method employed will have different consequences in different
neighbourhood geometries. The flow accumulation method should be developed to match
the physical process being modelled as closely as possible while also producing accurate
results on controlled surfaces.

Figure 8.11 shows the options considered for a D6 direction flowing from coarse to fine
resolution. “All” evenly divides the total around all children of the recipient cell. “Centre”
apportions all flow to the centre child of the recipient cell. “Leading” evenly distributes
flow to the recipient’s children that share a linear segment of their perimeter with the
contributor. “Leading low” apportions flow entirely to the lowest elevation child that
shares a linear portion of its perimeter with the contributing parent. “Low” apportions
flow only to the lowest elevation child of the recipient. Leading and leading low were
chosen for further development because flow does not jump cells. Figure 8.11 shows how
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8.5 Flow accumulation

Figure 8.10.: Areal D∞ apportionment for RHSM-hex.

the contribution from a cell to the parent is apportioned for all the methods described
above. Only one method for flow from fine to coarse was considered it is also shown in
Figure 8.11.

Figure 8.12 shows the options considered for D∞ flow accumulation when flow is from
coarse to fine. In all the examples, a flow of 7 units is distributed; 4 and 3 to the coarse
neighbours and then distributed amongst the recipients’ children. “All coarse” distributes
the flows to all the children of each neighbour. “Centre” distributes flow to only the centre
child of the recipients. “Leading coarse” divides the flow received by each recipient evenly
between the children that share part of their perimeter with the contributor. “Leading
fine” distributes flow only to the child that is closest to the direction vector in each coarse
neighbour. “Leading 4” distributes the flow to each neighbour proportional to the distance
to the direction vector.
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Figure 8.11.: Dx accumulation options in variable resolution for RHSM-hex.
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Figure 8.12.: D∞ accumulation options in variable resolution hexagonally sampled
space.
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All the above methods are consistent between Levels of Detail. “Recalced 2” recalculates
the flow apportionment between the two closest recipient children. “Recalced 1” and
“Recalced 4” are also possible but not shown. All the Recalced methods would potentially
generate discrepancies between LoDs, which makes them unappealing. It is also possible
to use a low method which would assign the flow to only the lowest elevation child in each
coarse neighbour receiving flows. Leading coarse, Leading fine, and Leading four avoid
both jumping flows and recalculation.

Figure 8.13 shows how flow is apportioned when flow is from fine to coarse. The flows
are assigned to the parent of the cell it is apportioned to in the fine resolution. Three
possible cases are shown. They are all scenarios of the same system.

Figure 8.13.: D∞ flow from fine to coarse resolution in variable resolution hexagonally
sampled space.
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8.6. Hydro class specification

The hydrological modelling module was implemented using the class structure shown in
Table 8.2. The hydrological modelling class is encoded separately from the main RHSM
class to encourage modular development of new functions and applications, and to keep
the main class relatively simple. The acc_object is encapsulated primarily to organise the
parameters required for accumulation and to improve efficiency; it has no public methods.

DxDir determines Dx directions, DinfDir determines D∞ directions, Dx2Dinf converts
Dx into D∞ radian directions. Dinf2RHSM converts D∞ directions into RHSM direc-
tions, including implementation of the different ratio forms ofD∞ described in Subsection
8.5.2, DinfAcc calculates flow accumulations for D∞ or Dx. FlowAcc_Sparse determines
accumulations on a sparse array.

Table 8.2.: Hydro UML class specification

This chapter utilised the RHSM to create variable resolution flow direction arrays. It has
also adapted flow direction and flow accumulation algorithms so that they are functional
in the RHSM, primarily by generalising the algorithms so that they can apply to any
of the three regular tessellations, rather than only the rectangular array on which they
were originally conceived. In addition, a variation of the flow accumulation algorithm has
been proposed to operate on a variable density realisation of an RHSM surface. The next
chapter describes and evaluates a series of trials of the proposed algorithms.
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9. Evaluation of RHSM for
Hydrological Applications

This chapter evaluates the RHSM introduced in Part II for a specific task; that task is
determining flow direction and flow accumulation arrays using the methods from hydrolo-
gical geomorphometry literature, called D8 and D∞, which were summarised in Chapter
4 and adapted for multi resolution surfaces in Chapter 8. The evaluation compares results
derived using D8 and D∞ with analytically derived results on divergent and convergent
cones. The cone analysis is augmented by case studies on representative urban surfaces.
The flow algorithms are also assessed by analysing how errors differ between tessellation
geometries.

9.1. Overview

9.1.1. The experiments

In the following sections, the evaluation of the surface models contrasts hexagonal, rect-
angular, and triangular array sampling, as well as hierarchical and single LoD structures.
The criteria for assessing the effectiveness of the RHSM, in this context, are to provide
results that are isotropic, that is, they do not have directional bias and are consistent
across scales whilst reducing the number of cells that are required for processing. Such
capability would assist the capture of complex urban drainage patterns on commodity
computers, including fine surface features with extensive effects.

Section 9.2 and Section 9.3 do not utilise the variable density or multi resolution capab-
ilities of the RHSM, instead, they examine accuracy and anistropy of flow direction and
accumulation respectively. The results serve as a baseline for the multi-resolution studies
that follow in Section 9.4 and Section 9.5. Section 9.2 and Section 9.3 shed light on the
performance of the algorithms by highlighting the differences in anisotropy found when
comparing geometries. Section 9.3 also assesses and compares the three varieties of D∞
proposed in Section 8.5 : Linear, Angular, and Areal.
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Section 9.4 and Section 9.5 introduce multi-scale elements to the accuracy and anistropy
analysis of flow direction and accumulation by creating variable resolution surfaces of
flow direction arrays, calculating flow accumulation arrays from them and comparing the
results to analytical values for a range of tolerances.

Section 9.6 applies the modelling process to real world urban surfaces from Dunedin, New
Zealand. Compression ratios were measured for a range of tolerances. Given the newness
and complexity of the methods developed and tested here, comprehensive analysis in
urban areas is beyond the scope of this study. Section 9.7 summarises the results from
all the assessments.

9.1.2. The mathematical surfaces

Not withstanding the real world case studies in Section 9.6, the trials in this chapter
were undertaken on cone surfaces: concentrative and dispersive. Concentrative cones are
formed with:

z =
√
x2/1002 + y2/1002 (9.1)

Dispersive cones are formed with:

z = 1.2−
√
x2/1002 + y2/1002 (9.2)

In both cases, z is the elevation, and x, y are the Cartesian coordinates of the cell centre.
The origin of the dataset is the centre of the cone. Equation 9.1 forms a downward
pointing cone. The centre of the cone is the low point, therefore, the flow direction is
toward the centre. Consequently, it is concentrative: flows concentrate as they descend
(see Figure Figure 9.1 on page 200). Equation 9.2 forms an upward pointing cone. The
centre of the cone is the high point, the flow direction is away from the centre of the cone.
It is a dispersive cone: flows disperse as they descend.

The projection onto the (x, y) plane of both surfaces is limited to a radius 120 circle
defined by:

x2 + y2 ≤ 1202 (9.3)
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The cones formed by Equations 9.1 and 9.2 have a gradient of only 1 in 100 and would seem
fairly flat to a person standing on its surface. The units of measurement are immaterial as
the surfaces are not tied to a real world projection, therefore, the dimensions are reported
unit-less. All areas are projected areas i.e. they are the areas of the projection of the
surfaces onto the (x, y) plane.

The cell sizes are adjusted so that all cells have an area of 1. The cell sizes (cs) for
RHSM-rec, RHSM-hex, and RHSM-tri are given in the following equations. Cell size is
defined as the centre to centre distances between adjacent cells as defined by the point
set matrix R in Section 3.5.

csrec = 1 (9.4)

cshex =
√

2/
√

3 (9.5)

cstri = 4√
3
√

3
(9.6)

In order to fill the circle described in Equation 9.3 completely with this cell size, a min-
imum of the following number of levels are are required. RHSM-rec: 5, RHSM-hex: 6,
and RHSM-tri: 9. The cardinality for RHSM-rec is 45255; for RHSM-hex, 45223; and
for RHSM-tri, 45232. Only the cells within the circle defined by 9.3 are included in the
cardinality counts.
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Figure 9.1.: : Perspective views of concentrative cone surface representations in RHSM-
rec and RHSM-hex with near zoom of the centres inset.
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The analytical solutions for flow direction were determined using:

βconc = tan−1
((
−y
−x

)
+ 2π

)
%2π

βdisp = tan−1
((

y
x

)
+ 2π

)
%2π

(9.7)

Where βconc is the analytical direction on a concentrative cone, βdisp is the analytical
direction on a dispersive cone, and x, y are the Cartesian coordinates of the point for
which an analytical solution is determined. The modulus function ( % ) is applied to
express the results as positive directions.

Gallant and Hutchinson (2011) provide the following to determine specific catchment area
(a) for a convergent cone.

aconc = l (2R− l)
2 (R− l) (9.8)

where l is the flow length and R is the radius of the cone for which accumulation is
determined. The analytical solutions for Specific Catchment Area (a) were determined
using:

aconc =

(
R−
√
x2+y2

)(
2R−

(
R−
√
x2+y2

))
2
(
R−
(
R−
√
x2+y2

))

adisp =
√
x2+y2

2

(9.9)

where aconc is the Specific Catchment Area on a concentrative cone, adisp is the Specific
Catchment Area on a dispersive cone, and x, y are the Cartesian coordinates of the point
for which an analytical solution is determined. The flow direction of edge cells is undefined;
therefore, they do not contribute to flow accumulation. Consequently, in order to provide
an unbiased numerical comparison, R = 119 for a determined from cones limited by
Equation 9.3.

The cone surface used in this analysis may not accurately assess how well variable resolu-
tion surfaces will capture flow networks in real world situations. Cone surfaces are highly
structured, lacking both structural and random variation. However, cone surfaces have
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two characteristics that make them an appropriate first hurdle for testing geomorphomet-
ric flow direction algorithms. Cone surfaces feature the full range of possible directions,
which accentuates any inconsistencies in the algorithm due to directional biases inherent
in the regular structures upon which tessellations are built. Furthermore, for a region of
a given size, the rate of change in direction across that region decreases with distance
from the cone centre. Therefore, applying an algorithm to a cone surface illustrates its
response to a wide range of directions and rates of change in direction.

Real surface case studies were undertaken using a surface generated from first return
LiDAR signals in areas identified as building footprints by photogrammetric analysis and
ground return elsewhere.

9.1.3. Metrics for comparison

Relative Mean Absolute Error

A standard metric, which has been used in the literature for assessing the accuracy of
flow direction and flow accumulation is Relative Mean Absolute Error (RMAE)1 (Pan
et al., 2004; Vázquez and Feyen, 2007), a practise that will be followed here. However,
RMAE does not capture positional errors, only attribute errors, and position errors are
particularly important for flow accumulation on real world surfaces.

RMAE can only be calculated where results accepted as truth are known to the ex-
perimenter. This definition of truth is provided for flow accumulation and direction on
the mathematical surfaces where flow accumulation, or more precisely specific catchment
area (a), can be determined analytically from first principles. For real world case studies,
analytical results are not generally available.

However, accuracy of spatial variables cannot be determined by comparison with ana-
lytical point results or measurements unless there is agreement between scales. Many
variables that vary with scale can never be precisely known as a closer examination will
reveal imprecision in the coarser measure, not because the new measure is merely more
precise but because the scaling function of the variable being evaluated is non-linear and
unknown.2

The form of the equations used by Pan et al. (2004), who were primarily concerned with
TWI, can be simplified for flow accumulation and direction. The error (E) of the of cell

1Also called relative root mean square error.
2Some authors recommend using multiple resolutions to analyse spatially variable outputs. For instance,
Shary et al. (2002) suggest finding outputs that tend to a limit as resolution increases, and, in a similar
fashion, Florinsky and Kuryakova (2000) search for smooth areas in graphs that plot model correlation
against resolution.
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i is the difference between the computed (aCi) and theoretical (aT i) values .

Ei = aCi − aT i (9.10)

To investigate the underlying cause of anistropy the sign of the error may be important.
Flow accumulation values vary greatly within a dataset with some cells having values
many orders of magnitude higher, therefore, we want to report relative error (RE) for
each cell using:

REi = aCi − aT i
aT i

(9.11)

An unsigned summary value for the entire dataset, Mean Absolute Error (MAE), can be
found using:

MAE =

√√√√i=n∑
i=1

(Ei)
n

2

(9.12)

Alternately, Relative Mean Absolute Error (RMAE) can be found by substituting REi
for Ei in Equation 9.12.

RHSM Angular units

Some anistropy results below are plotted in angular RHSM units rather than degrees or
radians. One RHSM unit is the angle subtended between the cell centres of adjacent
neighbours. One RHSM angle unit is equivalent to π/4, π/3 or 2π/3 for RHSM-rec, RHSM-
hex, or RHSM-tri respectively (see Figure 8.2 on page 168). Normalising anistropy results
by RHSM angle facilitates comparison of algorithms and geometries because one RHSM
unit represents the range of one D8 direction or one D∞ facet.
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9.2. Cone direction Dx and D∞ direction accuracy and
anistropy

9.2.1. Overview

The aim of this experiment was to quantify the RMAE of Dx and D∞ flow direction
algorithms in RHSM-rec, RHSM-tri, and RHSM-hex by comparing flow direction arrays
with solutions derived analytically on dispersive and concentrative cones. In addition,
the anisotropy of the Dx and D∞ flow direction algorithms were explored by mapping
the spatial distribution of the RE. Comparing the anistropy of the different geometries
provides insight into the nature of the geometric bias inherent in the algorithms. D∞ is
more accurate than Dx, however, there are still errors and geometric bias in the direction.

9.2.2. Methods

The experiment uses the dispersive and concentrative cone surfaces described in Subsec-
tion 9.1.2. Using RHSM-rec, RHSM-tri, and RHSM-hex tessellations, flow direction arrays
were defined using D∞, Dx and analytically. The analytical solutions were determined
using Equation 9.7. The resulting directions are expressed in radians anti-clockwise from
the x-axis.

The analytical solutions were considered to be correct and were subtracted from the
other datasets determined on equivalent tessellations to produce error (E) arrays using
Equation 9.10. The error array was also plotted against analytical direction to highlight
the anistropy.

The error of each dataset was summarised by a Mean Absolute Error (MAE). The central
cell was excluded from the MAE because, given that all directions have an equal slope,
it assumes an arbitrary direction based on the order in which the algorithm considers
neighbours.

9.2.3. Results

The flow direction and error arrays for the concentrative cone are shown in Figure 9.2. The
spatial distributions of errors for the dispersive cone are shown in Figure 9.3. Directions
are shown in red and errors are shown in diverging colours; blue is positive error (clockwise
of analytical), brown is negative error (anticlockwise of analytical), lighter colours indicate
less error.
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The RHSM-tri results are poorly represented at this scale so a near zoom of part of the
result is shown in Figure 9.4. The RHSM-tri creates an alternating pattern which at
far zoom appears similar to RHSM-hex because the sum of two consecutive vectors of
RHSM-tri is equivalent to an appropriately scaled RHSM-hex vector (Figure 9.5).

The MAEs are summarised in Figure 9.6. D∞ directions are roughly 2 orders of mag-
nitude more accurate across all RHSM geometries. In both algorithms, rectangular is more
accurate than hexagonal and both are notably more accurate than triangular. There is no
difference in the MAE between dispersive and concentrative cones using Dx algorithm.
However, D∞ slightly more accurate in concentrative cones than in dispersive.

Dx errors are plotted against the analytical angle in RHSM units in Figure 9.7. The clearly
defined lines in Figure 9.7 show that Dx results are invariant with elevation contour.
The Dx results vary with direction with discontinuities at RHSM = 0.5. Dx errors are
greatest at the divisions between the restricted directions and error free at the midpoint
of each direction. RHSM-tri results form two lines due to the alternating neighbourhood
directions.

