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Abstract 

 Abandoned metal mines in the Tamar catchment, south west England, represent 

a significant threat to surface water quality via generation of acid mine waters. 

Currently the River Tamar fails environmental quality standards (EQS) established 

under the Water Framework Directive (2000/60/EC) for dissolved Cu ( ̅ =  0.19 ± 0.05 

μmol L
-1

) and Zn ( ̅ = 0.19 ± 0.06 μmol L
-1

, both 1997-2007) downstream of historic 

mining area of Gunnislake.  The aim of this study was to quantify the risk to surface 

water quality by diffuse drainage generated by mine waste tips.  

 For the first time, a GIS model was compiled and used to generate a priority list 

of known areas of mine waste, based on physical and environmental factors. The 

methodology was consistent with European guidance documentation published to meet 

the requirements of the Mining Waste Directive (2001/21/EC) and has since been 

applied, in a modified form, to other catchments in south west England. 

 Two study sites, with contrasting mineralogy and hydrology, scored highly in 

the model and were the subject of field investigations from 2007-2009. These were 

Devon Great Consols (DGC), an abandoned Cu-As mine near Gunnislake and Wheal 

Betsy (WB), an abandoned Pb-Ag mine, near Mary Tavy. At each site, surface waters 
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and shallow groundwaters were sampled and analysed for dissolved metals (including 

Al, Cu, Zn, Mn, Pb, Ni, and Cd), metalloids (As, Sb), major ions and anions. Samples 

of four selected mine waste tips were also gathered and subjected to a range of 

laboratory leaching experiments including the novel application of a dynamic upflow 

percolation test, based on an existing European method  (CEN TS 14405). 

 Leachates generated by the waste tips in the field were highly variable and 

elevated with respect to EQS for Al (up to 1850 μmol L
-1

), Cu (570 μmol L
-1

), Zn (34 

μmol L
-1

), Ni (3.8 μmol L
-1

), Cd (0.17 μmol L
-1

), Mn (216 μmol L
-1

), Fe(537 μmol L
-1

) , 

As (380 μmol L
-1

) and Sb (5.4 μmol L
-1

).  Estimated annual fluxes of dissolved metals 

were predicted using average rainfall data and catchment areas calculated in ArcHydro9 

to estimate the annual discharge of waters from the tip. These calculations showed 

annual contaminant flux from the tips to exceed, or be of the same order of magnitude 

to, major adit discharges in the catchment (e.g. Cu  50900-66900 mol y
-1 

at DGC and 

470 mol y
-1

 Cd at WB) and represented a significant contributor to metal flux in the 

Tamar catchment.  Primary sulphide minerals in the waste were generally highly altered 

and metals (Pb, Cu, Zn, and Mn) and As were found to be strongly associated with 

secondary iron minerals, precipitated under oxic conditions. In finer wastes, sorption to 

clay minerals was also found to be very important for the retention of dissolved metals, 

particularly Pb.  

 Concentrations of contaminants in column field leachates were similar for most 

metals (Cu, Zn, Mn, Ni and Cd) and may provide a useful tool for prediction of leachate 

composition. However, sorption and release of metals and As to the secondary phases 

and clays were highly sensitive to pH change and where laboratory experiments did not 

replicate field pH, discrepancies between in situ and laboratory results were observed up 

to two orders of magnitude in scale (particularly for As and Pb).  
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Glossary of Terms and Abbreviations used in Thesis 

Minerals (formulae from Mindat.com): 

Albite: NaAlSi3O8 

Alunite: KAl3(OH)6(SO4)2 

Anglesite: PbSO4 

Arsenian pytite: Fe(S,As)2 

Arsenopyrite: FeAsS 

Basaluminite: Al4(SO4)(OH)10.5H2O 

Beaverite-(Cu): (Pb(Fe
3+

,Cu)3(SO4)2(OH)6) 

Beaverite-(Zn): (Pb(Fe2
3+

,Zn)(SO4)2(OH)6) 

Beudantite: PbFe3(ASO4)(SO4)(OH)6 

Bornite: Cu5FeS4 

Calcite: CaCO3 

Cassiterite: SnO2 

Chalcopyrite: CuFeS2 

Chamosite: (Fe3Al)(AlSi3)O10(OH)8 

Childrenite: FeMnAlPO4(OH)2.H2O 

Dolomite: CaMg(CO)3 

Dravite: Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH) 

Douglasite: K2[Fe
2+

Cl4(OH2)2] 

Enstatite: MgSiO3 

Ferrihydrite: 5Fe2O3.9H2O 

Fluorite: CaF2 

Heamatite: Fe2O3 

Illite: K0.65Al2.0[Al0.65Si3.35O10](OH)2 

Galena: PbS 

Gibbsite: Al(OH)3 

Gismondine: (Ba or Ca)2Al4Si4O16.4-6H2O 

Goethite: FeOOH 

Galena: PbS 

(K-)Jarosite: KFe3(SO4)2(OH)6 

 

Juanitaite: Bi(Cu,Ca,Fe)10(AsO4)4(OH)11.2H2O 

Jurbanite: Al3(SO4)OH.5H2O 

Kaolinite: Al2Si2O5(OH)5 

Lepidocrocite: FeOOH 

Löllingite: FeAS2 

Orpiment: As2S3 

Plumbojarosite: PbFe6(SO4)4(OH)12 

Quartz: SiO2 

Maghemite:Fe
3+

2O3 

Marcasite: FeS2 

Melanterite: FeSO4.7H2O 

Molybdenite: MoS2 

Muscovite: KAl2(AlSi3O10)(OH)2 

Pyrite: FeS2 

Pyrrhotite Fe1-xS 

Realgar: As4S4 

Rhodochrosite: MnCO3 

Schwertmannite: Fe8O8(OH)6SO4 to     

Fe16O16(OH)10(SO4)3 

Schorl: Na(Fe
2+

3)Al6(Si6O18)(BO3)3(OH)3(OH)  

Scorodite: FeAsO4.2H2O 

Siderite: FeCO3 

Sphalerite: ZnFeS 

Siderite: FeCO3 

Uvite: Ca(Mg3)MgAl5(Si6O18)(BO3)3(OH)3(OH) 

Vivianite: Fe3(PO4)2.8H2O 

Wolframite FeWO4 to 

MnWO4 
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Chapter 1: 

Adit: A passageway into an underground mine, usually near horizontal, through which the mine 

is accessed, ventilated or drained of water.  

Discard (or coarse discard): waste rock resulting from excavation of a mine prior to fine 

separation processes. 

Gangue: Waste rock of no economic value. 

Tailings: Waste produced from separation processes used to recover economic minerals from 

gangue, sometimes referred to as slimes, they usually comprise a slurry of fine rock and water. 

Variscan Orogeny: Geological mountain-building event caused by Late Palaeozoic continental 

collision 270-400 MA
1
. The Upper Palaeozoic massif of SW England is situated on the northern 

margin of the orogen which stretches 1000 km across central and Western Europe
2
 

 

Chapter 2 
3
 

3D Analyst (ArcGIS): An extension that provides tools for three-dimensional (3D) 

visualization, analysis, and surface generation. 

Attribute Table (ArcGIS): A database or tabular file containing information about a set of 

geographic features, usually arranged so that each row represents a feature and each column 

represents one feature attribute.  

Buddle (circular): A device used to gravimetrically separate ore minerals from gangue. A 

suspension of crushed ore in water was passed over a central cone and spread outwards 

according to density. Rotating sweep arms fitted with brushes continuously disturbed the 

suspension allowing for better separation of the fractions. 

Batch Watershed Delineation for Polygons Tool (ArcGIS, ArcHydro9): A method for 

processing the drainage pathway for each mine waste polygon automatically, without user 

interaction. Results are stored in a watershed (polygon) feature class. 

Buffer Tool (ArcGIS): Calculates a zone around a map feature measured in units of distance, 

useed for proximity analysis.  

Burning in (ArcGIS, ArcHydro9):See DEM Reconditioning (AGREE). 

Catchment Polygons (ArcGIS, ArcHydro9): Rainfall catchment area calculated for each area of 

mine waste, based on the DTM. 

                                                 
1
  Reference: Jackson, N. J., Willis-Richards, J., Manning, D. A. C. and Samms, M. (1989). Evolution of the 

Cornubian Ore Field, southwest England: Part II. Mineral deposits and ore forming processes. Economic Geology. 84  

pp1101-33. 
2
 Reference: E. Leveridge and A.J. Hartley, The Variscan Orogeny: the development and deformation of 

Devonian/Carboniferous basins in SW England and South Wales. In: P.J. Brenchley and P.F. Rawson, Editors, The 

Geology of England and Wales, Geological Society of London (2006), pp. 225–255 
3
 All ArcGIS definitions are taken directly from the ESRI ArcGIS 9.3 Desktop Help and Glossary webpages 

available online at: http://webhelp.esri.com/arcgisdesktop/9.3 and http://resources.arcgis.com/glossary, respectively. 

ArcHydro definitions are taken from the help function within ArcHydro9. 
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Clip Tool (ArcGIS): A command that extracts features from one feature class that reside 

entirely within a boundary defined by features in another feature class. 

Convert: Spatial Analyst tool converts one type of feature class to another 

Data Management Toolbar (ArcGIS): The Data Management toolbox/toolbar provides a 

collection of tools that are used to develop, manage, and maintain feature classes, datasets, 

layers, and raster data structures. 

DEM Reconditioning (AGREE) Tool (ArcGIS, ArcHydro9): The DEM Reconditioning 

function (DEM Manipulation menu) modifies Digital Terrain Models (DTMs) by imposing 

linear features onto them (burning/fencing). This function is an implementation of the AGREE 

method developed by Ferdi Hellweger at the University of Texas at Austin in 1997. For a full 

reference to the procedure refer to the web:  

link:http://www.ce.utexas.edu/prof/maidment/GISHYDRO/ferdi/research/agree/agree.html. 

Digital Terrain Model (DTM): A model represents the bare ground surface without any objects 

like plants and buildings. The term Digital Elevation Model (DEM) is often used as a generic 

term for DTMs, only representing height information without any further definition about the 

surface. 

Dissolve Tool: A geoprocessing command that removes boundaries between adjacent polygons 

that have the same value for a specified attribute.  

Drainage Polygons: Drainage area calculated in ArcHydro9 for each area of mine waste, based 

on the DTM. 

Feature Class (ArcGIS): A collection of geographic features with the same geometry type 

(such as point, line, or polygon), the same attributes, and the same spatial reference. 

Feature Code (ArcGIS): A unique identifier in the attribute table. 

Field Calculator (ArcGIS): A tool that computes data from a column in an attribute table from 

a range of mathematical functions.  

Fill Sinks Tool (ArcGIS, ArcHydro9): The Fill Sinks function (DEM Manipulation menu) fills 

sinks in a grid. If a cell is surrounded by higher elevation cells, the water is trapped in that cell 

and cannot flow. The Fill Sinks function modifies the elevation value to eliminate these 

problems. consuming. The status of the processing will be displayed in the ArcMap status bar. 

Filling sinks is an operation that needs to be executed with care. The resulting DEM will have 

no inner depressions, that is, all the runoff from the DEM will reach its edges. In most cases, 

this is a correct assumption (when depressions are the artefacts of DEM generation), but in 

some cases that is not correct (e.g. inner lakes). 

Flow Direction (ArcGIS, ArcHydro9): The Flow Direction function (Terrain Preprocessing 

menu) takes a grid ("Hydro DEM" tag) as input, and computes the corresponding flow direction 

grid ("Flow Direction Grid" tag). The values in the cells of the flow direction grid indicate the 

direction of the steepest descent from that cell. 
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Hillshade Tool (ArcGIS): Calculated the hypothetical illumination of a surface according to a 

specified azimuth and altitude for the sun.  

Hydrogrid (ArcGIS, ArcHydro9): A modified Digital Terrain Model (DTM) produced from 

one of the processing steps in ArcHydro9. 

Identity Tool (ArcGIS): A tool that, when applied to a feature (by clicking it), opens a window 

showing that feature's attributes. 

Intersect Tool (ArcGIS): A geometric integration of spatial datasets that preserves features or 

portions of features that fall within areas common to all input datasets. 

Join Tool (ArcGIS): Appending the fields of one table to those of another through an attribute 

or field common to both tables. A join is usually used to attach more attributes to the attribute 

table of a geographic layer. 

Least cost path (ArcGIS, Spatial Analyst): Cost distance tools calculate for each cell the least 

accumulative cost to specified source locations over a cost surface. The Cost Path tool produces 

an output raster that records the least-cost path or paths from selected locations to the closest 

source cell defined within the accumulative cost surface, in terms of cost distance. 

Model Builder Extension: The interface used to build and edit geoprocessing models in 

ArcGIS. 

Multipart to Singlepart Tool (ArcGIS, Data Management): Separates multipart features into 

separate single part features(opposite function to Dissolve). The features in the Output Feature 

Class will have the same attributes as the Input Features.  

Null values (ArcGIS): The absence of a recorded value for a field. A null value differs from a 

value of zero in that zero may represent the measure of an attribute, while a null value indicates 

that no measurement has been taken. 

Parcel (ArcGIS): A piece or unit of land, defined by a series of measured straight or curved 

lines that connect to form a polygon. 

Personal Geodatabase (ArcGIS): A geodatabase that stores data in Microsoft Access. A 

personal geodatabase can be read simultaneously by several users, but only one user at a time 

can edit the same data. 

Point Feature (ArcGIS): A digital map feature that represents a place or thing that has neither 

length nor area at a given scale. 

Polygon Feature (ArcGIS): A map feature that bounds an area at a given scale, such as a 

country on a world map or a district on a city map. 

Polyline Feature (ArcGIS): A digital map feature that represents a place or thing that has 

length but not area at a given scale. A polyline feature may have one or more parts. For 

example, a stream is typically a polyline feature with one part. A multipart polyline feature is 

associated with a single record in an attribute table. 

Raster (ArcGIS): A spatial data model that defines space as an array of equally sized cells 

arranged in rows and columns, and composed of single or multiple bands. Each cell contains an 
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attribute value and location coordinates. Unlike a vector structure, which stores coordinates 

explicitly, raster coordinates are contained in the ordering of the matrix. Groups of cells that 

share the same value represent the same type of geographic feature.   

Reclassify (ArcGIS): The process of taking input (raster) cell values and replacing them with 

new output cell values. Reclassification is often used to simplify or change the interpretation of 

raster data by changing a single value to a new value, or grouping ranges of values into single 

values—for example, assigning a value of 1 to cells that have values of 1 to 50, 2 to cells that 

range from 51 to 100, and so on. 

Repair Geometry Tool (ArcGIS): Inspects each feature's geometry for problems and fixes the 

problems that are found. Valid input formats are shapefile and feature classes stored in a 

personal geodatabase or file geodatabase. 

Select by Location (ArcGIS): To choose from a number or group of features or records based 

on their location relative to other features. 

Shapefile (ArcGIS): A vector data storage format for storing the location, shape, and attributes 

of geographic features. A shapefile is stored in a set of related files and contains one feature 

class. 

Slivers (ArcGIS): A small, narrow, polygon feature that appears along the borders of polygons 

following the overlay of two or more geographic datasets. Sliver polygons may indicate 

topology problems with the source polygon features, or they may be a legitimate result of the 

overlay.  

Slope Tool (ArcGIS): Tool used to calculate the incline, or steepness, of a surface. Slope can 

be measured in degrees from horizontal (0–90), or percent slope (which is the rise divided by 

the run, multiplied by 100). A slope of 45 degrees equals 100 percent slope. As slope angle 

approaches vertical (90 degrees), the percent slope approaches infinity. The slope of a TIN face 

is the steepest downhill slope of a plane defined by the face.  

Spatial Analyst Toolbar (ArcGIS): Toolbar containing tools that examine the locations, 

attributes, and relationships of features in spatial data through overlay and other analytical 

techniques in order to address a question or gain useful knowledge. Spatial analysis extracts or 

creates new information from spatial data. 

Stream Buffer (ArcGIS, ArcHydro9): Number of cells around the linear feature class for which 

the smoothing will occur during DEM Reconditioning (AGREE). 

Table Operations Tool (ArcGIS): A toolset provided by the Xtools Pro Extension. 

Terrain Preprocessing Toolbar (ArcGIS, ArcHydro9): The purpose of terrain preprocessing is 

to perform an initial analysis of the terrain and to prepare the dataset for further processing. A 

Digital Elevation Model (DEM)/Digital Terrain Model (DTM) of the study area is required as 

input for terrain preprocessing: a DTM is a grid in which each cell is assigned the average 

elevation on the area represented by the cell. The DTM must be in ESRI GRID format.  
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Triangulated Irregular Network (TIN, ArcGIS): A vector data structure that partitions 

geographic space into contiguous, nonoverlapping triangles. The vertices of each triangle are 

sample data points with x-, y-, and z-values. These sample points are connected by lines to form 

Delaunay triangles. TINs are used to store and display surface models. 

Union Tool (ArcGIS): A topological overlay of two or more polygon spatial datasets that 

preserves the features that fall within the spatial extent of either input dataset; that is, all features 

from both datasets are retained and extracted into a new polygon dataset.  

Vector (ArcGIS): A coordinate-based data model that represents geographic features as points, 

lines, and polygons. Each point feature is represented as a single coordinate pair, while line and 

polygon features are represented as ordered lists of vertices. Attributes are associated with each 

vector feature, as opposed to a raster data model, which associates attributes with grid cells.  

Watershed Processing Toolbar (ArcGIS, ArcHydro9): The Watershed Processing menu 

provides access to several functions that allow fast watershed delineation and topographic 

characteristics extraction, e.g. Batch Watershed Delineation for Polygons. 

Xtools Pro Extension Toolbar: An independent extension used for spatial analysis, shape 

conversion, and table management tools. 

Chapter 3 

Hardpan (or Iron Pan): A cemented layer of iron rich material or soil. 

Mispickle: Term for arsenopyrite used to describe ore deposits surrounding copper lodes. 

Phreatic zone: Saturated soil or rock, lying below the groundwater table. Overlain by the 

unsaturated zone (vadose zone), above the groundwater table. 

Chapter 4: 

Bryophytes: Bryophytes are the oldest land plants on earth and comprise three main taxonomic 

groups: mosses (Bryophyta), liverworts (Marchantiophyta) and hornworts 

(Anthocerotophyta).On bare and disturbed ground they are primary pioneers helping other 

plants to gain a foothold. Bryophytes show a wealth of adaptive features to all kinds of climates, 

substrates and habitats. Many are precise indicators: of rock type such as Tortella tortuosa on 

limestone, Andreaea and Racomitrium on acidic or granitic rocks, of acid bogs, eg. Sphagnum 

species, of rich fens, eg. Tomentypnum nitens, of metalliferous rocks and soil, eg. Ditrichum 

plumbicola and Grimmia atrata
4
. 

Country Rock: Rock native to an area 

Hardpan (or Iron Pan): See Chapter 3 entry. 

Phreatic zone: See Chapter 3 entry. 

Variscan Orogeny: see Chapter 1 entry. 

                                                 
4
 Reference: Royal Botanical Garden Edinburgh webpage accessed 03/03/2011, available online at: 

http://www.rbge.org.uk/science/cryptogamic-plants-and-fungi/bryology 
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Chapter 5: 

EDTA: Ethylenediaminetetraacetic acid, a water- soluble hexadentate ligand and chelating 

agent. 

DTPA: Diethylene triamine pentaacetic acid , a water-soluble ligand capable of forming up to 8 

bonds as a chelate. 

NTA: Nitrilotriacetic acid, a water-soluble chelating agent, easily biodegraded.  

BCR: The Standards, Measurements and Testing Programme (formerly BCR) of the European 

Commission. 

NEN: The Netherlands Standardization Institute (NEN). 

CEN: European Committee for Standardization. 
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1. Introduction  

1.1 Mine Water Pollution as an International Problem 

The extraction and processing of minerals underpins industry and lifestyles in 

the modern world, however the cost to the environment, in particularly the negative 

impact on water quality has become increasingly controversial in recent decades 

(Younger, 2002). Globally, approximately 80% of modern mining is conducted using 

vast surface workings whilst older mines, smaller operations and those seeking high 

value commodities such as gold and diamond are mined by a variety of other methods 

including deep mining, and hydraulic working of alluvial deposits. 

 Many metal and coal mines are hosted by sulphide-rich deposits and contain a 

high proportion of iron sulphide minerals, of which pyrite (FeS2) is the most common. 

Mining allows oxygen to penetrate underground deposits that would otherwise be 

isolated from the atmosphere. The oxidation of pyritic minerals releases acidity, 

sulphate and constituent metals and metalloids into waters. Reactions are accelerated by 

acidophilic bacteria (e.g. Thiobacillus ferrioxidans), such that concentrations of 

dissolved metals and metalloids can reach highly toxic levels.   

Mine waters may be released following mine-closure as underground workings 

flood and discharge into surface water bodies through man-made drains or adits. One 

such incident occurred in 1992 at Wheal Jane, Cornwall, when mine waters containing 

in excess of 3500 mg L
-1 

of dissolved metals discharged into the Carnon River (Younger 

et al., 2005).  

The problem is commonly referred to as acid mine drainage (AMD), although 

drainage waters can also be alkaline in nature, depending on the host geology. Areas 

affected by mine pollution have been the subject of numerous water quality (see Table 

1.1 for examples), soil quality, environmental impact and human health studies. Recent 
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examples in the literature span many countries including: Bolivia e.g. Salvarredy-

Aranguren et al. (2008), Chile e.g. Ramirez et al. (2005), China e.g. Fu et al. (2010), the 

Democratic Republic of Conge e.g. Banza et al.(2009), France e.g. Casiot et al.(2005),  

South Africa e.g. Winde and Van der Walt  (2004), Spain e.g. Olias et al.(2004), 

Conesa et al.(2006) , Loredo et al. (2006), Nieto et al. (2007) and Cánovas et al. (2008), 

the USA e.g. Schmitt et al. (2007) and Butler et al.(2008), the UK e.g. Palumbo-Roe et 

al. (2007), Hudson-Edwards et al. (2008) and Byrne et al.(2010) and Zambia e.g. 

Kribek et al., (2010). 

Waste rock at mine sites can contain enough pyritic material to act as sources of 

pollution in their own right. Such processes are included within the subject area of acid 

mine drainage (AMD), or sometimes termed acid rock drainage (ARD). AMD from 

mine waste rock is an internationally recognised threat to water resources capable of  

producing contaminated drainage for centuries after mining has ceased (INAP, 2009).  

The composition of wastes tips varies widely due to variations in ore-deposit 

mineralogy and differences in the processing techniques and efficiency of metal 

recovery. The tips contain metal-bearing rock uneconomic to process at the time of 

operations, and an assortment of other minerals characteristic of the host geology, often 

referred to as gangue. Tips may contain a mixture of wastes from different stages in the 

extraction process or commonly are divided into coarse discard, (resulting from 

crushing of bulk rock), and finer tailings (resulting from gravimetric separation and 

concentration of valuable minerals). Other materials may also be included in waste 

deposits including chemicals, machinery and buildings associated with the processing 

and smelting of ore minerals. 

Waste tips resulting from modern open-pit mining can be vast. For example, 

over three billion metric tons of waste rock have been produced at Bingham Canyon 
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(USA), covering an area of more than 2000 ha, since open pit mining operations for 

copper began in 1906 (Borden and Black, 2005).  
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Table 1.1: Concentrations of dissolved metals reported in selection of other studies of waters impacted by mine drainage metal mines. All values in mg L
-1

, rounded to 2 s.f. 

Authors 

Impacted Water / 

Location pH Fe Cu Zn Al Pb Cd As 

Salvarredy-

Aranguren 

(2008) 

Surface waters in a 

pyrite mining area, 

Bolivia. 

 2.7-9.2 0.01-2900 <0.0001-2.6 0.0168-17 <0.01-14 <0.0001-0.28 <0.0001-1.0 0.0001-2.3 

Nieto et 

al.(2007) 

River (Rio Odiel) in 

Iberian Pyrite Belt, 

Spain. 3.0-5.1 0.31-24 0.5-17 1.3-36 0.58-180 <0.007-0.27 0.005-0.18 <0.003-0.022 

Stillings et al. 

(2008) 

Stream water in Cu 

mining area, Alaska. 6.8 0.57 0.038 0.25 0.10 0.0021 - - 

Canovas et al. 

(2008) 

River (Rio Tinto) in 

Pena del Hierro 

mining area, Spain.   2.3-2.7 10-490 1.6-55 1.7-55 7.0-190 - - - 

Loredo et 

al.(2006) 

Surface waters at an 

abandoned Hg mine, 

Spain. 6.7-8.8 <0.01-0.60 <0.002-0.013 <0.005-0.012 - - - <0.030-290 
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1.2  Current Status of Mine Water Pollution from Abandoned Metal 

Mines in the UK 

There are several historic metal mining regions of the UK (Figure 1.1), hosted in 

contrasting geological settings. Deposits in Devon and Cornwall occur primarily as 

sulphide deposits producing acidic drainage 

waters, while the mines of Northern England 

are set within carbonates giving rise to 

circum-neutral or net alkaline drainage waters 

(Younger, 2000). Soil and water 

contamination caused by mining in the Tamar 

catchment, which spans the border between 

Devon and Cornwall have been the subject of 

a number of investigations, e.g. (Kavanagh et 

al., 1997; Price, 2002; Dybowska et al., 2005; 

Klink et al., 2005; Mighanetara et al., 2009). 

From the results and regulatory monitoring 

and survey data from the Environment 

Agency and British Geological Survey, a clear 

contamination issue has been identified. 

 However, whilst contamination issues are widely reported, to date no 

sustainable, passive or semi-passive method has been established to treat mine drainage 

waters from non-coal mines in the UK (Johnston et al., 2008). An active treatment 

system has been successful at Wheal Jane, Cornwall using liming, flocculation and 

separation procedures to remove metals from solution. However the running costs at 

inception were estimated to be £ 748 000 per annum (McGuiness, 1999) and overall 

 

Figure 1.1 Metal Mining Regions of the 

United Kingdom from Hudson-Edwards et 

al. (2008) 
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expenditure was estimated to be £20 million by 2002 (Younger, 2002). Progress 

towards remediation of other sites, including those in the Tamar catchment, remains at 

an early stage. 

 Directive 2006/21/EC on the Management of Waste from the Extractive 

Industries, requires that “Member States shall ensure that an inventory of closed waste 

facilities, including abandoned waste facilities [...] which cause serious negative 

environmental impacts or have the potential of becoming in the medium or short term a 

serious threat to human health or the environment is drawn up and periodically 

updated”(Stanley et al., 2010). The inventory should be drawn up and made available to 

the public by 01 May 2012. 

Prioritisation of sites with mine water discharges is also necessary for River 

Basin Management plans driven by the European Water Framework Directive  (WFD, 

2000/60/EC). Basic requirements of the WFD relevant to mine water discharges include 

the “aim to achieve good ecological and chemical status for surface and ground waters 

by 2015” although it goes on to recognise that this may not be possible in some areas. 

Definition of “good” status is based on existing and updated Environmental Quality 

Standard (EQS) for controlled substances(UKTAG, 2008).  

Measures must also be implemented to “progressively reduce the pollution of 

surface waters by substances that could prevent achievement of the environmental 

objectives of the WFD”. Such substances are listed by the Dangerous Substances 

Directive (2006/11/EC) and include cadmium (List I) and zinc, copper, lead and arsenic 

(List II). The purpose of the Directive is to eliminate pollution from list I substances and 

to reduce pollution from list II substances (ECE, 2011) 

 Mayes et al. (2009) linked mining areas with EQS quality failures for 

metals/metalloids associated with metal mine drainage. The results were combined with 

other impact criteria (e.g. groundwater quality, ecology) to produce a catchment scale 
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risk assessment and prioritisation of water bodies affected by mine waters. The outcome 

highlighted SW England as having a concentration of priority watercourses, containing 

58 impacted water bodies.  

South west England also relies heavily on surface water resources for drinking 

water supplies compared with other regions of the UK.  In the absence of significant 

groundwater aquifers, South West Water abstract 90% of raw waters from reservoirs 

and rivers (SWW, 2006).  Seventeen rivers are abstracted in the Roadford Strategic 

Supply Area, which encompasses much of the Tamar catchment, including an intake 

from the River Tamar at Gunnislake, downstream of many abandoned mine sites 

(SWW, 2009). Elevated metal concentrations in intake waters are reduced with 

specialist treatment systems and as a result rarely cause regulatory failure. However, the 

WFD also presses that there must be measures to “safeguard water quality in order to 

reduce the level of purification treatment for the production of drinking water”.   

1.3 The Study Area  

Geology 

  The Tamar catchment is an area of approximately 1880 km
2
 on the south west 

coast of England. The northern half of the catchment is hosted by the Milstone Grit and 

Culm Measures of Carboniferous age. To the south the catchment is underlain by the 

Upper, Middle and Lower Old Red Sandstones of Devonian age (Webb, 1978). Parts of 

the catchment are highly mineralised with metal and arsenic deposits, forming part of 

the Cornubian ore field. The deposits were created during the pre-, syn- and 

postbatholithic stages of a major geological event, the Variscan orogeny, which 

occurred 270-400 MA (Jackson et al., 1989). During this time, five major and several 

lesser bosses of granite intruded into host marine mudstone-sandstone sequences across 

SW England (Figure 1.2).  
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 The heat generated allowed hydrothermal fluids and vapours to concentrate trace 

elements from the surrounding sedimentary rocks. Cooling and contracting of the 

granite created fractures into which hydrothermal fluids could deposit metallic ore 

minerals  (Trounson, 1989).  The hydrothermal fluids circulated preferentially along 

existing fractures and other planes of weakness and produced mineral veins with two 

main orientations. A roughly east-west trending set of lodes containing Sn, Cu, As and 

W minerals, and later veins, known as “cross-courses”  which trend roughly north-south 

and carry Pb, Zn and Ag ores (Smedley and Allen, 2004). The weathered granite bosses 

are now recognisable as Dartmoor, Bodmin Moor and Kit Hill which now form the 

highest parts of the Tamar catchment.  

 

 

 

Figure 1.4: Map showing location of five major granite bosses (orange) in south west England and 

lesser intrusions of Kit Hill, Hingston Down and Gunnislake within the Tamar catchment area 

(grey outline). Distribution of recorded mines also indicated (EA, black dots). Created in ArcMap. 

© Crown Copyright and Landmark Information Group Limited (2010). All rights reserved. 
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 As a result of the mineralisation and subsequent  mining, some soils within the 

catchment are highly enriched with respect to the rest of England and Wales for a 

number of elements, notably As, Cr, Cu, Mo, Ni, Sn,V and Zn (Webb, 1978). Ground 

waters can also be enriched and are mainly shallow, circulating within thin soils, 

weathered near-surface bedrock and granite fractures (Smedley and Allen, 2004). The 

chemistry of the groundwater is strongly controlled by rainfall composition and mineral 

weathering of the local rock.  

Mining History 

 The mineral deposits associated with the granites have been exploited since the 

Bronze Age, initially alluvial deposits close to the granite outcrops were worked for tin, 

then underground mining began to exploit deposits of lead and copper. In the mid 19
th

 

century, mines in the Tamar catchment became the world’s principle supplier of copper. 

When arsenic became a prized commodity in the late 19
th

 century, the mines switched to 

arsenic production, prolonging their life into the 20
th

 Century  (Hamilton Jenkin, 2005).   

 The largest mine in the catchment, Devon Great Consols (DGC), is estimated to 

have produced around 40 thousand tonnes of copper during its operational life (Burt et 

al., 1984). This is small compared to the 18.1 million tons of copper produced by the 

world’s largest copper mine, Bingham Canyon (RioTinto, 2010). Nevertheless, at least 

500,000 tonnes of good quality ore rock would have been mined at DGC (based on 8% 

copper content) plus an unrecorded amount of low-grade waste rock. Despite their 

relatively small size, it is estimated that over 2000 individual mines were once 

operational across south west England (Dines, 1956). Mined primarily for copper, tin or 

lead, the mine also produced considerable amounts of zinc, silver, tungsten, and 

manganese as by-products (Trounson, 1989).  
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The demise of these mines was due to  a combination of factors including falling 

commodity prices, particularly after the copper crash of 1866 (Hamilton Jenkin, 2005), 

exhaustion of the copper supply, rising costs of materials and a lack of skilled labour 

during the first and second  world wars  (Trounson, 1989).  Copper and tin mining 

moved to more profitable operations around the world taking  large numbers of  skilled 

men,  often referred to simply as  “Cornish Miners”, with it (BBC, 2004).  A small 

number of Cornish mines including South Crofty and Wheal Jane continued to mine tin 

into the late 20
th

 century. However the mines in the Tamar catchment were closed by 

the mid 20
th

 century.  

Some unsuccessful efforts were made to reopen the deep mines but in most 

cases re-working of waste tips for arsenic, tin, tungsten and  uranium were the last 

activities conducted at the mines before abandonment (Trounson, 1989; Richardson, 

1995; CMWHS, 2010). Currently no mines are operational in south west England 

although South Crofty, which ceased production of tin in 1998,  is developing towards a 

shallow resource and Hemerdon, an open cast tungsten operation 7 miles NW of 

Plymouth, is expected to commence operations in 2011(Hale, 2008; Moon, 2010). 

The relatively low recovery efficiency during the peak period of mining in the 

mid to late 19
th

 century mining, both in terms of extraction efficiency and because many 

mines were abandoned for economic reasons,  means that  a considerable amount of 

sulphidic material remained in the waste.  Furthermore, little environmental 

consideration was given to the management of mine waste in early mines. As a result 

wastes were often simply tipped onto large dumps, close to watercourses and left in situ 

after closure of the mine. Today, over 100 years after closure in most cases, the waste 

tips pose an unquantified risk to the quality of water courses in south west England. 

The abandoned mine sites in the Tamar catchment, and south west England as a 

whole, have left a two-fold legacy. On the one hand, industrial archaeology of 
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international importance and ecologically significant areas where rare species are able 

to thrive (CMWHS, 2010). But mining has also left large areas of contaminated land 

and discharges of mine waters, which have a negative impact on the health of 

freshwater and marine ecosystems (Hudson-Edwards et al., 2008). It is the composition 

of the drainage from mine waste tips, and the impact on surface water quality in the 

Tamar catchment, which is central to this study. It is hoped that the results will help 

inform regulators, what measures, if any, should be implemented to minimise the 

negative environmental impact of mine waste tips on surface water quality.  

1.4 Rationale and Project Development 

   The project set out to provide the Environment Agency, who co-funded the 

project, with information to improve the management of mine waste tips as a pollutant 

source, based on sound scientific reasoning. Mine waste tips at two contrasting study 

sites were investigated in detail to provide an approximation of pollutant loads (Al, As, 

Cd, Cu, Fe, Mn, Ni, Pb, Zn) from mine waste tips using best available techniques. 

These estimated loads were compared to the magnitude of contaminant discharges from 

known point discharges, for which data already exists.   

 As the project developed it became apparent that with limited resources 

conducting detailed investigations of many sites in the Tamar catchment was not 

feasible. Also, for transferability to other sites understanding the geochemical processes 

controlling the release of eco-toxic elements would be most valuable. Therefore, the 

development of less expensive alternatives, such as a GIS based risk assessment and 

rapid laboratory leaching experiments was an appealing avenue for investigation. As a 

precautionary measure, the laboratory experiments chosen were validated against one 

another and with data gathered in the field. 
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1.5 Project Aims and Objectives 

  The overall aim of this project was to quantify the risk to surface water quality 

posed by drainage from mine waste tips in the Tamar catchment.     

  The specific objectives were to: 

 Identify and prioritise areas of mine waste in the Tamar catchment based on 

available data (Chapter 2). 

 Develop a GIS-based method of risk assessment that, with limited modification, 

may be transferable to other catchments in south west England. (Chapter 2) 

 Measure dissolved contaminant concentrations in situ (particularly Al, Cu, Zn, 

Pb, Cd, Ni and As), in waters emerging from mine wastes of different character 

and representative of others found in the catchment.  (Chapter 3 and Chapter 4) 

 Measure instantaneous flow of surface drains and where possible estimate 

contaminant fluxes of dissolved contaminants moving through the study sites. 

(Chapter 3 and Chapter 4) 

 Characterise the mineralogy and physical characteristics of a selection of mine 

waste samples from sites in the Tamar catchment. (Chapter 5)   

 Investigate the use of laboratory-based static and dynamic experiments to 

generate leachates under controlled conditions and critically assesses their 

suitability for predicting contaminant concentrations in the field. (Chapter 5) 

 Investigate the factors affecting contaminant release and transport from mine 

waste (e.g. waste composition and site hydrology). (Chapters 3, 4 and 5) 

 To assess what measures might be implemented to reduce the contaminant flux 

emerging from mine waste tips in the Tamar Catchment. (Chapter 6) 
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2. Environmental Prioritisation of Mine Waste Tips in the 

Tamar Catchment using ArcGIS  

2.1 Abstract 

 A geographical information system (GIS) was assembled and utilised to analyse 

the risk to watercourses becoming contaminated by diffuse mine waters in the Tamar 

Catchment, an area of extensive historical mining in south west England. Environmental 

factors that influence the generation and transport of mine waters were considered, and 

included: topography, rainfall, soil type and underlying geology. Data for each input 

factor were classified and scored from “Low” to “Extreme” risk and combined into a 

risk model using ArcGIS software (version 9.3). Catchment and drainage areas were 

identified for individual mine waste tips using ArcHydro extension tools.  Relative 

weightings for each factor were based on expert knowledge and literature information 

and applied using an analytical hierarchy procedure (AHP).  

Whilst the model does not consider the level of contamination of the waste 

materials, it serves to inform policy makers where best to target resources prior to 

detailed site investigations.  The model also showcases the application of ArcGIS 

software to processing readily obtainable data to produce useful and flexible 

environmental risk assessment. The methodology developed here has since been applied 

in a simplified form to create a priority list for all abandoned mines in the south west of 

England. Furthermore the methodology on which the model is based already meets most 

of the requirements of Article 20 of the Mining Waste Directive (2001/21/EC) for pre-

selection of potentially harmful abandoned mine sites. 
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2.2 Introduction  

 Within the UK, the government through the Environment Agency recognises the 

need to quantify the number of mine water discharges from metal mines and the 

contamination levels contained within them:   

“A national strategy to deal with the pollution from non-coal mines cannot be 

developed until we understand the scale of the problem” (Johnston et al., 2008) 

However, mine water discharges to watercourses are often diffuse, emerging 

from complex, interconnected shafts and adits, sub-surface seepages and surface run-off 

from spoil heaps. This diffuse character makes quantification challenging and future 

remediation strategies difficult and costly to implement. In recent years, diffuse sources 

at abandoned mine sites have been recognised as important contributors of mine water 

pollution (Mayes et al., 2008). A recent survey of mine water inputs from specific point 

sources (streams and adits) to the River Tamar suggested that an important component, 

of up to 50% for most dissolved and particulate metals, may result from diffuse sources 

(Mighanetara et al., 2009). Therefore, research into the location and magnitude of such 

discharges is a valuable contribution to current understanding.  

A component of diffuse mine water pollution into the Tamar catchment 

originates from mine waste tips (Mighanetara et al., 2009). Mine waste tips in this 

region, and those found in similar mineral deposits throughout the world, contain 

sulphide minerals and secondary mineral phases which act as sources of toxic elements 

including: cadmium, zinc, copper, lead and arsenic (Roussel et al., 2000; Palumbo-Roe 

et al., 2007; Carmona et al., 2009; Rieuwerts et al., 2009).  Leachates from the tips 

transport high concentrations of dissolved metals to surface watercourses via shallow 

groundwater movement and surface run-off (Sainz et al., 2002; Turner et al., 2009).  

The magnitude of pollution is dependent on the extent and situation of tips and the 
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minerals they contain. Geometry (Kampf et al., 2002), particle size (Smith et al., 1999), 

compaction (Evans and Loch, 1996) and lack of vegetation (Riley, 1995) affect erosion 

rates and the exposure of mineral surfaces and therefore influence the level of 

contamination produced.  Once released, migration of dissolved and particulate 

contaminants depends on the characteristics of the drainage pathway, including slope 

(IMWR, 2002),  precipitation patterns (Sainz et al., 2002), soil type (de Matos et al., 

2001)  underlying geology (Maskall et al., 1999) and land use (Goulding and Blake, 

1998). 

 Mine waste tips have been investigated throughout the Tamar catchment and 

SW England as part of this work. Qualitative assessment suggests they are 

heterogeneous with respect to volume, mineral composition, particle size, stability and 

degree of vegetation.  In addition, ten mining areas in south west England, including 

Devon Great Consols, are recognised by World Heritage Status (CMWHS, 2010), 

consequently intrusive investigation and future remediation of these sites requires 

sensitivity to their archaeological and ecological importance. For complete 

characterisation and determination of the contamination levels, assessment by qualified 

individuals on a site-by-site basis would be required.  Ideally, comprehensive field 

investigations at each site, including sampling of waters and soils at high spatial 

resolution and at depth would be conducted, but these are time-consuming and 

expensive, particularly as the “polluter pays” principle cannot be applied retrospectively 

at the abandoned mines (EU directive 2004/35/EC).  Directive 2006/21/EC on the 

Management of Waste from the Extractive Industries, often referred to as the "Mining 

Waste Directive" – MWD, requires all EC member states to provide an inventory of 

closed waste facilities by 01 May 2012. It also requires that member states formulate a 

pre-screening methodology to identify sites that pose a risk to human health or have the 
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potential to cause negative environmental impacts (Stanley et al., 2010).  The 

methodology applied is at the discretion of the individual member state. For England 

and Wales, where the total number of mines exceeds 100,000 existing data is currently 

being gathered and held in a GIS database. Recently published guidance documentation 

for the development of pre-selection methodology recommends the use of easily 

available data and a GIS-based system (Stanley et al., 2010). 

2.3 Aims and Objectives 

The aims of this chapter were to: 

 Identify and prioritise areas of mine waste in the Tamar catchment based on 

available data. 

 Develop a GIS-based method of risk assessment that identifies mine waste with 

the greatest potential to harm watercourses in the Tamar catchment and that may 

be transferable to other catchments in south west England. 

  

 In this chapter a GIS-based methodology is presented which uses existing spatial 

data to prioritise known areas of mine waste in the Tamar Catchment based on the 

physical characteristics of their environmental situation.  In order to produce the priority 

list, the following research objectives were set: 

1. Review existing soil and water quality data in the Tamar catchment. 

2. Compile a list of environmental and physical factors that may increase or 

attenuate the impact of discharges from mine waste tips on surface watercourses. 

3. Review current state of knowledge on the importance of each identified factor. 

4. Identify the best sources of data for each input. 

5. Compile available data into a GIS compatible format.   

6. Apply a suitable method for dividing individual data sets into risk categories.  
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7. Apply a suitable method of weighting input data sets for relative importance. 

8. Combine risk for all input data sets into one GIS-based model. 

9. Generate a priority list of mine waste tips in the Tamar catchment. 

10. Examine the outcomes of the model and identify major areas of uncertainty, 

specifically: 

 Compare high priority mine waste tips with existing regulatory failures 

in surface watercourses. 

 Assess the flexibility and robustness of the model with respect to change 

of opinion. 

 Asses the usefulness of model as a working tool for regulators. 

 

 Objectives 1-4 are presented as a literature review in section 2.4. Objectives 4-8 

are presented as methodology in section 2.5. Objectives 9-10 are dealt with in the 

results and discussion (section 2.6).  GIS-related terms are signified by italics and are 

defined in the glossary at the beginning of the thesis. 

2.4 Literature-Informed Method Development 

2.4.1 Existing Data in the Tamar Catchment 

Academic studies of water, soil or sediment contamination resulting from 

mining in the Tamar catchment have largely focused on case-study sites, Devon Great 

Consols being the most widely covered in literature (Kavanagh et al., 1997; Langdon et 

al., 2001; Piearce et al., 2002; Klink et al., 2005; Palumbo-Roe et al., 2007).  

Consultancy reports have also been commissioned for some sites including Devon Great 

Consols, Gunnislake Clitters, Gawton and Bedford United (Wardell-Armstrong, 1990; 

1992; Sherrell, 2000; 2001; Buck, 2005; Sherrell, 2005; Buck, 2006) However, such 
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reports do not extend to detailed quantitative analysis of contaminant levels as they 

comprise a mixture of ecological, archaeological and geotechnical surveys and 

preliminary environmental assessments. Government and public organisations have 

sampled waters and soils across the UK but with generally low spatial resolution. For 

example, a 1.5 - 2 km
2 

sampling grid was used by the British Geological Society‟s G-

BASE project in a comprehensive analysis of physical and chemical parameters in soil, 

water and sediment (Johnson and Breward, 2004). Monitoring of water quality 

parameters by the Environment Agency includes routine and targeted surveys and offers 

the best spatial coverage, being used to identify and prioritise catchments affected by 

mine water discharges in the UK (Mayes et al., 2009). However, in areas with a high 

density of mines, current data is insufficient to identify individual contamination 

sources or resolve diffuse sources, such as mine waste, drainage from point sources, 

such as adit outflows. Also, the inclusion of data from spot analyses into a prioritisation 

exercise must be treated with care so as not to skew a spatial assessment model towards 

areas on which past monitoring efforts have focussed, at the expense of identifying 

other potential areas of concern. 

  The Environment Agency has collated information on the location of abandoned 

metal mine sites throughout the UK, as demanded by the Mining Waste Directive 

(2006/21/EC), including the spatial extent of contaminated land (e.g. waste heaps, 

arsenic calciners and mineral processing areas).  Data is also available for a range of 

environmental factors (e.g. rainfall, soil type, geology and topography) which influence 

the generation and transport of acid mine waters (Evans et al., 2006), especially those 

resulting from diffuse sources (Xiao and Ji, 2007). This data is available via academic 

licence or at modest cost and in many cases greater resolution data may be obtained at 

additional cost. A combination of the environmental data and the mine-specific location 
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data would produce a valuable tool to prioritise mine sites within catchments, such as 

the Tamar.  The outcomes would supplement existing water quality data and serve to 

concentrate investigation and remedial efforts to sites of greatest risk, thereby reducing 

cost.  

2.4.2 Geographical Information Systems and Multi-Criteria Decision Analysis 

  Numerous examples exist in the literature of GIS being used for spatial 

planning and management. GIS-based multi-criteria decision analysis (GIS-MCDA) 

combines and transforms geographical data and expert judgements on the relative 

importance of input data to provide information for decision making (Malczewski, 

2006). Examples of GIS application to environmental risk assessment include the study 

of soil erosion (Nekhay et al., 2009), landslide risk (Barredo et al., 2000) and bushfires 

(Chen et al., 2003). To date, no one has applied GIS-MCDA to identify high risk areas 

of mine waste with respect to surface water quality.   

In this study, ArcGIS 9.3 software, including the ArcHydro extension, were used 

to combine the best available geo-referenced data into a GIS catchment prioritisation 

model for diffuse mine water pollution. Diffuse mine water in this context refers to 

surface run-off and shallow groundwater movement of leachate emanating mine waste 

heaps and contaminated land.   Although this model covers the Tamar catchment only, 

the methodology is intended to be flexible and simple such that it may be transferred, 

with some modification, to other catchments of the UK. This chapter details the 

procedure used to prioritise mine waste tips in the Tamar catchment and discusses the 

output from the prioritisation.  

    The procedure involved the subjective classification of data sets and judgements 

of the relative importance of input parameters. These decisions are based on literature 
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information, expert judgement and the understanding of the author gained from site 

investigations.   

2.4.3 Environmental Factors that Influence the Diffuse Pollution Output  

Proximity 

Migration of mine waters and particulate-associated contaminants are influenced 

by many environmental factors including proximity to receptors. Waste tips in direct 

contact with a watercourse are likely to represent greater risk than those at a greater 

distance to it. In-stream and sub-surface interactions of dissolved and particulate 

contaminants are complex and care should be taken when generalising elemental 

behaviour. Interaction with the inorganic and organic content of soils and/or sediments 

has been shown to reduce the mobility of many dissolved contaminants found in mine 

waters, including arsenic (Wang and Mulligan, 2006; Asta et al., 2010), copper 

(Clemente et al., 2006) lead (de Matos et al., 2001) and antimony (Filella et al., 2009). 

However, attenuation is strongly influenced by soil pH and varies between elements, 

with zinc and cadmium often remaining the most mobile of the elements commonly 

associated with mine waters (Harter, 1983; de Matos et al., 2001). Also, some soil 

components may enhance the release of metals, both Teminghoff et al. (1998) and Wu 

et al. (2002) found complexation with dissolved organic matter enhanced copper 

mobility through soils. Dilution effects, soil cationic exchange capacity and preferential 

pathways are also important considerations in sub-surface and surface water transport 

and the effect of natural attenuation.  Given the complexity of interactions likely to arise 

from mine waters in the environment, a reliable measure of contaminant mobility could 

only be gained from site investigation. However, at the catchment scale it is assumed 

that extended transport via sub-surface or surface waters (minor streams) would provide 
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greater scope for natural attenuation and dilution than direct input into a major 

watercourse. This is based on fate and transport studies of metals and arsenic in mine 

waters, particularly those with similar mineralisation and bedrock geology such as SW 

Spain (e.g. Asta et al. (2010) and Sánchez Espańa et al. (2005)). Taking this into 

account, a simple distance measurement was adopted to incorporate the length of the 

migration pathway into the model.  

Rainfall 

Rainfall varies across the catchment; the highest overall rainfall is associated 

with the upland areas around Dartmoor and Bodmin Moor (Met Office, 2010). The 

importance of precipitation patterns in this study is two-fold. Firstly in areas of high 

average rainfall, a larger flux of mobile contaminants from spoil heaps may be 

generated than in areas of lower average rainfall, assuming other conditions are similar. 

Secondly, the intensity of rainfall bears great importance to the fate of meteoric waters 

once they contact land surfaces. During high energy rainfall events, soil infiltration is 

reduced (e.g. Mamedov et al,. (2000), Fan et al. (2008)), therefore a greater proportion 

of meteoric waters will enter watercourses as surface run-off.  Surface run-off can 

transport particulate matter from spoil heaps to watercourses, particularly finer size 

fractions (Hairsine et al., 1999), thereby enhancing the pollutant flux to watercourses. 

Extreme rainfall can also trigger slope failures (Cai and Ugai, 2004; Tohari et al., 2007), 

which may cause an acute pollution incident. 

Long-term average rainfall data is available for selected locations from the Met 

Office for the period 1971-2000. The average annual rainfall for south west England 

and south Wales (1250 mm) is higher than the national average (1130 mm), and the 

distribution of the rainfall varies widely from station to station. Published summary 

statistics for the weather stations closest to the Tamar catchment shows Princetown on 
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Dartmoor (1970 mm), receives over twice as much as Bude (920 mm) on the north-west 

coast.  

  Rainfall intensity is usually categorised based on a depth per unit time and 

where available, hourly rates are considered most appropriate to capture rainfall events.  

Dunkerley (2008) recommends the rate classification of Tokay and Short (1996)  shown 

in Table 2.1. Laakso et al. (2003) also define rainfall above 5 mm h
-1

 as 'heavy'. 

However, hourly rainfall data is often unavailable for large areas over large 

time-periods. This is the case for the 30 current MIDAS stations (Met Office, 2010) 

within the Tamar Catchment that log daily rainfall only. Although this data is not 

suitable for the analysis of heavy rainfall events of short duration, it can be used to 

differentiate areas receiving periods of heavy rain. Some authors use daily amounts to 

define „heavy‟ rain events in terms of daily depths. For example, Ower et al. (2009) use 

this term for precipitation >10 mm d
-1

, based on observed aquifer recharge. This 

approach was adapted for this study and the treatment of MIDAS data to determine 

heavy rainfall events is detailed in the methodology section.   

Table 2.1: Rain rate classification from Tokay and Short (1996). 

Classification Hourly Rainfall mm h
-1

 

Extreme ≥ 20 

Very Heavy ≥ 10 < 20 

Heavy ≥ 5 > 10 

Moderate ≥ 2 < 5 

Light ≥ 1 < 2 

Very Light <1 
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Topographical Slope 

Alongside hydrology, topographical slope exerts a control on soil erosion rates 

with greater erosion potential being created by steeper slopes (Gabbard et al., 1998). 

Topographical slope is a critical factor in soil loss calculations, is an integral part of 

most soil erosion models and within a GIS (Kim and Miller, 1996; Liu et al., 2000).  

Within the context of this study, steep slopes in the tip catchment may increase 

the risk of waste tip slope failures during or following rainfall events, whilst steep down 

slopes will maximise the transport of material by gravity or water transport (Dai et al., 

2002). Tip geometry is critically important to stability but is unlikely to be adequately 

described in a catchment scale model due to a lack of resolution and therefore cannot be 

considered here. 

Slope also affects water flow in the saturated zone, as it is governed by hydraulic 

head which is a function of elevation and pressure (from Darcy‟s Law). This also 

applies to water flow in un-saturated zone but drying of soil add complications, due to 

the development of negative pore pressures and capillary forces (Dominico and 

Schwarz, 1998). Overall mass transport of dissolved contaminants, through comparable 

geological and soil media, is likely to occur more quickly for steeper slopes.   

Soils, Bedrock and Superficial Geology 

The hydraulic conductivity of soils, bedrocks and superficial deposits 

determines how rapidly aqueous contamination may be transported from source to 

surface waters, via shallow and deep groundwater movement. Soils and bedrocks have 

an important impact on hydrological processes influencing the downstream flow 

observed (Merrington et al., 2006). Well-drained soils can absorb infiltrating surface 

waters without saturation and reduce direct input into streams. Saturated, finely textured 

or clay rich soils have a high run-off potential due to low infiltration and water 
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transmission rates (US-SCS, 1964). The National Soil Map (NATMAP, 1:250 000) is 

the authoritative digital soil map for England and Wales. Provided by The National Soil 

Resources Institute (NSRI) at Cranfield University, it offers descriptions for 297 soil 

types on which catchment scale assessments of hydraulic properties may be made. 

 Low hydraulic conductivity of the underlying bedrock results in limited 

infiltration by percolating surface waters. Consequently, soils overlying low 

permeability strata are more likely to become saturated, resulting in greater surface run 

off with reduced opportunity for natural attenuation. The Tamar catchment is underlain 

by rocks of low permeability being predominantly slates and sandstones with no 

significant aquifers (BGS, 2010). Shallow groundwater movement through soils and 

superficial deposits is therefore likely to represent the most important migration 

pathway for leachates leaving mine wastes in the Tamar catchment, but this may not be 

the case in other areas.  

The British Geological Survey holds data on the permeability of bedrock and 

superficial lithology for the whole of the UK at the regional scale. In the Tamar 

catchment, bedrock permeability is via fracture flow, whilst superficial permeability is 

either intergranular or mixed. A limitation of the permeability data is that there is 

increasing uncertainty with depth. Bedrock units cannot therefore be combined to give 

an accurate value for transmissivity of the subsurface at a given point. This would 

require accurate information on thickness of the layers (BGS, 2009). Nevertheless, the 

permeability index does provide useful regional data from a reliable source which is 

coded based on expert judgement.  

The permeability of superficial geological deposits of quaternary age (generally 

unconsolidated) is recorded separately to bedrock geology (BGS, 2009; 2010). Within 
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the Tamar catchment these comprise peat deposits and river terrace/alluvial deposits 

(mostly sands and gravels) (BGS, 2010).  

Soils and superficial deposits both act as pathways for migrating ground waters 

and as a potential sink for dissolved metals transported with them.  Strata with very low 

hydraulic conductivity, such as those containing clays, offer a barrier to pollutant 

migration. Many clays minerals also retard metal species via cationic-exchange (van de 

Lee and De Windt, 2001; Alvarez and Illman, 2006).   Natural clay, or derived clay 

materials, such as bentonite, are therefore often used as a hydraulic barrier or as a 

retention medium for contaminants in waste leachates (Bellir et al., 2005).  Attenuation 

of pollutant metals via sorption is also well documented for soils with a high humic acid 

content.  Peat, in particular is an effective sorbent of dissolved metal pollutants through 

a variety of mechanisms, including ion-exchange, complexation, and surface adsorption 

(Brown et al., 2000; Ringqvist et al., 2002). However, if humic acids are dissolved or 

suspended in waters, complexation with metals could actually enhance mobility by 

reducing adsorption on mineral surfaces (Schmitt et al., 2002).  

Superficial alluvial deposits (sands and gravels) may also enhance mobility by 

providing a high permeability pathway for migration of contaminants into rivers. 

Physical and chemical processes of metal mobility and retention have been investigated 

in detail for various solid media and different soil types. However, due to the 

heterogeneous nature of soils and superficial deposits across large areas and with depth, 

these processes cannot be included in the catchment-scale model developed in this 

study.  The influence of soil, superficial deposits and bedrock geology on metal 

transport will be taken into account by the inference of hydraulic properties in 

catchment scale mapping.  
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Vegetation 

The type and degree of vegetation cover has been shown to have a marked impact 

on the soil erosion rates of catchments worldwide.  Soil loss may be greatly reduced in 

areas of vegetation. For example, Marques et al. (2007) showed negligible soil loss for 

vegetated soils during extreme rainfall (21 mm h
−1

, classified according to Table 2.1),  

whereas significant transport of suspended material (74 kg Ha
-1

) was observed on bare 

soils. There are a number of ways in which vegetation cover can offset erosion rates 

under conditions of varying climate, soil type and topography: 

1. The vegetation canopy absorbs the energy of  rainfall, reducing its capacity to 

disaggregate the soil surface 

2. Vegetation cover reduces the velocity of run-off  and therefore its ability to 

transport suspended matter 

3. The physical and biological action of roots result in increased soil strength, 

granulation and porosity 

4. The transpiration of water through vegetation leads to enhanced soil drying  

5. Vegetation and derived organic matter can insulate soil against extremes of 

temperature, reducing cracking and freeze-thaw processes. 

6. Vegetation results in the compaction of underlying soils  

Adapted from Lai et al. (2003) 

 All the above factors are applicable when assessing the erosion of mine waste 

tips and the attenuation potential of the drainage pathway. Vegetated tips are more 

stable with respect to erosion and the maintenance of a stable water balance through 

evapo-transpiration  (Gatzweiler et al., 2001). This reduces the turnover of fresh surface 

and its exposure to the atmosphere, thereby reducing the production of acidic leachates 

and suspended material. Furthermore, vegetation provides dissolved organic matter 
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(DOM) to the soil layer which quickly consumes the dissolved oxygen in percolating 

waters via aerobic respiration. This reduces the amount available to drive sulphide 

oxidation reactions in the underlying mine waste  (Peppas et al., 2000).  Therefore, it 

can be concluded that dissolved and particulate contaminants entering watercourses 

from vegetated tips is likely to be lower than from un-vegetated tips. 

In some cases, the action of plant roots penetrating through artificially applied 

covers (including soils), has also been cited as a cause of failure, allowing oxygen and 

water ingress (Koener and Daniel, 1997). However, root growth is observed to be poor 

in most cases for shrubs and trees growing in soils overlying spoil heaps.  Laboratory 

and field studies under various conditions and soil types  have indicated that grass roots 

penetrate to <0.4 m  and most trees and shrubs <1.0 m, where sufficient water exists 

(Kohler and Sanger (1998), in Gatzweiler, et al. (2001)). Furthermore, vegetated soils 

show reduced crusting and higher infiltration rates, resulting in reduced run-off (Boix-

Fayos et al., 1998). Therefore migration of mine waters through vegetated soils is likely 

to be slower and may enhance attenuation of pollutants, whether dissolved or 

particulate.  

The available data set for land cover has a resolution of 25 m x 25 m (LCM, 

2001). Therefore, the presence and type of vegetation cover for some mine waste heaps 

may be hard to distinguish from the surrounding area. Areas of land cover < 0.5 ha are 

also generalised according to the dominant classification (vegetation type, water body or 

bare soil).  This is a limitation, but may be accepted at the catchment scale because land 

cover categories identified as high risk for the tips are also high risk for the drainage 

pathway. Also, in terms of spatial extent the drainage pathway incorporates drainage 

through the area occupied by mine waste tip.  
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Wind Speed and Exposure to Sunlight 

When exposed to wind, fine material from mine waste tips, typically < 2 mm, 

may be transported and re-deposited downwind either as wind-blown dust or via 

saltation (Roberts and Johnson, 1978; Davies and White, 1981).  Wind and exposure to 

sunlight increase evaporation from bare soils or mine wastes, this can dry out surface 

layers in periods of low rainfall making the surface of the tips more susceptible to 

erosion (Poesen et al., 1999). Evaporation also encourages the formation of efflorescent 

salts (e.g. copper sulphates) at the surface. Dissolution of these salts is an important 

mechanism for increasing flux of dissolved metals leaving a mine waste tip (Nordstrom 

and Alpers, 1999).  

Based on the literature information gathered, twelve input factors were 

incorporated into the model. These were divided into three categories, factors affecting 

primarily the waste tips themselves, factors most important within the tip catchment 

area and factors influencing the migration of contaminants through the drainage 

pathway to the nearest watercourse (Table 2.2). 

Table 2.2: Environmental factors considered in diffuse mine water model. Factors attributed to 

either the extent of the mine waste tips, the tip catchment areas or the drainage pathway. 

Mine Waste Tip  Catchment Drainage Pathway 

Area Rainfall Average Slope 

Proximity To Watercourse Rainfall Intensity Soil Type 

Wind Speed   Bedrock Geology 

Sun Exposure (Aspect or Hill Shade)  Superficial Geology 

Sun Exposure (Vegetation Cover)  Vegetation Cover 
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Other Considerations  

Mine waste tips in the Tamar Catchment are frequented by walkers, dog-

walkers, mountain bikers, off road motorcyclists and in some cases are blighted by fly-

tipping. The extent to which these activities take place is a measure of their accessibility 

to the public and vehicles. In some cases the use of these sites is managed in partnership 

between the site owner and the users, and the use of designated tracks is actively 

encouraged. The best example of this may be seen at two of the largest sites within the 

Tamar catchment; Devon Great Consols and Gawton mine, where managed mountain 

biking tracks were located during the duration of this study. Unfortunately this does not 

prevent the unauthorised use of these and other mine sites. Apart from the risk to public 

health from uncapped mine shafts and exposure to contaminated wastes there is also an 

implication for erosion of the sites. Destruction of vegetation covers and physical action 

of activities disaggregates the surfaces of mine spoil. The effect is to increase the 

transport potential of particulate contaminants and enhance the exposure of fresh 

mineral surface to infiltrating waters. Gawton mine was historically used by motorcycle 

riders, but this has now been reduced by the actions of Tamar Valley AONB via the 

installation of fences. Woodland Riders (http://www.woodlandriders.com) and 

Tavistock Woodlands Estate both police Blanchdown woods at Devon Great Consols to 

actively discourage motorbikes and un-sanctioned building of mountain bike tracks 

outside their designated area. Since its formation in 2005, Woodland Riders believe 

they have been successful in greatly reducing unauthorised usage, but a small number of 

mountain bike tracks may exist in the Kitt Hill area, shown in Figure 2.7 (section 2.6.4) 

(Cleaver, 2010 pers. comm.). Assessment of the negative effect of human activity on the 

abandoned mine sites is not feasible at the catchment scale, and is therefore not included 
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in the model. This is because information is largely anecdotal or reliant on site 

inspection to provide evidence of post-mining activities.  

2.5 Methodology: 

2.5.1 Summary 

 Construction of the model involved several key phases, as summarised here and 

in Figure 2.1.  The procedure applied to each data set and combination into the model is 

described in detail in the sub-sections 2.5.2 to 2.5.15. 

Relevant data for each parameter was obtained and transformed into a suitable 

format for display within ArcGIS (ESRI), the chosen GIS software.  ArcHydro9 (ESRI) 

was used to model a catchment and drainage area for each identified mine waste tip in 

the catchment. The catchment and drainage areas were utilised as a template to isolate 

areas of interest from other data sets. This reduced the time required by the computer to 

process commands.  

The data sets were divided into six risk categories from „Low Risk‟, scoring 1, to 

„Extreme Risk‟, scoring 6. The division of data was based either on literature 

information and expert judgement (e.g. soil classification, permeability) or statistical 

division of the data (e.g. rainfall, wind speeds).  Each data set was then reclassified 

within ArcGIS to include the risk score.  

Each data set was judged on its relative importance to the overall risk posed by 

diffuse drainage from waste heaps. An importance weighting was assigned, following 

the analytical hierarchy process (AHP), described by Saaty (1980).    

The risk scores for input data sets were multiplied by their importance weighting 

and the products were summed. The summed data sets formed small areas or packets of 

risk.  The combined risk score for each tip, its corresponding catchment and drainage 
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area were calculated as the average of the packets within each boundary (tip, catchment 

or drainage).  

The combined risk scores for corresponding tip, catchment and drainage areas 

were then summed to produce a total risk score for each tip. Tips were ranked by their 

total risk score and classified into 6 categories, from “Low” to “Extreme”. A sensitivity 

analysis was performed by re-running the model with AHP weightings shifted toward 

climatic, geological or physical bias.  

Finally, the results of the model, including those from the alternative AHP 

weightings were examined and compared with known data from water analysis and site 

reconnaissance surveys.  
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Figure 2.1: Flowchart showing development of model from input data sets. Abbreviations used: OS - Ordnance Survey; BGS - British Geological Survey; BADC – British 

Atmospheric Data Centre; EA – Environment Agency; NATMAP – National Soil Map; DTM – Digital Terrain Model; AHP – Analytical Hierarchy Process.
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2.5.2 Location of mines, mining wastes and areas of associated contaminated land 

Geo-referenced data collated and supplied by the Environment Agency (EA) 

was used as the primary resource to identify mine sites and associated areas of 

contaminated land (e.g. mineral processing areas and arsenic calciners). The data set 

contained information on the location of mine shafts, adits, mineral railways, streamed 

workings and areas of associated contaminated land (mine wastes) from literature and 

surveys, stored as a polyline feature class. Areas of mine waste (including streamed 

workings) were selected out from other line features. The data set was edited to correct 

errors such as overlapping or incomplete lines, and then converted to a polygon feature 

class (see Appendix 2A for method description).   

2.5.3 Areas of Mine Waste 

The area of each mine waste polygon in the polygon feature class was calculated 

using the geometry tool, equating to 806 features.  Six area categories were classified 

based on quantile division of the data set. Risk scores from 1 (Low) to 6 (Extreme) were 

assigned. Summary statistics and classifications are listed in Table 2.3.  A histogram of 

the areas showed that they were not normally distributed; this was due to the assignment 

of a default radius of 25 m to 352 shafts in the original data set. The equivalent area 

(1963 m
2
) accounts for the high population of features falling into the „Moderate-Low‟ 

category. It is assumed that these areas contain waste materials and have been included 

in the model. 
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Table 2.3: Classification and summary statistics of spatial extent of spoil and associated 

contaminated land. * Number in parenthesis denotes count of stream workings. 

Area (m
2
) Risk Classification Class Frequency Risk Score 

> 98700 Extreme 7 (5) 6 

> 49100,  < 98700 Very High 12 (2) 5 

> 23800,  < 49100 High 36 (14) 4 

> 8750,  < 23800 Moderate 62 (10) 3 

> 1910, < 8750 Moderate -Low 575 (6) 2 

< 1910 Low 114 (1) 1 

Total Area 6107065 m
2 
   (30% stream workings by area) 

Mean 7577 m
2 

Range 126 – 276231 m
2 

 

2.5.4 Proximity to Nearest Known Watercourse  

The distance between each mine waste polygon and nearest stream was 

determined using the Select by Location tool in ArcMap. Two stream layers were used, 

a stream layer digitised from OS 1:10000 mapping, (OS, 2009a) (digitised at a 

minimum zoom of 1: 5 000 with estimated error +/- 2m); and a drainage line generated 

from ArcHydro9 and a digital terrain model (see Appendix 2B). The latter layer 

contained errors in predicted watercourses in areas of low relief and errors caused by 

poor characterisation of man-made streams. Distances were measured from the closest 

perimeter of the mine waste polygon to the centreline of the watercourse and classified 

according to Table 2.4.  
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Table 2.4: Classification of risk to watercourse from mine waste tips, based on distance from 

watercourse. 

Distance to Stream/River Risk Classification Class Frequency Weighting 

Direct contact  Extreme 38 6 

0 - 50 m Very High 77 5 

50 - 100 m  High 51 4 

100 - 250 m Moderate 119 3 

250- 500 m  Moderate -Low 140 2 

> 500 m Low 381 1 

2.5.5 Average Rainfall 

Rainfall data for the Tamar catchment was obtained from the Met Office Tamar 

catchment, comprising a 1 km raster grid with long-term monthly average data for the 

period 1971-2000. A monthly average was calculated using the raster calculator tool by 

summing the monthly data and dividing by 12. The data was divided into the categories 

derived from natural breaks in the data set, as calculated by ArcMap and shown in Table 

2.5.  The resulting input layer is displayed in Figure 2.22, Appendix 2G. 

Table 2.5: Classification of average rainfall data for Tamar Catchment 

Category  Rainfall (mm per month) Weighting 

Extreme > 161 6 

Very Heavy > 138, < 161 5 

Heavy > 121, < 138 4 

Moderately Heavy > 107, < 121 3 

Moderate > 95 < 107 2 

Low  <  95 1 

Range  74.4 – 210 
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2.5.6 Rainfall Intensity  

Daily rainfall data (WADRAIN, DLY3208) from the British Atmospheric Data 

Centre (BADC) (MetOffice, 2010) was used as the source of rainfall intensity data.  

MIDAS stations were identified within the Tamar Catchment (+ 5 km) using the Google 

Earth locations supplied by the BADC.  All stations providing continuous daily rainfall 

data for the period 01 Dec 1999- 31 Oct 2009 (~10 years) were selected, numbering 30.  

In addition, 35 stations surrounding the catchment with data for the same period were 

identified to help improve interpolation of the data around the edges of the catchment.  

Data for each of the selected stations was downloaded from the BADC using the data 

extractor service provided. The obtained data file was converted to an excel spreadsheet 

and the data was sorted by station identification number and date of measurement. The 

data was reviewed and duplicate readings (superseded or unverified) or readings taken 

over multiple days were removed. The average daily rainfall for stations within the 

Tamar catchment was determined as 4 mm d
-1

 for the reviewed period. The count and 

magnitude of all days with rainfall ≥ 4 mm d
-1

 were logged and classified; a summary is 

shown in Table 2.6. 

Table 2.6: Classification of Daily Rainfall Intensity based on MIDAS daily rainfall data (1999-2009) 

for stations within the Tamar Catchment (+ 5 km). 

Category of Rain Event, C Daily Rainfall ,  P (mm d
-1

) Percentage of Days in Category  

Extreme ≥  50 0.1 

Very Heavy (II) ≥  40 0.3 

Very Heavy  (I) ≥ 30 1.1 

Heavy ≥ 20 3.7 

Moderately Heavy ≥ 10 12.5 

Moderate (above average) ≥ 4 26.9 

Range  0 - 220   
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For each station, the return period (R) was calculated for each category of rain event (C) 

via Equation 1: 

 

                            

                                      
                                           

   Equation 1 

 A plot of log R verses C, yielded a straight line plot (R
2 

≥ 0.99). From the gradient of 

the plot a return time for any value of C could be determined. The return time for a 

heavy event ( ≥ 20 mm d
-1

) was determined from the log R versus C  plot for each 

station. The return times were reclassified into the six categories based on natural breaks 

in the data set (Table 2.7). 

Table 2.7: Categories used to define the return time of a heavy rain events ( > 20mm d
-1

) within the 

Tamar Catchment. 

Category   Return Time of 20 mm d
-1

 event  (days) Risk Score 

Extreme  < 20.7 6 

Very High  > 20.7, < 24.6 5 

High  > 24.6, < 29.0 4 

Moderately Heavy  > 29.0, < 34.3 3 

Moderate  > 34.3 < 39.4 2 

Low   > 39.4 1 

Range   17.2 – 50.6 days 

 The data was introduced to ArcMap as a point feature class. An inverse distance 

weighted interpolation of the data points was selected from the Spatial Analyst toolbar 

to produce a map of estimated return time of a heavy rain event across the Tamar 

catchment. The resulting raster was reclassified to include the risk score 1-6. The raster 

served as input data set for rain intensity and is shown in Figure 2.23, Appendix G. 
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2.5.7 Topography 

Ordnance Survey Land-form PROFILE (10m) contour tiles and spot heights 

(OS, 2009b) were used to create a triangulated irregular network (TIN) from which 

drainage pathways and topographical slope were derived. Input heights were verified 

against the Ordnance Survey 1 :10 000 mapping (OS, 2009a).    

 The TIN was converted to raster grids using the 3D Analyst toolbar in ArcMap 

9.3. A cell size of 5 m was defined, as this was found to be the highest resolution that 

could subsequently be  processed with ArcHydro9. A full description of the method 

used to derive the digital terrain model (DTM) is provided in Appendix 2B. 

Slope 

  Slope angles were calculated for the catchment in ArcMap using a DTM grid of 

5m cell size and the Slope tool in the Spatial Analyst toolbar. Hodgson (1997) devised a 

standard classification system to describe slopes in categories from level to precipitous. 

The calculated slopes in the Tamar catchment were reclassified as a raster 

(“grid5slope”) with six categories, resulting from a modification of  Hodgson‟s scheme 

as shown in Table 2.8. The raster was then converted to a vector file using the Convert 

option in the Spatial Analyst Toolbar.  

The slope vector file was one of the most complicated input files for the model 

comprising many small polygons. To aid subsequent processing steps, artefacts in the 

geometry were removed using the multipart to singlepart, and repair geometry tools.  