D∞ errors are plotted against the analytical angle in RHSM units in Figure 9.8. D∞
errors vary with direction and have discontinuities where RHSM = 1 and 0, and least error
where RHSM = 0.5. Locations without error in D∞ results coincide with the greatest
errors in Dx. In addition, Figure 9.9, which plots error against angle and distance from
the cone centre, shows that D∞ errors increase toward the centre of the cone.

There are thin strips of zero error where the analytical direction corresponds with the
edge of a D∞ facet edge. However, the error associated with contour is greatest in the
cells adjacent these strips. The error then diminishes toward the centre of each facet. The
sign of the error reverses between divergent and convergent cones. D∞ is slightly more
accurate in concentrative cones than it is in dispersive cones.
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Figure 9.2.: Concentrative cone flow direction anistropy. The geometry of each column
is indicated by the shape in Row 1. Row content is as follows; Row 1: Analytical,
Row 2: Dx, Row 3: Analytical - Dx, Row 4: D∞, Row 5: Analytical - D∞. The
Row 5 colour scheme has a smaller range than Row 3 in order to contrast the spatial
distribution of error. See Figure 9.6 to contrast error magnitude between methods.
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Figure 9.3.: Dispersive cone flow direction anistropy. The geometry of each column is
indicated by the shape in Row 1. Row content is as follows; Row 1: Analytical, Row 2:
Dx, Row 3: Analytical - Dx, Row 4: D∞, Row 5: Analytical - D∞. The Row 5 colour
scheme has a smaller range than Row 3 in order to contrast the spatial distribution of
error. See Figure 9.6 to contrast error magnitude between methods.
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Figure 9.4.: RHSM-tri flow direction anistropy close up. Column A is a near zoom
of the dispersive RHSM-tri directions in Figure 9.3, Column B is a near zoom of the
concentrative RHSM-tri directions in Figure 9.2. Row content is as follows; Row 1:
Analytical, Row 2: Dx, Row 3: Analytical - Dx, Row 4: D∞, Row 5: Analytical -
D∞. The Row 5 colour scheme has a smaller range than Row 3 in order to contrast
the spatial distribution of error. See Figure 9.6 to contrast error magnitude between
methods.
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Figure 9.5.: Paths between hexagon and triangle cell centres. The path through three
triangles shown in black is equivalent to the path between two hexagons shown in
brown. Therefore, hexagonal and triangular flow directions form similar patterns.
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Figure 9.7.: Dispersive cone Dx flow direction anistropy. Errors are shown for the three
geometries plotted against RHSM angle.

Figure 9.8.: Dispersive cone D∞ flow direction anistropy. Errors are shown for the three
geometries plotted against RHSM angle.
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Figure 9.9.: Dispersive cone D∞ direction anistropy by angle and distance to the cone
centre.
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9.2.4. Discussion

It is unsurprising that D∞ is significantly more accurate than Dx. Dx directions are
limited to the directions of neighbours, whereas, D∞ varies continuously, which gives it
the flexibility to model flow direction more accurately. The Dx accuracy of the different
geometries of tessellation is related to the magnitude of angle subtended between neigh-
bouring cell centres, which is also the angle that in Dx is simplified to a single direction.
The greater the angle, the greater the maximum and mean error. In D∞, the sign of the
errors are reversed when comparing dispersive and concentrative cone in Figures 9.2 and
9.3 because reversing the direction of flow causes the facet to be formed with different
nodes.

The difference in accuracy between the different geometries is very pronounced in Dx.
However, the same ranking of geometries for accuracy is exhibited to a reduced extent
in D∞, which is due to the assumption that the aspect of the steepest facet applies to
the entire cell, when it has, in fact, been calculated from only a single facet. On a cone
surface, the direction of the steepest facet will be slightly more or less than the analytically
determined direction of the cell, unless the steepest facet is directly in line with the cell
centre and cone centre, which occurs only when the direction is in the centre of the facet;
a situation that occurs when the direction is halfway between neighbours. The bias in
D∞ from the facet direction increased toward the centre of the cone because the range of
angles represented by a single cell is greater, therefore, the potential for bias due to the
non-alignment of the steepest facet is greater.

One possible explanation for why the dispersive errors are slightly larger than the con-
centrative errors is due to ambiguity in dispersive directions, which is discussed further
in Section 9.3.

9.3. Cone accumulation Dx and D∞ anistropy

9.3.1. Overview

This experiment determines the distribution of relative error of flow accumulation for a
single LoD. Concentrative and dispersive cones are analysed for D∞ and Dx. The ex-
periment compares the three geometries for flow accumulations derived from Dx arrays
but only RHSM-rec and RHSM-hex for D∞ because the D∞ algorithm does not func-
tion in triangular geometries. Three forms of D∞ accumulation are examined (Linear,
Angular, and Areal). RMAEs are calculated to rank the algorithms. The anistropy is
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analysed by plotting relative error in 2-D to highlight algorithm artefacts. Due to the
ordered structure of the cone surfaces, anisotropy is accentuated. The anistropy of the
different geometries indicates that it is unhelpful to consider the cross-section of the cell
in estimation of contour length for specific catchment area.

9.3.2. Methods

The flow accumulation algorithms Dx and the three versions of D∞ were applied to
the flow direction arrays generated in Section 9.2. Relative Error was determined by
comparison with a for the cell centre. a was calculated using Equation 9.9. All cells have
an area of 1. Therefore, the flow accumulation value was not adjusted to allow for the
variation of cell size. The analytical angle of each cell is found by the same formula used
to determine the analytical angle to test flow direction (Equation 9.7).

Relative Error arrays were mapped as colour intensity in 2-D, and also plotted against
angle measured in RHSM units. Each Relative Error array was summarised by finding
a trimmed RMAE. As cells get closer to the centre of the cone, at some point, the
radius of curvature relative to cell size becomes significant and the relationship between
flow accumulation and a breaks down. For this reason, a section of the cone near the
centre, where the radius of curvature is greatest, is omitted from the statistics. This was
accomplished by excluding the 5% most extreme error values.

Relative errors were also predicted for options 2 and 4 discussed in Subsection 8.5.1 to
allow comparison with observed errors. The Relative Errors from cell width were modelled
using the equations below.

RE2rec = | sin (D∞) |+ | cos (D∞) | − 1 (9.13)

RE4rec = 1
RE2rec

− 1 (9.14)

RE2hex = cos ((D∞+ π/2) %π/3− π/6)
cos (π/6) − 1 (9.15)
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RE4hex = cos (π/6)
cos ((D∞) %π/3− π/6) − 1 (9.16)

Where RE2rec and RE4rec are the modelled errors for RHSM-rec using options 2 and 4
respectively, and RE2hex and RE4hex are the modelled errors for RHSM-hex.

9.3.3. Results

Dx Accumulations

The results are summarised as RMAEs in Figure 9.10. Dispersive cone errors are no-
ticeably greater. The ranking of the geometries differs between the dispersive (rec, hex,
tri) and concentrative (hex, tri, rec) cones. The Dx accumulations on the dispersive cone
and concentrative cone are shown in Figures 9.11 and 9.12 respectively. A close up of an
individual cell neighbourhood is shown under the results, this helps compare the anistropy
of the results with the geometry of tessellation.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

R
e
la

ti
v
e
 M

e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

Geometry/Algorithm

hex/Dx

rec/Dx

tri/Dx

D
isp
ersive

Concentrative

Surface

Figure 9.10.: Dx Accumulation summary

214



9.3 Cone accumulation Dx and D∞ anistropy

Figure 9.11.: Dx dispersive cone accumulations. Each column features the geometry in
the bottom row.
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Figure 9.12.: Dx concentrative cone accumulations. Each column features the geometry
in the bottom row.
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D∞ Accumulations

The results for D∞ Linear dispersive cone are shown in Figure 9.13, for D∞ Angular
dispersive cone in Figure 9.14, and D∞ Areal dispersive cone in Figure 9.15. The equival-
ent results for concentrative cones are shown in Figure 9.16, Figure 9.17, and Figure 9.18
respectively. Accumulations are blue, error in light green and pink diverging, and Relative
Error in dark green and purple diverging. A close up of an individual cell neighbourhood
is shown above the results.

RHSM-hex accumulations are symmetrical across the facet; whereas, RHSM-rec accumu-
lations are symmetrical only across adjacent pairs of facets, which corresponds to the
neighbourhood symmetry. The exception is RHSM-rec angular dispersive, which is only
rotationally symmetric.
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D∞ Accumulations Dispersive

Figure 9.13.: D∞ Linear accumulation on dispersive cones.
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Figure 9.14.: D∞ Angular accumulation on dispersive cones.
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Figure 9.15.: D∞ Areal accumulation on dispersive cones.
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D∞ Accumulations Concentrative

Figure 9.16.: D∞ Linear accumulation on concentrative cones.
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Figure 9.17.: D∞ Angular accumulation on concentrative cones.
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Figure 9.18.: D∞ Areal accumulation on concentrative cones.
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D∞ Accumulations Metrics

The trimmed RMAE are summarised in Figure 9.19. Unlike the Dx results, dispersive
cone accumulations are not consistently less accurate than concentrative. There is also
no clear trend between RHSM-hex and RHSM-rec regarding which algorithm is closest
to the analytical result. Angular does well in dispersive cones; however, Linear is more
consistent across the geometries and surfaces tested. Areal performs poorly in dispersive
cones.

The Relative Errors for each cell are plotted against analytical angle in Figures 9.20, and
9.21 for dispersive and concentrative cones respectively. Dispersive results are generally
less reflectionally symmetrical, with the symmetry breaking down for RHSM-hex near the
facet boundaries. RHSM-rec datasets are more accurate near the shorter facet edge and
less accurate near the longer facet edges. Whereas, RHSM-hex is more accurate at the
facet boundaries and less so in the centre of the facet. For comparison, expected relative
errors modelled using Equations 9.13 to 9.16 are shown in Figure 9.22.
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Figure 9.19.: D∞ accumulations trimmed RMAE summary for three versions of D∞
using RHSM-hex and RHSM-rec. The D∞ algorithm is on the x-axis and RMAE on
the y-axis. Dispersive cone results are shown on the left and concentrative cones on the
right.
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Figure 9.20.: D∞ accumulation Relative Error for each cell in the array for the dispersive
cone. The x-axis is analytical angle in RHSM units, the y-axis is the Relative Error.
The three forms of D∞ algorithm form the columns: Column 1 is Linear, Column 2 is
angular, and Column 3 is areal. The top row in green is RHSM-rec, the bottom row in
red is RHSM-hex.
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Figure 9.21.: D∞ accumulation Relative Error for each cell in the array for the concen-
trative cone. The x-axis is analytical angle in RHSM units, the y-axis is the Relative
Error. The three forms of D∞ algorithm form the columns: Column 1 is Linear,
Column 2 is angular, and Column 3 is areal. The top row in green is RHSM-rec, the
bottom row in red is RHSM-hex.
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Figure 9.22.: Modelled Relative Errors from cell dimensions. (a) models RHSM-rec
option 2 (projected width) from Equation 8.5.1, (b) models RHSM-hex option 2, (c)
models RHSM-rec option 4 (Area/Length), (d) models RHSM-hex option 4. Due to
the 90 degree rotational symmetry, width and flow length are the same for rectangular
cells but not for hexagonal cells.
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9.3.4. Discussion

The ideal result of an accumulation on a cone surface would have circular accumulation
contours, with no variation in accumulation along the perimeter of any circle centred
on the cone centre. The analytical determinations of a in Figures 9.11 and 9.12 are
good representations of the ideal accumulation result. D∞ accumulations depart from
this isotropic ideal in ways that relate to the geometry of tessellation that are discussed
below.

The Relative Errors of concentrative D∞ accumulations in Figures 9.16, 9.17, and 9.18
exhibit edge and centre effects. The edge of the dataset is a poor approximation of a circle
due to being composed of regular tessellations. Near the edge of a concentrative cone,
the accumulations are small consisting of only a few cells, therefore, there are significant
differences between between the RHSM accumulation, which consists of whole cells and
the calculation of a, which assumes a circular boundary. Centre effects are exacerbated
by the ordered nature of the cone. Errors accumulate, therefore, even very small biases
will become large toward the centre of the cone.

The relationship between Specific Catchment Area and flow accumulation

The mid slope section, away from the edge and centre, also does not fit the isotropic ideal.
Subsection 8.5.1 proposed that inaccurately modelling the contour length (l) implied by
the conversion of (A) into a may cause anistropic behaviour if the estimate of the contour
length does not vary with direction. Four options were proposed to model l and graphed
in Figure 9.22. Although the general shapes of the errors suggest that there may be
a relationship, Options 2, 3, and 4 do not fit the observed errors. Option two shows
greatest errors where there should be least, although option 3 modelled errors are not
shown, they would be similar to option 2. Option 4 models RHSM-rec errors effectively;
however, it does not match RHSM-hex. Unlike the RHSM-rec, RHSM-hex option 4 is not
simply a reflection of option 2 across the x-axis because the flow length and flow width
are negatively correlated in regular hexagons but identical in rectangles.

Another point that argues against correcting for angle is that, in cone surfaces, all up-
stream cells have the same angle of incidence or at least are within the same range, but
this is not the case in natural landscapes. Therefore, one should not apply a correction to
a calculation to account for geometry unless one intends to consider the geometry of all
upstream cells, i.e. geometry must be considered during accumulation not after. In reality
the geometry effects will probably average out in complex terrain so mean cell width is
the most appropriate way of estimating contour length. In fact, the evidence suggests
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that the algorithm D∞ works most effectively in situations where the flow direction is
aligned with the point set structure. This analysis does not show whether these effects
are significant in less structured surfaces.

In summary, there is no justification found here, empirically or theoretically, to consider
the variation of flow width (contour length) with direction when converting flow accumu-
lation to Specific Catchment Area in regular tessellations. There are systematic biases
in the D∞ flow routing algorithm that are greater than any bias caused by flow width
varying due to the direction of flow relative to grid orientation. In other words, errors in
the area (A) outweigh the errors in contour length l. Therefore, Option 1: the application
of mean cell size, is the most appropriate option.

Observed lack of symmetry

A puzzling result was the lack of symmetry observed most clearly in the RHSM-rec results
in Figure 9.14 and also when comparing the symmetrical results for RHSM-hex on con-
centrative cones in Figure 9.21 with the less symmetric RHSM-rec results on dispersive
cones in Figure 9.20. These effects are observed in the anisotropy of errors but are not of
sufficient scale to be observed in the RMAE.

Seeking an explanation for this phenomenon, a close examination of flow direction arrays
revealed that dispersive results are not exactly opposite (π radian different from) the
concentrative results, with the greatest discrepancy near to the centre of the cone. The
discrepancy between the dispersive and concentrative directions is greatest where the D∞
facet edge aligns with the concentrative direction.

Due to the symmetry of the cone, an angle that is equally subtended from the facet edge
but on the opposite side would have the same slope. Critically, this direction is on a
different facet so will attribute flow to different neighbours; which neighbours receive flow
is governed by how the algorithm breaks the tie. The algorithm was implemented to select
the first direction when there is a tie, based on the assumption that this would be very
rare. However, on dispersive cones it is not rare, and in fact occurs frequently, inevitably
generating the asymmetry observed.

This exposes a failing of the conceptual model. Only a single direction is specified for each
cell. However, on dispersive surfaces a range of directions are the steepest downslope. If
this were not the case, water would not disperse under the kinematic assumption. The
algorithm is randomly picking one of the directions from within the dispersive range and
assigning that as the flow direction depending on the order in which the algorithm assessed
cells. This causes asymmetry if the dispersion crosses facet boundaries by distributing
flow to different neighbours.
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Dispersion is a constant bifurcation; on a divergent surface every point is a ridge point
with divergent flow paths. The planar assumption inherent in the D∞ triangulation
represents this divergence as two possible flow paths on different facets. As the surface
gets less divergent further from the centre of the cone, the divergent results narrow and
approach the direction which is the opposite of the convergent result or, indeed, the
analytical result, which is also affected by this conceptual weakness.

There is a temptation to resolve the divergence asymmetry by averaging the two possible
solutions in divergent surfaces but this is not realistic because it effectively assumes that
water flows along ridges if the asymmetry is generated by the circumstances described
above in divergent terrains. A more conceptual robust solution would be to adapt the
accumulation algorithm to correctly model the dispersion possibly by permitting flow to
more than two neighbours.

9.4. Dx and D∞ direction compression and accuracy on
cone surfaces

9.4.1. Overview

This experiment investigated the reduction in cell numbers (compression) and loss of
accuracy (error) associated with variable density LoD realisations for Dx and D∞ flow
direction arrays generated on a mathematically defined concentrative cone surfaces. Only
RHSM-rec and RHSM-hex were investigated. Dispersive cones were not investigated,
however, not withstanding the lack of symmetry identified in Section 9.3, dispersive cones
would have the same compression and accuracy. The decision rule applied to determine
the realisations set a tolerance value that is the maximum allowable divergence between
the value in the sparse realisation LoD and its finest children in the base dataset. In this
experiment, the datasets were not limited to a circular shape.

The tolerance value for Dx was 0. Dx compression was plotted against cardinality (the
number of cells in the base layer). Increasing cardinality reduces the rate of change
between neighbouring cells. The dilution of accuracy on Dx arrays was only determined
for RHSM-hex surfaces; there is no dilution of accuracy for RHSM-rec. The accuracy for
RHSM-hex changes due to the difference between the directions possible on different LoDs.
The results showed that the Dx dilution of precision was significant for the RHSM-hex,
which indicates that restricted flow direction algorithms are not effective for RHSM-hex.
The results of the Dx analysis were published in Wright et al. (2014).
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A range of tolerance values were applied to D∞. For both the RHSM-rec and RHSM-
hex, the percentage of compression is highly sensitive to the tolerance value applied in the
decision rule. Loss of accuracy was plotted against tolerance. Unlike D6, D∞ RHSM-hex
flow directions can be upscaled into coarser LoDs without alteration because all directions
are permitted.

9.4.2. Methods

Dx Methods

To investigate Dx compression, a total of 14 data sets were created. Seven datasets were
created for each of RHSM-hex and RHSM-rec with the number of cells in each dataset
equal to ai {i ∈ Z|1 ≤ i ≤ 7}, where a is the aperture of the RHSM (7 and 9 for RHSM-
hex, and RHSM-rec respectively). Each dataset can support a maximum of i + 1 LoDs
with the coarsest LoD being a single cell. The aggregation value was equal to i. A cell
size of 1 was used for all datasets. However, due to the self similarity of the underlying
cone, the cell size is immaterial. In contrast to other trials, this experiment conceptually
holds the extent constant and makes resolution finer, thus increasing cardinality.

To generate the synthetic elevation values, the HIP ordinate for each cell in the tes-
sellation was converted into (x, y) coordinates, from which the elevation value (z) was
determined using Equation 9.1 for concentrative cones. Dx flow directions were calcu-
lated for each dataset. Pyramid layers were formed using the spatial average scaling rule
and an error pyramid was created to express the maximum divergence from the value of
the finest children (Subsection 8.4.2).

Each of the flow direction arrays was then compressed to form a variable resolution surface.
The decision rule was to select the coarsest resolution in which the following was true.

Eihip = 0 (9.17)

Where Eihip is the error value at level i at location hip. The compression achieved in
each case was determined as a percentage using:

Cb− Cs
Cb

× 100 (9.18)
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where Cb represents the number of cells at the finest level of resolution and Cs represents
the number of cells in the compressed dataset.

Vector solutions were determined by calculating the direction from the centre of each
cell to the centre of the cone using Equation 9.7. The accuracies of the flow direction
arrays were determined for the finest resolution datasets and, for RHSM-hex, the variable
resolution results. An accuracy measure for each cell was calculated as the difference
between the result and the vector result in radians at the centre of the cell. For the
simplified dataset the accuracy result was determined by disaggregating the results back
to the base LoD and comparing the direction to the vector result. For the RHSM-hex the
rotation between levels causes the result to change. For the RHSM-rec and RHSM-tri the
accuracy is the same as the base resolution.

D∞ Methods

λ5RHSM-rec and λ6RHSM-hex flow direction arrays were determined using the D∞
algorithm for a concentrative cone surface (Figure 9.1). Cell sizes were weighted so both
the RHSM-rec and RHSM-hex cells had an area of 1m2. The study area was clipped to
a 240m diameter circle. Thirteen variable density realisations were generated for each
geometry with tolerances ranging from 0 to π/8 radians at π/96 radian intervals.

The compression percentage was determined for all datasets using Equation (9.18). The
Relative Mean Absolute Error (RMAE) was determined for each realisation relative to
theoretical results and plotted against tolerance.

9.4.3. Results

Dx Results

Figure 9.23 displays the flow direction arrays and the error in radians of a 5λ RHSM-hex
on the cone surface and compares it to the base case. The percentage of aggregation
achieved for datasets ranging from two to seven LoDs are given in Figure 9.24. The
percentage of aggregation increases rapidly with increasing cardinality of the dataset.

Figure 9.25 compares the accuracy of the hexagonal sparse realisations with the base
case at the finest level of resolution. These results show that the differences between
the simplified datasets and the vector solutions are greater than the differences between
the base case and vector solutions across all LoDs as indicated by the mean being further
from 0, the standard deviation being greater and the extremes being further from 0. Using
the RHSM-rec or RHSM-tri the results will be the same as for the base case, therefore,
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they are not shown. The results show a significant deterioration in accuracy when using
hexagonal sampling. An ANOVA test at 95% significance shows significant degradation
for all but the L3 results, where the sample size is small and little simplification achieved
(see Table 9.1).

Figure 9.23.: Dx flow directions and errors in radians on a concentrative cone surface.
(A) shows the simplified RHSM-rec flow direction. (B) shows the simplified RHSM-hex
flow direction. The flow direction values are measured anti-clockwise from the direction
of the base vector in multiples of 1/4 and 1/3 radians for the RHSM-rec and RHSM-
hex respectively. However, because the direction of the base vector in the RHSM-hex
rotates between levels, the directions are also indicated with black arrows. (C) shows
the direction errors after forming the RHSM-hex variable resolution flow direction. (D)
shows the RHSM-hex direction errors at the finest resolution.
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Figure 9.24.: The number of cells removed relative to the number of cells in base res-
olution versus level for the RHSM-rec and RHSM-hex applied to a Dx flow direction
array on a concentrative cone surface.

Table 9.1.: Significance of dilution of precision for Dx RHSM-hex on concentrative the
concentrative cone surface. An F statistic greater than 19.5 is significant at the 95%
confidence level.

LOD n F statistic 95% Significant
L7 816985 4862.86 19.5 Yes
L6 115465 3165.64 19.5 Yes
L5 16081 283.18 19.5 Yes
L4 2161 21.26 19.5 Yes
L3 265 2.92 19.5 No
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Figure 9.25.: : Box and whisker plot of the dilution of precision for Dx RHSM-hex
on concentrative cone surfaces. The mean (black line) +/-1 standard deviation (thick
blue line) and extreme values (thin blue line) for the error in radians between the flow
direction and the true direction to the centre of the cone. The results for datasets
ranging from 3 LoD to 7 LoD are given. LxBase is the result for the full resolution
with x LoD. LxSimp is the result after the flow direction simplification on hexagonally
sampled data with x LoD.
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D∞ Results

Figure 9.26 shows that the orderly structure of the cone surface permitted substantial
compression. Error increases as the tolerance increases. However, Figure 9.27 shows that
the compression was achieved with comparatively little loss of accuracy. Using a tolerance
value of π/24 in the RHSM-hex generated 94.75% compression with an associated MAE
of 0.0336 radians. The respective values for the RHSM-rec were 94.33% and 0.0263.
By contrast, the MAE of a flow direction array generated using the D8 flow direction
algorithm at full resolution was 0.2619 radians for RHSM-hex and 0.1963 radians for
RHSM-rec.

Figure 9.27 shows that RHSM-rec has less error for tolerances between 4π/96 and 7π/96 but
greater errors above 9π/96. Figure 9.28 displays the flow direction sparse realisations for
a tolerance of 6π/96 and the spatial distribution of the errors associated with those sparse
realisations. Smaller cells are present in the realisation at the centre of the cone and at
the edge.

Figure 9.26.: Compression percentage for D∞ concentrative cone
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RHSM-hex

RHSM-rec

Figure 9.27.: Mean Absolute Error ofD∞ flow direction sparse realisations for tolerances
ranging from 0π/96 to 12π/96 on a concentrative cone.

Figure 9.28.: D∞ flow direction and errors for a concentrative cone sparse realisation.
(A) and (B) show D∞ flow direction sparse realisations for a tolerance of 6π/96 radians
for RHSM-rec and RHSM-hex respectively. (C) and (D) show the spatial distribution
of errors for (A) and (B) respectively. The error is shown as the difference from the
analytical result in radians.
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9.4.4. Discussion

Dx

Compressing the RHSM-hex Dx flow direction array caused significant deterioration of
accuracy. The cause of the deterioration is most likely to be the rotation between levels.
Adjusting the direction will in some instances improve the result and in others worsen it.
However, Table 9.1 indicates that there is a strong bias towards less favourable results.
This effect can be explained by the characteristics of the areas that allow simplification
when using direction restricted flow direction algorithms.

The D6 algorithm divides the cone into six sections, each representing one flow direction.
The centre of these sections is the area where the D6 direction is the most accurate. The
edges of these sections, where the D6 changes from one direction to another are where the
D6 values are the least accurate (see Figure 9.23-C). The decision rule results in coarser
levels of detail being implemented where there are large areas of contiguous homogenous
cells. Due to the rotation effect, simplifying to a coarser LoD causes the D6 direction to
change. The contiguous homogenous areas coincide with locations where the D6 is most
accurate, therefore the simplification is altering the direction where it is more accurate
and preserving it where it is least accurate, resulting in an inevitable degradation of
results as seen in Figure 9.25. The rotation between LoDs makes restricted flow direction
algorithms impractical when using the RHSM-hex.

One simple way to avoid the rotation effect would be to only use the rectangular sampling
method of RHSM-rec. However, the other benefits of hexagonal sampling for hydrological
analysis would then be lost. The negative results associated with RHSM-hex compression
could be avoided by only simplifying the surface when the coarser resolution result is
similar to the vector result. This is not generally possible because the vector result is not
typically known except when using mathematically defined surfaces. A further possibility
would be to aggregate in areas where there is agreement between the fine level directions
and a coarser level result defined from separate flow direction arrays calculated on coarser
realisations of the surface.

D∞

The unrestricted flow direction algorithm D∞ Tarboton (1997) avoided the problems
associated with inter-LoD rotation of RHSM-hex. The tolerance values where RHSM-
hex is less accurate (from 4π/96 to 7π/96 in Figure 9.27) correlate with datasets where
there is more compression of the RHSM-hex surfaces due to the more efficient packing
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of hexagonal tessellations. The increased compression results in larger errors. Toward
the higher end of the tolerance range, both datasets are approaching the limit of the
number of large cells that can be accommodated as evidenced by the flattening of the
lines in Figure 9.27. The largest hexagons that can be accommodated are smaller than
the largest squares. However, this is not due to packing efficiency; it is due to the difference
in aperture between geometries creating different pyramid scale ranges. For the size of
dataset tested, the RHSM-rec happens to have a larger pyramid cell size that can fit
within the D8 segments than RHSM-hex.

The presence of smaller cells in the centre of the cone is explained by the increased rate
of change of the flow direction. However, the small cells around the edge of the study
area, where rate of change is least, are created by the interaction between the RHSM
geometry and the circular limit; The edge effects observed in the small cells around the
edge are an indication of what would likely occur at suden changes of surface properties
such as the edges of built structures. Smaller cells are required to fill in the gaps around
the larger cells without extending beyond the edge or discontinuity. This effect is form of
the Modifiable Areal Unit Problem (MAUP), that affects vector analysis. Filling edges of
polygons with RHSM tiles may offer a structured method to calculate values for modified
areal units without relying on ad-hoc polygon slivers. However, this potential has not
been explored here.

9.5. D∞ accumulation accuracy by tolerance

9.5.1. Overview

The goal of this experiment was to compare the accuracy of D∞ sparse flow accumulation
arrays to mathematically defined base resolution results, in order to asses the loss of
accuracy associated with compression. The accuracy was determined for cone surfaces,
concentrative and dispersive. The accuracy was determined for the base resolution and for
a series of variable density sparse realisations generated by applying the flow accumulation
algorithm to the sparse flow direction arrays generated in Section 9.4. The results show
that the variable density flow accumulation algorithm is distributing flows unevenly.

9.5.2. Methods

Dispersive and concentrative cone surfaces were defined using Equation 9.1. Flow direc-
tion was calculated for each dataset using D∞ and sparse datasets were generated from
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the flow direction arrays using tolerances ranging from 0π/96 to 12π/96, i.e. the sparse flow
direction arrays from Section 9.4 were used as the input arrays for this experiment. Flow
accumulations were determined using the leading coarse accumulation model (Subsection
8.5.3) and the linear apportionment form of D∞.

In order to compare the coarse accumulation with the fine Specific Catchment Area (a),
the sparse accumulations were “collapsed” back to the resolution of L0 by assigning each
cell the value of its sparse parent divided by the difference in cell size (the distance between
line adjacent neighbours) between the sparse realisation and base LoD using:

A′ = A
√
a
λ−τ (9.19)

Where A′ is the collapsed L0 value, A is the sparse value, λ and a are the level and
aperture of the RHSM respectively and τ is the LoD of the sparse cell.

The errors were determined relative to analytical results using Equation 9.9.

9.5.3. Results

The RMAE errors are plotted against tolerance in Figure 9.29. The accumulation and
spatial distribution of the errors for the concentrative and dispersive cones are shown
in Figures 9.30 and 9.31 respectively. RHSM-rec concentrative errors decrease as the
tolerance increases from 2π/96 to 5π/96 . Other combinations of tessellation geometry and
cone shape also feature tolerance ranges where errors decrease with coarser resolution.
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Figure 9.29.: : Relative Mean Absolute Error of D∞ accumulations by tolerance on
concentrative and dispersive cones.
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Figure 9.30.: Sparse D∞ accumulations on concentrative cones. The first and second
columns are RHSM-hex, third and fourth are RHSM-rec. The first and third columns
show accumulation in blue. The second and fourth columns show Relative Error in
diverging orange and purple. The numbers in the first column indicate the tolerance
(in units of π/96 radians) for each row. Only selected tolerance values are shown.

242



9.5 D∞ accumulation accuracy by tolerance

Figure 9.31.: Sparse D∞ accumulations on dispersive cones. The first and second
columns are RHSM-hex, third and fourth are RHSM-rec. The first and third columns
show accumulation in blue. The second and fourth columns show Relative Error in
diverging orange and purple. The numbers in the first column indicate the tolerance
π/96 radians) for each row. Only selected tolerance values are shown.
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9.5.4. Discussion

The results in Subsection 9.5.3 indicate that the flow accumulation algorithm is not
functioning as anticipated in variable density realisations. Figure 9.29 shows that for
RHSM-rec on concentrative cones and to a lesser extent using the other geometry/cone
combinations, accuracy improved with increasing tolerance for some intervals of the tol-
erance range investigated. Increasing the tolerance should reduce accuracy because the
larger cells are disguising sub pixel variability The improvement is related to increases in
tolerance that reduced the number of changes in LoD along the flow paths; sometimes
greater tolerance reduces the number of such changes causing the results to improve,
which indicates that the “leading course” method of distributing flows between different
LoDs is causing substantial deterioration of accuracy.