An example of the output from this process is shown in Figure 2.24, Appendix G.  
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Table 2.8: Slope Classification according to Hodgson (1997) and the revised classification used for 

the model.  

Class (Hodgson) Angle (°) 

Model 

Classification Angle (°) Risk Score 

Precipitous 36+ 

Extreme ≥ 25 6 
Very steeply sloping 26-35 

Steeply sloping 16-25 Very Steep ≥ 15, < 25 5 

Moderately steeply sloping 12-15 

Steep ≥ 7, < 15 4 
Strongly sloping 8-11 

Moderately sloping 4-7 Moderate ≥ 4, < 7 3 

Gently sloping 2-3 Gentle ≥1, < 4 2 

Level 0-1 Level < 1 1 

2.5.8 Soils  

The National Soil Map (NATMAP, 2008) was used as the base data set for risk 

assessment of surface run-off due to soil type. Soil types were ranked according to the 

permeability of the dominant soil type and its capacity to absorb inflowing drainage, i.e. 

perennially wet soils were scored highest and free-draining soils scored lowest (Table 

2.9).  Permeability descriptions were defined by the data set but assignment of risk was 

based on the judgement of the author. Any favourable retardation or attenuation of 

migrating pollution resulting from the presence of significant peat or clay deposits are 

included in the model via the superficial deposit layer, described later. The Tamar 

catchment does not feature significant aquifers and therefore, the risk to groundwater 

bodies and their input to stream base flow has not been considered. 

 A sample of the reclassified NATMAP data set is given in Figure 2.25, 

Appendix 2G 
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Table 2.9: Risk classification applied to NATMAP soil types. 

Dominant Soils Description Risk Score 

Thick very acid (amorphous) raw peat soils. Perennially Wet. 6 

Slowly permeable seasonally waterlogged loamy upland soils with a peaty (or humose) surface horizon/ Gritty loamy very acid 

soils with a wet peaty surface horizon, thin ironpan often present / Slowly permeable seasonally waterlogged fine loamy (and/or 

clayey  and/or silty) 

5 

Deep stoneless fine silty and clayey soils variably affected by groundwater / China clay spoil workings. 4 

Fine loamy permeable soils variably affected by groundwater/ Loamy permeable upland soils over rock with a wet peaty surface 

horizon and bleached subsurface horizon, often with thin ironpan/ Permeable gritty coarse loamy upland soils with a wet humose 

or peaty surface horizon affected by groundwater/ Reddish very acid permeable loamy upland soils over sandstone. 

3 

Deep stoneless permeable silty soils/ Shallow well drained loamy soils over rock. 2 

Lake or water body/ Sea/ No soil (miscellaneous coastal feature)/ Well drained fine loamy and/or fine silty soils over rock. Well 

drained fine loamy soils over deeply weathered rock locally/ Well drained fine loamy soils over slate or slate rubble/ Well drained 

fine silty over clayey soils stoneless or with chert stones, often deep/ Well drained gritty loamy soils with a humose surface 

horizon in places/ Well drained humose gritty loamy soils. Occasionally with thin ironpan/ Well drained loamy soils over rock 

with a humose or peaty surface horizon/ Well drained very stony loamy soils on moderate to steep bouldery slopes. 

1 
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2.5.9 Bedrock and Superficial Geology 

The maximum and minimum permeability values for bedrock and superficial 

lithology in the Tamar catchment were taken from the Permeability Indices (version 5) 

data set (BGS, 2009).  

Bedrock 

The bedrock data set indicates qualitatively the maximum and minimum 

permeability encountered in the unsaturated zone for each rock unit and lithology 

combination. Five classes are used: “very high”,” high”, “moderate low” and “very 

low” as determined at the outcrop of the deposit. Six classes were  of risk applied to the 

bedrock geology data set, based on the minimum and maximum permeability 

combinations. Risk scores were assigned on the basis that lower permeability bedrock 

will promote greater surface run-off and shallow groundwater movement (Table 2.10).  

Table 2.10: Classification of  bedrock geology based on permeability data and rock classification 

scheme (RCS, BGS 2010). 

Maximum 

Permeability 

Minimum 

Permeability 

Rock Classifications included 

in class (RCS) 

Risk Score 

Low Low e.g. Slate / Mudstone  6 

Moderate  Low e.g. Interbedded Slate and 

Sandstone / Granite / Basaltic 

rock 

5 

Moderate Moderate Breccia / Sandstone 4 

High Low e.g. Slate and Limestone/ Sand, 

Silt and Clay 

3 

High High Limestone 2 

Very High High Limestone 1 
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The rock classification scheme (RCS) was joined to the permeability data set 

using 1: 50000 geology data in vector format (BGS, 2010). This allowed identification 

of the characteristics of the lithology attached to the permeability index. The output risk 

layer for bedrock permeability is shown in Figure 2.26, Appendix 2G. 

Superficial 

Superficial deposits in the Tamar catchment comprise mainly peat deposits 

associated with Dartmoor and Bodmin Moor, and alluvial deposits close to 

watercourses. Thickness of the recorded superficial deposits was between 1m 

(minimum mapped depth) and 5 m. Division of the data set  based on thickness was not 

feasible because interpolation modelling used to produce thickness of the data creates 

false thicknesses in river valley and hill environments.  

The highest permeability deposits (e.g. alluvial gravels and sands) were ranked 

with the highest risk score, assuming that they could provide a preferential migration 

pathway to streams. Peat and clay deposits were assumed to be beneficial for natural 

attenuation of metals in migrating waters. Since superficial deposits are at least 1 m in 

depth, this was deemed significant enough to assign a negative risk score to these 

deposits (Table 2.11). This addresses the conflict between the hydraulic properties of 

soils rich in clay and peat soils which were ranked high risk of surface run off, with the 

chemical properties which may be favourable for attenuation of dissolved metals.  

As superficial deposits are not continuous through the catchment, it was 

necessary to assign a default score of 1 to all other areas in the catchment. The output 

risk layer for superficial deposits is shown in Figure 2.27, Appendix 2G. 
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Table 2.11: Classification of superficial geological deposits in the Tamar catchment based on 

permeability data and rock classification (BGS, 2009; 2010). 

Maximum 

Permeability 

Minimum 

Permeability 

Rock Classifications included 

in category (RCS) 

Risk Score 

Very High Very High Gravel /Granite Boulders* + 6 

Very High  High Sand and Gravel + 6 

Very High Moderate Gravel, Sand and Silt + 6 

High High Sand + 3 

High  Very Low Clay, Silt, Sand and Gravel + 2 

Moderate Low Silt + 1 

Low Very Low Peat / Clay and Silt - 3 

  All other areas  + 1 

*„Granite boulders‟ refer to areas of weathered regolith, on high ground, usually above of other 

superficial deposits. Although not directly relevant, the category was retained to prevent no data 

areas appearing in model.  

2.5.10 Vegetation Cover 

  The data set used to estimate vegetation cover in the Tamar catchment was the 

Land Cover Map 2000  (LCM, 2001), which provides 26 broad habitats (Table 2.12), 

based on a 25m  pixel  grid.  Further information on  LCM2000,  may be found on the 

LCM website (CEH, 2010).  The 26 broad habitats were classed according to their 

potential for contaminant transmission or retardation (scores 1 to 6 representing low to 

high transport potential). Judgement was based on the effect of vegetation in terms of 

stabilising mine wastes and soils, reducing the impact of high intensity rainfall and 

reducing surface run-off and transport of metal contaminants.  Sunlight exposure risk is 

also shown in Table 2.12, see explanation in section 2.5.12. 
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Table 2.12: Classification of risk for vegetation cover in the Tamar catchment based on 

contaminant transport and sunlight exposure factors. Derived from  LCM2000 data set (CEH, 

2010). 

LCM2000 Subclass, 

Broad Habitat Class No. 

Contaminant Transport 

Risk Score 

Sunlight Exposure 

Risk Score 

Sea/Estuary 221 6 1 

Water (inland) 131 6 1 

Littoral Sediment 211 5 5 

Continuous Urban 172 5 3 

Inland Bare Ground 161 5 6 

Saltmarsh 212 4 5 

Suburban/rural developed 171 4 3 

Bog 121 3 5 

Dwarf shrub heath 101 3 3 

Open dwarf shrub heath 102 3 4 

Arable cereals 41 3 3 

Arable  horticulture 42 3 3 

Acid grass 81 3 2 

Bracken 91 3 2 

Coniferous woodland 21 2 1 

Improved  grassland 51 2 2 

Neutral grass 61 2 2 

Fen, marsh, swamp 111 2 4 

Broad-leaved woodland 11 1 1 

Calcareous grass 71 1 2 

 

 The LCM2000 data set was calibrated by the creators with 569 1 km squares 

from field surveys. The estimated pixel to pixel correspondence between field survey 

and LCM2000 was only 60%.  This includes errors due to the more detailed recording 

parcels of the field surveys (> 0.04 ha) compared with the minimum mapped unit of 

LCM2000 (> 0.5 ha) (CEH, 2010).  Since 631 out of the 806 mapped areas of mine 
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waste in this study are less than 0.5 ha, waste tip scale analysis of vegetation cover with 

this data set is not permissible. Vegetation cover is clearly very important at the site-

specific scale for the reasons described in section 2.4.3.  The low accuracy of remotely 

gathered data and its age mean that it must be applied with caution, but it is still useful 

to a catchment-wide prioritisation model.  The low weighting applied to this data set in 

the final model is a reflection of its confidence rather than it‟s importance. A revised 

data set, LCM2007 is expected for release in 2011(CEH, 2011). 

2.5.11 Wind Speed 

 Average annual wind speed at 10m from ground level was obtained from the 

Department of Trade and Industry‟s database (DTI, 2010) as a raster data set. This 

database is the result of an air flow model that estimates the effect of topography on 

wind speed and no allowance is made for the effect of local thermally driven winds. The 

data used comprised a raster data set of average wind speeds at 10m from ground level 

with a resolution of 1km. The data was reclassified into six risk score categories (Table 

2.13), based on quantile division. 

Table 2.13: Wind speed classification for the Tamar catchment based on 10m high wind 

speed estimates (DTI, 2010). 

Wind speed (km h
-1

) Classification Risk Score 

≥ 6.2 Extreme 6 

≥ 5.7, < 6.2 Very High 5 

≥ 5.3, < 5.7 High 4 

≥ 4.9, < 5.3 Moderately High 3 

≥ 4.4, < 4.9 Moderate 2 

≥ 0, < 4.4 Low 1 
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2.5.12 Exposure to Sunlight 

  The ArcGIS Hillshade tool was used to determine the degree of shading 

experienced by the terrain model of the catchment. The Azimuth and altitude of the sun 

were set to 170.3° and 62.5° respectively, equivalent to the mid-summer position on the 

25
th

 June 2009 with respect to a point in the centre of the catchment (50‟ 36‟ °N, 4‟ 12‟ 

° W ) (USNO, 2010).  After conversion of raster to polygon format, the results were 

classified into six categories based on quantile division of the data set. Areas with 

lowest shadow were assigned a value of 6 for exposure potential.  This model makes no 

correction for land cover (LCM2000 data set section 2.5.10).  

2.5.13 Hydrology 

Using the ArcHydro9 application (ESRI), the catchment DTM was transformed 

in to a series of hydrogrids which allowed streams, drainage paths and catchments to be 

modelled. The following processes were applied to the available DTM (resolution 10m) 

in order to create hydrological features for the model.  

Creating the Hydrogrid from the Catchment DTM 

Erroneous low points in the catchment DTM  were filled using the fill sinks tool 

in the Terrain Preprocessing (TP) menu.   The flow direction was then established in 

the filled DTM by running the Flow Direction function in the TP menu.  

The results were reviewed according to guidance documentation (Djokic, 2008) 

and verified with existing knowledge of drainage features by consultation of maps and 

site visits. In some areas of low relief (< 1 m above sea level) minor discrepancies were 

observed between the known flow direction of primary rivers, such as the River Tamar 

or River Ottery, and streams and the drainage pattern generated by the DTM. To 

improve the model the flow paths of the major rivers and streams were imposed 



       Chapter 2   

 

51 

 

manually, using the method of burning in. The imposed stream layer was created from 

OS 1: 10 000 OS mapping (OS, 2009a), and consisted of a continuous and non-braided 

line network. “Burning in” was only undertaken in circumstances where there was 

reliable information on the flow direction at a suitable scale. In all other cases the 

drainage channels were not altered as the process may introduce untraceable errors to 

the DTM. With higher resolution elevation data to produce the DTM, the burning in 

process may not be necessary. 

Modelling of Catchment and Drainage Areas for Mine Waste Tips 

 Catchment areas for each mine waste polygon were determined using the Batch 

Watershed Delineation for Polygons tool in the Watershed Processing toolbar of 

ArcHydro9. The data input consisted of a flow direction grid and the mine waste 

polygon layer (described in section 2.5.2) containing the spatial extent of the mine spoil. 

Figure 2.2 displays the necessary processing steps required to generate the drainage 

areas.  

 

Figure 2.2: Sequence used to create drainage pathway polygons for each area of mine waste using 

ArcHydro9 tools. 

 

MineID field populated with consecutive ID field 

Catchment Hydrogrid 

Inverted Catchment DTM created  

using raster calculator (DTM * -1) 

Inverted Flow Direction Grid (IFDG) 

created with ArcHydro TP 

Mine Waste Polygon File (MWP) 

containing waste tip areas 

New fields “BatchDone”, “SnapOn”, 

“Descript”, “HydroID” and DrainID 

added to MWP2 File 

New copy of  MWP created with 

consecutive numbering in ID field 

(MWP2) 

Tip drainage areas 

calculated in Archydro  

WP using “Batch 

Watershed Delineation  

for Polygons” tool, IFDG 

and MWP2 input files 

Output Drainage Polygon file checked for errors and 

joined to MWP2 using ID field  

Output drainage area file cross matched to tip ID 



       Chapter 2   

 

52 

 

The process used to generate the drainage and catchment areas were identical, with the 

exception that the step required to invert the DTM was omitted in the latter. 

2.5.14 Assignment of weighting for all input parameters (GIS layers) 

The relative significance of each input data set with respect to other data sets  

were determined using the analytical hierarchy process described by Saaty (1980).  

Each data set was assigned a score based on its relative importance to the generation of 

diffuse mine waters. The numerical scores with a short description of their meaning are 

listed in Table 2.14 and the resulting scores are given in Table 2.15, as a pairwise 

comparison matrix. 

Table 2.14: Scoring in AHP via pairwise comparison (adapted from Saaty 1980). 

Numerical Importance Verbal Judgement of Importance 

1 Equal Importance 

3 Moderate Importance 

5 Strong Importance 

7 Extreme Importance 

9 Most Important 

2,4,6,8 and decimals Intermediate Values 

 

 The weight of each layer (w) was calculated using Equation 2.  

          

 

   

 

Equation 2 (Wang et al., 2010) 

For the PCM in Table 2.15, the summation of the components for each layer, Mi, 

i.e. 57.0 for proximity and 51.5 for slope, were divided by the denominator of the 

matrix, ΣMi (355). The weights calculated by this method for all input data sets and are 

shown in Table 2.16.  For ease of input into ArcGIS each weighting was multiplied by 
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1000 to give parts per thousand (ppth) without decimal places. The PCM matrix shown 

in Table 2.15  places the greatest importance on the physical input parameters of 

proximity, size and slope angle. Although the author considers this the most suitable 

weightings for the model, the effect of different approaches on the outcome of the 

model were tested.  Each placed a greater emphasis on the role of a group of factors 

described as climatic (rainfall intensity, average rainfall, wind speed and sun exposure), 

geological (soils, bedrock and superficial geology) and biological (vegetation cover). 

The weightings derived from each alternative PCM are also shown in Table 2.16. 

 To check for the consistency of judgement within the PCMs, the principle 

eigenvector method (PEM) was employed. PEM is the most widely applied process 

used to ensure that consistency of judgement is maintained (Bana e Costa and Vansnick, 

2008). Eigenvectors (xi,j) were manually calculated  using  Equation 3. Each component 

of the PCM matrix (ai,j) was divided by the total for its layer column (Ci) (Teknomo, 

2006). For the PCM in Table 2.15, the left first component (top, left) was calculated as: 

      
    

  
 

 

    
       

          Equation 3  

 All components of the PCM in Table 2.15 were transformed by this method 

resulting in the normalised matrix shown in Table 2.18. The principle eigenvector (W) 

was calculated for each input data set as the average of the eigenvectors for that row  

(2nd to right column, Table 2.18). Eigenvalues for each input data set were then 

calculated by multiplying the principle eigenvector (W) by the total of the data set 

column in the PCM (Ci,, Table 2.15). The principle eigenvalue (λmax) was calculated as 

the sum of the eigenvalues for the matrix (see right most column, Table 2.18).  
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Table 2.15: Pairwise comparison matrix (PCM) constructed for input parameters in environmental model. 
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Proximity  1 2 2 3 4 4 5 5 6 8 8 9 57.0 

Slope Angle 1/2 1 1 2 3 4 5 5 6 7 8 9 51.5 

Area  1/2 1 1 2 3 4 5 5 6 7 8 9 51.5 

Soil 1/3 1/2 1/2 1 2 3 4 4 5 6 7 9 42.3 

Rainfall Intensity 1/4 1/3 1/3 1/2 1 2 3 4 5 5 6 8 35.4 

Superficial Deposits 1/4 1/4 1/4 1/3 1/4 1 2 3 4 5 6 8 30.6 

Rainfall Average 1/5 1/5 1/5 1/4 1/3 1/2 1 2 3 5 6 8 26.7 

Vegetation Cover 1/5 1/5 1/5 1/4 1/4 1/3 1/2 1 2 3 5 7 20.9 

Bedrock Geology 1/6 1/6 1/6 1/5 1/5 1/4 1/3 1/2 1 3 5 8 19.0 

Wind  Speed 1/8 1/7 1/7 1/6 1/5 1/5 1/5 1/3 1/3 1 3 5 10.8 

Sun (Hillshade) 1/8 1/8 1/8 1/7 1/6 1/6 1/6 1/5 1/5 1/3 1 4 6.8 

Sun (Vegetation) 1/9 1/9 1/9 1/9 1/8 1/8 1/8 1/8 1/8 1/5 1/4 1 2.5 

Sum of Column (Ci) 3.76 5.99 5.99 10.0 14.8 19.6 26.3 30.2 38.7 50.5 63.3 86.0 355 
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Table 2.16: Weightings (parts per thousand) applied to input data sets as determined by pairwise 

comparison for each of four scenarios; Physical, Climatic, Geological and Biological. 

Input Data set 

Scenario 1: 

Physical 

Scenario 2: 

Climatic  

Scenario 3: 

Geological 

Scenario 4: 

Biological 

Proximity 161 177 160 160 

Slope 145 135 140 137 

Area 145 135 140 137 

Soil 119 119 117 118 

Rainfall Intensity 100 105 96 100 

Superficial Deposits 86 85 99 80 

Rainfall Average 75 81 73 67 

Vegetation Cover 59 45 56 97 

Bedrock Geology 53 39 59 53 

Wind Speed 31 44 32 28 

Sun Exposure (Hillshade) 19 26 20 17 

Sun Exposure (Vegetation) 7 10 7 7 

 

The Consistent Index (CI) was then calculated for the example PCM as: 

 

            
      

   
 

        

  
        

Equation 4  

(Aguarón and Moreno-Jiménez, 2003; Teknomo, 2006) 

Where n is equal to the number of input data sets in the matrix. 

 The Consistency Ratio (CR) is defined as: 

   
  

     
 

Equation 5  

(Aguarón and Moreno-Jiménez, 2003; Teknomo, 2006) 
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Where RI is the Random Index for a matrix of order n, equal to 1.535 when n = 

12. The CR gives a measurement of the consistency of the judgements in the PCM,  

lying between totally consistent and totally random , according to Aguarón and 

Moreno-Jiménez (2003).  A CR value is < 0.1, it indicates that the consistency of the 

judgements is acceptable using a „within 10%‟ rule set by Saaty (1980). The CR values 

were calculated for each of the four PCM scenarios and are displayed in Table 2.17. The 

CR values calculated for the four PCM are below or close to this acceptance limit. It has 

been shown that CR < 0.1 is much harder to achieve for large matrices, even if 

consistency, proven by another means  is upheld (Vargas, 2008). As the order of the 

PCM matrices generated in this study is large by comparison to most literature 

examples (n = 12), consistency was judged to be fit for purpose.  

 

Table 2.17: Calculated Consistency Ratios for all weighting scenarios applied to the model. 

Weighting Scenario Consistency Index (CI) Consistency Ratio (CR) 

Physical 0.165 0.107 

Climatic 0.148 0.097 

Geological 0.115 0.075 

Biological 0.186 0.121 
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Table 2.18: Transformed pairwise comparison matrix (physical weightings) showing calculated eigenvectors for each component and principle eigenvector for each input 

data set. 

 Proximity 

Slope 

Angle Area Soil 

Rainfall 

Intensity 

Superf. 

Deposits 

Rainfall 

Average 

Veg. 

Cover 

Bedrock 

Geology 

Wind  

Speed 

Sun  

(Hillshade) Sun  (Veg.) 

Row Average 

(Principle 

Eigenvector) 

Principle 

Eigenvector 

multiplied by sum of 

each column in PCM 

Proximity 0.266 0.332 0.332 0.301 0.271 0.0204 0.190 0.166 0.155 0.158 0.126 0.105 0.217 0.817 

Slope Angle 0.133 0.166 0.166 0.201 0.203 0.0204 0.190 0.166 0.155 0.139 0.126 0.105 0.163 0.982 

Area 0.133 0.166 0.166 0.201 0.203 0.0204 0.190 0.166 0.155 0.139 0.126 0.105 0.163 0.982 

Soil 0.089 0.083 0.083 0.100 0.135 0.153 0.152 0.133 0.129 0.119 0.111 0.105 0.116 1.154 

Rainfall Intensity 0.066 0.055 0.055 0.050 0.068 0.102 0.114 0.133 0.129 0.099 0.095 0.093 0.088 1.305 

Superficial Deposits 0.066 0.041 0.041 0.033 0.034 0.051 0.076 0.099 0.103 0.099 0.095 0.093 0.069 1.360 

Rainfall Average 0.053 0.033 0.033 0.025 0.023 0.026 0.038 0.066 0.078 0.099 0.095 0.093 0.055 1.451 

Vegetation Cover 0.053 0.033 0.033 0.025 0.017 0.017 0.019 0.033 0.052 0.059 0.079 0.093 0.043 1.292 

Bedrock Geology 0.044 0.028 0.028 0.020 0.014 0.013 0.013 0.017 0.026 0.059 0.079 0.093 0.036 1.393 

Wind  Speed 0.033 0.024 0.024 0.017 0.014 0.010 0.008 0.011 0.009 0.020 0.047 0.058 0.023 1.153 

Sun (Hillshade) 0.033 0.021 0.021 0.014 0.011 0.009 0.006 0.007 0.005 0.007 0.016 0.047 0.016 1.033 

Sun (Vegetation) 0.030 0.018 0.018 0.011 0.008 0.006 0.005 0.004 0.003 0.004 0.004 0.012 0.010 0.889 

Sum of Columns 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 13.81 
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2.5.15 Combination into Final (Vector) Risk Model 

For clarity, the first part of the combination process is displayed in Figure 2.3. 

Input data sets in raster format (slope, rainfall intensity, rainfall average, vegetation 

cover, wind speed and hillshade) were converted to polygon features using the Raster to 

Features tool in the Spatial Analyst toolbar.  

 

Figure 2.3: Summary flow chart of method used to create vector model from input data sets. 

The rainfall intensity and rainfall average data sets were reduced to the spatial 

extent of the catchment polygons, as generated by ArcHydo9 (section 2.5.13), using the 

clip tool. The union tool was then used to combine the rainfall intensity and rainfall 

average layers. The output layer represented attributes of the catchments for each mine 

waste polygon (hereafter abbreviated to “tip”). 

The soil, superficial permeability, bedrock permeability and vegetation cover 

data sets were clipped to the spatial extent of the drainage polygons, as generated by 

ArcHydro9 (section 2.5.13). Again the union tool was used to combine the resulting 

polygons and produce an output layer representing the attributes of the drainage 

pathway for each tip.  

The wind speed and sun exposure data sets were clipped to the spatial extent of 

the tip polygon file and unioned to give the attributes of the tips. Proximity and area 
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inputs were already contained within the tip polygon layer and were combined with the 

unioned attributes of the tips in the final model.  

During the union process a number of very small polygons or slivers were 

created around the fringes of the catchment. This was caused by an imperfect match in 

the catchment boundaries of unioned layers. The slivers were identifiable as null values 

in the attribute table and removed from the unioned data set as their inclusion might 

cause erroneous low values in the final risk calculation. 

 To each of the three unioned data sets; catchment (c), drainage pathway (d) and 

tip extent (t), and also the mine waste polygon data set (p), two fields were added to the 

attribute table to hold the weighting (wi) applied to each input data set and the result of 

the combined risk score for that data set (RC,D,T,P), respectively. The fields were 

populated using the field calculator tool with weightings according to the outcome of 

the PCM (shown in Table 2.16) and the combined risk score according to Equation 6:  

                              

 

 

Equation 6 

Where Ri represents the risk score (1-6) assigned to each polygon in the layer. The 

combined risk was therefore calculated for every discrete polygon or parcel within the 

model. However, this meant that in most instances each catchment, drainage or tip 

polygon contained more than one score. In order to provide a useful output to rank 

individual tips, these scores were statistically averaged to give a single mean score for 

each tip. In this study, the mean score was deemed the most suitable statistical output, 

but maximum, minimum and weighted scores may also be calculated at this stage. 

To achieve this, the intersect and dissolve tools were used (see Appendix 2D for 

full method).  The combined risk calculated for the catchment (RC) and drainage areas 
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(RD) were joined to the tip (mine waste polygon) layer (See Appendix 2E for full 

method).  

A “Total Risk” column was added as a new field to the tip layer and populated 

with the sum of the combined risk scores for the tip, catchment and drainage pathway. 

This was achieved using the field calculator tool, as shown in Figure 2.21 (Appendix 

2F). 

The results for total risk (RTotal) were categorised into 6 classes from “Low” to 

“Extreme” based on quantile division of the data set.  The list was sorted to provide the 

ten sites with the highest score. These were used to compare the results obtained by 

using the four categories of input weightings (Physical, Climatic, Geological and 

Biological).  An example of the output is shown in Figure 2.28, Appendix 2G. 

2.6 Results and Discussion 

2.6.1 Priority List of Mine Sites from the Final Risk Model 

  Comparison of the total risk scores (TR) calculated by the vector model from 

the physical, climatic, geological and biological weightings demonstrated positively 

skewed normal distributions (Figure 2.4).  Several sites consistently score very highly in 

the model, regardless of the weighting applied. The identities of the highest scoring sites 

are displayed in Table 2.19 (actual scores are also provided in Table 2.22, Appendix 

2H).   

Notable was the prevalence of streamed workings at the top of the priority list, 

producing nine of the highest ten scores.  Forty sites from a total of 806 were designated 

as “streamed workings”, of which 37 were classified as posing an “Extreme” or “Very 

High” risk to watercourses. Their location on high moorland areas exposes them to high 

average and intense rainfall and high wind speed and they are also by definition in 
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direct contact with a drainage channel or stream and can extend for a distance of several 

hundred metres along stream banks. All these attributes incur high risk classification 

within the model.   

 

Figure 2.4: Data distribution for each of the four weighting schemes applied to risk model 

The results emphasise that the model considers only environmental and physical 

attributes of the waste location. It does not in any way consider the level of 

contamination associated with the waste materials found at each site.  Inclusion of 

contamination levels into the model which would require a wide and expensive program 

of site sampling, would defeat the purpose of the model (see section 2.3).  The 

burgeoning technology of hyperspectral remote sensing may offer a way of identifying 

„hotspots‟ of contaminated land over large areas in the future. This method uses visible 

or near-IR spectral data to map indicators of metal pollution either mineral signatures 

e.g. Choe et al. (2008), or plant stress Malenovsky et al. (2009). Such technologies were 
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not available at time of writing but may be integrated with this environmental model if 

the data were to become available.  

Table 2.19: Areas of contaminated land scoring highest in vector model and comparison of result 

from  weighting scheme applied, physical (P), climate (C), geological (G) or  biological (B). 

Mine 

ID 
Description 

Rank 

(P,C,G,B) 
Receiving Watercourse 

787 Stream Workings at Foxhole, Dartmoor 1,1,1,1 Doetor Brook (River Lyd) 

794 Stream Workings at Great Nodden, 

Dartmoor 

2,2,2,2 River Lyd 

57 Stream Workings east of Brisworthy, 

Dartmoor 

3,3,3,3 River Plym 

710 Waste Tips at Wheal Betsy, Mary Tavy 4,4,4,4 Cholwell Brook (River Tavy) 

765 Stream Workings 400 m S of Doe Tor, 

Dartmoor 

5,5,5,5 Walla Brook (River Lyd) 

202 Stream Workings 500 m NE of Down 

Tor, Dartmoor 

6,7,6,6 Newleycombe Lake (River 

Meavy u/s Burrator Reservoir) 

134 Stream Workings 3 km SW of Down Tor, 

Dartmoor 

7,8,7,8 River Plym 

551 Stream Workings 500 m NE of Kings 

Tor, Dartmoor 

8,10,8,7 River Walkham 

494 Stream Workings at Meavy Head, 500 m 

SW of Princetown 

9,6,9,10 River Meavy 

247 Stream Workings at Wheal Chance, 1.5 

km NE of Down Tor, Dartmoor 

10,9,10,9 Newleycombe Lake 

(River.Meavy u/s Burrator 

Reservoir) 

2.6.2 High Priority Site: Streamed Workings at Foxhole 

The workings at Foxhole, known also as Wheal Frederick, scored highest in the 

model with 4400 out of a maximum possible score of 6000. The location and extent of 

these workings are shown in Figure 2.5. 
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Available spatial data was reviewed in order to investigate the reasons for the 

high score at Foxhole and results are summarised in the paragraph below. Extracting 

such information from the GIS model was easily achievable for all of the 806 sites. The 

formative layers of the model (e.g. LCM 2000, BGS 1:50 000 geology data) were 

displayed in the same window as the model results and information retrieved from 

selected layers using the identity tool in ArcMap.  

 

Figure 2.5: OS 1: 25 000 Map showing location, topography and model outcome for 

"Foxhole" stream workings produced in ArcMap. OS Map © Crown 

Copyright/database right 2009. An Ordnance Survey/EDINA supplied service. 

 The workings at Foxhole extend along approximately 3km of stream banks at 

an altitude of 450 – 500 m on Dartmoor, 12.5 km NNE of Tavistock. The mine waste 

occupies an area of approximately 204500 m
2
 (score 6) that is in direct contact (score 6) 

with Doetor (also “Doe Tor”) Brook, a tributary of the River Lyd. The slope gradient is 

mainly gentle (score 2) to steep (score 4), very steep (score 5) in places and tends from 

E to W. The mine waste and drainage area are underlain by seasonally wet peat soils 
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which have been assigned as high risk (score 5) due to the high run-off potential.  The 

bedrock geology in the area is the Dartmoor granite intrusion of Permian to 

Carboniferous age. This was classed as being of low to moderate permeability (via 

fracture flow) and therefore scores highly for run-off risk (score 5).  The mine waste is 

classified as an alluvial deposit and incurs a high score (+6) as a high permeability 

superficial deposit. The uppermost extent of the workings lay in superficial peat 

deposits which have been assigned a negative score (-3) due to their potential for 

attenuation of metal pollutants. Average monthly rainfall was between 161-210 mm 

giving a maximum score of 6. The estimated return time of a high intensity rain event 

was 20.8-24.6 days equating to a score of 5. Vegetation cover comprised predominantly 

acid and  neutral grasses with some pockets of broad-leaved woodland and dwarf shrub 

heath and the associated risk ranged from “Low” (score 1) to “Moderate” (score 3). 

Overall the environmental model ranked the risk  to watercourses from diffuse pollution 

emanating from the mine waste as “Extreme”.  

The level of contamination within mine waste is not considered by the model 

and in reality the level of risk posed by waste rock at historical streamed workings may 

be low. The streamed workings of Dartmoor were principally concerned with the early 

extraction of tin ore (cassiterite) from alluvium by gravimetric separation. By the 13th 

century the richest alluvial deposits of Dartmoor were exhausted and although it 

continued, predominantly in Cornwall,  by the 16
th

 century streaming had largely given 

way to underground mining  (Hamilton Jenkin, 2005).  Tin streaming wastes are likely 

to be among the oldest and therefore most weathered in the catchment. Furthermore, tin 

(and tungsten) deposits commonly occur closest to the granite intrusion, the Cornubian 

Batholith, whose emplacement caused the mineralisation of the surrounding country 

rocks approximately 270-300 Ma (Jackson et al., 1989).  Surface workings on Dartmoor 
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exploit the exposure of these mineralised deposits of tin close to where the granite 

outcrops, whereas deposits formed further from the granites follow a well-developed 

zonal distribution with copper minerals followed by tin, lead and zinc and finally a zone 

of iron minerals (Webb, 1995).  The low solubility, low bioavailability and low toxicity 

of inorganic tin (Rüdel, 2003) mean that the pollution risk from waste rock containing 

exclusively tin ore minerals and associated gangue, typically quartz and tourmaline 

(Chesley et al., 1993; Dominy et al., 1995),  is probably low.  However, contamination 

of streamed workings waste with waste rock from underground workings containing 

other minerals cannot be ruled out, as ore was often transported for processing to 

locations with suitable facilities.  At Foxhole (Wheal Frederick), there is evidence of 

on-site mineral processing, including a ruined counthouse (SX545853), and the remains 

of waterwheel pits, buddles and evidence of former track ways (Popham, 2007). The 

mine is also in close proximity to underground workings at Wheal Mary Emma 

(SX532832) which were worked for tin but also contained the lead ore galena (Dines, 

1956). Further investigation of the site and examination of water quality for the 

receiving watercourse would be the recommended next step.  

2.6.3 High Priority Sites: Non-Streamed Workings 

 To identify the highest risk areas of waste associated with underground or pit 

mining, the stream workings were selected from the attribute table (ArcMap) and 

removed from the model output. The revised list of non-streamed workings (Table 2.2) 

with the ten highest scores shows similar ranking between the weighting schemes, 

resulting in the same classification in most cases.  The actual scores are shown in Table 

2.23, (Appendix 2H). Of the 766 sites that were not classified as streamed workings, 

103 were classified as “Extreme” based on quantile division of the model outcome data 

set.    
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Table 2.20: Areas of contaminated land scoring highest in vector model when streamed workings 

are excluded. Also comparison of results obtained by the weighting scheme s: physical (P), climate 

(C), geological (G) or  biota (B). 

Mine 

ID Description 

Rank 

(P,C,G,B) Receiving Watercourse 

710 
Waste tips at Wheal Betsy, 1.5 km NNE of 

Mary Tavy 
1,1,1,1 Cholwell Brook (River Tavy) 

651 
Waste tips/shafts at Tegune Mine, 300m S of 

Trenilk. 
2,2,2,2 River Lyhner 

281 Waste Tip at summit of Caradon Hill 3,7,4,12 
Unnamed  stream  (River 

Lyhner) 

141 
Waste tips at Gawton Mine, 1.3 km NE of 

Tuckermarsh. 
4,8,5,3 River Tamar 

514 
Waste tips and shafts at Wheal Lucky, SW 

Princetown 
5,5,7,4 River Meavy 

806 Surface workings at Foxhole Mine, Dartmoor 6,6,8,5 Doetor Brook (River Lyd) 

14 
Pits and shafts at Hemerdon Mine, 1.5 km NE 

of Hemerdon. 
7,10,10,6 

Smallhanger Brook (River 

Plym) 

639 
ACL associated with Treburland Manganese 

Deposits, Treburland 
8,9,9,10 River Lyhner 

627 Waste tips at Wheal Friendship, Mary Tavy 9,11,11,9 Cholwell Brook (River Tavy) 

239 
Waste tips and shafts at East Caradon Mine, 

600 m NW of Middlehill 
10,4,6,11 

Unnamed Stream  

(River Lyhner) 

137 
Pit workings (and stream works) at Crane Lake 

Mine, Dartmoor 
11,2,3,7 River Plym 

529 
Waste tips at New Great Consols Mine, 

Luckett 
12,15,12,8 Luckett Stream (R.Tamar) 

Wheal Betsy, Former Lead-Silver Mine, Mary Tavy 

 The waste tips at Wheal Betsy (Figure 2.6) scored very highly, (4251/6000) 

being ranked first amongst non-streamed workings and fourth overall. 
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Figure 2.6: OS 1: 25 000 Map showing location, topography and model  outcome for 

waste tips at "Wheal Betsy”, produced in ArcMap.  OS Map © Crown 

Copyright/database right 2009. An Ordnance Survey/EDINA supplied service. 

   The Wheal Betsy site is located on the NW edge of Dartmoor, approximately 8.5 

km NNE of Tavistock. The tips at Wheal Betsy extend for approximately 1 km 

alongside Cholwell Brook, a tributary of the River Tavy. There is direct contact with the 

watercourse in the southern part of the site (score 6) and the area of designated spoil is 

approximately 59300 m
2
 (score 5). The slope gradient ranges from gentle (score 2) to 

extreme (score 6) being situated in a N-S orientated V-shaped valley. The tips and 

drainage areas are mainly underlain by “loamy permeable upland soils over rock with a 

wet peaty surface horizon and bleached subsurface horizon, often with iron 

pan”(NATMAP, 2008), scoring 3 for run-off potential. The bedrock geology comprises 

the interbedded sandstones and argillaceous rocks of the Bealsmill Formation with 

moderate to low permeability from fracture flow (BGS 2010, score 5). The 

southernmost part of the site is underlain by slates of the Brendon Formation with low 

permeability, again from fracture flow (BGS, 2010, score 6). The tip and catchment area 



       Chapter 2   

 

68 

 

spans two classifications of average monthly rainfall, 121-137 mm (score 4) to the NE 

and S and 138-160 mm (score 5) in the central area. The estimated return time of a high 

intensity rainfall event is 11.5-20.7 days (score 6). Vegetation cover comprised mainly 

calcareous grass (score 1) with some improved grass (score 2) and acid grass (score 3). 

An area of bare ground (score 5) at the centre of the site is coincident with the spoil 

material itself. Overall the risk to watercourses from diffuse pollution at this site was 

determined as “Extreme”. The site is the subject of further investigation in Chapter 4. 

2.6.4 Model Ranking of Known Areas of Contamination  

  The largest concentration of mine waste in the catchment occurs close to Kit Hill 

and Gunnislake (Figure 2.7). The model results for each site in this grouping (Table 

2.21) according to the four weighing schemes showed more variability than for the first 

ten sites. The frequency of sites increases as the risk score approaches the mean value 

for the data set (Figure 2.4), therefore a change in score is likely to produce a greater 

change in rank. 

Table 2.21: Model outcomes for known sites in the Tamar catchment. Rank shown for physical (P), 

climate (C), geology (G) and biota (B) weightings in model with stream works included. 

ID Description Classification (P) Rank (P,C,G,B) 

Receiving 

Watercourse 

539 
Waste tips at Wheal Fanny, Devon 

Great Consols Mine 
“Extreme” 92,109,88,85 River Tamar 

534 

Waste tips at Wheal Anna Maria, 

Devon Great Consols Mine, 1.2 km N 

of Gunnislake 

“Extreme” 50,90,64,63 River Tamar 

479 
Precipitation Launders at Devon Great 

Consols Mine, 900 m N of Gunnislake 
“Extreme” 19,42,39,40 River Tamar 

456 
„White Tips‟ at Gunnislake Clitters 

Mine, 1 km NW of Gunnislake 
“Extreme” 35,64,58,54 River Tamar 

411 
„Red Tips‟ at Gunnislake Clitters Mine, 

900 m  W of Gunnislake 
“Very High” 188,213,198,193 River Tamar 
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 Some of the sites, particularly Devon Great Consols, have been the subject of 

investigations of soil, sediment and water quality. The model outcomes for selected 

sites in this area (Table 2.21)  were examined for consistency with existing knowledge 

of the tip area and contamination. Two sites were selected for discussion, Devon Great 

Consols and Gunnislake Clitters.  

 

Figure 2.7: Map displaying the location and model outcomes for known sites in the centre of the 

catchment. * Devon Great Consols include  (E to W): Wheal Fanny tips, Wheal Anna Maria tips 

and arsenic works ,  Wheal Emma tips , precipitation launders to S. **Gunnislake Clitters include 

(N to S) “White Tips”, “Red Tips” and Greenhill Arsenic Works. OS Map © Crown 

Copyright/database right 2010. An Ordnance Survey/EDINA supplied service.  

Devon Great Consols  

 Devon Great Consols is an abandoned copper-arsenic mine that hosts the largest 

and most visible spoil deposits in the catchment (See Chapter 3 for site investigation). 

The spoil and soils are heavily contaminated with arsenic and copper (Kavanagh et al., 
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1997; Langdon et al., 2001) and the site discharges mine waters from adits and surface 

drainage directly into the River Tamar (Minghanetara, 2009). There is therefore an 

established risk at this site. The areas of waste at Devon Great Consols were sub-

divided in the data set provided by the Environment Agency, giving rise to individual 

scores in the model. The model outcome assigned an “Extreme” risk category for the 

three main areas of spoil comprising the tips at Wheal Fanny, tips and arsenic works at 

Wheal Anna Maria/Wheal Josiah and the precipitation launders at the south of the site 

(Figure 2.8). The precipitation launders were ranked highest, being in direct contact 

with the River Tamar and underlain by alluvial deposits.  

 

Figure 2.8: Individual waste tips designated within Devon Great Consols. OS Map © 

Crown Copyright/database right 2010. An Ordnance Survey/EDINA supplied service. 

Legends as for Figure 2.7. 

Gunnislake Clitters 

 Gunnislake Clitters lies to the south of Devon Great Consols, on the Cornish 

side of the River Tamar. The site consists of three main spoil deposits: “White” and 
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“Red” tips and the contaminated land associated with Greenhill Arsenic Works, which 

was part of the mine operation on site, closing circa 1925 (DeNull, 2007).  The white 

tips are skirted by the River Tamar. At the Greenhill Arsenic Works, there is visible 

arsenic contamination, including brightly coloured deposits of realgar (AsS) and 

orpiment (As2S3) on the mine buildings and soils. Large quantities of arsenic were 

processed here and some barrels of refined arsenic are reported to be buried at the site 

(De Null, 2007). The outcome from the environmental model for the White Tips was 

“Extreme” risk, and highest of the three main areas (rank 35). Variability in area extent, 

proximity, slope and soils across the sites resulted in the Greenhill Arsenic Works and 

Red Tips being classified as being “Very High” and “High Risk” (ranked 178 and 188 

respectively).  

 

Figure 2.9: Waste tips and topography at Gunnislake Clitters. OS Map © Crown 

Copyright/database right 2010. An Ordnance Survey/EDINA supplied service. Legends 

as for Figure 2.7. 

 



       Chapter 2   

 

72 

 

2.6.5 Uncertainty and Transferability 

Uncertainty 

 The accuracy of drainage pathways calculated using ArcHydro9 is determined 

by the accuracy of DTM data. Inaccuracies result in errors in the spatial extent of 

catchment and drainage areas, slope angles and the identification and direction of 

streams. This in turn affects the risk classification of wastes with respect the streams. 

Since proximity and slope were weighted highly in the model, the most improvement 

would be gained by including higher resolution elevation data. Improvements in the 

accuracy of all input data sets would be desirable, particularly the resolution of the 

vegetation cover. A new version of Landcover Map (LCM2007), is due for release, but 

was not available at the time of model construction (LCM, 2010). 

 Averaging parcels of risk to arrive at risk scores for the attributes of the tip, 

catchments and drainage areas (see section 2.5.15) is an oversimplification that could 

mask high risk preferential paths to watercourses. A more accurate measure of risk 

could be calculated if the actual drainage path through the site could be determined. One 

potential method worthy of future investigation would be the application of cost 

distance modelling. Functions are available within ArcGIS (Spatial Analyst) software 

for the determination of least cost paths, based on the summed scores of grid squares 

from overlaid data sets (ESRI, 2007). There are a number of literature examples from 

other subject disciplines where such methods have been used in planning and 

management studies e.g. in the determination of transport routes (Choi et al., 2009) and 

animal migration pathways (Wang et al., 2009). The data sets created in this project 

may be adapted for a cost-distance model of mine water migration pathways.  
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Transferability  

  The statistical division of data sets based on the distribution of values within the 

Tamar catchment only means that the risk scores and risk classifications for mine 

wastes are only relevant for intra-catchment comparison. The Water Framework 

Directive (2000/60/EC), dictates that water resources are managed on a River Basin 

scale. For a regional prioritisation to cover the south west river basin, it would be 

necessary to reclassify the input data sets based on the regional spread of data or fixed 

guideline values. The method used depends on the requirements of the end-user and 

could be modified if necessary, but establishment of the assessment criteria at an early 

stage in the modelling process is imperative. 

2.7 Conclusions 

A model for ranking abandoned mine sites within the Tamar Catchment 

according to their risk of contaminating water courses from diffuse sources was 

developed. The model was based on physical and biological characteristics of the mine 

sites‟ locations. The model responded robustly to changes in the weighting of physical, 

geological, climatic and biological factors, showing that a change in emphasis – within 

reason – would make little difference to the model outcome. 

The model identified some of the streamed workings as posing extreme risk to 

water courses. The contributing factors to this risk assessment were their direct contact 

with watercourses, impermeable geology and exposure to higher rainfall and stronger 

winds than other areas in the Tamar catchment.  The model is not designed to take the 

composition of the mine waste material into account, but it would be expected that the 

high scores of the streamed workings may be used as a trigger to investigate further. 

As streamed workings within the Tamar Catchment generally relate to the extraction 

of cassiterite and associated wastes are among the longest abandoned, a mineralogical 
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analysis of the waste materials (or desk-top study of existing information) may enable 

the investigating body to downgrade the risk associated with these wastes.  

The model included in the “Extreme” risk category a number of non-streamed 

abandoned mine sites within the Gunnislake and Mary Tavy region, for which 

published information confirms high levels of contamination with metals and arsenic. 

Furthermore, the locations of these sites concur with existing water quality data and 

EQS failures in the River Tamar and/or its tributaries.  

The application of the model developed here to the whole of the Tamar 

catchment confirmed that it is a useful screening tool that allows investigating bodies, 

such as the Environment Agency, to prioritise sites worthy of further investigation. 

The GIS built in conjunction with the model also aids the access of site-specific data 

(e.g. rainfall, soil and geology) and more importantly, predicts the catchment and 

drainage areas relevant to each waste tip. This improves the efficiency of any field 

investigations by aiding the design of site sampling regimes so that migrating 

contamination through surface and sub-surface waters may be captured and analysed. 

Detailed site investigations of two mine sites posing “Extreme” risk are presented in 

the following chapters. 

The GIS and model developed here provide a flexible tool that may be adapted 

to meet with the requirements of regulatory authorities in other catchments and 

countries, assuming that sufficient geo-spatial information is available. The approach 

taken in this model is transferable to other catchments and regions with similar 

mineralogy, whereby some of the catchment-specific risk category classifications (e.g. 

quantile division of rainfall data or topographical information) will have to be adapted 

to take into account the range encountered in climatic or geographic regions, rather 

than individual catchments. The work completed here demonstrates a principal, rather 
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than an absolute approach. However, in areas with significant groundwater reservoirs, 

such as the mining areas hosted in the limestone of Northern England, further 

consideration to groundwater transport processes would be required.   

The work carried out here has been included in the Environment Agency‟s South 

West River Basin Management Plan (EA, 2009; 2011) as an „Investigation‟ that forms 

part of the „Programme of Measures‟ that will be applied to identify what „Actions‟ 

are needed to improve water bodies to „good status‟ in order to meet the objectives of 

the Water Framework Directive (2000/60/EC).  

 A modified version of the model, based on proximity, area and slope has since 

been adapted and applied to the five catchments in south west England with the 

highest frequency of abandoned mines. These were North Cornwall, West Cornwall, 

Tamar, North Devon and South Devon which collectively contained 1897 areas of 

mine waste (> 1263 m
2
). This work was carried out at the request of the Environment 

Agency in order to meet their obligations for the Water Framework and Mining Waste 

Directives. It also demonstrated the flexibility of the methodology and GIS approach 

to meet the needs of regulators.  

Furthermore the methodology on which the model is based already meets most 

of the requirements of Article 20 of the Mining Waste Directive (2001/21/EC) for pre-

selection of potentially harmful abandoned mine sites. Recently published guidance 

documentation for member states encourages the use of a GIS system to aid in the 

application of Article 20, for example in the establishment of proximity to 

watercourses and slope angles of terrain in drainage pathways.  The methodology 

presented here can prioritise mine waste tips based on existing data and high priority 

sites were consistent with known pollution sources in the test catchment. The model 

may be tailored to the needs of other areas in the UK, or EC member countries to aid 
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achievement of water quality and mine waste management targets under European 

legislation. 
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2.9 Chapter 2 Appendices 

2A.  Conversion of Polyline features to polygon features and removal of errors.  

Features labelled as „Areas of Mine Associated Land‟ and „Streamed Workings‟ 

were selected in the attribute table of the original mine polyline file supplied by the 

EA. Selected features were saved to a new polyline file. Using the features to 

polygon tool in the Data Management Toolbar, the new layer was converted to a 

polygon feature file. The polygon file was cleaned of errors: broken polygons were 

repaired and spurious line features removed. In a small number of cases, there was 

overlap of polygons (See Figure 2.10), a problem caused by the conversion process. 

These were corrected by merging polygons and reassigning attributes as 

appropriate.  

 

Figure 2.10:  Example of error caused in polygon layer by overlapping polylines in the original file, 

and the correction applied. 

Before  After 
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2B. DTM Generation, full method 

The quality of the digital terrain model (DTM) underpins the accuracy of the 

prediction of all factors that are derived from it e.g. drainage pathways and 

topographical slope. The DTM was derived from Ordnance Survey Land-form 

PROFILE (10m) contour tiles selected and downloaded from the EDINA database to 

cover the Tamar catchment. Tiles include spot heights (air and ground data) and contour 

data, incorporation of spot heights improves the DTM based on contours alone.  

MapManager9 was employed to convert the extracted files (NTF format), to shapefiles. 

The resulting contour and spot height shapefiles, were output to a personal geodatabase 

(“dtm”) as a data set (“L_F_PROFILE_CON”), from where they could be loaded into 

ArcMap (Figure 2.11).  

.  

Figure 2.11: Layer files in geodatabase as output from MapManager9 NTF Converter. 

The shapefile “LFPCOSpoints_Init”,  resulting from conversion with MapManager9 

had no Z data. In the attribute table, this was added using the Table Operations Tool 

“Add X,Y,Z Coordinates”  in the Xtools Pro extension toolbar (Figure 2.12).  
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Figure 2.12: Adding Z data to point (spot height) layer file 

 The contour layer file output from MapManager9 contained <NULL> values for 

high and low water marks. To improve the final DTM, the low water mark features 

were selected (by feature code) and arbitrarily assigned a height of 0 m, high water 

mark features were assigned a height of 1 m. High water mark features were excluded 

from the data set and exported to a separate file in the geodatabase (“dtm”) to allow 

them to be easily added or removed from the Triangulated Irregular Network (TIN). 

 The final contours and spot heights to be used in the construction of a TIN were 

checked against the Ordnance Survey 10 km layer. The layers were clipped to the 

spatial extent of the Tamar Catchment polygon file supplied by the EA (+500 m buffer), 

to reduce the amount of memory required to process the TIN. The “TamarTIN” was 

created using the 3D Analyst toolbar from the spot height (LFPCOSpoints_ClipTamar) 

and contour (LFPCOSlines_ClipTamar) layer files, contours were encoded as soft lines 

(Figure 2.13).  
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Figure 2.13: Construction of TIN from spot heights (brown points) and contour heights (green 

lines). 

Occasional artefacts in the TIN occurred where there were incomplete contour 

lines, as seen in the example (Figure 2.14) where contours are intersected by a railway 

embankment. Although it is possible to manually join the contour lines, this was not 

undertaken for the entire catchment. Instead the TIN at sites of interest was inspected to 

highlight missing contour lines as a potential source of error to calculations of slope and 

drainage pathways. The problem may be avoided by using improved resolution 

elevation data, such as  NEXTMap® Britain. However this would incur additional cost.  

The TIN was converted to raster (grids) using the “3D analyst” toolbar (Figure 

2.15). Cell sizes of 5m, 4m and 3m were defined to create grids of differing resolution. 

Greater resolution is desirable but requires greater processing power in ArcHydro9. The 

resolution used is limited by the computing power of ArcGIS host. The DTM created 

with a 5m grid was the highest resolution that could be successfully processed by 

ArcHydro9. 
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Figure 2.14: Example of incomplete contour lines in OS mapping (circled 

above) creating artefacts in the TIN (circled below). 

 

Figure 2.15: Conversion of TIN to Raster with cell size 5m 
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2C. Modelling of Drainage Channels and Catchment Boundaries using 

ArcHydro9, full method. 

Catchment boundaries, rivers, streams, and drainage channels were modelled 

using ArcHyro9 (ESRI). Before hydrological analysis can be conducted the DTM 

(Appendix 2B) must be pre-prepared in order to establish the correct drainage pattern 

(Djokic, 2008). Firstly, in the DEM Manipulation tab of the Terrain Preprocessing 

menu, the fill sinks tool was used to fill any artificial lows in the DTM. The catchment 

DTM with the smallest computable cell size (5 m) was used in this first step, which 

requires the most processing capability. The flow direction was then established in the 

filled DTM (“FilSinkgrid5”) by running the Flow Direction function in the Terrain 

Preprocessing menu.  

The results were reviewed according to Djorkic (2008), and verified with 

existing knowledge of drainage features from mapping and site visits. In particular, 

areas of low relief, the known flow direction of primary rivers and major streams (e.g. 

River Tamar, River Ottery, River Claw, Luckett Stream etc.) showed minor 

discrepancies to the drainage pattern generated by the DEM. To improve the model the 

flow paths were imposed manually where necessary, using the method of burning in. 

The imposed stream layer was created from OS 1:10,000 OS Mapping 

“indicative_mainrivers_flood_TamarClip” (Figure 2.16); and was carefully inspected 

and cleaned of errors and braided channels. This process can only be undertaken in 

circumstances where reliable information on the flow channel at a suitable scale (here 

latest 1:10,000 OS mapping) is available. In all other cases the drainage channels were 

not altered at the regional scale as the process may introduce unknown errors to the 

DTM.  
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Figure 2.16: Burning in the stream layer to the (filled) DTM 

 At the site-specific scale, man-made drainage ditches, such as mine and mill 

leats pose a particular problem to the flow direction model. This is because they are 

often not identified in the DTM and do not always follow a dentric flow pattern. It is 

therefore recommended that known leats are “burned in” only if the flow direction is 

certain. The DEM Reconditioning (AGREE) tool (found in the DEM Manipulation 

menu in Terrain Preprocessing) was used to perform this task and produce a modified 

DEM („agreeDEM_grd5‟).  The input DEM was “FilSinkgrid5”, input parameters for 

the smooth drop/rise and sharp drop/rise (DEM Z unit) were optimised and iterated to 

give the best results. The final parameters were 10 m and 100 m respectively. The 

stream buffer was set to 2 cells, increasing this number reduced the accuracy of the 

drainage path.  Again it is important to stress that the accuracy of the drainage pattern 

generated by the model may also be improved with higher resolution or alternative data 

used to create the input DTM. After burning in, the fill sinks step in the procedure was 

repeated to eliminate potential depressions caused and generate a new HydroDEM 

(“FSnk210100”).  The output hydro-grid is only suitable for drainage analysis as the 
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burning in process creates artificial slopes next to the rivers and streams. A flow 

direction grid was then calculated in ArcHydro from the Hydro DEM (Figure 2.17). 

 

Figure 2.17: Flow Direction Grid as displayed in ArcMap. Flow direction grid should have only 

eight distinct values (1, 2, 4, 4, 16, 32, 64 and 128), each represented by a different colour on the 

map. 

2D.  Intersection and Dissolving of Risk Polygons to Provide Mean Value output 

for Mine Waste Polygons. 

The intersect and dissolve tools were combined using the model builder 

extension (see example, Figure 2.18).  The catchment, drainage pathway or tip extent 

polygons were used as the intersect layers as appropriate.                                                                                                                                                                                                                                                                          

 

Figure 2.18: Geoprocessing model used to average risk scores for catchment attributes.  

Constructed in Model Builder extension of ArcMap. 
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  The intersect function added the Mine_ID index code to each of the component 

polygons. This allowed dissolution based on their association with the mine waste 

polygons field. Statistical outputs were set within the „Dissolve‟ toolbox (See Figure 

2.19). In this study, the mean score was deemed the most suitable statistical output, but 

maximum, minimum and weighted scores may also be calculated in this stage. 

 

Figure 2.19: Statistical fields applied to unioned model data sets using 

“Dissolve” toolbox in order to calculate total risk.  

2E.  Joining Tip, Drainage and Catchment Attributes to Mine Waste Polygon 

File, Full Method. 

The output layers from the dissolve process were combined using the Join tool. 

The mine polygon layer, which contained scores for area and proximity risk, was used 

as the base attribute table. The three data sets containing the combined risk for 

catchment, drainage path and tip were joined to this data set based on the unique 

“MineID” field (shown in Figure 2.20). The joined data was permanently added by and 

copying in the desired data to a new field using the Field Calculator tool. 
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Figure 2.20: Joining attribute data to base attribute table based on  the “MineID” field. 

2F.  Final Summation of Risk for Tip, Drainage Areas and Catchments, Full 

Method. 

A “Total Risk” column was added as a new field to the mine polygon layer. The 

new field was populated with the sum of the combined risk for: proximity and area 

(from the base attribute table), tip, catchment and drainage pathway. This was achieved 

using the field calculator tool, as shown in Figure 2.21. 

 

Figure 2.21: Final summation of combined risk scores for attributes of tip, catchment and drainage 

path 
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2G. Selected Maps Referenced in Text 

 

Figure 2.22: Map of the Tamar catchment showing risk classification of long term average rainfall. 

Created in ArcMap using Met Office Data (1971 - 2000). 
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Figure 2.23: Map of the Tamar catchment area showing risk classification of rain intensity, 

determined as the return time (in days) of a ≥ 20 mm. Produced in ArcMap using MIDAS daily 

rainfall (MetOffice, 2009). 
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Figure 2.24: Slope Risk Map for part of the Tamar catchment around Gunnislake, created in 

ArcMap using OS Landform PROFILE data. © Crown Copyright/database right 2009 An 

Ordnance Survey/EDINA supplied service. 
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Figure 2.25: Example map of part of the Tamar catchment showing risk classification for soils. 

Created in ArcMap using National Soil Map data (NATMAP, 2008). 
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Figure 2.26: Map of the Tamar catchment showing risk classification for surface run off with 

respect to bedrock permeability. Created in ArcMap and based upon 1: 50 000 scale permeability 

and bedrock data, with the permission of the British Geological Survey.  
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Figure 2.27: Map of the Tamar catchment showing risk classification for contaminant transport 

with respect to superficial deposit type and permeability. Created in ArcMap and based upon 1: 50 

000 scale permeability and superficial deposit data, with the permission of the British Geological 

Survey.  
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Figure 2.28: Example output from vector model using climatic weightings. Created using ArcMap. 
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2H. Results Tables 

Table 2.22: Ten highest scoring areas of mine associated contaminated land, according to four 

weighting schemes applied. 

Weighting 

Scheme 

Applied: 

Physical  (P) Climatic (C) Geological (G) Biota (B) 

Position ID Score ID Score ID Score ID Score 

1 787 4400 787 4525 787 4411 787 4389 

2 794 4317 794 4427 794 4339 794 4332 

3 57 4298 57 4418 57 4315 57 4262 

4 710 4251 710 4366 710 4259 710 4234 

5 765 4236 765 4357 765 4258 765 4231 

6 202 4222 494 4326 202 4240 202 4212 

7 134 4180 202 4324 134 4185 551 4194 

8 551 4177 134 4301 551 4184 134 4183 

9 494 4176 247 4288 494 4182 247 4170 

10 247 4171 551 4270 247 4173 494 4135 
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Table 2.23: Ten highest scoring areas of mine associated contaminated land, according to four 

weighting schemes applied. Streamed workings excluded.  

Weighting 

Scheme 

Applied: 

Physical (P) Climatic (C) Geological (G) Biota (B) 

Position ID Score ID Score ID Score ID Score 

1 710 4251 710 4366 710 4259 710 4234 

2 651 3841 137 3975 651 3899 651 3773 

3 281 3827 651 3951 137 3891 141 3735 

4 141 3733 239 3807 281 3870 514 3717 

5 514 3711 514 3799 141 3757 806 3680 

6 806 3671 806 3785 239 3737 14 3634 

7 14 3635 281 3754 514 3709 137 3573 

8 639 3618 141 3747 806 3685 529 3570 

9 627 3597 639 3727 639 3674 627 3562 

10 239 3581 14 3706 14 3663 639 3561 
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3. Mine Waste Tips as a source of Metals and Arsenic 

Contamination: Case Study 1: Devon Great Consols  

3.1 Abstract 

  Waste tips at abandoned mines are a threat to water quality in SW England via 

surface run off and shallow groundwater movement.  The concentrations of eco-toxic 

metals (Al, Cu, Zn, Al, Ni, Cd, Mn and Fe) and As in tip drainage from three waste tips 

at Devon Great Consols mine, were highly elevated with respect to Environmental 

Quality Standards (EQS). Concentrations of dissolved Al and Cu, in the final drain 

discharges were high enough to cause the known EQS failure in the River Tamar, based 

on conservative mixing of the waters. Dissolved concentrations of Zn and Cd are also 

likely to be significantly contributor to EQS failures recorded downstream of the mine.     

  Annual fluxes emanating from the tips were calculated using catchment 

modelling and determined dissolved concentrations.  Cinders waste generated the 

largest flux of As (32000 mol y
-1

) and waste from the Wheal Anna Maria Upper tip the 

largest flux of Cu and Cd (38900 mol y
-1 

and 376 mol y
-1 

respectively). Closer to the 

River Tamar, abandoned precipitation launders generated the highest fluxes of Zn and 

Ni (2240 mol  y
-1 

 and  398 mol y
-1 

respectively).  The predicted annual fluxes from the 

three tips investigated at Devon Great Consols were the same order of magnitude as 

previously predicted for the main adit discharge at the mine (Blanchdown Adit, 

Mighanetara (2009)) for Mn, Zn, Ni and Cd.  

 Preferential sorption of some elements, particularly As, to mineral surfaces, 

particularly freshly precipitated Fe(OH)3(s), appear to inhibit their migration into the 

River Tamar. This effect may be exploited in future management strategies. Dissolved 

Fe was low in tip drainage waters, which remain largely oxic through the site, migrating 
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in surface drains and shallow groundwater. High concentrations of dissolved Fe in the 

discharges from Blanchdown Adit offer the possibility of precipitating fresh Fe(OH)3(s) 

surface. This could help remediate the high metal concentrations in the final collection 

drain, particularly for dissolved Cu, in future management schemes. 

3.2 Introduction 

 The south west region of England hosts a large proportion of the UK‟s surface 

water bodies with reduced water quality due to receipt of mine waters (Mayes et al., 

2009).  The Tamar catchment, which contains more than 300 recorded abandoned 

mines, has elevated levels of metals and arsenic in its surface waters due to the 

discharge of mine waters and the dispersion of mine wastes into stream systems e.g. 

Price (2002), Mighanetara et al. (2009) and Rieuwerts et al. (2009). The Environment 

Agency (EA), through regular monitoring of watercourses, has recorded dissolved 

concentrations for some metals in the catchment. Table 3.1 lists the proposed EQS 

values for metals most commonly associated with mine drainage waters and compares 

them with the maximum values recorded in the River Tamar, main tributaries and 

targeted surveys of mine water discharges by the EA.  The contaminant concentrations 

occurring in mine waters in the Tamar catchment at times exceed the EQS values for 

Cd, Cu, Ni, Pb, Zn and As and therefore pose a water quality issue to the River Tamar. 

 Many of the likely sources of mine waters, such as adit discharges and deposits 

of mine waste, are known locally and are currently subject to regulatory review (Mayes 

et al., 2010).  However, the contribution of mine water contamination arising from 

diffuse inputs remains largely unresolved. Such inputs can include run-off from mine 

waste tips, diffuse seepages close to point discharges, contaminant remobilisation from 

resuspended river sediments and direct groundwater inputs (Mayes et al., 2008).   Their 

contribution to the overall contaminant input have been suggested to be high (Mayes et 
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al., 2008), representing 46% to 90% of the total metal flux arriving in the River Tamar 

(Mighanetara, 2009).   

Table 3.1: Environment Quality Standards for selected metals named as priority substances (Cd, Ni 

and Pb) or named in Annex VIII of the Water Framework Directive (UKTAG, 2008), and range of 

filtered concentrations recorded for the River Tamar and major tributaries by the Environment 

Agency (1974-2008).  Results for River Tamar and main tributaries exclude direct discharges from 

mines, water treatment works, and industrial sites/dockyards. EQS, where stated as ranges, are 

dependent on water hardness. Environment Agency data supplied under licence. *No data for 

filtered Fe, unfiltered data shown. 

Contaminant 

EQS Annual 

Average  or 

Long-term Limit      

( μg L
-1

) 

River Tamar 

Range               

( μg L
-1

) 

Major Tributary 

Range                        

( μg L
-1

) 

Targeted Surveys  

of  Mine Discharges   

Range                            

( μg L
-1

) 

Al 0.05 10-1200 10-7940 10-7500 

As 50 0.2-10.0 0.2-28.5 0.2-315 

Cd ≤ 0.08-0.25 0.01-1.0 0.01-5.0 0.2-10.0 

Cu 1-28 0.5-63 0.4-75 13-4400 

Fe 0.016 2-15500* 1-26300* Limited data 

Mn 7 5-590 2-460 10-2400 

Ni 20 0.05-50 1.0-10 3.0-280 

Pb 7.2 0.1-20 0.1-15 0.1-20 

Zn 8-125 2.0-210 2-216 28-2800 

 

 The results of the catchment prioritisation exercise in Chapter 2 indicated mine 

waste tips that might pose an extreme risk to watercourses based on their location and 

associated environmental characteristics.  Among these, Devon Great Consols (DGC), 

an abandoned copper and arsenic mine near Gunnislake, and tips at Wheal Betsy, an 

abandoned lead-zinc mine on the margins of Dartmoor National Park (examined in 
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Chapter 4), ranked highly in risk. Both are situated upstream of  public water supply 

abstraction points from the River Tamar and River Tavy respectively (South West 

Water, 2009). At DGC the abstraction point is very close to a number of surface and 

adit discharges.  

 Highest levels of contamination are recorded for adit and surface drains from 

mine sites, and their confluences with larger watercourses, including Blanchdown 

surface drain at DGC, Gunnislake Clitters adit and the confluence of the River Tamar 

with South Wheal Fanny drain (DGC).   Several studies have investigated the levels of 

contamination in the waste tips material at Devon Great Consols (Kavanagh et al., 

1997; Langdon et al., 2001; Sparrow and Wilkins, 2001; Dybowska et al., 2005; 

Palumbo-Roe et al., 2007; van Herwijnen et al., 2007), and Wheal Betsy (WB) 53,848 

mg kg
 -1

, Pb and  3,135 mg kg
-1

 Zn  (Rieuwerts et al., 2009). A selection of comparable 

studies is shown in Table 3.2. All reported highly elevated metal and metalloid 

concentrations in soils, sediments and efflorescent salts. Maximum As content  in 

Devon Great Consols waste material were 52600 μg g
-1

 by Kavanagh et al. (1997), and 

up to 204478 mg kg
-1

 (including As-rich salts on flue gas chambers of arsenic calciners) 

by Klink et al. (2005). 

 Mighanetara (2009) determined metal concentrations in mine wastes from a 

number of sites in the Tamar Catchment. The results showed that waste tips varied in 

metal content between mines, but that those at Devon Great Consols, particularly 

cinders from As processing, yielded some of the highest totals of the tips surveyed  for 

As, Cu, Mn, Ni  and Cd.  Total metal and As concentrations previously determined for 

tip waste are highly elevated in relation to mine sites in other areas of the world such as 

Spain, France and South America (Table 3.2). They also exceed UK and Dutch 

regulatory guidelines for assessment of contaminated land with respect to As, Cu, Cd, 

Pb and Zn (Table 3.3). 
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Table 3.2: Total metal concentrations (mg kg
-1

) reported in other studies of mine spoil and mine 

contaminated soils from Devon Great Consols and around the world. 

Author Location As 

 

Cu Cd Mn Ni Pb Zn 

Mighanetara 

(2009) 

Cinders tips at 

Devon Great 

Consols, (SW 

England) 

30400-

37500 

 

5400-

6500 
<LOD 

1600-

2000 

49 

±5.9 

91 

 ±7.6 

500 

±80 

Wheal Anna Maria 

tip at Devon Great 

Consols 

21300-

27200 

 
2100-

3300 
<LOD 

420-

840 

23 

±1.2 

34 

 ±6.7 

100 

±60 

Klink et 

al.(2005) 

Waste tips at Devon 

Great Consols, 

including As-salts 

from flue chambers 

of As calciners. 

249-

204478 

 

- - - - - - 

Dybowska et 

al.(2005) 

Cinders tips at 

Devon Great 

Consols 

57381 

 

3362 - - - - - 

Waste Tips at 

Devon Great 

Consols 

13643-

15893 

 
987-

1524 
- - - - - 

Kavanagh et 

al.(1997) 

Waste Tips at 

Devon Great 

Consols 

173-

52600 

 

- - - - - - 

Rieuwerts et 

al.(2009) 

Waste Tips at Wheal 

Betsy (SW England) 
- 

 

- - - - 
1028-

53848 

43-

3135 

Roussel et 

al.(2000) 

Waste Tailings at 

former gold mine 

(France) 

41150-

78150 

 

- - - - 
14600-

14910 
- 

Alvarez et al. 

(2003) 

Tips at an 

abandoned mine in 

Galicia (NW Spain). 

- 

 
273-

5421 
<LOD 

294-

2105 
<LOD <LOD 

73-

894 

Moreno-

Jiménez et 

al.(2009) 

Soils around Monica 

pyrite mine, NW 

Madrid (Spain). 

 

 
17-

605 
1.8-35 

185-

658 
  

92-

2244 

Bech et 

al.(1997) 

Soils around a 

copper mine, Piura 

(Northern Peru). 

143-

7670 

 
69-

5270 

8.9-

499 

213-

965 
- 87-341 

56-

772 
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Table 3.3: UK Soil Guideline Values (SGVs) for residential, allotment and commercial land use 

determined and published by the Environment Agency (2010). Dutch SGV from the Dutch National 

Institute for Public Health & the Environment (Soil Remediation Circular 2009). Values based on 

current published exposure and toxicological assumptions. All values in mg kg
-1

, dry weight. 

Contaminant 

UK SGV Dutch SGV 

Intervention values Residential Allotment Commercial 

As 32 43 640 76 

Cu - - - 190 

Cd 0  1.8 230 13 

Ni 130  230 1800 100 

Pb - - - 530 

Zn - - - 720 

 

There is a recognised risk to local and regional water quality from leachates 

emanating from Devon Great Consols and Wheal Betsy which may be indicative of 

other metal mine sites in the Tamar catchment. To date, there is little knowledge of the 

mobility of the dissolved metals in the spoil leachates as they move through their 

respective sites in surface drains and ground waters toward regulated watercourses.  

There is a need to quantify the contaminant flux that is entering receiving watercourses 

via diffuse pathways in order to elucidate their relative contribution from direct inputs 

and in-stream re-mobilisation.  

3.3 Aims and Objectives  

The aim of this chapter (and Chapter 4) was to: 

 Measure dissolved contaminant concentrations in situ emerging from mine 

wastes of different character and representative of others found in the 

catchment.   
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 Measure instantaneous flow of surface drains and where possible estimate 

contaminant fluxes of dissolved contaminants moving through the site. 

 Investigate the factors affecting contaminant release and transport  from 

mine waste (e.g. waste composition and site hydrology) 

The contaminant metals of interest were Cd, Cu, Zn, Ni, Pb, Mn, and Fe, together 

with metalloids As and Sb. These elements are of particular concern due to their high 

eco-toxicity and/or inclusion in environmental regulations as part of the Water 

Framework Directive (2000/60/EC).  Devon Great Consols, on the Devon side of the 

River Tamar near Gunnislake, Cornwall, and Wheal Betsy near Mary Tavy, Devon, 

were selected as examples of mining in the two major mineral deposit types, found in 

the Tamar catchment. Their selection was based on literature information, research and 

local knowledge (from the Plymouth Mining and Mineral Club) of the mining history 

and extent of contamination found at these sites.   Devon Great Consols exploited 

copper and arsenic deposits in E-W trending lodes whilst Wheal Betsy is an example of 

an older Pb/Ag mine exploiting N-S trending mineral “cross-courses” (Dines, 1956). 

The sites also have some of the largest waste tips in the catchment, as shown in Chapter 

2, making them worthy of investigation as major contaminant sources to their respective 

receiving watercourses, the River Tamar and Cholwell Brook, a tributary of the River 

Tavy. 

The objectives of the study at each site were:  

1. To quantify the concentrations of metals in mine waste leachates, surface 

drains and shallow ground waters entering the receiving watercourse. (To 

act as a robust survey for regulators and other interested parties, and to 

validate laboratory methods introduced in Chapter 5).  

2. To investigate the dominant geochemical controls influencing the 

composition of the mine waters at two contrasting sites. 
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3. To estimate the fluxes that may arise from areas of mine waste. 

4. To investigate the effect of seasonality on the concentrations and fluxes of 

contaminant metals and metalloids.  

 

A sampling scheme was adopted to monitor the quality of discharges emanating 

mine waste tips on repeated visits between June 2007 and July 2009. Initial site 

walkover surveys and where available, existing reports (e.g.Wardell-Armstrong, 1992; 

Sherrell, 2000; Buck, 2002) and local expertise were used to design a suitable sampling 

strategy. Annual contaminant flux was estimated via a combination of measured flows 

and determined concentrations, daily rainfall data and GIS-modelled tip catchment 

areas. No attempt was made to determine the speciation of contaminants directly. 

However, the geochemical modelling code PHREEQC (version 2) was employed to aid 

in the interpretation of the results with respect to the solubility of mineral phases and 

element speciation. 
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3.4 Literature Review: The Geochemistry of Mine Waste Leachate 

3.4.1 Acid Generation and Metal Release 

  The mineral deposits in south west England are predominantly hosted in 

sulphide mineral veins, leading to the presence of sulphide minerals in the waste rock 

tips found at abandoned mines. Iron sulphides, such as pyrite (FeS) and pyrrhotite 

(Fe1-xS), and other metal sulphide minerals, such as sphalerite ((Zn,Fe)S), galena (PbS), 

chalcopyrite (CuFeS2) and arsenopyrite (FeAsS), are largely stable under in-situ 

geological conditions but oxidise when exposed to the atmosphere. The oxidation 

reactions, which are accelerated by microbiological activity, produce acidic mine waters 

that are commonly high in dissolved sulphate, metals and metalloids, such as Al, Cd, 

Co, Cu, Fe, Mn, Ni, Pb, Zn and As (Lee et al., 2002; Hulshof et al., 2006; Mohan and 

Chander, 2006; Navarro Flores and Martínez Sola, 2010). The principal generator of 

acidity is the oxidation of iron sulphide minerals, predominantly pyrite (FeS2) and 

pyrrhotite (Fe1-xS). Generation of acidic waters can involve chemical, biological and 

electrochemical reactions and may take place in oxygenated or anoxic systems, 

depending on the prevailing conditions and the oxidant involved (Lollar, 2005).There is 

an extensive body of literature on the topic and detailed reviews of pyrite oxidation and 

the generation of acid mine/rock drainage (AMD/ARD) may be found on the world 

wide web e.g. INAP (2009), and in the literature (Evangelou and Zhang, 1995, 

Nordstrom and Southam, 1997, Younger et al., 2002 ,and Lollar, 2005). For 

consistency, reaction equations 1-4 have been taken from Younger et al. (2002) and 

references therein. Initially, pyrite is oxidised by atmospheric oxygen with the transfer 

of electrons to dissolved oxygen from sulphur via Equation 1.  

 

FeS2(s) + 7/2 O2 + H2O → Fe
2+

 + 2 SO4
2-

 + 2 H
+    

Equation 1 

               (Stumm and Morgan, 1996a) 
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 The reaction releases ferrous iron (Fe
2+

) and acidity into solution resulting in 

decreased pH. In the presence of sufficient dissolved oxygen, oxidation continues with 

Fe
2+

 oxidised to ferric iron (Fe
3+

) via Equation 2. 

 

Fe
2+

 + ¼ O2 + H
+ 

→ Fe
3+

 + ½ H2O      Equation 2 

          

 At pH > 3.5, the ferric ion reacts with oxygen to form an insoluble precipitate 

releasing more acidity into solution via a reaction commonly represented by Equation 3:  

 

Fe
3+

 + H2O ↔ Fe(OH)3(s) + 3H
+      

Equation 3 

                 

 Where Fe(OH)3 represents a Fe(III) oxyhydroxide precipitate, which may be 

ferrihydrite (5Fe2O3.9H2O,) schwertmannite (between Fe8O8(OH)6SO4 and 

Fe16O16(OH)10(SO4)3), goethite (FeO(OH)) or jarosite (KFe3(SO4)2(OH)6), depending 

on pH-Eh conditions (Dold, 2005). Equation 3 is a simplification of a series of complex 

reactions which occur to reach the end product, but the overall result of reactions 1-3 is 

to release 4 moles of acidity into solution for every mole of pyrite. If the pH of the 

system falls to ≤ pH 3.5, Fe(OH)3(s) is no longer stable with respect to ferric iron, and 

the Fe
3+

 generated by Equation 2 remains in solution (Evangelou, 1995).  In these 

circumstances the ferric iron may react with pyrite via Equation 4,  yielding 16 moles of 

acidity per mole of pyrite (Younger et al., 2002).  Without significant buffering 

capacity, the pH of the system can plummet to pH values as low as -4 in extreme cases 

(Nordstrom et al., 1999).   

 

FeS2(s) + 14 Fe
3+

 + 8 H2O  →  15Fe
2+

 + 2 SO4
2-

 + 16 H
+
   Equation 4 

                  

 The ferrous iron produced by Equation 4 can be re-oxidised by oxygen 

(Equation 2) and the cycle of reactions will proceed until oxygen is depleted, at which 

point Equation 4 will continue to completion, leaving predominantly ferrous iron in 

solution.  
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 The conversion of ferrous to ferric iron (Equation 2) is the rate-limiting step in 

the overall pyrite reaction sequence (Singer and Strumm, 1970). Bacteria such as 

Acidithiobacillus ferrooxidans obtain energy by oxidising Fe
2+

 to Fe
3+

 and as part of 

complex microbial consortia are able to catalyse this reaction. The increased rate of 

reaction is estimated to be up to a factor of 10
5 

higher than abiotic oxidation (Singer and 

Strumm, 1970). 

 Pyrrhotite oxidation has received much less study than pyrite oxidation but 

results suggest it can react 20-100 times faster than pyrite under standard conditions 

(Lollar, 2005). The amount of acid produced by the oxidation of pyrrhotite is linked to 

its stoichiometry with the iron deficient form (x = 0.125) producing acidity via Equation 

5, while the end-member troilite (x = 0) produces none. However, the ferrous ions 

produced from both pyrrhotite and troilite oxidation in Equation 5 (Lollar, 2005) go on 

to produce acidity via Equations 3 and 4 resulting in net acid generation in both cases. 

 

Pyrrhotite: Fe1-x S (s) + (2- 1/2 x)O2 + xH2O  →  (1-x)Fe
2+

 + 2 SO4
2-

 + 2x H
+

 

             Equation 5  

 

 Other sulphide minerals with metal/sulphur ratios = 1 (e.g., sphalerite, galena, 

chalcopyrite) tend not to produce acidity when oxygen is the oxidant (INAP, 2009), but 

are dissolved under acidic conditions, releasing metals into solution, for example via 

Equations 6-8 (Younger et al., 2002, and references therein): 

Galena:  PbS(s) + 2 O2(aq)  →  Pb
2+

 +  SO4
2-

            Equation 6  

 

Sphalerite: ZnS(s) + 2 O2(aq)  →  Zn
2+

 +  SO4
2-

        Equation 7 

 

Chalcopyrite: CuFeS2(s) + 4 O2(aq)  →  Cu
2+

 + Fe
2+

 +2 SO4
2-                     

Equation 8 
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 Other contaminant metals are found in solution by means of being trace 

elements in common sulphide minerals. For example, Mn, Ni and Co are found in Fe-

sulphides, whilst sphalerite is the principal source of Cd in mine tailings (Moncur et al., 

2009). 

  The oxidation of galena, sphalerite and chalcopyrite can be enhanced by a 

number of factors including pH, temperature, mineral surface area and the concentration 

of oxidants in solution (Dutrizac, 1981; Kang and Sproull, 1991). As for pyrite and 

pyrrhotite, these minerals may be oxidised by either oxygen or ferric iron, releasing 

metals into solution (Equations 9-11):  

 

Galena:  PbS(s) + 2 Fe
3+

 + 1.5 O2(aq) + H2O → PbSO4
 
+ 2 H

+
 + 2 Fe

2+ 
  Equation 9 

                          (da Silva, 2004)

                 

Chalcopyrite:  CuFeS2(s) + 4 Fe
3+ 

→ 5 Fe
2+

 + Cu
2+

 + 2 S
0   

Equation 10 

        (Hiroyoshi et al., 1997) 

 

Chalcopyrite: CuFeS2(s) + 4 H
+ 

+ O2(aq) → Cu
2+

 +   Fe
2+

 + 2S
0
 + 2 H2O

 

          
Equation 11  

(Hiroyoshi et al., 1997) 

 Hiroyoshi et al. (1997) reported that the ferrous ions produced via Equation 10 

catalysed the leaching of copper from chalcopyrite by Equation 11, and the latter 

reaction is favoured at low pH, as protons are consumed in the reaction.  

 Mine wastes arising from sulphide ores are generally complex mixtures and the 

dissolution rate of a particular metal sulphide mineral can be dependent on the other 

minerals around it. For example, the dissolution of chalcopyrite may be accelerated in 

the presence of pyrite and molybdenite (Dutrizac and MacDonald, 1973), whereas the 

oxidation of galena was shown to be diminished in the presence of sulphide minerals 

containing Zn and Cd (Urbano et al., 2007). Many of the observed differences in 

reactivity relate to galvanic effects, where physical contact between two different metal-
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disulphide minerals in an acid/ferric solution creates a galvanic cell (Evangelou, 1995). 

The mineral with the lowest resting potential, acting as the anode, will be dissolved, 

while the mineral with the higher resting potential (cathode), will be galvanically 

protected (Mehta and Murr, 1983).  

 Galvanic effects have been shown to increase the dissolution of galena, 

sphalerite and chalcopyrite in a two phase system with pyrite (Abraitis et al., 2004) and 

have also been established for Cu-Ni sulphides by Tong et al. (2009).  Dissolution rates 

of galena were observed to be very similar in a pyritic sludge as compared to the raw 

mineral, whereas rates of sphalerite and chalcopyrite dissolution were observed to be 

accelerated in the sludge (Cama and Acero, 2005). Mineral structure can also alter 

observed oxidation and dissolution rates. For example, in the structure of sphalerite in 

which Fe partially substitutes for Zn,  higher rates have been observed to increase with 

increasing Fe content in the mineral (Moncur et al., 2009). Also, the framboidal form of 

pyrite is generally accepted as the most reactive form of the mineral, having a very large 

surface area compared with other polymorphs (Evangelou, 1995).  

 The formation of an armouring layer around sulphide mineral grains is often 

observed in mine wastes and can inhibit oxidation. Such an effect has been shown for 

galena, forming Pb-sulphide (metal deficient) coatings under conditions of low pH and 

high sulphate, (Buckley and Woods, 1984; Lin, 1997). Similarly the development of a 

surface layer of metal deficient sulphide has been observed in natural sphalerites within 

which an accumulation of copper, thought to originate from the bulk mineral, was also 

observed (Buckley et al., 1989).  Again, bacteria can be involved and increase the rates 

of reaction. Torma (1988) stated that the role of bacteria in the galvanic cell was to 

continuously oxidise elemental sulphur (produced from the anodic reaction) to sulphate, 

thus preventing the formation of a sulphur barrier on the surface of the anode mineral 

(chalcopyrite in this instance), hence increasing dissolution rates. 
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 In addition to variations observed within the sample environment, literature 

evidence also suggests that prediction of the relative rates of sulphide mineral 

dissolution, based on empirical measurements, can vary with sample preparation, 

surface area to volume ratios and the presence of impurities (Lollar, 2005).  

 Cathodic protection of an acid-generating sulphide can reduce the leaching 

potential, while microbial mediation may enhance the weathering of sulphides with a 

high electrode potential. The galvanic processes can compete with microbial activity in 

effecting the oxidation of sulphides with a low electrode potential in a mixed sulphide 

assemblage (Kwong et al., 2003). It is considered likely that in these systems different 

mechanisms of oxidative/dissolution, electrochemical oxidation and oxidation by Fe
3+

, 

O2 and bacteria occur concurrently (Evangelou, 1995), but there is a lack of literature to 

resolve the relative contribution of each to overall mineral dissolution in mixed sulphide 

systems. 

3.4.2 Sorption and Precipitation Reactions 

 Interactions between dissolved metals and the waste material, soils, rocks, water 

and the atmosphere determine the mobility of elements once released. Depending on 

conditions, metal ions released from sulphide weathering can precipitate as sulphate-, 

carbonate- and in some cases silicate- mineral phases. This is generally a favourable 

process as it immobilises some metals and metalloids, for example ferric iron in jarosite 

(KFe3(OH)6(SO4)2), ferrous iron in malanterite (FeSO4.7H2O), aluminium in alunite 

(KAl3(OH)6(SO4)2) and lead in anglesite (PbSO4 (Younger et al., 2002). Precipitates 

can also lead to a discolouration of waters, sediments and rocks: most often this is 

dominated by iron hydroxides giving a characteristic ochre colour.  

 A relatively small change in pH or Eh can shift the balance between dissolution 

or precipitation for many of the identified secondary iron precipitate species, e.g. 
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heamatite (Fe2O3), goethite (FeOOH) schwertmannite (Fe8O8(OH)8-2x(SO4)x), K-jarosite 

(KFe3(OH)6(SO4)2), lepidocrocite (FeOOH) and ferrihydrite (FeO3.1.8H2O) (O'Neill, 

1998; Lee et al., 2002; Romero et al., 2007). It is common to see clear discharges from 

mine adits, which subsequently become ocherous downstream as the pH rises in 

response to dilution or buffering processes and waters become more oxic.  

 When precipitated, the fresh surface of the secondary iron phases have a large 

surface area with many sorption sites and acts as an effective scavenger for other 

dissolved metals (Kairies et al., 2005). However, as mine waste matures under acidic 

conditions, secondary Fe-oxyhydroxides become more crystalline, resulting in 

decreased sorptive capacity (Moncur et al., 2009).   The sorption properties of these 

phases are complex and a number of studies (e.g. Lee et al., 2002; Kairies et al., 2005; 

Romero et al., 2007; Moncur et al., 2009) have shown sorption of dissolved metals (Pb, 

Zn, Cr, Cu and Cd) to be dependent on pH as well as the relative affinity of dissolved 

metals for specific sorption sites.  

 Manganese, though less abundant than iron, shows similar geochemical 

behaviour, being redox sensitive and controlled by pH-Eh conditions. In contrast to Fe, 

Mn remains in solution under mildly oxidising conditions. In strongly oxidising 

conditions it precipitates on mineral surfaces as manganese oxides. Furthermore, 

manganese oxides are effective scavengers of trace metals, and may be enriched in Co, 

Fe and Ni and As, Ba, Cu, Pb and Zn (Shand et al., 2007). 

 The formation of secondary sulphate minerals (commonly known as efflorescent 

salts) can occur where iron-oxyhydroxides are not precipitated and dissolved metal 

concentrations remain high. Such a scenario may occur under conditions of low pH and 

high dissolved sulphate. Soluble salts, such as chalcanthite (CuSO4.5H2O) and goslarite 

(ZnSO4.7H2O) can act as a short-term sink for metals, forming in the pore waters of 
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hydraulically-unsaturated mine wastes which may be re-mobilised by hydraulic flushing 

(Younger et al., 2002; Lollar, 2005). 

  If present, the dissolution of carbonate minerals such as dolomite 

(CaMg(CO3)2) will help buffer acidity in mine wastes and can lead to the precipitation 

of secondary siderite (FeCO3), and simple salts such as gypsum (CaSO4.2H2O). Several 

secondary carbonate and hydroxide minerals of copper and zinc have been reported in 

mine wastes and stream sediments in receipt of mine drainage, including smithsonite 

(ZnCO3) and azurite (Cu3(CO3)2(OH)2 (Hudson-Edwards, 2003, and references therin). 

Also, in lead-rich mine wastes, secondary Pb-carbonate and Pb-sulphate phases have 

been reported including cerussite (PbCO3), hydrocerussite (Pb3(CO3)2(OH)2) and 

beudantite PbFe3(AsO4)(SO4)(OH)6 (Roussel et al., 2000; Lollar, 2005). 
 

3.4.3 Mineral Weathering Reactions and Acid Buffering  

The acid buffering capacity of soils is largely determined by their content of 

carbonate and weatherable silicate minerals, cation exchange capacity and base 

saturation (Edwards et al., 1990).  Carbonate buffering is often used as a remedial 

treatment for acid mine water and is based on the dissolution of limestone, containing a 

solid carbonate phase such as calcite (CaCO3). The carbonate system is able to buffer 

acidity via the reaction sequence shown in Equations 12-14 (Stumm and Morgan, 

1996): 

     ( )  ↔   
       

                                                                Equation 12 

   
       ↔     

 
                                                                  Equation 13 

    
      ↔                                                                     Equation 14 

 

The reaction sequence consumes protons and can cause a rapid rise in pH 

depending on the amount of dissolved carbonate already in solution. A further increase 

in pH can also be achieved via further dissolution from the solid phase (Stumm and 
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Morgan, 1996b), but it has been observed in many systems that this is inhibited by the 

armouring of the carbonate surface by ferric hydroxide precipitates (Evangelou, 1995).  

The aluminium silicate minerals provide considerably more resistance toward pH 

changes than carbonates (Stumm and Morgan, 1996b). Silicate minerals include 

feldspars, micas, chlorites, amphiboles, olivines, pyroxenes and clay minerals 

(aluminosilicates); these are abundant in most geological settings including many parts 

of the south-west of England where kaolinite (China Clay) is mined for the paper and 

ceramics industries (Kraukopf and Bird, 1995). Weathering of aluminium silicate 

minerals may proceed via congruent dissolution into simple dissolved ions (e.g. 

Equations 15 and 16) and such reactions consume protons and release Al ions into 

solution (Krauskopf and Bird, 1995): 

        ( )     
  ↔                       O   Equation 15 

K-feldspar                                  Silica 

          (  ) ( )       
 ↔                          

        

Muscovite                         Silica     Equation 16 

 

 In addition, an array of incongruent dissolution reactions are possible depending 

on prevailing geochemical conditions (pH, temperature, solution chemistry). 

Incongruent dissolution reactions release base cations and salicic acid into solution 

producing a secondary weathering mineral with a higher Al:Si ratio, Three examples of 

possible equilibrium reactions are given in Equations 17, 18 and 19:   

                      
 ↔          (  )              

   
           

Microcline (K-feldspar)            Muscovite           Silica   Equation 17 

 

 

            (  )             
 ↔         (  ) ( )      

  Equation 18 
 

Muscovite      Kaolinite 

 



         Chapter 3 

 

120 

 

                    
 ↔        (  ) ( )      

        
 

Anorthite (Ca-feldspar)       Kaolinite      Equation 19 

 

  The equilibrium system represented by equation 19, at pH 8 has a buffer 

intensity 10
3
 times higher than that of a 10

-3 
mol L 

-1
 carbonate solution and equilibrium 

systems containing a number of co-existing phases are in principal able to offer infinite 

buffering capacity (Stumm and Morgan, 1996b).  

 Overall the buffering reactions of various minerals operate in different pH 

regions and there are discrepancies in the literature about the exact pH ranges of these 

zones (Lottermoser, 2007). Broadly, the pH of mine waters emanating from mine waste 

indicates whether carbonates (pH 6.5 -7.5), aluminium silicates and iron carbonates (pH 

5-6), exchange reactions with clay minerals (pH 4-5), aluminium hydroxides (pH 4.5-

5.0) or iron hydroxides (pH 3) are the dominant buffering system.  However, in practice 

the actual buffering capacity of a system is dependent on the reaction kinetics of the 

acid producing reactions versus those consuming protons and reaction rates of ion 

exchange and mineral dissolution. It is rare that step changes from one buffering system 

to the next are observed because different minerals undergo weathering simultaneously 

(Lottermoser, 2007). 

3.4.4 Complexation, Speciation and Toxicity 

 Once released, metal ions in solution do not necessarily exist as free hydrated 

ions but can be present as complexed inorganic and organic species and colloidal 

material, commonly 20-200 nm (Slowey et al., 2007). In practice, the distinction 

between dissolved and particulate material is operationally defined by the filtration 

technique employed (typically with a pore size of 0.45 or 0.20 μm). The speciation of 
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trace metals in natural freshwaters is important as it affects the mobility, bioavaliability 

and toxicity of many elements (Sigg et al., 2006).  

Iron and Aluminium  

  The availability of dissolved Fe in natural waters is dependent on the redox 

condition. The highly soluble ferrous (Fe
2+

) cation is prevalent under anoxic conditions. 

Ferric (Fe
3+

) iron dominates in aerobic waters and is sparingly soluble in the pH range 

5-8, being found as Fe(OH)3(s), Fe2O3
 
and suspended colloidal iron oxyhydroxide 

particles (Harley, 2010). Iron precipitates negatively impact upon aquatic life by 

reducing oxygen availability and coating benthic habitats and the body surfaces and 

respiratory systems of marine organisms (Earle and Callaghan, 1988; Harley, 2010). 

Dissolved iron is frequently associated with dissolved organic matter (e.g. humic or 

fulvic acids), and brown colouration of waters often indicates a high organic and Fe 

content (Perdue et al., 1976). Because Fe precipitates rapidly in oxic waters at relatively 

low pH (≥ 3.5), it is difficult to separate the effect of dissolved iron on aquatic life from 

that caused by low pH associated with mine waters (Earle and Callaghan, 1988).  

 However, a number of toxicity studies have been conducted on aquatic 

organisms, for example Milam and Farris (1998) recommended a no-effect level of 0.4 

mg L
-1

 (as Fe
2+

) based on studies of species of freshwater clam. Also a recent review of 

available data concluded that a dissolved iron concentration of 1 mg L 
-1

 was an 

appropriate level to protect aquatic life in Colorado. The same level has been adopted in 

the UK and a number of states in the USA (Harley, 2010).  

 Dissolved Al can exist as the free trivalent cation (Al
3+

), or as a range of soluble 

organic (humic and fulvic acids) and inorganic complexes (e.g. fluoride, chloride and 

sulphate). It can also form monomeric and polymeric hydroxyl species, colloidal 

polymeric solutions and gels and precipitates (Fawell, 2010). Depending on size 
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distribution, a portion of the latter forms may be included in the “dissolved” fraction 

passing through 0.45 and 0.2 μm pore size filters.  Dissolved aluminium displays 

conservative and non-conservative behaviour in acidic stream waters with a transition 

from one to the other in the pH range 4.6 to 5.0, consistent with precipitation of the first 

hydroxyl product (Nordstrom and Ball, 1986). Lee et al (2002) also reported decreased 

dissolved Al activity at pH >5 consistent with the formation of Al(OH)3 solid, and that 

the formation of Al-SO4 compounds may influence Al activities at pH < 5. 

 Dissolved Al has been shown to be toxic to a range of aquatic organisms via 

osmoregulatory failure, including daphnids, mayflies, crayfish, and in a range of  fish 

species, where sensitivity is species-dependent (Herrmann, 1987; Klöppel et al., 1997, 

and references therein ; Poléo et al., 1997). Monomeric Al hydroxyl species  have been 

found to be primarily responsible for Al toxicity in the aquatic environment (Wauer et 

al., 2004). Recent research has also highlighted the toxicity of Al nanoparticles to 

aquatic organisms (e.g. Strigul et al., 2009) and plants (e.g. Ma et al., 2010), but as a 

man-made species are not universally encountered.  

 Ionic Al toxicity is well documented for acidic waters, but in mixing zones with 

high pH  waters conversion of dissolved Al to high molecular weight polymeric species 

can also bring about fish mortality, via clogging of the gills (Rosseland et al., 1992; 

Klöppel et al., 1997). The free ion Al
3+

 is also  phytotoxic, interfering with root growth 

and respiration and the uptake and use of water and nutrients (Rout et al., 2001). 

Aluminium phytotoxicity is dependent upon soil conditions, but can occur at nanomolar 

concentrations (Costantini et al., 1992; Poschenrieder et al., 2008). Kinraide (1997) 

found the toxicity of Al species to wheat followed the order Al13 (a hydroxyl 

precipitate) > Al
3+ 

> AlF
2+

 > AlF2
+ 

with no proven phytotoxicity for sulphate species or 

mono-hydroxyls. Phytotoxicity is an important consideration in remediation of  

abandoned mine sites where re-vegetation of tips is desirable.  
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Copper, Zinc, Cadmium, Nickel Lead and Manganese, 

 Dissolved Cu, Zn, Cd, Ni, Pb and Mn may exist in one of three forms: as the 

divalent free cation, as a range of inorganic complexes or associated with organic matter 

(Kozelka and Bruland, 1998). Mobility of all of these metals is dependent on pH, with 

sorption reactions to Fe and Mn oxyhydroxides, clays and solid organic material being 

an important mediator of contaminant transport. Complexation with dissolved organic 

matter has also been shown using a variety of laboratory techniques, to be the dominant 

form of these metals in natural waters (Buffle et al., 1988; BGS, 2003). The highest 

affinity for organic matter (dissolved or solid) is reported for Cu and Pb (Weng et al., 

2002; Shand et al., 2007), but is also important for Zn, Ni and Cd speciation and 

mobility (Chakraborty and Chakrabarti, 2006). Lead usually exhibits the lowest 

mobility in mine waters, due to the low solubility of secondary precipitates such as 

anglesite (PbSO4) and plumbojarosite (PbFe6(SO4)4(OH)12, Harris et al. (2003)).  

 The availability and toxicity of trace metals to aquatic life (e.g. phytoplankton, 

zooplankton, ciliates, copepods, and crab-larvae) is generally correlated to the free 

metal ion concentration, rather than the total concentration (Kozelka and Bruland, 1998, 

and references therein).  Typical lethal concentrations of Cu
2+

 (LC50) for freshwater fish 

range from 0.16 – 47.2 μmol L
-1

. Effect concentrations (EC50), are also sometimes used 

to determine levels where a detrimental effect is observed on freshwater invertebrates or 

microorganisms: typical EC50 concentrations of Cu
2+

 being 0.16 – 47 and 0.01 – 5.4 

μmol L
-1

, respectively
 
 (Rodgers et al., 2005).  Toxicity (LC50) for “dissolved” Zn and 

Cd have been found to be of the order of 1000
 
and 10-100

 
μmol L

-1
,
 
respectively for 

fathead minnows and 100
 
 and 1-10

 
μmol L

-1
,
 
respectively for daphnia in freshwaters 

impacted by acid mine drainage, depending on conditions and distance downstream 

from the mine
 
(Balistrieri et al., 2007). In general, Cd displays similar geochemical 

behaviour to Zn and the two are often found together in mine affected waters. Cadmium 
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differs slightly in that it forms anionic complexes with organic matter more readily than 

Zn (Pettersson et al., 1993). Cadmium, though much less abundant than Zn, is more 

toxic to aquatic life and this is reflected in the low Environmental Quality Standard 

(EQS) values applied to UK freshwaters in Table 3.15 (Appendix 3F).  

 Nickel toxicity varies considerably between waters with different physico-

chemical parameters such as pH, alkalinity and dissolved organic carbon (DOC) 

(Schlekat et al., 2010).  Nickel is bioavailable and most toxic as the hydrated divalent 

ion. Griffitt et al. (2008) examined  the effect on zebrafish, daphnia and algal species 

from exposure to nanoparticles including silver, copper, aluminium, and nickel. Their 

results indicated that nanocopper and nanosilver caused toxicity directly to all tested 

species, but that dissolution to soluble species accounted for the toxicity of nickel. 

Reported Ni LC50 values for freshwater fish are 0.29-1.6 μmol L
-1

(Kumar and Nath, 

1987).  Manganese is a toxic element frequently overlooked when assessing toxicity of 

effluents, sediments, and pore waters (Lasier et al., 2000). Manganese is redox sensitive 

and mobilised under reducing conditions when insoluble Mn
4+

 species are reduced to 

Mn
2+

 (Crane et al., 2007), the latter can remain at toxic levels in oxic waters due to slow 

precipitation kinetics. Reported LC50 concentrations for acute toxicity to daphnia and 

crustaceans (Hyalella azteca), which are reported to be the most sensitive species to 

dissolved Mn, were 0.11-0.27 μmol L
-1

 and 0.055-0.25 μmol L
-1

, respectively (Lasier et 

al., 2000). As for other elements, toxicity varies with pH, temperature and alkalinity.  

Arsenic and Antimony 

 Arsenic exists in sulphide mineral tailings most commonly as arsenopyrite 

(FeAsS) and arsenian pyrite (Fe(S,As)2), and is released during oxidative dissolution of 

these phases. As a metalloid and redox sensitive element, As does not form single 

cations but reacts readily to from oxyanions and corresponding salts. Arsenite (As(III)), 
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dominates in reducing conditions and arsenate (As(V)) dominates in oxidising 

conditions but the exact species is also dependent on pH. Arsenate (H2As(V)O4
-
) and 

arsenite (H3As(III)O3) are the most commonly found arsenic species in AMD and 

groundwater and inter conversion between the two in changing Eh and pH conditions 

can affect mobility; however disequilibrium is often observed due to the slow kinetics 

of As redox reactions (Shand et al., 2007). Arsenates are mobile (as dissolved H3AsO4 

and H2AsO4
−
) only at pH < 3.5 in a narrow range of Eh (Cheng et al., 2009). The 

capacity for iron oxides to adsorb As(V) is well documented in circum-neutral and 

acidic waters (Shand et al., 2007) and adsorption reactions are generally considered the 

most important control on the concentration of dissolved arsenic in groundwater 

environments. Arsenic species can adsorb on many soil colloids and particles, 

particularly oxyhydroxide surfaces in the natural environment (Carrillo and Drever, 

1998).  Arsenic is toxic to plants and animals, including humans where it is a proven 

carcinogen (EA, 2009). To date few studies have been conducted on the toxicity and 

biotransformation of As in aquatic organisms (Ventura-Lima et al., 2011). Toxicity is 

highly dependent on its chemical form and generally inorganic arsenic species are more 

toxic to living organisms than organic forms (Sharma and Sohn, 2009). Arsenite (AsIII) 

is about 60 times more toxic than arsenate (AsV) which is about 70 times more toxic 

than methylated species, although biotransformation of arsenic within organisms can 

also produce toxic metabolites (Ventura-Lima et al., 2011).  

 Antimony exhibits similar geochemical behaviour to arsenic, existing in a range 

of oxidation states (-3, 0, +3, +5) but is mainly found in the Sb(III) and Sb(V) states in 

environmental samples (Shand et al., 2007).  Antimony is typically present at low 

concentrations (< 1 ugL
-1

) in unpolluted waters (Filella et al., 2002), but high 

concentrations may be associated with sulphide mineral deposits where antimony is 

found as stibnite (Sb2S3), or incorporated into other sulphide minerals (Shand et al., 
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2007).  Zhu et al.(2009, in Fu et al. (2010)) reported Sb concentrations in mine waters 

as high as 7502 μg L
-1

. Antimony is a toxic trace element and suspected carcinogen but 

the bioavailability and behaviour of Sb in aquatic ecosystems and the environment as a 

whole  remains unclear and worthy of further study  (Fu et al., 2010; Wilson et al., 

2010). Increased  Sb concentrations in the growth media led to significant suppression 

of leaf and root growth in wheat seedlings (Shtangeeva et al., 2011). However, a recent 

comparative study by Duester et al (2011) reported inorganic and organic As (III) and 

As(V) species to be more toxic to aquatic plants than the corresponding Sb species.  

Analytical Challenge 

 The mineral assemblage, electrochemical and oxidation reaction kinetics, 

bacterial mediation, and hydrology affect which reactions proceed, and how quickly. 

Combination of these factors determines the geochemistry of the mine waters emerging 

from waste material. Given the complexities of reactions likely to arise in sulphide 

wastes, empirical studies of dissolved metals are the most reliable method of 

determining mine water chemistry.  In the UK, current EQS values are based on 

laboratory toxicity data and expressed as total dissolved concentrations, and accordingly 

this work reports total dissolved metal and metalloid concentrations.  

 However in a recent report, the Environment Agency acknowledged that this 

may lead to underprotection or overprotection of aquatic environments and 

recommended a move toward bioavailability and chemical speciation in the future (Bass 

et al., 2008). Sigg et al.(2006) also highlighted the need for robust methods to routinely 

measure parameters that give information on the potential ecotoxicological risk of 

metals based on their speciation, rather than total or “dissolved” concentrations which 

are usually reported. The same authors did however acknowledge that this was a 

“considerable challenge”, requiring a range of analytical methods.  
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3.5 Background Information: Devon Great Consols  

3.5.1 Location and Ownership 

  Devon Great Consols is situated on the Devon side of the River Tamar close to 

the Cornish mining town of Gunnislake (Figure 3.1). The site was designated within the 

Tamar Valley Area of Outstanding Natural Beauty (AONB) in 1995, and was inscribed 

as part of the Cornish Mining UNESCO World Heritage Site in July 2006 (CMWH, 

2010).  It is currently managed by the Tamar Valley Mining Heritage Project, initially 

led by West Devon Borough Council in conjunction with a number of other 

stakeholders (WDBC, 2006). One of the stakeholders is the Tamar Valley AONB 

partnership, through which permission for site access was granted. The site is bounded 

to the SE by Blanchdown Farm which is privately owned.  

 

Figure 3.1: Devon Great Consols site located in and around Blanchdown Wood on north 

bank of River Tamar. Mineral veins superimposed as red lines. Created in ArcMap using 

BGS 1 : 50 000 geology data and current OS 1 : 25000 scale map. © Crown Copyright 

and Landmark Information Group Limited (2010). All rights reserved.  
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3.5.2 History 

 Devon Great Consols began working following the discovery of a copper 

mineral lode in 1844 and for twenty years was the richest copper mine in Europe 

(Booker, 1967). The existence of mineral deposits in the area had been suspected since 

Elizabethan times but the site remained undeveloped until the reluctant land owner, the 

6
th

 Duke of Bedford, finally granted permission to Josiah Hitchins to develop a mine 

(Hamilton Jenkin, 1974).  By 1845, the workings comprised a number of individual 

mines which exploited four main E-W tending mineral lodes (Figure 3.1). The original 

discovery was at Wheal Maria on the western part of the site with the workings of 

Wheal Fanny, Wheal Anna Maria (WAM), Wheal Josiah and Wheal Emma tracking the 

lodes from W-E. Other subsidiary workings to the south, including South Wheal Fanny 

(800m SSW of WAM), Wheal Frementor (a tungsten and tin mine,1 km SSW of WAM) 

and Watson‟s Mine (1 km SE of WAM) were also included in the site which together 

became known as Devonshire Great Consolidated Copper Mining Company (Devon 

Great Consols). By 1865, the surface area of the mine covered more than 140 acres and 

at Wheal Josiah, 15 shafts granted access to 40 miles of levels, the deepest shaft 

extending to a depth of 420 m (Hamilton Jenkin, 1974). 

By the late 1860s, the copper lode had become deeper and harder to work and 

global copper prices had fallen considerably such that mining copper at DGC became 

unprofitable.  From this point on until its eventual closure in 1903, the mine principally 

worked the rich arsenic deposits. Commonly referred to as mispickle, this ore comprised 

arsenopyrite deposits which remained in situ on the walls of the worked copper lode 

when the chalcopyrite was mined out.  By 1870, half the world‟s supply of arsenic came 

from the site (Booker, 1967), and by 1889 the mine was producing three times more 

arsenic than copper (Buck, 2002). The layout of the mine during this period can be seen 

in the maps dated 1882-1884 and 1889-1891 (Figure 3.25 and Figure 3.24, Appendix 
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3A). Rising costs and reduced revenue from the sale of arsenic in the following years 

led to the abandonment of the mine in 1903 (Buck, 2002). After closure,  much of the 

infrastructure and the materials of the mine were sold off (Hamilton Jenkin, 1974), the 

remaining features can be seen in the maps dated 1906 and 1907 (Figure 3.27 and 

Figure 3.26, Appendix 3A).   

The mine lay dormant until about 1915, when underground mining was 

recommenced at Wheal Fanny for arsenic and at Wheal Frementor for tin and tungsten 

(Richardson, 1995). Arsenic ore (arsenopyrite) was crushed and roasted on site in 

Brunton and Oxland calciners and the resulting fumes were drawn through a series of 

brick chambers, known as a labyrinth, toward a tall chimney stack. Condensing fumes 

resulted in a crude grey precipitate that was subsequently recovered and roasted for a 

second time in a refining furnace, the fumes being drawn through another tiled labyrinth 

to produce pure white arsenic oxide (As2O3) (Richardson, 1995).  This activity 

continued into the 1920s with the construction of new furnaces, a new chimney stack 

and new labyrinths, the remains of which can still be seen on site along with the 

extensive waste tips. The arsenic works are believed to have been abandoned around 

1925, with limited re-working of the waste tips for arsenic continuing until about 1930,  

(Richardson, 1995), with work focussing mainly around Wheal Frementor (Buck, 

2002). 

At the same time, toward the south of the site and the River Tamar, metallic 

copper was recovered from the copper-rich streams draining the large waste tips at 

Wheal Anna Maria.  The waters were directed through narrow wooden launders and 

precipitated onto scrap iron. This activity probably started before the 1903 closure and 

continued on a small scale after closure of the mine (Booker, 1967; Richardson, 1995; 

Buck, 2002), with the latest reported activity in 1979 (Sherrell, 2000).  Around the time 

of  the Second World War, an unknown quantity of material was removed from the site 
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and processed in mills at other local mines including Harrowbarrow and Luckett (Buck, 

2002). In 1965 a small modern plant was constructed, including a ball mill, 

concentrating tables and a magnetic separator – used in the recovery of tungsten and tin 

(Richardson, 1995). This operation to recover valuable metals from the “White Sands” 

waste tips (likely to be those from Wheal Frementor) continued into the early 1970s and 

is the last recorded mining activity at the site (Buck, 2002).  

In the 1990s the site was used for car rallying and testing of off-road vehicles; 

however this ceased in 1994 due to concerns over the production of dust clouds from 

the waste (Sharples et al., 2008). The site has recently been redeveloped and re-opened 

to the public through the Tamar Valley Mining Heritage Project. A number of 

designated heritage trails and a purpose-built downhill mountain bike track have been 

installed, designed to stop the unlawful use of the waste tips by stewarding usage away 

from the archaeologically and ecologically important areas of the site ("Tamar Valley 

Area of Outstanding Natural Beauty," 2010). The site remains a popular recreational 

centre for walkers, cyclists, geologists and mining enthusiasts.  

3.5.3 Site Topography, Hydrology, and Geology  

  The largest waste tips at the Devon Great Consols site are located near to the 

abandoned arsenic works at Wheal Anna Maria (WAM) (Figure 3.2, and photograph 1, 

all photographs in Appendix 3C) and comprise wastes from the arsenic processing, 

including furnace cinders (referred to as cinders tip) and coarse grained crushed waste, 

and from the post-WW2 re-working of the tips (referred to as the Wheal Anna Maria 

upper tip, photographs 2-4).  These tips are the subject of this chapter together with the 

waste found down gradient at South Wheal Fanny precipitation launders (Figure 3.2 and 

photographs 11 and 12). There are other waste deposits within the Devon Great Consols 
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notably the lower tailings tip at wheal Anna Maria and other deposits at Wheal Josiah, 

Wheal Emma, Wheal Fanny. These are outlined shown in Figure 14, Chapter 2.   

 The site mineralisation is hosted by Devonian Hornfelsed Slates of the Tavy 

Formation which exhibit low permeability (BGS 2009,2010). The overall site 

topography slopes steeply (average slope of 7-8°) and fairly evenly to the SE, before 

levelling over alluvial deposits close to the River Tamar (Figure 3.3).  The gradient 

transects marked in Figure 3.2 and Figure 3.3, are shown in Figure 3.4. Surface drainage 

from  the central area flows similarly SE, passing over the remains of the precipitation 

launders before discharging via a drainage ditch at the bottom of the slope. Shallow 

groundwater is expected to move in a similar direction, whilst deeper groundwater is 

likely to preferentially drain through the extensive underground workings. The main 

discharge from the workings is via Blanchdown Adit (SX 435733), approximately 1 km 

east of the WAM tips shown in Figure 3.2.  

 The sloping area between the main DGC tips and the precipitation launders is 

largely covered by mixed woodland. The low lying area at the bottom of the site, 

between the final drain and the River Tamar, belongs to Blanchdown Farm and is 

mainly pasture with some woodland.  
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Figure 3.2: Schematic diagram of main waste tips at Devon Great Consols including: Upper Wheal 

Anna Maria waste tip (dark orange), finer tailings (light brown), western tips including cinders 

waste from arsenic furnaces (grey) and remains of precipitation works at South Wheal Fanny (red).    

  Devon Great Consols (DGC) is a complex array of underground workings, 

adits, leats, mine wastes, tracks, dense woodland and abandoned ore processing 

buildings, including the remains of two arsenic calciners. Buck (2002) conducted a 

detailed investigation of the archaeology of the site, including the tracks and gulleys, the 

location of which may be viewed in Figure 3.28 (Appendix 3A).  In addition, the recent 

work carried out for the UNESCO Mining Heritage project has included installation of 

drainage pipes and ditches around the site, one of which is shown in photograph 7. All 

of these features re-direct and store migrating waters and suspended solids during 

transport to the River and complicate the hydrology of the site.  
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Figure 3.3: Map showing superficial deposits underlying Devon Great Consols. 

Approximate outlines of cinders, precipitation launders and WAM upper and lower 

waste tips outlined in red Gradient transects shown as purple lines. Created in ArcMap 

using BGS 1 : 50 000 geology data and current OS 1 : 25000 scale map. © Crown 

Copyright and Landmark Information Group Limited (2010). All rights reserved.  

 

Figure 3.4: Cross sections through Devon Great Consols site as marked on Figure 3.2 and 

Figure 3.3. Note plateau at top of C-D transect, this is due to the lack of contour data for 

the areas underlying the main mine waste heaps. The gradient transects do not show the 

man-made leats, tracks, and historic rail embankments that are orientated across the slope 

between the tips and the River Tamar. 
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3.5.4 Mine Waste Mineralogy 

 The mineralogy of the waste produced at each of the individual mines within 

DGC depended on the composition of the particular branch of the mineral lode worked. 

The original mineralogy of the worked lode at WAM may be found in the coarser waste 

tips, which lie to the north of the WAM upper tip,  and these are recognised as a 

regionally important geological site, representing the original and varied mineralogy of 

the Main Lode (Page, 2004). Re-working of the tips for arsenic, and latterly tin and 

tungsten, has served to homogenise and  re-distribute much of the waste material, such 

that tips can contain a wide array of mineral phases. Minerals identified at the site 

include the principal sulphide ore-bearing minerals of chalcopyrite (CuFeS2), and 

arsenopyrite (FeAsS), also pyrite (FeS2), sphalerite (ZnFeS), galena (PbS), wolframite 

(FeMnWO4) and cassiterite (SnO2) and gangue minerals including quartz (SiO2), 

chlorites (e.g. chamosite (Fe3Al)(AlSi3)O10(OH)8), fluorite (CaF2), siderite (FeCO3), 

dolomite (CaMg(CO)3), childrenite (FeMnAlPO4(OH)2.H2O) and secondary phases 

including scorodite (FeAsO4.2H2O)  and efflorescent salts (Photograph 3, Appendix 3C) 

(Page, 2004 and pers.comm). 

3.6 Methods 

3.6.1 Reagents  

 All aqueous solutions were prepared with Milli-Q water (Millipore, R ≥ 18.2 

MΩ cm
-1

, reverse osmosis followed by ion exchange). Standard solutions and reagents 

were prepared in a Class 5 (BS EN 150 14644) laminar flow hood (model BassAir 

06VB), according to trace metal clean techniques to minimize contamination. Multi-

element calibration standards were prepared as serial dilutions from standard solutions 

(1000 or 10000 ug L
-1

, Romil Pure Chemistry, Fisher and BDH) and acidified to < pH 2 
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with Q-HNO3 (Q denotes purified by sub-boiling distillation, Romil SPA). Analytical 

reagent grade acids were used for washing of equipment unless stated otherwise. 

3.6.2 Cleaning Protocol 

 High density polyethylene bottles (250 mL, Nalgene®) were used for sample 

collection and polyethylene centrifuge tubes (15mL and 50 mL, Sterilin®) for standard 

and sample preparation. These were cleaned by immersion in a series of cleaning 

solutions (Decon 90, 2% v/v, > 24 h; HCl, 6 mol L
-1

, ≥7 days, HNO3, 2 mol L
-1

, 

≥3days). Filtration units (polycarbonate, Nalgene), and all coloured components 

(centrifuge tube lids, silicone rubber „O‟ rings) were rinsed with detergent (Decon 90, 

2%) and immersed in HCl, 2 mol L
-1

, ≥3 days. All items were rinsed with deionised 

water prior to the Decon 90 step and rinsed with MQ water after each acid-washing 

step. Polycarbonate filters (Whatmann Nuclepore) were acid washed with 2 % HNO3 

(Romil SpA), rinsed with MQ, dried in vented petri dishes. Items were dried in a Class 

5 laminar flow hood and stored in two plastic zip-lock bags prior to use. Filters were 

pre-weighed on a 5-place analytical balance.  

3.6.3  Sampling Strategy and Sample Treatment 

Sampling Strategy 

  The sampling strategy was designed to capture seepages, surface drainage and 

shallow groundwater migrating from the largest areas of mine waste (shown in Figure 

3.2) to the River Tamar, assuming that shallow groundwater movement followed the 

site gradient, sloping from north-west to south-east. Surface water and shallow ground 

water was sampled at the locations displayed in Figure 3.5, for the whole study site, and 

in Figure 3.6 with more detail for the area surrounding South Wheal Fanny near the 
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River Tamar. Detailed information on sample locations is provided in Appendix 3B 

and all photographs are shown in Appendix 3C.  

 Surface water was collected from a number of preferential drainage channels.  

Ephemeral streams collecting seepages from the cinders tips (sample 1, photograph 4) 

only flow in wet conditions initially eastwards (samples 2-3, photograph 5), then south-

eastwards, along the E extent of the tailings tip (sample 9, photograph 6). This stream 

then passes underneath a pathway via a plastic pipe (sample 10, photograph 7) and 

continues towards the western extent of the precipitation launders. Seepages  emerge 

from the base of the WAM tip (samples 3-4, 6-7, photograph 8) and also flow from an 

inspection hole (sample 5, photograph 9). These are collected by an ephemeral stream, 

which directs some drainage toward the centre of the lower tailings tip (Photograph 10) 

and some into a drain to the east (sample 8). This ephemeral stream rarely flows but 

crosses the track via another engineered channel then continues through thick vegetation 

before reaching the precipitation launders (Figure 3.5).  
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Figure 3.5: Schematic overview of Devon Great Consols next to the River Tamar, showing location 

of major waste tips, surface water (red)  and borehole (blue) samples, ephemeral streams and 

drainage channels. 

 Down gradient from the tips are two large areas of embankment, which appear 

to be constructed largely from mine waste and wooden slats and comprise the remains 

of the South Wheal Fanny precipitation launders (photographs 11 and 12). The eastern 

section is the larger and less vegetated than the western section. Two drainage ditches 

connect the eastern launders and a collection pond (locations 12 and 13). However 

water levels in the ditches are often low with little or no flow and it is unclear whether 

drainage collected in these ditches regularly reaches the pond. Above these ditches is a 

terraced bank/mine leat which was water-logged on all visits. A presumed drainage adit 

from South Wheal Fanny is framed by a brick portal (location 16, Photograph 13) and 

was sampled where it drains into the leat.  
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Figure 3.6: Schematic map of South Wheal Fanny and precipitation launders at DGC. Showing 

surface sample and borehole locations. 

 There are two drainage ditches in front of the eastern launders (Figure 3.6), 

within which water flows are variable in magnitude and direction. These were captured 

at locations 17 and 18.  A final collection drain (locations 19-23, photograph 14) flows 

east and discharges to the River Tamar. Two surface drains, which flow in a south 

easterly-direction, enter the final drain at locations 14 and 15. A deep ditch runs 

alongside the final drain, but appeared dry during all visits. 

 Boreholes were installed in the low-lying area close to the River Tamar, at the 

locations shown in Figure 3.6. BH1 and BH3 were intended to capture shallow 

groundwater moving toward the final collection drain. BH2 and BH4 were intended to 

capture drainage moving beyond the final drain. BH5 targeted waters within the 

precipitation launders and BH6 was intended to sample ground waters below surface 

clay found in the south west part of the site (Table 3.4). 
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Table 3.4: Borehole depth data and observations. FCD = Final collection Drain. Core logs are 

presented in Appendix 3D. 

Borehole  Depth (at installation)/Location Additional Comments 

1 0.53 m below N water‟s edge of FCD Waters cloudy orange/brown. Fast 

recharge. 

2 1.22 m below S water‟s edge of FCD Waters clear. Fast recharge. 

3 1.54 m below ground surface next to 

surface drain (sample 14). 

Light brown suspended fine particles. 

Fast recharge. 

4 1.21 m below bottom of dry ditch 

(~0.5m deep) 

Waters clear to start, becoming 

orange/brown and opaque after purging. 

Fast recharge. 

5 0.58 cm below terrace of precipitation 

launders 

Waters clear. Area prone to water- 

logging. Fast recharge. 

6 1.67m below clay-rich ground 

surface. 

Waters clear. Area prone to water-

logging. Slow recharge.  

Rainfall and Temperature 

 The sampling campaign set out to encompass a range of flow conditions and 

seasons in order to capture seasonal variation.  Rainfall data was obtained for the 

nearest MIDAS land surface data station, located at Millhill (SX 455745), 

approximately 2.5 km NE of the site (Met Office, 2009). Rainfall data and sample 

temperatures for each survey are summarised in Table 3.5.  

 The ten year average rainfall (1999-2009) recorded at Millhill was 3.8 mm d
-1

, 

slightly less than the catchment average of 4.0 mm d
-1

. Heavy rainfall (> 20 mm d
-1

) 

falls on average every 24 days which is more frequent than the estimated catchment 

average return time of 30 days, placing it in the “high risk” category for rain intensity in 

the Tamar catchment area (Chapter 2).  
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Table 3.5: Surface water sample temperatures and rainfall data for Devon Great Consols preceding 

each site visit. Rainfall data obtained from nearest MIDAS land surface station at Millhill (SX 

455745), located 2.5 km NE of site. Ten year (1999-2009) average for station = 3.8 mm d
-1

  and 

Tamar catchment = 4.0 mm d
-1

. *Indicates visits where seepages from WAM and cinders waste tips 

were observed. 
1
Borehole samples in parentheses. 

Sampling 

Date 

Sample 

Temp (°C)
1
  Rainfall in 7 days before sampling (mm) 

Rainfall 

on day 

(mm) 

7 Day 

Total 

(mm) 

14 Day 

Total 

(mm) 

 Day: 7 6 5 4 3 2 1 0   

28/06/2007* 11.5-12.5  9.3 8.7 21.2 14.2 13.7 0.9 3.0 8.0 71 127 

07/02/2008* 8.1-11.2  10.1 2.6 5.0 15.1 17.6 1.7 0.8 1.2 53 57 

13/09/2008* 12.3-16.9  3.3 0.0 24.6 2.2 12.2 2.2 1.7 0.0 46 136 

14/01/2009 
4.4-10.3 

(6.4- 9.4) 
 0.0 0.0 0.0 0.0 21.4 11 3.6 3.8 36 37 

28/02/2009 
8.9-10.5 

(7.9 -10.6) 
 0.0 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.9 6.6 

16/05/2009 
10.7- 23.0 

(11.0-13.0) 
 0.0 0.0 0.0 0.9 0.0 8.2 6.9 20.4 16 20 

20/07/2009* 
10.8-20.2  

(14. 5-15.5) 
 0.2 1.9 7.8 0.2 32.9 12.8 3.0 3.5 59 124 

   

  Sampling on 28/02/09 took place in dry conditions following low rainfall in the 

14 days prior to sampling. The surveys conducted on 14/01/09 and 16/05/09 were 

conducted in wet conditions after a few days rainfall in an otherwise dry period. On 

28/06/07, 07/02/08, 13/09/08 and 20/07/09 surveys followed prolonged periods of 

rainfall. In addition, four samples of seepages from the WAM tip were captured on the 

13/09/08.  Surface water temperatures varied with location and season between 4.4-20.3 

°C, shallow ground waters showed less variability (6.4-15.5 °C).  
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Sampling and in-situ determination 

 In the Tamar River valley in the southern part of Devon Great Consols, 

boreholes were drilled using a hand-augering rig. Double-layer tubes were installed into 

boreholes (50 mm diameter) in order to intercept shallow ground waters in the mine 

waste and soil zone (Figure 3.7). Borehole and water depths were recorded at 

installation and prior to sampling. Measured depths were converted to height above an 

ordnance datum (mAOD), set at  2m.  Boreholes were sampled using a Wattera™ bailer 

and purged to at least three borehole volumes prior to sample collection. Bailed water 

samples were transferred to HDPE bottles after three rinses with sample water, sealed in 

labelled zip-lock polythene bags and stored cool. Stream and tip drainage waters were 

similarly treated but captured directly into HDPE bottles. Conductivity, pH, dissolved 

oxygen and redox potential (Eh) were determined where possible in situ, using portable 

instruments (Hanna HI9635, MeterLab PHM201, YSI 85 and Hanna H9025 

respectively). 

 

Figure 3.7: Cross-section schematic of borehole installation. On the right, the double-layer 

construction of the installed tubes is shown. 

 When boreholes were too deep for in situ determination, ~ 200 mL of sample 

were decanted with minimum disturbance from the bailer to a plastic beaker and 

readings were quickly taken, dissolved oxygen first, followed by Eh, temperature, pH 

and conductivity.   
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The velocity of water flow in surface streams was determined using a flow meter 

with a small impellor (Valeport Braystoke BFM002).  The measurements were taken at 

the centre of the stream at a depth of approximately one third from the bottom of the 

streambed (all studied streams were less than 1.0 m deep), and at a point of minimal 

turbulence.  Streams wider than 0.5 m were divided into (2-4) subsections and a discrete 

set of measurements was taken for each section.  Measured revolutions per second were 

converted into velocity (m s
-1

) using the calibration equation provided by the instrument 

manufacturer.  Stream discharge was then calculated by multiplying the flow velocity(s) 

and stream cross-sectional area(s) for each section of the stream. For small drainages 

unsuitable for flow meter, the discharge time into a graduated vessel was recorded. This 

was repeated at least 3 times and an average result calculated. 

 Twenty-five determinations (five measurements each at five adjacent locations) 

of flow in a test stream were calculated by this method. The variation in the measured 

revolutions per second was < 6% for each location. The final result for flow from all 25 

measurements of the test steam was 96.9 +/-7.2 L s
-1

, which represents an RSD of 7.5%. 

Sample Treatment 

 Samples were returned to the laboratory within 12 hours of collection and stored 

in a refrigerator. Water samples were vacuum filtered (0.4 μm followed by 0.2 μm pore 

size, Whatmann Nuclepore polycarbonate filters, acid washed, dried and pre-weighed) 

within hours of collection in a class 5 laminar flow hood (Bassaire). During the 

filtration the original sample bottle was thoroughly rinsed with MQ followed by a 

portion of the filtrate. Samples were then returned to their original sample-conditioned 

bottles. An aliquot was transferred to a 2 ml glass vial and returned to the refrigerator 

pending anion analysis by ion chromatography (< 3 days). The remaining sample was 
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acidified (Q-HNO3, < pH 2), pending analysis by ICP-MS and ICP-OES. Filters were 

retained, dried and weighed to determine total suspended solids (TSS). 

3.6.4 Instrumentation and Analysis 

pH, Eh and DO Meters 

 The pH meter was calibrated daily before use and checked after use using 

standard solutions (pH 4 and 7, BDH). The maximum recorded daily drift in calibration 

was 0.3 pH units. The Eh meter was checked daily before use by measuring against 

ZoBell‟s solution,  using the following relationship (Nordstrom and Wilde, 2005): 

      Eh = emf + Eref   Equation 18 

Where: Eh is the potential (mV) of the sample solution relative to the standard hydrogen 

electrode, emf  is the potential (mV) of the water determined at the sample temperature 

and Eref is the reference electrode (saturated KCl) potential of the ZoBell‟s solution 

corrected for the sample temperature. The dissolved oxygen meter was corrected for 

altitude and calibrated in air, prior to site measurements being taken.  

Elemental Analysis 

 Metal analysis was undertaken using a Varian 725-ES Inductively Coupled 

Plasma Optical Emission Spectrometer (ICP-OES) and a Thermo Fisher X Series 2 

ICP-MS instrument (ICP-MS) in an ISO9001:2000 accredited analytical research 

facility. Yttrium and indium (100 μg L
-1

) were used as internal standards. 

  Dissolved anions were determined by ion chromatography (Dionex DX-500 

system, Dionex Ionpac AS9-HC column). Na and K analysis were performed by flame 

photometery (Corning 400). Analyses were verified against a certified reference 

material for trace elements (TMDA-64, National Water Research Institute, Canada).  

Total suspended solids were determined gravimetrically from filter residues using a five 

decimal place balance.  
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3.6.5 Principal Component Analysis 

 Master variables (pH, Eh, dissolved O2 and conductivity) and dissolved metal, 

metalloid and anion concentrations were used as input variables for a principal 

component analysis (PCA) (XLSTAT version 2010.4.01). Observations where one or 

more variable data points were missing were excluded from the dataset and pH values 

were converted to hydrogen ion activities, as the PCA assumes linear relationships 

between variables. All variables were normalised by dividing each observation by the 

mean of the observations for each variable. Observations were organized into groups 

according to sample type, based on sample location and preliminary examination of 

trends in the geochemical datasets (Table 3.6). Boreholes were treated individually by 

location. 

Table 3.6: Sample Type Groupings for Devon Great Consols Dataset. 

Sample Location  Sample Type Grouping (PCA label) 

1 Cinders Drain (CD) 

2-4 Cinders Mixing Zone (CMZ) 

5-8 Wheal Anna Maria Tip Drainage (WAMD) 

9-10 Path Mixing Zone (PMZ) 

11 South Wheal Fanny Shaft (SWFS) 

12 Pond Entrance (PI)  

13 Pond Exit (PO) 

14-15 Surface Drains (SD) 

16 South Wheal Fanny Adit Portal (SWFA) 

17-23 Final Collection Drain (FCD) 

 

PCA constructs independent linear combinations of the original variables to create 

principal components. Beginning with the first component each describes a decreasing 

amount of variation in the data set. (Dong et al., 2007). The first seven components 
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cumulatively explained 75% of the variation in the data set (Table 3.7), and were used 

to investigate the geochemical character and variability in the data set.  

Table 3.7:  Initial Eigenvalues from PCA analysis of the Devon Great Consols data set. 

 

F1 F2 F3 F4 F5 F6 F7 

Eigenvalue 8.81 4.73 3.94 2.93 2.37 2.05 1.46 

Variability (%) 25.16 13.51 11.27 8.36 6.77 5.86 4.18 

Cumulative % 25.16 38.67 49.94 58.30 65.07 70.93 75.11 

 

3.6.6 Geochemical Modelling 

  The geochemical modelling code PHREEQC Ver.2.17.1 was used to model the 

speciation of elements and saturation indices for mineral phases in mine drainage 

waters. The PHREEQC code is based on thermodynamic principals and the underlying 

assumption is that the system under investigation is in thermodynamic equilibrium. Two 

thermodynamic databases supplied with the program were utilised, WATEQ4F derived 

from Ball and Nordstrom (1991) and LLNL, prepared by Johnson at the Lawrence 

Livermore National Laboratory. The latter includes a wider range of trace elements and 

associated minerals of interest to this study, (including: Sb, Sn, V and W). The 

thermodynamic databases describe reactions between aqueous species, or the 

dissolution of minerals in terms of master species, with experimentally derived 

equilibrium constants (Parkhurst and Appelo, 1999). In addition to the mineral phases 

supplied in the database, three sulphide mineral phases and one solution species were 

added to the WATEQ4F database (as shown below) in order to describe the dissolution 

of chalcopyrite, sphalerite and arsenopyrite.  

PHASES 

Chalcopyrite 

    CuFeS2 +2.0000 H+  =  + 1.0000 Cu++ + 1.0000 Fe++ + 2.0000 HS- 

    log_k     -32.5638 

    delta_h   127.206 kJ 

PHASES 

Sphalerite 



         Chapter 3 

 

146 

 

    ZnS + H+ = HS- + Zn+2 

    log_k     -11.44 

    delta_h   35.5222 kJ 

PHASES 

Arsenopyrite 

    FeAsS + 0.5H+ + 1.5H2O = 0.5AsH3 + Fe+2 + 0.5H2AsO3- + HS- 

    log_k     -14.4453 

    delta_h   28.0187 kJ 

 

SOLUTION_SPECIES 

1.0000 H2AsO4- + 1.0000 H+  =  AsH3 +2.0000 O2  

    log_k     -155.1907 

    delta_h   931.183 kJ 

 

3.7 Results and Discussion 

3.7.1 Quality Control and Figures of Merit 

 Analytical balances were calibrated with certified check weights prior to use. 

Procedural blanks, were prepared in triplicate using 250mL of Milli-Q water in place of 

a captured water sample. Concentrations of metals were <LOD in procedural blanks 

with the exception of Ca (all < 5 μmol L
-1

) and Mg (all < 0.5 μmol L
-1

) (from 

polycarbonate filter) for which results were corrected.  At least one duplicate sample 

was analysed during each run and bracketing standard introduced every ten samples to 

monitor instrumental drift. Carry-over from concentrated standards and samples was 

monitored during the analysis run and where necessary additional flush times were 

administered.  

 Analysis of three samples of a certified reference material were included in each 

analysis, recoveries are presented in Table 3.8. 

 When results from ICP-MS and ICP-OES were produced for a sample, ICP-MS data 

was used in preference due to the lower LOD. Results outside of the limit of linearity 

for ICP-MS (outside standard range, Table 3.8) were discarded and ICP-OES results 

used.  
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Table 3.8: Limits of detection and CRM recoveries for all analysis of DGC samples. Certified 

reference material:TMDA-64 (fortified lake water), National Water Research Institute, Canada. 

Element/ 

Anion 

CRM Value (μg L
-1

) 

± 2σ limit Method  

Linear 

/Standard 

Range 

Limit of Detection 

(μmol L
-1

) 

CRM Recoveries 

(μg L
-1

) 

Al 265±30 ICP-OES 0.5-5000 0.99,0.39 260, 281 

As 150±22 

ICP-MS 0.001-10 0.0004, 0.0008 163, 183 

ICP-OES 0.1-1000 2.2,1.3,1.4 158, 147, 

Ca 13600* ICP-OES 0.5-5000 0.0210, 0.0048 13400, 13500 

Cd 251±24 

ICP-MS 0.0005-5 0.0002, 0.0002 237, 265 

ICP-OES 0.01-100 0.045 234 

Co 270±27 ICP-MS 0.001-5 0.0005, 0.0003 237,257 

Cu 290±29 

ICP-MS 0.001-5 0.0004, 0.0006 259, 290 

ICP-OES 0.1-1000 0.11,0.13, 0.13 311,285,286 

Fe 319±30 ICP-OES 0.1-1000 0.46, 0.12, 0.19 308, 317, 312 

Mg 3400* ICP-OES 0.1-500 0.074, 0.047, 0.47 3340, 3380, 3600 

Mn 299±26 

ICP-MS 0.001-2 0.0012, 0.0002 280, 320 

ICP-OES 0.1-1000 0.041, 0.010, 0.015 295, 290, 287 

Mo 278±22 

ICP-MS 0.0005-1 0.0001 253, 271 

ICP-OES 0.1-10 0.28, 0.29 252, 294 

Na (4500*) 

FAAS 200-4000 2.0 4400 

ICP-OES 0.5-5000 6.1 4520 

Ni 262±23 

ICP-MS 0.0005-1 0.0004, 0.0025 260, 241 

ICP-OES 0.01-100 0.62, 0.47, 0.36 254, 233, 247 

K 580 FAAS 20-2500 0.4 600 

Pb 297±28 

ICP-MS 0.001-0.5 0.0002, 0.0001 283, 296 

ICP-OES 0.01-100 0.46, 0.50 269, 279 

Si - ICP-OES 0.5-5000 2.09, 1.46, 0.97 - 

Sb 125±20 ICP-MS 0.0005-1 0.0001, 0.0001 121, 138 

V 272±26 

ICP-MS 0.0005-5 0.0010, 0.0011 291, 271 

ICP-OES 0.01-100 0.40, 0.11, 0.18 276, 256, 262 

W (0.06*) ICP-MS 0.0005-1 0.0001, 0.0001 0.23, 0.13 

Zn (313*) 

ICP-MS 0.0010-10 0.0019, 0.0025 326, 356 

ICP-OES 0.1-1000 0.55, 0.47 302, 306 

F
-
 - IC 10-5000 0.31 - 

Cl
-
 - IC 10-5000 1.3 - 

SO4
2- 

- IC 10-5000 1.7 - 

*Guidance value only. 
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 Internal standards 
193

Ir and 
115

In were used to correct for mass flow errors 

through the ICP-MS and ICP-OES instruments, respectively. ICP-OES operating 

parameters were optimised for a low concentration element (usually Cd).  

 Limit of detection was calculated as three times the standard deviation of repeat 

samples (minimum 7) of the lowest detectable standard. The lowest detectable standard 

was determined as the lowest standard with a signal to noise ratio > 3:1.  In the absence 

of a CRM for anion analysis, ion chromatography standards were checked against two 

independently prepared standards.  Instrumental parameters for the ICP-MS, ICP-OES 

and IC are presented in Appendix 3E. 

3.7.2 Site Hydrology 

 Flow from the final collection drain at its discharge point into the River Tamar 

(location 23) varied from 5.9-33.3 L s
-1

 (Table 3.9). Ditches and surface drains down 

gradient, around SWF precipitation launders, were generally waterlogged but did not 

always flow. Up gradient, around WAM and cinders tips, flows in surface drains were 

highly variable ranging from dryness to 14.3 L s
-1

 (location 8, 13/09/08). Surface drain 

14 (SWF) and discharge 5 (WAM tip) were the only surface drains with measurable 

flow on all site visits (Table 3.9). When water levels observed in surface drains and 

boreholes (Table 3.10) were compared to local rainfall (Table 3.5), no covariance was 

found.  

 A combination of inputs seems to control measured and observed water levels 

across the site. These comprise rapid surface run-off, shallow groundwater seepage and 

deeper groundwater movement, which manifest at the observed sample locations at 

different times with respect to the rainfall that has initiated them. The variability may be 

exaggerated by the site geology, with high permeability superficial deposits of 1-2 

metres depth (including sands and gravels, Figure 3.3), encountered close to the River 
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Tamar, whilst the site and the site catchment area are underlain by low permeability 

slate bedrock (BGS, 2009).   

 Ephemeral streams and waste tip seepages from the cinders and upper heap at 

Wheal Anna Maria were observed on 28/06/07, 07/02/08, 13/09/08 and 20/07/09. 

During dry surveys, flow from the tip was limited to a single discharge from an 

inspection aperture (location 5, photograph 9). Rainfall data (summarised in Table 3.5), 

suggests that sustained moderate to heavy rainfall in the preceding 7 days is required to 

generate surface expression of leachate from these waste tips.  The low permeability of 

the lower tailings heap causes seepages from the upper tip to pool on the surface of the 

lower heap or migrate downstream via two channels either side (photograph 10).  

Table 3.9: Flow data (L s
-1

) calculated for selected locations at Devon Great Consols during water 

surveys. NR = No result for sample location on date of survey.*NR= dark when sampled, could not 

accurately determine flow, but dischage was observed. 

Flow ( L s
-1

) 

WAM 

Tip 

Discharge 

Surface 

Drain Final Collection Drain (W-E) 

Sampling Date Sample No: 5 14 18 19 20 21 22 23 

07/02/2008  3.1 0.1 40.8 40.5 NR 33.8 NR 21.6 

13/09/2008  2.8 NR NR NR NR NR NR NR 

14/01/2009  0.2 0.8 12.1 12.6 14.5 18.8 19.1 33.3 

28/02/2009  NR* 1.3 14.7 13.9 15.6 21.3 22.4 30.0 

16/05/2009  4.3 0.3 5.45 4.90 6.14 7.90 NR 5.86 

20/07/2009  0.3 0.1 NR NR 6.92 9.19 NR NR 
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Table 3.10: Water levels in shallow ground water boreholes installed at Devon Great Consols. Data 

presented as metres above a 2m ordnance datum (mAOD). X = Borehole destroyed by unknown 

party. NR = No result. 

Water Level (mAOD)       

Sampling Date Borehole No: 1 2 3 4 5 6 

14/01/2009  2.00 1.96 0.79 1.57 1.67 1.66 

28/02/2009  2.00 1.92 1.29 1.35 2.00 1.66 

16/05/2009  X X 1.21 1.96 1.89 0.66 

20/07/2009  X X 1.32 NR 1.57 1.80 

  

 Closer to the River Tamar however, flow patterns in the final collection drain 

appear to be independent of short-term (14 day) rainfall patterns.  For example, similar 

conditions of low flow rate were observed on the 16/05/09 and 20/07/09, despite 

contrasting rainfall in the 14 days before the site visit (very dry and very wet 

respectively).  A more detailed check on total rainfall data preceding the 16/05/09 and  

20/07/09 visits indicated that both were similarly dry in the 14-30 days before the visit, 

representing an additional 11 mm and  22 mm of rainfall, respectively (MetOffice, 

2009). This suggests that in dry periods such as those preceding the 16/05/09, the water 

in the final collection drain is maintained by baseflow permeating the artificial and 

alluvial deposits around and beneath it. 

  Conversely, high rainfall causes an accumulation of surface runoff in the final 

collection drain and other ditches; for example that in front of the precipitation launders 

(location 17).  The very high flow observed in the final drain on the 14/1/09, resulted 

from high rainfall in the 3 days before the visit (36 mm) as the previous 30 days were 

relatively dry (39 mm).  The water level in the north and south banks of the final drain 

(BH1 and BH2, respectively)  remained high, even when shallow groundwater moving 
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toward the drain from the north west (BH3, Table 6) was relatively low (14/01/09).  

Boreholes recharged instantaneously upon bailing as the banks and base of the final 

collection drain are highly permeable.  The bank material comprises largely gravels of 

similar size and composition to the waste material found at the WAM upper tip, mixed 

with an ochre sludge (See Borehole Log, Appendix 3D and photograph 15-16). This 

facilitates easy exchange waters between the final collection drain and the surrounding 

soil and alluvial/artificial deposits. Furthermore, the alluvial deposits underlying the 

south east of the site (shown in Figure 3.3) provide a potentially high permeability 

pathway for these waters to the River Tamar.  

 Permeability was lower toward the south western part of the site. Here the 

ground was frequently waterlogged and this is likely to be the result of the underlying 

low permeability strata (clays). Gley soils of alternating colour and character were 

encountered in BH2 (photograph 16), BH3, BH4 and were most extensive in BH6 (See 

borehole logs, Appendix 3D for descriptions). BH4 was also noted to contain an 

impermeable hardpan layer. The low permeability layers exhibited regular horizontal 

stratification suggesting they may be extensive and could inhibit vertical migration of 

shallow groundwater and surface drainage. Despite this, recharge in all boreholes 

(except BH6) was too rapid to accurately measure (Table 3.4).  This infers that 

horizontal flow through higher permeability strata recharges the boreholes and 

comprises the dominant mode of sub-surface transport through the site toward the River 

Tamar.   

3.7.3 Principal Component Analysis (PCA)  

 The results of the PCA demonstrated that the geochemical character of samples 

varied across the site and drainage from the main waste tips: WAM, cinders and 

precipitation launders, showed particular signatures. Major contributors to the first 
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principal component (F1) were dissolved Ni (8%), Mn (7%), Co (7%), sulphate (7%), V 

(6%), Zn (6%), As (6%), Sb (6%), Cd (6%), and Al (5%), accounting for 25% of the 

total variability of the DGC dataset.  These dissolved species represent some of the 

dissolution products of the mine waste tips as a result of the oxidation of sulphide 

minerals, with the notable exception of Fe and Cu.  So, the first principal component 

appears to group data based on trace element enrichment. The second principal 

component (F2), which accounts for 14% of the total variability, was largely 

attributable to Cu (13%), then Ag (9%), Ca (8%), Al (8%), H
+ 

(8%), Si (7%), and Cl 

(7%) concentrations.  This appeared to show the prevalence of a particularly Cu rich 

drainage, emerging from the WAM tip at the top of the site, also characterised with high 

Ag, Ca, Al and low pH (high [H
+
]). 

 A number of groupings were identified by plotting F1 against F2 (Figure 3.8). 

Amongst the most prominent are the WAM tip drainage samples, which extend along 

the positive F2 axis (circle A). Cinders drains are grouped (circle B, Figure 3.8) due to 

high concentrations of As, Sb and Mo, which were very low in other samples. The 

samples from the cinders mixing zone, path mixing zone and South Wheal Fanny shaft 

show character somewhere between group A and group B.  BH6 is characterised by low 

trace metal contamination and dissolved Fe which resolve samples from it along the 

negative F2 axis (circle C, Figure 3.8). BH6 may be indicative of the geochemistry of 

ground waters that have not been contaminated with waste leachates.  