Where flow is from coarse to fine some cells receive flow from two neighbours and some
from only one; this was not accounted for, resulting in uneven downstream flows. The
problems identified with the LoD transitions require addressing through refinement and
adaption of the apportionment model described in Subsection 8.5.3.

A second observation indicates a different problem. All datasets have a high mean, which
casts doubt on the model used to collapse the results from sparse to fine resolution for
assessment. It is important to use an adjustment based on linear cell size, an areal
adjustment will reduce the accumulations too much and create large shortfalls. Some
overstatement is expected because the accumulation for each cell is added before calcula-
tion of accumulation, therefore, the upstream part of coarse cells will include some flow
that in a finer grid will be downstream but it is unclear whether the magnitude of error
observed (about 30%) can be explained by this effect.
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9.6. RHSM D∞ Urban surface test

9.6.1. Overview

This analysis evaluates the relationship between tolerance and compression for RHSM
flow direction arrays on three different types of urban surfaces. The three areas selected
for the case studies feature different levels of urban development and topographies: a fully
urbanised area, a medium density flat suburban area, and a hilly low density suburban
area. The greatest compression occurred in the low density hill area where there is a
greater percentage of non-building surface and distinct flow directions caused by the hill
slopes. Given the poor results for flow accumulation on variable density realisations of
cone surfaces, flow accumulations were not determined. In addition, flow accumulation
on real surfaces would require an effective pit resolution method. Possible approaches to
hydrological conditioning in RHSM are discussed in Subsection 10.3.4.

9.6.2. Methods

All three areas analysed are within the Dunedin urban area and are covered by the
Dunedin City Council’s LiDAR data and GIS database. Dunedin is a small city of ap-
proximately 120,000 people on the shore of an estuary that is typically characterised as a
harbour. Dunedin extends from the harbour into the surrounding hills. The three urban
areas analysed are named and characterised below, and mapped in Figure 9.32

1. City: A fully urbanised area that includes the Octagon (the central block of Du-
nedin’s Central Business District), extends across flat commercial and industrially
zoned land toward the harbour, and includes some of the medium density City Rise
suburb on the surrounding hills.

2. Flat: A medium density suburban area south of the CBD that is very flat, close
to sea level, features a grid street layout hosting a range of single and multi-family
homes typically of one or two stories, with a lot of secondary buildings in yard
spaces.

3. Hill: A hilly area in the low density suburb of Wakari, consisting of winding streets
and mainly single family detached housing.
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Figure 9.32.: Urban case study areas with DSM shown in the background of the case
study areas.
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Urban surface flows typically constitute a greater proportion of total run-off than in
undeveloped areas. Subsurface flows, although important for ecological systems, slope
stability and soil strength, do not generally play a large role in the design of stormwater
infrastructure (Wright and Leonard, 2012). Therefore, it is surface flow which holds
greatest potential for costs and controls infrastructure design. For these reasons, the
subsurface component of urban hydrology is not dealt with explicitly here.

The surface models were created by combining LiDAR generated 1m cell size DTM and
DSM rasters. Values from the DSM were used in areas identified as building by visual
interpretation of orthophotos and DTM values elsewhere. The resulting surface is pre-
dominantly ground and buildings. However, some surfaces that are neither ground nor
building will remain where, for instance, vegetation overhangs buildings. The mixed raster
surface was converted to a 1m cell size RHSM-rec using the raster values at the centre of
each RHSM cell. The RHSM-rec was converted to an equal density RHSM-hex using the
Condat method (Condat et al., 2008). The extents of the case study areas were defined
by a 6 level RHSM-rec with aggregation value 6 (6λ96α), which contained 531 441 cells
and covered an area of 62.8 hectares. The RHSM-hex dataset was level 8 (8λ78α). Values
in the RHSM-hex that were outside the extent of the RHSM-rec were set to NoData.

Flow direction arrays were determined on the RHSM-hex and RHSM-rec elevation surfaces
using D∞. Thirteen variable density realisations were generated for each of the three
sample urban surfaces with tolerances from 0 to π/2 radians at an interval of π/24 radians.
A percentage of compression was determined for each of the sparse realisations using
Equation 9.18.

9.6.3. Results

The percentage of compression is plotted against tolerance in Figure 9.33. Flow directions
arrays for part of each of the three study areas are shown in Figure 9.34. Compression is
greatest in the hill suburb, and least in the flat suburb. Overall rates of compression are
much lower than in the structured cone surfaces. For larger tolerance values RHSM-hex
consistently displays lower compression.
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Figure 9.33.: Compression of urban flow direction arrays. The city area is shown in
yellow, the hill area green and the flat area blue.

248



9.6 RHSM D∞ Urban surface test

Figure 9.34.: Urban flow directions. Each row of the diagram shows the orthophoto,
and RHSM-hex and RHSM-rec flow direction arrays for one of the three study areas.
Only part of the study area is shown so that the cell sizes are visible. The flow direction
arrays shown are those with the coarsest tolerance value used (1/2π radians).
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9.6.4. Discussion

Comparing the compression achieved on structured cone surfaces (Figure 9.26) with the
compression achieved on unstructured urban surfaces (Figure 9.33) shows that, for given
tolerance values, far less compression was achieved on the unstructured surfaces. This
trial has demonstrated that flow direction realisations can be simplified using RHSM LOD
modelling whilst preserving hydrological features. However, it is not clear whether the
compression achieved on unstructured urban surfaces justifies the potential loss of accur-
acy. Compression could be optimised by undertaking hydrological conditioning before or
during LOD modelling. Hydrological conditioning is discussed in a separate subsection
below.

The order of compression for the case study surfaces from greatest compression to least
was Hill, City, Flat; this is consistent with the following observations.

1. Flat areas do not compress because in flat areas directions are very varied and there
are many sinks. Both the varied directions and sinks are plausibly the result of
measurement or interpolation noise. Even if the surface variation in flat areas is
genuine it may not be necessary to preserve it for flood modelling because surface
water will accumulate and fill these small depressions during rain events and, there-
fore, the kinematic effect of small ground variations on the direction of water flow
will be limited.

2. LiDAR derived DTM ground surfaces are smoothed already by the ground clas-
sification algorithms, which has the effect of removing noise and allowing more
compression. The greatest proportion of ground surface was in the Hill surface.

3. The presence of rapid elevation changes around building roof edges means that only
large building roofs are simplified. At finer base resolutions, rooftops, which are gen-
erally smooth and have consistent direction could see greater compression. However
if resolution became finer still, the texture of, for instance, roof corrugation would
begin to prevent compression. This is an example of the importance of considering
model intention when defining decision rules. Is the direction of corrugations im-
portant to hydrological modelling? If not, the decision rule should be constructed
to reflect this.

RHSM-hex surfaces exhibited less compression. Given that this was not seen in the
synthetic cone surfaces, the relative decrease in compression for RHSM-hex was probably
due to noise introduced by interpolation from RHSM-rec.
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9.7. Evaluation summary

This evaluation has assessed the RHSM for the task of hydrological geomorphometry.
Hydrological geomorphometry is, by no means, the only possible function of the RHSM.
However, it is an example of how the RHSM can identify appropriate scale for modelling
and improve understanding of geometric and scale effects in algorithms. The importance
of geometry and scale is explicitly recognised by the structure of the RHSM.

Important findings from the individual experiments are catalogued below.

1. Section 9.2 evaluated the behaviour of flow direction algorithms within the three
regular geometries. The flexibility of unrestricted directions permitted greater ac-
curacy. However, D∞ directions still had geometric bias artefacts that were related
to the geometry of the elevation nodes used by the algorithm to determine direction.

2. Section 9.3 evaluated the behaviour of flow accumulation algorithms within the
three regular geometries and explored the relationship between flow accumulation
and Specific Catchment Area (a). No benefit was found in considering the perpen-
dicular cell cross section of the flow direction when converting flow accumulation
to a. In addition, a lack of symmetry on dispersive cones revealed a conceptual
weakness of D∞ flow apportionment in dispersive environments. The various D∞
apportionment algorithms were found to vary in effectiveness between geometries.
Although no algorithm performed best in all geometries, linear apportionment gave
the best overall performance.

3. Section 9.4 evaluated the effect of scale on flow direction by determining sparse
realisations of flow direction arrays. Dx does not compress well in hexagonal tes-
sellations but D∞ worked well in all geometries, which emphasises the value of
unrestricted flow directions. The hexagonal grid demonstrated superior compres-
sion but also inferior accuracy across a range of tolerance values.

4. Section 9.5 evaluated the accuracy of flow accumulation arrays generated from the
variable density direction arrays generated and assessed in Section 9.4. A counter in-
tuitive increase in accuracy observed in coarser datasets created with larger tolerance
values indicated undesirable behaviour of the variable resolution flow apportionment
algorithms employed.

5. Section 9.6 investigated compression of flow accumulation arrays on real world urban
surfaces. Significantly less compression was observed on complex urban faces com-
pared to structured cone surfaces. The spatial distribution of compression was
affected by differences between the scale of surface textures in modified and natural
terrains.
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Some of these issues (3. and 4.) relate to new algorithms presented here and have
potential for rapid improvement given further development of the scaling functions and
decision rules employed. Others (1. and 2.) have implications to the commonly used flat
resolution geomorphometric algorithms and should inform development and application of
these algorithms. Interaction between LoDs (4) did not match the analytical results well,
which suggests that the conversion of the flow routing algorithms to operate in variable
resolution should be reassessed at a conceptual level and learnings from these experiments
incorporated.

The results of the experiments described in this chapter have suggested a road map
for further research. These future research opportunities will be elaborated in the next
chapter.
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10. Discussion

This chapter discuses the RHSM in the context of the literature review in Part I. Section
10.1 discusses aspects of the surface model itself, and Section 10.2 discusses the eval-
uation of the RHSM for hydrological geomorphometry (Chapters 8 and 9). Proposed
experiments and future research directions are also described in Section 10.3 and Section
10.4 respectively.

10.1. RHSM discussion

10.1.1. Cohesive framework for surface models

Geomorphometry literature tends to stress the algorithm not the surface. When surfaces
are considered they are typically defined solely by reference to the classical implement-
ations: square tessellated DEMs, node based TINs, Voronoi tessellation, or more rarely,
hexagonal or unstructured tessellations (Zhang et al., 2014). Goodchild et al. (2007) de-
composed spatial discretisations into geo-atoms, which are the basis of both geo-fields and
geo-objects (Section 3.3). Gold (2009) explicitly recognised the common features of fields
and objects in the form and nature of Voronoi diagrams (Subsection 3.4.2).

The cohesive framework detailed in Chapter 3 catalogued geo-fields by the types of struc-
ture, geometry, interpolation, and data model employed. The cohesive framework facilit-
ates the deconstruction of algorithms. The proposed benefit of such deconstruction is to
better understand the behaviour of algorithms by generalising them for different surface
models and comparing their operation and outputs. For instance, see the discussion be-
low about the affect of the geometry of tessellation on flow direction and apportionment
algorithms.

10.1.2. Appropriate scale for surface models

The challenge of considering scale in distributed environmental models raised three ques-
tions in Section 5.1: Do variables change with scale? If so, how do you integrate variables

253



Chapter 10 Discussion

(or processes) to form a generalised value (or process)? and, if model outputs are affected
by scale of input measurements and calculation scale, what scale should we use? Choosing
the scale to use in a distributed model can be divided into two tasks: identifying pro-
cess scale (Subsection 2.3.3) and implementing the appropriate scale in the model. The
concept of process scale is well defined in literature (Blöschl and Sivapalan, 1995).

The RHSM is a structured approach to scaling and defining scale that is intrinsically
process scale seeking. However, it does not rely on direct selection of model scale, instead
scale selection is driven by the definition of a decision rule; the scale itself is not defined
until model runtime. Therefore, scale is not an assigned parameter but an emergent
characteristic of the model and the data underlying it within the constraints of the applied
decision rule. Using the decision rule to define a threshold accuracy is closer to the
intention of the modeller than stating a representative scale or model resolution.

The decision rule that was defined in Subsection 8.4.3 and applied in Chapter 9 finds
the lower limit of variability. This is comparable to the Geographic Variance Method
(Moellering and Tobler, 1972). However, only the lower limit of the scale of maximum
variance is considered, the scale where variation diminishes due to uniformity of the
underlying surface. The upper limit, where averaging induces uniformity, could also be
considered in the decision rule, thus, identifying the peak of variability. Flow direction
was chosen in Section 8.1 as the parameter to control resolution, which differs from the
elevation based control employed by Vivoni et al. (2004)’s hydrological similarity TIN
accumulation model.

Döll and Lehner (2002) describe up-scaling methods for grid based outputs of hydrolo-
gical geomorphometry, including drainage vectors. The RHSM offers an alternative LOD
approach, which involves up-scaling the inputs using a scaling rule and determining the
outputs by recalculation on a variable resolution grid. This is the first time that hydro-
logical geomorphometry has been described in a multi-resolution framework. Previous
examples have been limited to up-scaling of a single parameter such as the work of Döll
and Lehner (2002) and de Sousa et al. (2006).

The LOD approach employed by the RHSM to find process scale is able to support vari-
ation of process scale across the domain. This can be contrasted with Geographic Variance
Methods (Moellering and Tobler, 1972), which implicitly assume constant process scale
across the domain. If the process scale is very fine in some parts of the model domain,
a uniform density model requires a fine scale surface over the entire domain, which may
be computationally infeasible or unwarranted by the available data (Kampf and Burges,
2007).
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10.1.3. Data model

The RHSM data model applies LOD modelling techniques from computer graphics to
GIS operations and models. The general framework of Multi-triangulation (Puppo, 1998;
Cignoni et al., 1997) is adapted in the RHSM to generate aperture 4, 7, and 9 divisions
of space that are based on self-similar regular neighbourhoods. Therefore, the RHSM is
effectively a splat based model that forms regular tessellations (Subsection 3.8.1).

The loss of flexibility associated with regular geometry allows simpler supporting struc-
tures and corresponding algorithms (Gerstner, 2003). de Floriani et al. (2005) identified
three considerations for multi-scale models. (1) generality and flexibility, (2) efficiency
(query performance), and (3) compactness. The RHSM is highly compact due to the
regular implicit structure, and has excellent query performance, but is less flexible than
irregular geometries.

The RHSM extends the functional surface model to define scale via the scaling function
and decision rule. The error value - decision rule system provides ample flexibility to
create domain specific methodologies within a common computational framework. RHSM
realisations are effectively variant forms of a Quadtree (Samet, 1984). Particularly in
the utilisation of hierarchical division until a level of homogeneity is reached. The key
difference is that the addition of a decision rule from LOD modelling (de Floriani et al.,
2005) provides flexibility in the degree of homogeneity required.

Selective refinement applies the refinements required to achieve a user defined LoD in a
user defined region of interest (Danovaro et al., 2006). However, unlike a Quadtree, the
RHSM is not a top down division but, instead, an analysis of scale variation. Building
pyramid layers with a scaling function gives the modeller the ability to consider scale
effects across several resolutions. The tiling system employed by the RHSM is similar to
schemes used by Platings and Day (2004) and Bing Tile scheme (Microsoft Corporation,
2013), however, it utilises consistent indexing of values within the array and within the
tile index (Subsection 6.2.2).

The RHSM is a data structure ideally suited to generating self-similar Quadtree like
realisations. The flexibility provided by the scaling function and decision rule system
distinguishes the RHSM from a Quadtree variant to being a scale aware spatial data
structure.
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10.2. Assessment discussion

10.2.1. Tessellation geometry

Consistent neighbourhoods simplify neighbourhood operations. However, surface models
with regular geometries introduce geometric bias to some spatial analysis including popu-
lation dispersion models (Holland et al., 2007) and hydrological flow direction algorithms
(Tarboton, 1997). Geometric bias can be examined by comparing results obtained using
RHSM-hex, RHSM-rec, and RHSM-tri and then adapting the algorithm informed by the
observations on the different geometries.