  Also included in group C are the pond samples and South Wheal Fanny Shaft, 

indicating that they are also relatively free of mine drainage contamination and/or 

influenced by deep ground waters.  BH4 samples and samples from around the 

precipitation launders (including BH5) are also resolved from the main group, 

appearing to the left of the plot (circles E and F, respectively).  The tightly grouped data 

near the centre of Figure 3.8 comprises mainly samples from the final collection drain 
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and BH1-3 (circle D).  This suggests some mixing of all waters before entry to the River 

Tamar. The offset of group D to high F1 and low F2 character could be accounted for 

by dilution with less contaminated waters, or by the removal of dissolved species, 

particularly Cu (F1) and also Ni, Mn and As (F2), by natural attenuation along the 

migration pathway. 

 The mixing of drainage from WAM, cinders and precipitation launders and 

dilution by ground water and rainwater leads to a spread of sample character between 

these groups. Samples taken from the bottom of the site in the final collection drain and 

BHs 1-3 were closely related in all surveys suggesting the composition of discharge 

waters to the River Tamar showed little variation.  

 Principal component F3, which accounted for 11% of the total variability, was 

most strongly influenced by K (17%), Mo (8%), B (8%), Sb (7%) and As (7%). A plot 

of F3 vs. F1 and to a lesser extent F3 vs. F2 (neither plot shown) distinguished all 

cinders drain samples from other samples. Lesser principal components did not display 

any additional patterns in the data.   

 In the following sections the results of in situ measurement of master variables 

and laboratory determinations of dissolved metal, metalloid and anion concentrations 

will be examined in more detail. The groupings by sample type, described in this 

section and confirmed by the results of the PCA clustering, will be used in subsequent 

figures. They are listed with further details of sample location in Appendix 3B. 
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Figure 3.8: Plots of F1 and F2 principal components showing distribution of variables (above) and 

observations for the Devon Great Consols Data Set. Group A: Wheal Anna Maria Tip drainage, 

Group B: Cinders drains, Group C: BH6, Pond and South Wheal Fanny Shaft, Group D: BH1-3, 

Final Collection Drain and South Wheal Fanny Adit, E: BH4, F: BH5 and precipitation launders. 
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3.7.4  Major Ions 

  The composition of the surface waters and boreholes with respect to major 

cations from all surveys at Devon Great Consols are presented as molar percentages in 

ternary diagrams (Figure 3.9 and Figure 3.10). Overall, the data is grouped towards the 

bottom left corner of the plot, representing a high molar fraction of Ca and  Na + K,  

with respect to Mg. Average rainwater composition for Plymouth (Coles, 1999) is 

distinctly different in character, containing a much  higher proportion of Mg and Na + K  

and low Ca. There is a general shift from the main group towards the rainwater 

character for samples from the pond, ephemeral cinders drain and locations 17 and 18 at 

the western extent of the final collection drain (locations shown in Figure 3.5). This is 

consistent with observations of standing water made during site visits and PCA results, 

which suggested that rainwater collects in the drains and pond and dilutes mine drainage 

received by the drains.    

 

Figure 3.9: Molar percentage of major cations for surface water samples at Devon Great Consols, 

grouped by sample type. Mean rainwater composition for Plymouth also shown (Coles, 1999).  Blue 

arrow indicates spread of data towards rainwater composition.  
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Samples from locations 9 and 10 are separated from the main group by higher Ca 

concentrations, and this may be explained by recently installed drainage pipes at this 

location (see photograph 7). This engineering work has introduced foreign material (e.g. 

plastics, mortar, cement and sand) and disturbed native material, which contains Ca-rich 

mining waste from the waste tips up slope. This could have caused Ca- rich waters to 

leach into drains in the immediate vicinity.   

 

 

Figure 3.10: Molar percentage of major cations for borehole water samples from Devon Great 

Consols.  Mean rainwater composition for Plymouth also shown (Coles, 1999). Arrows indicate 

spread of data towards Mg-rich waters (red) and rainwater/deep ground water composition (blue). 

 In terms of major ion composition, waters from BH1,2,3 and BH5 were close to  

surface water drains from the waste tips, and tip seepages reported from sulphide hosted 

Cu mines elsewhere in the world (e.g. Stillings et al., 2008). The similarity to surface 

drains, suggested subsurface transport is an important migration pathway for mine 

waters at the site. The spread of data extends from Ca-rich waters towards a higher 

proportion of Mg. This is most evident for BH4 and BH6, the latter also showing a 
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stronger Na and K character than other samples. Strong Na-K character could be a 

reflection of flashy recharge with rainwater, or more likely due to the presence of low 

permeability clays in the area isolating deeper ground waters. Deep ground waters 

characteristic of fractured argillaceous formations (e.g. Beaucaire et al., 2008), or 

granitic formations in south west England (Smedley and Allen, 2004), are generally soft 

and would also plot closest to the rainwater composition marker in Figure 3.9 and 

Figure 3.10. Therefore, shallow ground waters at DGC appear to show character closest 

in character to surface drains with some mixing of Mg-rich waters in BH4 and more 

pristine ground water in BH6.   

3.7.5 Master Variables 

Conductivity and Total Suspended Solids (TSS) 

 Conductivity in water samples was highly variable and ranged from 140 to 1040 

μS (Figure 3.11). When compared to major ion chemistry, increased conductivity in the 

WAM tip drainage and locations in receipt of this drainage (dark grey boxes, Figure 

3.11), were reflected by increased concentrations of SO4
2-

 (1795-5285 μmol L
-1

) and F
- 

(257-2903 μmol L
-1

), charge balanced with similarly increased concentrations of Na
+ 

(377-1095 μmol L
-1

), Mg
2+ 

(114-684 μmol L
-1

) and lesser increases in a range of other 

metal cations. Other sample locations were more comparable (although still slightly 

elevated)  with background values such as those in the River Tamar,  recorded as 52-

284 μS at Greystone Bridge and Gunnislake (1976-2006, EA, 2010). Total suspended 

solids varied widely in surface water drains, from < LOD (0.72 mg L
-1

) to 100 mg L
-1 

during predominantly dry surveys, up to a maximum of 36.5 g L
-1 

in WAM tip drainage
 

following heavy rain (location 6, 20/07/09, photograph  17).   In surface drains, 

particularly around the waste tips, heavy rain caused disturbance and transport of 

unconsolidated surface material leading to a high dissolved and suspended load in 
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surface runoff. This effect offset the dilution of contaminated waters from increased 

rainfall.  Borehole waters were also variable in TSS ranging from <LOD (0.72 mg L
-1

) 

in BH6 to 34.0 g L
-1 

in BH1. 

 

Figure 3.11: Conductivity measurements recorded at Devon Great Consols for all surveys, grouped 

by sample type. Dark grey boxes indicate WAM tip drainage and downstream recipients of this 

drainage. Dashed horizontal lines show conductivity range in the River Tamar close to DGC (1976-

2006, EA, 2010) measured at Greystone Bridge and Gunnislake.  

pH, Eh and Dissolved Oxygen 

 pH, redox potential and dissolved oxygen varied widely across all sampling 

locations and surveys. WAM tip seepages were lowest in pH (pH 3.1-3.9, Figure 3.12) 

and poised above the buffering threshold of iron hydroxides (~pH 3-3.5, Lottermoser, 

2007, Evangalou, 1995). The major iron composition of the seepages suggested that the 

high Na and Mg release observed resulted from a supplementary buffering mechanism, 

either ion exchange reactions on mineral surfaces or dissolution of aluminosilicate 

minerals. Rainfall in the Tamar catchment has a strong marine signature (Smedley and 

Allen, 2004); therefore deposited salts can contain a high proportion of Na and Mg 
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which may be displaced by protons in porewaters. Additionally aluminosilicate minerals 

bearing Na and Mg are very common and could also be responsible for the spikes 

observed, for example via dissolution of albite in Equation 13 (section 3.4.3). Sample 5, 

which issues from the inspection hole in the WAM tip (photograph 9), was consistently 

the lowest in pH. This may be due to the provision of a high permeability pathway and 

high oxygen ingress by the inspection passage, which would promote generation of 

acidic waters via oxidation reactions (section 3.4.1).  

 Upon reaching the final drain and discharging to the River Tamar, the pH of 

WAM drainage waters had been buffered to pH 3.9-4.5. Boreholes 1-5, also 

downstream of WAM tip drainage were also buffered to pH 4.0-4.6, suggesting similar 

buffering mechanisms in surface and shallow ground waters. The slightly higher pH 

attained by BH1 and BH2 may indicate slower transport via the subsurface to the final 

drain, which would allow greater buffering from mineral dissolution reactions which 

may be kinetically slow.  

  The cinders drainage exhibited quite different character to WAM drainage being 

lower in overall conductivity (Figure 3.11) and having relatively high pH (pH 5.0-5.4), 

and slightly lower Eh (486-552 mV, Figure 3.12). As indicated previously by PCA, the 

cinders mixing zone (CMZ, samples 2-3) and path mixing zone (PMZ, samples 9-10) 

yielded data between the cinders and WAM end members. 

 Locations identified as likely to collect and store rainfall in the south west of the 

site (samples 9-13) were relatively high in pH 4.3-5.2, and exhibited a large range of Eh 

and DO. Overall surface waters at the site were well oxygenated with flowing surface 

waters maintaining 69-113 % oxygen saturation, as a result of the rapid transport down 

slope toward the River Tamar.  Reducing conditions and low DO were encountered in 

BH6 (Eh = 324-451 mV, DO = 1.55-5.87 mg L
-1

, 14-51 % sat.). Other boreholes were 

similarly depleted in DO (0.7 - 6.1 mg L
-1

, 6-52 % sat.). 
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Figure 3.12: Measured pH (above) and Eh (below) for surface and borehole samples at Devon 

Great Consols during seven surveys. Wet weather surveys denoted by filled symbols, 

predominantly dry surveys denoted by hollow symbols.  Cind. = Ephemeral Cinders Drain, CMZ = 

Cinders mixing Zone,  WAM = Wheal Anna Maria Waste tip,  PMZ = Path mixing zone, SWF 

Sh/Ad = South Wheal Fanny Shaft and Adit Portal.  
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Figure 3.13: Dissolved oxygen measurements for surface and borehole samples at Devon Great 

Consols during four surveys.  Remaining explanations as for Figure 3.12. 

  Waters in the final drain remained constant between surveys and locations with 

respect to pH, Eh and DO suggesting that upon reaching the drain (and the River 

Tamar) waters had achieved a relatively stable state of equilibrium between 

geochemical processes acting upon them. 
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3.7.6 Dissolved Metals, Metalloids and Selected Anions 

WAM and Precipitation Launders Drainage 

 

Figure 3.14: Schematic diagram highlighting migration pathway of Wheal 

Anna Maria Upper (WAM) and precipitation launder tip drainage. 

  Consistently elevated dissolved metal concentrations in boreholes and surface 

drains between the waste tips and the river were observed for Cu and Al (Figure 3.15), 

Zn and Ni (Figure 3.16), and Cd and Mn (Figure 3.17) with respect to EQS values.  A 

plume of dissolved metal contamination, arising mainly from the WAM upper tip and 

augmented by the precipitation launders (samples 15 and 17), discharges under all 

hydrological conditions into the river via the final drain.  

 Dissolved Al and Cu were particularly high in the Wheal Anna Maria tip 

seepages (locations 4-8) to a maximum of 1850 μmol L
-1

 and 570 μmol L
-1

, 

respectively. The mean concentrations of Al and Cu in the final drain (samples 19-23) 

were 618 μmol L
-1

 and 77.4 μmol L
-1

, respectively. Concentrations in this discharge 

exceed EQS values (Table 3.15, Appendix 3F) by a factor of approximately 33400 and 

5000 respectively and fall at the upper end of sampled mine discharge waters in the 

catchment, with respect to Al and Cu (Table 3.1).  Internationally, these concentrations 
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are moderately high for drainage waters from sulphide hosted metal mines. Literature 

examples of dissolved Al and Cu in surface waters impacted by metal mine drainage 

have been reported as 0.330-17900 μmol L
-1 

and 0.0131-2330 μmol L
-1

, respectively, 

with highest concentrations recorded in the Rio Tinto, Spain (Cánovas et al., 2008).

   Boreholes 1-4 exhibited the same magnitude of contamination to samples from 

the final drain and were rapidly recharged by inflowing ground waters. BH2 and BH4 

situated to the south of the final drain show that contamination also travels in the 

subsurface beyond the final drain toward the River Tamar.  As shown by Figure 3.3, 

highly permeable alluvial deposits below the drain offer a potential additional pathway 

into the river.  

 The proportion of dissolved Al observed downstream in the final drain with 

respect to drainage waters from the WAM upper tip ( ̅   800 μmol L
-1

) was high, 

suggesting near conservative transport. In contrast, Cu concentrations in waters 

generated at the WAM upper tip ( ̅   224 μmol L
-1

) showed a three-fold reduction in 

the final drain. The reduction in concentration for both metals was attributed to the 

combined attenuation effect of dilution, raised pH leading to precipitation reactions and 

sorption to mineral surfaces as waters migrate downstream. The particular reduction of 

dissolved Cu suggests preferential sorption/or precipitation of this metal to secondary 

iron phases and/or organic matter, which has been suggested by other studies of mine 

waters (e.g. Olias et al., 2004) . 

   Dissolved Zn, Cd and Ni concentrations, were strongly correlated with one 

another in all waters (r ≥ 0.8), and also very high in drainage from the waste tips.  Mean 

discharge concentrations from the final drain to the River Tamar were 12.5 μmol L
-1

 Zn, 

2.01 μmol L
-1 

Ni
 
and 0.020 μmol L

-1
 Cd. Each exceeded EQS for freshwaters, by a 

factor of 6 for Ni, 28 for Cd and 100 for Zn. The observed concentrations for these 
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metals were not as high as those recorded in other parts of the catchment in previous 

targeted surveys (42.8 μmol L
-1

 Zn, 4.77 μmol L
-1 

Ni
 
and 0.080 μmol L

-1
 Cd, Table 3.1).  

  Unlike Cu, the highest concentrations of these metals were identified in samples 

closest to the precipitation launders (locations: 14, 15, 17, 18 and BH5) rather than the 

WAM upper tip seepages. These samples emerged from the PCA as a group with 

distinct geochemical character. The precipitation launders supplement the contaminant 

plume migrating from the WAM waste to the river with a Zn, Cd, Ni and additionally 

Mn- rich discharge. 

  Using the geochemical modelling code PHREEQC to calculate speciation of 

dissolved ions, the free divalent cations of Cu, Zn, Mn, Ni and Cd were predicted to be 

the dominant dissolved species in WAM tip drainage (pH 3.2-4.0), cinders drains (pH 

5.0-5.3) and the final drain (pH 3.9-4.5). Some variation of redox state was predicted 

where more reducing conditions were encountered, for example an increase in Cu(I) 

with respect to Cu (II) for some borehole samples.  

 Sulphate ions contributed highly to the overall conductivity of the drainage 

waters and represent the most abundant anion in solution. Sulphate concentrations 

ranged from 610-5300 μmol L
-1 

and were highest in WAM and precipitation launders 

drainage
 
(Figure 3.18).  Fluoride concentrations were in some instances similar in 

magnitude to sulphate (Figure 3.18) and thought to originate from fluorite (CaF2) 

identified within the waste tips by other studies  (Klink et al., 2005; Page, 2008). 

Dissolved Ca (858-1651 μmol L
-1

,  ̅ = 1167 μmol L
-1

) in seepages from the WAM 

upper tip were the same order of magnitude to dissolved F
-
 (520-1410 μmol L

-1
,  ̅ = 834 

μmol L
-1

), suggesting fluorite dissolution could account for a significant proportion of 

dissolved Ca in the leachates. WAM upper tip drains was undersaturated (S.I. = -2 to -4) 

with respect to Fluorite, however quantification of F
-
 by IC, assumes that F is present as 

the free ion, that was  not the thermodynamically favoured species (Al complexes). The 
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actual concentration of fluoride in drainage waters is likely to be higher than suggested 

by IC analysis. 

  Predicted dissolved Al species were the fluoride complexes, (AlF
2+

, AlF2
+
) 

accounting for over 90% of dissolved Al in tip drainage, cinders drain and final drain 

samples. In samples where fluoride concentrations were lower, sulphate complexes 

became more significant.  Kinraide et al. (1997) found fluoride and sulphate complexes 

of Al species to be less phytotoxic than the free ion in a study of Al toxicity in wheat 

species. This could boost tolerance of plant species to the high Al content of the waters, 

although the concentrations at DGC are higher than those used in the Kinraide study (< 

290 μmol L
-1

).  

 Waters were under-saturated with respect to the major Al containing phases 

which are thought to control Al solubility in low pH-high sulphate waters, namely 

gibbsite (Al(OH)3, kaolinite (Al2Si2O5(OH)5), alunite (KAl3(SO4)2(OH)6), jurbanite 

(Al3(SO4)OH.5H2O) and basaluminite (Al4(SO4)(OH)10.5H2O) (Nordstrom and Ball, 

1986).  The final drain is poised below pH 4.6, indicating that active dissolution of Al 

phases is buffering the acidity in this part of the site. Nordstrom and Ball  (1986)  

suggested  reduced complexation with sulphate as a factor which may impede the onset 

of Al(OH)3 hydrolysis and therefore precipitation of Al solids. In the waters at DGC, 

where fluoride complexes are favoured to sulphate complexation, Al hydrolysis might 

similarly be impeded, enhancing Al solubility.    

 The consistency in pH/Eh conditions observed in the final drain (locations 19-

23) extends to similarly consistent dissolved sulphate and metal concentrations for Cu, 

Al, Zn, Mn, Ni and Cd (RSD ≤ 12.1%, Table 3.11).  Dissolved Pb and As were slightly 

more variable (RSD 29.0 % and 20.7 %, respectively), due to low concentrations and 

their strong association with Fe, which showed the greatest variability (RSD = 51.0 %), 

specifically through co-precipitation and sorption reactions in oxic environments.  
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 This is strong evidence to suggest that a local equilibrium condition has been 

achieved in the final collection drain. However, the concentrations observed in BH1-4, 

which draw shallow ground waters in the area around the final drain (0.5-1.5 m depth), 

show greater variability in concentration. The kinetics of the reactions which maintain 

the equilibrium condition in the final drain must therefore be rapid with respect to the 

speed of water movement into it.  

Table 3.11: Mean concentration, standard deviations and relative standard deviations of dissolved 

metals and As in the final collection drain at Devon Great Consols (Sample Locations 19-23, n=17.) 

Chloride result 445 ± 38 μmol L
-1

, RSD = 8.5%. 

  

 Cu Al Zn Mn Ni Cd Pb As Fe SO4 

Mean ± 1 s.d. 

(μmol L
-1-

) 

77.4 

 ±4.6 

618  

±45 

12.4 

 ±1.0 

58.5 

±6.6 

1.92  

±0.23 

0.019 

±0.002 

0.0046 

±0.0013 

0.23 

±0.05 

1.72 

±0.88 

2637 

±226 

% RSD 6.0 7.3 8.0 11.2 12.1 11.9 29.0 20.7 51.0 8.6 

 

 Key among these reactions is likely to be the oxidation of dissolved Fe to 

Fe(OH)3
 
phases and the sorption of other metals to the freshly precipitated surfaces. 

Dissolved Fe concentrations observed across the site (Figure 3.19) show dissolved Fe 

was largely close to or at the LOD (0.12 μmol L
-1

) for surface drainage waters. This is 

consistent with Fe removal as Fe(OH)3(s) phases in oxic waters.  The Fe redox state was 

predicted from thermodynamic equilibria reactions using PHREEQC and confirmed the 

dominance of Fe(III) over the more mobile Fe(II) when waters were equilibrated with 

the atmosphere.  Locations receiving cinders drainage (locations 1-3) were closest to 

this theoretical condition, based on the measured pH/Eh/DO and determined solution 

composition.  

 However, where dissolved iron was detected Fe(II) was the dominant predicted 

redox state, either as the free ion or as sulphate and chloride complexes.  This was most 

significant in boreholes and seepages from the WAM upper tip where reducing 
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conditions strongly favoured Fe(II) complexes, leading to elevated dissolved Fe in these 

waters. The availability of Fe(III) in solution in the tip drainage and sub-surface flow 

near to the River Tamar, shows the potential for ongoing precipitation of Fe(OH)3(s) 

phases upon reaction with atmospheric oxygen.  In the final drain,  thick layers (~0.5 m)  

of ochre are evident in the stream bed and along the banks of the drain (photographs 15 

and 16) consistent with this process. Saturation indices calculated by PHREEQC  

showed the waters in the final drain remain understaurated with respect to  Fe(OH)3 

phases, but would become saturated if equilibrium with oxygen in the atmosphere was 

attained. 

 In the low lying south-west area of the site, metal concentrations were generally 

lower than in the final drain, consistent with the direction of water movement from the 

tips being  NW to SE. Waters in BH6, also in the south west of the site, were relatively 

low in all the contaminant metals reflecting less interaction with mine waters.  

However, there is evidence of contaminated mine water entering the pond (located at 

sites 12 and 13), most likely via connective drains. Concentrations of Al, Cu, Zn, Ni, 

and Cd showed some variation between surveys and during one survey (14/01/09),  Zn, 

Ni and Cd (Figure 3.16 and Figure 3.17) were elevated in the pond and drain compared 

to other surface samples.  
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Figure 3.15: Dissolved Al (above) and Cu (below) concentrations in Devon Great Consols water 

samples determined from seven surveys. Remaining explanations as for Figure 3.12. LOD for Al 

and Cu typically 1.0 μmol L
-1

 and 0.1 μmol L
-1

, respectively. Long-term  freshwater EQS for 

dissolved Al and Cu equal to 0.00185 μmol L
-1

 and 0.00157 μmol L
-1

, respectively. 
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Figure 3.16: Dissolved Zn (above) and Ni (below) concentrations in Devon Great Consols water 

samples determined from seven surveys. Remaining explanations as for Figure 3.12.  LOD for  Zn 

and Ni typically 0.003 μmol L
-1

 and 0.003 μmol L
-1+

, respectively.  Long-term freshwater EQS for 

dissolved Zn and Ni equal to 0.122 μmol L
-1

 and 0.341 μmol L
-1

, respectively. 
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Figure 3.17 Dissolved Cd (above) and Mn (below) concentrations in Devon Great Consols water 

samples determined from seven surveys. Remaining explanations as for Figure 3.12.  LOD for Cd 

and Mn typically 0.00020 μmol L
-1

 and 0.0012 μmol L
-1

, respectively. Long-term  freshwater EQS 

for dissolved Cd and Mn equal to  0.00071 μmol L
-1

 and 0.13 μmol L
-1

, respectively. 
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Figure 3.18: Dissolved sulphate (above) and fluoride (below) concentrations in Devon Great 

Consols water samples from six surveys. Remaining explanations as for Figure 3.12. LOD for 

sulphate and fluoride typically 1.7 μmol L
-1

 and 0.31 μmol L
-1

, respectively Current UK drinking 

water standard for fluoride equivalent to 0.08 μmol L
-1

 (DWI, 2009). 
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Figure 3.19: Dissolved Fe concentrations in Devon Great Consols water samples determined from 

seven surveys. Remaining explanations as for Figure 3.12. LOD for dissolved Fe  typically 0.2 μmol 

L
-1

. Long-term freshwater EQS for dissolved Fe equal to 0.000286 μmol L
-1

.  

Cinders Drainage 

 

Figure 3.20: Schematic diagram highlighting migration pathway of cinders tip 

drainage. 
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 As indicated by PCA, locations to the west of the site (locations 1,2,9,10) 

receive drainage from the cinders waste tips and concentrations of contaminant metals 

and sulphate were lower than other locations, but high in As and Sb (Figure 3.21 and 

Figure 3.22). Overall the two elements were very strongly correlated (r = 1.0) in all 

samples with an average ratio of As:Sb of 470:1. Maximum recorded concentrations of 

dissolved As and Sb were 380 μmol L
-1

 and 5.4 μmol L
-1

 respectively at location 1. 

Based on PHREEQC calculations, the thermodynamically favoured dissolved As 

species here was As(V) in the form of H2AsO4
- 

 or H3AsO4 by ten orders of magnitude 

over As(III). These As(V) species readily adsorb to iron oxides (Lee and Chon, 2006; 

Asta et al., 2010).  Some areas of the cinders waste were stained with ochre (photograph 

18), and freshly precipitated iron oxyhydroxides were evident in the final drain 

(photograph 15). 

  Natural attenuation of dissolved As (and Sb) by sorption or co precipitation 

with these Fe(OH)3 phases is the likely reason why concentrations of As fall below EQS 

for fresh waters (equivalent to 0.67 μmol L
-1

, Table 3.15, Appendix 3F), upon reaching 

the lower part of the site (final drain,  ̅ = 0.23 μmol L
-1

 and pond,  ̅ = 0.10 μmol L
-1

 ).  

 However, some dissolved As and Sb was observed in the stream emerging from 

the South Wheal Fanny shaft (Max 24.1 μmol L
-1

 As and 0.11 mol L
-1

 Sb) and in 

borehole samples (Max 5.8 μmol L
-1

 As and 0.009 μmol L
-1

 Sb). This was consistent 

with increased As(III), with respect to As(V) under more reducing conditions, although 

As(V) species remained dominant by 3-5 orders of magnitude. The equilibrium position 

between the As(III) and As(V) redox state, as predicted by PHREEQC,  was sensitive to 

small changes in Eh/pH condition within the range observed in water samples. Arsenite 

(As(III)) dominates in reducing conditions (Sharma and Sohn, 2009) and is generally 

stable in solution particularly at low pH (Casiot et al., 2005).  Conversely, the stability 

field of Sb(III) with respect to Sb(V) is much larger than As(III) under Eh/pH 



         Chapter 3 

 

174 

 

conditions encountered in DGC surveys (Wilson et al., 2010) and the 

thermodynamically favoured Sb species in all cases was consistently Sb(III)(OH)3, by at 

least three orders of magnitude.  

 Arsenic mobility in DGC waters was observed at pH > 5, which is higher than 

recently reported by others (pH < 3.5, Cheng et al. 2009) this may be due to slow 

kinetics of adsorption or transport on fine colloidal Fe-hydroxides as As(V) (Slowey et 

al., 2007). The As/Sb ratio remained relatively stable in all samples, since As(III) was 

not favoured in any water samples captured, and Sb is not so redox sensitive, 

transformation to As(III) is not likely to be the reason for increased As mobility since 

this may be expected to increase the As:Sb ratio required more reducing conditions. 

 Geochemical processes occurring along the transport pathway within the final 

drain appeared to regulate the observed concentration of As and Sb, as they did for 

metal contaminants.   
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Figure 3.21: Dissolved As concentrations, all samples (above) and As, samples < 1.0 μmol L
-1

 As 

(below) in Devon Great Consols water samples determined from seven surveys. Remaining 

explanations as for Figure 3.12. LOD for dissolved As typically 0.0008 μmol L
-1

. Dotted horizontal 

line represents UK EQS, equivalent to 0.67 μmol L
-1

. 
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Figure 3.22: Dissolved Sb concentrations in Devon Great Consols samples determined from seven 

surveys. Remaining explanations as for Figure 12.  LOD for dissolved Sb typically 0.0001 μmol L
-1

. 

Currently no EQS for dissolved Sb. 

Other Trace Elements and Anions 

 Dissolved concentrations of other elements and anions were included in PCA 

but not discussed further due to low concentration or being outside the scope of this 

study. These included: Pb (0.053 μmol L
-1

, max, WAM drainage), Mo (0.0061 μmol L
-

1
, max, cinders drainage), Co (5.73 μmol L

-1
, max, BH4), V (0.059 μmol L

-1
, max , 

cinders drainage)  B (60.0 μmol L
-1

, max , cinders drainage) and NO3
-
  (40.0 μmol L

-1
, 

max ,WAM drainage). PO4
2-

 and Br were <LOD in all samples (LOD = 0.59 μmol L
-

1
and 1.64 μmol L

-1
, respectively). 
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3.7.7 Effect on the Water Quality of the River Tamar 

 The mean concentrations of dissolved Al and Cu in the final drain close to the 

River Tamar were 618 μmol L
-1

 and 77.4 μmol L
-1

, respectively (n=17). Therefore 

approximately 33400 and 5000 fold dilution of this discharge is required to conform to 

the UK long term EQS for Al and Cu in low alkalinity waters (0.0185 μmol L
-1

 and 

0.016 μmol L
-1

, respectively).   Similarly, dissolved Zn (  ̅ = 12.4 μmol L
-1

, n=17), Cd  

( ̅ = 0.019 μmol L
-1

, n=18) and Ni (  ̅ = 1.93 μmol L
-1

, n=17),  require approximately 

100,  25 and 6 times dilution, to achieve EQS limits (0.12 μmol L
-1

, 0.00071 μmol L
-1 

and  0.34 μmol L
-1

, respectively).   

 The highest recorded flow from the drain discharge was 33 L s
-1

 (location 23), 

which is considerably less than average flow in the River Tamar at Gunnislake (22.6  

m
3 

s
-1

)  (1956 - 2008, EA ).  Based on conservative mixing of the two waters (1:685), 

both dissolved Al and Cu were very likely to cause an EQS failure in the River Tamar 

as a result of this discharge. Furthermore, even at the highest recorded flow (515 m
3 

s
-1

, 

representing 1:15600 dilution) the River Tamar requires Al to exhibit non-conservative 

behaviour in order to meet with regulatory standards. This is attainable because pH in 

the River Tamar at Gunnislake is generally much higher (pH 7.6-8.7, EA (1997-2008)), 

than the disassociation constant for gibbsite in acidic waters (Al(OH)3, pK = 4.9, 

Nordstrom et al. (1986)). However, precipitated Al monomers and polymers remain 

toxic to aquatic organisms as described in section 3.4.4.  

 Mean dissolved concentrations determined in the River Tamar at Gunnislake 

Bridge (downstream of DGC, shown in Figure 3.1) from Jam 1997 to Dec 2007 were 

Cu ( ̅ =  0.19 ± 0.05 μmol L
-1

) Zn ( ̅ = 0.19 ± 0.06 μmol L
-1

), both of which were above 

long term EQS,  Cd ( ̅ =  0.00066 ± 0.00037μmol L
-1

) Ni ( ̅ =  0.087 ± 0.011 μmol L
-1

) 

and As ( ̅ =  0.047 ± 0.024 μmol L
-1

) below EQS (EA, 2010). Data for Al was 
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unavailable, but there were frequent EQS failures in the River Tamar downstream of the 

final drain discharge for Cu, Zn and Cd during this period. There are also several other 

mine discharges in the section of the river adjacent to DGC including an adit discharge 

at Blanchdown (section 3.7.8). Estimating the relative contribution of every input to the 

contamination in the River Tamar is difficult, particularly diffuse seepages and run off 

from mine waste. From flow and dissolved data previously gathered at Gunnislake 

bridge and a survey of major point inputs to the River Tamar, it was estimated that 62 % 

of dissolved Cu, 59 % dissolved Zn, 55 % of dissolved As and 73 % of dissolved Ni are 

not accounted for by point discharges including the FCD (Mighanetara, 2009). 

 The final collection drain at DGC does not collect all the diffuse drainage 

leaving the site, as comparable metal concentrations were recorded in BH2 and BH4, 

located in the phreatic zone beyond it. The drain may offer the most rapid transport 

pathway to the river, but  the total dissolved contaminant discharge cannot be estimated 

from flow in the final drain alone, as this may be an under estimate. In particular, base 

flow through the alluvial deposits which underlay the final drain offer an additional 

pathway to the River Tamar.     

 Dissolved metal and metalloid concentrations in borehole samples around the 

FCD were the same order of magnitude to waters in the drain, and waters recharge 

almost instantaneously showing high permeability of underlying soils and rocks. These 

are indicators that the same geochemical processes of Fe precipitation and 

metal/metalloid sorption/co-precipitation occur in the phreatic zone around the drain as 

in the drain itself.  

 Cyclic wetting and aeration of the waste and soils provides greater potential for 

oxidation reactions to proceed, effectively accelerating the ageing of the materials 

(Sastre et al., 2004). The fluctuations of water levels observed in the final drain and 

boreholes will encourage the precipitation of Fe(OH)3 phases and aid natural attenuation 
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of metals and metalloids via sorption and co-precipitation reactions.  However, a high 

water table also places a greater surface area of contaminated mine waste/soil in the 

phreatic zone. Desorption and dissolution reactions can mobilise contaminant metals 

and metalloids and oxidation reactions will consume oxygen. More reducing conditions 

were at times encountered in the boreholes (1-4) around the FCD and accordingly 

concentrations of dissolved Fe were increased. Conversely, ochre coloured particulates 

were often noted to be suspended in purge waters, suggesting cycling between Fe
2+ 

and 

Fe
3+ 

dominated conditions. This process may have been caused or enhanced by the 

mixing action of purging boreholes.  The mobility of many metals and metalloid species 

will increase in reducing conditions, due to the shift from ferric Fe(OH)3(s) to soluble 

ferrous Fe
2+

. The kinetics of the competing reactions and the Eh/pH conditions will 

determine the composition of waters moving through and from the site. 

  Maintenance of fast flowing oxic waters through the subsurface and in surface 

drains is favourable for the attenuation of dissolved metals and metalloids leaving the 

site. But high permeability also potentially supplies an additional load of contamination 

to the River Tamar via base flow, particularly if reducing conditions are maintained at 

depth. The magnitude of the flux, if any, that reaches the River Tamar via baseflow will 

remain unknown unless a thorough investigation of permeability in the phreatic zone is 

conducted. However, this study has demonstrated that such an input is likely to provide 

a portion of the dissolved flux which is unaccounted for by point discharges, 

particularly for Fe and As which are more mobile under reducing conditions.  

3.7.8 Comparison of Dissolved Concentrations with Existing Data and Point 

Discharges 

 Concentrations of metals and As in this study in the final collection drain (FCD) 

and shallow groundwater (BH1-4), were compared with the results from unpublished 
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data gathered by Mighanetara (July 2005-June 2006, n=12) and the Environment 

Agency Data (Sept 1992-Dec 1994, n= 27).  

 Sample location 23 (discharge of final collection drain into River Tamar), was 

common to all studies and facilitated comparison of data from different time periods. 

Dissolved concentrations in the final collection drain (FCD) were largely comparable 

between the three studies, with the exception of Cu, which was significantly lower in 

the 1992-1994 survey compared with the recent surveys (Figure 3.23). This suggests 

that as the site matures after total closure (specifically, closure of the Cu-precipitation 

works ~1980s), and ongoing geochemical processes may be altering the concentrations 

in the FCD. These processes may include saturation of Cu binding sites on mineral 

surfaces in the surrounding soils and sediments by Cu and other metals (Benjamin and 

Leckie, 1981) or major ions (Du Laing et al., 2009), for example Ca released from the 

WAM tip), disturbance of spoil tips exposing fresh surfaces to weathering, or 

maturation of secondary iron phases resulting in release of co-precipitated or adsorbed 

metals (e.g. Moncur, 2009) . Furthermore the continued attenuation of Cu and acidity 

relies on the rate of supply of soluble iron from the tips and dissolution of acid-

buffering minerals to remain greater than the rate of supply of copper.   

  Flow in the FCD was similar in 2005-2006 (2.6-25.5 L s
-1

) to this study (5.9-

33.3 L s
-1

), although concentrations were more variable in 2005-2006, showing seasonal 

increase during the summer months and decrease during winter. Average rainfall during 

the earlier survey period (July 2005-June 2006), was 3.16 mm d
-1

 (Millhill MIDAS 

station), which is low compared to the ten year average (3.82 mm d
-1

, 1999-2009). In 

contrast, surveys in this study were conducted during years of relatively high average 

rainfall (July 2006- June 2007 = 4.67 mm d
-1 

(initial survey), and July 2008-June 2009 = 

4.31 mm d
-1

) and concentrations remained relatively constant between surveys. 

Hydrographs of the River Tamar at Gunnislake (Appendix 3H), demonstrate the large 
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effect of different rainfall patterns on flow in watercourses. It also clearly illustrates the 

low summer flow in 1994-1995 and 2005-2006, compared to 2007-2009. Comparison 

of the three surveys demonstrates that the steady Eh/pH and metal concentrations found 

in the final collection drain during this study, were not observed during the drier 

conditions of the 2005-2006 survey.  

 Dissolved Cu concentrations in groundwater and FCD were significantly higher 

than those determined in the receiving stream close to the main adit discharge from 

Devon Great Consols (Blanchdown Adit, BA, Figure 3.23).  Concentrations of other 

metals (except Fe) were close to those determined in the BA discharge and dissolved As 

and Fe were generally lower in final drain compared to the discharges from both 

Blanchdown Adit and SWF Adit (a secondary adit in the south west of the site, Figure 

3.20). The iron-rich waters emerging from Blanchdown Adit, precipitate as a deep 

Fe(OH)(s) (ochre) layer upon contact with the atmosphere. This process has the potential 

to scavenge other metals from solution, reducing the concentrations of some metals (Cu, 

Zn, Cd, Ni, Mn) before the discharge waters enter the River Tamar. Waters in the final 

collection drain, are oxic and low in dissolved Fe. Under such conditions, further 

precipitation of fresh Fe(OH)3 phases is unlikely and the waters will discharge metals 

into the river at the concentrations reported here.    This increases the impact of the final 

collection drain discharge compared with Blanchdown Adit, when flows are of a similar 

magnitude.  

 The average particulate flux of Cu, As, Zn and Ni  entering the River Tamar via 

the final drain were determined during 2005-2006 as 0.098 μmol L
-1

 Cu, 0.0551 μmol L
-

1
 As, 0.0629 μmol L

-1
 Zn and 0.0182 μmol L

-1
(Mighanetara et al., 2009).  In all cases 

the particulate flux leaving the drain is very low compared to the dissolved flux, being 

most significant for As.   
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  Concentrations of dissolved As were high and dissolved Fe low in waters 

emerging from South Wheal Fanny Shaft (sample 11), compared to other sample sites.   

pH and DO were also relatively high (section 3.7.5) and waters from this issue and 

exhibit character similar to the cinders drainage shown by the PCA.  

Similarly, approximately 300 m south west of South Wheal Fanny Shaft, another 

discharge recorded as “South Wheal Fanny Adit” (Figure 21, SA) was sampled between 

1992 and 1994 (EA data). It was similar to other waters sampled in south western area 

of the site, being characterised by high dissolved As and low dissolved metal 

contamination. The waters issuing in the south west part of the site appear not to be 

deep waters from the underground workings, the direction of subsurface flow being east 

toward Blanchdown Adit. Instead the waters issuing around South Wheal Fanny are 

likely to be cinders and WAM tip drainage preferentially migrating through the sub-

surface via the underground workings (as suggested in Figure 3.20). 
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Figure 3.23: Dissolved metal and arsenic concentrations in final collection drain (FCD, white 

boxes), boreholes (grey boxes) and adit discharges (dark grey boxes) at Devon Great Consols. Key:  

1 = FCD discharge to River Tamar (Environment Agency, 1992-1994), 2= FCD discharge to River 

Tamar (Mighanetara, 2005-2006), 3: FCD samples (current study, locations 19-23),  BH=  

Boreholes 1-4 (current study), BA =  Blanchdown Adit (Mighanetara, 2005-2006), SS = South 

Wheal Fanny Shaft, current study, SA = South Wheal Fanny Adit, (Environment Agency, 1992-

1994, No data for Cd). 



         Chapter 3 

 

184 

 

3.7.9 Estimated Annual Contamination Fluxes from the Final Collection Drain 

and Tip Drainage 

Final Collection Drain (FCD) 

  The estimated contaminant flux leaving the DGC site in the final drain was 

determined for this study from measured flow close to the discharge point (at location 

23) and dissolved concentration of the contaminant on each sampling round.  Mean, 

minimum and maximum loads were calculated per annum based on the data from this 

study and compared with those from the same location, Blanchdown adit and the River 

Tamar at Gunnislake during 2005-2006 (Table 3.12). Blanchdown adit was shown to 

discharge the highest annual flux of Fe, As, Mn, and Ni from surveyed adits in the 

catchment (Table 3.12, based on unpublished monthly data, Mighanetara, (2005-2006)).  

Dissolved Cu, Zn and Cd fluxes were also found to be high in the adit discharge, 

representing 88 %, 75% and 21%, respectively of the highest identified in the Tamar 

catchment (Ding Dong Mine (Cu), and South Tamar Mine (Zn and Cd)).  

 The annual flux entering the River Tamar from the FCD for most elements was 

similar in magnitude to the previous study and represents a significant proportion of the 

overall flux in the River Tamar immediately downstream. For example, based on 2005-

2006 survey data approximately 11 % of the dissolved Cu is attributable to the final 

collection drain.  However in addition to the reduced variability, which was attributed to 

the wet versus dry sampling periods (see section 3.7.8), the mean and maximum fluxes 

in this work (2008-2009) were generally higher than found by Mighanetara (2005-

2006). For example mean annual Cu and Zn loads calculated from the current study data 

were 53000 mol y
-1

 and 8840 mol y
-1

, respectively, compared to 22500 mol y
-1

 and 

4450 mol y
-1

 previously.  Figure 3.23 showed concentrations in the previous study were 

generally comparable with this study, while the stability of concentrations between 
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surveys and along the drain suggests the waters were approaching equilibrium with 

respect to surrounding pore waters. Therefore the additional flux in the latest survey was 

mostly due to the higher flow in the drain observed in this study (mean annual flow 22.7 

L s
-1

) compared to previously (mean annual flow 13.2 L s
-1

).   

 The predicted annual flux of dissolved metals from the FCD was compared to 

that from Blanchdown Adit and was found to be the same order of magnitude for Zn, 

Cd, Ni and Mn. However the predicted annual flux of dissolved Cu was much greater in 

the FCD (4660-75200 mol y
-1

, Table 3.12) than in the Blanchdown Adit discharge (999-

5230 mol y
-1

). Also the predicted fluxes of dissolved Fe and As were much lower in the 

FCD (443-5230 mol y
-1

 and 16.9-277 mol y
-1

, respectively) than from Blanchdown Adit 

(3890-23900 mol y
-1

 and 279-5233 mol y
-1

, respectively).  These figures give a useful 

measure of the annual contamination flux reaching the River Tamar as point discharges 

from the final drain and Blanchdown Adit. They also suggest that if Fe-rich waters from 

Blanchdown Adit could be mixed with the Cu-rich waters in the final drain and allowed 

to reach equilibrium with atmospheric O2, attenuation of the dissolved Cu (and other 

dissolved metals such as Zn, Ni, Cd and Pb) in the waters of the final drain may be 

achieved.  

Waste Tips 

 Annual dissolved fluxes of metals and As emanating from the tips were 

estimated using a different approach, since direct measurement of diffuse flow through 

a waste tip is prohibitively difficult. The extent of each waste tip area was digitised 

based on aerial photography and observations made at the site during sampling. Tip 

catchment areas were defined using ArcGIS v 9.3 with the ArcHydro extension from a 

10 m digital terrain model. Estimated average rainfall for the site was calculated based 

on downloaded Met Office data from MIDAS observation stations (see Chapter 2 for 
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method). Catchment rainfall for each of the tips is assumed to represent the water flow 

moving over or through the waste and no correction was made for evaporation or plant 

uptake. Dissolved concentrations for metals and As were multiplied by the annual 

rainfall for each tip catchment area to produce a annual flux. Data used in the 

calculations is provided in Table 3.16 (Appendix 3G). 

 Mean annual flux and inter-quartile range of metal and As fluxes for each tip 

were calculated (Table 3.13) and the relative contributions of each tip to the flux 

observed in the final drain (Table 3.14). Chloride flux was also calculated to compare 

the behaviour of a conservative ion.  The results of the calculation show that mass 

balance (100%) between the combined tip and drain flux falls within the calculated 

range for most elements.  There are exceptions, most notably for dissolved As, which 

was considerably higher in combined tip drainage (29400-35900 mol y
-1

) than in the 

final drain (45.6-277 mol y
-1

), suggesting attenuation of two orders of magnitude along 

the transport pathway.  To a lesser extent fluxes of dissolved Pb and Cu are also lower 

in the final drain compared to leachates produced by the tips. Dissolved Zn and Cd 

show distribution in waters closest to Cl and therefore exhibit conservative transport. 

 Speciation of these metals was calculated as being divalent cations by 

PHREEQC under measured field conditions, and as such these elements would be 

expected to remain largely mobile in surface and subsurface drainage waters.   

 The higher predicted flux of As, Cu and Pb from the tips compared with the 

final drain suggests preferential sorption of these elements to mineral and organic 

surfaces, an effect that has been particularly documented for these elements in other 

studies. It cannot be absolutely concluded that the fate of most of the tip drainage is to 

discharge via the drain, but it appears that for Cl, Al, Mn, Zn, Ni, Cd the mean flux in 

the drain is larger than that from the tips. Additional inputs of contamination could arise 

from other areas of waste which fall within the catchment of the final collection drain 
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(FCD). The most obvious is the Wheal Anna Maria Lower tip (Figure 3), but this 

exhibits generally very low permeability (1.9-2.3 x 10
-7

 m s
-1

, Mighaetara (2009)), 

standing water is consistently observed on its surface (photograph 10) and it comprises 

layers of firm clayey silt such that migrating waters are unlikely to permeate the tip. 

Coarser wastes, and contaminated soils are distributed across the site and have not been 

accounted for in this study, also the banks of the FCD appear to comprise mine wastes 

which have been washed down from the WAM Upper tip. All could act as an additional 

sources of contamination. 

 Some important information for quantification of fluxes within the site emerge 

from the annual flux data presented in Tables 3.12, 3.13 and 3.14 and previous 

discussion of elemental behaviour. The cinders waste was the major source of dissolved 

arsenic at the site by an order of magnitude over Blanchdown Adit. Sorption of As to 

iron-hydroxides is well documented and appears to attenuate almost all of the As from 

the tips before reaching the River Tamar, although some sub-surface migration has been 

demonstrated by borehole water samples. Wheal Anna Maria Upper tip was the largest 

contributor of dissolved Cu reaching the final drain, some of this appears to be 

attenuated on route to the River Tamar. Collectively, the tips also have the potential to 

produce around the same annual flux of Mn, Zn, Ni and Cd as Blanchdown Adit, and it 

appears these metals within the tip drainages are conservatively transported and 

discharged to the River Tamar via the final drain.   

Uncertainty  

 Estimates based on the data gathered from this study suggest that at one 

extreme, up to 65% of the flux of Zn, Mn, Ni, and Cd from the final drain could migrate 

to the River Tamar as diffuse seepages through the phreatic zone (Table 3.14). There is 

a lack of information on the magnitude sub-surface flow beyond the  FCD to the River 
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Tamar via high permeability deposits, although the presence of elevated concentrations 

of dissolved metals and As in the subsurface has been identified in this study. 

  Large ranges are observed in Table 3.14, this is because tip fluxes are estimated 

from annual average rainfall and mean (and inter-quartile) dissolved concentrations. 

These two variables are not independent and the relationship between the two is lost 

when averaging data in this way. Tips are reactive to hydrological conditions in terms of 

the concentration and volume of leachate produced. For example, in dry conditions high 

dissolved loads may accumulate in tip pore waters, but flow from the tips is low. 

Conversely, in wet conditions higher flow is observed but concentrations may be lower 

if pore waters do not reach equilibrium. The scenario is complicated further as the 

kinetics of dissolution and desorption reactions compete with flow rate of percolating 

waters and these effects are explored in Chapter 5.  The situation in the final drain is 

different; drain fluxes are based on accurate instantaneous flow and concentration 

determinations so if concentrations depend on flow, this is accounted for.  

 Scaling up the minimum and maximum instantaneous flux to an annual 

maximum and minimum is perhaps unrealistic based on the limited number of samples 

taken and the range of hydrological conditions that may be encountered. Comparison of 

the mean drain flux gives the best overall picture since the extremes are somewhat 

smoothed but this does not solve the problem of representivity.  

 Also, the modelled rainfall data used to calculate tip drainage is based on a 

1999-2009 average. Rainfall at the nearest observation station (Millhill) for the main 

sample period (2008-2009) was 13% higher than the 1999-2009 average. If this is 

carried through the calculations the result would be an increase in the flux from the tips 

but would not account for the „missing‟ flux observed in the drain and would not alter 

the overall trends observed.   
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Table 3.12: Estimated annual dissolved contaminant fluxes entering the River Tamar from the Devon Great Consols final collection drain and Blanchdown Adit . Data 

marked with asterisk from Mighanetara, 2007. ND = no data. Flow from Blanchdown Adit during 2005-2006 survey = 4.0-145 L s
-1 

(Mighanetara 2009). 

Study 

Cu 

(mol y
-1

) 

Zn 

(mol y
-1

) 

Mn 

(mol y
-1

) 

Ni 

(mol y
-1

) 

Cd 

(mol y
-1

) 

Pb 

(mol y
-1

) 

Al 

(mol y
-1

) 

As 

(mol y
-1

) 

Fe 

(mol y
-1

) 

2008-2009 Final Collection Drain Range  

Mean, n=4 

15100-75200 

53000 

2660-13300 

8840 

12100-60000 

39400 

405-2000 

1290 

4.14-22.0 

13.8 

1.21- 3.60 

2.68 

125000- 629000 

434000 

45.6-277 

164 

439-1910 

1060 

2005-2006 Final Collection Drain Range* 

Mean, n=12 

4660-42600 

22500 

1480-8950 

4450 

102-35000 

19000 

59.7-1400 

638 

2.38-22.0 

7.50 

0.53 -7.13 

2.19 ND 

16.9-160 

80.7 

443-5012 

2470 

2005-2006 Blanchdown Adit Range* 

Mean, n=12 

999-5230 

3780 

2400-22600 

7690 

4820-45900 

23900 

224-1940 

789 

1.01-11.93 

4.33 <LOD ND 

279-5233 

2570 

3890-239000 

61867 

2005-2006 River Tamar at Gunnislake* 205000 107050 473000 76700 <LOD 232 ND 32000 985000 

% Dissolved Flux in River Tamar from 

FCD, 2005-2006  11 4 4 < 1 - < 1 - 3 < 1 

% Dissolved Flux in River Tamar from 

Blanchdown Adit, 2005-2006 2 7 5 < 1 - - - 8 6 
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Table 3.13: Estimated annual dissolved contaminant fluxes of selected metals and As produced by the Cinders, Wheal Anna Maria Upper and Precipitation Launders 

waste tips at Devon Great Consols. Derived from catchment rainfall and dissolved metal concentrations from selected sample locations. Inter-quartile range and mean 

concentrations used to derive range and mean fluxes (mean shown in bold). Sample locations used:  cinders drain (1), WAM tip drainage (4-8), precipitation launders 

(BH5 and 17). 

Tip, Area (m
2
), Annual Average 

Rainfall (mm y
-1

) 

Cu 

(mol y
-1

) 

Zn 

(mol y
-1

) 

Mn 

(mol y
-1

) 

Ni 

(mol y
-1

) 

Cd 

(mol y
-1

) 

Pb 

(mol y
-1

) 

Al 

(mol y
-1

) 

As 

(mol y
-1

) 

Cinders Waste Tip 

84400 m
2
, 1289 mm y

-1 

1130 – 1390 

1410 

223 – 259  

244 

362 – 487  

422 

27.4 – 31.8  

31.0 

0.213 -0.228  

0.222 

< LOD 

16400 – 17200 

16700 

29400 – 35600 

32000 

Wheal Anna Maria Upper Tip 

135000 m
2
, 1289 mm y

-1
 

34900 – 46400 

38900 

2070 – 2240 

2180 

5570 – 7250 

6410 

157 – 227  

192 

3.35 – 4.32 

3.76 

1.06 -3.42 

2.60 

121000 – 15600 

143000 

50.3 – 286  

231 

Precipitation Launders Tip 

116000 m
2
, 1264 mm y

-1
 

14900 – 19100 

16800 

1970 – 2600 

2240 

10200 – 14600 

11900 

343 – 479 

398 

3.25 – 4.30 

3.65 

0.48 – 2.08 

1.29 

103000 -148000 

121000 

11.7 – 22.0 

20.5 

Combined Tip Discharge 

50900 - 66900 

57100 

4270 - 5135 

4670 

16100 - 22300 

18700 

527 -738 

621 

6.81 -8.85 

7.63 

1.54 - 5.50 

3.90 

240000 - 321000 

281000 

29400-35900 

32200 
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Table 3.14: Annual Fluxes of selected metals and As produced by the Cinders, Wheal Anna Maria Upper and Precipitation Launders waste tips as a percentage of annual 

fluxes determined in the final collection drain. Based on mean (in bold) and inter- quartile ranges. Chloride also shown as representative of a conservative element.  

 
Cl (%) Cu (%) Zn (%) Mn (%) Ni (%) Cd (%) Pb (%) Al (%) As (%) 

Cinders Waste Tip 

12.1 

(10.7-35.4) 

2.7  

(1.8 - 7.5) 

2.8  

(1.9 - 8.4) 

1.1  

(0.8 - 3.0) 

2.4  

(1.6 - 6.8) 

1.6  

(1.0 -5.2) 

n/a 
3.8  

(2.7 - 13.1) 

19500  

(12900 -64400) 

Wheal Anna Maria 

Upper Tip 

26.5 

(20.1-78.5) 

73.3  

(61.6 - 240) 

24.6  

(16.9 - 78.0) 

16.3   

(12.1 - 46.0) 

14.9 

(11.4 - 38.8) 

27.3  

(19.6 - 78.5) 

97.1  

(87.4-94.9) 

32.9  

(24.9 - 96.5) 

141  

(103 - 110) 

Precipitation 

Launders Tip 

18.4  

(13.2-60.8) 

31.8   

(25.5 - 98.6) 

25.4  

(19.8 - 74.0) 

30.2  

(24.3 - 89.3) 

30.9  

(24.0 - 84.7) 

26.4  

(19.6 - 78.5) 

48.1  

(39.9 - 57.7) 

27.9  

(23.5 - 82.2) 

12.5  

(7.9 - 25.7) 

Combined Tips 

56.9 

(44.1-175) 

108  

 (89.0 - 337) 

58.2  

 (38.6 - 160 ) 

47.6  

(37.2 – 133) 

48.1 

(36.9 - 130) 

55.3  

(40.2 - 165) 

145  

(127 - 153) 

64.6  

(51.1 - 192) 

19600  

(13000 - 64500) 
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3.8 Conclusions and Recommendations 

 During this study, leachates were observed to issue from the mine waste tips at 

Devon Great Consols following periods of heavy short term rainfall (> 45 mm in 7 

days). The concentrations of dissolved metals in the issuing waters were very high 

compared to EQS values and highly variable e.g. dissolved Al and Cu in drainage from 

Wheal Anna Maria (WAM) tip ranged from 591-1145 μmol L
-1

 and 135-387 μmol L
-1

, 

respectively. Drainage waters emanating the cinders, WAM and precipitation launders 

waste tips were in excess of EQS values for dissolved Al, Cu, Zn, Ni, Cd, Mn, Fe and 

As.  

 The three areas of waste studied exhibited distinct geochemical signatures; 

dissolved Cu and Al were particularly high in WAM drainage compared to other 

discharges in the catchment, whilst the cinders tip produced oxic drainage waters very 

high in dissolved As (202-378 μmol L
-1

). Annual fluxes from the tip were predicted 

using average rainfall data and catchment areas calculated in ArcHydro9 to estimate the 

annual discharge of waters from the tip. The results showed that the cinders waste could 

generate an annual flux of dissolved As equal to 32000 mol y
-1

 and Wheal Anna Maria 

Upper tip an annual flux of Cu equal to 38900 mol y
-1

, based on concentrations 

recorded in this study. Drainage waters from the precipitation launders were highest in 

Mn and Ni equating to predicted fluxes of 11900 and 398 mol y
-1

, respectively. Other 

metals were also high in tip drainage with maximum predicted fluxes equal to 143000 

mol y
-1 

Al (WAM), 2240 mol y
-1 

Zn (launders) and 376 mol y
-1 

Cd (WAM). 

 The predicted annual fluxes from the three tips investigated at Devon Great 

Consols were the same order of magnitude as previously predicted for the main adit 

discharge at the mine (Blanchdown Adit, Mighanetara (2009)) for Mn, Zn, Ni and Cd. 
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For some elements, the flux from the tips could represent a significant proportion of the 

dissolved flux in the River Tamar at Gunnislake, (e.g. Cu estimated at 11%). 

 However, there was evidence for the natural attenuation of some elements prior 

to reaching the final collection drain (FCD), which discharged into the River Tamar 

approximately 350m down gradient from the tips. For As this was sufficient to reduce 

the discharge concentrations below EQS.  Other dissolved species of interest, namely 

Cu, Al, Zn, Mn, Ni, Cd and sulphate exhibited a steady composition (RSD ≤ 12.1 % 

across all surveys). This suggested that local equilibrium was achieved in the drain, but 

evidence from previous studies conducted in relatively dry summers (1994-1995 and 

2005-2006), indicate that more variability may be expected in periods of drought.   

 Based on predicated annual flux, the final collection drain (FCD) appears to 

capture most of the dissolved contamination flowing through the site, offering a low 

resistance and oxic pathway for migrating waters. Accurate determination of the 

proportion of dissolved contamination leaving the site in the FCD versus the total 

produced from the tips is not permissible with such a limited data set. However, the 

combined predicted fluxes from the main areas of waste studied was the same order of 

magnitude to that in the final drain for elements that are less likely to be attenuated by 

sorption to mineral surfaces or organic matter. Recovery in the final drain for Cl, Zn, 

and Cd was between 39 and 175 %.  This was encouraging, as it suggested that the 

method used to calculate fluxes from the waste tips was appropriate and that the results 

were a good approximation of annual fluxes. Additional flux in the drain may arise from 

contaminated soils and coarser wastes within the catchment of the final drain, including 

the banks of the drain itself, which appeared to be partially comprised of mine waste 

similar to that found in the WAM tip.  

 The FCD is hosted in high permeability artificial (mine waste) and alluvial 

deposits (river gravels). The shallow groundwaters around the drain were found to be in 
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local equilibrium with waters flowing in the drain with respect to dissolved metals. 

They may therefore represent an additional transport pathway to the River Tamar.  

 Borehole 4 located approximately 10m beyond the final drain at a depth of 1.71 

m below a shallow ditch (itself 0.5 m below ground level) was also contaminated with 

mine waters. This was evidence for horizontal transport of contamination towards the 

river, since the borehole core removed was characterised by clay and hardpan layers 

which were inhibited vertical migration of waters. Layers of clay, hardpan and gley 

soils containing preserved organic matter were also encountered in BH2, BH3 and BH6, 

suggesting a large spatial extent of impermeable strata and anoxic conditions at shallow 

depths (< 2m).  Groundwater was likely to be the most important transport pathway for 

Fe and As from the tips as they exhibit higher mobility under reducing conditions. A 

previous study, estimated 55% of dissolved As to be unaccounted for in the River 

Tamar by streams and adit discharges (Mighanetara et al., 2009). A portion of this may 

be due to subsurface transport, since As concentrations were recorded in borehole 

waters up to 13.7 μmol L
-1

.  

  Based on the concentrations of dissolved metals leaving the final drain (location 

23) and the relative magnitudes of measured flow in the drain and the river (1:685, 

mean), both dissolved Al and Cu, were very likely to cause an EQS failure in the River 

Tamar as a result of this discharge.  The higher pH of the river water (pH 7.6-8.7, EA 

1997-2008) is likely to reduce the dissolved concentration of metals by enhancing 

sorption and precipitation. However, there have been frequent recorded failures with 

respect to EQS for Cu, Zn and Cd downstream of Devon Great Consols (EA, 1997-

2008). There are a number of mine sites in the vicinity of Devon Great Consols that 

contribute to the overall contamination in the River Tamar but the flux discharging from 

the final drain is a significant contributor of dissolved metal contamination to the River.  
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  Iron solubility in drainage waters at the site were poised around the 

Fe(II)/Fe(III) solubility boundary for most samples. WAM Upper Tip drainage and 

subsurface waters contain elevated dissolved Fe(III) which according to PHREEQC 

calculations and site observations, precipitated as fresh Fe(OH)s upon reaching 

equilibrium with the atmosphere. This was most obvious in final drain, where thick 

(tens of centimetres) layers of ochre were deposited on the banks and base of the drain.  

Sorption of dissolved metals and particularly As was likely to be the dominant 

attenuation process at the site.  The pH of waters in the lower part of the site was 

buffered to ~ pH 4.5 and indicated that in addition to the concentration of metals a 

relatively stable pH was also maintained. In the absence of significant carbonate 

minerals at the site, dissolution of Al-phases maintained the pH balance and resulted in 

the high discharge of dissolved Al from the drain (434000 mol y
-1

).  

 Artificial enhancement of the sorption capacity of freshly precipitated Fe(OH)3  

may be a means of removing pollutant metals (e.g. Cu) from solution before discharging 

to the River Tamar.  Factors which might promote this would be a greater surface area 

of precipitate for sorption, a greater residence time of waters passing through the drain 

and greater aeration of the waters. This might be achieved by expanding existing ditches 

to aerate migrating waters moving through the site.  However disturbance of the system 

should be kept to a minimum to prevent the exposure of fresh mineral surface to 

weathering which may increase pollutant fluxes in the short-term. The waters draining 

Blanchdown Adit are rich in dissolved Fe and relatively low in dissolved Cu, compared 

with the waters in the final drain. A scheme to mix the two discharges followed by 

aeration may reduce the overall pollutant flux discharging into the River Tamar but 

would require further investigation.  

  Finally, the mine waste at Devon Great Consols, particularly the WAM upper 

tip exhibits poor cohesive strength and poor vegetation cover. This results in a high 
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dissolved and suspended load in tip run off. Mighanetara (2009) estimated the annual 

loss from the WAM Upper tip to be 200-300 m
3
 y

-1
 of material from the three slopes 

(east, south and west). Management strategies which address the high permeability and 

low stability of the waste tips are likely to reduce the flux of dissolved contamination 

arising from them.  

3.9 Future Work 

 A number of assumptions have been made in predicting contaminant fluxes 

emanating the waste tips. Among them is the extrapolation of limited data for 

concentrations emerging the tips into yearly fluxes. This work has highlighted that mine 

waste has the potential to generate large fluxes of pollutant metals and metalloids. It has 

also indicated that the observed flux is determined largely by the hydrological 

conditions at the site. In Chapter 5 the leaching potential of selected mine wastes will be 

examined under laboratory conditions to simulate the action of percolating rainwater. 

This will help to resolve the range of concentrations of metals and As that may be 

expected in discharge waters under all hydrological conditions.  

 Selective dissolution of source minerals and the competitive sorption of 

dissolved metals and metalloids influence the chemistry of discharge waters.  Further 

investigation of these competitive effects in mixed mineral systems would aid the 

interpretation of transport processes occurring at abandoned mine sites. It may also be a 

basis for screening possible remediation strategies.  

  The speciation of the dissolved metals has not been explored here in great detail 

but is important in understanding the toxicological effects of pollutants in the aquatic 

environment. In stream processes and species tolerance should be examined in order to 

determine the actual eco-toxic effect of the pollutant discharges in the Tamar catchment. 
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3.11 Chapter 3 Appendices 

3A. Historical Maps provided on following pages 
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Figure 3.24: Historical Map of Devon Great 

Consols (1884) 

Major areas of Cinders waste, Wheal Anna 

Maria upper and lower waste and South 

Wheal Fanny Precipitation Launders referred 

to in this study outlined in red. 

County Series 

1:2500 Scale  

1854-1901 

1s Edition 

Published 1882-1884 

© Crown Copyright and Landmark 

Information Group Limited (2010). All 

rights reserved. (1882-1884) 
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Figure 3.25: Historical Map of Devon Great 

Consols (1891) 

Major areas of Cinders waste, Wheal Anna 

Maria upper and lower waste and South 

Wheal Fanny Precipitation Launders referred 

to in this study outlined in red. 

County Series 

1:10560 Scale  

1849-1899 

1st Edition 

Published 1888-1891 

© Crown Copyright and Landmark 

Information Group Limited (2010). All 

rights reserved. (1888-1901) 
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Figure 3.26: Historical Map of Devon Great 

Consols (1906) 

Major areas of Cinders waste, Wheal Anna 

Maria upper and lower waste and South 

Wheal Fanny Precipitation Launders referred 

to in this study outlined in red. 

County Series 

1:2500 Scale  

1893-1915 

1
s 
Revision 

Published 1906 

© Crown Copyright and Landmark 

Information Group Limited (2010). All 

rights reserved. (1906) 



         Chapter 3 

 

210 

 

 

Figure 3.27: Historical Map of Devon Great 

Consols (1907) 

Major areas of Cinders waste, Wheal Anna 

Maria upper and lower waste and South 

Wheal Fanny Precipitation Launders referred 

to in this study outlined in red. 

County Series 

1:10560 Scale  

1846-1969 

1
s 
Revision 

Published 1907 

© Crown Copyright and Landmark 

Information Group Limited (2010). All 

rights reserved. (1907) 



         Chapter 3 

 

211 

 

 

Figure 3.28: Map of Devon Great Consols site 

showing archaeological features logged by 

Buck (2002). 
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3B. Devon Great Consols Sample Location Descriptions 

Sample Description 

1 Cinders Drain (Picture 4), ephemeral, only sampled when wet conditions allowed. 

2-3 Cinders Mixing Zone (Picture 6), ephemeral, only sampled when wet conditions allowed. 

4-7 

Seepage from Wheal Anna Maria waste tip (from E to W) captured only following heavy 

rainfall (e.g. Picture 7). Sample 5 emerges from inspection hole (Pictures 10), some flow 

measurable during all surveys. 

8 

Drain collecting discharge from  W end of Wheal Anna Maria tip, quickly lost to sub-surface 

flow, sometimes dry. 

9-10 

Drainage channel draining SE, downhill on W edge of WAM waste, passes under trackway, 

via engineered gully with plastic pipe, and migrates as largely sub-surface flow towards South 

Wheal Fanny precipitation launders. Position of sample varied according to flow conditions. 

11 Stream emerging from South Wheal Fanny shaft 

16 Adit portal at South Wheal Fanny (Picture 11) 

12 

Pond inflow (commonly standing water or seepage), collecting waters at W of site near to 

South Wheal Fanny. 

13 

Pond Outflow (commonly standing water or seepage) collecting waters at W of site near to 

South Wheal Fanny. 

14 

Surface stream flowing NW to SE into final drain through wooded area. Stream passes next to 

Borehole No. 3 shortly before entering final drain. 

15 

Wide surface drain flowing NW to SE entering final drain immediately to the E of the 

precipitation launders, heavily vegetated and waterlogged. Close to BH5. 

17 

Final drain in front of precipitation launders, possible trap for rainwater or leachate from 

precipitation launders depending on conditions. 

18 -19 Final drain in front of precipitation launders, before and after flow from 15 enters. 

19-23 

Final drain along course, upstream and downstream of 14 (20 and 21), at Boreholes 1 and 2 

(22) and before entering the River Tamar (23). 

BH1 and 

BH2 Interception of shallow groundwaters moving beneath final drain, BH1 N and BH2 S of drain. 

BH3 

Interception of groundwaters moving from NW towards River Tamar. Directly beneath 

surface drain 14. 

BH4 Interception of groundwaters moving to SE, beyond final drain. 

BH5 Shallow perched water table within precipitation launders/waste tip. Close to drain 15. 

BH6 

“Clean” deep borehole driven to bedrock to SW of WAM waste tips, in clayey waterlogged 

soil. Intended to intercept deeper, background groundwaters. 
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3C. Photographs 

Photograph 1 

Wheal Anna Maria waste 

viewed from the west with 

eastern extent of cinders 

waste in foreground. 

 

Taken 05/04/09 

A J M Turner 

 

Photograph 2 

Cinders waste tips, viewed 

from the east. 

 

Taken 20/07/09 

M W Sharples, University of 

Plymouth. 
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Photograph 3 

Close up of cinders waste 

showing bright blue-green 

efflorescent (copper) salts. 

Similar also found on and 

around Wheal Anna Maria, 

particularly on course 

wastes. 

 

Taken 05/04/09 

A J M Turner 
 

 Photograph 4 

View looking north-west 

towards top of cinders 

waste. Ephemeral Stream 

(Sample 1) in front of 

cinders, with small 

inspection hole or adit, 

circled top of picture. 

 

 

Taken 20/07/09 

A J M Turner 

 

 1 
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Photograph 5 

View looking west, showing 

ephemeral stream from 

cinders tips mixing with 

drainage from other tips to 

north and west of Wheal 

Anna Maria tip (Sample 2). 

 

Taken 20/07/09 

A J M Turner 
 

Photograph 6 

Cinders drain migrating 

along eastern extent of 

tailings tip (between sample 

3 and 9). View from south 

west to north east (vegetated 

bank of tailings shown on 

right). 

 

Taken 08/02/08 

A J M Turner 

 

 2 
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Photograph 7  

 Plastic drainage pipe 

carrying cinders drainage 

toward precipitation 

launders (sample 10). 

 

Taken 08/02/08 

A J M Turner 

 

 

Photograph 8 

Tip seepage emerging from 

W side of Wheal Anna 

Maria tip (sample 4). 

 

Taken 20/07/09 

A J M Turner 

 

  10 

 4 
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Photograph 9 

Wheal Anna Maria waste tip 

inspection hole discharge 

(sample 5). 

Taken 20/07/09 

A J M Turner 

 

Photograph  10 

View looking south east, 

from top of Wheal Anna 

Maria upper tip showing 

drainage into and around 

waterlogged lower (tailings) 

waste tip (toward sample 

location 8). Direction of 

flow indicated by blue 

arrows. 

Taken 08/02/08 

A J M Turner 

 

 8 

 5 
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Photograph 11 

Remains of precipitation 

launders (eastern section) 

showing plateau underlain 

by mixed waste material. 

View from east to west. 

 

Taken 08/02/08 

A J M Turner 

 

Photograph 12 

 Drainage ditch in front of 

precipitation launders.  View 

from east to west (toward 

pond). 

 

Taken 08/02/08 

A J M Turner 
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Photograph 13 

Adit Portal discharge near to 

South Wheal Fanny  

(Sample 16). Light green 

discolouration suspected to 

be efflorescent salts, 

precipitated on side of side 

of portal receiving sunlight.  

Standing water in front of 

portal (not shown), held in 

mine leat/terraced bank.  

 

Taken 20/07/09 

A J M Turner  

Photograph  14 

Final collection drain at 

sample location 22 (also 

location of BH1 and BH2), 

looking west toward 

precipitation launders. 

 

Taken 20/07/09 

A J M Turner 

 

 16 

 22 

 BH2 
 BH1 
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Photograph 15 

Final collection drain at 

sample location 21, showing 

ochre deposits on banks. 

 

Taken 20/07/09 

A J M Turner 

 

Photograph 16 

DGC Borehole 2 installation 

(South bank of Final 

Collection Drain).  

Core from BH2 showing 

streaked clayey gley soil and 

organic material below soft 

ochre.   Oily-film visible on 

water within borehole 

indicative of iron and 

sulphur rich wetlands and 

bogs (Haaijer et al., 2008). 

 

Taken 13/01/09 

A J M Turner 

 

 21 

 BH2 
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Photograph  17 

Wheal Anna Maria waste tip 

combined drainage with 

high suspended load flowing 

into lower (tailings) waste 

tip. 

Taken 20/07/09 

A J M Turner 

 

Photograph  18 

Ochre stained mine waste 

eastern part of cinders.  

View looking north. 

 

Taken 20/07/09 

M W Sharples 
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3D. Devon Great Consols Groundwater Borehole Logs 

Borehole 

Augered 

Depth (m) Observations 

DGC 

BH1 

0-0.53 Soft orange ochre, containing coarse GRAVEL. Unable to 

penetrate further with hand auger.  

DGC 

BH2  

0-0.50 Soft orange ochre.  

 0.50-0.76 Mid brown and black streaked CLAYEY gley soils. 

 0.76 -1.22 Streaked CLAY with high organic content comprising un-

decomposed leaf litter. Increased GRAVEL content with depth 

(photograph 16) 

 1.22 (end) Grey coarse GRAVEL, unable to penetrate further with hand 

auger. 

DGC 

BH3  

0-0.76 Dark grey gley soil and CLAY.  

 0.76-1.06 Brown-orange ochre. 

 1.60-1.65 Dark grey gley soil and CLAY. Appears anerobic. 

 1.65 (end) Organic matter comprising un-decomposed leaf litter, twigs. 

DGC 

BH4 

 0-0.85 Wet yellow CLAY  

 0.85 Orange/brown HARDPAN, difficult to auger 

 0.85-1.21 

(end) 

Stiff yellow CLAY, appears dry 

DGC 

BH5 

0-0.58 Coarse sub-angular COBBLES and GRAVELS, comprising tip 

waste and country rock. 

DGC 

BH6 

0-1.62 Mid-dark brown CLAY 

 1.62-1.89 Organic matter containing un-decomposed leaf litter. H2S odour. 

 1.89-1.98  Humic streaked black CLAY. 

 1.98-2.00 

(end) 

Gravels (probably alluvium) 
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3E. Instrumental Parameters for ICP-MS, ICP-OES and IC 

The parameters presented here are typical for the experimental runs conducted however 

signals were optimised for each run therefore actual conditions may vary slightly from 

those shown 

ICP-OES Varian 725-ES 

Nebuliser Sturman-Masters V-Groove 

Power  1.6-1.7 kW 

Plasma Flow 22.5 L min
-1 

Auxillary Flow 1.5 L min
-1

 

Nebuliser Flow 0.75 L min
-1

 

Viewing Height 10 mm 

Replicate Read Time 2-10 s 

Stabilisation Delay 10-15 s 

 

ICP-MS Thermo Fisher X Series 2  

Nebuliser Meinhard (glass, fine capillary) 

Spray Chamber Jacketed conical with an impact bead 

Forward Power  1.35 kW 

Reflected Power 4 W 

Auxiliary Flow 1.0 L min
-1

 

Coolant Flow 12.0 L min
-1

 

Nebuliser Flow 0.864 L min
-1 

Number of Sweeps 100 

Dwell Time 10 ms 

 

Dionex DX-500 IC 

Mobile Phase 0.01 M Na2CO3  

Column Dionex Ionpac AS9-HC  

Column Temperature 25°C 

Injection Volume 200 μL 

Run Time 18 min 

Plates (typically) 5000-8000 

Detector Electrochemical (ED50) 
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3F. Environmental Quality Standards proposed for the Water 

Framework Directive in respect of freshwaters. 

Table 3.15: Environment Agency existing or proposed* Water Framework Directive 

Environmental Quality Standards for freshwaters (*latest quoted). Ranges apply according to 

water hardness, lower value applicable to low alkalinity waters. Published standards in μg L
-1

, 

converted here to μmol L
-1 

 for comparison with results from this study. 

Element/Species 

(relative atomic 

mass) 

Annual Average or Long Term 

Exposure Limit 

Maximum Allowable 

Concentration or Short Term 

Exposure Limit 

(μg L
-1

) (μmol L
-1

) (μg L
-1

) (μmol L
-1

) 

Al (26.98) 0.05 0.00185 0.25 0.00927 

As (74.92) 50 0.667 - - 

Cd (112.40) ≤ 0.08-0.25 0.000712-0.00222 0.045- 1.5 0.000400-0.0134 

Cl (35.45) 2 0.0564 5 0.141 

Cu (63.55) 1-28 0.0157-0.441 - - 

Fe (55.85) 0.016 0.000286 0.041 0.000734 

Mn (54.94) 7 0.127 24 0.436 

Ni (58.69) 20 0.341 - - 

Pb (207.2) 7.2 0.0348 - - 

Zn (65.37) 8-125 0.122-1.91 - - 
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3G. Data Used to Calculate Estimated Annual Flux from Mine Waste Tips 

at Devon Great Consols. 

Table 3.16: Estimated annual flux for selected metals and As leaving three tips at Devon Great 

Consols. Inter quartile range and mean concentrations used to derive fluxes. Sample locations used:  

Cinders drain (1), WAM tip drainage (4-8), precipitation launders (BH5 and 17).  

 DGC Cinders DGC WAM 

DGC Precipitation 

Launders 

Tip Catchment Area (m
2
) 84400 134535 115825 

Average Annual Rainfall (mm) 1289 1289 1264 

Range Cu (μmol L
-1

) 10.4 – 12.8 201 - 267 102 - 131 

Mean Cu (μmol L
-1

) 12.9 224 115 

Range Cu Flux (mol y
-1

) 1130 - 1390 34900 – 46400 14900 - 19100 

Mean Cu Flux (mol y
-1

) 1410 38900 16800 

Range Zn (μmol L
-1

) 2.05 -  2.38 12.0 – 12.9 13.4 – 18.0 

Mean Zn (μmol L
-1

) 2.24 12.6 15.3 

Range Zn Flux (mol y
-1

) 223 - 259 2074 - 2242 1968 - 2634 

Mean Zn Flux (mol y
-1

) 244 2180 2240 

Range Mn (μmol L
-1

) 3.33 – 4.47 32.1 – 41.8 69.4 – 99.6 

Mean Mn (μmol L
-1

) 3.88 37.0 81.4 

Range Mn Flux (mol y
-1

) 362 - 487 5570 - 7250 10200 - 14600 

Mean Mn Flux (mol y
-1

) 422 6410 11900 

Range Ni (μmol L
-1

) 0.252  - 0.292 0.91 – 1.31 2.34 – 3.28 

Mean Ni (μmol L
-1

) 0.285 1.11 2.72 

Range Ni Flux (mol y
-1

) 27.4 – 31.8 157 - 227 343 - 479 

Mean Ni Flux (mol y
-1

) 31.0 192 398 

Range Cd (μmol L
-1

) 0.0020 – 0.0021 0.019 – 0.025 0.022 – 0.029 

Mean Cd (μmol L
-1

) 0.00204 0.023 0.025 

Range Cd Flux (mol y
-1

) 0.213 – 0.228 3.35 – 4.32 3.25 – 4.30 

Mean Cd Flux (mol y
-1

) 0.222 3.76 3.65 

Range As (μmol L
-1

) 270 - 328 0.290 – 1.65 0.080 – 0.150 

Mean As (μmol L
-1

) 294 1.33 0.140 

Range As Flux (mol y
-1

) 29400 - 35600 50.3 - 286 11.7 – 22.0 

Mean As Flux (mol y
-1

) 32000 231 20.5 

Range Al (μmol L
-1

) 151 - 158 695 - 902 702 -1010 

Mean Al (μmol L
-1

) 154 823 828 

Range Al Flux (mol y
-1

) 16400 - 17200 121000 - 156000 103000 - 148000 

Mean Al Flux (mol y
-1

) 16700 142700 121000 

Range Pb (μmol L
-1

) <LOD 0.0060-0.020 0.00015-0.0209 

Mean Pb (μmol L
-1

) <LOD 0.015 0.0141 

Range Pb Flux (mol y
-1

) - 1.06-3.42 0.48-2.08 

Mean Pb Flux (mol y
-1

) - 2.60 1.29 
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3H. River Hydrographs  

River Tamar at Gunnislake, 1994-1995 and 2004-2009 (CEH, 2011). 

  

  

  

  

 

 

-End of Chapter 3- 
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4. Mine Waste Tips as a source of Metals and Arsenic 

Contamination, Case Study 2: Wheal Betsy 

4.1 Abstract 

   Cholwell Brook, a tributary of the River Tavy, receives drainage waters from 

mine waste tips at Wheal Betsy, an abandoned Pb-Ag mine.  The hydrology of the site 

was much simpler then at Devon Great Consols, with a short migration pathway (<10m) 

from tips to Cholwell Brook. Waste tips at the site are very heterogeneous, due in part 

to the varied mineralogy of the site, but are generally more permeable in the northern 

zone compared to the southern zone.  

 Background surface and groundwaters entering the site were already above 

environmental quality standards (EQS) for dissolved Cu and Mn. This was due to the 

mineralisation of bedrock geology in the area. However, dissolved metals in the waters 

of Cholwell Brook increased through the mine site such that Cholwell Brook failed long 

term EQS for Al, Zn, Cu, Pb, and Cd during seven surveys conducted between 2007 and 

2009. The highest exceedance was for dissolved Cd (0.018 μmol L
-1

, equal to 250 x 

EQS), dissolved Mn (11.0 μmol L
-1

, equal to 87 x EQS) and dissolved Zn (3.9 μmol L
-1

, 

equal to 55x EQS). 

 The concentration and estimated annual flux of dissolved Pb (0.45 μmol L
-1

, and 

783 mol y
-1

, respectively), and the estimated flux of dissolved Cd (470 mol y
-1

) were 

higher than identified elsewhere in the catchment by previous studies. Arsenic and Fe 

mobility was limited due to the shallow and oxic nature of surface and ground waters at 

the site. 

 Concentrations and fluxes of dissolved metals increased with increased rainfall 

and this was attributed to higher water tables in the base of the northern mine waste tips. 
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The reactivity of the stream waters to rainfall highlights the importance of considering 

hydrological factors in such investigations. Concentrations of dissolved metals in 

shallow groundwaters confirmed  the mine waste to be a source of mobile contaminant 

metals to Cholwell Brook, but seepage from underground workings may also contribute 

to base flow, and are worthy of future investigation.  

4.2 Introduction and Aims 

  In Chapter 3 the diffuse mine waters emanating from the mine waste at Devon 

Great Consols were investigated and concentrations of dissolved metal and metalloids 

were determined. From this data and measured and modelled hydrological data for the 

site, annual fluxes emerging from the tips were predicted. The same approach was 

adopted at the second study site, Wheal Betsy, an abandoned Pb-Ag mine with 

contrasting hydrology and mineralogy. The aims, objectives and methodology are 

identical to those presented in Chapter 3, in sections 3.3 and 3.6 respectively except 

where indicated in section 4.4. 

4.3 Background Information: Wheal Betsy  

4.3.1 Location and Ownership 

  A summary of the location and key environmental features of the site were 

provided as a case study in Chapter 2 (section 2.6.3). Wheal Betsy is situated within 

Dartmoor National Park, approximately 1.5 km N of the village of Mary Tavy (Figure 

4.1), and 9 km NE of the ancient stannary town of Tavistock.  

 The site is owned by South West Water (SWW), who are responsible for the 

capping and securing the exposed mine shafts. The engine house and chimney on the 

site are owned by the National Trust. The land to the east of Cholwell Brook (Figure 

4.2) is part of Cholwell Farm, which comprises private farmland and riding stables is 
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owned by the Powell family. Permission from SWW was gained to install shallow 

ground water boreholes and conduct regular site visits. Permission was also granted by 

the Powell family to gain access to Cholwell Brook from the E bank in order to safely 

take water samples from the brook and to access borehole water from a tap located in 

the stable yard.  

 

Figure 4.1: Wheal Betsy site located NE of Mary Tavy, as it appears on current OS 1: 

50000 scale map. © Crown Copyright and Landmark Information Group Limited 

(2010). All rights reserved.  

4.3.2 History 

   Wheal Betsy was worked for lead  and silver from the 13
th

 Century (Hamilton 

Jenkin, 2005). The recorded output of the mine to its closure in 1877 was 400 t Pb and 

113 kg Ag (Booker, 1967). The mine underwent several changes of name and owner 

during its operation and between 1816 and 1837 was operated  in conjunction with 

Wheal Friendship a neighbouring mine to the south. The mines exploited part of the 

“Great Crosscourse” (Richardson, 1995), one of the N-S tending mineral lodes found 

throughout south west England . The north–south cross-courses are younger than the 
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east-west deposits (like those exploited at Devon Great Consols) being emplaced in the 

post-granite phases of mineralisation  and are typically characterised by veins of quartz 

with Pb-Zn-Ag sulphides, fluorite and siderite (Durrance and Laming, 1982). 

 Twelve shafts were sunk along the N-S tending mineral lode, extending to 

approximately 270 m depth near to the engine house, which was built in the 1840s. A 

historical map dated 1884 and a schematic of the underground layout are shown in 

Figure 4.22 and  Figure 4.23, respectively (Appendix 4A).  

 The historical map shows many small buildings and features indicating that 

extensive mineral processing was conducted at the site during its operation.  There are 

also reports that ores were smelted on site using peat cut from nearby deposits 

(Hamilton Jenkin, 2005). The current extent of the waste tips approximately matches 

the outline from 1884, although from site inspections it appears that some waste 

material has been removed, particularly from the most westerly area, adjacent to the 

main road (A386).  

4.3.3 Site Topography, Hydrology and Mine Waste Mineralogy 

  Cholwell Brook, flows approximately north to south through the site and is 

hosted in a steep valley. The brook is a tributary of the River Tavy and joins it 

approximately 2 km downstream. The brook is recognised as a geological site of special 

scientific interest (SSSI), as it clearly displays a thrust contact (fault boundary) between 

the Bealsmill Formation, and the lower Greystone Formation created during the 

Variscan Orogeny (DCC, 2011).  

 The mine waste at Wheal Betsy comprises a collection of tips which vary in 

size, appearance and size grading. At the northern end of the site, the tips are 

exclusively found on the western bank of Cholwell Brook near the engine house shown 

in Figure 4.2 and photograph 1 (all photographs in Appendix 4B). These tips are steeply 

sloping and contain coarse gravels, pebbles and small sub-angular and angular cobbles. 
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There is evidence of ongoing erosion of the tips as a result of slope instability and 

physical weathering. Freeze-thaw fracturing of the consolidated tip material has also 

been observed during winter site visits. The major mineralogical components of the 

mine waste, visible to the naked eye, are slate, quartz, siderite (FeCO3) with small 

amounts of galena (PbS,), arsenopyrite (AsFeS) and sphalerite (ZnFeS).  

 Where stable, the tips were partially vegetated with a mixture of gorse, heather 

and grass. On sparsely vegetated areas of waste, bryophyte species and lichens are also 

observed. To the south of the site the tips appeared to be generally finer grained, and 

vary greatly in colour from bright yellow clays, through coarser orange sands to grey 

platy weathered slates. Cholwell Brook passed directly through the waste in the 

southern part of the site (Figure 4.2 and photograph 2). The southern tips, being of finer 

particle size, may represent the tailings from mineral processing at Wheal Betsy. 

Alternatively, they may be characteristic of the mineralisation surrounding the fault 

boundary which comprise a tectonic mélange consisting of clasts of sandstone, chert, 

dolerite, limestone and volcanics set in a soft clay gouge matrix (DCC, 2011). A 

wooden chute is still visible from the brook approximately halfway along the south tips 

(Photograph 3). The southern waste tips contain largely slate and sandstone which 

comprise the country rock. Hard pan horizons and crusts are visible in both the north 

and south spoil material (see example in photograph 4). 

 Mineralogical studies have revealed that a host of other minerals are present 

within the tips including iron pyrite (FeS2), calcite (CaCO3), löllingite (FeAS2), 

chalcopyrite (CuFeS2), rhodochrosite (MnCO3), marcasite (FeS2) and vivianite 

(Fe3(PO4)2.8H2O) (Page, 2008). The contribution of each of these minerals to the 

overall volume of waste is unknown and extremely difficult to estimate due to the 

heterogeneity of the tips.  
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 The predominantly slate bedrock was encountered at shallow depths (< 1 m), 

and was visible along the steep sided valley and in the base of Cholwell Brook. There 

were no superficial deposits. Profiles of transects marked in Figure 4.2 are show in 

Figure 4.3 and demonstrate the steep sided valley (average slope 12-15°) in which the 

site is located. The OS 10 m contours used to plot the transects have included some of 

the spoil topography in addition to the land surface; this is most obvious on transect A-

B which cuts through the largest area of waste. 

 

Figure 4.2: Schematic diagram showing mine waste tips at Wheal Betsy comprising 

coarser waste in northern tips (orange) and finer tailings in south tips (grey).  Large blue 

arrows represent direction of shallow ground water flow. 

 The direction of shallow groundwater movement was expected to follow the 

topography of the site, draining into Cholwell Brook (shown as thick blue arrows in 
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Figure 4.2). Deeper ground water is likely to be influenced by the deep mine workings 

below the site. It is possible that there is hydraulic connectivity with the workings of 

Wheal Friendship located approximately 1km to the south of the site, however records 

suggest that the mines were worked independently of one another (Booker, 1967). 

 

Figure 4.3: Cross sections through Wheal Betsy site as marked on Figure 4.4. 

Note the step A-B transect at approximately 150 m, this is due to the contour 

data including the main mine waste heaps.  

4.4 Methods 

4.4.1 Reagents  

See Chapter 3, section 3.6.1. 

4.4.2 Cleaning Protocol 

See Chapter 3, section 3.6.2 
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4.4.3 Sampling Protocol and Sample Treatment 

Sampling Strategy 

  Waters from Cholwell Brook were sampled at the intervals marked in Figure 

4.4.  Samples 1 and 2 were taken upstream of the visible and known extent of the mine 

waste and underground workings. Samples 12 and 13 were downstream of the mine 

waste.  

 

Figure 4.4: Schematic overview of Wheal Betsy next to Cholwell Brook (River Tavy), 

showing location of major waste tips, surface water (red) and borehole samples (blue), 

ephemeral streams and drainage channels. 

 Where found, surface drains entering the brook were also sampled (samples 14-

17, orange boxes), and brook samples were taken upstream and downstream of these 
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inputs. The aim was to delineate the surface point inputs from the diffuse inputs as the 

brook flows alongside the mine waste.  There were no obvious adit discharges into the 

brook. 

The northern part of the site provided the best opportunity to capture shallow ground 

waters entering the brook from the base of the mine waste. Five boreholes were 

installed as shown in Figure 4.4 and listed with depths, in Table 4.1. 

Table 4.1: Borehole depth data and observations. CB= Cholwell Brook. Core logs are presented in 

Appendix 4C. 

Borehole  Depth (at installation)/Location Additional Comments 

1 0.52  m. West bank of CB, adjacent to 

sample 7 

Dry on all subsequent surveys.  

2 0.88 m. In vegetated area between base 

of waste tips and CB 

Waters clear, borehole sometimes dry. 

Rapid recharge. 

3 0.83 m. Base of coarse waste tip. 

Sparsely vegetated with heather. 

Waters dark brown to clear, some  dark 

brown suspended  particles. Rapid 

recharge. 

4 1.15 m. In grassy area adjacent to 

sample 6. 

Waters ocherous to clear, some light 

brown suspended particles. Rapid 

recharge 

5 0.95 m. At base of waste tips beneath 

engine house. 

Waters clear with some light brown 

suspended particles. Sometimes dry. 

Rapid recharge. 

6 Waters from upstream ground water 

reservoir. 

Waters clear. 

   

 Boreholes were drilled using a combination of a portable pneumatic drill and 

hand-auguring. Cased boreholes were installed and waters sampled and treated as 

described in Chapter 3, section 3.6.3. Each ended when slate bedrock was encountered. 

All cores removed contained a high proportion of loose mine waste of varying size 

fractions (for detailed content, see Appendix C).  Boreholes 3 and 5 were drilled into the 
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foot of the largest mine waste tips to capture waters percolating through the mine waste. 

Boreholes 1, 2 and 4 targeted waters moving through the shallow subsurface shortly 

before entering Cholwell Brook.  

 BH1 proved dry in all subsequent visits. A sixth borehole was attempted 

upstream of the site but failed to encounter ground water after drilling to 2 metres. 

However, an underground reservoir was located in approximately the same area, up 

catchment from the mine site. The reservoir, which used to serve the town of Mary 

Tavy is piped directly to a tap at Cholwell Farm via plastic pipes. With the owner‟s 

permission, this was used to sample the background groundwater quality at the site and 

was allowed to flow for several minutes before measurements and samples were taken.  

Rainfall and Temperature 

 Rainfall data was downloaded for the 14 days preceding each site visit from the 

nearest MIDAS  land surface data station (MetOffice, 2009), located at Blackdown: 

Wheal Jewell Reservoir (SX 521814), approximately 1.3 km NE of the site. Rainfall 

data and water temperatures for each sampling round are summarised in Table 4.2.  

 The ten year average rainfall (1999-2009) recorded at Blackdown 

was 4.6 mm  d
-1 

which is higher than the catchment average of 4.0 mm d
-1

. The 

frequency of a heavy rain event (> 20 mm d
-1

)  during the same ten year period was on 

average 17 days, placing it in the “Extreme Risk” category for rain intensity within the 

Tamar catchment (see Chapter 2, section 2.5.5). As for Devon Great Consols, the 

sampling campaign set out to encompass the range of hydrological conditions.  

 Sample temperatures were relatively consistent between boreholes and surface 

waters, compared with DGC waters. The exception was winter, where ground waters 

obtained from the upstream underground reservoir (minimum 0.4 °C), were colder than 

other samples.  Surface waters (6.5-13.0 °C) were not much warmer than groundwater 

(0.4 - 14.6 °C), even in summer, and some borehole waters were warmer than stream 
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waters.  This indicated rapid transport of the waters from source and through Cholwell 

Brook and insufficient time for waters to equilibrate with warmer air temperatures. 

Slower transport in shallow groundwater could account for the difference, but it may 

also indicate local warming by reactions taking place within the waste, specifically 

pyrite oxidation which is highly exothermic (1409 kJ mol
-1

, (Wels et al., 2003)).  

Table 4.2: Surface water sample temperatures and rainfall data for Wheal Betsy preceding each 

site visit. Rainfall data obtained from nearest MIDAS land surface station at Blackdown: Wheal 

Jewell reservoir (SX 521814), located 1.4 km NE of site. Ten year (1999-2009) average for station = 

4.6 mm d
-1

  and Tamar catchment = 4.0 mm d
-1

.*Sampling conducted a few days after extensive 

snow-melt. 
1
Borehole samples in parenthesis.  

Sampling 

Date 

Sample Temp 

(°C)
1
  

Rainfall in 7 days before sampling 

(mm) 

Rainfall 

on day 

(mm) 

7 Day 

Total 

(mm) 

14 Day 

Total 

(mm) 

  Day: 7 6 5 4 3 2 1 0   

03/07/2007 10.6 – 11.7  20.5 14.5 1.6 1.4 14.7 11.9 7.6 8.3 72 143 

27/08/2008 

11.3 – 12.6 

(11.2 – 14.5)  7.8 0.5 0.0 18.8 2.4 0.0 0.0 2.5 30 85 

16/10/2008 (12.1 – 14.2)  0.1 0.0 0.0 0.2 0.5 7.3 1.0 0.3 9.1 89 

10/12/2008 

6.9 – 7.7 

(0.4 – 10.2)  17.3 19.0 3.6 0.0 0.1 5.3 2.7 1.2 48 74 

12/02/2009* 

6.3 – 7.5 

(4.1 – 8.9)  6.1 0.1 1.4 10.7 22.1 0.9 0.0 0.0 41 60 

09/05/2009 

10.0 – 10.8 

(10.2 – 12.2)  0.0 0.0 0.0 1.6 2.2 2.1 0.0 0.0 5.9 29 

23/07/2009 

11.2 – 13.0 

(10.5 – 14.6)  30.1 8.6 4.3 4.2 10.0 14.2 0.0 31 71 127 

 

  Sampling conducted on the 03/07/2007 comprised the initial investigative 

survey; conditions were very wet in the 14 days before the survey (143 mm) and a 

number of surface discharges were evident which were not seen again during other 

rounds. Relatively dry conditions preceded the 09/05/09 survey (29 mm in 14 days. All 

other surveys were conducted in relatively wet conditions, following average (60 mm, 
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based on 4.6 mm d
-1

) to above average total rainfall in the previous 14 days (64-127 

mm). 

 Audible and visible freeze thaw erosion was witnessed from the slopes of the 

north waste tips during the winter surveys (10/12/08 and 12/02/09), the latter of which 

followed thawing of heavy snowfall over a number of days. Very heavy rain (and hail) 

fell on the 23/07/09 during sampling of Cholwell Brook resulting in high surface run-off 

from the waste tips and visibly turbid stream water. 

Sampling, In-situ determination and Sample Treatment 

  All procedures followed those previously described for Devon Great Consols 

samples in Chapter 3, section 3.6.3. 

4.4.4 Instrumentation and Analysis 

 pH, Eh and DO meter calibration and elemental analysis conducted as described 

in Chapter 3, Section 3.6.4. 

4.4.5 Principal Component Analysis  

 Principal component analysis (PCA) (XLSTAT version 2010.4.01) was applied 

to the Wheal Betsy data set using the same method described for the Devon Great 

Consols data in Chapter 3, section 3.7.3. Observations were organized into groups 

according to sample type, as listed in Table 4.3. Borehole data was grouped individually 

by borehole number.  

 The first seven components cumulatively explained 82% of the variation in the 

data set (Table 4.4), and were used to investigate the geochemical character and 

variability of the data.  
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Table 4.3: Sample Type Groupings for the Wheal Betsy Data set. 

Sample Location Numbers Sample Type Grouping (PCA label) 

1 Cholwell Brook, upstream of Cholwell Farm (USF) 

2 Cholwell Brook, upstream of waste tips (USW) 

3-7 Cholwell Brook, alongside waste tips, N of bridge (CBN) 

8-12 Cholwell Brook, alongside waste tips, S of bridge (CBS) 

13 Cholwell Brook, downstream of  waste tips (DSW) 

14 Surface collection drain  from N waste (SDN) 

15-17 Surface collection drains from S waste (SD15,SD16,SD17) 

    

Table 4.4: Initial Eigenvalues from PCA analysis of the Wheal Betsy data set. 

  F1 F2 F3 F4 F5 F6 F7 

Eigenvalue 11.68 4.38 2.85 2.37 1.57 1.29 1.14 

Variability (%) 37.69 14.11 9.19 7.65 5.05 4.18 3.68 

Cumulative % 37.69 51.80 60.99 68.64 73.69 77.87 81.55 

4.4.6 Geochemical Modelling 

 The geochemical modelling code PHREEQC Ver.2.17.1 was applied to the 

Wheal Betsy data set. Speciation of elements and saturation indices for mineral phases 

in mine drainage waters were calculated from thermodynamic principals using the same 

databases and amendments described in Chapter 3, section 3.6.6. 

4.5 Results and Discussion 

4.5.1 Quality Control and Figures of Merit 

  Recoveries and limits of detection for all analyses of Wheal Betsy water 

samples are presented in Table 4.5. All other analytical procedures and instrumental 
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conditions were the same as for Devon Great Consols water samples, as presented in 

Chapter 3, section 3.7.1. 

Table 4.5: Limits of detection and CRM recoveries for all analysis of DGC samples. Certified 

reference material:TMDA-64 (fortified lake water), National Water Research Institute, Canada. 

CRM recoveries in bold indicate concentration was close to limit of linearity for instrument. 

*Guidance value on CRM certificate only. 

Element/ 

Anion 

CRM Value 

(μg L
-1

) ± 2σ 

limit Method  

Linear 

/Standard 

Range 

Limit of Detection 

(μmol L
-1

) 

CRM Recoveries (μg 

L
-1

) 

Al 265±30 ICP-MS 0.028-22 0.11 297 

As 150±22 ICP-MS 0.01-2.0 0.011 171 

B* 300 ICP-OES 0.1-1000 0.71, 0.73, 0.90, 0.79 280, 306, 312, 308 

Ca 13600* ICP-OES 0.5-5000 

0.076, 0.22, 0.019, 

0.0048  

13810, 14520, 14070, 

14071 

Cd 251±24 ICP-MS 0.001-2 0.0087 229 

Co 270±27 ICP-MS 0.003-10 0.088 278 

Cu 290±29 

ICP-MS 0.001-5 0.016 257 

ICP-OES 0.1-1000 0.20, 0.11, 0.11, 0.13 304, 317, 289, 293 

Fe 319±30 ICP-OES 0.1-1000 0.18, 0.47, 0.14, 0.19 315, 308, 357, 320 

Hg - ICP-MS 0.001-5 0.001 - 

Mg (3400*) ICP-OES 0.1-500 0.18, 0.02, 0.63 3553, 3351, 3702 

Mn 299±26 

ICP-MS 0.001-10 0.019 297 

ICP-OES 0.1-1000 

0.030, 0.041, 0.028, 

0.015 310, 295, 290, 296 

Mo 278±22 ICP-MS 0.0001-1 0.0016 254 

Na (4500*) 

FAAS 200-4000 2.0 4400 

ICP-OES 0.5-5000 6.1 4740 

Ni 262±23 ICP-MS 0.0005-2 0.0013 279 

K 580 FAAS 20-2500 0.4 600 

Pb 297±28 ICP-MS 0.003-10 0.0012 282 

Si - ICP-OES 0.5-5000 0.20, 1.30, 0.97 - 

Sb 125±20 ICP-MS 0.0005-1 0.0019 130 

Sn* 292 ICP-MS 0.001-5 0.0012 282 

V 272±26 ICP-MS 0.001-1 0.010 297 

W (0.06*) ICP-MS 0.0005-1 0.0058 0.14 

Zn (313*) 

ICP-MS 0.0010-10 0.0053 332 

ICP-OES 0.1-1000 0.22, 1.4, 0.55, 0.47 330, 288, 309, 320 

F
-
 - IC 10-5000 0.31 - 

Cl
-
 - IC 10-5000 1.3 - 

SO4
2- 

- IC 10-5000 1.7 - 
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4.5.2 Site Hydrology 

 Increased rainfall conditions in the days preceding each sampling visit resulted 

in a measured change in the levels observed in boreholes and the flow of Cholwell 

Brook.  Flow rates for Cholwell Brook and surface drains are tabulated in Table 4.6. 

The flow in Cholwell Brook was extremely variable (12-459 l s
-1

) and variation was 

both spatial and temporal. Maximum flows were recorded approximately halfway 

through the site in most rounds (underlined, Table 4.7), whilst in others (03/07/07 and 

10/12/08) flow in the middle section of the brook was relatively low.  

 It is known that extensive underground mine excavations exist on the site with a 

number of shafts extending N-S from the Engine House (see  Figure 4.22, Appendix 

4A). The engine house is approximately 440 m along the length of the sampled section 

of Cholwell Brook. If it assumed that this approximately marks the onset of the mine 

workings at Wheal Betsy, from this point onwards the base flow of Cholwell Brook 

may be affected. The significant storage capacity underground could augment or abate 

the flow in Cholwell Brook depending on the water level in the underground workings. 

Also, the underground workings at Wheal Betsy may have hydraulic connectivity to 

another mine located approximately 300m to the south (Wheal Friendship). This might 

explain why the flow in Cholwell Brook tends to decrease towards the S end of the site, 

despite receiving surface run-off from the surrounding land and dropping evenly in 

height by approximately 30 m.  

 The highest flow (459 L s
-1

) was recorded on 23/07/09. The intense rainfall 

experienced during this visit began during sampling at sample 13, and continued 

through sampling (upstream) to sample 3. The speed with which flow visibly increased 

in the brook infers a very rapid transport time for waters entering the watercourse. 

Therefore the variability in flow recorded in Cholwell Brook on this occasion was likely 

to be enhanced by the influx of surface waters following the onset of heavy rain and 
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hail.    The amount of rainfall falling on the site in the preceding days to each site visit 

was also reflected in the borehole water levels (Table 4.6).   

 BH2 was completely dry on two occasions during periods of low rainfall, whilst 

the highest levels were observed following the wettest period captured by the sampling 

schedule, on 23/07/2009, amounting to 72 mm of rain in the preceding 7 days.   It is 

important to note, particularly when comparing data with Devon Great Consols, that the 

boreholes at Wheal Betsy were largely hosted within the waste tips themselves. The tips 

(cinders, WAM upper and precipitation launders) at Devon Great Consols were situated 

above the water table (although internal perched tables may have existed). In contrast 

evidence from borehole levels and borehole logs (Appendix 4C) suggests that a 

significant proportion of the mine waste in northern tips at Wheal Betsy lies in the 

phreatic zone. Therefore, with the exception of surveys following very dry periods (< 

30 mm in 7 days), the mine waste at the base of the tips is subjected to continuous 

flushing by groundwaters. 

Table 4.6: Water levels in shallow ground water boreholes installed at Wheal Betsy. Data presented 

as metres above a 1m ordnance datum (mAOD). Total rainfall recorded for 7 days prior to visit in 

parenthesis. Highest water level in bold for each location. 

Water Level (mAOD) 

Sampling Date Borehole No: 2 3 4 5 

27/08/2008 (30 mm  rainfall)  0.23 0.43 0.44 0.29 

16/10/2008 (9 mm rainfall)  0.00 0.24 0.29 0.16 

10/12/2008 (48 mm rainfall)  0.35 0.26 0.39 0.26 

12/02/2009 (42 mm rainfall)  0.34 0.44 0.45 0.29 

09/05/2009 (6 mm rainfall)  0.00 0.25 0.30 0.13 

23/07/2009 (72 mm rainfall)  0.35 0.40 0.60 0.34 
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Table 4.7: Flow data (L s
-1

) calculated for Cholwell Brook and surface drains at Wheal B/etsy during water sampling rounds. *Sampling conducted a few days after 

extensive snow-melt. (-) = No result for sample location on particular round due to contstraints of accessability. Drain 16 appears to be surface runoff entering brook next 

to bridge; flow rate could not be measured due to thick vegetation (mainly gorse) at entrance point. Maximum flow for each visit is underlined.  

Flow ( L s
-1

) 
Cholwell Brook (N-S) Surface Drains 

Distance along Cholwell Brook (m): 0 190 295 305 435 445 575 640 730 785 795 950 1025 300 440 635 790 

Sampling Date Sample No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

03/07/2007  48 - 53 13 13 35 35 - - 190 190 79 - 1.2 1.3 - 0.7 

27/08/2008  - 38 64 85 - 176 115 - - - - - - 0.5 - - - 

10/12/2008  - - - 125 - 64 61 83 103 - - - 97 0.1 - - - 

12/02/2009*  - 68 - 74 - 145 313 121 87 - - - 105 2.6 - - - 

09/05/2009  - 20 - 12  35 49 15 41 - - - 39.6 0.1 - - - 

23/07/2009  - - 32 32 - 459 76 131 107 - - - 107 0.6 - - - 
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4.5.3 Principal Component Analysis (PCA) 

 Separation of samples in PCA, appeared to be largely based on the enrichment 

of all dissolved ions (with the exception of trace Hg), leading to a positive F1 shift and 

the DO concentration of the waters, leading to a positive F2 and slightly negative F1 

shift. This is shown by the variable and observation plots of F1 vs. F2 in Figure 4.5. 

Major contributors to the first principal component (F1) were dissolved Ni (7%), Ca 

(7%), Sr (7%), Zn (7%), sulphate (7%), Cd (7%), Pb (6%), Mn (6%), Fe (5%), Ba (5%), 

Co (5%) and Mg (5%), accounting for 38% of the total variability of the WB data set.   

 These dissolved species are all likely dissolution products of the mine waste tips 

as a result of the oxidation of mixed sulphide minerals. Dissolved Ni, Zn, sulphate, Cd, 

and Pb all figure strongly as may be expected given the type of mining conducted (Pb-

Ag-Zn). As for the DGC data set, dissolved Cu again plays less of a role in describing 

the variability of the data than other metals derived from the common metal sulphide 

ore minerals. Dissolved Ca, Sr and Ba also contribute largely to F1, suggesting a 

carbonate source, attributable to marine rainwater or possibly released from buffering 

reactions of acidic mine waters (e.g. Equation 12, Chapter 3, section 3.4.3). However 

the overall carbonate content of the host rocks are low in this area (BGS, 2010) and 

therefore the acid neutralising potential is also likely to be low. The second principal 

component (F2), which accounts for 14% of the total variability, was mostly attributable 

to dissolved oxygen (15%), conductivity (15%) and temperature (9%). The distribution 

of variables and observations with respect to F1 and F2 are shown in Figure 4.5. Overall 

there is limited separation of the data set because the main variables of interest (Zn, Pb, 

Cu, Cd, Mn, As, [H
+
], sulphate) are orientated similarly on the variables plot (upper 

graph, Figure 4.5).  

 A nucleation of samples (Figure 4.5, circle A) with slight negative F1 character 

and slightly positive F2 character was observed and the majority of these samples 
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comprise Cholwell Brook waters. When examined in detail there was no obvious trend 

between location on the diagram and distance along the water course. However samples 

up stream of the visible mine waste (labelled as USW, Figure 4.5) tend to spread 

towards the negative axis of both F1 and F2. Borehole samples spread from negative F1 

and F2 character to towards slightly positive F1 character and positive F2 character. 

There was no obvious location specific trend in the character of borehole waters. The 

difference between samples was attributed to the residence time of groundwaters within 

the waste, which is likely to control the degree of saturation with respect to dissolved 

species and sample temperature.   

 Plots of F3 vs. F1 (not shown here) and F4 vs. F1 (also not shown) grouped 

Cholwell Brook samples and resolved borehole samples similarly to the F2 vs F1 plot 

shown. No further division of the samples into discernable groupings was observed 

when lesser principal components were compared.  Principal component F3, which 

accounted for 9% of the total variability, was most strongly influenced by Ag (14%), Sn 

(14%) and B (13%).  Principal component F4 accounted for 8% of the total variability 

and was most strongly influenced by nitrate (15%), Sn (14%), Ag (13%) and B (10%). 

Ag and Sn generally exhibit very low solubility, and are present in very small amounts 

in some of the samples but were <LOD for most. The distribution of dissolved B 

throughout the samples and its high contribution to the variability of the data set 

suggests something within the site is acting as a source either within the waste or an 

alternative source. In other studies of surface and ground water geochemistry, elevated 

B has been attributed to sulphur-rich coal mines (Craw et al., 2006), domestic and 

industrial effluents and the weathering of boron-containing minerals, such as 

tourmaline, clays and Fe-oxides (Jahiruddin et al., 1998; Shand et al., 2007) . Waters at 

Devon Great Consols and Wheal Betsy both show variable B concentrations (3.1-60.0 

μmol L 
-1

 and  (0.04-9.1 μmol L 
-1

, respectively), but both are within range of naturally 
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occurring UK groundwaters (Shand et al., 2007).    

 

 

Figure 4.5: Plots of F1 and F2 principal components showing distribution of variables (above) 

and observations for the Wheal Betsy Data Set. Group A: Cholwell Brook samples. 
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4.5.4 Major Ions 

 The composition of the surface waters and boreholes with respect to major 

cations from all sampling rounds at Wheal Betsy are presented as molar percentages in 

ternary diagrams (Figure 4.6 and Figure 4.7). Overall, the data is grouped towards the 

bottom right corner of the plot, representing a high molar fraction of Na and K similar 

in composition to average rainwater, determined for Plymouth from Coles (1999).  

 Both boreholes and surface waters show a spread of data toward slightly higher 

Ca with respect to Na and K. The largest shift is observed from ground waters upstream 

of the mine, (12.4-13.6 μmol L
-1

) to BH2 and BH3, highest in Ca (78.1-178 μmol L
-1

).  

The plots suggest that interaction with soils or mine waste increase the proportion of 

dissolved Ca, a trend that was also seen for the Devon Great Consols data set (shown in 

grey for reference in Figure 4.7).  

 Overall, waters flowing through the Wheal Betsy site remain close to their 

source composition; either rainwater, groundwater or a mixture of the two. These 

findings concur with the hydrological observations to suggest that, due to rapid 

transport times and situation of the site in the upper reaches of the catchment (River 

Tavy), rainfall needs to travel a short distance before reaching the boreholes and 

Cholwell Brook. Therefore, waters are unlikely to reach equilibrium with respect to the 

mineral phases encountered in the waste.  
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Figure 4.6: Molar percentage of major cations for surface water samples from Wheal 

Betsy, grouped by sample type.  Mean rainwater composition for Plymouth also shown 

(Coles, 1999). 

 

Figure 4.7: Molar percentage of major cations for borehole water samples from Wheal 

Betsy.  Mean rainwater composition for Plymouth also shown (Coles, 1999). Cholwell Brook 

samples (grey circles), Devon Great Consols surface drains (grey triangles) and boreholes 

(grey squares) also shown for comparison.  
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4.5.5 Master Variables  

Conductivity and Total Suspended Solids (TSS) 

 Conductivity in all water samples ranged from 101 to 1480 μS (Figure 4.8). This 

was similar to the range observed in drains at Devon Great Consols (140-1040 μS) and 

much higher than in the River Tavy (5.0-17.7 μS cm
-1

, Jan 1997-Dec 2006, EA). 

Borehole waters had higher conductivity than samples taken from Cholwell Brook and 

surface drains. However, unlike the Devon Great Consols site, samples showed a high 

degree of consistency with respect to sampling rounds, with the highest conductivities 

measured during the driest sampling condition (09/05/09, open triangles, Figure 4.8). 

The conductivities recorded on the 23/07/09 were slightly higher than other „wet‟ 

rounds and this may be attributed to the high intensity rainfall which fell during the visit 

causing increased turbidity. The major contributors to conductivity were major ions: 

Na
+ 

(183-660 μmol L
-1

), Cl
- 
(13.0-837 μmol L

-1
), Ca

2+
 (12.4-178 μmol L

-1
), Mg

2+
 (36.3-

116.5 μmol L
-1

), and dissolved Si (44.2-115 μmol L
-1

). 

 Total suspended solids were low in upstream groundwater (<LOD (0.72 mg L
- 1

) 

-17.2 mg L
-1

) and in upstream brook samples (all <LOD). Suspended particulates varied 

widely in concentration in waters from the boreholes (7.6 mg L
-1 - 

6.6 g L
-1

). Brook 

samples through the site were generally low (<LOD-32.8 mg L
-1

) but were increased as 

a result of heavy rainfall (23/07/09) and snow melt (12/02/09), to a maximum of 176 

mg L
-1

 (sample 6, 12/02/09). However this is 200 times less than recorded in surface 

drains from WAM Upper tip at Devon Great Consols. Tips at DGC were more 

obviously susceptible to wind and water erosion, due to the lack of vegetation, low 

cohesion of tip material and unstable slope angles (physical properties determined by 

Mighanetara (2009)). At Wheal Betsy, the top surfaces of the north and south tips are 

largely vegetated and have extensive hardpan layers,  giving increased protection, 

although erosion from the exposed slopes is a visibly on-going process. 
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Figure 4.8: Conductivity measurements recorded at Wheal Betsy during seven surveys.   

pH, Eh and Dissolved Oxygen 

 The pH fluctuated widely across all sampling locations and rounds (pH 3.2-6.1, 

Figure 4.9). This is attributed to the fast and turbulent transport of waters through the 

site both in the brook and in surface and subsurface drainage from the tips.  Accordingly 

brook and surface drains remained oxic with positive Eh (320-750mV, Figure 4.9) and 

high dissolved oxygen 8.9-13.5 mgL
-1

 (Figure 4.10). The pH of both upstream 

groundwater (pH 4.3-6.1) and upstream surface water (pH 4.6-6.1) entering the site 

were generally acidic due to the rainfall pH (around pH 5, EA (2008)) and catchment 

dominated by acidic soils and carbonate poor bedrock. Readings were varied and 

occasionally high, suggesting a flashy catchment response to incoming rainfall and a 

short residence time in subsurface systems. The highest pH values (>pH 6, 27/08/08) 
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may indicate the influence of some carbonate or aluminium silicate buffering in the 

upstream waters. Instrument error or drift also cannot be ruled out, but recorded drift 

was in all cases <0.3 pH units over the course of 18hrs, and so was unlikely to adversely 

distort the data. Furthermore, these values are within the range of published pH for 

groundwaters draining Dartmoor granites (pH 4.3-7.2, Smedley and Allen, (2004)). 

 BH2 (pH 4.0-4.5) and BH3 (pH 3.8-4.7) had significantly lower pH than waters 

in the northern stretch of Cholwell Brook, but otherwise there was no spatial control on 

the occurrence of low pH waters, with acidity (as [H
+
]),  spanning three orders of 

magnitude in the stream waters during the period of investigation.  

 Measured Eh in boreholes showed that reducing conditions were not prevalent, 

although the sampling round on the 23/07/09 returned lower Eh results in BH4 (288 

mV) and BH5 (378 mV), compared with all boreholes and across previous rounds. 

Boreholes on this occasion were sampled before the onset of heavy rain and therefore 

may have been more stagnant than the high rainfall figures suggest. Dissolved oxygen 

was generally lower in boreholes than Cholwell Brook and surface drains; this was 

despite high Eh results. Field determination of Eh by this method are generally 

considered inaccurate beyond determination of extremes of  reducing and oxic 

conditions (Christensen et al., 2000). Therefore detailed analysis of the Eh results, 

particularly in very oxic waters, should be approached with caution.       

  Overall, waters migrate only a short distance from mine waste to Cholwell 

Brook (< 10m) and are rapidly transported downstream.  There is less time for wasters 

to approach chemical equilibrium with waste minerals and soils, compared to waters 

migrating through the Devon Great Consols site. The result is a greater variability in the 

chemio-physical character of the waters. Variability is also exhibited by the 

concentrations of dissolved  metals, metalloids and anions.  
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Figure 4.9: Measured pH (above) and Eh (below) in Wheal Betsy surface and borehole samples 

determined from seven surveys.  Wet weather sampling rounds denoted by filled symbols, dry 

rounds denoted by hollow symbols.   
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Figure 4.10: Dissolved oxygen in Wheal Betsy surface and borehole samples determined from seven 

surveys. Samples 1 and 2 upstream of mine waste and known workings, U/S GW represents 

background groundwater concentrations. Wet weather sampling rounds denoted by filled symbols, 

dry rounds denoted by hollow symbols.   

4.5.6  Dissolved Metal, Metalloid and Selected Anion Concentrations 

  In this section the concentrations of dissolved metals and metalloids in the 

drainage waters of Wheal Betsy will be discussed. PCA indicated that variations in 

geochemistry were largely due to residence time and DO content, and separated ground 

waters from stream waters.  Since this indicates a much simpler system than at Devon 

Great Consols, drainage waters are examined by elemental groupings, rather than 

isolation of waters with a specific geochemical signature.  
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Aluminium and Iron 

 Dissolved Al concentrations in ground and surface waters (Figure 4.11) were up 

to three orders of magnitude lower than those observed at Devon Great Consols. 

However, all waters still exceeded EQS values for dissolved Al concentrations (0.009 

μmol L
-1

, short-term maximum, Chapter 3, Appendix 3D). PHREEQC calculations 

showed dissolved Al was most likely to occur as the trivalent free ion, but mono- and 

di-hydroxides were also predicted.  In samples with highest sulphate, i.e. groundwaters 

in receipt tip drainage, the formation AlSO4 was also favoured.  

 The pH range of the waters lies in the expected range of an aluminium buffered 

system (~pH 4.5-6.0, depending on mineral phases present). Carbonate buffering is 

unlikely to buffer significantly in this catchment, based on the slate dominated bedrock 

geology and acidic soils (Chapter 2, section 2.4.3), so dissolution of Al-containing 

phases is likely to be the dominant buffering mechanism. This was confirmed using the 

PHREEQC code and waters in Cholwell Brook were calculated to be saturated with 

respect to kaolinite (Al2Si2O5(OH)4), just saturated (SI > 0, < 1) with respect to gibbsite 

(Al(OH)3) and basaluminite (Al4(SO4)(OH)10.4H2O), but undersaturated with respect to 

alunite (KAl3(SO4)2(OH)6) and jurbanite (AlSO4(OH)·5H2O). Gibbsite, as the first 

hydroxyl product, is likely to precipitate in the range pH 4.5-5.0 (Nordstrom and Ball, 

1986) but in the turbulent waters of the brook, it is possible that some of this may 

remain in solution as monomeric or colloidal species. Importantly, the monomeric form 

is  primarily responsible for Al toxicity in aquatic systems (Wauer et al., 2004). 

 Dissolved Al concentrations in borehole waters (1.6-21.8 μmol L
-1

 Al) were 

generally higher than in surface waters from the same survey and were calculated to be 

undersaturated with respect to all Al phases. This demonstrates that equilibrium of the 

waters with respect to the mineral assemblage was not achieved under conditions 

captured by the seven surveys. 
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 Dissolved Fe concentrations were higher than the long-term EQS value 

(equivalent to  0.000286 μmol L
-1

) with a range of < LOD (0.04)-1.2 μmol L
-1

 in surface 

waters and 0.6- 44.3 μmol L
-1

 in boreholes (excluding upstream groundwater, Figure 

4.11). Boreholes at Wheal Betsy were shallow and oxic, with measured Eh similar to 

surface waters. Dissolved oxygen levels were variable (4.2 – 11.4 mg L
-1

), but waters 

did not become sufficiently reducing for Fe
2+ 

to be the dominant redox state (from 

PHREEQC modelling).  However, higher dissolved Fe in borehole samples was co-

variant with lower dissolved oxygen and increase in Fe
2+

 relative to Fe 
3+

 in solution. 

   The elevated concentrations of dissolved Fe may have arisen because waters 

were not at equilibrium. However, samples were not filtered for 12 hours post-

collection and were not depleted in DO, so this is unlikely since oxidation of Fe
2+ 

to a 

Fe
3+ 

precipitate (Fe(OH3), is a relatively rapid process, (e.g. approximately 10
−9

 mol L
−1 

s
−1

 to 3.27±0.01×10
−6 

mol L
−1

 s
−1

, Kirby and Brady (1998)), particularly in the presence 

of catalysing bacteria known to thrive in acidic mine waters.  Closer inspection of the 

data set reveals that the median Fe concentration for each borehole was low (1.4-1.9 

μmol L
-1

) compared to the range, and that the highest Fe concentrations were recorded 

in the first sampling round, shortly after the installation of the boreholes. It is likely that 

a colloidal fraction of Fe permeated the 0.2 μm filters used to isolate the dissolved 

fraction and that this was enhanced by disturbance of the boreholes during installation.  

The relatively low rainfall at this time (14 days previous to 28/08/08) may not have 

been sufficient to adequately flush the borehole prior to sampling. If these high results 

are excluded, Fe concentrations are only slightly elevated in BH3, BH4 and BH5 with 

respect to surface drains and Cholwell Brook.  

 The surface drains were not enriched in either dissolved Al or dissolved Fe, and 

there was no obvious effect,  either positive or negative from these inputs (samples 14-

17, Figure 4.12). 
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Figure 4.11: Dissolved Al (top) and Fe (bottom) concentrations in Wheal Betsy surface and 

borehole samples determined from seven surveys.  Remaining explanations as for Figure 4.10. LOD 

for Al and Fe typically 0.1 μmol L
-1

 and 0.2 μmol L
-1

, respectively. Long-term  freshwater EQS for 

dissolved Al and Fe equal to 0.00185 μmol L
-1

 and  0.000286 μmol L
-1

, respectively.  
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 Figure 4.12: Dissolved Al and Fe in Cholwell Brook waters during seven surveys.  Dashed vertical 

lines show inputs from surface drains (14, 15,16 and 17). Annual average EQS shown as dotted 

horizontal lines. Remaining explanations as for Figure 4.10. 
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Dissolved Zn, Pb, Cd, Cu, Ni, and Mn Concentrations in Cholwell Brook and Surface 

Drains 

 Dissolved concentrations of pollutant metals (Zn, Pb, Cu, Cd, Ni and Mn) 

increased with distance along Cholwell Brook in this study (Figure 4.13 to Figure 4.17).  

 Dissolved Zn and Pb in incoming stream waters were at or below EQS values 

(0.122 μmol L
-1 

and 0.0348 μmol L
-1

, respectively), but consistently exceeded this 

threshold upon reaching the visible extent of the mine waste and workings (sample 3, 

Figure 4.17). Both elements showed further enrichment in the waters as they passed 

through the site to a maximum of 3.9 μmol L
-1

 for Zn and 0.45 μmol L
-1

 for Pb, 

representing 55 x and 12x current long term EQS values for low alkalinity waters. 

These figures are slightly lower than Rieuwerts et al. (2009), who determined maximum 

dissolved concentrations of Zn and Pb equal to 6.7 μmol L
-1

 and 1.2 μmol L
-1

, 

respectively, from three surveys in 2004. The accumulation of dissolved Pb was greater 

through the southern waste tips, suggesting mine wastes may be more Pb-rich in this 

part of the site. Upon leaving the site, dissolved Pb in Cholwell Brook was higher than 

concentrations recorded in targeted surveys, streams and rivers in the Tamar catchment 

by the EA (maximum equivalent to 0.0965 μmol L
-1

, 1974-2008, Table 3.1).  

 Dissolved Zn is above the range recorded for major tributaries of the River 

Tamar, but lower than drainage from some adits within the Tamar catchment (e.g. 42.8 

μmol L
-1

, recorded for adit drainage from Drakewalls mine, EA). It is also lower than 

concentrations in the final collection drain at Devon Great Consols (   = 12.4 μmol L
-1

). 

However the final drain at DGC, discharges to a major watercourse (River Tamar), 

resulting in an approximate 680 times dilution based on mean flow. Cholwell Brook is a 

tributary of the River Tavy, relying on catchment dilution and natural attenuation of 

pollutants to reduce dissolved concentrations downstream of the mine. The mean flow 

in the River Tavy at the nearest gauging station (Denham/Ludbrook SX476681), some 
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15 km further downstream,  was 6.97 m
3
s

-1
 (1981-2009, CEH (2011)), still  much lower 

than the River Tamar at Gunnislake (22.6 m
3
s

-1
, CEH (2011)). Therefore, the impact of 

dissolved Zn (and other eco-toxic elements) on aquatic life may be greater in Cholwell 

Brook. 

 Concentrations of dissolved Cd were <LOD (0.009 μmol L
-1

) upstream of the 

site, but also increased with distance along the watercourse to a maximum of 0.018 

μmol L
-1 

(Figure 4.17). This level is low compared to some international river systems 

polluted by mine waters. For example 6.58 μmol L
-1

 was recorded in the Rio Tinto, SW 

Spain (Cánovas et al., 2008) and 8.99 μmol L
-1

 in surface waters at a Bolivian mining 

area (Salvarredy-Aranguren et al., 2008). However, concentrations in the brook are 

approximately 250 times greater than the annual average EQS value for low alkalinity 

waters, and at higher concentrations than previously recorded by the EA during targeted 

and routine surveys of watercourses in the Tamar catchment.   

 Dissolved Cu (Figure 4.14), Ni (Figure 4.15) and Mn (Figure 4.16) 

concentrations in Cholwell Brook were low by comparison to the final drain at DGC. 

Waters increased in Cu concentration the brook to a maximum of 0.29 μmol L
-1

 at 

location 12, representing  18 x EQS value (0.016 μmol L
-1

), but was considerably lower 

than the average discharge concentration in the final drain of Devon Great Consols (70-

85 μmol L
-1

). Dissolved Ni, which had showed greater variability in concentration with 

respect to other metals at Devon Great Consols, increased in concentration through the 

site like other contaminant metals, but was not clearly ordered from low to high by 

increasing rainfall (Figure 4.17).  Maximum concentrations recorded for dissolved Ni in 

Cholwell Brook (0.08 μmol L
-1

) did not exceed the EQS value (0.34 μmol L
-1

). 

Similarly, concentrations of dissolved Mn in all samples (0.26-11.0 μmol L
-1

) were at 

least an order of magnitude lower than found in the waters at DGC, but all samples were 

higher than the current long term average EQS (0.127 μmol L
-1

).  
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 Closer inspection of the ordering of sample rounds with respect to Zn in 

Cholwell Brook (Figure 4.13, lower graph and Figure 4.17) demonstrate that higher 

concentrations in the Brook were observed during wet surveys. In fact the concentration 

of Zn in the Brook doubled from the driest to the wettest periods. A similar trend was 

observed for all the major contaminant species (Zn, Pb, Cu, Cd, Ni and Mn (Figure 

4.17), As (Figure 4.18) and sulphate (Figure 4.19)).  

 There are no other mine discharges located within the catchment of the brook or 

tips than could augment metal concentrations in waters entering the site. The acidic 

groundwater, soils and mineralisation of the country rock in the area cause  background 

concentrations of some trace elements to be elevated and include: Al (up to 47.1 μmol 
-

1
), Cu (up to 8.2 μmol L

-1
), Zn (up to 24.5 μmol L

-1
), Mn (up to 0.108 μmol L

-1
) and Pb 

(up to 0.0177 μmol L
-1

) (Smedley et al., 2004). This enrichment accounts for elevated 

dissolved Zn, Cu and Mn with respect to EQS in the upstream waters at Wheal Betsy. 

  Surface drains were generally higher in dissolved contaminants than the Brook. 

Surface drain 14, flows along the northern boundary of visible waste (Figure 4.4). This 

drain was generally lower in dissolved contamination than other surface drains and 

similar to those seen for the low sample numbers in Cholwell Brook. The remaining 

drains, which were ephemeral in nature, comprised surface run-off from main areas of 

waste (sample 15 and 16) and the only input from the east bank (sample 17).  The drains 

were generally enriched in contaminant metals with respect to Cholwell Brook, 

particularly Pb, which was higher in sample 17 than any other sample (2.8 μmol L
-1

). 

Sample 17 may be discharging from a collapsed adit but or may be a collection of 

surface drainage channelled through a fracture in the exposed bedrock. The latter is 

more likely as dissolved Fe is usually elevated in adit discharges, but was similar in 

drain 17 to other samples (Figure 4.11).  In either case, this was further evidence for Pb-

rich deposits being concentrated in the southern zone of the site.  
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Dissolved Zn, Pb, Cd, Cu, Ni, and Mn Concentrations in Shallow Groundwaters 

 Elevated groundwater concentrations with respect to the Brook and EQS values 

were recorded in shallow groundwater throughout the sampling rounds for dissolved Zn 

(up to 30.4 μmol L
-1

, BH4), Pb (up to  2.3 μmol L
-1

, BH3), Cu (up to 2.4 μmol L
-1

, 

BH4), Cd (up to  0.17 μmol L
-1

, BH4), Ni (up to 0.41 μmol L
-1

, BH2 and BH3), and 

also Mn (up to 11.0 μmol L
-1

, BH4). Dissolved metal concentrations were two to five 

times the concentrations observed in the Brook, with the exception of Cd which was 

approximately five to ten times higher in the borehole waters.   

 BH3 and BH5 were installed into the base of the mine waste, while BH2 and 

BH4 were installed a short distance away (<10 m) alongside Cholwell Brook. There 

was no evidence of significant natural attenuation, leading to reduced concentration 

from the boreholes at the base of the tip, to the boreholes next to Cholwell Brook. 

Concentrations of individual dissolved metals in borehole waters varied significantly 

between surveys with a minimum RSD of 24% (Table 4.8). Chloride concentrations 

also varied (RSD = 31 %) and since Cl is generally considered to be conservative, this 

indicated that evapo-transpiration may be an important process affecting porewater 

concentrations in the waste tips (see later anion discussion).  RSD was considerably 

higher for the redox sensitive elements Fe and As, 156 % and 203 % respectively.  

Table 4.8: Mean concentration, standard deviations and relative standard deviations of dissolved 

metals and As in BH2-BH5 at Wheal Betsy (n = 21, n = 17(Cl, SO4)). Chloride result 489 ± 152 μmol 

L
-1

, RSD = 31 %. 

Dissolved 

metal/metalloid: Zn Mn Cu Al Ni Cd Pb As Fe SO4 

Mean ± 1 s.d. 

(μmol L
-1-

) 

21.4 

±5.3 

4.96 

±2.66 

0.920 

±0.624 

6.49 

±4.89 

0.179 

±0.088 

0.127 

±0.031 

1.15 

±0.48 

0.209 

±0.325 

4.88 

±9.93 

176 

±46 

% RSD 25 70 68 75 49 24 42 156 203 26 

  

 The composition of the borehole waters varied spatially and temporally with 

respect to these metals.  Concentrations of dissolved Zn, Cd and Ni were generally 
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higher in all boreholes during wet surveys (filled symbols in Figure 4.13 to Figure 4.16) 

when a high water table was observed at the base of the tips (from Table 4.7).  However 

this was not the case for all metals. Dissolved Cu and Pb, were highest in BH3 (base of 

tip) during a wet survey and highest in BH4 (next to brook) under drier conditions. This 

was attributed to slightly lower pH observed in drier surveys (16/08/08 and 09/05/09) 

enhancing desorption of these elements, which are known to be strongly associated 

mineral surfaces, particularly Fe-oxides.  

 Low rainfall is likely to result in increased transport times, such that dissolved 

metals in the pore waters accumulate toward equilibrium.  This is consistent with the 

relatively low Eh and dissolved oxygen observed in BH4 compared with other 

boreholes during all surveys, since oxygen is likely to be consumed by oxidation 

reactions with pyritic material in the mine waste (identified in the core log, Appendix 

4C). A smaller variation in pH between surveys also suggests a steady state is attained 

more easily in pore waters surrounding BH4 when the transport of ground waters is 

slower.   

 If the concentration of pollutant metals was constant in surface and shallow 

groundwaters, as for the final drain at DGC, then the expected effect of higher rainfall 

would be to dilute the contamination in the Brook; instead the reverse trend was 

observed. Therefore, the variability being detected in Cholwell Brook is attributed to the 

dynamics of flushing leachate from the mine waste tips. The generation of dissolved 

load from the mine waste is reactive to changing hydrological conditions.  Oxic rainfall 

supplied oxygen to drive sulphide oxidation and in conjunction with a higher water 

table promoted the reaction of a greater total surface area of waste material. High 

rainfall also drove hydraulic transport of the contamination away from the source and 

into Cholwell Brook.  
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   The dominant species for the contaminant metals Zn, Pb, Cu, Cd, Ni and Mn 

were calculated using PHREEQC geochemical modelling. There was little variation in 

the predicted speciation of these metals in the sampled waters. A range of complexes 

were predicted but, the divalent free ion was the dominant species by one or two orders 

of magnitude for Zn, Pb, Cu, Cd, Mn, and Ni, in surface waters and boreholes. Also 

important were chloride complexes for Cd (CdCl
+
), and Mn (MnCl

+
), sulphate 

complexes for Zn (ZnSO4), Pb (PbSO4) and Mn (MnSO4). Borehole samples were 

reacted with a gas phase equivalent to the composition of air in PHREEQC; however 

there was little effect on the major species predicted for aforementioned metals 

suggesting they were close to equilibrium with respect to atmospheric oxygen. 

 The flux arising from flooded mine workings must also be considered. This 

could contribute to the base flow of Cholwell Brook and react similarly to higher water 

levels and oxic recharge. Cycling of oxidation and flushing in underground workings 

due to fluctuating water levels increases the contamination flux from underground 

workings (Wheal Jane remediation program, United Utilities Industrial Ltd, personal 

comm.). Secondary minerals may be precipitated in the unsaturated zone as water level 

falls and subsequently remobilised as waters rebound (Evans et al., 2006). Surface 

expression of the water table in the workings at Wheal Betsy could augment the 

concentrations in Cholwell Brook via this mechanism. It is virtually impossible to 

determine accurately the relative contribution of two sources (mine waste leachate vs. 

emerging mine waters). The waste tip material has much greater mineral surface area 

and exposure to the atmosphere, proven by the high permeability and oxic waters 

encountered in borehole waters. However, the reactive catchment and underground 

voids may similarly recharge dissolved oxygen to the mine workings. Furthermore, 

back-filling of the underground workings with mine waste was (and remains) a common 

practice. This would increase the reactive surface area of minerals compared to unfilled 
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workings. Further investigation of the transport pathway of waters in Cholwell Brook 

would be required to elucidate the contribution, if any, from underground workings. 

 

 

 

 

Figure 4.13: Dissolved Zn (above) and dissolved Zn zoomed to show samples < 5 μmol L
-1

 (below) 

for surface and borehole samples at Wheal Betsy during seven surveys.  Dotted horizontal lines 

represent annual average EQS for Zn (0.122 μmol L
-1

).  Remaining explanations as for Figure 4.10.
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Figure 4.14: Dissolved Pb (above) and Cu (below) concentrations for surface and borehole samples 

at Wheal Betsy during seven surveys.  Dotted horizontal lines represent annual average EQS for Cu 

and Pb (0.016 and 0.035 μmol L
-1

 respectively). Remaining explanations as for Figure 4.10.  
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Figure 4.15: Dissolved Cd (above) and Ni (below) for surface and borehole samples at Wheal Betsy 

during seven surveys.  Dotted horizontal lines represent annual average EQS for Cd and Ni 

(0.00071 and 0.341 μmol L
-1 

respectively). Missing Cd data points for samples 1-3,5,14,16,US G/W < 

LOD (0.009 μmol L
-1

). Remaining explanations as for Figure 4.10.  
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Figure 4.16: Dissolved Mn for surface and borehole samples at Wheal Betsy during seven surveys.  

Remaining explanations as for Figure 4.10. Dotted horizontal lines represent annual average EQS 

for Mn (0.0127 μmol L
-1

). 
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Figure 4.17: Dissolved Zn, Pb, Cu, Cd and Ni for Cholwell Brook during seven surveys.  

Annual average EQS shown as dotted lines. Remaining explanations as for Figure 4.10. 
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Arsenic (and Antimony) Concentrations and Speciation 

 Dissolved As concentrations were largely <LOD (0.011 μmol L
-1

) in Cholwell 

Brook but were consistently detected in the southern-most sampling point (sample 13) 

to a maximum of 0.055 μmol L
-1

, (Figure 4.18). This is an order of magnitude lower 

than current EQS concentration (equivalent to 0.667 μmol L
-1

). The surface drain 

(Sample 17), also in the south of the site, returned the highest result for dissolved As 

(2.0 μmol L
-1

), but was only observed to flow during one visit. As discussed in the 

previous sections, this drain may be the surface expression of deeper ground waters,  

which are higher in dissolved As. Surface waters were otherwise very low in As 

(<LOD). Co-precipitation reactions of As with Fe (and Pb),  are thermodynamically 

favoured and have been noted in other studies of sulphidic mine waste e.g. Roussel et 

al. (2000). Inspection of the saturation indexes generated by PHREEQC showed that all 

samples were undersaturated with respect to a number of secondary iron and arsenic 

phases including jarosites (e.g. K-Jarosite, KFe3(SO4)2(OH)6) and scorodite 

(FeAsO4:H2O). So although As (and Pb) mobility is evident at the southern extent of the 

site it is possible that this is short-lived, tending towards less mobile As(V) species upon 

reaching thermodynamic equilibrium or being bound within or sorbed to secondary Fe 

precipitates.  

  Upstream groundwater in this catchment can be enriched in As (up to 0.08 

μmol L
-1

, Smedley et al. 
 
(2004)), due to interactions with metamorphic aureoles 

surrounding the Dartmoor, Gunnislake and Kit Hill granites and the black shales outside 

of them  (Moon, 2010). However, due to the strong association  of As to Fe-oxides in 

oxic environments, shallow groundwaters have low dissolved concentrations,  as was 

the case at Wheal Betsy, where upstream groundwaters were <LOD.  Shallow boreholes 

at Wheal Betsy, particularly BH4 were elevated in As with respect to surface samples to 

a maximum of 1.19 μmol L
-1

. Geochemical modelling revealed that, as for the boreholes 



      Chapter 4 

270 

 

at Devon Great Consols, a higher proportion of As(III) to As(V) under more reducing 

conditions, which was concurrent with observed increased mobility. Upon simulated 

equilibrium with atmospheric oxygen (PHREEQC), the dominant As redox state 

becomes As (V) in all samples, with H3AsO4 being the dominant species with lesser 

amounts of H2AsO4
-
. 

 

 

 

Figure 4.18: Dissolved As for surface and borehole samples at Wheal Betsy during seven surveys.  

Remaining explanations as for Figure 4.10.  Missing As data points < LOD (0.011 μmol L
-1

). 

 At Devon Great Consols, a strong covariance existed between the occurrence of 

dissolved As and dissolved Sb in solution (molar ratio of 470:1). A similar relationship 

at Wheal Betsy would suggest a maximum dissolved Sb concentration of approximately 

0.004 μmol L
-1,

 in the waters. Results from ICP-MS analysis suggested the presence of 

trace Sb in the waters of Wheal Betsy around this level (0.006 μmol L
-1

). However, this 

was below the calculated limit of detection for Sb (0.019 μmol L
-1

) and the relationship 

between As and Sb could not be confirmed.  
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Anions 

 Concentrations of dissolved sulphate and chloride are shown in Figure 4.19. 

Fluoride, phosphate, nitrite and bromine were below detection limits in all samples. 

Nitrate concentrations ranged from 8.3- 28.5 μmol L
-1 

in surface waters and 2.4-45.5 

μmol L
-1

 in boreholes and, as for Devon Great Consols, the most likely source was 

surface run-off from agricultural land. 

 Concentrations of dissolved sulphate were 26.3-53.9 μmol L
-1

 in the surface 

samples at Wheal Betsy, slightly higher than background groundwaters (25.5-44.4 μmol 

L
-1

), while borehole waters were significantly higher (102-271 μmol L
-1

).  As the 

second most abundant counter ion (after chloride), and the product of sulphide oxidation 

reactions, there was a close correlation between sulphate and contaminant metals in 

solution (r  ≥  0.9 for Zn, Cu and Cd, r ≥ 0.8 for Pb and Ni and r  ≥ 0.7 for Mn, all p 

values << 0.05), and Ca (r ≥ 0.8, p << 0.05) which was thought to arise from buffering 

reactions within the mine waste.   

 Dissolved sulphate displayed the same pattern of increased concentration along 

the course of Cholwell Brook as seen for these metals and was more prevalent as a 

complexing species towards the south of the site and in the borehole samples. Overall 

the concentration range was much lower than that recorded for Devon Great Consols 

drainage (610-5300 μmol L
-1

), consistent with a lower total dissolved metal load.  

 The presence of dissolved chloride, a conservative element derived from 

atmospheric sea-water inputs, is an indication of the amount of surface water input at 

each of the sample locations (Guan et al., 2009) while increased concentration can 

indicate evapo-transpiration of shallow groundwaters (Shand et al., 2007). Surface drain 

14 and BH5, BH4 and BH3 showed enrichment in Cl compared to the mean 

concentration (374 μmol L
-1

) to a maximum of 837 μmol L
-1 

(BH5). This suggests that 

concentration of pore waters occurs in the northern waste tips as a result of evapo-
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transpiration. The formation of efflorescent salts from saturated porewaters can lead to a 

temporary sink for contaminants which may be subsequently dissolved. This would 

enhance the release of contamination from the tips following rainfall.   

 

 

 

Figure 4.19: Dissolved sulphate (above) and chloride (below) for surface and borehole samples at 

Wheal Betsy during five surveys.  No anion analysis for initial survey or 16/10/08.  Remaining 

explanations as for Figure 4.10. 
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 Borehole levels and stream flow were also low at this time and suggest a higher 

residence time for shallow ground waters, in the absence of rainwater „flushing‟ the 

waste tips.  Relatively high conductivity and pH , low DO and low dissolved Al, as 

compared to other rounds, were also recorded and are consistent with a longer residence 

time allowing dissolution and desorption processes to approach equilibrium.   

Other Trace Elements  

Dissolved Co was between 0.011-0.130 μmol L
-1

 across all surveys and sample 

locations. Phosphate, Nitrite, F, Sn, Mo, V, W, Sb and U were also analysed but all 

were below <LOD in all samples.   

4.5.7 Estimated Annual Contamination Fluxes from Diffuse Pollution at Wheal 

Betsy and the Relative Contribution from North and South Waste Tips 

Cholwell Brook   

 Dissolved metal and As fluxes leaving the site via Cholwell Brook were 

calculated for each survey based on dissolved concentrations and flows downstream of 

the mine (sample 13, Table 4.9). Fluxes were also calculated for the boundary between 

north and south areas of mine waste (sample 8, Table 4.9), in order to investigate the 

relative contributions of the north and south tips to overall flux.  For comparison with 

data from the final drain discharge at Devon Great Consols (DGC), daily results have 

been scaled-up to annual ranges and mean annual dissolved flux (Table 4.10). 

 The estimated average annual flux of dissolved Cd discharging into Cholwell 

Brook (470 mol y 
- 1

) was considerably higher than the annual flux estimated for the 

final collection drain (DGC, 13.8 mol y
-1

) and Blanchdown adit (DGC, 4.33 mol y
-1

). It 
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as also higher than an adit from another abandoned lead-silver mine
1
 (20.2 mol y

-1
, 

Mighanetara, unpublished work).  As such, dissolved Cd entering Cholwell Brook from 

Wheal Betsy represents the largest flux of Cd so far reported for a mine in the Tamar 

catchment 

Table 4.9: Estimated daily dissolved contaminant fluxes leaving the Wheal Betsy site via Cholwell 

Brook (at sample location 13). Relative contribution of north tips/workings (WBN, sample 8), to 

overall flux determined for each survey. Range and mean results presented (mol d
-1

).  

Daily Dissolved Flux 

in Cholwell Brook  

(mol d
-1

) Zn Pb Cu Mn Cd Ni As Al Fe 

WBN (8), range 

2.23- 

29.9 

0.0523-

2.36 

0.06- 

1.09 

0.83-

7.96 

0.0316- 

0.129 

0.0730- 

0.732 <LOD 

1.39- 

32.5 

0.37-

7.29 

WBN (8), mean 16.6 0.933 0.539 4.48 0.0853 0.388 <LOD 15.7 4.33 

WBN + WBS (13), 

range 

7.61-

31.2 

0.738-

3.26 

0.48-

1.81 

2.13- 

6.47 

0.0342- 

0.150 

0.190-

0.551 

<LOD- 

0.503 

3.77- 

18.4 

0.37-

7.29 

WBN + WBS (13),  

mean 22.2 3.25 1.29 5.11 0.10 0.445 0.215 12.7 2.66 

% WBN, range 

29-

104 7-77 14-76 

39- 

131 0-176 39-134 (0) 37- 98 

45-

351 

% WBN, mean 73 40 41 89 72 90 (0) 81 171 

 

 Estimated annual dissolved Zn flux from Wheal Betsy (2780-11400 mol y
-1

) was 

approximately equal in magnitude to flux from the final collection drain (FCD) at DGC  

(2660-13300 mol y
-1

, Table 4.10), and approached that of the highest point discharge of 

dissolved Zn previously identified  by Mighanetara et al. (2009) in the waters of Luckett 

Stream, 11900 mol y
-1

. Dissolved Fe and As flux from both the FCD and Cholwell 

Brook were similarly low due to the maintenance of oxic conditions in the steam waters, 

whilst dissolved fluxes of Cu and Al were two and three orders of magnitude lower 

                                                 
1
 South Tamar Consols worked one of the richest lead silver deposits in the catchment, until inundation 

by waters from the River Tamar in 1856 prematurely ceased operation. Large quantities of Pb-Ag ore 

remained below ground in situ and as broken rock (Booker, 1967). 
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from Wheal Betsy than DGC (Table 4.10). Despite this, the receiving watercourse at 

Wheal Betsy is more vulnerable to ecological damage than the River Tamar in receipt of 

Devon Great Consols discharge from the final drain, due to the lack of immediate in-

stream dilution.  

Table 4.10: Estimated annual dissolved contaminant fluxes leaving the Wheal Betsy site via 

Cholwell Brook (at sample location 8 and 13). Range and mean results presented (mol y
-1

). For 

comparison, 2008-2009 Devon Great Consols Final Collection Drain results (from Chapter 3) are 

also shown below with the ratio of mean results for final dissolved discharges from both sites. 