RHSM-hex achieved greater compression than RHSM-rec (Figure 9.26), however, this was
associated with increased error (Figure 9.27). This result does not support earlier work
from de Sousa et al. (2006) on up-scaling drainage vectors on hexagonal grids, which saw
better performance for hexagonal sampling. However, further investigation is required to
determine whether the increased compression is sufficient to outweigh the increased error.

There are a number of examples in the literature of comparative studies showing that
algorithms that consider more neighbours are more accurate or less sensitive to errors than
those that consider fewer; For instance, Jones (1998) and Raaflaub and Collins (2006) (see
Subsection 4.1.2). This effect was also seen in Section 9.2 where rectangular D∞ direction
was more accurate (Figure 9.6). However, hexagonal tessellation has more neighbours that
are at the same distance. Six equidistant neighbours are present in hexagonal sampling,
which collectively encompass the entire neighbourhood. In a rectangular tessellation, only
four equidistant neighbours are available. The consistent neighbourhoods of hexagonal
sampling suggests that greater use of hexagonal tessellation in science and industry would
be appropriate.

10.2.2. What flow accumulation measures

Gallant and Hutchinson (2011) noted that some authors consider the direction variant
cross-section of a cell when converting flow accumulation to Specific Catchment Area (a)
for validation. Section 9.3 showed that correcting for cross-section does not consistently
improve the performance. However, RHSM-rec appears to match Option 4 (Subsection
8.5.1), whereas RHSM-hex does not. Performing the analysis only in rectangular sampled
space would have been misleading: multiple geometries must be assessed to identify geo-
metric effects.

Another example of unnoticed geometrical biases undermining results can be seen in the
analysis of the accumulation algorithm of the Mass-Flux Method (MFM) presented by
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Gruber and Peckham (2009) (Subsection 4.3.2). The results of Gruber and Peckham
(2009) on a cone surface appear to conform to the expected concentric circles. However,
because the study area is square, greater accumulation should be seen flowing from the
corners1. The error generated by the geometric bias of the corner neighbours would
become apparent if the domain was restricted to a circle as was done in Subsection 9.1.2.

10.2.3. Accumulation algorithms

Single and multiple direction algorithms

D6 flow direction and accumulation had been described previously in de Sousa et al. (2006)
and Wright et al. (2014). Subsection 8.3.1 defined a generalised single flow direction as
Dx. In addition, Subsection 8.3.2 generalised the D∞ algorithm of Tarboton (1997)
to any geometry of tessellation by utilising the cohesive framework for surface models
described in Chapter 3. The generalised algorithm gave insight into the behaviour of the
apportionment algorithms not apparent in the original geometries. For instance, D∞
performs badly when flow direction is evenly distributed between neighbouring facets as
indicated by the anisotropy in Figure 9.14.

Pan et al. (2004) and Erskine et al. (2006) distinguish single and multiple direction al-
gorithms and find that multiple flow direction algorithms are perferred on some surface
types. Relative differences were greatest along ridges and side slopes, and differences
decreased where the terrain became more convergent. Erskine et al. (2006) recommend
Multiple-direction algorithms on undulating terrains because they allow for flow diver-
gence. However, these studies do not separate the direction and accumulation compon-
ents. For instance, Pan et al. (2004) identifies D∞ as a bi-flow algorithm, however, this is
only true of the accumulation; the direction component of D∞ is singular. Single direc-
tion algorithms do not readily model dispersion contributing to the observed anisotropy
seen in Figure 9.14.

Apportionment forms

Orlandini et al. (2003) described two methods that carry discrepancies of flow direction
from the D8 method along the flow path known as D8-LAD (eight drainage directions,
least angular deviation) and D8-LTD (eight drainage directions, least transverse devi-
ation). Tarboton (1997)’s D∞ algorithm used angular displacement. Orlandini and
Moretti (2009) identify the difference between the two regarding relative apportionment

1It should be noted that Gruber and Peckham (2009) describe this as a preliminary analysis.
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near the facet edges but indicates that it is not clear which is more effective. Section
9.3 introduces a third alternative, areal displacement, and compares the three for the
dispersive and concentrative cone surfaces. Figure 9.19 showed an overall better perform-
ance of linear. This is a useful conclusion, although, it is necessary to confirm this better
performance on other surfaces.

There are examples in literature of apportionment algorithms that are adjustable. For
instance, MFA can be distributed proportional to slope (Quinn et al., 1991) or propor-
tional to slope to an exponent (Freeman, 1991; Quinn et al., 1995; Seibert and McGlynn,
2007). Adjusting the exponent fine tunes the behaviour of multiple MFA algorithms for
specific surfaces. It may also be beneficial to adjust apportionment within the RHSM for
different surfaces.

10.3. Proposed experiments

10.3.1. Scale sensitivity

In a model that varies with scale, scale is effectively a parameter and a candidate for
sensitivity analysis. Given the treatment of scale as a variable, experiments are required to
investigate how modellers can achieve the sensitivity analysis, optimisation, and validation
for scale. In the RHSM, scale is expressed in the decision rule, therefore, the experiments
described in Section 9.5 are effectively a form of sensitivity analysis of scale in hydrological
geomorphometry.

The scale sensitivity analysis of hydrological geomorphometry should be extended by
analysing how the model output is affected by changing the tolerance and, therefore,
resolution of other parameters in the model; For example, with elevation or accumulation
as the resolution driving parameter. This experiment would determine whether variable
realisations based on direction preserve hydrological accuracy better than the equivalent
elevation compression.

It would also be interesting to repeat the experiment with direction compressed but
calculating accumulation at the reference scale. This would provide insight into how
compressing direction affects accumulation without the additional and significant effects
from variable resolution flow accumulation being present. The results would also be
useful as a benchmark for assessing alternative variable density accumulation algorithms.
Another experiment was described in Subsection 9.4.4, which suggested calculating flow
direction independently on each level of the RHSM pyramid and then devising a decision
rule that identifies appropriate scale by comparing between levels.
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10.3.2. Error noise complexity

The RHSM should be used to investigate the sensitivity of hydrological geomorphometry
to noise. The proposed experiment would be similar to Monte-Carlo error analysis but
the goal is not to quantify error but, instead, to observe scale effects. The experiment
would generate an artificial surface either a linear slope or simple polynomial and then add
controlled noise to the data and examine how the models change as variability changes.
The experimental results would allow production of statistical models for a range of surface
complexities that could be related to surfaces found in various environments including
urban ones.

The above analysis would extend the work of Endreny and Wood (2001) by introducing
multi-scale surface models into the analysis of the sensitivity of flow routing methods
to elevation errors. Another effect that may be relevant to scale is the observation of
Oksanen and Sarjakoski (2005) that errors increase as noise correlation distance increases.
An understanding of the effect of scale on errors may explain this effect.

10.3.3. Hydrological geomorphometry

Some extensions to the hydrological geomorphometry experiments are described here.

Catchment boundaries

The RHSM Hydrological geomorphometry described in previous chapters can be exten-
ded to align with existing single scale modelling practises by, for instance, introducing
time, subsurface hydrology, slope, topographic wetness index, and catchment delineation.
Storing a value for threshold draining that can be adjusted up or down to merge catch-
ments without rerunning the analysis is an interesting idea (Liu and Snoeyink, 2005).
Catchment boundaries require non-dispersive accumulations for instance Orlandini and
Moretti (2009)’s D8-LTD method.

de St. Venant

There are two ways that the RHSM could be used for de St. Venant flow modelling.

1. The RHSM could be used to define variable density meshes for existing numerical
solution models to the de St. Venant equations, such as HEC-RAS (Tate et al., 2002).

2. The de St. Venant equations could, potentially, be solved within the RHSM structure
itself. It also may be beneficial to use a variation of Morris and Woolhiser (1980)’s
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guidelines for when the kinematic equation is valid to control the type of solution utilised
by the model as an extension of the function of the decision rule.

Flow direction methods

Flow direction algorithms can be investigated in a number of ways in light of the analysis in
this thesis. For instance, the modifications to the Rho8 flow direction algorithm suggested
in Subsection 8.3.3 are an opportunity to advance the work of Fairfield and Leymarie
(1991) and Wright and Leonard (2012). The analysis of Dx and D∞ flow direction
and accumulation algorithms could be extended by adapting more algorithms from the
literature (see Section 4.3) to the RHSM and including them in the assessment. The results
from the direction analysis in Section 9.4 would be clearer if plotted against compression
achieved instead of level. A more experimental possibility is to apply the RHSM to the
Modifiable Area Unit problem mentioned in Subsection 9.4.4.

The problems Section 9.3 identified in the D∞ algorithm may be addressed by creating a
two facet (i.e. three neighbour) form of the D∞ direction algorithm. Such an algorithm
could consider whether the three cells were concentrative or dispersive and adjust the
apportionment accordingly. Alternately, the RHSM could utilise the hierarchical structure
to determine direction using finer or coarser relatives.

Apportionment algorithms

It may be possible to fine tune D∞ further by adapting the apportionment algorithm.
This could be accomplished by further analysis of the differences identified between geo-
metries and scales, and/or by analysis of the conceptual and mathematical models. The
demonstrated shortcomings of the flow accumulation methods investigated provide point-
ers to possible improvements. For instance, an apportionment algorithm that allows flow
to more than two neighbours may reduce anisotropy.

An alternative approach would be to optimise the apportionment algorithms using a
stochastic method to try numerous possible apportionment algorithms to identify, em-
pirically, generally applicable solutions. The most successful formulations could then be
analysed to determine the physical basis of their suitability.

The variable resolution flow accumulation algorithm needs to be redesigned to address
the weaknesses identified in Section 9.5. An initial exercise is to implement and assess
the other models for variable density accumulation described in Subsection 8.5.3.
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10.3.4. Urban surfaces

Not withstanding the necessary improvements to the variable resolution flow accumu-
lation model, progress toward an urban RHSM urban run-off model could be made by
undertaking the following experiments.

Flow routing in urban environments

The Dx and D∞ experiments described in Chapter 9 for mathematical surfaces can be
conducted using an urban surface model. However, this would require a definition of
true direction and accumulation. A preliminary approach would be to construct a surface
that has urban characteristics out of differentiable mathematical shapes. A surface that
includes buildings, roads, and channels could be constructed from planes and simple
curves.

A surface as simple as a plane with a channel would shed light on the affect of geometry
and direction anisotropy in the generation of sinks. It is not currently clear whether
the isotropic neighbourhood of RHSM-hex would reduce formation of sinks compared
to RHSM-rec or whether the fewer neighbours of RHSM-hex would increase false sink
formation.

An urban surface developed from mathematical shapes would be highly idealised. How-
ever, to perform the experiments on an urban surface model constructed from LiDAR or
photogrammetry would require a definition of truth for the study domain. Comparison
data to validate urban hydrological models are rare and at least expensive if not infeasible
to collect. However, some data do exist, for example regional councils in New Zealand
develop 1, 2, and 3-D models of urban areas for flood risk assessment, which can be used
to compare flow predictions.

Rather than comparing between different models, it would be better to compare models
to observations. Reported observed urban flood pathways and flood extent are present in
academic and commercial literature. Other potential sources of validation observations
are citizen reports (Gaitan et al., 2015), and remote sensing datasets that distinguish
wet and dry areas during flood events and may be observed by drone surveys (Schumann
et al., 2009). A final option is urban flooding created in controlled lab conditions.

Hydrological conditioning and LOD modelling

There is an important interplay between hydrological conditioning and LOD modelling.
Hydrological conditioning will affect the results of LOD modelling and the decision rule
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can be used as a form of hydrological conditioning. Just as interpolations for hydrology
should consider drainage structure, the decision rule and error value in LOD modelling
should consider drainage structure. Further experiments could be performed to investigate
this relationship.

The intention of the model developer is crucial in the selection of hydrological conditioning
approaches and the LOD decision rule so that appropriate scale can be determined without
manual assessment of individual areas. If, for instance, the intention of the modeller is the
construction of a flow direction surface for flood modelling of urban areas, the preservation
of high resolution around buildings may be justified by the high value that residents place
on whether those areas are likely to be affected by flooding.

Compression of flow direction arrays would benefit from conventional hydrological con-
ditioning techniques such as smoothing, pit filling, and introduction of ancillary data
(Section 4.4). Smoothing base data before LOD modelling would increase compression at
the cost of potentially obscuring important variation. Filling sinks would also create flat
areas, which would be suitable for compression.

LOD modelling introduces some alternative approaches to hydrological conditioning. For
instance, smoothing in an LOD model need not be performed on the surface; instead, the
error value or decision rule could be altered by ignoring outliers when deriving the error
value. For flow direction modelling, slope could be introduced to the decision rule so that
differences between child directions on relatively flat surfaces are given less significance,
effectively increasing the tolerance in flat areas. Decreasing the threshold value of the
decision rule with increased accumulation my help resolve the critical part of the flow
network

In an LOD model, known surface features could be introduced as ancillary data in vector
form before compression to ensure that these features are preserved. Indeed, densification
of the sparse model to greater than base level resolution in areas of known hydrological
features could be desirable: effectively allowing ancillary data to affect resolution. Using
fractional HIP addresses in areas that contain important features is one way to achieve
local finer resolution, whether for sink resolution or ancillary data. In a sparse LOD
model, this could be implemented by the insertion of channels that flow through cells
that are smaller than the base resolution, such a technique would be in accordance with
Lindsay and Creed (2005a)’s objective of least impact sink resolution.

10.4. Proposed RHSM improvements

Recommendations for further work to improve the RHSM are given below.
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10.4.1. Efficiency and development of RHSM computational model

The computational model was developed as a proof of principle implementation. Be-
fore further development is applied to the computational model, it would be advisable
to rebuild the code in a more readable and modular form that is simplified to the es-
sential elements. Assuming that development continues in a non-commercial open-source
development model, such work should be hosted on an open source platform.

In order to become a usable platform, the performance speed of the RHSM computational
model must be improved. Reassuringly, many improvements of the RHSM computational
model are possible that have not yet been implemented.

1. Implementation in a more efficient language i.e. a C variant.

2. Implementation of multi-core processing.

3. Utilisation of graphics card processing.

4. Improvement of visualisation speed by implementing a vector tile format (supported
by ESRI and Mapbox), which could be viewed by a browser.

5. Improvement of efficiency of algorithms.

One high value target for more efficient implementation is the addition function. More
generally, if many local neighbourhood operations will be performed on a dataset, it
would be very efficient to store the neighbours in the form of neighbour arrays rather
than calculating neighbours on the fly using addition. Finding neighbours is very easy for
cells with a HIP ordinate ending in 0 (centre cells of agglomerations). Algorithmically
shifting the centre to create views of the array from which the neighbours of other cells can
be extracted as easily as the centre cell would markedly improve neighbourhood operation
speed.

A very simple improvement, that was not implemented, is the application of visible scale
ranges so that fine resolution data are not displayed when zoomed out. A more radical
efficiency measure would be to adopt the model of raster functions implemented in ArcGIS
Pro to develop real time processing of subsets of an RHSM.

10.4.2. Improvement of mathematical model

Some necessary additions to the mathematical model are given below.

1. An efficient method to calculate HIP ordinates given (x, y) coordinates is missing.
One potential solution is to adapt the Morton address to hexagonal axis.
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2. Error value calculation could represent the variation using a fractal variable or a
measure from the variogram.

3. Add support for No Data cells to the Condat interpolation.

4. More interpolation algorithms

The interpolation methods implemented in the RHSM were listed in Subsection 7.3.6.
These interpolation methods create artefacts around sudden changes of elevation and may
alter drainage patterns. Hydrological applications rely on surface shape and drainage
networks rather than elevation directly. Therefore, interpolation models that consider
shape are required. However, elevation based methods such as kriging and second order
least squares may be important for other applications.