Annual Dissolved 

Flux in Cholwell 

Brook  (mol y
-1

) Zn Pb Cu Mn Cd Ni As Al Fe 

WBN (8), range 

812-

10910 

19.1-

860 

11.5-

46.9 

304-

2904 

23.6-

400 

26.7-

267 <LOD 

508-

11900 

137-

2662 

WBN (8), mean 6040 340 31.1 1640 197 142 <LOD 5750 1580 

WBN + WBS (13), 

range 

2780-

11400 

269-

1190 

12.5-

54.8 

779-

2360 

174-

660 

69.2-

201 

<LOD-

183 

1376-

6704 

307-

1980 

WBN + WBS (13),  

mean 8100 783 37.6 1870 470 163 78.6 4630 970 

Devon Great Consols  

Final Collection Drain 

(FCD), range 

2660-

13300 

1.21-

3.60 

15100-

75200 

12100-

60000 

4.14-

22.0 

405-

2000 

45.6-

277 

125000-

629000 

439-

1910 

Devon Great Consols  

Final Collection 

Drain, mean 8840 2.68 53000 39400 13.8 1290 164 434000 1060 

Ratio of mean FCD : 

mean WBN+WBS 1:1 1:292 1410:1 21:1 1:34 8:1 2:1 94:1 1:1 

 

 Figure 4.20 compares the 7-day and 14-day total rainfall data (right graph), with 

flow in Cholwell Brook (middle graph) at halfway (sample 8) and at the downstream 

extent of the waste (sample 13), for four surveys of directly comparable data. High flow 

(23/07/09) and low flow (09/05/09) in Cholwell Brook was consistent with the high and 

low short term rainfall, while snow melt waters increased flow during one survey 
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relative to rainfall (12/02/09). Rainfall had a two-fold effect on flux, increasing the 

volume of leachate produced and the concentrations of dissolved metals in the Brook. 

 

Figure 4.20: Graphs displaying relationship between 7-day and 14-rainfall (left), flow in Cholwell 

Brook (middle) and combined flux of Zn, Pb, Mn, Ni, Cu, Al and Fe (right). (F) = pore waters 

within waste tips above the water table were frozen, (M) = flows augmented by melt waters, (D) = 

dry, (W) = wet. Error bars for flow assume 7.5 % RSD on flow meter, but do not account for error 

in cross-sectional area of stream. 

 Higher pH (Figure 4.9) in waters of the northern part of Cholwell Brook was 

covariant with decreased flow and was attributed to a lower volume of acidic leachate 

entering the brook from the north tips. High rainfall and snow melt both generated high 

groundwater levels in the waste and resulted in low pH for waters in the brook. This is 

consistent with the previous study at Wheal Betsy by Rieuwerts et al. (2009), where the 

lowest pH and highest concentrations of dissolved Zn and Pb were recorded during the 

wettest survey (Dec 2004, rainfall average 4.07 mm d
-1

, Met Office (2006)). 

 Low pH was maintained downstream of the south waste tips (sample 13, Figure 

4.9) but was variable and highest when melt waters augmented flow, perhaps as a result 

of increased dilution from surface run-off.  

 A higher combined dissolved contaminant flux of Zn, Pb, Cu, Mn, Cd, Ni, As, 

Al and Fe in Cholwell Brook (Figure 4.20, right) was concurrent with high rainfall and 

high stream flow (Figure 4.20, left and centre, respectively). The flux from the northern 

zone was highly variable compared with the total flux (Table 4.9 and Figure 4.21) and 

was dependent on rainfall and flow conditions. The north zone supplied the majority of 
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dissolved flux of Zn, Cd, Mn, Ni, while Pb, As and Cu were more significantly 

augmented through the southern zone, most likely due to their enrichment in the 

mineralogy of the southern waste tips. This may be a consequence of the boundary of 

two geological formations being at the site (described in section 4.1.3), marked by 

Cholwell Brook. Tips to the east of this boundary are found only in the southern part of 

the site and the only surface drain from the east bank (sample 17, Figure 4.4) was 

highest in dissolved Pb (Figure 4.14) and As (Figure 4.18). 

 

Figure 4.21:  Percentage of overall dissolved flux attributed to tips and workings in northern part 

of the site.  Error in flux determined as product of analytical LOD and flow error. Error bars on 

WBN flux (% of total) calculated as sum of flux error at location 8 and 13.  

 

 When conditions were dry (09/05/09), or surface temperatures cause tip 

porewaters to freeze (10/02/09), flow through the northern tips was reduced. This 

resulted in the southern tips supplying a higher proportion of the overall flux leaving the 

site (Figure 4.20, right). The southern tips, being comprised of finer waste material (see 

Chapter 5, section 5.6.2), including layers of compacted clays and iron-pan, generally 

produce a smaller proportion of the overall flux because water ingress and leachate 

transport was inhibited by low permeability.  
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 The relative flux of dissolved metals and chloride with respect to one another 

remained relatively stable (Figure 4.21) when the magnitude of total flux varied 

considerably (Figure 4.20, right).  The exception was Cd, where melt waters 

significantly enhanced the flux of Cd from the northern part of the site (Figure 4.21, 

lower graph, 12/02/09). There was no obvious reason for this behaviour. 

  For some surveys, the flux of dissolved Fe for sample 8 (south of the north 

tips), was significantly greater than at for sample 13, (400 m downstream of the south 

tips).  This is highlighted by the large bars for dissolved Fe in Figure 4.21 for the 

wettest survey (23/07/09), and the survey following snow-melt (12/02/09). This may be 

partially attributed to the lower flow recorded at location 13 compared with location 8 

(Figure 4.20, middle). However high flux of dissolved Fe was covariant with a higher  

suspended load of fine particulates (section 4.5.5). Rapid precipitation of Fe-oxide 

minerals and sorption to stream sediments or organic matter may have been a 

mechanism by which in-stream reduction of dissolved Fe occurred between locations 8 

and 13.  

 The mobility of other metals may have been similarly reduced through co-

precipitation and sorption reactions to Fe(OH)3 minerals or organic matter. This is 

consistent with the fall in dissolved concentration of Zn, Pb, Cu, Cd, and Ni observed 

from location 12 (downstream extent of waste) to location 13 (Figure 4.17). However, 

the same fall was not observed for As. This may be a consequence of slower reaction 

kinetics, or competition with other dissolved species, in particular dissolved organic 

matter (DOM). DOM was not directly measured, but was likely to be abundant in the 

stream waters given the land use of the immediate area, (sheep grazing and riding 

stables directly adjacent to Cholwell Brook, Figure 4.4).  DOM tends to compete with 

dissolved arsenic species for active sites on adsorbents and thus increases arsenic 

mobility (Sharma and Sohn, 2009). The attenuation of Fe by precipitation and the 
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sorption of other dissolved contaminants was consistent with processes controlling 

contaminant mobility in the final drain at Devon Great Consols. However the 

attenuation effect in Cholwell Brook could only be inferred from limited data. The 

association of contaminant metals and As to secondary Fe precipitates is explored 

further in Chapter 5.  

  The concentration and flux data suggests that leachate from the northern waste 

tips, were responsible for the magnitude and variability in dissolved contamination 

observed in Cholwell Brook. Deeper groundwater from the abandoned workings may 

augment flux, but under conditions of low flow, concentrations and fluxes (Figure 4.20, 

right) of dissolved metals in the brook were reduced. Therefore dissolved metals and As 

were lower in base flow and were augmented by tip drainage. It was concluded that 

fluctuation in rainfall and water table controls the levels of dissolved contamination 

eluting from the tips into the watercourse in a highly reactive catchment.  It is still 

possible that the underground workings supply an additional flux to the brook, but may 

discharge further downstream, perhaps mixing with discharges from Wheal Friendship 

and would require further investigation.  

Predicted Annual Flux from the Waste Tips    

 As for the selected tips at Devon Great Consols, an estimation of the fluxes 

arising from the tips at the site was attempted using the catchment area defined by 

ArcHydro9 (ArcGIS), average annual rainfall data (MIDAS, Met Office) and dissolved 

contaminant concentrations derived from borehole samples (BH2-5). The calculation 

was made for the tips in the northern part of the site only, as no borehole data was 

recorded for the southern tips. Data for all the contaminants of interest are shown in 

Table 4.11, alongside data for the tips at Devon Great Consols. 



      Chapter 4 

280 

 

  The calculations demonstrate the potential for the tips to account for all the 

dissolved contaminant flux observed in Cholwell Brook up the boundary with the 

southern waste tips.  

 There was a large margin of error on such calculations due to the scaling up of 

limited BH and stream water samples to represent metal concentrations emanating from 

the entire northern waste deposit. This is a particular problem for this site as the 

observed concentrations in boreholes and surface waters fluctuated widely, and were 

attributed to the hydrological variation between surveys. The high upper range of mass 

balance (e.g. 898 % for Zn, Table 4.11) occurs because of the disparity between the 

method of estimation used to determine annual flux in Cholwell Brook, compared to 

that used for the waste tips.  

 Very dry and very wet conditions were shown to effect on concentrations and 

flow in the brook. Direct measurement of the stream waters captured variability in both 

concentration and flow. However, the estimated tip flux was calculated from average 

annual rainfall data therefore the variability in the rainfall data is lost from the 

calculation. Variability in estimated tip flux is derived only from the variability in 

dissolved concentrations in borehole waters, as captured during five of seven surveys. 

 Despite the limitations the mean estimated flux for tips and Cholwell Brook, was 

general consistent between to within an order of magnitude for typically mobile 

elements such as Zn (138 %) and Mn (91%). The exception appears to be Cd for which 

the predicted flux from the tips is very low as a proportion of flux in Cholwell Brook  

(8.5-25%). This is important because the concentration and flux of Cd in Cholwell 

Brook is particularly high compared to others in the catchment (section 4.5.6). 

Determining the source and/or mechanism that led to the high concentrations of 

dissolved Cd in the stream waters would require further investigation. 
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Elements that typically precipitate at pH values measured in the brook (   = pH 4.9), 

such as Al, or elements known to co-precipitate or associate with Fe-oxyhydroxides 

such as Pb and Cu were over accounted for in tip flux compared to flux determined for 

Cholwell Brook. This was also the case at Devon Great Consols and the apparent 

attenuation  is consistent with literature information on the sorption behaviour of these 

particular elements.  

 Estimates of annual flux can only improve with additional data, but there is 

strong evidence to suggest that the flux of contamination emanating the waste tips, 

particularly in the northern part of the Wheal Betsy site, is responsible for most of the 

contaminant flux transported downstream via Cholwell Brook. 
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Table 4.11: Estimated annual flux for selected metals and As leaving tips at Wheal Betsy North.  Mean and inter quartile ranges of dissolved mean concentrations used to derive 

fluxes shown. Sample numbers used:  BH2 – BH5. Mass balance of annual fluxes from north tips with respect to Cholwell Brook downstream of north tips.. Based on mean (in 

bold) and inter- quartile ranges. *Tip catchment encompasses two annual average rainfall zones, mean of two values used in calculation.  

 

Wheal Betsy North 

Tips 

Cholwell Brook 

(8) 

Mass 

Balance   

Ratio of [WBN tips] to 

[Cholwell Brook] DGC Cinders Tips 

DGC WAM 

Tips 

DGC Precipitation Launders 

Tips 

Tip Catchment Area (m
2
) 243580 - - - 84400 134535 115825 

Average Annual Rainfall 

 (mm y
-1

) 1650* - - 

- 

1289 1289 1264 

Range Zn (μmol L
-1

) 18.1-23.5 1.71-2.86 - 11:1 - 8:1 2.05 -  2.38 12.0 – 12.9 13.4 – 18.0 

Mean Zn (μmol L
-1

) 20.9 2.29 - 9:1 2.24 12.6 15.3 

Range Zn Flux (mol y
-1

) 7291-9450 812-10910 87-898 % - 223 - 259 2074 - 2242 1968 - 2634 

Mean Zn Flux (mol y
-1

) 8384 6040 138 % - 244 2178 2244 

Range Ni (μmol L
-1

) 0.1435-0.1867 0.0504-0.0648 - 3:1 - 3:1 0.252  - 0.292 0.91 – 1.31 2.34 – 3.28 

Mean Ni (μmol L
-1

) 0.1792 0.0565 - 3:1 0.285 1.11 2.72 

Range Ni Flux (mol y
-1

) 57.7-75.0 26.7-267 28-216 % - 27.4 – 31.8 157 - 227 343 - 479 

Mean Ni Flux (mol y
-1

) 72.0 142 51 % - 31.0 192 398 

Range Cd (μmol L
-1

) 0.109-0.140 <LOD-0.0122 - (<LOD)- 11:1 0.0020 – 0.0021 0.019 – 0.025 0.022 – 0.029 

Mean Cd (μmol L
-1

) 0.124 0.0103 - 12:1 0.00204 0.023 0.025 

Range Cd Flux (mol y
-1

) 43.6-56.1 174-660 8.5-25 % - 0.213 – 0.228 3.35 – 4.32 3.25 – 4.30 

Mean Cd Flux (mol y
-1

) 49.9 470 10 % - 0.222 3.76 3.65 
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Range Mn (μmol L
-1

) 2.74-4.06 0.596-0.706 - 5:1 - 6:1 3.33 – 4.47 32.1 – 41.8 69.4 – 99.6 

Mean Mn (μmol L
-1

) 3.72 0.658 - 6:1 3.88 37.0 81.4 

Range Mn Flux (mol y
-1

) 1100-1632 304-2904 64-361 % - 362-487 5570-7250 10200-14600 

Mean Mn Flux (mol y
-1

) 1493 1640 91 % - 422 6410 11900 

Range Al (μmol L
-1

) 4.49-7.38 1.07-4.00 - 4:1 - 2:1 151-158 695-902 702-1010 

Mean Al (μmol L
-1

) 6.61 1.95 - 3:1 154 823 828 

Range Al Flux (mol y
-1

) 1805-2964 1376-6704 44-131 % - 16400 - 17200 121000 - 156000 103000-148000 

Mean Al Flux (mol y
-1

) 2658 970 274 % - 16700 142700 121000 

Range Pb (μmol L
-1

) 0.971-1.169 0.040-0.209 - 24:1 - 5:1 <LOD 0.006-0.020 0.003-0.009 

Mean Pb (μmol L
-1

) 1.343 0.112 - 11:1 <LOD 0.015 0.014 

Range Pb Flux (mol y
-1

) 390-540 19.1-860 63-2040 % - <LOD 1.06-3.42 0.48-2.08 

Mean Pb Flux (mol y
-1

) 470 340 138 % - <LOD 2.60 1.29 

Range Cu (μmol L
-1

) 0.618-1.020 0.0940-0.0633 - 7:1 - 16:1 10.4-12.8 201-267 102-131 

Mean Cu (μmol L
-1

) 0.866 0.0760 - 11:1 12.9 224 115 

Range Cu Flux (mol y
-1

) 248-410 11.5-46.9 22-875 % - 1130-1390 34900-46400 14900-19100 

Mean Cu Flux (mol y
-1

) 348 31.1 1120 % - 1410 38900 16800 

Range As (μmol L
-1

) 0.0690-0.276 <LOD - - 270 - 328 0.290 – 1.65 0.080 – 0.150 

Mean As (μmol L
-1

) 0.185 <LOD - - 294 1.33 0.140 

Range As Flux (mol y
-1

) 27.7-111 <LOD-183 60% + - 29400 - 35600 50.3 - 286 11.7 – 22.0 

Mean As Flux (mol y
-1

) 74.4 78.6 95% - 32000 231 20.5 
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4.6 Conclusions and Recommendations 

 Wheal Betsy is situated in a step sided valley in an area of above average rainfall 

compared to other areas in the Tamar catchment and low permeability slate-dominated 

bedrock. Background surface and groundwaters were enriched in dissolved Cu and Mn 

above current EQS values upon reaching the site. This was attributed to the mineralisation 

of the host geology in the area which have been shown previously to enrich granite hosted 

groundwaters in certain trace elements including Al, Cu, Zn, Mn, and Pb (Smedley et al., 

2004). Dissolved concentrations of all the contaminant metals of interest (Al, Zn, Cu, Pb, 

Mn, Ni, and Cd) increased with distance along Cholwell Brook as the watercourse passed 

through the mine site at Wheal Betsy. As a result Cholwell Brook failed long term EQS for 

Al, Zn, Cu, Pb, and Cd during all surveys.  The highest exceedance was for dissolved Cd 

(0.018 μmol L
-1

, equal to 250 x EQS), dissolved Mn (11.0 μmol L
-1

, equal to 87 x EQS) 

and dissolved Zn (3.9 μmol L
-1

, equal to 55x EQS). 

 The concentration and estimated flux of dissolved Pb (0.45 μmol L
-1

, and 783 mol 

y
-1

, respectively) and the estimated flux of dissolved Cd (470 mol y
-1

) were higher than 

identified elsewhere in the catchment by previous studies.  Arsenic and Fe mobility was 

limited due to the shallow and oxic nature of surface and ground waters at the site.  

 The hydrology of the site was much simpler then at Devon Great Consols, with a 

short migration pathway (<10m) from tips to Cholwell Brook. Groundwater table and 

stream flow were highly reactive to short-term rainfall patterns and concentrations of 

dissolved contaminant metals were increased in the brook during wet surveys.  

Concentrations and fluxes of dissolved metals increased with increased rainfall and this 

was attributed to higher water tables in the base of the northern mine waste tips.  Under 

conditions of low flow, the contribution from the southern tips to overall contaminant flux 
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increases. The south tips appeared to contribute most to fluxes of Pb, Cu and As, 

suggesting enrichment in these elements compared to the north tips.  

   The waste tips at the site were very heterogeneous at the site, but the tips in the 

northern zone exhibited greater permeability than the more clay-rich wastes in the south of 

the site. This may have been due in part to the unique geological setting of the site, lying 

on the thrust boundary of two distinct bedrock formations. The boundary of the Bealsmill 

Formation, and the lower Greystone Formation, is situated along Cholwell Brook; having 

resulting from the same geological event that created the  mineralised deposits of south 

west England (Variscan Orogeny, DCC (2011)).  Alternatively  tip  heterogeneity could be 

a feature of the division of processing waste, i.e. separation of course and fine waste, 

produced and deposited during the site‟s operation (to 1877).   

  The north tips were rapidly flushed by percolating waters and which supplied 

oxygen for oxidation and dissolution of sulphide minerals. Dissolved contaminants (Zn, 

Pb, Cd, Cu, Mn, Ni and Pb) in porewaters of the mine waste were enriched with respect to 

waters in Cholwell Brook by up to 25x (Al, Table 4.11). Despite this, waters were not at 

equilibrium with mineral phases in the waste and were rapidly transported into Cholwell 

Brook via shallow subsurface flow and ephemeral surface drains. No reduction in 

dissolved metal was observed between waters percolating the base of the mine wastes and 

those close to the bank of the brook. In fact borehole logs revealed that the vegetated areas 

between the tips and the Brook (in the northern part of the site) were underlain by fractured 

(probably waste) rock. 

 Waters in BH4 appeared to be closest to the equilibrium position for ground waters 

at the site, resulting in waters with similar pH (~pH 4.5) to those observed in the lower part 

of the Devon Great Consols site. In both scenarios, it is most likely that equilibrium with 

Al phases controls the pH of the waters, but that equilibrium is more readily achieved by 



      Chapter 4 

286 

 

drainage waters at Devon Great Consols due to the longer transport pathway from tip to 

watercourse (~400m to River Tamar).  

 There is spatial and temporal variation in the sources of contaminant metals at the 

Wheal Betsy site which complicates the prediction of their magnitude and mobility based 

on limited sampling. However the reactivity of the stream waters to rainfall highlights the 

importance of considering hydrological factors in such investigations. Dissolved 

concentrations in borehole waters confirmed the mine waste to be a source of mobile 

contaminant metals to Cholwell Brook, but seepage from underground workings may also 

contribute to base flow (particularly As and Pb) towards the south of the site, particularly 

as a major geological fault and extensive under-ground workings lie beneath the site. 

 However, concentrations of Fe which are often elevated in adit discharges as a 

result of more reducing conditions remained low in all samples taken from Cholwell 

Brook. They were also low in drain 17, a suspected adit in the southern part of the site. 

Also lower concentrations of dissolved contaminants in the Brook were observed during 

low flow conditions, when the contribution from base flow, including underground 

workings, might have been higher. The magnitude of flux arising from underground 

workings, if any, was concluded to be small but worthy of further investigation.  

 Overall, the estimated flux from the north tips is likely to account for most or all of 

the flux observed in Cholwell Brook for most elements (except Cd). Management 

strategies that reduce the permeability of the northern waste tips may offer the best chance 

of reducing the annual flux of dissolved contaminants into Cholwell Brook. However, 

given that much of the waste is in direct contact with the waters of the Brook, disturbances 

of the tips should be avoided, as this could cause an acute pollution event. Furthermore, the 

site is extremely important to a number of stakeholders (walkers, horse-riders, geologists 

(SSSI), industrial archaeologists and the National Trust (owners of the Engine House), 
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such that invasive treatment methods are likely to be met with opposition from interested 

parties.   

 Based on the findings of this study, management of the site should include the following 

measures to address dissolved pollution discharging from the site:  

 Regular monitoring of dissolved metal and metalloid concentrations leaving the site 

in Cholwell Brook 

 Determination of the downstream extent and magnitude of reduced water quality 

due to contamination released from the site. 

 Protection and maintenance of the site with respect to public access to minimise 

erosion of the tips. Specifically, taking measures to reduce unauthorised use of 

cycles and motor vehicles and encouraging appropriate use of footpaths and 

bridleways. 

 Investigation of the ecological importance of the site. 

 If necessary, investigation of suitable in-stream methods that might be feasible for 

the treatment of waters leaving Wheal betsy in Cholwell Brook. 

  

 Concentrations of dissolved Pb, Zn, Cd, Cu, Ni and Mn decreased in the waters of 

the brook a short distance downstream of the mine waste (< 200 m). This may indicate 

natural attenuation via sorption to organic matter, or mineral surfaces such as Fe 

oxyhydroxides, constrains the downstream impact of the pollution leaving Wheal Betsy.  

Such mechanisms could be used to cleanse waters leaving the site. Treatment of the waters 

of Cholwell Brook rather than the waste tips also offers the advantage that any pollution 

arising from the underground workings would also be treated. This may be particularly 

relevant for the flux of dissolved Cd which, based on evidence from this study was not 

accounted for by tip leachates.  
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4.7 Future Work 

 As stated above, a number of uncertainties remain in the determination of the contribution 

of dissolved contamination from the waste tip to the overall contamination leaving the site. 

Therefore future work will attempt to address some of the uncertainties raised. In 

particular, how the quality of downstream waters is affected by the dissolved metal 

pollution from Wheal Betsy and how this varies with rainfall patterns and distance from 

the site. Also, determine if there is significant mixing of waters in Cholwell Brook with 

deep groundwaters.  Specifically, implement tracer tests to establish transport times of 

waters at Wheal Betsy and determine if waters are conservative in Cholwell Brook, or if 

interaction with deeper ground water flowing through underground workings contributes 

significantly to contaminant flux.  
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4.9 Chapter 4 Appendices 

4A. Figures and Historical Maps 

 Figure 4.22: Schematic of shaft positions and depths, from N to S at Wheal Betsy. Adapted from 

Richardson (1995).  
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Figure 4.23: Historical map showing site features at Wheal Betsy in 1884, shortly after closure in 1877, 

only the northern Engine House remains from the buildings shown © Crown Copyright and 

Landmark Information Group Limited (2010) All rights reserved. 1884. Also shown are current course 

of Cholwell Brook (blue line) and current extent of identified mine waste tips (shaded areas). 
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4B. Photographs 

Photograph  1 

View looking NW 

showing Engine House 

and northern most mine 

waste tips, borehole 

(No.5) installation taking 

place in foreground. 

Taken 26/08/08 

A J M Turner 

 

Photograph  2 

View to S along Cholwell 

Brook showing direct 

contact with mine wastes 

toward the south of the site.  

Taken 03/09/07 

A J M Turner 

 

 BH5 

South Waste Tips 
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Photograph 3:  

Wooden Chute visible in 

Wheal Betsy (south) mine 

waste, chute contains 

cemented mine waste. 

 

Taken 03/09/2007  

A J M Turner 

 

Photograph 4:  

Mine waste tips at south of 

site looking N. Consolidated 

and clay rich tip material 

with visible hard pan 

horizons. Partially vegetated 

with heather. 

 

Taken 09/05/09 

A J M Turner 
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Photograph 6:  

Core removed from BH3 

 

 

Taken 26/08/08 

A J M Turner 

 

Photograph 8:  

Core removed from BH5 at 

base of engine house waste 

tips. 

 

 

Taken 26/08/08 

A J M Turner 
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4C. Wheal Betsy Groundwater Borehole Logs  

Borehole  Augered/Drilled 

Depth (m) 

Observations  

WB BH1 **DRY** 0 - 0.52 Exposed consolidated orange/brown coarse 

SAND and fine GRAVELS comprising 

processing waste. 

0.52 (end) Grey slate/shale BEDROCK 

WB BH2 

** Water strike at 0.78 m ** 

 

0 - 0.06 Light brown SOIL/grass root zone 

0.06 - 0.14 Dark brown SOIL 

0.18 - 0.20 Orange brown angular COBBLES 

0.20 - 0.30 Orange brown poorly sorted very coarse SAND 

with frequent large angular grey/orange 

COBBLES 

0.30 - 0.88 (end) Stratified dark grey/orange  weathered shale 

BEDROCK  

WB BH3 (Photograph 5)  

** Water strike at 0.75 m ** 

0-0.17 Dark brown soil/heather root zone 

0.17 - 0.30 Dark brown/orange clayey sandy SOIL with 

frequent small-medium angular PEBBLES 

comprising mainly slate 

0.30 - 0.50 Grey/brown large PEBBLES comprising pyrite 

rich rock tending to 50% large COBBLES of 

pyritic rock and 50% clayey orange fine-

medium SAND.   

0.50 - 0.74 Dark brown humic material (possibly an earlier 

surface horizon)  

0.74  - 0.83 (end) Dark grey weathered shale BEDROCK.  

WB BH4 

**Water strike at 0.50 m**. 

0-0.20 Light brown SOIL/grass root zone 

0.20 - 0.25 Dark brown SOIL  

0.25 - 1.15 Light brown/orange poorly sorted gravels with 

medium to very large PEBBLES comprising 

mine waste.  

1.15 (end) Grey slate BEDROCK 

WB BH5 (Photograph 6) 

**Water strike at 0.75 m** 

0 – 0.05 Medium brown SOIL/grass root zone 

0.05  - 0.20 90% Grey/brown small to large angular 
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COBBLES with 10% grey/light brown sandy 

GRAVELS 

0.20 – 0.77 Orange poorly sorted coarse SAND with 

frequent large PEBBLES and COBBLES of 

dark grey platey slate.  

0.77 – 0.95 (end) Dark grey laminated slate BEDROCK 

WB BH6 (Up catchment, 

close to site of underground 

reservoir) ** DRY ** 

Aborted 

0 – 0.15 Dark brown SOIL with high humic content and 

grass roots.  

0.15 - 0.40 Dark brown soft CLAY 

0.40 – 0.95 Light brown/orange soft CLAY with occasional 

large sub-angular PEBBLES 

0.95 (end) BEDROCK, unable to drill through – hole 

abandoned. 

WB BH7 (Up catchment, 

close to site of underground 

reservoir) ** DRY ** 

Aborted 

0 – 0.15 Dark brown SOIL with high humic content and 

grass roots.  

0.15 – 1.50 Light brown/orange soft CLAY with occasional 

sub-angular COBBLES 

1.50 – 2.00 (end) Light grey weathered slate interbedded with 

light brown soft flakey CLAY 

4D. River Hydrograph  

River Tavy at Denham/Ludbrook 2009 

 

-End of Chapter 4- 
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5 The Geochemistry and Leaching Behaviour of Selected 

Mine Wastes from the Tamar Catchment 

5.1 Abstract 

  Column experiments, based on the European standard up-flow percolation test 

(TS 14405), were applied to mine waste from an abandoned Pb-Ag mine and an 

abandoned Cu-As mine from southwest England. The aim was to investigate the range 

and magnitude of dissolved metals and metalloids leachable from mine waste tips. The 

dynamic leaching test was chosen to mimic the transport of low ionic strength rain or 

groundwater (simulated by MilliQ) through mine waste, thereby providing a laboratory 

proxy for field conditions. A range of metals (Al, Cd, Cu, Mn, Ni, Pb, Zn) and arsenic 

were determined in the column leachate, covering a range of solid to liquid ratios of 0-

10 L kg
-1

, applicable to different hydrological field conditions.  

 The highest concentrations of Al (6260 μmol L
-1

), Cu (312 μmol L
-1

), Zn (206 

μmol L
-1

), Ni (7.72 μmol L
-1

) and Cd (0.712 μmol L
-1

) in the leachate were observed at 

low L:S ratios where porewaters become saturated with respect to mineral phases in the 

mine waste. Leachate concentrations decreased exponentially for most elements 

throughout the experiment, except Pb, which maintained high concentrations (up to 81 

μmol L
-1

). Batch extractions with L:S ratios of 2, 5 and 10 L kg
-1

 were applied to the 

same materials using MilliQ, CH3COOH and MgCl2. For batch MilliQ extractions, 

concentrations in the supernatant were generally comparable to results from column 

experiments, but some differences were observed and attributed to the dynamic mode of 

leaching in the column.  

 Concentrations of metals in shallow ground waters collected during field 

surveys of the two sites were of the same order of magnitude as concentrations obtained 
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from the column experiments. For mine waste in tips situated above the water table, 

concentrations were best approximated as high L:S ratios. Concentrations of dissolved 

metals in shallow ground waters and surface drains were usually well approximated by 

low L:S ratios, showing that the column experiments provide a good approximation of 

the range of field conditions. Concentrations of dissolved As were higher in the field 

(up to 380 μmol L
-1

) than in the laboratory experiments (up to 41 μmol L
-1

) while 

dissolved Pb was much lower in the field (up to 2.8 μmol L
-1

) compared to the 

laboratory. Both were attributed to differences in pH between comparable laboratory 

(pH 1.8-4.5) and field systems (pH 3.2-5.4). This discrepancy highlighted the 

limitations of using laboratory experiments to predict pollutant sources at abandoned 

mine sites. 

5.2 Introduction 

The geochemical composition of drainage waters from mine waste tips are 

controlled by the characteristics of the material (mineral surfaces, particle size) and the 

hydrological conditions encountered at the site. Kinetics are fundamental to leachate 

composition, and determine the balance between processes of mineral 

dissolution/precipitation, surface desorption/adsorption and dilution. The dissolved 

concentration of an element may be equilibrium controlled, when the solubility of the 

element is determined by chemical saturation of the aqueous phase with respect to the 

solid phase. The release may also be transport controlled when hydrological conditions 

determine the rate of flow through a tip and therefore the concentration of metals found 

in solution (Evans et al., 2006). In addition, the ionic strength (or ion activity product) 

of pore water solutions affects the solubility of dissolving mineral phases and this too 

depends on the movement of fluid through mine waste (Essington, 2003). At both study 
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sites in this study, drainage waters were undersaturated with respect to Fe(OH)3 and Al 

mineral phases, and dissolved concentrations were  therefore transport controlled.    

Due to the complexity of factors affecting leachate composition, in-situ monitoring of 

mine waters offers the best means of determining the magnitude of contamination 

emanating from waste tips. However, site investigations can be expensive and require 

detailed knowledge of the site hydrology to capture drainage from the tips in a 

representative manner. Often abandoned mine sites are un-secured, leading to 

authorised and unauthorised use of the waste tips by the public. This can impede in situ 

monitoring over long periods because equipment may be lost or damaged.  

 Commonly, the potential of contaminated solids to leach dissolved contaminants 

is estimated from laboratory-based equilibrium techniques. A range of laboratory 

methods are available and these are reviewed in section 5.4. In this chapter, dissolved 

metal and As concentrations were determined via two contrasting laboratory leaching 

techniques and results compared to the field concentrations determined at two study 

sites, Devon Great Consols (DGC, Chapter 3) and Wheal Betsy (WB, Chapter 4). The 

waste material used in the laboratory experiments was a composite removed from the 

selected tip wastes at each site to allow comparison against the field data. The combined 

results are used to aid understanding of the geochemical controls on leachate 

composition for the mine wastes studied. This will aid future management and/or 

remediation strategies for mine waste tips. The exercise also shows the advantages and 

disadvantages of the laboratory techniques used  and examines their suitability for 

future studies of mine waste leachate. 

5.3 Aims and Objectives 

The aims of this chapter were to: 
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 Characterise the mineralogy and physical characteristics of a selection of mine 

waste samples from sites in the Tamar catchment.   

 Investigate the use of laboratory based static and dynamic experiments to generate 

leachates under controlled conditions and critically assesses their suitability for 

predicting contaminant concentrations in the field.  

 

The contaminants of interest were Al, Cd, Cu, Zn, Ni, Pb, Mn, Fe and As, which 

were identified in the field studies as elevated in drainage waters or important to 

contaminant mobility. Other trace elements including Sb, Sn, V, and W were also 

considered in the determination of total content of the mine waste.  

 Samples of the waste tip material found at Devon Great Consols and Wheal 

Betsy were used in this study (see Chapter 3 and Chapter 4 respectively for detailed site 

descriptions). This allowed results from the laboratory leaching experiments to be 

compared  against the results gained from in situ sampling of mine waste leachates.  

The research objectives of this chapter were to: 

1. Select or design a suitable dynamic experiment to mimic in the laboratory, the 

leaching behaviour of mine waste in the field.  

2. Select a batch extraction method suitable for routine analysis of contaminated 

solids. 

3. Collect mine waste material from each of the study sites to be representative of 

the waste tips. In particular preserve the biogeochemical integrity of the sample 

through the laboratory tests. 

4. Investigate the physical and mineralogical characteristics of the sample materials 

used in the leaching experiments. 

5.  Determine concentration ranges and total extractable amounts (mol kg
-1

) for 

dissolved contaminants found in mine waste leachate.  
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6. Investigate the effect of biogeochemical factors on leachate composition namely: 

pH, Eh, solid: liquid ratio and sample drying. 

7. Compare the results of static and dynamic laboratory tests to one another and to 

field data and determine the advantages and disadvantages of each approach. 

8. Use the combined results to determine the geochemical controls on contaminant 

mobility from mine waste materials studied. 

5.4 Literature Review - Field and Laboratory Methods for the 

Determination of Leachable Metals and Metalloids from Mine 

Waste 

 A brief review of field and laboratory techniques applicable to the determination 

of contaminant mobility from mine waste is presented in the following paragraphs. The 

methods used in this chapter are introduced and the rationale for their selection 

discussed. 

5.4.1 In-Situ Techniques 

 Ideally, elemental concentrations and chemical parameters should be determined 

in-situ, since the act of sampling and storing samples potentially compromises their 

physical, chemical and biological integrity. Unfortunately, few parameters can be 

determined accurately in the field. Portable equipment allows the measurement of 

physio-chemical parameters, such as pH, redox potential, conductivity and dissolved 

oxygen. Ion selective electrodes may be used for determination of individual metal ions 

including Al
3+ 

and Cu
2+

 (Honeychurch and Hart, 2003; Peijnenburg et al., 2007). These 

measurements require saturated conditions and are most suited to aqueous 

environments. Similarly, colorimeter field instruments are a convenient method of 

gathering data in the field and can be used for a range of aqueous analaytes, including 
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metals. However, limits of detection are typically higher than laboratory instruments 

(e.g. Fe 30 μg L
-1

, Al 10 μg L
-1

 manufacturers LOD, Hach GmbH) and quality 

assurance of results is difficult to achieve.  

 Lysimeters have also been proven to be an effective tool for assessing the 

transport of mobile metals through the soil (Miro et al., 2005). On-site lysimeter 

experiments are performed by inserting an impermeable barrier into the soil to collect 

percolating fluids. Although lysimeters have been employed in acid rock drainage 

studies (Sracek et al., 2004), their installation typically requires mechanical assistance 

and their installation may alter the properties of the overlying material, thereby 

destroying the natural conditions in-situ experiments are meant to preserve.  

 Disturbance may also be a problem for the application of semi-permeable 

devices, such as diffusive gradient thin films (DGT), which have been successfully used 

to study the mobility and bioavailability of metals in the soil (Zhang et al., 1995; Gao et 

al., 2006; Gao et al., 2007). DGTs are based on the establishment of equilibrium of 

exchangeable ions between a removable medium (generally a layer of resin or gel) and 

the sediment pore waters. The gel/resin layer allows ions and complexes to diffuse 

freely, whilst limiting their uptake rate, thus allowing for replenishment of the soil 

solution (Peijnenburg et al., 2007). The metals are extracted from the exchange medium 

and their concentration in the environmental matrix is related to the extracted amount 

via Fick‟s first law of diffusion (Zhang et al., 1995). DGTs are particularly useful for 

gaining high resolution data for the spatial distribution of elements, since they may be 

installed with minimum disturbance to the host environment. They may be used to 

determine any dissolved species for which there is a selective binding agent available 

(including As, Cd, Co, Cr, Cu, Pb, Mn, Ni, Zn); however, the effectiveness of the 

binding agent is pH dependent. For example, Cd binds relatively weakly and can only 

be measured down to pH 4.5 (Zhang, 2003). DGTs are commonly applied to studies of 
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bioavailable and labile metals in saturated environments, recent studies have shown the 

technique may be successfully applied to the assessment of mine waters and waste 

deposits where saturated conditions exist (Søndergaard et al., 2008; Yapici et al., 2008; 

Sherwood et al., 2009). 

5.4.2 Laboratory Techniques 

 Laboratory based extraction methods are widely employed to assess the release 

of metal contamination from soils, sludges and sediments. They may comprise a single 

stage extraction, or the application of a number of different extractants aimed at 

liberating metal ions bound to different mineral phases. Strong acids, such as HF, 

HNO3, HCl, or chelating agents (e.g. EDTA, DPTA, NTA) release trace metals into 

solution in concentrations high enough to permit detection by routinely applied 

analytical techniques. Total digestion of minerals requires treatment with HF to liberate 

all elements from silicate lattices. However this is both time consuming and hazardous 

and arguably unnecessary in the determination of mobility under environmentally 

relevant conditions.  Digestion with aqua regia (typically a 3:1 mixture of concentrated 

HCl and HNO3) is most commonly employed to determine pseudo-total metal relying 

on oxidative decomposition of all but the most resilient mineral phases (Mudroch and 

Azcue, 1997).  

 It is also possible to target more labile metal pools using milder extractants, such 

as CaCl2, MgCl2 or NH4NO3. These are particularly valuable in the assessment of plant 

bioavailability (Peijnenburg et al., 2007). However, the extracted metal fraction is 

operationally defined by the choice of the extractant, instead of being functionally 

defined, i.e. plant available, mobile or exchangeable. A comparison study by Moral et 

al. (2002) investigated the use of  a number of mild reagents (NH4Cl, CaCl2, SrCl2 and 

DPTA) to extract Cd, Ni, Pb, Co and Cr from contaminated soils.  DPTA  was the most 
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effective extractant, but only in terms of liberating the highest concentrations. The 

results of extraction studies must be applied with care to natural systems. The study by 

Moral et al. (2002) also showed that the extracted concentrations depended on the 

extraction procedure applied, the source of pollution and the type of soil, particularly 

the pH and carbonate content  

  Sequential extractions have been applied extensively to environmental samples 

contaminated by mining operations, including soils, sediments and mine wastes 

(Fanfani et al., 1997; Dold, 2003; Pagnanelli et al., 2004; Pueyo et al., 2008). The 

elemental distribution in a sample is defined in terms of association with mineral 

phases, as determined operationally by the sequential application of extractants of 

increasing strength. However the technique is often criticised for the lack of selectivity 

of some leaching agents and  readsorption of released metal ions onto the substrate 

(Rauret and Rubio, 1997; Miro et al., 2005). The scheme initially described by Tessier 

et al. (1979), Table 5.1, was shown to be inadequate for studying either Cu or As 

fractionation in mine waste as it severely underestimated the Fe-oxide associated 

fraction (Dybowska et al., 2005). The scheme has often been modified but this has 

reduced the comparability of results between studies. In light of a widely accepted need 

for improvement and standardisation, a revised version of the scheme has been 

developed  (BCR 3-step sequential extraction procedure), along with dedicated certified 

reference materials (e.g. BCR-601, BCR-701) (Rauret et al., 1999; Pueyo et al., 2001; 

Ciceri et al., 2008). The operationally defined target phases of each step in the Tessier 

and BCR modified schemes are presented for comparison in Table 5.1. 

  Despite the attempts at standardisation of sequential leaching methods, many 

limitations remain in their application to the assessment of the metal leaching potential 

of a given solid phase. Small operational deviations of method (e.g. extraction time, 

washing between steps) may influence results. Moreover, the interpretation of what 
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constitutes the „leachable fraction‟ is controversial, since it depends on the 

characteristics of the solid material and element of interest. Table 5.2 shows literature 

data obtained for labile metal fractions, as extracted by a variety of sequential batch 

methods from soils contaminated by mining operations. These figures illustrate the lack 

of comparability between studies due to differences in methodology. In a review, Bacon 

and Davidson (2008) concluded that sequential extractions remain a useful technique 

for identifying the potential mobility of elements; however results should be interpreted 

with caution in light of their limitations.  

 This project seeks to quantify dissolved metals released progressively from mine 

spoil deposits under natural environmental conditions. Sequential extractions provide 

information on operationally defined fractions that are deemed to be „exchangeable‟, 

„water-soluble‟ or „acid-soluble‟. Depending on the chosen extraction scheme, they are 

typically carried out as batch experiments at a fixed liquid to solid ratio (typically L:S = 

10:1) and hence do not elucidate the leaching behaviour of elements under variable 

hydrological conditions (Evans et al., 2006; van der Sloot et al., 2006). Therefore, 

laboratory-based extraction techniques that employs a variety of liquid to solid (L:S) 

ratios may be more suitable to mimicking the dynamic environmental conditions mining 

waste is exposed to in-situ.   

Performing extractions in a dynamic mode can help to address certain 

limitations of batch extraction methods, notably the fixed L:S ratio and readsorption of 

extracted elements onto mineral phases due to prolonged contact (Chomchoei et al., 

2002). Dynamic-column leaching experiments have been accepted as a good method for 

estimating metal mobility over realistic timescales (Gibert et al., 2004; Hartley et al., 

2004; Evans and Banwart, 2006; Michel et al., 2007; Slowey et al., 2007). Typically, 

experiments involve packing non-metallic columns with a representative amount of 

field material (usually 0.5 – 10 kg). The columns may be undisturbed cores or 
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composite bulk material. A volume of leaching fluid (e.g. CaCl2, deionised water, or 

NH4Cl2) is applied under pressure and leachates collected as fractions for chemical 

analysis. This type of test is employed by the Dutch Environment Agency as a standard 

leach test for inorganic components from granular materials (NEN 7343). A similar 

published European standard method exists (CEN/TS 14405, 2004) and has been 

implemented in studies of solid waste materials (Dijkstra et al., 2008). Variations of 

dynamic extractions include those based on flow injection analysis (FIA) including 

rotating coil systems (Fedotov et al., 2005), stirred flow cells (Sukreeyapongse et al., 

2002) and packed microcolumns which are a scaled down and automated form of the 

more conventional column leaching technique (Chomchoei et al., 2007).  

For this study, a dynamic extraction test closely following that described by 

CEN/TS 14405 was adopted and has since been applied to similar studies of Pb-Zn 

mine wastes by the British Geological Survey (Palumbo-Roe et al., 2009). The 

technique generates leachates over a range of L:S ratios and can accommodate coarse 

sample material (< 4mm) without the need for aggressive milling or crushing. The 

acidic nature and elevated conductivity of the leachates is the result from the interaction 

of rainwater of comparatively low ionic strength with the mineral phases and porewaters 

in the waste. The solid phase is the dominant control on composition such that MilliQ 

water was deemed suitable as a proxy for rainwater.  

Aside from the limitations of a small sample size, heterogeneity and sample 

disturbance common to all laboratory based methods, this technique mimics the 

dynamic situation of waste in the field and was deemed most likely to give the most 

realistic result for concentrations of labile elements of interest. The main limitation of 

the dynamic extraction is that the mineral phase associations suggested by sequential 

extractions are not so readily inferred from column experiments. Without automation, 

the technique is also more labour intensive and time consuming than commonly applied 
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batch methods. So, in addition to the dynamic extractions, batch experiments may be 

conducted on the same material using a range of extractants which are thought to target 

particular phases. The batch extraction methods applied in this chapter are summarised 

in Table 5.3. The selection is designed to both aid understanding of contaminant release 

processes, and to look at the consistency of results between methods.  

Supplementary analyses are required to confirm mineralogical phase 

associations controlling element release.  Although direct methods of solid phase 

association exist, including several powerful X-ray techniques e.g. X-ray adsorption 

near-edge structure (XANES) and X-ray adsorption fine structure (EXAFS),  they are 

expensive and not widely available (Bacon and Davidson, 2008).  However 

mineralogical examination using X-ray techniques e.g. powder X-ray diffraction to 

examine crystalline composition, and an energy dispersive spectroscopy (EDS) detector 

coupled to SEM, to provide elemental associations and textural information, are useful 

alternatives that are more accessible. 

Table 5.3: Extraction reagents used in equilibrium batch experiments listed with their source and 

the targeted metal(loid) fraction.  

Source of Method: Extractant  / Method Target Fraction 

EA/National Rivers Authority 

R&D  Note 301, 1994 
MilliQ H2O, shaken for 16 h Water soluble 

Step one of the Tessier et. al 

sequential extraction scheme, 

1979 

1.0 mol L
-1 

MgCl2, pH 7.0 

(adjusted with 1 mol L
-1 

NaOH), 

shaken for 1 h 

Exchangeable 

Step one of the revised BCR 

sequential extraction scheme 

0.11 mol L
-1

 CH3COOH , shaken 

for 16 h 

Exchangeable, water 

soluble and acid-

soluble 

Commonly applied technique in 

studies of contaminated solids e.g. 

Pulford et al.  (2009) 

Aqua Regia (3:1 con. HCl : conc 

HNO3), cold digest for 1h 

followed by hot digest (100°C) for 

2 h  

Pseudo - total (all 

except silicate bound 

metals) 
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Table 5.1:  Comparison of the Tessier and Revised BCR 3 step sequential extraction procedures. From (Bacon and Davidson, 2008). 

Tessier (1979) Revised BCR (Rauret et al., 1999) 

 Reagent  Fraction label and nominal 

target phase(s) 

 Reagent Fraction label Nominal target 

phase(s) 

Step 1 1.0 mol L
-1 

MgCl2, pH 7.0 Exchangeable Step 1 0.11 mol L
-1

 CH3COOH Exchangeable, 

water soluble 

and acid- 

soluble 

Soluble and 

exchangeable cations 

and carbonates 

Step 2 1.0 mol L
-1

 CH3COONa 

adjusted to pH 5 with 

CH3COOH  

Bound to carbonates Step 2 0.5 mol L
-1

 NH2OH-HCl 

at pH 1.5 

Reducible Fe-Mn oxyhydroxides 

Step 3 0.04 mol L
-1

 NH2OH-HCl in 

25% CH3COOH (96°C) 

Bound to Fe-Mn oxides Step 3 H2O2 (85˚C) then 1.0 

mol L
-1

 CH3COONH4 

Oxidisable Organic matter and 

sulphides 

Step 4 HNO3/H2O2 (85˚C) then 3.2 

mol L
-1

 CH3COONH4 in 20% 

HNO3 

Bound to organic matter 

and sulphides 

(Step 4) * Aqua Regia   

Step 5 HClO4/HF Residual     

* Although not officially a step in the sequential extraction, it is recommended that the residue at the end of step 3 is digested with aqua regia and the sum of 

the four fractions be compared with the results of a separate aqua regia digestion of the material. 
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Table 5.2: Metal concentrations reported in other studies of mine spoil and contaminated soils for single ‘exchangeable’ (ex) and ‘available’ (av) fractions, or as part of a 

sequential extraction scheme (se). All units mg kg
-1

. ns = non-specified. 

Author Location Sample and Fraction 

Depth 

(cm) L:S ratio pH Cu As Zn Pb Cd Mn 

Dybowska et 

al.(2005) 

Devon Great 

Consols, SW 

England. 

Contaminated soil and 

spoil (ex, se, MgCl2) 0-15 ns  

3.2-

6.8 

1.72-71.67 

(0.04-9.99%) 

7.35-3588 

(0.05-5.36 %) - - - - 

Alvarez et al. 

(2003) 

An abandoned 

mine in Galicia 

(NW Spain). 

Cu rich spoil (ex, 1M 

NH4Cl) 0-20 10:1 

3.0-

5.0 17.7 - 1866 - 0-106 - - 1.8-133 

Bech et 

al.(1997) 

Copper mine, 

Piura (Northern 

Peru). 

Cu rich soil and Spoil 

(av, NH4OAc-EDTA) 10 5:1 

3.33- 

5.86 0.48 - 53 <0.25 - 13 0.08-5.9 

0.61-

4.9 

< 0.05- 

3.8 0.83- 10 

Moreno-

Jiménez et 

al.(2009) 

Monica pyrite 

mine, NW 

Madrid (Spain). 

Soils close to mining 

dumps (ex, 0.1 M 

(NH4)2SO4 0-30 10:1 

3.89-

5.99 0.46-6.32 - 1.24-149.4 - 0.06-7.23 1.44-6.6 
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5.5 Methods 

5.5.1 Reagents  

 All aqueous solutions were prepared with Milli-Q water (Millipore, R ≥ 18.2 

MΩ cm
-1

, reverse osmosis followed by ion exchange). Standard solutions and reagents 

were prepared in a Class 5 (BS EN 150 14644) laminar flow hood (model BassAir 

06VB), according to trace metal clean techniques to minimize contamination. Multi-

element calibration standards were prepared as serial dilutions from standard solutions 

(1000 or 10000 μg L
-1

, Romil Pure Chemistry, Fisher and BDH) and acidified to < pH 2 

with Q-HNO3 (Q denotes purified by sub-boiling distillation, Romil SPA).  

 MgCl2(s) (analytical grade, Fisher) and CH3COOH (100 % glacial, Aristar) were 

used to prepare batch extraction solutions of 1.0 Mol L
-1

 MgCl2 and 0.11 Mol L
-1

 

CH3COOH respectively.  

  Analytical grade acids were used for washing of equipment unless stated 

otherwise.  

5.5.2 Cleaning Protocol 

 Polyethylene skirted centrifuge tubes (50 mL), used for sample collection and 

standard preparation, were cleaned by immersion in a series of cleaning solutions 

(Decon 90, 2% v/v, >24 h; HCl, 6 mol L
-1

, ≥7 days, HNO3, 2 mol L
-1

, ≥7days). 

Perspex™ columns used in leach experiments (section 5.5.4) were rinsed with detergent 

(Decon 90, 2%) and immersed into HNO3, pH 2, ≥7days. Filtration units 

(polycarbonate, Nalgene), and all coloured components (centrifuge tube lids, silicone 

rubber „o‟ rings, polyethene fixings) were rinsed with detergent (Decon 90, 2%) and 

immersed in HCl, 2mol L
-1

, ≥3 days . All items were rinsed with deionised water prior 

to the Decon 90 step and rinsed with MQ water after each of these subsequent steps. 
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Items were dried in a Class 5 laminar flow hood and stored in two plastic zip-lock bags 

prior to use. 

5.5.3 Sample Collection and Sample Treatment 

  Samples of mine waste material were taken from two study sites, Devon Great 

Consols and Wheal Betsy. At Devon Great Consols, four composite samples of ca. 1.5 

kg were taken from the Wheal Anna Maria upper and cinders waste tips (Figure 3.5, 

Chapter 3). At Wheal Betsy, five composite samples of ca.1.5 kg were taken from both 

the northern and southern tip areas. Sampling used a stainless steel trowel to liberate 

material at shallow depths (Wheal Anna Maria, Cinders and Wheal Betsy north tip: 10-

50 cm depth, Wheal Betsy south tip: 10-40 cm depth).  Surface crusts, root layers and 

large pebbles (>16 mm, Wentworth Scale) were omitted by hand sorting. The material 

was collected into zip lock bags and stored cool with ice packs before transfer to a 

laboratory refrigerator (4°C). Descriptions of the material encountered at each sampling 

location are provided in Appendix A. The individual mine waste samples were sieved, 

and the <4 mm fraction combined to form composite samples with mineralogy 

representative of the Wheal Anna Maria (WAM) and Cinders (CIN) waste tips at Devon 

Great Consols and the north and south tip areas at Wheal Betsy (WBN and WBS). The 

composite samples were homogenized by quartering and recombining (5 repetitions), 

placed in an airtight HDPE container and returned to the refrigerator pending dynamic 

and static leaching experiments. The < 4 mm fraction, as used in the column and batch 

extraction experiments, constituted 92%, 72%, 39% and 53%  by weight of the total 

sample material removed from WAM, CIND, WBN and WBS waste tips, respectively. 

 A portion (~100 g) of each individual and each composite sample was retained 

in two zip lock polythene bags for particle size analysis, SEM and XRD analysis and 

determination of moisture content.  
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 Selected homogenised individual and composite samples (50 g) were dried in 

porcelain crucibles (cleaned with Milli-Q and IMS) at 40°C for 72 h. The filled 

crucibles were removed from the oven to a desiccator to cool before samples were 

transferred to zip lock polyethylene bags. A subsample (10 g) was sieved to 2 mm and 

reserved for SEM-EDS analysis. A separate subsample (20 g) was reduced to a fine 

homogeneous powder by a Tema™ disc mill (30 s, tungsten carbide discs). The powder 

was sieved to 63 µm and reserved for XRD analysis. 

5.5.4 Dynamic Up-flow Column Experiments 

Experimental Design 

The experimental design for up-flow column extraction was based on a standard 

European method (CEN/TS 14405, 2004) and follows recommendations for column 

design and operation of the test. Columns were manufactured from Perspex™ tubes (30 

cm length, 5 cm i.d.) and lids secured with nylon screws. Nylon mesh (180 m) fixed 

into the lids on the inlet and outlet functioned as screen for the solid material. HDPE 

and silicon tubing was used for transport of the eluent (MQ water) and leachate samples 

to and from the column. Polypropylene HPLC nuts, ferrules and connectors and were 

used to connect the components of the flow circuit.  

 Leaching solution (MQ water constantly aerated with compressed air) was 

transported by a peristaltic pump at a constant flow rate (2.0 mL min
-1

) into the inlet at 

the bottom of the column. Out flowing solution (leachate) was filtered in-line in two 

stages (0.4 m, and 0.2 m, Whatman Nucleopore) using two filter holders (47 mm, 

Swinnex). The leachate was either directed through a flow chamber for in-line 

determination of Eh and pH and to waste, or was collected at set times to provide 

fractions for analysis. 
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Figure 5.1: Schematic diagram of dynamic upflow percolation experiment 

A schematic of the experimental set up is shown in Figure 5.1. One column is 

shown here for clarity, although during each experiment three columns were run in 

parallel. The leachate reservoir and sample collection was housed in a small laminar 

flow hood to minimise contamination. The initial flow rate was established by 

determination of MilliQ flow through an empty column, flow was also determined 

during each sample collection. The time taken for the sample to travel from the column 

outlet to the collection vessel was used to calculate the void volume of the system 

(shown in red, < 10 mL in all cases). 

Column Packing 

Triplicate empty columns were weighed complete with lids, filters and fixings. 

Laboratory film was placed over the inlet and outlet ports to minimise contamination 

during filling and weighing.  A dedicated blank line comprising HDPE tubing (50 cm), 

complete with two column fittings was also weighed with each column. Sample 

material was introduced from one end of the column in layers (~5 cm) until the column 

was full. A 125 g weight was used to compact each sample layer. The weight comprised 
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an acetate disc (4.7 cm diameter) fixed to the base of a 125 mL HDPE bottle filled with 

DI water.  The bottle was dropped 50 times on each layer from a height of 

approximately 10 cm. The nylon filter was placed on top of the sample and the lid 

carefully secured. Two O rings inside each column lid provide a water tight seal. The 

filled column was reweighed together with the blank line in order to establish the 

weight of the solid sample.  

Column Saturation 

Within hours of column packing, columns were secured vertically into purpose 

built housing and laboratory film removed from the inlet and outlet ports. The outlet 

line from the peristaltic pump was fixed to the inlet port at the base of the column. The 

blank line was fixed to the outlet port at the top of the column. The pump was turned on 

and the column allowed to saturate with leach solution (MilliQ water). When fluid 

began to enter the blank line, the pump was stopped. The pump tubing was 

disconnected from the inlet port of the column and replaced with the blank line to create 

a closed loop. The saturated column was removed from its housing, weighed to estimate 

the void volume of the column (assuming hydraulic connectivity between void spaces 

and no trapped air). From this measurement, the intial liquid:solid ratio could be 

determined.  The columns were re-secured into the housing and left in-situ at room 

temperature for 72 hr +/- 1 hr prior to the start of the test in order to allow pore waters 

to equilibrate with the solid sample. The optimum saturation time was determined from 

trial experiments of 24, 48, 72 and 168 h.  

Experimental Run 

After saturation for 72 h, the blank line was uncoupled from each column and 

replaced with the circuit tubing as shown in Figure 5.1.  The pump was switched on and 

the experiment timed. The eluent was passed through the inline pH meter with the first 
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10 mL directed to waste in order to purge the void volume from filters and outlet tubing. 

Sample fractions (~30 mL) were collected by directing flow to a sample collection 

vessel (50 mL polyethylene skirted centrifuge tubes, pre-weighed). The time taken to 

collect each fraction was timed and used to estimate the outflow velocity of each 

column. Once collected, sample fractions were immediately transferred to a refrigerator 

and within hours of collection a 2 mL aliquot was transferred to a glass HPLC vial and 

refrigerated pending quantification of anions by ion chromatography (Dionex DX-500 

system, Dionex Ionpac AS9-HC column).   

The pH of the eluent was monitored (Hanna HI9025 instrument fitted with a 

VWR electrode) and recorded at time intervals throughout the experiment. Triplicate 

columns were run at staggered time intervals (~4hrs); Eh was measured during the 

experiment for at least one replicate (Hanna HI9025 instrument fitted with a redox-ORP 

electrode, VWR). 

A recommended sampling scheme based on dry mass and passing eluent volume 

is given in CEN/TS 14405, 2004.  Time intervals for each column were calculated from 

a solid: liquid ratio based on dry mass and the cumulative volume of passing leachate.  

Some deviation was made from the recommended scheme to include more frequent 

sampling, particularly at the beginning of each experiment.  All fractions were 

accurately timed.   Total experiment run time was calculated during the test from an 

average of sample collection times measured during the experiment. The recommended 

experiment endpoint was reached when 10 L kg
-1 

had passed through each column. 

Total leachate volume for all experiments was > 10 L kg
-1

. Typically this was achieved 

within 5 days, depending on flow rate. 

The remaining sample was acidified to pH 2 with Q-HNO3 pending analysis of 

metal(loid) content by ICP-OES  (Varian 725-ES Inductively Coupled Plasma Optical 

Emission Spectrometer ) and ICP-MS (VG Plasma Quad PQ2+ Turbo Inductively 
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Coupled Plasma Mass Spectrometer) in an  ISO9001:2000 accredited analytical 

research facility.  

Cleaning 

The column flow circuit was cleaned before and after each experimental run. Q-

HNO3 (10% v/v) was introduced to the circuit as a cleaning solution via peristaltic 

pump (< 0.1mL min
-1

, total contact time ≥3 days). This was followed by a rinse with 

MQ water (< 0.1mL min
-1

, total contact time ≥1 day). Inline filters were installed prior 

to the pre-experimental cleaning step and removed before post-experimental cleaning. 

5.5.5 Batch Extractions 

Soil pH 

Soil pH was determined according to a modification of the EPA method 9045D.  

10 mL of deionised water was added to 10 g of each sample (<4 mm fraction) in a 25 

mL glass beaker and stirred for 5 min. The soil suspension was covered and allowed to 

settle for 1 hr. The pH of the samples was measured using a Hanna HI9025 instrument 

fitted with a thermocouple and pH electrode (Hanna H1230). The pH electrode was 

calibrated daily with pH 4.0 and 7.0 buffers (BDH Laboratory). 

Equilibrium Extractions 

 Composite Wheal Anna Maria (WAM), Cinders (CIND), Wheal Betsy north 

(WBN) and south (WBS) tip material was dried (40°C, 72 h). Sub-samples of the 

homogenized material (4, 8 and 10 g) were accurately weighed into 50 mL centrifuge 

tubes.  An aliquot of MilliQ was added via pipette to achieve L:S ratios of 10, 5 and 2 

respectively e.g. 40 mL to 4 g to achieve L:S of 10. Each was prepared in triplicate 

alongside procedural blanks.  Samples and blanks were laid horizontally and shaken for 

16 h (orbital shaker), then immediately centrifuged (3000 rpm, 15 min).  The 
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supernatant was carefully removed via auto-pipette and acidified (Q-HNO3, pH 2) for 

metal(loid) analysis.  

 The experiment was repeated on WAM, CIND and WBS material using two 

different extraction schemes; these are listed in Table 5.3.  All samples were 

centrifuged, sampled and analysed identically.  

Aqua - Regia Digests 

  Sub-samples (0.5g) of the dried composite WAM, CIND, WBN and WBS tip 

material were accurately weighed into acid-washed Tecator™ glass tubes (in triplicate). 

To each 4 mL of HCl (35 %, Romil SpA) and 1 mL of HNO3 (70 %, Romil SpA) was 

added and allowed to digest for 1 hr at room temperature. A further 0.5mL of HNO3 was 

added to each tube before refluxing for 2 hrs at 95-100 °C. Once cool, solutions were 

quantitatively transferred to 50 mL volumetric flasks through glass fibre filters 

(Whatman 41, Ashless) and made to volume with dilute HNO3 (2%, Romil SpA in 

MilliQ). Solutions were transferred to 50 mL polyethylene skirted centrifuge tubes and 

10- and 100-fold dilutions prepared with dilute HNO3 pending analysis for metals and 

metalloids.  

  Three replicates of a CRM were digested using the same method applied to the 

samples. The percentage recoveries are shown in section 5.6.1 (Table 5.4).  

5.5.6 Instrumentation and Analysis 

 Moisture content was determined in triplicate gravimetrically after drying 

(105°C, 24 h) sieved and homogenized samples (10 g). The organic matter content was 

determined gravimetrically as loss on ignition (LOI, 1 hr ramp to 450 °C, then 8 h).  

 Homogenised and sieved samples (< 63 µm), were pressed gently into plastic 

specimen holders and examined for crystalline mineral phases by XRD using a Siemens 
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D5000 diffractometer and CuKα radiation at the Camborne School of Mines, University 

of Exeter (CSM).  Data was collected for 1 hr using a 2-70° 2 θ program.  

 Polished blocks were prepared for SEM analysis from selected samples (1 g of < 

2mm homogenised sample, gently disaggregated with pestle and mortar). These 

included the composite material used in the leaching experiments, (pre- and post- 

column run) a number of individual samples of mine waste collected from the two study 

sites and for comparison a number of pre-prepared samples gathered from other mine 

waste tips in the Tamar Valley by Mighanetara (2009) during a previous PhD project.    

 Samples were mixed with graphite (1.5 g) and subsequently mixed with 

Epofix™ resin and hardener. The mixture was poured into a mould of 30 mm diameter 

and allowed to de-gas for 30 min then oven dried (50°C, 4 h). Once set samples were 

ground and polished to produce a cross sectioned sample surface for analysis (pers. 

comm. Pendray, 2009).  Grain mounts were also prepared on selected samples by 

sprinkling a light coating of particles (< 2 mm) onto self adhesive conductive carbon 

tabs fixed to aluminium mounts.  All prepared samples were carbon coated before being 

introduced to the SEM. Samples were examined for texture and elemental composition 

using a JEOL JSM-5400LV scanning electron microscope with a JEOL energy 

dispersive spectrometer at CSM. The system was used in hi vacuum mode and LinkISIS 

software used to interpret the raw data. Samples were initially scanned in secondary 

electron imaging mode. The detector was switched to backscatter image composition 

mode for imaging. 

 Metal and metalloid analysis of batch and column leachate was carried out by 

ICP-OES  (Varian 725-ES Inductively Coupled Plasma Optical Emission Spectrometer) 

and ICP-MS (Thermo Fisher X Series 2 Inductively Coupled Plasma Mass 

Spectrometer) in an ISO9001:2000 accredited analytical research facility. Yttrium and 

indium (100 μg L
-1

) were used as internal standards. Matrix matched standards were 



       Chapter 5   

319 

 

prepared for CH3COOH and MgCl2 batch extractions. Dissolved anions were 

determined by ion chromatography (Dionex DX-500 system, Dionex Ionpac AS9-HC 

column). Na and K analysis was performed by flame photometer (Corning 400). ICP-

OES and ICP-MS analyses were verified against a certified reference material for trace 

elements (TMDA-64, National Water Research Institute, Canada). Instrumental 

operating conditions are given in Chapter 3, Appendix 3E. 

5.6 Results and Discussion 

5.6.1 Quality Control and Figures of Merit 

pH and Eh Meters 

 The pH meter was calibrated daily before use and checked after use using 

standard solutions (pH 4 and 7, BDH). The maximum recorded daily drift in calibration 

was 0.3 pH units. The Eh meter was checked daily before use by measuring against 

ZoBell‟s solution, using the method described in Chapter 3 (3.7.1). 

Analytical Figures of Merit 

 Instrument drift was monitored by re-injection of a multi-elemental standard after every 

ten samples. Typically instrumental drift was < 5%, depending on element and 

concentrations, where drift exceeded 10%, samples were re-analysed. Recoveries for 

certified reference materials are shown in Table 5.4. Internal standards, check standards 

and limits of detection determined as described in Chapter 3 (3.7.1). Procedural blanks 

for column experiments comprised a sample of the final rinse wash of column circuits 

with filters installed (MilliQ). In all batch experiments including aqua regia digestions, 

matrix matched blanks were subjected to the same procedure and analysis. Results were 

corrected for procedural blanks.  
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Table 5.4: Limits of detection and CRM recoveries for all analysis of samples in Chapter 5. Certified reference materials: LGC6156 (Harbour Sediment) and LGC6137 

(Estuarine Sediment), LGC Standards, UK and TMDA-64 (fortified lake water), National Water Research Institute, Canada. % result in parenthesis based on mean values. * 

Certificate guidance value only. ** Denotes LOD for 0.11 M acetic acid standard matrix, 
+
Denotes LOD for 1 M MgCl2 standard matrix.  

Element/ 

Anion 

TDMA-64 

Certified Value 

(μg L
-1

) ± 2σ limit 

LGC6156 (or LGC 

6137
†
) Certified 

Value (mg kg
-1

) ± 

95% confidence level Method  

Linear / 

Standard 

Range   

(μmol L
-1

) Limit of Detection (μmol L
-1

) TDMA-64 Recoveries (μg L
-1

) 

LGC6156 / 6137 

Recoveries (mg kg
-1

) 

Al 265±30 19000 ±3700 ICP-OES 0.5-5000 1.4, 1.5, 1.1, 0.39, 0.99, **0.62, 
+
1.5,  304, 261, 296, 273, 260, 268, 269. 14200±1440 (67%) 

As 150±22 38.3±5.8 ICP-OES 0.1-1000 1.5, 1.5, 1.3, **1.2, 
+
2.1, 2.3 163, 147, 158, 181, <LOD 35±19 (91 %) 

Ca 13600* 43000±2600 ICP-OES 0.5-5000 

0.032, 0.22, 0.18, 0.0048, 0.021, **0.021, 
+
0.19, 0.43 

13600, 14200, 13600, 13500, 

13400,  14300, 13000,  44900±7230 (105 %) 

Cd 251±24 2.9±0.5 

ICP-MS 0.0005-5 0.0006, 0.0032,  242, 236 - 

ICP-OES 0.01-100 **0.062, 
+
0.16 257, 256 2.5±0.5 (86 %) 

Co 270±27 28.3±2.8 

ICP-MS 0.001-5 0.24,  264 - 

ICP-OES 0.05-500 0.46, 0.22, 0.32,**0.15, 
+
0.31 264, 263, 244, 280, 270 - 

Cu 290±29 2400±122 

ICP-MS 0.001-5 0.074, 0.033 307, 312 - 

ICP-OES 0.1-2000 0.26, 0.11, 0.16, 0.13, 0.13,**0.13, 
+
0.21 308, 311, 267, 286, 285, 285, 273 2460±290 (103 %) 

Fe 319±30 
†
30700±1600 ICP-OES 0.1-1000 0.31, 0.47, 0.20, 0.19, 0.13, **0.18, 

+
0.24 347, 308, 338, 312, 317, 313, 289 25400±1200 (83 %) 

Mn 299±26 553±27 ICP-OES 0.1-1000 

0.48, 2.3, 0.07, 0.015, 0.010, 

**0.011,
+
0.022 

316, 295, 303, 287, 290, 306, 270, 

300 528±76 (95 %) 

Mo 278±22 - ICP-OES 0.1-10 0.28, 0.29, **0.17 301, 252 - 

Na 4500* 20100±1150 

FAAS 200-4000 2.0 4400 - 

ICP-OES 0.5-5000 5.7, 6.1, 7.7, **6.1 4500, 4500, 4700, 4700 19775±1010 (98 %) 
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Element/ 

Anion 

TDMA-64 

Certified Value 

(μg L
-1

) ± 2σ limit 

LGC6156 (or LGC 

6137
†
) Certified 

Value (mg kg
-1

) ± 

95% confidence level Method  

Linear / 

Standard 

Range (μ 

mol L
-1

) Limit of Detection (μmol L
-1

) TDMA-64 Recoveries (μg L
-1

) 

LGC6156 / 6137 

Recoveries (mg kg
-1

) 

Ni 262±23 161±13 ICP-OES 0.01-100 0.54, 0.62, 0.24, 0.36, 0.47,**0.37, 
+
0.94 277, 254, 260, 247, 233, 259, 271 133±80 (83 %) 

Pb 297±28 
†
73.0±3.6 

ICP-MS 0.001-0.5 0.0047, 0.0027 323, 326 127±66 (174 %) 

ICP-OES 0.01-5000 0.95, 0.50, 0.46 285, 279, 269 - 

Si - - ICP-OES 0.5-5000 2.7, 2.1, 3.0, 1.0, 1.5, **1.3,
+
4.5, - - 

Sb 125±20 - ICP-OES 0.5-50 1.6 126 - 

Sn 292* - ICP-OES 0.05-500 0.72, 0.79, 0.85, **0.91, 
+
1.7

 
308, 275, 294, 295, 246 - 

V 272±26 91.5±10.0 

 

ICP-OES 0.01-100 0.35, 0.40, 0.15, 0.18, 0.11, **0.10, 
+
0.20 270, 276, 274, 262, 256, 281, 282 72±12 (79 %) 

W 0.06* - 

ICP-MS 0.0005-1 0.0001 0.11 - 

ICP-OES 0.5-50 3.7 <LOD - 

Zn 313* 3530±195 

ICP-MS 0.0010-10 0.026, 0.028 330  

ICP-OES 0.1-1000 0.77, 1.4, 0.65, 0.46, 0.55, **0.38, 
+
1.31 329, 307, 321, 306, 302, 327, 239 2730±120 (77 %) 

F
-
 - - IC 10-5000 0.31 - - 

Cl
-
 - - IC 10-5000 1.3 - - 

SO4
2- 

- - IC 10-5000 1.7 - - 
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5.6.2 Mine Waste Characterisation 

Moisture and Organic Content 

 The moisture content of the sample material was 5.6% (WAM), 13.4% (CIND), 

13.2% (WBN) and 14.7% (WBS). Organic content was determined by LOI as 2.8% 

(WAM), 10.3% (CIND), 4.7% (WBN) and 7.5% (WBS).  

Acid Extractable Metals and Metalloids 

 The relative abundance of metals and metalloids in the four composite samples of 

waste material used in this study are shown in Table 5.2. 

 

Figure 5.2: Acid extractable metals and metalloids determined by aqua regia digestion for composite 

mine waste samples used in batch and column experiments. Bars represent mean of triplicate results, 

error bars represent +/- 1 s.d. Note logarithmic scale on y-axis.  

 The aqua regia digestion method provides a “pseudo-total” for the mass of each 

element extractable from the sample if weathering was accelerated. The extracted loads are 

presented on a log10 scale in order to show the relative abundance of major and trace 

elements which span many orders of magnitude. The acid extractable content of Cu, Zn, Pb 
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and As (Table 5.5) shows that the content of Cu and As were of a comparable range while 

Pb content was only notable in material from Wheal Betsy. The variability in the content 

observed for some elements is partly due to the combined effect of small sample size and 

mineralogical heterogeneity of the samples.   

Table 5.5: Summary of mean acid extractable content for Cu, Zn, Pb and As from selected mine 

wastes. All units mmol kg
-1

. Highest result for each element in bold. 

 Cu Zn Pb As 

WAM 35.8 ± 18 0.572 ± 0.10 0.354 ± 0.07 272  ± 65 

CIND 50.8 ±1.1 7.93 ± 0.20 1.69 ± 0.15 383 ± 8.2 

WBN 13.1 ± 2.2 16.6 ± 6.1 126 ± 80.5 66.4 ± 9.0 

WBS 27.0 ± 7.5 22.4 ± 6.6 224 ± 29.3 104 ± 29 

 

 In addition to these elements which are commonly identified in mine waters a range 

of trace elements were detected. These included Cd and Ni which were mobile in field 

drainage waters. Cd and Ni content was highest in WBN (40.8 μmol kg
-1

) and CIND (93.4 

μmol kg
-1

) respectively. Dissolved concentrations of Sb, V, W, and Sn in field drainage 

waters were very low (<LOD, for most samples). However, the content of trace elements, 

particularly Sn and W, may be of interest to future site management strategies, their 

abundance in CIND waste samples was equivalent to 0.086 % and 0.023% and is just 

above the current cut off for economic recovery (0.08% Sn and 0.02% W, Wolf Minerals 

Ltd, 2010). A full list of elemental content determined for all element/sample combinations 

is listed in Table 5.10. 