Some literature examples of interpolations that consider drainage structure are Mass
Balance (Grimaldi et al., 2005), ANUDEM (Hutchinson, 1989), Regression kriging (Hengl
et al., 2008), and network snakes (Goepfert and Rottensteiner, 2009). These methods also
permit the use of auxiliary predictors, such as river lines, in the interpolation.

10.4.3. Further development of the RHSM conceptual model

Some refinements to the RHSM conceptual model that are worth considering are,

1. Application to a global referencing frame.

2. Introducing fractional HIP addresses to provide finer than base scale resolution in
restricted areas, if such data are available.

3. Relaxing the hierarchy geometry to allow a greater range of resolutions.

4. Introducing more flexible hierarchy branching sites. One significant conceptual
change in the model structure would be to allow branching at fractional scale ratios
(in addition to the fractional spatial addresses proposed in refinement 2.). How this
would be accomplished computationally is not clear but it would permit analogue
scale ranges.

10.4.4. Other applications of the RHSM

Significant unrealised potential exists for using the RHSM to improve geomorphometric
algorithms by comparing the results of operations conducted with the different geomet-
ries. It is currently unknown how some aspects of geomorphometric analysis, whether
hydrological or otherwise, are affected by the geometry of tessellation. RHSMs could
be utilised in experiments to determine whether the geometry of tessellation affects pit
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formation, extent of hydrological conditioning required, and sensitivity to errors in data;
to mention just a few examples from hydrology (see Section 10.3). Such studies would
benefit from inclusion of irregular Voronoi tessellations.

There is also unexplored potential to improve understanding of scaling by using the RHSM
as a scaffold to describe and apply scaling functions and investigating how the results
compare to measured observations, if such variant density observations exist. Obtaining
such test data would be difficult given the rigidity of the multi-scale structure. Different
scale observations could be sourced from ground, aerial and space platforms but these
platforms would not necessarily be aligned with RHSM levels, which is further impetus
to develop more a flexible multi-scale geometry.

This chapter discussed the RHSM and its assessment in the context of relevant literature.
What follows will conclude the thesis in the context of the objectives of the research.
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11. Conclusion

11.1. Summary

This section summarises the thesis in relation to the three core motivations and five
research questions that were stated in Section 1.3.

11.1.1. Surface models for hydrological geomorphometry

The first objective was to identify the characteristics of a surface model that considers scale
and geometry in geomorphometric catchment analysis. This objective was captured by
two research research questions: 1. What are the characteristics of GIS surface models and
how can they be catalogued and understood? And 2. What kind of surface model provides
the ability to model hydrological processes that occur at different scales in different areas?
This objective was primarily addressed in Part I.

Part I explored a diverse selection of academic literature with the goal of finding ideas
that could be developed into a new surface model that is optimised for geomorphometric
hydrological modelling. In Chapter 2, after a look at the nature, benefits, and limitations
of models in general and hydrological models in specific, the complexity of modelling
distributed variables that vary with scale emerged as a core motivation in the development
of a surface model for hydrological modelling.

Chapter 3 developed a systematic framework to describe and catalogue the various sur-
face models in use. Two themes that emerged from this process were the potential for
hexagonal tessellations to be better utilised for spatial problem solving and the growing
importance of hierarchical data structures for describing and computing 3-D space. A
conceptual intersection of ideas between scale and hierarchy was discovered that became
the inspiration for the RHSM developed in Part II.

Chapter 4 turned to the various techniques of parametising surfaces numerically, collect-
ively known as geomorphometry. The main focus was a multi-step process of static flow
routing, which was adapted for hierarchical surface models and assessed in Part III. The
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systematic description of surface models in Chapter 3 proved to be a useful tool to de-
construct geomorphometric algorithms and reconstruct them in generalised form that can
operate on different surface models.

11.1.2. The proposed surface model

The second objective was to identify a surface model that meets these criteria and develop
a mathematical and computational framework to integrate the proposed surface into a
GIS. This objective was encapsulated by research question 3: How can a surface model
that models processes at different scales in different areas be implemented?

Part II set out the RHSM, which is the proposed surface model. The conceptual motiv-
ation was to model parameter variability with scale explicitly using a hierarchical data
structure. This was achieved by implementing a regular discrete structure for both the
spatial dimension and the scale dimension in the form of a regular pyramid. The regular
structure was compatible with implicit data structures. The surface model utilised an
adapted version of the HIP addressing system of Middleton and Sivaswamy (2001) that
was generalised for the regular tessellations: triangular, hexagonal, and rectangular.

Borrowing ideas from variable resolution data structures for computer graphics, a frame-
work was developed to identify appropriate resolution for modelling based on the concept
of Level of Detail (LOD) modelling. The RHSM combined pyramid layers generated by a
scaling rule with error values and a decision rule to generate variable density realisations.

11.1.3. Hydrological Applications

The third objective was to evaluate the performance of the new surface for geomorpho-
metric catchment analysis with respect to scale and geometry.

Part III built on the RHSM by developing and evaluating a set of hydrological applica-
tions with the intention of performing geomorphometric catchment analysis on multiple
scales and capturing complex surfaces without resorting to excessive resolution or manual
determination of appropriate scale. Chapter 8 proposed variants of D∞ and Dx flow
routing algorithms that were generalised for various geometries, and methods to perform
accumulation on variable resolution realisations generated from flow direction arrays us-
ing simple scaling functions, error values, and decision rules. These developments affirm
research question 4: Can the algorithms of flow accumulation and direction be generalised
to hexagonal and variable resolution surfaces? Chapter 8 also introduced a methodology
to adjust the apportionment of flow accumulation algorithms; Linear, Angular, and Areal
forms of D∞ apportionment were described and implemented.
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Chapter 9 described an assessment of the RHSM flow routing procedure that solved the
algorithms on mathematically defined cone surfaces and compared the results to analyt-
ically defined solutions. The RHSM highlighted the interaction of geometry and scale
with the algorithms. These findings were summarised and discussed in Section 9.7 and
addressed research question 5: How does the surface approximation in geomorphometric
catchment analysis affect model outputs?

The long term goal of this research is stated in research question 6: Can we resolve com-
plex overland drainage networks using multi-scale surface modelling? Although promising
indications were seen in this research, this question cannot yet be answered in the affirm-
ative.

11.2. Conclusions

One of the most beneficial and interesting aspects of this thesis was the deconstruction
of flow algorithms into components that can be adapted and reassembled in hexagonal
and rectangular space. This process of deconstruction and generalisation to different
geometries provided a deep understanding of the operation of the algorithms. Three
specific notable findings were:

1. That flow accumulation arrays should be compared to specific catchment area using
the cell size (one dimensional density measure) as a substitute for contour length
rather than considering the cross-sectional length of the cell as it varies with direc-
tion.

2. That linear was the overall best performing apportionment algorithm for D∞.

3. RHSM-hex achieved better performance for compressing flow direction arrays.

Application of the methodology to urban environments was restricted by limitations iden-
tified in both the underlying flow accumulation algorithms and the LOD method trialled.
The implementation was very efficient for generating pyramids. However, for some other
tasks it was less effective. For instance, converting the outputs into a form that can be
viewed in the ArcGIS platform was slow. The issues identified can be addressed using the
recommendations in Subsection 10.4.1 to begin developing real world models.

Notwithstanding the challenges that remain to be overcome, RHSM sparse realisations
offer a formal data structure to capture, within distributed environmental models, fine
details with large effects. The approach described in this thesis departs from methods to
achieve similar results via altering the distribution density of numerical solution schemes.
The LOD process used to generate data dependent sparse realisations encourages the user
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to focus on selecting appropriate decision rules and scaling functions rather than manually
defining the resolution for specific areas.

Scale and geometry are primary considerations for modellers that are translating the
analogue complexity of the real world into digital domains for geographical modelling.
This thesis, motivated by pragmatic simplicity and implicit efficiency, has proposed a
regular structure for both scale and geometry. The usability and applicability of the
model must follow. The strengths and weaknesses of implicit regularity of scale and
geometry in surface models complement more flexible irregular explicit schemes.

The processes outlined in this thesis represent a new and promising method for analysing
complex surfaces. The vision that motivates the model presented here is a user friendly
GIS tool that modellers can use to implement scaling rules and decision rules to perform
a wide range of multi-scale analyses, where the scaling and decision rules represent best
practise understanding of the processes being modelled. This goal is achievable now that
the fundamental concepts have been demonstrated.

It is imperative for communities in our growing towns and cities to balance our desire
to shape the environment to our needs with the necessity to find an enduring way to
live within the constraints of the environment. Effective management of stormwater
requires the full and appropriate use of the data streams that our spatial technologies
and information processing abilities allow; variable scale modelling in GIS is a critical
component of this endeavour. Further research into the RHSMs introduced in this thesis
will improve spatial models by explicitly recognising and modelling the effects of scale
and geometry.
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A. Model quality and assessment

In this thesis the term “model” was used to describe a digital representation of a surface
and also to describe a digital representation of a environmental process. This appendix
discusses assessment of environmental models, see Subsection 3.2.3 for assessment of Di-
gital Elevation Models. For further reading, see a collection of papers edited by Anderson
and Bates (2001).

Hydrological models are approximations of reality that contain assumptions and sim-
plifications. However, models are often expected to be useful in making predictions in
situations that have not yet occurred or where measurements have not yet been made
(Beven, 2001). It is reasonable to want to know how accurate such predictions would
be and how effective a model is at representing the behaviour of the system it describes.
However, to prove conclusively that a model is completely accurate, one would need to
completely understand the real world phenomena that is being modelled, for natural and
engineered systems this is difficult task.

Due to the inherent limitations of modelling and the difficulty of accurately assessing the
validity of hydrological models, catchment hydrology has been referred to by some as a
trans-scientific discipline one with “questions that can be asked of science and yet cannot
be answered by science” (Beven, 2001). The challenge of accurately assessing hydrological
models makes rigorous testing and assessment of models even more important. Model as-
sessment involves several interrelated components, including documentation, verification,
error budget, error propagation, sensitivity analysis, optimisation, and validation. The
components of model assessment are discussed below. Following these procedures will not
prove that the model is accurate but will provide a measure of quality assurance.

A.1. Documentation

Perhaps the easiest but also among the most essential components of model assessment is
comprehensive documentation of the conceptual, mathematical, and computational stages
of model development. Model documentation and testing are crucial to ensure that results
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are reproducible and scientifically sound (Sasowsky, 2006). It is very important that the
model developer documents the limitations of the model and clearly articulates them so
users apply the models correctly.

Oreskes and Belitz (2001) provide an insightful discussion of the philosophical issues
of model assessment including a warning that “the modeller may be blamed for faulty
predictions caused by limitations of which he or she was well aware, and perhaps even
warned people”. Ironically Oreskes and Belitz (2001) inadvertently provide an example.
Oreskes and Belitz (2001) claim that the controversial Limits to Growth (LtG) study
(Meadows et al., 1972) inaccurately predicted “wide-spread natural resource shortages,
exponential price increases for raw materials, and possibly global economic collapse before
the end of the century.” However, Meadows et al. (1972) made no such claim.1

That both the authors of Oreskes and Belitz (2001) and the paper’s reviewers overlooked
or ignored misstatements of fact regarding the findings of Meadows et al. (1972) indicates
cognitive bias; in this case a negative one toward the LtG model. However, in other
situations involving models that have been developed by recognised experts and used
frequently in the past, there is a very real danger that the models will be applied erro-
neously with overconfidence that the conceptual model is sound as it has been developed
by clever people who are the best in their fields. Clear documentation of the limitations,
assumptions, and methods employed in the model is the best defence against both unfair
criticism and unsuitable application due to overconfidence.

1Oreskes and Belitz (2001) note that the end of the century has come and gone without these events
occurring and suggest that one of the reasons for the failed prediction of the LtG study was that the
authors of the LtG study made a conceptual error regarding the definition of resources that caused
them to underestimate available non-renewable resources. This critique is flawed in three ways. 1)
The LtG did not include any predictions and was not intended as a predictive model. Rather, it
presents an ordered set of assumptions that indicate modes of behaviour of the world system and
allows the response of the system to different policies to be tested. 2) The “standard run” model,
the most pessimistic of the scenarios investigated by the LtG study, indicates peak resource use in
the middle of the 21st century not the end of the 20th. 3) Meadows et al. (1972) were aware of
their ignorance of the true quantity of resources. They used an optimistic estimate for resources and
included a parameter that allowed them to vary total resources to investigate how the model behaved
under different assumptions. Both doubling resource and infinite resource assumptions were tested.
In both cases the model led to a collapse in industrial output caused by pollution. In 2017, the LtG
model as a predictive model is neither validated nor invalidated. Recent reports suggest the advice to
drastically reduce consumption of non-renewable resources is still sound (IPCC, 2014). Subsequent
editions of the limits to growth book have sought to make these points more clear (Meadows et al.,
2004).
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A.2. Verification

Accurate documentation should be combined with thorough testing of the model to verify
that it is performing in accordance to the specifications. Ensuring that a model adheres
to specification is sometimes called verification and should not be confused with valida-
tion, which is assessing if a model adheres to real world behaviour i.e. the system it is
representing (Barnsley, 2007). Code frequently contains unintentional errors, which affect
model outcomes. Thorough testing is essential to locate and remove such bugs and ensure
that a model performs calculations as intended. Roerdink and Meijster (2000) warn to
be wary of modifications and optimizations of the computational model, which can lead
to departures from the algorithm specification.

A.3. Error budget

It is necessary to identify and account for the sources of errors in a model and where
possible to quantify the effects of these errors on model outcomes. Errors can be assessed
a priori by analysing the inputs and structure of the model, and a posteriori by comparing
the model outputs with observations or by the internal consistency of the data within the
model framework.

There are three broad categories of error, data errors, model conceptual errors, and nu-
merical errors. Data errors may include input data, uncertainty or errors in the data used
to parameterise the model, and errors in the data used to validate the model. Concep-
tual errors may including simplifications and assumptions made in the conceptual model,
errors or inappropriate methods employed in the mathematical model, or mistakes or in-
correct techniques in the implementation of the computational model. Numerical errors
in the computational model may include limitations of numerical solution schemes, in-
exact arithmetic, or software and hardware numerical precision limits (Barnsley, 2007).
Numerical errors can be significant in hydrological models, especially time stepping mod-
els. Such errors can be reduced by using error minimizing variable time steps (Clark
and Kavetski, 2010; Kavetski and Clark, 2010). Given the sources of uncertainty, it is
appropriate to produce an error budget of the known sources of error in the model and
to assign likely values to these errors.
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A.4. Error propagation

Errors should be propagated through the model to see the range of outputs possible given
known uncertainties from model, data, and parameter uncertainty. Errors can be propag-
ated analytically or stochastically. Heuvelink (1998) describes methods for propagating
errors in environmental models. Analytic techniques are more suited to local paramet-
ers such as slope and aspect rather than regional parameters such as flow accumulation
(Oksanen and Sarjakoski, 2005). Stochastic error propagation can be performed using
Monte-Carlo analysis (Endreny and Wood, 2001; Raaflaub and Collins, 2006; Lindsay
and Evans, 2008; Heuvelink, 1998). Gonçalves and Santos (2005) demonstrate interval
arithmetic as an alternative to Monte-Carlo for slope classes.

Monte-Carlo involves generating realisations of your dataset by adding randomly gener-
ated errors to the data or by producing sets of parameters which vary within a realistic
range. Running the model a sufficient number of times with different realisations gen-
erates a range of plausible outcomes, which can be analysed to determine the effect of
data or parameter errors. Van Niel and Laffan (2003) describe techniques to determine
how many realizations are required for Monte-Carlo error propagation. The outputs of
Monte-Carlo analysis can be averaged to create probability weighted flow tubes (Endreny
and Wood, 2001), or probability weighted catchments (Wright and Leonard, 2012).