Particle Size Analysis 

  All composite sample materials were poorly sorted with a range of particle sizes in 

the < 4mm fraction. Figure 5.3 shows WBS material had the largest fine (< 250 μm) 

fraction comprising 24.7% silts and clays. WAM was generally coarser, comprising mainly 

coarse and very coarse sands and only 4.6 % silt and clay.   
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 % Mass of Total Sample 

Sample 

Gravel 

(> 4 mm) 

Gravel 

(2-4 mm) 

Very Coarse Sand 

(1-2 mm) 

Coarse Sand 

(0.5 - 1 mm) 

Medium Sand 

(250 -500 μm) 

Fine Sand 

(125 - 250 μm) 

Very Fine Sand 

(63 - 125 μm) 

Silt and 

Clay 

(< 63 μm) 

WAM 0.0 11.0 26.6 34.7 17.7 4.5 1.8 4.6 

CIND 0.8 19.6 17.3 16.5 14.4 6.4 7.3 16.6 

WBN 0.1 26.6 25.3 15.0 11.0 3.3 3.1 14.2 

WBS 0.5 19.7 19.1 14.2 12.1 3.6 4.8 24.7 

     

Figure 5.3: Above: Results of particle size analysis for composite mine waste samples used in batch and column experiments.  Groupings according to the Wentworth 

particle size scale. Below: Particle size results displayed graphically as coarse (red and orange) and fine (< 250 μm, blue) fractions.
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X-Ray Diffraction 

  XRD patterns were obtained for pre- and post- column leached WAM, WBN, 

WBS, and CIND samples (dried, ground and sieved to <63 μm). One sample (WAM, 

Figure 5.4) was run in duplicate and reproducibility was good. Raw data was interpreted 

using Brucker AXS Eva software to peak match existing reference XRD patterns. 

However, the sample patterns were dominated by crystalline quartz (blue pattern, Figure 

5.4) which is commonly associated with hydrothermal veins and was present in all the 

samples analysed.  

 

Figure 5.4: Stacked XRD patterns obtained for Quartz reference material (blue) and DGC composite 

material replicates (red and black).  

Minor constituents (< 5%) and amorphous mineral phases such as secondary iron 

oxyhydroxides could not be positively identified by XRD. Major phases that were 

identified are shown in Table 5.6. There was no discernable difference in the patterns 
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obtained for pre- and post-column materials. Relative abundances could not be calculated 

as samples were not prepared with an internal standard.  

Table 5.6: Minerals identified by powder XRD using Brucker AXS Eva software. (S) indicates 

secondary (iron) mineral phase. 

Sample 
Mineral 

Classes 
Mineral Groups (Crystalline) Mineral Phases Identified 

WAM  

Oxide Quartz Quartz  

Silicate 

Tourmaline Dravite,  Schorl, Uvite  

Mica Muscovite-silicon rich  

Zeolite Gismondine  

Chlorite Chamosite  

Halide Fluorite Fluorite 

Sulphide Sulphide Arsenopyrite 

Phosphate Arsenate Juanitaite  (S) 

CIND  

Oxides 
Quartz Quartz 

Simple Oxides Maghemite (Fe(III)Oxide Fe2O3) 

Halide Fluorite Fluorite 

Silicate Pyroxene Enstatite 

WBN  

Oxides Quartz Quartz 

Sulphate Alunite  Jarosite 

Halide Complex halides Douglasite 

Phosphate Arsenate Beudantite (S) 

Silicate 
Mica Muscovite (silicon rich), illite 

Chlorite Chamosite  

Sulphide Sulphide Galena 

WBS  

Oxides Quartz Quartz 

Phosphate Arsenate Beudantite (S) 

Sulphate Alunite  Jarosite 

Silicate Mica Muscovite (silicon rich), illite 
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Scanning Electron Microscopy 

Wheal Anna Maria Upper (WAM) 

Surface mounts and sectioned blocks were examined by SEM to investigate the physical 

appearance and elemental composition of the mine wastes. The surface mounts of WAM 

tip waste (< 4 mm fraction) showed angular grains of typically around 0.5-1 mm in 

diameter (Figure 5.5). The surfaces exhibited a variety of textures with surface crusts and 

detritus commonly associated with the grains  

 

Figure 5.5: WAM sample grains 

  Surface crusts, as shown on the quartz grain in Figure 5.6, were examined in cross 

section and revealed a coating of Fe-oxides rich in As (≤ 26 % atomic composition, 

quantitative EDX) with lesser amounts of  Cu (≤ 2.5 %) and  Zn  (≤ 0.85 %). There was no 

evidence of surface exposed primary sulphide minerals, although minerals surfaces 

beneath flaking surfaces were usually richer in As. The flecks of detritus were mainly 

comprised of silicate minerals (often illite and muscovite) or Fe-oxides, again with As and 

Cu associated. 
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Figure 5.6: BSI WAM Quartz grains exhibiting surface crusts and detritus. 

 Cross sectioned polished blocks of WAM waste revealed the internal composition 

and textures of the grains. The WAM sample comprised mainly silicates (illite and 

muscovite and quartz) and fluorite.  There were occasional grains of altered arsenopyrite 

and most mineral grains exhibited the Fe-oxide rims with trace As, Cu and Zn (Figure 5.7). 

The highly fractured arsenopyrite with feathered edges and rims of amorphous Fe-O was 

indicative of oxidative alteration. There was very little evidence of other sulphide phases 

within the sample. Where found, chalcopyrite and sphalerite were altered to a greater 

extent than the arsenopyrite, suggesting preferential weathering of the Cu, Zn and 

occasionally Mn containing phases (Figure 5.7). The high concentrations of Cu, Zn and 

Mn determined in field samples of leachates from the WAM tip must are likely to be from 

the dissolution of these phases. There appears to be some attenuation of dissolved metals 

via association with the secondary Fe phases and in general the content of As, Cu and Zn 

was increased in Fe-oxides closest to the remnants of the primary sulphide minerals.  
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Figure 5.7: Top Left: BSI of cross-sectioned WAM grains showing silicate minerals (dark) with Fe-

oxide coatings (lighter rims). Bright grain is a highly altered grain of arsenopyrite. Top right: detailed 

image of the alteration zones around the crystalline arsenopyrite.  Bottom left : BSI of multi - mineral 

assemblage (left). Bottom right: highly weathered chalcopyrite and sphalerite (lightest areas), Fe-

oxides and quartz (dark areas). 

Cinders (CIND) 

  The cinders material exhibited a greater range of particle size and textures than the 

WAM waste (Figure 5.8, left). The internal structures were varied and unusual, often 

appearing bubbled, and likely to be the result of processing in the arsenic calciners (Figure 

5.8, right).  
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Figure 5.8: Left: BSI of cinders waste. Right: Large grain showing porous texture consistent with high-

temperature alteration and evolution of gas (in a furnace), smaller altered grain of arsenopyrite also 

shown to left.  

 There was very little bright material on the back-scattered images of the cinders 

(CIND) waste indicating a paucity of heavy elements. Chalcopyrite and sphalerite were 

absent, but occasional grains of wolframite and arsenopyrite were evident. The mineral 

assemblage was dominated by silicate minerals and fluorite. Where found, arsenopyrite 

was fractured and weathered with alteration to As rich Fe-oxide.  Elsewhere in the sample, 

Fe-oxides were present largely as amorphous whole grains with textures resembling soil 

particles, or high-temperature furnace products (Figure 5.8, right). There was a paucity of 

Fe-oxide surface coatings on other mineral grains. Interestingly, despite the absence of 

copper-, zinc- and manganese- containing primary sulphide minerals, Fe-oxides enclosed 

in some grains were rich in these elements. This suggests that the primary sulphide was 

once present in these grains but has been preferentially weathered from the sample leaving 

behind voids and secondary Fe-oxides with Cu, Zn and Mn associated with them.  

  Surface mounts of the bright red material which was a constituent of the CIND 

composite were also examined as the red-orange colour resembled altered arsenic 

sulphides identified in other As-rich waste (Greenhill Arsenic Works, DeNull (2007)). The 

textures were indicative of high-temperature alteration, being bubbled and pitted, and As 
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content was concentrated in detrital material on the surface. Therefore it is concluded that 

the sample is composed of an inert man-made material (e.g. brick dust). 

Wheal Betsy North (WBN) 

 The BSI of WBN prepared as surface mounts show a range of particle shapes and 

sizes, generally less than 500 μm diameter and comprising mainly mica and quartz (Figure 

5.9, top left).  

  

  

Figure 5.9: Top Left: BSI of WBN waste material showing mixed particle size. Top Right: Pb rich Fe-

oxide coatings on mineral surfaces. Bottom left: BSI of WBN waste material showing assortment of 

mineral grains with surface coatings of Fe-Pb-S-O phase. Bottom right: Highly altered galena 

surrounded by secondary Fe-Pb-S-O phase. 
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  Surface crusts were ubiquitous with surface cracks similar to those observed in the 

WAM material. The crusts were generally brighter than the host minerals and bright 

particles of detritus were also commonly associated with the grains (Figure 5.9, top right 

and bottom left). Investigation of these crusts with EDX revealed the bright areas to have a 

high Pb content (≤ 13 % atomic composition).  

 The EDX spectra revealed a fairly consistent atomic ratio of Fe, Pb, O and S in 

surface coatings (average 21:10:39:11), in addition to variable amounts of As (3.9-9.8%)  

with trace amounts of Zn (≤ 1.2 %)   and Cu (≤ 1.6 %)  also common. Of all commonly 

identified secondary phases, the composition was most consistent with the secondary phase 

beudantite (PbFe3(AsO4)(SO4)(OH)6),  identified by XRD and identified in previous 

studies of other Pb-bearing mine waste e.g. Roussel et al. (2000). However, plumbojarosite 

(Pb0.5Fe
3+

3(SO4)2(OH)6), beaverite-(Cu) (Pb(Fe
3+

,Cu)3(SO4)2(OH)6)  and beaverite-(Zn) 

(Pb(Fe2
3+

,Zn)(SO4)2(OH)6) are also possible phases, which may not be detectable via XRD 

due to a lack of crystalinity.   

  Primary sulphide minerals made up a very small part of the sample, and where 

encountered, galena (PbS) was highly altered (Figure 5.9, bottom right). EDX targeting the 

centre of this mineral grain also revealed that trace amounts of Zn and Cu were present 

(both present at 0.5-0.7%).  Since Cu and Zn are not trace constituents of galena, it 

suggests chalcopyrite and sphalerite have been preferentially weathered away. A very 

small number of fragmented and highly altered sphalerite particles were found, but no 

chalcopyrite. Since Cu , Zn, Mn, Ni, Cd and Pb were enriched in the waters percolating the 

WBN tips (Chapter 4), these elements  must either be released via dissolution of the 

remaining sulphide minerals or release of these species from the secondary minerals, either 

due to phase change or desorption. 
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Wheal Betsy South (WBS)  

 There was a higher proportion of fine material (< 100 μm diameter) in the WBS 

sample and numerous aluminium silicate phases were identified, commonly highly 

textured and intimately associated with other phases within grains. Also observed in the 

WBS samples, was a higher count of grains comprised mainly of amorphous Fe-Pb-S-O 

phases (26:7:44:13 atomic %). The composition was slightly less Pb-rich than the WBN 

sample.  Fe-Pb-S-O coatings were ubiquitous, and as for all sample materials, there was no 

visible difference in pre- and post- column leached samples (Figure 5.10, top and bottom 

left) such that they were not visibly altered by the conditions of the column test. There was 

very little galena present. A rare example is shown in Figure 5.10 (bottom left) enclosed in 

a secondary Fe-Pb-S-O phase. Close inspection of the outer phase shows the highly 

amorphous texture (Figure 5.10, bottom left), and some grains exhibited an outermost 

coating of Fe-O around the secondary Pb phase. Copper and Zn were only present in trace 

amounts associated with the secondary phases.  

 The degree to which the samples in this study were representative of the tip waste 

from elsewhere in the Tamar catchment was examined by comparison to existing samples, 

prepared similarly during a previous study by Mighanetara (2009). These comprised 

material from New Great Consols, Luckett (historically mined for Sn, Cu, As, Ag and W), 

Old Gunnislake Mine (Cu,As,W), Okel Tor (Cu, Sn, As) and Gawton (Cu,As,Sn). Sulphide 

minerals comprised a only a small fraction (< 5%) of the cross-sectioned grains examined. 

This is consistent with the findings of Mighanetara (2009), who examined ten mine waste 

samples from five mine sites in the Tamar Valley using semi-quantitative field scans by 

QEMSCAN
®
. For most samples in the study sulphide content was low but could be highly 

variable (<0.1 - 29%, for a single phase) between mines and between samples from the 

same site.  
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Figure 5.10: BSI of WBN material pre-column (top left) and post-column experiment (top right).  

Bottom right: BSI of surface mounted WBS grain showing cracked surface coating.  Bottom right: 

Rare fragment of galena (bright area) enclosed by secondary Fe-Pb-S-O phase and altered quartz 

grain (large dark area).  

 The degree of alteration observed in primary sulphide minerals in this work was 

variable but in all samples including those prepared in this study, arsenopyrite was more 

commonly encountered than Cu- Mn- and Zn- sulphides. The Old Gunnislake sample had 

the lowest sulphide content, with arsenopyrite limited to small highly altered grains (Figure 

5.11, top left). It also contained evidence of angular glassy material likely to be processing 

waste (furnace slag).   Like the CIND sample, secondary Fe-oxide coatings were not 

obvious in this sample. The secondary coatings observed in the WAM, WBN and WBS 
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material were encountered in the Okel Tor, Luckett and Gawton. In the Okel Tor waste, 

whole grains of secondary Fe-oxide phase were encountered which were rich in As, Cu, Zn 

and Mn or a combination of all. Figure 5.11 (top right) shows a cross sectioned grain 

comprising secondary Fe-oxide minerals rich in Zn at the centre, suggesting that this is the 

remains of a highly weathered sphalerite grain. This sample also had characteristic textures 

which indicate the growth of socrodite (FeAsO4.2H2O) on arsenopyrite (Figure 5.11, 

bottom left). The waste material from Luckett had the greatest variety of mineral types. 

There was little arsenopyrite but arsenic was commonly associated with secondary Fe-O-

As and Fe-Pb-As-S-O phases. The material from Gawton was similar in composition and 

texture to the samples from WAM. Figure 5.11 (bottom right) shows the degree of 

alteration exhibited by the arsenopyrite and the Fe-oxide coatings on the particles. 

Elsewhere in the sample small amounts of chalcopyrite and sphalerite were encountered. 

These were much less abundant than arsenopyrite with a high degree of alteration, again 

indicating preferential weathering.    Overall the textures and elemental composition of 

phases encountered in the WAM, CIND, WBN and WBS do appear to be representative of 

those found in other mine wastes. 

 There is some variation in the mineralogy and degree of alteration but the wastes 

appear to fall into two categories: those with extensive secondary Fe-O coatings and those 

without. The diversity of the minerals found does depend on the particular mineralogy of 

the site, but the relative abundance in all samples seems to indicate the preferential 

weathering of Cu- Zn- and Mn- containing sulphide phases, over arsenopyrite. This is not 

consistent with literature solubility constants (Ksp) of the pure sulphide mineral phases. 

Solubility generally follows the order Sphalerite > Galena = Arsenopyrite > Pyrite >> 

Chalcopyrite (PHREEQC, Stumm and Morgan (1996)). However there is variation in 

literature Ksp values depending on temperature, and crystal structure. Sulphide phases 

identified in the mine wastes were rarely pure sulphide end members, and solubility 
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products cannot be used as a substitute for oxidative weathering rates when assessing the 

reactivity of sulphide mineral phases.  

 The most striking finding of the SEM investigation is how small the fraction of 

primary sulphides is in all the samples. Therefore the behaviour and stability of the 

secondary phases is most likely to control the mobility of many of the toxic elements (Cu, 

Zn, As, Pb) of interest to this study. 

  

  

Figure 5.11: Top left: BSI of highly altered sphalerite grain within Okel Tor waste.  Top right: BSI of 

Old Gunnislake sample showing highly altered arsenopyrite. Bottom left: BSI showing alteration of 

arsenopyrite (crystalline light areas) to scorodite (flecked areas) in Okel Tor waste. Bottom right: BSI 

showing Fe-oxide coating (approximately 10 micron) and alteration of arsenopyrite grain. 
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5.6.3 Column and Batch Experiments 

Conditions and Reproducibility 

 Column and batch experiments were carried out at ambient temperatures of 18.2-

23.0 °C. Test conditions of flow rate, pH and Eh were reproducible between replicate 

columns of the same waste material (Table 5.7). Small differences in the dry mass, 

saturated pore volume, linear velocity and flow rate of the leachate from different materials 

resulted from variation in particle size and packing on flow through the waste.  High 

backpressures were observed when the filled columns were connected to the flowing 

circuit. This caused one column to fail (leaking seal and sheared nylon retaining screw) at 

the beginning of the experimental run (CIND 2) leaving only two replicates for the CIND 

material. 

 

Table 5.7: Up-flow percolation test characteristics for each column: flow rate, moisture content, 

temperature, dry mass, saturated pore water volume, linear velocity, initial L:S ratio, median pH and 

pH and Eh ranges. 

Tip Material: DGC Wheal Anna Maria (WAM) DGC Cinders (CIND) 

Replicate No. 1 2 3 1 2 3 

Mean flow rate (mL min
-1

) 1.51 1.71 1.70 1.43 - 1.49 

Dry mass of solid sample (kg) 0.855 0.837 0.873 0.663 0.665 0.676 

Saturated pore water volume (L)
1
 0.250 0.259 0.245 0.209 0.204 0.202 

Linear Velocity (cm h
-1

)
2
 10.9 11.9 12.5 12.3 - 13.3 

Initial L:S ratio (L kg
-1

)
3
 0.29 0.31 0.28 0.32 0.31 0.30 

pH range 2.4-3.7 2.5-3.5 2.5-3.5 4.0-4.5 - 4.0-4.5 

Median pH 
4
 3.1 4.2 

Eh range (mV) 500 -730 580-750 565-700 405-670 - 365-575 
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Tip Material: Wheal Betsy North (WBN) Wheal Betsy South (WBS) 

Replicate No. 1 2 3 1 2 3 

Mean flow rate (mL min
-1

) 1.44 1.39 1.61 1.45 1.31 1.69 

Dry mass of solid sample (kg) 0.866 0.833 0.810 0.848 0.842 0.850 

Saturated pore volume (L)
1
 0.085 0.086 0.094 0.079 0.081 0.079 

Linear Velocity (cm h
-1

)
2
 30.5 29.1 30.8 33.0 29.1 38.5 

Initial L:S ratio (L kg
-1

)
3
 0.10 0.10 0.12 0.09 0.10 0.09 

pH range 1.9-2.6 1.8-2.5 1.9-2.6 2.0-2.5 2.3-2.6 2.3-2.6 

Median pH 
4
 2.3 2.4 

Eh range (mV) 715 -800 - - 720 -780 - - 

1 Water volume in saturated column, determined gravimetrically 

2 Determined from saturated pore volume per unit length of column (mL cm-1) and the average flow rate (mL h-1) 

3 Initial L:S ratio calculated from saturated pore volume and dry sample mass 

4 Median pH determined from all three replicates at L:S ratio >0.2 L kg-1.  

 

Column and Batch pH and Redox Potential 

 There was little variation in pH during the course of the column experiments (open 

symbols, Figure 5.12). WBN and WBS material produced leachates of similarly acidic pH 

values (pH 1.9-2.6). WAM leachate had a slightly higher pH (pH 2.4-3.7), and leachate 

from the CIND sample material was highest in pH (pH 4.0 - 4.5) The pH data shown in 

Figure 5.12 clearly shows that the method of leaching experiment has a significant effect 

on the pH of the solution in the system. Column pH was lower than batch experiments 

(closed symbols, Figure 5.12) whilst both batch and column pH were lower than the pH 

measurements taken of comparable leachates in the field. For example seepages from the 

base of the WAM tip were pH 3.2-4.0, (DGC locations 3-7, n=14), drains issuing from the 

CIND waste were pH 5.0-5.3 (DGC location 1, n=3), and boreholes in the base of WBN 

tips were pH 3.2-5.1, (WB BH3 and BH5, n=11). 
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Figure 5.12: pH measurements recorded during column experiments (n=3 WAM, WBN and WBS, n=2 

CIND) and soil pH experiments (n=3, error bars represent +/- 1 s.d). Note change of scale after break 

on x-axis. 

 The redox potential in the columns leachate remained positive (365 - 800 mV, 

Figure 5.13) throughout the experiment, indicating that the columns were not oxygen 

limited. However CIND and to a lesser extent, WBN and WBS, produced progressively 

more oxic leachate during the experiment. The gradual increase in Eh observed indicates 

the rate of oxygen consumption (by oxidation reactions) were kinetically slower than the 

rate of supply of oxygenated waters to the column. Therefore the rate of oxidation 

reactions and not the rate of oxygen supply is the rate limiting factor controlling release of 

contaminant metals in column leachates. The deliberate oxygen saturation of inflowing 

eluent raised the Eh of the column leachates above values recorded in field drains flowing 

from the tips (e.g. WAM 560 - 740 mV, CIND 485 - 552 mV, WBN 455 -555 mV). 

Concentrations and extractable loads resulting from the columns may therefore be regarded 

as the upper limit (or “worst case”) leachate composition under saturated oxic conditions. 
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Figure 5.13: Redox potential measurements as Eh (mV) recorded during column experiments 

(corrected for saturated AgCl electrode half cell potential). Note change of scale after break on x-axis. 

  The high variability in pH and Eh observed for the WAM columns is attributed to a 

limitation of the method used to make measurements for this sample.  pH and Eh meters 

were swapped between replicate columns during the experiment and resulted in less stable 

and more variable readings. In subsequent column experiments (WBN, WBS and CIND), 

pH and Eh probes remained in situ and monitored one replicate (two for CIND) for the 

duration of the experiment. During all experiments, probes were only removed periodically 

to check calibration with pH 4.0 and Zobell‟s (Eh) reference solutions. The probes were 

not recalibrated as values remained within 0.3 pH and 10 mV of the start values for the 

reference solutions. Therefore the variation in Eh and pH observed for CIND, WBN and 

WBS may be confidently interpreted as indicative of geochemical processes occurring 

within the columns. 

  The pH and Eh values the two individual CIND columns are displayed in Figure 

5.12 and Figure 5.13 to demonstrate that it is possible to have distinctly geochemical 

environments in the column system despite homogenisation of the sample and identical 
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treatment of the columns. When translated from the controlled laboratory to the field 

environment, where there is much greater scope for heterogeneity within mine waste, it is 

apparent that the geochemical environment could vary greatly within individual tips of 

even the most visually homogeneous material. Even small changes in pH or Eh could 

result in a shift in element behaviour through altered speciation, sorption or desorption, this 

in turn could dramatically alter the mobility of toxic elements from mine waste tips.  This 

behaviour is explored in the following sections where elements are grouped according to 

the dominant geochemical processes controlling their mobility.  

5.6.4  Elemental Mobility in Dynamic Column Experiments and Batch Experiments 

Elemental Release Curves and Cumulative Elemental Loads 

 Dissolved elemental concentrations (μmol L
-1

, filtered in-line to 0.2μm) in column 

leachate were plotted against the liquid to solid ratio (L:S), normalised for dry  

mass  (L  kg
 -1

). The resulting release curves were highly reproducible for replicate 

columns for all elements, as exemplified in Figure 5.14 for Cl and Zn leached from WAM 

tip material. There were a small number of exceptions, which are noted in the following 

sections. Error bars are not shown as staggered collection times and the slight differences 

in flow rate meant that the calculated L:S values differed between replicate columns. 

Results from replicate columns were combined to produce a single data set for each sample 

of waste. The shape of the Cl curve in Figure 5.14 may be considered to be representative 

of the transport of an unretained species through the column. A shallower curve (seen for 

Zn) indicates greater interaction with the waste solid in the column.  

 Dissolved concentrations (μmol L
-1

) of metals and metalloids determined for 

column (points) and batch experiments (points with error bars) will be presented together 

in the following sections. Also shown are the mean, maximum and minimum 

concentrations determined in comparable samples from the field studies. Field data are 
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displayed as horizontal lines since it was not possible to determine the L:S ratio in situ. For 

the material from Devon Great Consols (WAM and CIND), comparable field values 

comprise dissolved elemental concentrations for the WAM tip drains (DGC locations 4-7, 

n=13), and the cinders drain (DGC location 1, n=4). At Wheal Betsy, data from boreholes  

located at the base of the WBN tips(WB BH2-5, n=21), were used to compare to leachate 

from WBN waste material. No borehole or drainage data was available to directly compare 

WBS material. Instead dissolved concentrations are shown for a section of Cholwell Brook 

where the WBS waste is in direct contact with the stream (WB locations 9 and 10, n=5).  

NB. WBS field data will be affected by upstream sources (WBN) and in-stream dilution. 

 

 

Figure 5.14: Concentration of dissolved Cl and Zn in leachate from replicate columns of WBN tip 

material versus cumulative liquid to solid (L:S) ratio. Concentrations were corrected for dry mass in 

the column.  LODZn = 0.53mol L
-1

, LODCl = 1.3mol L
-1

. 

  Metal and metalloid concentrations determined in column leachate at a cumulative 

L:S ratio are not directly comparable with those determined in the batch experiments. 

Concentrations determined in column leachates accounts for the leachate passing through 

the system at the point of sampling, ignoring that which has already passed.  Conversely in 

the batch experiment the dissolved fraction is retained in a closed system.  For direct 

comparison of the relative extraction efficiencies of the two methods, the cumulative 

extractable mean loads (μmol kg
-1 

dry weight) were calculated and are presented for the 
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columns (as points) and batch experiments (as bars).  In addition, the results of the MgCl2 

and CH3COOH batch extractions are shown alongside those for MilliQ to compare the 

relative extraction efficiencies of these methods and interpret the mechanisms that control 

metal and metalloid release.   

5.6.5 Iron and Aluminium Release 

 SEM observations of Fe- and Al- associations with Cu, Zn, Mn and Pb indicated 

that the solubility of mineral phases containing iron and aluminium would strongly 

influence the mobility of other metals and metalloids associated with them.  Field data in 

Chapter 3 and Chapter 4 also indicated that the drainage waters draining from the mine 

wastes were poised at a pH indicative of either an Fe-buffered system  (~ pH 3)  e.g. WAM 

tips or an Al-buffered system (pH 4.5-5.0) e.g. CIND and WBN tips. Leaching of 

dissolved Al and Fe in the column and batch experiments established the intrinsic stability 

of Al and Fe phases in the sample materials under different conditions. 

Iron 

 Since Fe speciation is sensitive to both pH and redox conditions, the implications of 

Eh/pH variation are best described with the aid of the Pourbaix diagram shown in Figure 

5.15. The waters from field and column study are shown to be predominantly in the 

stability field of the solid iron-hydroxide phase (no Eh data for batch experiments, hence 

not shown). The boundaries within the Pourbaix diagram are approximations based on a 

simplified system and the exact position may vary slightly from that shown. However the 

placement of the species boundary is consistent with the PHREEQC geochemical 

modelling results for field samples (Chapter 3, section 3.76 and Chapter 4 section 4.5.6)   

which calculated the dominance of the Fe
3+

 species over Fe
2+ 

in surface waters at 

equilibrium with the atmosphere.   
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Figure 5.15: Pourbaix diagram showing aqueous iron species in a Fe-O2-H2O system at 25°C, 10
-6

 M Fe 

(adapted from Beverskog and Puigdomenech (1996)). Dashed blue lines represent stability field of 

H2O. Column samples from all L:S ratios and mean field data shown. Error bars represent +/- 1 s.d. 

 With all samples lying close to the Fe
2+

/Fe
3+

 boundary only a small reduction of Eh 

or pH may result in dissolution of Fe-hydroxide phases. Such phases were shown by SEM 

to be a major sink of As, Pb, Zn, and Cu under current field conditions but could become a 

major source if conditions were to change. The concentration and load plots for Fe are 

shown in Figure 5.16 and Figure 5.17 respectively. Under the conditions of the column 

test, Fe mobility was very low for all the study samples, despite low pH compared with the 

field. WBN material did release a little Fe at the start of the experiment, perhaps due to a 

slight reduction of pH/Eh in the saturated column; however this was rapidly suppressed by 

the inflow of oxygen as the experiment progressed. Given the low pH generated by the 

sample material, it is likely that oxidation of pyrite or other iron sulphide phases occurred 

during the saturation phase of the column. Such reactions would have consumed oxygen 

and supplied dissolved Fe into solution. 
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 Batch experiments liberated more Fe but the output was still very low representing 

< 0.02% of the pseudo total content (1-3
 
mol kg

-1
) and Fe remains largely immobile under 

field and laboratory conditions encountered in this work.  The higher result for batch 

over column could be a consequence of reduced Eh. However, the reaction vessel included 

an atmospheric headspace, allowing O2 to mix with the waters. The reaction time was also 

much shorter than the column saturation time (12 hr shaking, immediate centrifuging and 

isolation of supernatant). Therefore establishment of reducing conditions in the batch 

vessels was unlikely. A more plausible explanation is inclusion of colloidal iron-oxides 

suspended in the “dissolved fraction”. The finest fraction of iron-oxyhydroxides and clays 

observed under SEM may have been disaggregated in the batch experiments. Isolation of 

the leachate by centrifuge, versus filtration for the columns, may have artificially enhanced 

the proportion of „dissolved‟ Fe.  

 The field data was most closely matched by the column results, although occasional 

spikes of Fe were observed, demonstrated by the maximum horizontal lines in Figure 5.16. 

As for the laboratory data, these may be attributed by physical disturbance of the material 

(e.g. purging of the boreholes) or a slight reduction in pH or Eh moving equilibrium 

towards the more mobile Fe
3+ 

in solution. A single high result of 47.3 μg L
-1 

dissolved Fe 

was recorded for WAM seepages at pH 3.7 and Eh 637 mV and a singular maximum of 

44.3 μg L
-1

 dissolved Fe was determined for WBN at pH 4.6 and Eh 490 mV (BH4). Both 

these samples plot inside the region of Fe2O3, which implies that disturbance of the waste 

caused the spike in Fe observed. This infers that some colloidal Fe was passing through the 

0.20 μm filter.   

Reduction in either pH or Eh would enhance Fe mobility (Figure 5.15). In the batch 

reaction vessel (50 mL centrifuge tube, vigorously shaken), oxygen in the headspace would 

be supplied to all the samples, and therefore low Eh conditions are unlikely but could not 

be confirmed.   
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Figure 5.16: Dissolved iron concentrations determined in column (multiple points), batch (points at 2, 5 

and 10 L kg
-1

) and field samples (horizontal lines) for sample materials WAM, CIND, WBS and WBN 

(clockwise from top left). Error bars represent +/- 1 s.d.  

Cumulative Batch and Column Release  

 The relative mobility of Fe between experiments and sample type might therefore 

be explained by the initial pH condition and the capacity of the samples to buffer the pH of 

the extractant solution. Acetic acid consistently liberated the most Fe because it was the 

most acidic solution added (pH = 2.86). The acid generating capacity of the sample 

materials followed the order WBS ~ WBN > WAM > CIND, such that of the three samples 

compared WBS amends MilliQ H2O to the lowest pH (pH 3.11, L:S 10:1), and CIND to 
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the highest pH (pH 4.70, L:S 10:1). The CIND material appears to reduce extraction 

efficiency of acetic acid. This may be attributed to a pH effect whereby the pH is increased 

by the weathering reactions occuiring within this system. Under these conditions, the 

extractable Fe load was  more comparable to results with MilliQ and MgCl2 extractants..   

 

 In the batch extractions (Figure 5.17), acetic acid (CH3COOH, 0.11 M) liberated 

the most dissolved Fe from the solid for all samples tested. In the absence of significant 

carbonate minerals (from XRD and SEM evidence) acidic treatment targets exchangeable 

ions and soluble mineral phases.  MgCl2 (1.0 M, pH 7) was least able to liberate Fe from 

WAM and CIND waste but was more effective than MilliQ in the WBS sample. From the 

targeted phases presented in Table 5.3, WBS waste apparently contains a much larger 

exchangeable fraction of Fe than other samples. The magnitude of Fe released 

(WAM>>WBS>CIND>WBN) was not proportional to the total acid extractable total Fe 

content (CIND>>WBN>WAM>WBS). (See Table 5.10, Appendix B for values).   

 The lack of consistency between MilliQ and MgCl2 extractions indicate that ionic 

strength also plays an important role in Fe solubility. MgCl2 (1 M, pH 7.0) was both the 

least acidic and the highest molarity extractant applied. The results for WBS show that 

MgCl2 liberated more Fe than MilliQ despite the later being a more acidic system. Also 

extraction efficiency generally increased with increased L:S ratio. This is often cited as a 

limitation of batch experiments, whereby saturation of the solvent inhibits further 

dissolution of mineral phases. This is consistent with the results for CIND, WBN and WBS 

but the trend was not observed for the WAM sample (Figure 5.17, top left).  

 In summary, although there is evidence for both pH and ionic strength effects, the 

results from the batch extractions indicate a complex release mechanism for Fe which 

cannot be easily resolved or generalised for different sample types.  
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Figure 5.17: Cumulative extracted Fe load (μmol kg
-1

 of dry material) for column leachates (points) 

and batch extractions (bars) at L:S ratios of 2, 5 and 10. Error bars represent +/- 1 s.d. Note no data 

for WBN MgCl2 and WBN CH3OOH.  

 The unpredictability of these trends also extends to batch extractions of Al, Cu, Zn, 

Mn, Ni and Cd, although the reproducibility of triplicate samples remained good. The 

oxidation of Fe-, metal- and As-sulphide phases, identified in the waste by SEM, was the 

primary source of dissolved metals and arsenic. However, release behaviour is complicated 

by association of the elements with secondary phases (Fe-oxides) and clays. In fact, the 
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content of some elements (As, Pb, Cu, Zn and Mn) in secondary coatings may be higher 

than the content in primary minerals based on the surface area observed under SEM, 

although this would require further work to quantify.  The behaviour of Al, Cu, Zn, Mn, Ni 

and Cd is explored in the following paragraphs and Pb and As in section 5.6.7.  

Aluminium 

  Aluminium is not directly sensitive to redox changes but mineral phases containing 

aluminium often buffer acidic mine waters in the environment to pH 4.0-4.5. Al was 

clearly soluble at the < pH 5 conditions of the batch and column experiments, as shown by 

the release curves in Figure 5.18. The CIND waste released leachate with the most 

dissolved Al and highest pH.  There was a decrease in median pH from CIND to WAM 

and from WAM to WBN and WBS  of approximately one pH unit (Table 5.7). This was 

equivalent to a 10-fold increase in the hydrogen ion activity and resulted in approximately 

10-fold increase in the amount of Al released from the columns. The paucity of carbonate 

phases in the samples and the ready dissolution of Al phases indicate that Al-buffering is 

the dominant pH control on leachates. 

 The column release curves shown in Figure 5.18 are similar for WAM and CIND 

samples.  The maximum concentration achieved during saturation of the column decays 

rapidly as flow is initiated until dynamic equilibrium position is reached. At this point the 

rate of supply of dissolved Al is equal to the rate of removal from the column in the 

leachate. This shape of release curve was typical of many of the elements studied in this 

work. However the WBS release curve is different from the ten-fold exponential decrease 

in concentration seen for the other samples (Figure 5.18), bottom right). This indicates an 

Al resupply mechanism that is unique to the WBS sample. This may be a consequence of 

the larger fine fraction within the sample providing higher reactive surface area for rapid 

dissolution or desorption of metals from clay minerals. Alternatively aluminium silicate 
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phases controlling Al solubility in the WAM and CIND samples may be more crystalline 

than in the WBS sample, and show slower dissolution kinetics.  However, the actual 

amount of buffering is much lower in WBS than seen for CIND and WAM waste since the 

pH remains low (circa pH 2.5 throughout the experiment, Figure 5.12).  

 The results of the batch (MilliQ) and column experiments are similar in terms of 

the cumulative release of Al (Figure 5.19) and the unique behaviour of the WBS sample is 

reflected in by a linear cumulative curve. Unusually, the extraction efficiency of MgCl2 

actually exceeded that of acetic acid for the WBS sample. This is further evidence of the 

effect of high ionic strength on the sample and suggests that Al, like Fe, is in a more 

readily exchangeable form in the WBS sample compared to WAM and CIND. It also 

demonstrates the lack of comparability between extraction schemes and the lack of 

selectivity for a particular fraction. From Table 5.3, exchangeable Al would be expected to 

be included in the acetic acid extracted fraction and yet the acetic acid extraction liberates 

less than half that of the MgCl2 extraction for WBS. 

 As for Fe, acetic acid was more effective as an extractant of Al from WAM and 

CIND with MilliQ>MgCl2 for WAM and CIND samples and MgCl2>MilliQ in the WBS 

sample. However, unlike dissolved Fe the mobility of dissolved Al was higher in the 

columns than in the batch experiments, except in the WBS sample. A high fine fraction 

(24.7 % silts and clays) was observed as detritus on the surface of grains within the WBS 

sample (SEM, section 5.6.2). Disturbance of the coating may have mobilised colloidal Al, 

similarly to colloidal Fe. 
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Figure 5.18: Dissolved aluminium concentrations determined in column (multiple points), batch 

(points at 2, 5 and 10 L kg-1 and field samples (horizontal lines) for sample materials WAM, CIND, 

WBS and WBN (clockwise from top left). Error bars represent +/- 1 s.d.  
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Figure 5.19: Cumulative extracted Al load (μmol kg
-1

 of dry material) for column leachates (points) 

and batch extractions (bars) at L:S ratios of 2, 5 and 10. Error bars represent +/- 1 s.d.   
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Variation in the initial curve gradient differed with sample type, for example the release 

curves for Cu and Zn are shown for CIND (Figure 5.20, middle) where elution was 

consistently more rapid (with respect to L:S ratio) than WAM and WBN (Figure 5.20, top 

and bottom respectively). The same trend was observed for Mn and Cd and Ni (where 

above LOD). The dissolution of the primary sulphide phases in the waste has not been 

considered 

 The comparison between dissolved concentrations in the column and batch 

experiments versus the field demonstrated that it most cases the field concentrations 

(represented by horizontal lines) were coincident with high L:S ratio in the release curves. 

Low L:S in the column experiments was indicative of elements released after saturated 

equilibrium, equivalent to the  “first flush” from a mine waste tip following heavy rain. 

The results for WAM, where field leachates can only be collected as issues form the base 

of the tip following heavy rain, best reflect this (Cu and Zn in Figure 5.20, top). Likewise 

field samples of CIND drainage waters were collected from ephemeral streams flowing 

under wet conditions approximately 10 m from the base of the tips. The field results are 

comparable with L:S ratios of approximately 5:1. Dilution from waters flowing around and 

under the tips, which reduces the concentrations observed at WBN in the boreholes directly 

in front of the tips, were matched by high L:S ratio in the curve. Finally at WBS (Figure 

5.21) the in stream dilution of mine waters leaving the waste tips is diluted beyond the 

lowest extent of the Cu and Zn release curves observed in the columns.  

 The point at which the field ranges cross the column leachate curve varied between 

elements released from the same sample of waste.  For example in the WBN column 

(Figure 5.20, bottom) the mean field concentration for Zn crosses the release curve at L:S 

7:1, while the field concentration of Cu is  too low to cross the curve. This demonstrates 

that some elements are released more slowly into interstitial waters of the waste when rain 

water percolates. Different elements exhibit different levels of interaction with the mineral 



       Chapter 5   

354 

 

surfaces inside the waste and therefore, the solid matrix exhibits selectivity for some 

elements over others. 

  

  

  

Figure 5.20: Dissolved Zn and Cu column release curves for WAM (top), CIND (middle) and WBN 

(bottom). Also shown are concentrations determined in batch experiments (points with error bars) and 

concentrations ranges determined in field samples of drainage from respective waste tips (horizontal 

lines). Error bars represent +/- 1s.d. 
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Figure 5.21: Dissolved Zn and Cu column release curves for WBS. Also shown are concentrations 

determined in batch experiments (points with error bars) and concentrations ranges determined in 

field samples of drainage from respective waste tips (horizontal lines). Error bars represent +/- 1s.d. 

 SEM/EDX examination of the metal- and arsenic-rich coatings on mineral grains 

suggested dissolution and desorption processes at the surface of mineral grains are 

important in determining mobility Cu, Zn and Mn. Overall Cu, Zn, Mn, Ni and Cd affinity 

for the solid phase followed the order: WBS >> WBN > WAM > CIND (based on slope of 

release curves). This does not obey the order that would prevail if surface charge on 

mineral surfaces was the most important factor determining interaction between dissolved 

cations and the solid. The point of zero charge (PZC) is defined as the pH at which the net 

charge of all charge sources (oxides and clays) is zero (Gast, 1977). Below the PZC mine 

waste has an overall positive charge and is an anion adsorber and above the PZC the mine 

waste has an overall negative charge and is a cation adsorber (Taylor and Eggleton, 2001). 

The PZC of some of the mineral phases identified in the samples by XRD (from Table 5.6) 

and some commonly found within sulphidic mine wastes are listed in Table 5.8.   

 The PZC for iron and aluminium oxide minerals is generally higher (5 - 10) than 

the pH recorded during the leach experiments. Under such conditions the secondary iron 

oxide phases identified by SEM are likely to be positively charged and relatively poor 

adsorbers of cations. 
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Table 5.8: PZC values for some minerals found in sulphidic mine waste. Sources: (T) adapted from 

Taylor et al.(2001) and references therein, (A) from Alverez-Silva et al. (2010), (K) from Kosmulski 

and references therein (2011). Range shown where more than one result exists. Bold font indicates 

minerals identified by XRD in samples from this study. 

Mineral Class Mineral Name PZC  

Oxides Quartz, SiO2 1 - 2.9 
(T, K)

 

Gibbsite, Al(OH)3 5 - 9.5 
(T)

 

Goethite, FeO(OH) 6.2 - 9.6 
(T, K)

 

Ferrihydrite, Fe2O3.0.5H2O 6.9 - 8.7 
(T, K)

 

Lepidocrocite, FeO(OH) 7.8 
(K) 

Iron Hydroxide (Colloidal) 6 
(K)

 

Silicates Kaolinite, Al2Si2O5(OH)4  < 2 - 4.6 
(T, K)

 

Montmorillonite, (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2.nH2O 2-6 
(T)

 

Muscovite  < 3 - 4.5 

Chlorite (Chamosite), (Fe,Mg)5Al(AlSi3O10)(OH)8 4.7 
(A)

 

Halides Fluorite, CaF2 10.5
 (K)

 

Sulphides Galena, PbS 2.2 -6.1*
 (K)

 

Sphalerite, (Zn,Fe)S 2.2 - 3 

Chalcocite, Cu2S < 2 

 

 Therefore the most acidic column material would be predicted to have the lowest 

adsorption of divalent cations and the order of affinity for the column would follow the 

order CIND>WAM>WBS>WBN, but this was not the order observed (WBS >> WBN > 

WAM > CIND).  Literature evidence (Table 5.8) suggests that quartz, silicates (including 

clays) and sulphides are more likely to have a negative surface charge at the pH conditions 

measured in the column and batch experiments and therefore will strongly adsorb cations. 

Clays in particular are good cation adsorbers due to the permanent (negative) charge 

imbalance in clay mineral structures (Evangelou, 1995).  
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  High clay content can therefore give rise to good adsorptive properties and also is 

beneficial in reducing permeability through mine waste. WBS had the highest fine fraction, 

comprising silts and clays (Figure 5.3) and demonstrated dissolution behaviour that was 

consistent with a high exchange capacity associated with clay content. However, the fine 

fraction was also relatively high for the CIND sample and pH was highest, yet the retention 

of cationic species in the CIND column was poor.  Furthermore, the WAM sample had a 

very low fine fraction (Figure 5.3) but displayed greater retention of cationic species than 

CIND. 

  This trend may be explained when the iron oxide coatings, ubiquitous in the 

WAM, WBN and WBS samples are reconsidered. Such coatings were less abundant in the 

CIND sample.  This is consistent with the higher pH measured in the pore waters of the 

CIND sample. Able to buffer its pore waters to > pH 4.5 by dissolution of Al bearing 

phases, dissolution and precipitation of secondary Fe-oxide phases is less likely to occur.  

 Despite the PZC values for iron oxide minerals in Table 5.8, there was a clear 

association between Cu, Zn, Mn and secondary iron oxides in the SEM/EDX images of the 

mine wastes in this study.   The PZC is known to vary across a mineral surface and oxides 

vary greatly in charge sites per unit weight and charge sites exhibit different electro-static 

bonding strengths for a particular metal-cation surface (Benjamin and Leckie, 1980). 

Particularly strong adsorption (specific adsorption) may be independent of the PZC and 

thus sorption can take place below the PZC (Kuo and Baker, 1980). Based on this 

information and the SEM observations, iron-oxide surfaces do play an important role in the 

sorption of Cu, Zn, Mn, Cd, Ni. The lack of Fe-O-cation bond strength is counteracted by 

the high abundance and high surface area of iron-oxides available for sorption. 

Furthermore, in mine waste tips, were cyclic wetting and drying of minerals is common, 

the precipitation of fresh Fe-oxides as secondary phases (evident for WAM, WBN and 

WBS) provides a constantly renewed sink for aqueous metal cations. This is in agreement 
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with Klinck et al. (2005) who observed thin banded films of iron oxides on and between 

mineral grains in WAM waste material during SEM analysis.  This study concluded iron 

oxides were precipitated as hydrous gels under saturated conditions and subsequently dry 

and shrink in situ, giving rise to the characteristic coatings observed.  

Fractional Release and Selective Adsorption Effects for Al, Cu, Zn, Mn, Ni, Cd  

 The cumulative leached load for each of the elements Al, Cu, Zn, Mn, Ni and Cd 

determined from the column experiments (μmol kg
-1

 dry sample)  are listed alongside the 

total acid extractable content determined from the aqua regia digests (mmol kg
-1 

dry 

sample) in Table 5.10 (Appendix B). When ordered from highest to lowest, there is a 

strong relationship between total content and the released load indicating fractional release 

from the waste (Table 5.9).  

 However, this relationship does break down when the concentration of the metal of 

interest is low in the leachate, typically < 5 μmol L
-1

. The order of affinity for the solid 

phase for all samples is shown also in Table 5.9. These are based on the initial 

concentration gradient (shallow gradient indicates high affinity). There is evidence to 

suggest that a selective adsorption of some metals retards mobility while increasing the 

mobility of others. This would account for the non-fractional behaviour observable at low 

concentrations. For example, when released in leachate at similarly low concentrations, Cd 

seems to be selectively retained over Ni and Cu selectively retained over Mn (Table 5.9, in 

bold). Cu generally shows a greater affinity for the solid phase than the other cationic 

elements (with the exception of Pb, section 5.6.7). The behaviour of Al is complicated 

somewhat by its tendency to form complex ions, such as sulphate pairs and hydroxyl-Al 

monomers and polymers (Nordstrom, 1982).  Accordingly its relative mobility with respect 

to other cationic species was highly variable.  
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    The CIND material had the lowest overall interaction with dissolved cationic 

species (Figure 5.20) and also failed to exhibit any selective adsorption effects between 

Cu, Zn, Cu, Ni. Baker (1980) stated that in most cases fractional adsorption decreases as 

the total metal concentration increases. This is consistent with the observations in this 

study as CIND waste generated leachate with three times more cationic strength (18500 

μmol kg
-1

) than the other samples (Table 5.9). The CIND sample had the highest Fe 

content (3354 mmol kg
-1

) but the lowest content of Fe-oxide coatings on mineral grains, a 

feature that was also identified by SEM for waste containing furnace slag (cinders) from 

another site (Old Gunnislake sample, section 5.6.2).  The reduced content of iron in the 

cinders material is explained by the reactions that occur when arsenopyrite is heated in air 

during the calcining process. Arsenic and sulphur are simultaneously liberated to the 

gaseous phases (at 450°C), leaving either iron oxides (hematite or magnetite), or if raised 

to around 500°C , pyrrhotite (Fe1-xS) (Mular et al., 2002). The reactivity of pyrrhotite in 

mine waste (Equation5, Chapter 3), is dependent on the stoichiometry (Lollar, 2005), while 

the direct removal of Fe-As pyrites prevents later dissolution and precipitation within the 

tip.  If selective adsorption is particular to the iron-oxides in the samples then the lack of 

such coatings in the CIND waste may also account for the low selectivity and overall 

retention.  

 Further evidence of selective sorption is evident when the cumulative extracted 

loads (μmol kg
-1

) for Cu, Zn, Mn, Ni and Cd in the column experiments are compared to 

the batch experiments. As a general rule, extraction efficiency in the batch experiments 

increased with L:S ratio for all the elements discussed so far (including Fe and Al). This 

was explained by the equilibrium limitation of the batch method which suppresses 

elemental dissolution in a closed system.  
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Table 5.9: Order of column leached metals and acid extractable metals for Al, Cu, Zn, Mn, Ni and Cd in mine waste samples.  

Sample 

Order of Column Leached 

Load (μmol kg
-1

) 

 (High to Low) 

Order of Acid Extractable 

Content (mmol kg
-1

) 

(High to Low) 

Order of Affinity for Solid Phase 

in Column  

(Low to High) 

Total Column Cationic Load 

(μmol kg
-1

)* 

WAM Al>Cu>Mn>Zn>Ni>Cd Al>Cu>Mn>Zn>Ni>(Cd<LOD) Al<Ni=Zn<Mn<Cu,  (Cd<LOD) 6310 

CIND Al>Cu>Mn=Zn>Ni>(Cd<LOD) Al>Cu>Mn>Zn>Ni>Cd Cu=Mn=Zn=Ni<Al,  (Cd<LOD) 18500 

WBN Zn>Al>Mn>Cu>Ni>Cd Zn>Al>Mn>Cu>Cd>Ni Ni<Zn=Cd=Al<Mn<Cu 3930 

WBS Al>Zn>Mn>Cu>Ni>Cd Al>Zn>Cu>Mn>Cd>Ni Ni<Mn<Zn<Cd<Cu<Al 6340 

*Sum of detectable dissolved Ca, Mg Na, K, Al, Si, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr, V and Zn. 
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 The leachate leaving the columns showed an exponential decrease in 

concentration for most elements during the experiment (exception Pb, see section 5.6.7). 

This shows that the rate of the transport through the column was faster than the rate of 

elemental release and the ionic strength of the leachate decreased through the 

experiment. Therefore, column experiments under the conditions of this study did not 

suffer the same equilibrium limitation as the batch experiments. As a result, the 

cumulative extracted load of dissolved cations should be higher for the column 

experiment than batch experiments at the same L:S ratio, but this was not always the 

case.   

  The results for WAM, WBN and WBS are presented in Figure 5.22.  The 

column experiment does indeed liberate more Zn (also Cd, not shown) in all cases than 

the equivalent batch experiment. However this is not true of all metals and the results 

show that mobility of Cu (and Mn, not shown) was often suppressed in the column 

experiments being most evident at low concentrations in WBS leachate (Figure 5.22, 

bottom) and shows similar behaviour to dissolved Fe (Figure 5.16).  

  Overall the mobility of Zn and Cd is enhanced in the column experiments 

because  the elements have a relatively low affinity for mineral surfaces and desorption 

into solution  is promoted by decreasing ionic strength in the passing fluid. Conversely 

Cu and Mn show a higher affinity to mineral surfaces within the sample and are 

preferentially retained and/or preferentially sorbed on to fresh Fe-oxide as they are 

precipitated in the column. The gentle leaching action in the column aids the retention 

of amorphous and colloidal material within the waste. Disturbance of the sample in the 

laboratory and the field promotes mobilisation of fine content (iron oxides and clays) 

which in turn promoted the mobility of associated metals. 
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Figure 5.22: Cumulative extracted Cu and Zn load (μmol kg
-1

 of dry material) for column leachates 

(points) and batch extractions (bars) at L:S ratios of 2, 5 and 10. Error bars represent +/- 1 s.d.  
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5.6.7  Lead and Arsenic 

  So far the behaviour of As and Pb has not been explored. Of all the elements of 

interest, As and Pb demonstrated the most „atypical‟ release curves in the column 

experiments. They also were major components of the overall acid extractable load 

(mmol kg
-1

) shown in Figure 5.2. Arsenic content (acid-extractable) in all the waste 

samples was comparable to Al content (max 2.9% acid extractable, CIND), while WBN 

and WBS were very Pb-rich (2.6 % and 6.1% acid extractable As, respectively). 

Lead 

  In the last part of section 0, the selectivity of mineral surfaces, particularly iron 

oxides, for dissolved eco-toxic metal cations was explored. In particular, Mn and Cu 

were identified as having a high affinity for amorphous iron oxides. However, in Figure 

5.21 the results for Cu in leachates from the WBN material show that a more Cu was 

extracted in the column experiment than the batch, an observation that is 

counterintuitive to the argument so far presented. This behaviour can be explained by 

introducing the results for dissolved Pb.  The Pb content of WAM (and CIND) waste 

was very low (0.35 and 1.7 mmol kg
-1

, respectively) and dissolved Pb was <LOD in all 

column and batch extractions from these samples. However in WBN and WBS samples, 

Pb was both highly abundant (126 and 224 mmol kg
-1

, respectively) and highly mobile. 

The concentration of Pb in the WBN column and batch leachates (33-40 μmol L
-1

, 

Figure 5.23) was slightly higher than Cu (3 - 18 μmol L
-1

, Figure 5.20). Pb and Cu 

cations have been shown to compete for same type of binding site on iron oxides 

(Baker, 1980) and in the presence of  high concentrations of dissolved Pb, Cu exhibited 

higher mobility in the WBN experiments. 

  Inspection of the leachate curves for WBN and WBS in Figure 5.23 

demonstrates the unique behaviour of Pb. At the beginning of the column experiments, 
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dissolved Pb initially decreased until a L:S ratio of 2:1 was reached, then it began to 

increase (Figure 5.23). WBN leachate decreased initially but rebounded to a 

concentration similar to the initial value. With the exception of Fe, all other elements so 

far discussed for the WBN sample have displayed a „typical‟ exponential decay release 

curve. Therefore the mechanism supplying Pb to solution from WBN does not affect the 

mobility of other metal cations, with the exception of Cu, to a detectable level. There 

was a noticeable step change in pH recorded in the WBN leachate at the L:S ratio where 

Pb begins to increase. At the same time the concentration of Fe in the leachate, which 

was initially slightly soluble, tended to zero as oxic waters flow through the column. 

Precipitation of Fe-oxides is an acid generating process (Chapter 3, Equation 3) and yet 

the pH of the system rose, apparently buffered by some other mechanism.  

  

Figure 5.23: Dissolved Pb concentrations  (left axis) and pH (right axis) determined in column 

(multiple points), batch (points at 2, 5 and 10 L kg
-1

) and field samples (horizontal lines) for sample 

materials WBS and WBN. Error bars represent +/- 1 s.d.  WAM and CIND batch and column 

results not show, all <LOD. All CIND field results <LOD, WAM field range = 0.003-0.053 μmol L
-1

, 

mean = 0.015 μmol L
-1

. 
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 From available evidence and the low release of dissolved Al and Fe, this seems 

most likely to be cationic exchange with protons, resulting in the atypical release curves 

observed for all the cations determined in the WBS leachate.  

 Sulphate (graph not presented) also increased and subsequently exponentially 

decays in the WBN leachate. Accurate determination of the phase controlling Pb 

solubility is beyond the capabilities of this study but  the elemental leaching behaviour 

and SEM observations suggest a secondary Pb-(As)-Fe-SO4 phase, possibly beudantite 

(PbFe3(AsO4)(SO4)(OH)6) buffers pH and controls Pb mobility.  

   The release curve for Pb from WBS material was similar to WBN (Figure 5.23), 

showing an initial decrease followed by a steady increase for the remainder of the 

column experiment to a maximum of 81.2 μmol L
-1

. pH fluctuates but the step change at 

L:S 2:1 was not observed. In the WBS column experiments Al, Cu, Zn, Mn and Cd all 

showed release behaviour that was similar to that of Pb, being rapidly mobilised by 

exchange reactions. This indicated that these elements are closely associated in a 

geochemical environment unique to the WBS sample. Interestingly the selective 

sorption of Cu was also evident, despite the concentration of  Pb (65 - 81 μmol L
-1

, 

Figure 5.23) being  two orders of magnitude greater than Cu (0.2 - 0.8 μmol L
-1

, Figure 

5.21).  The treatment of WBS material with MgCl2 liberated twenty times more Pb than 

the batch and column extractions using MilliQ (Figure 5.24). To a lesser extent, Al and 

Fe were also selectively liberated from WBS material by MgCl2 (Figure 5.17 and Figure 

5.19, respectively), but MgCl2
 
was the least efficient extraction agent for Cu and Zn.  

  The evidence suggests a rather complex array of concurrent reactions in the 

WBS sample.  There is evidence for the presence of Fe-Oxides with associations of Cu, 

As, Zn from SEM/EDX observations, and these are common to all the mine wastes 

studied. There is also evidence of the selective sorption of Cu and Mn to Fe-oxides. In 

addition, a highly mobile and exchangeable source of Pb, Al, Cu, Zn, Mn and Cd was 
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elucidated from the shape of the elemental release curves and the results of MgCl2 

extractions. The high fine fraction suggests that clay minerals might be a sink for high 

loads of Pb and that the lower pH established in the laboratory experiments triggers 

release along with lesser amount of Al, Fe, Cu, Zn, Mn and Cd. Acid treatment of clays 

creates new pores and increases surface acidity by replacement of cations, like Al
3+

, 

Fe
3+ 

and Ca
2+

 from the structure with protons (Mills et al. (1950).  The association of Al 

with the mechanism also suggests associations with amorphous Al-hydroxides may be 

important in influencing mobility.  This is consistent with acid dissolution of part of 

Al2O3, from the crystal lattice of clays noted by Oubagaranadin et al. (2010) in a study 

of the adsorption properties of acid-activated clay. 

  

 

Figure 5.24: Cumulative extracted Pb load (μmol kg
-1

 of dry material) for column leachates (points) 

and batch extractions (bars) at L:S ratios of 2, 5 and 10. Error bars represent +/- 1 s.d.  

 Importantly, field samples taken from surface waters and boreholes at Wheal 

Betsy showed that Pb mobility is generally much lower in the field than in the 
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tips but the maximum recorded concentration was 0.46 μmol L
-1

 (equivalent to 94.3 μg 

L
-1

).  The proposed WFD EQS is 7.2 μg L
-1

 (Potter, 2008 Pers. Com. ). The maximum 

recorded concentration in the field exceeded the EQS (582 μg L
-1

 Pb, from a drainage 

issue into Cholwell Brook). However, the maximum dissolved concentrations produced 

in the column experiments were equivalent to 8290 μg L
-1

 (WBN) and 16600 μg L
-1

 

(WBS). Clearly there is an enormous potential source of Pb bound up in the mine waste 

at the site. Retention of the Pb largely within the waste tips is attributable to the higher 

pH in the field (pH 3.2 - 6.1), versus the laboratory experiments (pH 1.8 - 3.1). Higher 

pH with respect to the PZC of the mineral surfaces (Fe-oxides and clays, Table 5.8) 

promotes stronger binding of metal cations (Oubagaranadin et al., 2010), and less 

dissolution of primary sulphide minerals.  Other contributory factors are the apparent 

selectivity of some adsorption reactions for Pb over other cations commonly co-

occurring in acid mine/rock drainage such as Cu, Mn, Zn and Cd. Also the physical 

characteristics of the mine waste cannot be overlooked - in particular permeability. The 

high clay content of the WBS material presents a low permeability barrier to water 

ingress in the field and therefore reduces the volume of leachate generated.  Highly 

vegetated tips (e.g. WBS, see sample descriptions table in Appendix A) also indicate 

favourable attributes of high tip stability and low permeability.  

Arsenic 

  Despite being an abundant element within all the mine waste samples, mobility 

of As was generally low in the surface and ground waters with maximum concentrations 

of dissolved As of 1.81 μmol L
-1 

at Wheal Betsy and 5.75 μmol L
-1

 at Devon Great 

Consols (except cinders drainage). Drains from the cinders waste tips at Devon Great 

Consols were however exceptionally high in dissolved As and produced a maximum of 

378 μmol L
-1 

(equivalent to 28300 μg L
-1

). Arsenic speciation is sensitive to both pH 
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and redox change, with As(III) exhibiting higher mobility than As(V).  Although within 

the range of mine waters in Cornwall (0.1 - 95600 μg L
-1

) and comparable to other 

sulphide ore producing areas (e.g. Rio Tinto, Spain, max 22000 μg L
-1

) (Bowell, 2003), 

the concentrations measured in the field in WAM drainage were very high for oxic 

waters, where As(V) is prevalent. Importantly, the cinders tip leachates measured in the 

field were ten times more concentrated than leachates from the column and batch 

experiments using composite material from the cinders tip (max 41 μmol L
-1

, Figure 

5.25). Arsenic was the only element studied that showed higher mobility in the field 

than in the laboratory experiments. 

 

Figure 5.25: Dissolved arsenic concentrations determined in column (multiple points), batch (points 

at 2, 5 and 10 L kg
-1

 and field samples (horizontal lines) for sample CIND sample. WAM, WBS and 

WBN column and batch all <LOD. Error bars represent +/- 1 s.d. Mean field results for WAM, 

WBS and WBN all <LOD. 

 The pourbaix diagram in Figure 5.26 shows the stability fields of aqueous 

arsenic for a simplified As-O2-H2O system. The Eh/pH conditions recorded for field and 

column experiments are plotted and are grouped within the H2As(V)O4
-
 field.  
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Therefore there is no evidence to suggest speciation is the reason for the discrepancy 

between field and laboratory results. 

 Arsenic was highly abundant in the Fe-oxides observed in all the samples 

studied by SEM/EDX and as an anionic species is most strongly adsorbed at low pH 

and to minerals with high PZC.  The pH in the field was higher (pH 5.0-5.4, cinders 

drain, Devon Great Consols) than in the laboratory experiments (pH 4.0-4.9), and may 

be the reason for the higher mobility observed in the field.  

 

Figure 5.26: Pourbaix diagram showing aqueous arsenic species in a As-O2-H2O system at 25°C, 

1bar pressure (adapted from Smedley and Kinniburgh (2002)). Dashed blue lines represent 

stability field of H2O. Column samples from all L:S ratios and mean field data shown, error bars 

represent +/- 1 s.d. 

 Also, in CIND sample material, Fe-oxides were generally confined to whole 

mineral grains and less abundant as films on other minerals, resulting in a lower surface 

area for adsorption. The distribution and content of Fe-oxides was a consequence of 

mixing and homogenising the composite sample from sub-samples with visibly 
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different mineralogy (Table 5.10, Appendix A). Incorporation of Fe-oxide rich soils 

from the surface of the wastes may have enhanced the samples‟ intrinsic ability to retain 

dissolved As. In the field scenario, saturation of the available H2As(V)O4
-
  binding sites 

on existing Fe-oxides within the waste and the slow generation of fresh Fe-oxide 

surface would lower retention of freshly generated dissolved As. A number of other 

studies of mine waters (e.g. Asta et al. (2010), Slowey et al. (2007) Lee and Chon 

(2006)) have also reported that As was naturally attenuated in acidic streams receiving 

mine waters by sorption onto newly formed Fe-precipitates (schwertmannite, goethite 

and jarosite). 

   In the batch experiments As was liberated under acidic conditions from all three 

samples using MilliQ and acetic acid extractions (Figure 5.27). All materials 

demonstrated a very clear trend of increased extraction efficiency with increased L:S 

volume. WAM and WBN leached similar extractable loads in batch experiments, and 

for all samples, mobility in the column was lower than in the batch experiments. 

Associated with the Fe-oxides, the gentle mode of leaching in the column (which also 

reflects percolation through waste tips in the field) reduced As mobility by enhancing 

the retention of Fe-oxides within the solid matrix. This is particularly important for As 

associated with the colloidal fraction of Fe oxides (commonly 20-200 nm, Slowey et al. 

(2007)) which may or may not be recorded as “dissolved” or “mobile” depending on the 

method of separation.   All three waste materials were As-rich comprising 2.9 % 

(CIND), 0.78% (WBS) and 0.48% (WAM) acid extractable As by weight, but CIND 

material released disproportionately more As than the relative As content of the samples  

Again this may be attributable to the distribution of Fe-oxides in the samples. Physical 

disaggregation and partial digestion of the mineral phases under acidic conditions (min 

pH 2.8, with acetic acid), mobilises As during the batch experiments.  WAM and WBS 

with abundant Fe-oxides distributed as surface coatings offered higher surface area for 
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retention and readsorption of As, than the Fe-O content of CIND, present predominantly 

as distinct particles.  

 In an acidic environment, iron oxide surfaces are largely protonated (being 

below PZC) and should therefore promote sorption and retention of anionic As species. 

If the pH of the system were to fall below pH 2 or become oxygen limited, the dominant 

aqueous As species becomes electronically neutral (H3As(V)O4
 
 and H3As(III)O3). This 

should enhance mobility in the laboratory experiments.  However the CIND had the 

highest intrinsic buffering ability and the pH of the acetic acid (0.11 mol L
-1

) added was 

pH 2.83, so achievement of pH <2 is unlikely. The waters in the column and batch 

experiments were also unlikely to be oxygen poor and Fe solubility (as Fe(III))  which 

would be indicative of  low redox/pH conditions, was low. Therefore the dominant As 

species was likely to be anionic (as H2As(V)O4
-
) in both field, column and batch 

experiments and this is consistent with other studies of As mobility and attenuation in 

surface waters (e.g. Asta et al. (2010), Casiot et al. (2005)).  

 The MgCl2 extractions yielded the least dissolved As compared to other 

extraction schemes tested, so unlike dissolved Pb, dissolved As is not preferentially 

bound to the solid phase in an easily exchangeable form. Therefore in agreement with 

other studies of As mobility from mine wastes (e.g. Bowell (2003)) and soils (e.g. 

Warren et al. (2003)), sorption to Fe-oxides controls the mobility of As in leachates. In 

the case of the cinders tips at Devon Great Consols, where attenuation of As is not 

intrinsic, the transport pathway to the River Tamar (See map in Figure 3.20, Chapter 3) 

attenuates dissolved As in surface drains and shallow ground waters to < 6 μmol L
-1

 (< 

550 μg L
-1

), upon reaching the final drain.  

 There were several possible sources of the dissolved As measured in the cinders 

drains that might lead to the exceedance of the intrinsic sorption capacity of the CIND 

waste.  Dissolution of remaining arsenopyrite within the waste or from the tips and 
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remains of the old As calciners (Figure 3.5, Chapter 3). However this is likely to be 

kinetically slow, based on the persistence of the mineral in mine wastes compared to 

other sulphides (e.g. chalcopyrite and sphalerite) and the relatively high pH (~pH 4.5). 

Alternatively, reducing conditions deeper within the tip or from seepages beneath the 

tip, promote As mobility.  

   

 

 

Figure 5.27: Cumulative extracted As load (μmol kg
-1

 of dry material) for column leachates (points) 

and batch extractions (bars) at L:S ratios of 2, 5 and 10. Error bars represent +/- 1 s.d.  WBN all 

results for batch and column <LOD. 

The dissolved arsenic is transported via pore waters to the oxic surface drains where 

sorption sites are already saturated with As and therefore even if As(III) is oxidised to 

As(V),  mobility remains high. In addition, evidence from other studies indicate as 
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secondary iron oxides age and become more crystalline under acidic conditions, their 

capacity to absorb contaminants decreases which would could result in As release. 

(Moncur et al., 2009). 

5.6.8 Longevity of Mine Waste as a Pollution Source 

  The number of column flush cycles required to deplete the source of each 

element was calculated as the acid-extractable total divided by the cumulative load 

determined the column leach experiments (to L:S 10:1), (See Table 5.10, Appendix B 

for values). This data is displayed in Figure 5.28. This calculation assumes that the 

elemental release will be of the same magnitude in each flush and that saturation of pore 

waters is achieved prior to each flush cycle. More complex numerical models have been 

applied to mine wastes in the literature, including „shrinking core‟ kinetics of pyrite 

oxidation (Gerke et al., 2001). However the empirically derived data in this study and 

the simple calculation provides a good tool to estimate of the relative residence times of 

elements of interest in the waste.  

 Iron is largely retained in the waste material and therefore exhibits a very high 

residence time. Arsenic residence time is of the order of several hundred column flushes 

in waste material poor in Fe-oxide coatings (CIND). These increase to a minimum of 

tens of thousands of column flushes where extensive Fe-oxides have been precipitated 

via low temperature alteration of Fe-phases (WAM, WBN and WBS).  

 The number of flush cycles varies for each element between sample types due to 

the complexity of surface interactions discussed in this chapter. Residence times of Cu, 

Zn, Mn, Ni, Cd and Pb are of the order of tens to hundreds of column flushes. 

Residence times are highest in clay-rich material (WBS) even under acidic leaching 

conditions which were more acidic in the laboratory than measured in the field. 
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Figure 5.28: Elemental resistance of elements to oxidative leaching in mine waste. Note logarithmic 

y-axis. As in WBN and WBS columns and Pb in WAM and CIND columns, all <LOD, therefore 

very high resistance. Cd <LOD in aqua regia digest of WAM, therefore very poor resistance. 

5.6.9 Hydrological Considerations and Uncertainty 

  Under field conditions, the residence time of metals and arsenic in clay rich 

material is likely to be greatly enhanced due to the low porosity of the material and the 

higher pH of percolating waters. This is consistent with field observations, where WBS 

tips supply a lower flux of dissolved metals and As to Cholwell Brook than the WBN 

tips (Chapter 4, section 4.5.7).  

 Reducing oxygen ingress into waste tips (to reduce sulphide oxidations 

reactions) has been the target of many research projects and remediation schemes. 

Reduced oxygen availability could result in an enrichment of un-oxidised sulphide 
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minerals within the waste tips. If so, the longevity of the source-term may be much 

longer than the metal content of the upper weathered horizon, calculated here, would 

suggest. However studies have also shown that oxygen does not necessarily become 

limited at depth within waste tips, and thermally driven processes can draw oxygen 

through the base of the tip (Shaw et al., 2002). Oxygen ingress within waste tips can 

vary widely spatially as well as with depth, and the establishment of preferential 

channels of high permeability can distribute oxygen deep within the tip (Song and 

Yanful, 2011 2011).  An example of where this may be important is the inspection hole 

in the WAM upper tip, which continually discharges leachate and allows atmospheric 

oxygen into the waste (Chapter 3, photograph 9).  

 All solids collected in this study were from near surface locations in the oxic 

weathering zone of the tips. The study assumed that the near-surface waste would 

control the geochemistry of leachates. However, once initiated, oxidation of pyrite can 

occur through bacterially mediated schemes with a limited oxygen supply (Section 

3.4.1, Chapter 3). The extent to which reactions occur at depth within the tips is 

currently unknown because deep drilling of the tips was prohibitively expensive.  

Another consideration is the erosion rates of the tip; continual removal of the surface of 

the waste exposes deeper layers of the waste to oxic conditions. If the underlying waste 

has a higher content of sulphide minerals, having been previously protected from the 

atmosphere, then the exhaustion of contamination in the oxic surface layer may never be 

achieved. 

 Horizontal heterogeneity of minerals is a common feature of pyritic mine wastes 

and exerts a strong control on the geochemistry of pore waters (Gerke et al., 2001). 

Stratification into layers of different geochemical character can result from the type of 

waste deposited (e.g. fine grained tailings, course rock discard, furnace waste), the 

method of deposition i.e. compaction by heavy machinery and geochemical alteration 
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over time.  Stratification with respect to particle size distribution gives rise to two 

modes of fluid transport in unsaturated tips; gravitational and preferential flow through 

course material and capillary flow through fine grained material (Poisson et al., 2009). 

Capillary flow can reduce generation of AMD/ARD in unsaturated wastes by creating 

layers of low permeability, restricting oxygen ingress and fluid movement known as 

capillary buffering effects (Lefebvre et al., 2001; Fala et al., 2005). Also, the 

development of cemented layers (iron- or hard- pans), observed in WAM, WBN and 

WBS waste tip, have been shown to be particularly influential to the retention of As and 

Pb, and in the reduction of metal movement and oxygen ingress within the tips (Blowes 

et al., 1991; Kohfahl et al., 2010).  

  Overall, the hydrological complexity of water movement through mature mine 

waste tips, coupled with the heterogeneity of the waste, makes accurate prediction of 

eco-toxic leachate geochemistry and longevity of the source term very difficult. The 

observed concentrations in the field largely matched or were below, those derived from 

column experiments. This is encouraging evidence to support the assumption that 

weathering of the oxic surface layers controls the geochemistry of mine waste leachates. 

If deposits within the tips are richer in primary sulphides, this is not expressed as higher 

contaminant concentrations in field leachates at either site, with the exception perhaps 

of As from the cinders waste (discussed in section 5.6.7).   