Data errors can be auto-correlated or uncorrelated (Raaflaub and Collins, 2006). Several
authors have investigated the effect of error correlation on surface hydrological models.
Endreny and Wood (2001) showed correlation was not important for error propagation
on run-off flow paths. However, careful study of error correlations on slope, aspect, and
catchment found errors increased as spatial correlation range increased, contrary to the
prevailing assumption that no auto-correlation is the worst case scenario (Oksanen and
Sarjakoski, 2005). In addition to the auto-correlation model, it is important to be aware
of biases in random number generators and to select the appropriate ones because they
have been shown to affect the result of Monte-Carlo analysis (Van Niel and Laffan, 2003).

A.5. Sensitivity analysis

Sensitivity analysis is the study of the effect initial values of input parameters have on the
outputs. Sensitivity analysis perturbs one or more of the initial parameters to investigate
the effect on the result of the model. Sensitivity analysis differs from error analysis because
the goal is to understand the relative importance of individual parameters on the output.
See Ros and Borga (1997) and Francos et al. (2003) for sensitivity analysis of hydrological
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models. Lindsay and Evans (2008) showed that various morphometric properties derived
from DEMs are unstable given likely error ranges.

Sensitivity analysis can identify model inputs that cause significant uncertainty in the
output and are therefore candidates for further research to improve the model. Alternat-
ively, parameters that have no effect on the output may indicate redundant parts of the
model structure, which could be removed.

The one parameter at a time method of performing sensitivity analysis does not cap-
ture interactions between parameters and, therefore, becomes increasingly inaccurate as
parameter numbers increase (Saltelli et al., 2000). Distributed models support differ-
ent parameters in each cell over the entire spatial discretisation, giving rise to a great
many parameters and a consequential challenge to understand parameter sensitivity. As
discussed in Kampf and Burges (2007), in many models, there is a trade off between
comprehensive process representation and over-parametrisation. Ockham’s razor applies,
which states that if a simple model will suffice, none more complex is necessary. A counter
argument to the principle of Ockham’s razor in hydrological models is that nuance and
subjectivity are required to represent our best understanding of complex systems.

A.6. Optimisation

Optimisation is the tuning of a model to produce desired outcomes in a specific domain
by altering the values of various parameters within reasonable ranges. Sets of model
parameters that produce the desired outcome are considered behavioural. If the condi-
tions that prevailed during the calibration period were unusual the optimisation may be
unsuitable in other domains. There are several methods to identify optimal parameter
sets including the University of Arizona stochastic methodology called shuffled complex
evolution, (UASCE) (Duan et al., 1992), simulated annealing, genetic algorithms, Monte
Carlo Markov Chain methodologies (Kuczera, 1997), and multi-objective optimisation
techniques such as the Pareto optimal set methodology (Madsen, 2003; Gupta et al.,
1998).

The more parameters are present in a model the more flexible the model output becomes.
In an over-parametised model there is a large range of parameter combinations that
leads to results that match the desired results. If there are multiple parameters sets
that produce the desired outcome this is non-uniqueness. Oreskes and Belitz (2001)
identify three types of non uniqueness, numerical (more than one solution to the governing
equations), parametric (multiple combinations of effective parameters), and conceptual
(multiple conceptual models that can account for the empirical evidence). Beven (2001)
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argues that the existence of multiple sets of parameters (and indeed multiple conceptual
models) that produce the desired results is not necessarily evidence of a poorly designed
model but may, in fact, be a fair representation of the level of knowledge of the system.
Beven (2001) calls this non-uniqueness as a final outcome “equifinality”.

The value of a parameter that causes the model behaviour to match real world behaviour
will change depending on the values of other parameters in the model (Beven, 2001). It
is impractical to optimise all these parameters and parameter combinations. Therefore,
general case estimates are used. Complex models may contain more than one error. If
errors cancel each other out, the model may fit the test data but be a poor predictor
in other areas (Oreskes and Belitz, 2001). The fidelity of the conceptual model can be
verified by how well parameter tuning transfers between domains.

Beven (2001) and Beven et al. (2000) developed the Generalised Likelihood Uncertainty
Estimation (GLUE) methodology to accommodate the fact that it is not possible to
identify an optimal set of model parameters. GLUE is an extension of Generalised Sens-
itivity Analysis (Spear et al., 1994) in which many different model parameter sets are
chosen randomly, simulations run, and evaluation measures used to reject some model
structure/parameter set combinations as non-behavioural, while all those considered as
behavioural are retained in prediction. In GLUE, the predictions of the behavioural mod-
els are weighted by a likelihood measure based on past performance to form a cumulative
weighted distribution of any predicted variable of interest.

A.7. Validation

Given a model that has been documented and verified to demonstrate that the simulations
are producing results in accordance with the specifications; and the known sources of error
have, to the extent possible, been quantified and propagated to model outputs; it is then
possible and necessary to assess the model against its intended purpose. This is validation,
a critical assessment of the model to verify that both the model outputs and its internal
states are close to those measured in the real system.

Whether a model is valid may depend on the individual expectation of what a valid
model should accomplish, which depends on subjective interpretation. Oreskes and Belitz
(2001) argue that validation of hydrological models is difficult due to non-uniqueness
(equifinality as discussed above), temporal and spatial divergence, and subjectivity of
model assessment. The extent of the data available for validation may be very limited
compared to the period or area to which the model will be applied. The scale at which
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validation data was measured and recorded may not be commensurate with the scale of
the model.

Validation is ideally accomplished by comparing results against independent lines of evid-
ence. In the case of hydrology, this involves field measurements, bearing in mind para-
meters may have been tuned to these measurements. Unfortunately the geographical
and chronological scales of hydrological processes, and the challenge of access to the sub-
surface make it difficult to find comprehensive independent evidence with which to test
hydrological model claims (Oreskes and Belitz, 2001).

Models can be assessed in their entirety or piecewise. Assessing the entire model is
important because the sum of the errors may be greater than the errors of the parts.
However, errors apparent in the behaviour of the whole model may be the result of many
things and the correct approach to address the errors, other than by arbitrarily tweaking
parameters, may not be obvious. The whole model can be assessed by prediction of
another period of data (a split-record test). A stronger test would be an independent
check of the predicted internal states of the system. This is also problematic, however,
since most internal variables have to be measured at scales much smaller than the grid or
catchment scales of the model predictions (Beven, 1996).

Where independent lines of evidence are unavailable, alternatives need to be found. As-
sessment can be accomplished by comparing between models, either with a different
model, or a similar model with greater resolution, or with a more computationally in-
tensive model (Raaflaub and Collins, 2006). Comparing between models is particularly
helpful for assessing the effect of assumptions made in the conceptual model. However,
great care needs to be taken in assessing which model is more correct based on inter
model comparisons. Another alternative is to compare the proposed model with estab-
lished methods, which represent best practice.

Whether due to the finer spatial resolution or due to the more detailed calculations re-
quired, comparisons with a higher fidelity models are necessarily performed on smaller
domains with the results hopefully being applicable to wider areas. If the high fidelity
approach is plausible over the entire domain, it would be sensible to use the high fidelity
model rather than employing it is a check.

Models can be tested piecewise in domains where components of the model can be determ-
ined analytically, For instance. surface flow algorithms can be tested on basic mathemat-
ical surfaces, such as, inclined planes, convergent and divergent cones, and more complex
example such as Morrison’s Surface III (Jones, 1998).

The statistical measure of accuracy deployed for model assessment depends on the type of
model output being assessed. For an introduction to spatial statistics see Cressie (1991).
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Some statistical measures of the “goodness-of-fit” between the model and observed values
are listed here: modelling efficiency statistic (Döll and Lehner, 2002), coefficient of de-
termination (r2), or chi-squared (χ2) (Barnsley, 2007), paired student t tests, Kolmogorov-
Smirnov (k-s), standard deviation, Pearson product moment correlation coefficients, Wil-
coxon sum-ranks test, (Wang and Yin, 1998), variograms, histogram, and semi-variogram
model (Holmes et al., 2000). Statistical techniques for validating surfaces are discussed
in Subsection 3.2.3.
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This appendix describes the hydrological cycle and summarises urban hydrology. General
overviews of mathematical hydrological modelling can be found in Singh and Woolhiser
(2002) and Kampf and Burges (2007), or Fletcher et al. (2013) for urban hydrological
modelling.

B.1. The hydrological cycle

Powered by energy from the sun and the gravitational pull of the Earth, water is driven
through a large, complex, and never ending cycle, which encompasses the oceans and
atmosphere, as well as the surface and subsurface of the Earth. This cycle is known as
the hydrological cycle and is the focus of the science of hydrology (Chow et al., 1988).
The hydrological cycle can be subdivided into three domains: atmospheric, subsurface,
and surface. A simplified schematic of the hydrological cycle is depicted occurring over
land in Figure B.1.

The dominant hydrological processes in the atmosphere are evaporation, atmospheric cir-
culation, and precipitation, which all occur in the troposphere. Atmospheric circulation is
driven by the heat difference between the poles and the equator, and by the rotation of the
Earth (Chow et al., 1988). Atmospheric circulation can drive water from the oceans far
inland. Within the troposphere, temperature decreases with altitude. Therefore, when at-
mospheric circulation causes air to rise, water vapour may condense around condensation
nuclei to from droplets, or if the temperature is below freezing, ice crystals, which may
coalesce to form snow. Droplets grow through collisions and condensation, and shrink due
to evaporation, causing them to rise and fall within clouds until the weight of the droplet
causes gravity to overcome friction and the droplet breaks free, to fall as precipitation in
the form of rain, snow, hail, or sleet. The quantity of water reaching the land surface via
precipitation varies significantly from place to place and over time (Chow et al., 1988).

Upon reaching the ground, water is stored or driven by gravity on a path back to the
oceans. Water that has reached the ground in solid form may melt shortly after or spend
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Figure B.1.: The hydrological cycle.

a considerable time as ice in glaciers or ice caps. Porous soil and rock strata contain voids
that permit water flow; other impermeable rock and soil strata do not. Water falling
over land as rain, or water from melting snow and ice may infiltrate the upper levels
of soil and become subsurface flow or may infiltrate more deeply into the ground and
become ground water flow. Subsurface flow occurs in the unsaturated or vadose zone
where the voids contain some air. Ground water flow occurs in the saturated zone where
the voids are entirely full of water. The water table is located where the saturated zone is
at atmospheric pressure. The soil above the water table may become saturated through
capillary action and rainfall may temporarily saturate the soil in the vadose zone. Ground
water may become trapped in underground aquifers, re-emerge as surface water, or be
returned to the oceans as ground water discharge.

Water stored on the surface may be retained for a long time and subject to evaporation,
or detained temporarily and drained by run-off. Water may be detained in reservoirs on
the surface, within the soil column, or in the deep subsurface. Water that never infiltrated
the soil, or water that has re-emerged, may be stored in surface depressions and subject
to evaporation, or it may run-off the surface of the land as overland flow. As a storm
event proceeds storage becomes saturated and a greater proportion of water is realised
as run-off. Overland flow initially traverses the surface of the land as a diffusive sheet
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of water known as hill flow until it becomes concentrated as channel flow inside defined
channels created by run-off driven incision (Heine et al., 2004). Channel flow is fed by
surface flows, subsurface flows, and ground waters.

The rate of infiltration is highly variable due to the characteristics of the land surface
and underlying soil, the saturation level of the soil, and the rate of precipitation. Horton
overland flow is surface run-off generated by rainfall that is too rapid to be absorbed by the
soil (Horton, 1945). Saturation overland flow occurs when soil is saturated from below by
subsurface flow, usually at the bottom of hill slopes and near streams. Subsurface water
in the soil flows much more slowly than Horton overland flow, therefore, only areas close
to the stream contribute subsurface flows to surface channels during a storm event (Dunne
et al., 1975). Surface and subsurface water flow that contributes to stream channel flow
in a few days or less after a rainfall event is called storm run-off. Storm run-off may
be contrasted with base flow, which is fed primarily from ground water flow and does
not respond directly to individual rainfall events. The surface hydrology of a region,
including the response of run-off to rainfall, is affected by topography, geology, vegetation
and human activities (Chow et al., 1988).

B.2. Urban hydrology

There is a sub-discipline of hydrology called urban hydrology, which is the study of hy-
drological processes that are affected by urbanisation (Hall, 1984). The effect of land
use change on hydrology, in particular, has become a topic of interest to researchers (De-
Fries and Eshleman, 2004). Urbanisation, in a general sense, is the increasing influence
of urban areas within human or natural systems. Urbanisation of human settlement is
driven by migration to already populated areas to form more dense communities. The
social connections and opportunities for specialisation of labour enhance the economic
benefit of living in urban areas, which in turn attracts more migration. Urbanisation and
the agricultural practices that support it produce dramatic change to the hydrological
regime of areas subject to it. The study of urban hydrology is often motivated by a desire
to minimise the impact of development on the quantity and quality of surface run-off
generated in urbanised areas (Wright and Leonard, 2012).

Urban catchments have many characteristics that distinguish them from rural and wilder-
ness catchments. In the course of urbanisation, forests are felled, swamps drained, ponds
and depressions regraded, and land is cleared and compacted. To house urban popula-
tions and provide places for work and recreation, towns and cities with their associated
infrastructure are built. To keep dry, people build structures with impermeable roofs. To
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facilitate travel, people build roads of asphalt and concrete. To feed themselves, people
till soil, irrigate crops, and fertilize land. Urbanisation leads not only to more people,
more streets and more buildings but also to an increased density of people, streets, and
buildings.

The proliferation and concentration of impermeable surfaces typical in urban areas pre-
vents precipitation from infiltrating the ground and causes water to collect on the surface
and run-off the land. To accommodate the increase in run-off caused by urbanisation,
communities typically construct a network of channels and pipes to safely transport sur-
face water to a safe discharge point without damage to property and life. This network
may also function as a foul sewer to transport wastes to be treated before discharge. Al-
ternatively, a separate network may be created for this purpose. The urbanisation of a
catchment generally increases run-off quantity and decreases run-off quality both within
and downstream of the catchment being urbanised. Figure B.2 on page 284 includes built
features in the hydrological cycle.

Figure B.2.: Urban hydrology.

Hall (1984) identifies three important challenges for management of urban hydrology:

1. Delivering water supply of sufficient quantity and quality to meet the needs of the
population.
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2. Providing flood control.

3. Controlling pollution to acceptable levels.

These issues result in the development of infrastructure to meet the demand for water,
augment the natural drainage network, protect downstream areas, and dispose of wastes.
Each of these three challenges are discussed below along with two further challenges.

4. Minimising erosion.

5. Mitigating climate change.

Delivering water supply of sufficient quantity and quality to meet the
needs of the population

The populations of urban areas require water for drinking, cleaning, industrial, and re-
creational purposes. In small communities, demand for water may be met from naturally
occurring sources such as rivers and springs or through small scale local infrastructure
such as roof top rain water collection and wells. If a community becomes too densely
populated for their water needs to be met by these means, centralised infrastructure such
as dams, reservoirs and large scale pumping of ground water are developed and combined
with water reticulation to deliver water to where it is needed. As cities increase in size,
it becomes necessary to bring water resources from increasingly distant areas, incurring
greater cost and creating competition with other centres and alternative uses such as ag-
riculture and mining. Much of the water delivered via the water network is eventually
discharged through either the stormwater or foul sewer networks.

Providing flood control

The changes urbanisation brings to the environment greatly affect the quantity of rain-
fall induced surface water run-off. Without mitigation, urbanisation can increase the
peak discharge by a factor of five compared to an undeveloped catchment (Booth, 1991).
Changes in the quantity of discharge are driven by both the increase in impermeable
surfaces and the increase in velocity of water movement through a catchment. Due to
the increase in impermeable surfaces, less precipitation is able to soak into the ground
and a greater proportion of it is realised as surface run-off compared to an undeveloped
state. Urbanisation will have greatest impact in catchments where subsurface flow once
dominated (Booth, 1991).

Hard, impenetrable surfaces; storm sewers, and straighter channels all allow run-off to
flow faster; which transmits water through the drainage network more quickly. Therefore,
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during rainfall events, greater areas of land can simultaneously contribute flow to a single
point of discharge, which leads to a greater quantity of run-off being discharged during a
shorter time.

A catchment can be described as being fully developed when all parts of the catchment are
contributing run-off to the outlet. According to the rational formula (Mulvaney, 1851), if
water is transmitted through a catchment more quickly, the time required for a catchment
to be fully realised (also known as the time of concentration) will decrease. Decreased
time of concentration implies a decrease in the duration of a storm event required to
fully realise the catchment. The distribution of storm intensity against storm duration
indicates that shorter storms of a given intensity are more common than longer ones of
the same intensity. Therefore, decreasing the time of concentration of a catchment results
in a given peak discharge rate being achieved more frequently.

The increased volume of run-off generated by urbanisation is generally accommodated
by the construction of engineered drainage structures such as channel networks and pipe
systems. Design of drainage infrastructure and transport networks must meet the re-
quirements of the community to protect property from flooding and allow unimpeded
travel in all but the most severe and uncommon storm events. In addition, the drainage
infrastructure should be resilient to demands likely to be placed on it in the future, which
may include further development, changes in climate, and sea level rise.

In inland areas, drainage infrastructure that is designed solely to address the drainage
problem of the immediate area may inadvertently create an external drainage problem
and exacerbate flooding downstream (Hall, 1984). The external drainage problem is an
issue both at the city scale and at the scale of individual neighbourhoods. One approach
to address the external drainage problem is to construct artificial detention measures to
perform the reservoir functions of the natural environment that have been inhibited by
urbanisation. Measures such as rain gardens and detention ponds act as storage for flood
waters and release their stored water slowly to reduce peak discharge.

Controlling pollution

Urban populations generate large volumes of wastewater and insanitary wastes, which
may be disposed of in septic tanks or in centralised waste treatment plants that treat
wastes before discharging it into rivers, lakes, and oceans. Sources of wastewater are
connected to waste treatment plants by foul sewer networks. Even with a functioning
foul sewer network, urbanisation frequently decreases channel water quality due to the
combined effects of low flows and contamination. An increase in impermeable area reduces
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ground water recharge, which reduces base flow rates between storm events. Low base
flows combined with an increase in water borne pollutants leaking from the foul sewer
network, and washed from streets and roofs, increases the concentration of pollutants in
waterways. Quality control based on treatment plants cannot effectively address these
diffuse non-point pollutants.

Hall (1984) identified land use controls and retaining vegetation as mitigation measures
that hold promise to control diffuse non-point pollutants. Fletcher et al. (2013) identified
a clear trend in modern hydrology management towards approaches that attempt to
restore pre-development flow-regimes and water quality, to improve both the quality of
the environment and the quality of life of urban residents. However, the performance
of stormwater technologies for removing pollutants remains poorly quantified (Fletcher
et al., 2013).

Minimising erosion

The increase in peak discharge associated with urbanisation of a catchment can lead to
channel erosion and incision. Detention ponds can reduce channel erosion by reducing
peak flows. However, detention ponds create extended periods of above average flow rates
even whilst delivering lower peak discharge; therefore, additional erosion may still occur.
Another factor that may increase stream bed erosion in urban areas is the removal of
vegetation around water courses which, in addition to reducing leaf drop, shading, and
temperature control also removes woody debris from the stream that would otherwise
dissipate energy, thereby reducing erosion (Booth, 1991).

Mitigating climate change

Urbanisation has been shown to have measurable effects on the microclimate of the sur-
rounding area. The effects of urbanisation on local climate include, heat islands, increased
fogs, and increased precipitation (Landsberg, 1981). Urban drainage infrastructure must
be resilient to these changes, in addition to the ongoing climate change and sea level
rise generated by emissions of greenhouse gas. Greenhouse gas emissions are inextricably
linked to urbanisation due to the dependence of urban residents on fossil fuels for trans-
port within cities, and to transport resources into urban areas from outside the region.
In addition to adaptation, careful management of urban hydrology may contribute to
mitigation of both local and global climate effects.
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B.3. Urban surface characteristics

Human activity shapes urban environments into forms that differ from naturally occurring
areas. This section describes characteristics of urban surfaces and urban catchments,
identifies challenges for hydrological modelling in urban environments, and suggests some
requirements for distributed hydrological modelling in urban areas.

Urban environments are not uniform; they vary both within and between cities. This
description considers urban environments typical of industrialised nations. Some elements
of the urban environment are listed and categorised in Table B.1. Urban areas often have
high monetary and social value. Given that the consequences of even limited flooding can
be significant to affected people, it is beneficial to understand fine scale effects in high
value areas.

Surfaces in the built environment can have highly variable and spatially discontinuous
levels of permeability due to relatively impermeable surfaces such as concrete and asphalt
being interspersed with more permeable, natural surfaces. There is also variability in the
short-term storage capacity of the built environment due to the presence or absence of
small surface depressions that require filling before incident rainfall can generate surface
run-off. Therefore, fine spatial precision is critically important when building hydrological
models of the built environment (Wright and Leonard, 2012).

Urban areas are increasingly data rich environments (Section 3.2). The surface models
that are now available for urban hydrology were inconceivable a short time ago. Remotely
sensed data from satellites, conventional aircraft, and Unmanned Autonomous Vehicles
(UAVs) provide extensive raster imagery and dense elevation point clouds. In addition,
vector databases from ground and aerial survey add to the information available. As
a result of these information flows, GIS databases contain multi-dimensional spatial in-
formation about hydrologically significant components of the urban environment, such as
streams and road centrelines, pipe networks, and surface level information in the form of
contours or DEMs. These data are developing increasingly fine temporal and spatial res-
olution, due to improvements in data collection and storage technologies. Contemporary
hydrological modelling techniques should maximise the benefit of these data to produce
information and assists decision makers.

Urban development is an ongoing process. Not withstanding efforts by planners, engin-
eers, and developers to develop areas whilst preserving natural flow regimes; development
has numerous influences on the hydrology of urban environments and these changes can
be affected more quickly than processes in unaltered environments (Fletcher et al., 2013).
Therefore, hydrological modellers need to be able to adjust conveniently parts of their
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models in both content and resolution to accommodate changing conditions, increased
data availability, and changing significance of specific areas. A hydrologically optimal
urban surface model would accommodate changes in the model without necessitating re-
calculation of the whole surface, thus reducing the processing required for what if scenario
modelling and the frequent changes to urban surfaces.

Table B.1.: Elements of urban landscapes.

Natural elements

Topography
Soil types
Plant life

Animal influences
Natural drainage systems

Weather and climate

Constructions

Buildings
Gardens
Fences

Retaining walls
Sea walls

Transport networks
Roads
Bridges
Tunnels

Drainage networks

Spouting
Kerb and channels

Catch pits
Artificial channels (canals)

Pipe networks
Channel flood defences
High velocity channels

Detention ponds
Secondary flow paths

Water supply Water storage for drinking water
Subsurface water extraction

B.4. Urban hydrological modelling

Modelling techniques have been developed for modelling hydrological processes in urban
areas. Fletcher et al. (2013) detail the state of the art of urban hydrological modelling.
Auckland Regional Council’s TP108 for hydrological modelling has since 2000 become a
proxy guideline used by many Regional Councils in New Zealand (Joynes, 2009).

Fletcher et al. (2013) suggest a convergence of approaches to modelling hydrology in
natural and urban areas, with spatial arrangement, network structure and sub-area be-
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haviours being increasingly taken into account. Surface models from GIS databases are
frequently included in hydrological models.

The high spatial variability of urban hydrology suggests either a multi-scale hierarchical
raster or an irregular tessellation may be the appropriate data format for distributed
hydrological models in urban areas. To be appropriate to represent urban hydrology,
an urban surface model needs to be extensive, support fine and adaptive resolution, be
adaptive temporally, and support efficient update.

Software

Underpinning the software used to model of hydrology are mathematical models that
may be common to different applications. Sometimes software names are used as de
facto names for the underlying mathematical model. However, because most models have
continually evolving codes, interfaces, supporting software, parameterisation schemes, and
parameter optimization packages, they should be considered a work in progress (Kampf
and Burges, 2007). The following list details some of the better known hydrological
models that may be applied to urban hydrological modelling. This list represents a very
small sample of the many models and software packages currently in use, for further
examples readers are referred to Singh and Woolhiser (2002) and Kampf and Burges
(2007). Many models are in common use primarily because they are readily available,
either due to support from governmental agencies or through a commercial organisation
(Buytaert et al., 2008).

• TOPMODEL (Beven and Kirkby, 1979; Beven, 1995) is an early distributed model
that has been very influential at a conceptual level.

• The Système Hydrologique Européen (SHE) model (Abbott et al., 1986a,b) is a
catchment-scale physically based, spatially distributed model for water flow and
sediment transport. The SHE model was developed by three organizations: the In-
stitute of Hydrology (the United Kingdom), SOGREAH (France), and Danish Hy-
draulic Institute (Denmark). More recent derivatives include MIKE SHE (Refshaard
et al., 1995), SHESED (Wicks and Bathurst, 1996) (DHIWater.Environment.Health)
and SHETRAN (School of Civil Engineering and Geosciences, Newcastle University)
(Ewen et al., 2000).

• EPA SWMM (Rossman, 2009) is a dynamic rainfall run-off, subsurface run-off sim-
ulation model used for single-event to long-term (continuous) simulation of the
surface/subsurface hydrology quantity and quality from primarily urban/suburban
areas. SWMM includes 1-D pipe flow. SWMM is a derivative of the earlier Stan-
ford Watershed Model (SWM). EPA SWMM is public domain software that may be
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freely copied and distributed. It is implemented widely in other software, including
the commercial packages XP-SWMM and InfoSWMM.

• The Hydrologic Engineering Center (HEC) within the U.S. Army Corps of Engineers
is responsible for HEC-RAS (Tate et al., 2002) and HEC-HMS, which have lumped
representations of the model subunits, but the subunits are connected to each other
to enable 1-D routing of water through 2-D space. It is designed to be applicable in
a wide range of geographic areas and hydrological problems including water supply
and flood hydrology in large river basins, and small urban or natural catchment
run-off. Hydrographs produced by the program are used directly or in conjunction
with other software for studies of water availability, urban drainage, flow forecast-
ing, future urbanization impact, reservoir spillway design, flood damage reduction,
floodplain regulation, and systems operation.

• XP-UDD/XP-SWMM, TUFLOW, and INFOWORKS ICM are contemporary com-
mercial hydrological modelling packages with large user bases.

• State of the art academic models that represent governing conservation equations
in 3-D for subsurface processes coupled with 2-D surface flows using diffusion wave
approximation of the de St. Venant equations include MODHMS (Panday and
Huyakorn, 2004) and WASH123D (Yeh et al., 1998).
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C. HIP Calculation examples

C.1. HIP Location

RHSM-hex HIP 7 to xy

Let us take, for example, a HIP 7 dataset with cellsize (cs) = 1m and calculate the New
Zealand Transverse Mercator 2000 (NZTM) coordinates of the centre of cell 24043, given
that the centre of cell 00000 = (1406262.00N, 4916908.00E) in NZTM.

HIPi is the digit at index i, i.e. HIP4,HIP3,HIP2,HIP1,HIP0 = 2, 4, 0, 4, 3. From Table

6.1a, B =
 2 −

√
3

√
3 2

 and C =
 cs

0

 =
 1

0


for i = 0: HIP0= 3, A3 can be found in Table 6.1a.

A3B0C =
 −1/2 −

√
3/2

√
3/2 −1/2

 2 −
√

3
√

3 2

0  1
0

 =
 −1/2
√

3/2

 ≈
 −0.500

0.866


for i = 1: HIP1= 4.

A4B1C =
 −1 0

0 −1

 2 −
√

3
√

3 2

1  1
0

 =
 −2
−
√

3

 ≈
 −2.000
−1.732


for i = 2: HIP2= 0.

A0B2C =
 0 0

0 0

 2 −
√

3
√

3 2

2  1
0

 =
 0.000

0.000


for i = 3: HIP3= 4.

A4B3C =
 −1 0

0 −1

 2 −
√

3
√

3 2

3  1
0

 =
 10
−9
√

3

 ≈
 10.000
−15.588


for i = 4: HIP4= 2.

A2B4C =
 1/2 −

√
3/2

√
3/2 1/2

 2 −
√

3
√

3 2

4  1
0

 =
 −71/2

−39/2
√

3

 ≈
 −35.500
−33.775


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 x4

y4

 =
λ−1∑
i=0

AdBiC ≈

 −0.500
0.866

+
 −2.000
−1.732

+
 0.000

0.000

+
 10.000
−15.588

+
 −35.500
−33.775

 = −28.000
−50.229


 x

y

 =
 x4

y4

+
 x0

y0

 ≈
 −28.000
−50.229

+
 4916908.00

1406262.00

 =
 4916880.00

1406211.77



RHSM-tri HIP 4 to xy

In RHSM-tri, the alternating orientation is affected by alternating the sign of C for every
coarser occurrence of HIP digit 0 in the HIP 4 ordinate. Let us repeat a similar exercise

for a 4λHIP 4 dataset with cellsize (cs) = 1m and calculate the vector
 x4

y4

 between

the origin at the centre of cell 0000 and centre of cell 2103.

HIPi is the digit at index i, i.e. HIP3,HIP2,HIP1,HIP0 = 2, 1, 0, 3 and λ = 4. From

Table 6.1a, B =
 2 0

0 −2

 and C =



if
(
λ−

HIPλ∑
HIPi

1 [HIP i = 0]
)

is even

 1

0



if
(
λ−

HIPλ∑
HIPi

1 [HIP i = 0]
)

is odd

 −1

0


for i = 0: HIP0= 3, A3 can be found in Table 6.1a. There is one instance of 0 in

HIP3,HIP2,HIP1,HIP0 ⇒ 4− 1 = 3 is odd ∴C =
 1

0



A3B0C =
 √

3/2 1/2

−1/2
√

3/2

 2 0
0 −2

0  1
0

 =
 √

3/2

−1/2

 ≈
 0.866
−0.500


for i = 1: HIP1= 0. There is one instance of 0 in HIP3,HIP2,HIP1 ⇒ 4− 1 = 3 is odd

∴C =
 1

0



A0B1C =
 0 0

0 0

 2 0
0 −2

1  1
0

 =
 0.000

0.000


for i = 2: HIP2= 1. There are no instances of 0 in HIP3,HIP2 ⇒ 4 − 0 = 4 is even

∴C =
 −1

0


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A1B2C =
 0 −1

1 0

 2 0
0 −2

2  −1
0

 =
 0.000
−4.000



for i = 3: HIP3= 2. HIP3 6= 0⇒ 4− 0 = 4 is even ∴C =
 −1

0



A2B3C =
 −√3/2 1/2

−1/2 −
√

3/2

 2 0
0 −2

3  1
0

 =
 4
√

3
4

 ≈
 6.928

4.000


 x4

y4

 =
λ−1∑
i=0

AdBiC ≈

 0.866
−0.500

+
 0.000

0.000

+
 0.000
−4.000

+
 6.928

4.000

 =
 7.794
−0.500



C.2. HIP Arithmetic

Examples of HIP arithmetic are given below.

Addition

As an example, HIP 9 062 ⊕ 024 is determined below. From Table 6.2b: 2 ⊕ 4 = 37,
3⊕ 6 = 5, 5⊕ 2 = 3.

3

0 6 2
⊕ 0 2 4

0 3 7

Negation

As an example, HIP 7 062	 024 is determined below.

First the negation of 024 is found by substituting the digits using Table 6.1c.

	024 = 051

062	 024 = 062⊕ 051 = 525

Neighbourhood

The neighbourhood of HIP 7 024 is calculated below.

neighbourhood[024] = [024⊕ 001, 024⊕ 002, 024⊕ 003, 024⊕ 004, 024⊕ 005, 024⊕ 006]
= [020, 023, 261, 266, 032, 025]
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