 Capturing a representative sample of a waste tip covering several hundred 

square metres in a few kilograms of material is a long-standing limitation of laboratory 

experiments. The results of this study have shown that with careful treatment replicate 

leaching experiments can produce reliable and reproducible results, but have also shown 

that very small changes in Eh and pH can have a dramatic effect on element mobility. 
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5.7 Conclusions and Recommendations 

  The content of acid extractable metals and metalloids vary considerably 

between samples of mine waste as a result of different local geology, mineral processing 

of wastes and the weathering of the material after deposition.  

  There are two underlying factors controlling concentration of dissolved 

contaminants in mine waste leachate: mineralogy of the solid, which determines the 

solubility of elements, and fluid movement through the waste which determines the 

degree of saturation of pore waters with respect to waste mineralogy and atmospheric 

oxygen.  The interaction of the two factors, and the dynamic nature of the later, results 

in complex release behaviour for co-eluting elements from mine waste including eco-

toxic elements such as Al, As, Cu, Cd, Ni, Pb and Zn.  

  Grains of mine waste containing primary sulphide minerals constituted a very 

low proportion of the total assemblage in all the wastes examined in this study. This 

was also observed in additional samples of mine waste from other sites in the Tamar 

catchment, prepared for an earlier study.   Examination by SEM provided clear evidence 

for in-situ weathering of sulphide minerals, resulting in voids and replacement with 

secondary iron oxide minerals within mineral grains. Arsenopyrite exhibited less 

alteration than other sulphide minerals (galena, chalcopyrite, sphalerite), and 

preferential leaching of the non-As sulphides appears be a common feature of all the 

mine waste samples examined. This may reflect the difference in dissolution rates of 

different mineral phases, including the selective dissolution of one sulphide over 

another via formation of galvanic cells (discussed in section 3.4.1, Chapter 3). However, 

the relatively high abundance of arsenopyrite for some samples may also be a 

consequence of the historical period in which the tip waste was deposited. Arsenopyrite 

was not always treated as an economic mineral and was discarded as a by-product of 

early copper-extraction, becoming more important in the late stage of mining in the 
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Tamar Valley (post ~ 1900). Reprocessing of waste, including crushing to a finer 

particle size, extraction of copper, tin and tungsten and re-tipping has also been 

documented until the 1970‟s in the Tamar Valley, and this would affect the rates of 

weathering within the tip material.  

 In all cases the waste material examined represented only the surface (< 0.5m) 

mineralogy of the waste. Conditions are oxic and desorption from Fe-oxide coatings on 

grains and clays appear to be the most important mechanism for determining leachate 

composition. The stability of the secondary Fe- phases under oxic and acidic (pH < 4) 

conditions in the field and laboratory experiments effectively locks Fe in situ within the 

waste. Cyclic wetting and drying of waste tips allows successive dissolution and 

precipitation of Fe(III) oxides and results in characteristic surface Fe-oxide coatings on 

all mineral grains within the waste. This provides dissolved ions in solution with an 

amorphous mineral surface where exchange reactions allow for sorption and desorption 

of mobile species in and out of pore waters.  

 Anionic As species appear to bond very strongly with the positively charged Fe-

oxide surface at low pH. In waste derived from arsenic calcining, the pH of leachates 

was higher than other waste samples (pH 4.0-4.5) and resulted in lower retention of 

anionic As species. It was also suggested that historic high temperature alteration of FeS 

phases to Fe-oxides (in furnaces) forces oxidation reactions to completion, reducing the 

capacity of the waste furnace cinders to generate acidity and freshly precipitated Fe-

oxides, after deposition. The paucity of fresh Fe-oxide was a feature of the cinders 

waste from SEM investigations and led to lower retention of dissolved As from cinders 

waste in laboratory and batch experiments.  

 Adsorption to Fe-oxides is also an important retention mechanism for other 

elements, most notably Cu and Zn, which are commonly associated with secondary 

minerals in mine waste even when there is little evidence of primary sulphide minerals 
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(e.g. chalcopyrite, bornite, sphalerite, galena) in the sample. Sorption occurs at low pH 

(min pH 2.3) even though the PZC for most of the minerals in the waste is much higher. 

Under these conditions, protonation of the mineral surfaces is favoured and the bond-

strength of the cation to the mineral surface is low, increasing with increasing pH. This 

explains why the CIND waste had the highest total extractable Cu content (50.8 mmol 

kg
-1

), but released less into leachates (pH 4.0-4.5) than the WAM tip material (38.5 

mmol kg
-1

, pH 2.4- 3.7). 

 In mine wastes with a high fine fraction (silts and clays) sorption to clays may 

be as important as sorption to Fe-oxides. This was particularly so for Pb, but elemental 

release curves from the column experiments also suggested associations with Al, Cu, 

Zn, Mn, Cd and Ni also affect the mobility of these elements. Desorption of Pb was 

readily observed under low pH conditions in the column and batch experiments (pH 1.9 

- pH 3.0, WBN and WBS). Release of Pb appeared to have a small buffering effect (~ 

0.5 pH units) in the WBS leachate but not in WBN leachate. This was attributed to the 

higher (double) concentration of Pb and higher content of fines in the WBS sample.  

  Overall release of the mobile elements (Cu, Zn, Mn, Cd, Ni) is largely 

proportional to their relative abundance within the tip waste. At low concentrations 

(Typically < 5 μmol L
-1

) competitive sorption between Pb, Cu, Zn, Mn, Ni and Cd 

becomes apparent. A high affinity for the solid phase was exhibited by Pb, Cu and Mn, 

whilst Zn and Cd and Ni were preferentially desorbed and mobilised into pore waters 

passing dynamically through a column. This is in agreement with other studies where 

the preferential sorption of one element to Fe-oxides leads to the increase contaminant 

load of another (e.g. Hartley et al. (2004)). 

 In cases where extensive field investigations are not viable, the up-flow 

percolation experiment provides a means of mimicking the conditions of dynamic flow 

through mine spoil. Results from column experiments and field samples were similar 



       Chapter 5   

380 

 

for most metals (Cu, Zn, Mn, Ni and Cd) and may provide a useful tool for prediction of 

leachate composition. The highest concentrations of Al (6260 μmol L
-1

, CIND), Cu 

(312 μmol L
-1

, WAM), Zn (206 μmol L
-1

,WBN), Ni (7.72 μmol L
-1

, CIND) and Cd 

(0.712 μmol L
-1

, WBN) in the leachate were observed at low L/S ratios. Concentrations 

at dynamic equilibrium were one order of magnitude below the maxima, with the 

exception of Pb which remained high (max 81.2 μmol L
-1

, WBS). Lowest observed 

leachate concentrations in the field and laboratory remained elevated by one order of 

magnitude, with respect to current EQS values. For all elements, the dynamic 

equilibrium concentration from column experiments was more closely matched to field 

conditions than results obtained from the batch extractions. 

 However, the discrepancies between column and batch experiments were small 

enough to suggest that batch experiments could be useful for developing management 

strategies where it is necessary to survey large areas for contaminant mobility. 

However, the column test provides additional information on relative desorption 

behaviour of elements. Column experiments could be a valuable tool in the examination 

of the effect of amendments to the waste used in remediation schemes.  

 The largest difference between laboratory and field experiments was observed 

for Pb concentrations, where mobility was much reduced in the borehole samples in 

comparison with the high loads recorded for both batch and column experiments. This 

was attributed to the higher pH measured in the borehole waters (pH 3.8-5.1) compared 

with the more acidic leachates derived in the laboratory. This is likely to result from the 

mixing and dilution of leachates with other catchment waters, both at the surface and 

below the water table.  The differences observed between laboratory and field based 

assessment approaches, demonstrates the limitations of applying laboratory data to the 

field scale. It also highlights the necessity to consider the effect of different physico-

chemical and hydrological situations on the contamination potential of mine spoil.   
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  The results of this study have shown that disturbance (e.g. removal of waste, 

purging boreholes, shaking tests and homogenising) or pH adjustment of the pore 

waters could dramatically affect the mobility of Fe, Pb and As, which are currently 

stored in secondary mineral phases within waste tips. In turn, remobilisation of these 

elements, with a high affinity for mineral surfaces, may have an acute knock-on effect 

on other less strongly sorbed species such as Cu, Zn and Cd, potentially leading to a 

devastating release of eco-toxins to the environment. Since the geochemistry of mine 

waste tips is so complex, perhaps the best approach for future management is to 

concentrate on stabilisation of the tips to reduce erosion of the weathered surface layers, 

combined with sensitive methods of reducing permeability such as promotion of natural 

re-vegetation and plant succession. In this way the likelihood of acute pollution events 

may be reduced and the concentrations of most metals would reduce with time as the 

surface layer is leached, effectively capping the waste tips.  

5.8 Future Work 

  In future studies of mine wastes, column experiments may be speeded up via 

automation of sample collection. The high backpressures encountered in this study 

could be addressed by reviewing the method of packing the columns to allow for lower 

bulk density and faster flow. Reproducibility of the columns was generally very good so 

reducing the size of the columns may also be permissible, particularly for finer wastes. 

However, such method changes should be approached with caution given the low 

abundance of sulphide mineral grains within the samples, which as a source, could 

strongly effect released concentrations of metals and arsenic from mine waste samples.  

 The examination of reducing conditions within waste tips is worthy of further 

study as it may be crucial to As mobility from wastes based on the Fe-oxide 

associations and leaching behaviour of cinders (CIND) waste in this study.  This may be 
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achieved by conducting batch and/or column experiments under anoxic conditions or if 

possible simulating cyclic oxic - reducing conditions. Ideally some field investigation of 

tip permeability and geochemistry with depth would help confirm or counter the 

argument that leaching under oxic conditions is the dominant control on leachate 

composition.  

 The rate of arsenopyrite oxidation appears to be slower than chalcopyrite, galena 

and sphalerite based on visual evidence of the waste under SEM. This is potentially 

evidence for electrochemical controls on leachate composition and armouring via 

galvanic effects. The effect of a mixed sulphide system on rates of dissolution for 

individual minerals is worthy of further investigation.  

  Greater understanding of the physical behaviour and hydrology of waste tips 

would certainly aid future management strategies. Accurate determination of the erosion 

rates of tips would be beneficial and could be easily achieved using available GPS and 

laser scanning technologies. Tracer tests may also be applied to help unravel the very 

complex hydrology of mine sites where sub-surface and surface waters interact, for 

example at Wheal Betsy where extensive underground voids are situated below the 

main watercourse (Cholwell Brook) and appear to influence the flow.  

 Finally, the capture of a „first-flush‟ of mine waste following a heavy rain event would 

be an ideal way of monitoring the concentrations of eco-toxic metals entering a 

watercourse. This can be achieved via deployment of an automated in-situ sampling 

device into a receiving stream.  
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A. Sample Descriptions 

Site Sample 
Sample 

Depth (cm) 
Description 

% by weight, 

 < 4mm 

% Contribution by weight 

to composite sample 

 (< 4mm fraction) 

Devon Great 

Consols Wheal 

Anna Maria Tip 

(WAM) 

DGC1 

10-50 

 

Orange/brown very coarse SAND locally consolidated. Hard pan 

encountered at ~50cm. Well sorted. Occasional areas of CLAY on 

surface with patches of grass. Elsewhere, no vegetation. 

92 100 

DGC2 

DGC3 

DGC4 

Devon Great 

Consols Cinders 

Waste Tip (CIND) 

CIND1 

10-50 

Dark brown GRANULES with frequent small pebbles of angular dark 

brown platy minerals (possibly slate). Poorly sorted. No vegetation. 
69 31 

CIND2 Dark brown medium SAND. Well sorted. No vegetation. 71 36 

CIND3 
Red and reddish-brown coarse SAND with occasional orange, yellow 

and red efflorescent salts. Moderately sorted. No vegetation. 
69 12 

CIND4 

Brown medium SAND with occasional red SAND and occasional 

yellow and orange  efflorescent salts. Moderately sorted. Occasional 

grass roots. 

81 21 
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Site Sample 

Sample 

Depth 

(cm) 

Description 
% by weight, 

 < 4mm 

% Contribution by weight 

to composite sample  

(< 4mm fraction) 

Wheal 

Betsy 

North Tips 

(WBN) 

WBN1 10-50  

Very poorly sorted orange/ brown coarse SAND (60%) with frequent small and 

large cobbles comprising hardpan
1
 and gangue minerals including quartz, veined 

shale/slate, quartz. Surface stained with iron oxyhydroxide. Actively eroding tip 

face. No Vegetation. 

42 25 

WBN2 10- 50  

Very poorly sorted brown medium SAND (80%) with frequent large angular 

pebbles of hard pan and gangue minerals including quartz veined shale/shillit, slate, 

and quartz. Surface stained with iron oxyhydroxide. Actively eroding tip face, No 

vegetation. 

55 28 

WBN3 10- 50  

Medium brown granules and very coarse sand (80%) with frequent (20%) small 

and medium angular pebbles of gangue minerals including hard pan and quartz 

veined shale/slate and slate and iron oxyhydroxide. Actively eroding tip face. No 

Vegetation. 

26 12 

WBN4 10- 50  

Moderately sorted light brown coarse SAND (60%) with frequent small to medium 

angular pebbles of gangue material comprising slate/shale. Actively eroding tip 

face. No Vegetation. 

30 14 

WBN5 10- 50  

Very poorly sorted light brown coarse (30%) and medium (30%) SAND with 

occasional grey and light brown angular large pebbles (20%) and occasional large 

cobbles (5%) and boulders (5%). Actively eroding tip face. No Vegetation. 

42 22 
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Site Sample 

Sample 

Depth 

(cm) 

Description 
% by weight, 

 < 4mm 

% Contribution by 

weight to composite 

sample  

(< 4mm fraction) 

Wheal 

Betsy 

South 

Tips 

WBS1 10-40 

Orange/brown medium coarse SAND. Loosely consolidated with some consolidated 

outcrops above the surface. Occasional small pebbles and cobbles of quartz hosted 

mineralised rock. Some discrete zones of light brown clayey medium SAND. Tip 

eroding. Vegetated with heather, gorse and grasses. 

73 21 

WBS2 10-40 
Brown fine to medium SAND with very occasional platy cobbles of gangue minerals 

(slate) and very occasional small pebbles of slate. Consolidated at 20-30 cm depth. 
61 18 

WBS4 10-20 

Yellow fine and medium SAND with occasional large angular pebbles (5%) and 

angular cobbles (5%). Weathered surface extends to 5-10cm. Eroding bank of tip. 

Vegetated with heather and gorse. 

44 16 

WBS5  30-40 

Consolidated orange/yellow medium SAND with occasional (2%) large angular 

pebbles and small angular cobbles of hardpan occurring in discreet pockets. Weathered 

to 5cm depth. Mid tip plateau appears stable. No vegetation. 

65 21 

WBS7 10-20 
Grey coarse  SAND with frequent small angular platy pebbles of slate/shale. Actively 

eroding steep slope. No vegetation.  
34 12 

WBS8 15-30 

Grey/brown coarse SAND with frequent small pebbles of gangue minerals including 

shale and quartz. Loose at weathered surface becoming consolidated beyond 5cm 

depth.  

43 14 
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B. Cumulative Loads and Relative Acid Extractable Contents for Selected 

Elements.  

Table 5.10: Cumulative dissolved loads and acid extractable content for selected elements from mine 

waste samples.  

Sample Element 

Cumulative 

extracted 

load from 

column 

(mean, μmol 

kg
-1

) 

Acid 

Extractable 

Total (AAT), 

from aqua 

regia 

(mean,mmol 

kg
-1

) 

Acid 

Extractable 

Content in 

aqua regia 

(% by 

weight) 

Proportion 

of  AAT 

leached in 

column 

experiment 

(%) 

Number 

of column 

cycles 

required 

to exhaust 

supply 

Order of 

resilience to 

oxic 

weathering 

(high to 

low) 

WAM 

Fe 5.88 1530 8.5 3.84 x10
-4 

3.98 x10
8 

1 

Al* 1350 421 1.1 3.21 x10
-1 

3.12 x10
2 

2 

Cu 781 38.5 0.24 2.03 4.93 x10
1 

5 

Zn 28.7 0.572 0.0037 5.02 1.99 x10
1 

7 

Mn 98.4 7.31 0.040 1.35 7.43 x10
1 

4 

Ni 0.654 0.0234 0.00014 2.84 3.52 x10
1 

6 

Cd 0.0145 <LOD <LOD - - (low) 

Pb <LOD 0.354 0.0073 - - (high) 

As 1.65 272 2.0 2.55 x 10
-3 

3.92 x10
4 

3 

Sb - 0.172 0.0021 - - - 

V - 0.368 - - - - 

Sn - 2.42 0.029 - - - 

W - 0.456 0.0084 - - - 

CIND 

Fe 0.0700 3354 18.7 2.09 x10
-6 

4.79 x10
7 

1 

Al 8330* 691 1.9 1.21 8.30 x10
1 

7 

Cu 156 50.8 0.32 3.07 x10
-1 

3.25 x 10
2 

5 

Zn 55.2 7.93 0.052 6.96 x10
-1 

1.44 x 10
2 

6 

Mn 49.0 16.3 0.090 3.01 x10
-1 

3.33 x 10
2 

4 

Ni 4.08 0.0934 0.00055 4.37 2.29 x 10
1 

8 

Cd 0.0760 0.0261 0.00029 2.91 x10
-1 

3.43 x 10
2 

3 

Pb <LOD 1.69 0.035 - - (high) 

As 291 383 2.9 7.60 x10
-2 

1.32 x10
3 

2 

Sb - 1.22 0.015 - - - 

V - 0.706 - - - - 

Sn - 7.25 0.086 - - - 

W - 1.28 0.023 - - - 
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Sample Element 

Cumulative 

extracted 

load from 

column 

(mean, μmol 

kg
-1

) 

Acid 

Extractable 

Total (AAT), 

from aqua 

regia 

(mean,mmol 

kg
-1

) 

Acid 

Extractable 

Content in 

aqua regia 

(% by 

weight) 

Proportion 

of  AAT 

leached in 

column 

experiment 

(%) 

Number 

of column 

cycles 

required 

to exhaust 

supply 

Order of 

resilience to 

oxic 

weathering 

(high to 

low) 

WBN 

Fe 35.2 1743 9.7 2.01 x10
-3 

4.95 x10
4 

1 

Al* 484 197 0.52 2.46 x10
-1 

4.07 x10
2 

2 

Cu 74.6 13.1 0.083 5.69 x10
-1 

1.76 x10
2 

4 

Zn 518 16.6 0.11 3.12 3.20 x10
1 

7 

Mn 114 5.23 0.029 2.18 4.59 x10
1 

5 

Ni 0.311 0.0106 0.00018 2.93 3.41 x10
1 

6 

Cd 1.95 0.0408 0.00046 4.78 2.09 x10
1 

8 

Pb 363 126 2.6 2.88 x10
-1 

3.47 x10
2 

3 

As <LOD 66.4 0.50 - - (high) 

Sb - 1.28 0.016 - - - 

V - 0.157 0.00080 - - - 

Sn - <LOD - - - - 

W - <LOD - - - - 

WBS 

Fe 0.878 1280 7.2 6.86 x10
-5 

1.46 x10
6 

1 

Al* 181 143 0.39 1.26 x 10
-1 

7.90 x10
2 

3 

Cu 4.12 27.0 0.17 1.53 x10
-2 

6.55 x10
3 

2 

Zn 59.1 22.4 0.15 2.64 x10
-1 

3.79 x10
2 

5 

Mn 1.89 1.35 0.0074 1.40 x10
-1 

7.14 x10
2 

4 

Ni 0.132 0.0203 0.00012 6.50 x10
-1 

1.54 x10
2 

7 

Cd 0.866 0.0197 0.00022 4.40 2.27 x10
1 

8 

Pb 730 224 6.1 3.26 x10
-1 

3.07 x10
2 

6 

As <LOD 104 0.78 - - (high) 

Sb - 2.52 0.031 - - - 

V - 0.172 0.00088 - - - 

Sn - 0.41 0.0049 - - - 

W - <LOD - - - - 
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6 Final Conclusions and Recommendations 

6.1 Prioritisation of Mine Waste Tips and Their Effect on Water Quality 

 The GIS exercise in Chapter 2 provided a priority list of the mine sites in the 

Tamar Catchment that pose the most risk to watercourse quality based on physical and 

environmental factors. A simplified version of this model has since been used by the 

Environment Agency to prioritise sites in five catchments in south west England. The 

methodology has the potential for wider application as it meets most of the requirements 

of Article 20 of the Mining Waste Directive (2001/21/EC), which states guidelines for 

pre-selection of potentially harmful abandoned mine sites. 

 The priority list for the Tamar catchment placed streamed workings located on 

Dartmoor and the mine waste tips at Wheal Betsy, near Mary Tavy, highest.  Waste at 

streamed workings may present a low risk to watercourses due to the composition and 

age of the waste rock, and may be downgraded upon further investigation. A number of 

non-streamed abandoned mine sites within the Gunnislake and Mary Tavy region, were 

included in the “Extreme” risk category. These were the locations of the two study sites, 

Devon Great Consols (DGC) and Wheal Betsy, respectively. Waste at Wheal Betsy was 

in direct contact or in very close proximity to the watercourse receiving leachates and as 

a result displayed little attenuation potential. It‟s location on Dartmoor meant it received 

higher and more intense rainfall than other areas and the characteristics of the soil and 

local geology resulted in rapid transport of waters through the shallow subsurface.  This 

was reflected in its high score in the prioritisation (4400/6000) and was confirmed by 

the elevated concentrations of metals recorded in Cholwell Brook and the reactivity of 

the overall contaminant flux to short-term rainfall patterns.  

  The studied tips at Devon Great Consols were located further from the receiving 

water course (River Tamar), allowing for greater natural attenuation of drainage waters 
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along the drainage pathway and resulting in a low score for proximity. Their location 

within the Tamar Valley was also relatively sheltered and therefore scored lower for 

rainfall, wind and sun exposure in the model.  However, the large area of bare waste and 

soil found at the site and the low permeability of the underlying bedrock meant there 

was a high run-off potential and meant that the site still scored highly in the model 

(3468/6000 for precipitation launders and 3298/6000 for WAM and Cinders) and were 

also classified in the top category for risk.    

Published information confirmed high levels of metal and arsenic contamination 

within the waste tips found at both sites.  Furthermore, the location of Devon Great 

Consols was coincident with existing water quality data and EQS failures in the River 

Tamar for Cu, Zn and Cd a short distance downstream at Gunnislake (EA, 1997-2008).   

  Leachates were captured from the mine waste tips in repeated surveys during 

2007-2009 and were found to be highly enriched in dissolved contaminant metals. The 

composition of leachates varied between tips according to the mineralogy of the waste. 

Cinders waste at DGC was particularly high in dissolved As (   = 294 μmol L
-1

) and Sb 

(   = 0.527 μmol L
-1

), while dissolved Cu was highest in DGC Wheal Anna Maria tip 

leachates (   = 224 μmol L
-1

), dissolved Al (   = 828 μmol L
-1

), Mn (   = 81.4 μmol L
-1

) 

and Ni (   = 2.72 μmol L
-1

) was highest in DGC precipitation launders and dissolved Zn 

(   = 20.9 μmol L
-1

) and Cd (   = 0.124 μmol L
-1

) was highest in shallow groundwaters 

flowing through the base of the Wheal Betsy (North) tips.  

 Reducing dissolved Al and Cu from the final collection drain (FCD) at DGC and 

dissolved Cd from Wheal Betsy should be the priority of regulators wishing to improve 

the ecological and chemical status of the receiving water courses (Cholwell Brook) and 

(River Tamar) based on this study. Dissolved concentrations of Al and Cu were very 

high upon entering the River Tamar from the FCD (618 μmol L
-1

 and 77.4 μmol L
-1

, 

respectively). Based on the concentrations observed and conservative mixing of the 
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waters, dissolved Cu and Al will cause the River Tamar to consistently fail EQS values. 

In stream precipitation and sorption to stream sediments may reduce the dissolved 

concentration but precipitation of metals, particularly Al and Fe may still be harmful to 

aquatic life. For example conversion of dissolved Al to high molecular weight 

polymeric species can cause fish mortality, via clogging of the gills (Rosseland et al., 

1992; Klöppel et al., 1997).  

 Other dissolved elements present in discharging waters from the drain including 

Zn, Cd, Mn and Ni are likely to be diluted below EQS values upon conservative mixing 

with river water but in combination with other known mine discharges could also result 

in regulatory failures. Removal of some or all of the dissolved metals in waters of the 

final collection drain is likely to significantly improve the ecological and chemical 

status of the River Tamar downstream of the discharge point. This could reduce the 

frequency and magnitude of regulatory failures. For example, based on 2005-2006 

survey data at least 11 % of the dissolved copper in the River Tamar at Gunnislake may 

be attributed to the final collection drain (Mighanetara, 2009). 

 At Wheal Betsy, concentrations of dissolved Cd were  <LOD (0.009 μmol L
-1

) 

upstream of the site, but also increased with distance along Cholwell Brook, a tributary 

of the River Tavy,  to a maximum of 0.018 μmol L
-1

 upon leaving the site. This is 

approximately 250 x the current EQS value. Dissolved Zn, Cu and Pb also accumulated 

through the site and were highly elevated with respect to EQS. Maxima of 3.9 μmol L
-1

 

(Zn), 0.29 μmol L
-1 

(Cu) and 0.45 μmol L
-1

 (Pb) were recorded in the waters of 

Cholwell Brook, representing 55 x, 18 x and 12 x current long term EQS values for low 

alkalinity waters, respectively. 

6.2 Characteristics of Tip Drainage and Tip Waste Mineralogy 

 Generally tip drainage was characterised by oxic waters, marking them apart 

from underground workings where reducing conditions often prevail. High 
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concentrations of dissolved Fe and As are often observed in adit discharges, but 

unusually in this study As concentrations were highest in the oxic drainage from the 

cinders waste tips, resulting in an estimated mean annual flux of 32000 mol y
-1

. This 

was an order of magnitude higher than the predicted flux from the main adit discharge 

at the mine based on results from a previous study (Blanchdown Adit, 2570 mol y
-1

). 

 Dissolved metal fluxes from mine wastes tips were estimates to exceed or be 

similar in magnitude to point discharges from adits. For example at Devon Great 

Consols, the predicted annual flux of dissolved metals from the final collection drain 

(FCD), which is thought to collect most of the tip drainage at the site,  was compared 

with that from Blanchdown Adit and was found to be the same order of magnitude for 

Zn, Cd, Ni and Mn. Furthermore, dissolved Cu flux was much higher in the FCD (4660-

75200 mol y
-1

) than in the Blanchdown Adit discharge (999-5230 mol y
-1

, Table 3.12).   

 The composition of mine waste varied between tips, but primary sulphide 

minerals (e.g. galena, chalcopyrite, and sphalerite) make up only a very small fraction 

(< 5%) of the total mineral assemblage from the surface of the tip (50 cm). Cu, As, Pb, 

Zn and Mn were associated with Fe-hydroxides (WAM, CIND) and Fe-As-Pb-S-O 

(WBN, WBS) secondary phases which were ubiquitous in most wastes, but appeared to 

be scarcer in wastes resulting from high temperature processing (furnace ash and 

cinders). The composite sample of waste removed from the south tips at Wheal Betsy 

(WBS)  had a higher fraction of silts and clays (24.7 % < 63 μm) than other samples. 

Sorption to clay minerals was an important retention mechanism for contaminants, 

particularly Pb wastes from Wheal Betsy. The high fine fraction in WBS material also 

reduced permeability of the waste in the field, leading to a reduced flux of 

contamination from WBS waste tips compared with the more permeable north tips. 

 The textures and relative abundance of metal sulphide minerals suggests a 

higher proportion of arsenopyrite remains in all wastes. This may be a consequence of 
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mine closure before economic recovery of As-phases was completed. It could also 

indicate preferential weathering of other metal sulphides. Arsenopyrite appears less 

weathered than chalcopyrite, sphalerite and galena when the phases coexist in waste. 

This may be a consequence of galvanic armouring of arsenopyrite resulting in a higher 

resistance to dissolution. Galvanic effects have been shown to increase the dissolution 

of galena, sphalerite and chalcopyrite in a two phase system with pyrite (Abraitis et al., 

2004). 

 When ordered from highest to lowest, there was a strong relationship between 

total content and the released load indicating fractional release from the waste for Cu, 

Mn, Zn, Cd, Ni and Al, Table 5.9). However, this relationship broke down when the 

concentration of the metal of interest is low in the leachate, typically < 5 μmol L
-1

. 

There was evidence to suggest that a selective adsorption of some metals retards 

mobility while increasing the mobility of others. This would account for the non-

fractional behaviour observable at low concentrations. For example, the affinity of 

dissolved Cu was reduced for the WBS solid, in the presence of high concentrations of 

dissolved Pb.  

   

6.3 Natural Attenuation Processes 

 Tip drainage from the cinders and WAM tips at DGC migrated approximately 

400 m before reaching the River Tamar via a combination of surface drains and shallow 

groundwater transport. Dissolved concentrations and estimated annual fluxes of 

dissolved As entering the River Tamar via the final collection drain (0.226 μmol L
-1 

and 

164 mol y
-1

, respectively), were found to be  much lower than cinders drain (294 μmol 

L
-1

 and 32000 mol y
-1

, respectively). During transport, the waters from the individual 

tips at DGC became mixed, and waters emerging in the FCD were exposed to 

atmospheric oxygen (DO     = 10.2 mg L
-1

) leading to the precipitation of Fe(OH)3 
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phases.  Sorption of dissolved anionic As species to these freshly precipitated mineral 

surfaces at low pH     = pH 4.2, FCD) was predicted to be the major mechanism for 

natural attenuation of the metalloid.  This retention effect was also observed within the 

WAM, WBN and WBS waste tip material itself. When examined under SEM/EDX, 

surface coatings on grains of waste were found to comprise As-rich Fe-hydroxy (WAM) 

and As- and Pb-rich Fe-hydroxysulphate phases.  Attenuation of other dissolved metals, 

most notably Cu was also indicated by both field and SEM investigations. The 

composition of the waters in the final collection drain at DGC were therefore controlled 

by interaction with mineral surfaces and observed to be relatively stable between all 

surveys with respect to pH, Eh, DO and dissolved metals (Cu, Al, Zn, Mn, Ni, Cd all < 

12.1 % RSD).  

 No such attenuation was observed at Wheal Betsy in migrating waters along a 

much shorter pathway (< 10 m) from source to the receiving watercourse, Cholwell 

Brook. This was good supporting evidence to suggest that proximity of the waste 

(weighted highly in the prioritisation model, Chapter 2), was a very important factor for 

determining the environmental impact of mine waste leachates to the receiving 

watercourse.  

 Sorption of dissolved metals, predicted to be in the dissolved cationic state 

(PHREEQC), occurred at low pH (min pH 2.3) even though the point of zero charge 

(PZC) for most of the minerals identified in the waste were much higher. Under these 

conditions, protonation of the mineral surfaces is favoured and the bond-strength of the 

cation to the mineral surface is low, increasing with increasing pH. At higher pH, higher 

retention of cationic species, such as dissolved Cu, was observed but was concurrent 

with lower retention of anionic As species. This explained why the cinders waste 

(CIND, Chapter 5) had the highest total extractable Cu content (50.8 mmol kg
-1

), but 

released less into leachates with higher pH (pH 4.0-4.5, measured in situ) than the 
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WAM tip material (Cu content of 38.5 mmol kg
-1

) with lower pH (pH 2.4-3.0, measured 

in situ). Conversely, all the waste materials studied had a comparable acid extractable 

As content (66.4-383 mmol kg
-1

, Table 5.10), but only the cinders waste material 

released high concentrations of dissolved As. In all other leachates from WAM, WBN 

and WBS waste tips, in field and upflow column experiments, dissolved As was < 1.1 

μmol L
-1

, just above the freshwater EQS of 0.67 μmol L
-1

. 

 

6.4 The Application of Laboratory Leaching Experiments to Studies of Mine 

Waste 

 Dynamic up-flow percolation (column) experiments provided a good proxy for 

generating mine waste leachates under environmentally applicable conditions of high O2 

ingress and dynamic fluid flow. Despite the limited sample size, the dissolved 

concentrations of metals and As in column leachate fractions are largely consistent with 

the ranges observed in the field. Deviations occur because pH in the field is generally 

higher as a result of dilution with „cleaner‟ drainage waters. Because tip drainage is 

largely oxic, pH appears to be the dominant control on metal and As mobility from 

mine wastes.  A small change in pH can have a remarkable effect on the mobility of 

elements associated with clays and secondary Fe-hydroxy and Fe-hydroxsulphate 

phases. This was observed particularly for Pb, where a reduction in pH from field (pH 

3.2-6.1) to laboratory conditions (pH 1.9-2.6) resulted in release of leachates with 

dissolved Pb up to a maximum of 81.2 μmol L
-1

. 

 Field concentrations in waters issuing immediately from the mine wastes were 

dependent on the hydrological saturation state of the tip. The proportion of saturated tip 

waste depends on the height of the water table with a higher water table resulting in 

increased flux from the tips. Concentrations determined instantaneously following 

rainfall are also dependent on the state of the tip with respect to the „first flush‟. Based 
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on the column experiments, for most elements (Al, Cu, Zn, Mn, Cd, Ni) the difference 

between the saturated condition (i.e. chemical equilibrium between solid and liquid 

phase) and the dynamic equilibrium position is an order of magnitude (10x). The 

difference is also likely to be affected by flow rate. Faster flow rates result in a lower 

dynamic concentration. Column flow probably represents the upper end of this range 

due to enhanced compaction of the waste in the field.  

 Batch leaching experiments were a rapid means of assessing the leaching 

potential of mine waste. Equilibrium induced suppression of dissolution can 

underestimate the mobility of some elements compared to a dynamic system. 

Conversely, aggressive shaking can artificially enhance Fe and Al mobility by 

suspending fine particulate matter. Mobility of these elements is important in the 

suspended load because as Fe-oxides and clays both have capacity to transport other 

contaminant metals and arsenic as sorbed species in waters. Cationic exchange on clay 

minerals can be as important to Fe-oxide association in wastes with a high fine fraction. 

It is important to recognise the difference between true dissolved Fe and Al and the 

operationally defined dissolved fraction when interpreting elemental mobility.  

 Ionic strength and pH both exert control on the solubility of mine waste 

minerals. High ionic strength suppressed the concentration of dissolved elements, while 

pH dictates the affinity for the dissolved ions with the available mineral surfaces. Batch 

experiments using different chemical extractants showed that extractions did not 

necessarily target their intended fraction, e.g. acetic acid underestimated the amount of 

exchangeable Pb from Wheal Betsy wastes. pH was also generally higher in the batch 

experiments with MilliQ compared to column experiments. This was probably because 

the extractants can enforce a pH amendment on the waste, particularly with high L:S 

ratios. In tip porewaters L:S ratios are much lower and the system is dominated by the 

character of the solid phase. 
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 Column experiments are a useful tool to elucidate the relative affinity of 

dissolved contaminants for the solid matrix. They also provide useful data for saturated 

concentrations likely to arise from „first flush‟ events. However, they are labour 

intensive and still rely on the sample material being representative of that in the field. 

The results for the column experiments were highly reproducible which suggests they 

may be scaled down so that smaller amounts of material are required and experiments 

can reach completion (L:S>10) more quickly. Efficiency could also be improved by 

incorporating an automated method of sampling.  Such method improvements would 

facilitate a higher throughput of samples.  The degree to which the test may be scaled 

down, without compromising reproducibility, is a function of the particle size 

distribution of the mineral grains with coarser waste requiring a larger sample size.  

 Using a low ionic strength extractant (e.g. MilliQ) in batch experiments at a 

range of L:S ratios, preferably including L:S < 2:1 is still a useful tool to gauge the 

potential of a waste material to leach dissolved metals under oxic conditions.  The use 

of extractants to target particular phases provides additional information on the 

behaviour of the samples with respect to changes in pH and ionic strength. However the 

results from phase-targeted extractions cannot be applied directly to the field to predict 

contaminant mobility because they do not replicate realistic field conditions. 

 

6.5 Suitable Management Strategies  

 The findings from the studies of mine waste leaching behaviour and transport 

was consistent with the judgements applied to the prioritisation exercise in Chapter 2. 

Therefore the priority list offers a suitable starting point for further investigation in 

targeting high scoring waste tips in the Tamar catchment.  

 Enhancement of natural attenuation probably offers the most practicable and 

cost effective management option for metalliferous waste tips. In reactive catchments 
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with tips close to surface watercourses, stabilisation and reduction of tip permeability 

may offer the best solution to reducing fluxes. Disturbance of tip material is likely to 

result in an acute pollution event from suspension of particulate matter into stream 

waters. This was witnessed in the field and in the laboratory experiments where 

vigorous shaking of waste material enhanced the suspended load of fine particulates. 

The particulates are likely to contain Fe-oxides and clays which are important sorbents 

of ecotoxic metals. Transport of such particulate matter may cause the subsequent 

release of co-precipitated and adsorbed contaminant metals into waters.  

 Low permeability tips contribute less metal flux even if the metal content is 

high, because of the inhibited transport of percolating waters. Permeable coarse wastes 

contribute highly to overall fluxes and should be prioritised in mine water remediation 

schemes. 

  When mine waste is located far from a receiving watercourse the dividing area 

acts as a buffer, effectively filtering suspended solids and dissolved metal(loids) from 

discharge waters. For the buffer to work effectively, waters must remain oxic as 

development of reducing conditions will cause some secondary Fe-oxide phases to 

dissolved and release associated metals. This is particularly important in the case of As 

where speciation is dependent on redox condition and mobility of the reduced species 

(As(III)) is greater than As(V). Waters which discharge from underground workings or 

waters which migrate slowly in the subsurface tend to be rich in dissolved Fe due to 

isolation from the atmosphere. A rapid but tortuous pathway and an introduced source 

of dissolved Fe, perhaps from a nearby adit discharge are likely to enhance natural 

attenuation. 

 Although competitive sorption effects are small in magnitude compared to 

overall concentrations. They may prove to be an important consideration when 

implementing remedial measures. Sorption of one metal may cause the preferential 
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release of another with lower binding energy to mineral surfaces. For example Pb was 

highly abundant in the waste from Wheal Betsy but remained largely immobile under 

field conditions, but lower pH in laboratory experiments triggered release.  Cu and Pb 

compete for binding sites on Fe-oxides (Baker, 1980), so in the presence of dissolved 

Pb, the natural attenuation of Cu is suppressed. Potentially, a release of dissolved Pb 

may be short lived in the environment but could result in a spike of the more mobile 

metal, here Cu, in downstream waters.  pH exerted a very strong control on the mobility 

of all the studied elements. This was shown by differences in laboratory test results 

compared to field drainage. Higher mobility was observed for all cationic species as pH 

decreased, while anionic As was more mobile at higher pH.  

 Amendments applied to the waste or discharge waters must be carefully 

considered if they adjust the pH of the solid solution interface. At Devon Great Consols, 

the cinders tips had the largest copper content but the WAM tips release more dissolved 

Cu. This was attributed to the higher intrinsic buffering of the cinders waste which 

produces a higher pH in the waste porewaters (pH 4.0-4.5), compared to WAM waste 

(pH 2.4-3.7). In the cinders waste, As is released in very high concentrations in the field 

(294 μmol L
-1

) where pH is highest (pH 5.0-5.4). In the laboratory experiments the pH 

of the cinders waste was lower and maximum As release was 10 x lower than observed 

in the field. Higher pH increases the cationic sorption capacity of the waste.  Amending 

WAM tip waste with lime solution (CaCO3 for example), may raise the pH and increase 

the retention of dissolved Cu to the solid phase. But the low pH is beneficial for the 

retention of anionic As species and therefore raising the pH could trigger release of As 

instead. Conversely reduced pH in the cinders waste would reduce the As flux but could 

result in a higher flux of Cu than currently observed from the WAM waste. 

Circumstances which could result in reduced pH might be the disturbance of the tip and 

inundation of O2 to oxidise unweathered pyrites within the waste.  
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  Overall, the waste tips at abandoned mines in the Tamar catchment have been 

shown to be major contributors to the pollutant flux of metals and metalloid entering 

watercourses. They are small by international standards, but contain high concentrations 

of metals and arsenic and are often in close proximity to watercourses subject to water 

quality regulations under the Water Framework Directive (2000/60/EC).  

 Management strategies should be implemented to reduce unauthorised use of the 

tips, to reduce human exposure to potentially harmful elements within the waste and to 

reduce the erosion of the tips. Measures could be taken to enhance the stability of the 

tips, thereby reducing the suspended load of contamination entering streams and reduce 

the exposure of fresh mineral surface to weathering.  

 The least invasive treatment would be to encourage natural accession of 

vegetation from bryophytes (nutrients from air, resistant to toxicity of waste) to nitrogen 

fixers (gorse and heather) to grasses and shrubs. Vegetation of the tips would increase 

stability, and reduce water movement and inhibit O2 ingress, all favourable for the 

reduction of pollutant flux leaving the tips. Destructive or invasive measures should be 

avoided because disturbance of the tip material could increase the flux of metal and / or 

As contamination and would destroy the unique ecological and historical importance of 

the sites.  
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ABSTRACT 

Column experiments, based on the European standard up-flow percolation test (TS 14405), were applied to waste rock 
from an abandoned Pb/Zn mine in southwest England. The aim was to investigate the range and magnitude of pollutants 
transported from mine waste tips to surface watercourses. The dynamic leaching test was chosen to mimic the transport 
of rainwater through mine spoil, thereby providing a laboratory proxy for field conditions. A range of metals (Cd, Cu, 
Mn, Pb, Zn) and major ions were determined in the column leachate, covering solid:liquid ratios of 0-10 L kg-1. The 
highest concentrations of Zn (200 μmol L-1), Cu (17.4 μmol L-1) and Cd (0.70 μmol L-1) in the leachate were observed 
at low L/S ratios. Leachate concentrations decreased exponentially for most elements, except Pb, which maintained 
high concentrations (up to 80 μmol L-1) throughout the experiment. Batch extractions with L/S ratios of 2, 5 and 10 L 
kg-1 were applied to the same material. Concentrations in the supernatant were generally comparable to results from 
column experiments, but some differences at high L/S were attributed to the dynamic mode of leaching and the 
resulting higher adsorptive capacity of the solid phase in the column. Concentrations of Zn and Cd determined in 
shallow groundwater collected at the former mine site were of the same order of magnitude as concentrations obtained 
from the column experiments at high L/S ratios, showing that the column experiments provide a good approximation of 
field conditions. However, Pb and Cu concentrations, which showed close agreement between batch and column 
experiments, were much lower in the field (max. 3.0 μmol L-1 and 1.9 μmol L-1, respectively), probably due to the 
prevailing higher pH and/or a higher L/S ratio. This discrepancy highlights the limitations of using laboratory 
experiments to predict pollutant sources at abandoned mine sites.  

1. INTRODUCTION  

In southwest England, the legacy of metal mines, abandoned before remediative action was required by law, affects the 
environmental quality of surrounding landscapes. In particular, the concentrations of metals (e.g. Cd, Cu, Pb,Zn) in 
some rivers and coastal waters and their sediments exceed limits set by the Environment Agency for England and Wales 
to meet the requirements of the European Water Framework Directive (WFD, 2000/60/EC; EA, 2008) and Probable 
Effect Levels in sediments (Langston et al., 2003). Nine percent of rivers in southwest England have been categorised 
as ‘at risk’ or ‘probably at risk’ due to abandoned metal mine pollution (Jarvis et al., 2008). Leachate and run-off from 
mining waste, collected in surface streams and outflows, have been reported to carry high concentrations of 
contaminants to watercourses of southwest England (e.g. Bowell and Bruce, 1995; Neal et al., 2005; Mighanetara et al., 
2009) and elsewhere. However, metal fluxes from diffuse sources are difficult to determine accurately and expensive to 
investigate and hence remain largely unknown. The subtraction of point source fluxes from the total metal flux in a 
water course can provide a useful first estimate of diffuse inputs (Mayes et al., 2008; Mighanetara et al., 2008). 
However, this general approach does not provide detailed information on the dominant sources of contamination in a 
water course, as is required for river catchment assessment and management in the context of the WFD.  

The aim of this study was to investigate diffuse metal fluxes emanating from a selection of mining-related sources in 
southwest England. In order to achieve this aim, controlled laboratory experiments were combined with field studies of 
run-off from mine spoil and shallow groundwater flow into surface water courses.  

2. METHODS 

Reagents and Apparatus  

All aqueous solutions were prepared with MQ water (Millipore, R ≥18.2 MΩ cm-1, reverse osmosis/ion exchange). 
Standard solutions and reagents were prepared in a Class 5 (BS EN 150 14644) laminar flow hood using trace metal 
clean techniques. Multi-element calibration standards were prepared as serial dilutions from standard solutions (1000 or 
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10000 μg L-1, Romil Pure Chemistry, Fisher and BDH) and acidified to <pH 2 with Q-HNO3 (purification by sub-
boiling distillation, Romil SPA). All equipment was immersed in detergent (Decon 90, 2% v/v, >24 h) and rinsed with 
MQ water before cleaning with analytical reagent grade acids. Polyethylene centrifuge tubes (50 mL) and high density 
polyethylene bottles (HDPE, Nalgene) used for sample collection and standard preparation were cleaned by immersion 
in a series of acids (HCl, 6 mol L-1, ≥7 days, HNO3, 2 mol L-1, ≥7days). Perspex™ columns used in leach experiments 
were immersed in HNO3 (pH 2, ≥7 days). Filtration units (polycarbonate, Nalgene) and other apparatus were immersed 
in HCl (2 mol L-1, ≥3 days). All items were rinsed with MQ water after each of the cleaning steps, dried in a laminar 
flow hood and stored in plastic zip-lock bags.  

Site Description  

 
Figure 1. Location of Wheal Betsy within the Tamar catchment, southwest England, showing major river courses 

(centre). Site plan (right) of tips in relation to Cholwell Brook (solid black line), showing sample locations of mine 
waste material (north tip: ●, south tip: ▲). © Crown Copyright/database right 2009. An Ordnance Survey/EDINA 

supplied service. 

The metalliferous deposits of southwest England host two major types of economic mineralisation: Sn oxide 
(cassiterite), Cu, As and Zn sulphide mineralisation, largely in E-W trending lodes and N or NW trending lodes, known 
as crosscourses, comprising Pb, Ag and Zn veins. The abandoned Wheal Betsy, which is the subject of the current study, 
was worked for Pb, Ag and Zn between 1740 and 1877 (Dines, 1956). The bedrock consists of slates and thin beds of 
limestones and grits of the Carboniferous Culm Measures. The veins are dominated by quartz, siderite, galena and 
sphalerite, with minor presence of pyrite, arsenopyrite, some Cu and Ag ores and traces of cadmium bearing ores 
(Dines, 1956; Page, 2008). Underground workings followed the N-S trending lode from a depth of 65 to ca. 270 m and 
were serviced by several shafts, engines and adits. The underground workings were drained to ca 70 m by means of a 
connecting adit to Wheal Friendship, located to the south of the site (Richardson, 1995; Hamilton Jenkin, 2005; Dines, 
1956). Today, the site features the remains of engine houses, adits and a number of waste heaps of diverse materials 
along the banks of Cholwell Brook, a small tributary of the River Tavy (Figure 1). The waste tips at the north of the site 
mainly consist of poorly sorted coarse to medium sand (60-80%), with some larger pebbles and cobbles of quartz and 
slate and with iron hardpan horizons. Material in the south tips is similar in composition, but more heterogeneous, 
containing more clay and fine sands (< 0.25 mm, 24% WBS and 14% WBN). 

Sampling Protocol and Sample Treatment  

Five composite samples of ca.1.5 kg were taken from both, the northern and southern tip areas using a stainless steel 
trowel (Figure 1, north tip: 10-50 cm depth, south tip: 10-40 cm depth) Surface crusts, root layers and large pebbles 
(>16 mm, Wentworth Scale) were omitted by hand sorting. The material was collected into zip lock bags and stored at 
4°C. The individual mine waste samples were sieved (4 mm) and combined to form two composite samples 
representative of the north and south tip areas, respectively. The composite samples (<4 mm) in the columns constituted 
39% and 53% by weight of the sample material for WBN and WBS, respectively. The composite samples were 
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homogenized by cone and quartering and recombining (5 repetitions), placed in an airtight HDPE container and stored 
at 4°C. To sample shallow groundwaters flowing through the northern mine spoil (WBN) and towards Cholwell Brook, 
five piezometers (50 mm diameter) were installed. A schematic of the installation is provided in Figure 2. 

 
Figure 2. Cross-section schematic of borehole installation at Wheal Betsy (northern tips). On the right, the double-layer 

construction of the installed tubes is shown. 

Double-layer tubes were installed into five boreholes (50 mm diameter) in order to intercept shallow groundwaters 
flowing from the northern mine spoil (WBN) towards Cholwell Brook (Figure 2). Boreholes were sampled via a 
Wattera™ bailer and purged to at least three borehole volumes prior to sample collection. Water samples were 
transferred to HDPE bottles after three rinses with sample water, and stored cool. Conductivity, pH and redox potential 
(Eh) were determined in situ using portable instruments (Hanna HI9635, MeterLab PHM201 and Hanna H9025 
respectively). The pH meter was calibrated using standard solutions (pH 4 and 7, BDH), and the Eh measurements were 
made against ZoBell’s solution (Nordstrom, 1977). In the laboratory, water samples were vacuum filtered (0.2 μm pore 
size, Whatmann Nuclepore). Samples for anion determination were stored cool (<3 days). Samples for metal 
determination were acidified (Q-HNO3, pH 2). 

Dynamic Up-Flow Column Experiments 

Composite samples of mine spoil from the Wheal Betsy north (WBN) and south (WBS) tip areas were subjected in 
triplicate to up-flow column extraction procedures (standard European method (CEN/TS 14405, 2004). The leaching 
solution (aerated MQ water) was transported by a peristaltic pump at a constant flow rate (2.0 mL min-1) into the 
bottom of the column. The out flowing solution (leachate) was filtered in-line (filter holder 47 mm diameter, Swinnex) 
in two stages (0.45 μm and 0.2 μm, Whatman Nuclepore). The leachate was either directed through a flow chamber for 
in-line determination of Eh and pH, or was collected for chemical analysis (Figure 3). 

The complete column flow circuit, including filter holders, was cleaned in-line by circulating Q-HNO3 followed by MQ 
water. The sample material was introduced to the column in 5cm layers, each reproducibly compacted with a 125g 
weight, dropped 50 times from a height of 20cm. The sample weight and the percent effective porosity of the column 
were determined gravimetrically. The columns were saturated with leaching solution (MQ water) and equilibrated at 
room temperature for 72 h. Subsequently, the MQ water was pumped continuously through the columns and leachate 
was sampled (ca. 30 mL) at L/S ratios from 0 to 10. Three aliquots (2 mL) of each sample were stored in glass HPLC 
vials and refrigerated pending quantification of anions. The remaining sample was stored in HDPE bottles and acidified 
(Q-HNO3, pH 2) for metal analysis. The leachate pH (Hanna HI9025, VWR electrode) and Eh (Hanna HI9025, redox-
ORP electrode, VWR) were recorded at time intervals throughout the experiment. The cumulative leachate volume for 
all columns was >10 L kg-1. 
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Figure 3. Schematic diagram of dynamic column experiment showing the complete flow circuit comprising leaching 

solution (aerated MQ water) supply, peristaltic pump, column packed with mine waste,  
double filtration and sample collection. 

Batch Extractions 

Composite Wheal Betsy north (WBN) and south (WBS) tip material was dried (40°C, 72 h). Sub-samples of 
homogenized material (4, 8 and 10 g) were accurately weighed into 50 mL centrifuge tubes. MQ water was added at 
L/S ratio’s of 10, 5 and 2 respectively (in triplicate). Samples were laid horizontally and shaken for 16 h (orbital 
shaker), then immediately centrifuged (3000 rpm, 15 min). The supernatant was carefully removed via auto-pipette and 
acidified (Q-HNO3, pH 2) for metal analysis.  

Instrumentation and Analysis 

Moisture content was determined in triplicate gravimetrically after drying (105°C) of sieved and homogenized samples 
(10 g). The organic matter content was determined gravimetrically as loss on ignition (450°C, 4h). Metal analysis in 
water samples and column leachate was carried out by ICP-OES (Varian 725-ES Inductively Coupled Plasma Optical 
Emission Spectrometer) and ICP-MS (VG Plasma Quad PQ2+ Turbo Inductively Coupled Plasma Mass Spectrometer) 
in an ISO9001:2000 accredited analytical research facility. Yttrium and indium (100 μg L-1) were used as internal 
standards. Dissolved anions were determined by ion chromatography (Dionex DX-500 system, Dionex Ionpac AS9-HC 
column). Na and K analysis was performed by flame photometer (Corning 400). Analyses were verified against a 
certified reference material for trace elements (TMDA-64, National Water Research Institute, Canada) and the recovery 
was within 96 and 115% for all certified elements.  

3. RESULTS AND DISCUSSION 

Test Conditions 

Up-flow percolation experiments were carried out at ambient tempreratures of 18.2-23°C, and the initial moisture 
content of the samples was 13.2-14.7%. The organic matter content (LOI) was 7.5% and 4.7% at WBN and WBS, 
respectively. Test conditions showed good reproducibility between the triplicate columns of the same waste material 
(Table 1). The minor variations in the dry mass (ca. 0.84 kg), saturated pore volume (ca. 0.084 L), linear velocity (32 
cm h-1) and flow rate (1.5 ± 0.2 ml min-1) of the leachate arose from small differences in the packing of the columns. 
WBN and WBS material produced leachate of similar pH values (1.9-2.6), whereby a gradual decline in pH by ca.0.6 
units was observed during the experiment. The redox potential in the leachate remained positive (715-800 mV) 
throughout the experiment, indicating that the columns were not oxygen limited.  
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Table 1. up-flow percolation test characteristics for each column: flow rate, moisture content, temperature, dry mass, 
saturated pore volume, linear velocity, initial l/s ratio, median ph and ph and eh ranges. 

Tip Material: Wheal Betsy North (WBN) Wheal Betsy South (WBS) 
Column No. 1 2 3 4 5 6 
Mean flow rate (mL min-1) 1.44 1.39 1.61 1.45 1.31 1.69 
Dry mass of solid sample (kg) 0.866 0.833 0.810 0.848 0.842 0.850 
Saturated pore volume (L)1 0.085 0.086 0.094 0.079 0.081 0.079 
Linear Velocity (cm h-1)2 30.5 29.1 30.8 33.0 29.1 38.5 
Initial L/S ratio (L kg-1)3 0.10 0.10 0.12 0.09 0.10 0.09 
pH range 1.9-2.6 1.8-2.5 1.9-2.6 2.0-2.5 2.3-2.6 2.3-2.6 
Median pH 4 2.3 2.4 
1 Water volume in saturated column, determined gravimetrically 
2 Determined from saturated pore volume per unit length of column (cm mL-1) and the average flow rate 
(mL h-1) 
3 Initial L/S ratio calculated from saturated pore volume and dry sample mass 
4 Median pH determined from all three replicates at L/S ratio >0.2 L kg-1. 

 

Reproducibility of Dynamic Up-Flow Column Experiments 

In Figures 4 and 5, the elemental concentrations in column leachate, normalised for dry mass, were plotted against the 
L/S ratio. The resulting release curves were highly reproducible for triplicate columns for all elements, as illustrated in 
Figure 4 for Zn leached from WBH tip material. In the following sections, triplicate column results were combined to 
produce a single data set for each sample. 
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Figure 4. Concentration of dissolved Zn in leachate from replicate columns of WBN tip material versus cumulative 

liquid to solid (L/S) ratio. Concentrations were corrected for dry mass in the column. LODZn = 0.025�mol L-1. 

Elemental Release Curves 

The chloride release curve (Figure 5A) demonstrates the leaching behaviour of a highly soluble ion with low affinity for 
the column material. The shape of release curves reflects the release rate of an element under conditions of changing 
L/S ratios and is influenced by the solubility of the source mineral phase and the adsorption or complexation strength 
with the column matrix. The steep gradient of the Cl release curve at low L/S ratios can be seen as representative for the 
behaviour of the most mobile elements, which are rapidly removed from the tip material. Elemental concentration in 
leachate generated towards the end of the experiment (L/S ≤10) tended towards a steady state, termed here the dynamic 
equilibrium concentration. The dynamic equilibrium condition is reached when the rate of an element’s release into pore 
waters is in equilibrium with the rate of its removal from the column by fluid transport. It represents the concentration 
of an element found in solution after the ‘first flush’ of the solid material with eluent.  

In comparison to Cl, the release of Zn, Cd and Cu from the column (Figure 5A, B, D, E) occurred at a slower rate and 
exhibited exponential decrease with increasing L/S ratio. The shape of these curves indicates a release mechanism 
influenced by surface sorption/desorption processes for elements of lower mobility, relative to that of chloride. The 
maximum leachate concentrations recorded at low L/S (WBN: 200 μmol L-1 Zn, 0.7 μmol L-1 Cd, 17.4 μmol L-1 Cu; 
WBS: 13.8 μmol L-1 Zn, 0.17 μmol L-1 Cd, 0.71 μmol L-1 Cu) were an order of magnitude higher than the dynamic 
equilibrium concentrations, and provide an estimate of the peak release from the waste tip material after a cycle of 
drying and wetting. The Pb concentrations in the column leachate exhibited a small decrease (<15% of initial 
concentration) at low L/S ratios, before recovering to previous levels and remaining stable for the remainder of the 
experiment. This indicates that Pb release from the column is in dynamic equilibrium over the full range of L/S ratios 
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applied. As a result, Pb (35.3-77.9 μmol L-1), along with SO4
2- (285-403 μmol L-1), represent the dominant dissolved 

ions in the leachate at dynamic equilibrium. 
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Figure 5. Dissolved concentrations of metals and chloride in column leachate and batch extractions with respect to L/S 
ratio (LOD, μmol L-1): Zn (0.025), Cu (0.0036), Cd (0.003), Pb (0.003), Fe (0.32), Mn (0.05) SO4

2- (3.34) and Cl- 
(1.39). Dashed lines represent the range of concentrations determined in borehole samples at Wheal Betsy North  

(scale on left axis). 

The iron release curve from Wheal Betsy north tips was characterised by an initial concentration increase (L/S <2) from 
6.1 μmol L-1 Fe to a maximum of 9.2 μmol L-1 Fe (Figure 5F). After reaching the maximum, concentrations initially 
decreased steeply, then less so, reaching a dynamic equilibrium around 2 μmol L-1 Fe. The release curves for sulfate at 
WBN and WBS followed a similar trend. This behaviour indicates the interplay between mobilisation from the solid 
phase (dissolution of primary and secondary minerals and desorption) and loss from the dissolved phase due to the 
precipitation of secondary phases, such as amorphous iron hydroxides and iron hydroxysulphates, under changing 
conditions. It is likely that during the initial equilibration stage of the column, iron was mobilised into the pore water 
and reached a balance between the solid and dissolved phases. As the dynamic stage of the experiment commenced, 
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readily mobile Fe phases leached from the column at a rate that increased with the L/S ratio up to the point (at L/S >2) 
where the release curve followed an exponential decrease, as observed for Zn, Cd and Cu. Iron concentrations were 
below or very close to the LOD (0.32 μmol L-1) in Wheal Betsy South leachate.  

Based on the maximum observed concentrations in column leachate and assuming conservative transport, a dilution 
factor of 1000 would be required to reduce maximum Pb concentrations (WBS: 90 μmol L-1, WBN: 39.7 μmol L-1) 
below the current fresh water Environmental Quality Standard (EQS) (low alkalinity). Similarly, a dilution factor of 
1000 (WBN) or 100 (WBS) would be necessary to reduce peak Zn concentrations (200 μmol L-1 and 13.8 μmol L-1, 
resp.) and a dilution factor of 100 (WBN, WBS) would be necessary to reduce Cd concentrations (up to 0.7 μmol L-1) in 
order to meet with EQS, and therefore WFD, requirements. Based on recent stream sampling and previous studies 
(Austin, 2005) Cholwell Brook enters the mine site with low background concentrations of contaminant metals but 
exceeds current freshwater EQSs for Zn, Cd, Pb and Cd upon leaving it. Given the size of the tips and their close 
proximity to Cholwell Brook, the tip drainage represents a significant source of contamination to the watercourse. The 
severity and downstream extent of the contamination depends on the magnitude of dilution and the mobility of 
individual metals. Therefore, accurate prediction of the impact of spoil heap drainage is limited by the availability of 
accurate hydrological data and knowledge of in-stream processes (i.e. dilution, element-specific sorption, complexation 
and precipitation). 

Cumulative Element Loads 

Cumulative contaminant loads (μmol kg -1
 of dry mass) released during the experiment (Figure ) were calculated by 

summing the product of the concentration of collected column fractions and the L/S ratio (up to L/S 10). Wheal Betsy 
south material leached predominantly Pb and Zn (730 μmol kg -1 and 59 μmol kg-1 respectively), while north tip 
material was characterised by a wider range of contaminants (including Zn at 518 μmol kg-1) and a higher sulphate load 
(6.1 mmol kg-1).  
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Figure 6. Cumulative metal and sulphate loads ( μmol kg-1) leached from Wheal Betsy north and south tip material 

during up-flow percolation tests. Error bars represent ±1 s.d (n=3). 

The cumulative contaminant loads from the column experiments on WBN material are compared with results from 
batch extractions, performed on the same homogenised material at L/S ratios of 2, 5 and 10, in Figure 7. Batch and 
column tests showed closest agreement at L/S = 2, after which the column release curves diverged from the batch 
experimental results. Iron release was much lower in column experiments than in batch extractions (Figure 7E). This 
suggests that percolation as mode of leaching encourages the precipitation of iron oxides within the column matrix and 
as a consequence, through co-precipitation and/or adsorption, the mobility of other metals is also reduced. The ability of 
Fe and Mn hydroxides to adsorb metals has been shown to be particularly strong for Pb(II) and Cu(II), compared with 
Zn(II) and Cd(II) (Elliott et al., 1986; Han et al., 2006; Covelo et al., 2007; Dong et al., 2007). This may explain the 
lower release of Pb in the column experiment, compared with the batch experiments (Figure 7B). At high dissolved 
concentrations this adsorption effect can be masked, as was the case for Cu at WBN (Figure 7C), but becomes apparent 
at the lower concentrations released from WBS material (Figure 7F). Cadmium, released at lower concentrations than 
Cu at WBN (Figure 7D), did not exhibit the same behaviour, due to a lower affinity for Fe/Mn hydroxide binding sites.  
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Figure 7. Metal, sulphate and chloride release from batch and column percolation tests for Wheal Betsy North material 

(μmol kg-1) and Cu release from batch experiment for Wheal Betsy South material.  
Error bars for batch extraction represent ± 1 s.d (n=3). 

It has been shown that preferential adsorption can cause metals with the lowest affinity for the column matrix to largely 
remain in solution (Covelo et al., 2007). This can also account for the number of moles of Zn, Cd and Cu released from 
the column being progressively higher with increasing L/S ratio than the metal release in the batch experiments. In the 
presence of high dissolved concentrations of metals with higher affinity for Fe/Mn hydroxide binding sites, Zn and Cd 
are more likely to remain in solution than Pb and Cu. Overall, the dynamic experiment appeared to encourage greater 
desorption than the static batch experiment, and this is consistent with previous studies. Several explanations have been 
given for this discrepancy, including the kinetics of adsorption (Allen et al., 2002) and the effects of preferential flow 
within columns (Porro et al., 2000). The dynamic leaching experiment creates a dissolved element concentration 
gradient within the column, with pristine leaching solution constantly supplied to one end. Therefore, it is unlikely that 
equilibrium conditions between the solid and the dissolved phases become established during a dynamic column 
experiment. However, in batch extractions metal mobilisation is constrained by this equilibrium (Plassard et al., 2000).  

Comparison with Natural Waters 

The concentration ranges of Zn (12-30.4 μmol L-1) and Cd (0.03-0.5 μmol L-1) observed in the boreholes installed at 
Wheal Betsy were of the same order of magnitude as the respective dynamic equilibrium concentrations obtained in the 
column leach experiments (Figure 5). For these metals, the column leaching was a good proxy for the conditions of 
dynamic flow prevailing in mine spoil and below the water table, even though the composite samples used in the 
laboratory experiments cannot be fully representative of the waste tip material present in the field. Dissolved 
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concentrations of Pb (0.7-3.0 μmol L-1) and Cu (0.2-1.9 μmol L-1) in borehole samples were lower than in column 
leachate, but still exceeded freshwater EQSs by one order of magnitude. This discrepancy may be related to the higher 
pH values (pH 3.8-5.1) observed in the boreholes, compared with the column experiments (pH 1.8-2.6), influencing ion 
exchange and sorption of Pb and Cu onto Fe/Mn hydroxide phases. Ion exchange processes are pH dependant. 
According to results reported by Tan et al., (2008) and Oh et al., (2009), a shift from the pH range observed in column 
leachate to those determined in boreholes is likely to result in a markedly higher Pb sorption onto mineral surfaces. The 
redox potential (455-650 mV) varied between boreholes and surveys and was somewhat lower than values recorded 
during the column experiment (715-800 mV). The redox and pH sensitivity of Fe influences its distribution between the 
solid and dissolved phases, as well as that of associated metals, and can contribute to differences between field and 
laboratory data.  

The L/S ratio of 10:1 in the column test was designed to elute all the easily mobilised metals from the spoil material. 
However, in the case of Pb and Cu, it appeared that the dynamic equilibrium position was not attained by the end of the 
column test and did not satisfactorily predict Pb and Cu mobility in the field. In shallow groundwater the L/S ratio is 
unknown, but over time is likely to be >>10. Therefore, it is plausible that the borehole concentrations represent the true 
dynamic equilibrium position for Pb and Cu, which was not approximated by the column test. However, not all spoil 
material in the field exists below the water table and is subject to cylic wet and dry conditions. The column experiments 
at low L/S ratio provide an important indicator of the maximum concentrations that could emanate from mine spoil 
following a heavy rainfall event. 

A more detailed analysis of the field surveys is presented in the accompanying poster presentation: ‘ Braungardt et al., 
Acid mine waters at Wheal Betsy, an abandoned Pb/Zn mine in southwest England‘. 

4. CONCLUSIONS 

In cases where extensive field investigations are not viable, the up-flow percolation experiment provides a means of 
mimicking the conditions of dynamic flow through mine spoil. Results from column experiments and sampled 
boreholes were similar for some metals (Zn and Cd) and may provide a useful tool for prediction of leachate 
composition. The highest concentrations of Zn (200 μmol L-1), Cu (17.4 μmol L-1) and Cd (0.70 μmol L-1) in the 
leachate were observed at low L/S ratios. Concentrations at dynamic equilibrium were one order of magnitude below 
the maxima, with the exception of Pb which remained high. Lowest observed leachate concentrations in the field and 
laboratory remained elevated by one order of magnitude, with respect to the EQSs. For all elements, the dynamic 
equilibrium concentration from column experiments was more closely matched to field conditions than results obtained 
from the batch extractions. The discrepancies between column and batch experiments was small enough to suggest that 
batch experiments could be useful for developing management strategies where it is necessary to survey large areas for 
contaminant mobility. The largest difference between laboratory and field experiments was observed for Pb and Cu 
concentrations, where mobility was much reduced in the borehole samples in comparison with the high loads recorded 
for both batch and column experiments. An explanation for this may be the higher pH measured in the borehole waters 
(pH 3.8-5.1) compared with the more acidic leachates derived in the laboratory. Alternatively, the borehole may 
represent the true dynamic equilibrium position for Pb at a higher L/S ratio. The differences observed between 
laboratory and field based assessment approaches, demonstrates the limitations of applying laboratory data to the field 
scale. It also highlights the necessity to consider the effect of different physico-chemical and hydrological situations on 
the contamination potential of mine spoil.  
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Introduction
Directive 2006/21/EC on the Management of
Waste from the Extractive Industries (Mining
Waste Directive, MWD) requires all member states
to produce an inventory of closed waste facilities
by 01 May 2012. Furthermore, a pre-screening
methodology has to be developed that identifies
sites that pose a risk to human health or have the
potential to cause negative environmental im-
pacts (Stanley et al. 2010), whereby guidance doc-
umentation recommends the use of available
data and a GIS system.

In England and Wales, the Environment
Agency (EA) is responsible for the management of
pollution resulting from historical metal mining.
However, the spatial resolution of the EA’s regular
monitoring programme of watercourses is insuffi-
cient for the identification of individual pollution
sources, which are often diffuse in nature and can
be highly elevated in dissolved metals and metal-
loids compared to water quality standards. Euro-
pean member states are legally bound to meet
such standards as part of European Water Frame-
work Directive 2000/60/EC (WFD). This paper de-
scribes the design of a GIS based tool used to
prioritize mine waste tips as potential pollutant
sources in five river catchments of south west Eng-
land. The work incorporates data on the location
of abandoned mine sites collated by the EA into a
GIS in a model that is based on three key attrib-
utes of mine waste tips. The methodology serves
as a systematic and rapid screening tool. but it
does not consider the concentrations of toxic met-
als and metalloids in the waste, since such infor-
mation is only obtainable after site specific
intrusive investigations.

Methods
The scope of the study was defined by the require-
ments of the EA and included the five manage-
ment catchments shown in Figure 1. The input
parameters of interest to this model were proxim-
ity of each waste tip to the nearest watercourse or
body, the area occupied by the waste tip and the
slope of the drainage pathway. The latter was de-
fined for each waste tip from digital terrain model
DTM (5 m resolution) using ArcHydro (Version 1.4)
software. All other operations and output maps
were created using ArcGIS (Version 9.3) in conjunc-
tion with XTools (Version 7.1).

Determination of Area and Proximity
Digitized hydrological information comprising
catchment boundaries, a detailed river network
(DRN), lakes and estuary outlines were provided
by the EA. Catchment boundaries were extended
by 50 m using the buffer tool, to prevent mine
waste tips close to catchment boundaries being
split between catchments. A database of mine fea-
tures was provided by the EA as a polyline feature
class, with unique identification (ID) codes. Poly-
lines relating to areas of mine waste were selected
using the select by attributes tool and saved to a
new file. The new data set was divided into the five
management catchments, shown in Figure 1,
using the clip tool.

For each catchment, polyline features were con-
verted to polygons using the convert polylines to
single polygon tool (XTools). Polygons were sorted
based on ID code and duplicate codes merged to
construct individual polygons for each mine
waste tip. The mine polygon files were inspected
for errors caused by the conversion process, such
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as self intersections, and corrected as shown in
Figure 2.

An additional field was added to the attribute
table of each mine waste polygon file and was pop-
ulated with the area of each polygon using the cal-
culate geometry tool. Small areas of <1963 m² (for
example the 25 m² default areas assigned to mine
shafts by the EA in the original database) were re-

moved, leaving 1894 areas of waste. The remain-
ing areas were statistically divided into six cate-
gories and assigned a risk score from 6 (largest),
to 1 (smallest) (Table 1), which were, for each catch-
ment, added to the attribute table in a new field.

The DRN polyline file provided accurate loca-
tions of rivers and streams, which were isolated
for each management catchment by using the clip
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Figure 1 Map showing the five management catchments subject to the model. Created in ArcMap, data
supplied by the Environment Agency and used under license.

Crown copyright 2000

0 50 100 km

Figure 2 Self intersection errors shown in polygon file (centre), caused by conversion process of polyline
features (left) to polygon features. Corrected polygon features shown on right.

Polylines Converted Polygons Corrected Polygons

Table 1 Table showing the upper
threshold for area of mine

waste in each risk category for
each of the five catchments sub-
ject to model: South Devon

(SD), North Devon (ND) Tamar,
North Cornwall (NC) and West
Corn (WC). Also show, are upper
thresholds if data for all catch-
ments is combined and classi-

fied (rightmost column). 

Weighting Nominal Risk 

Classification

Upper Threshold Areas (m
2
)

SD ND Tamar NC WC Combined

6 Extreme 93185 16968 36781 176795 2510815 2510815

5 Very High 12601 10997 18048 12016 16920 15862

4 High 7266 5460 7534 6283 7778 7528

3 Moderate 5936 4571 4818 4356 5044 4951

2 Moderate -Low 3925 3519 3653 3519 3790 3747

1 Low 2986 3285 2778 2756 3019 2946

Number of waste tips > 1963 m2 130 23 309 184 1248 1894 (Total)
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tool in conjunction with the catchment polygons
(Figure 1). Estuarine areas were defined by modi-
fying catchment polygons to include the estuaries
of each river. The Union tool was used to create es-
tuary polygons from the overlapping regions be-
tween the modified and original catchment
polygons (Figure 3). A polygon file containing
known lakes was provided ready to use by the EA.
The proximity of each mine waste tip to the near-
est watercourse (lake polygon, estuary polygon or
river polyline) was determined using the select by
location tool. Buffer distances and risk scores were
assigned as defined in Table 2.

Determination of Drainage Pathways and Topo-
graphical Slope
The EA supplied catchment DTMs as individual
raster tiles cataloged by UK Ordnance Survey grid
squares. The tiles were combined into a single
raster using the Mosaic tool in ArcCatalogue. Indi-
vidual catchment DTMs were created using the
mask tool and the management catchment poly-
gons (buffered to 50 m). To determine surface
water flow through the catchments, the DTMs
were used to produce a series of hydrogrids in
ArcHydro, using the Terrain Preprocessing (TP)
tools in accordance with guidance documentation
(Djorkic, 2008) as shown in Figure 3. The ArcHydro
Watershed Processing toolbar was used to deter-
mine the catchment area of a given polygon (e.g.
each mine waste tip). The application of the same
tool to an inverted DTM allowed drainage areas to
be determined (Figure 4).

The slope (in degrees) for each of the drainage
polygons was calculated using the slope tool in
ArcHydro. Then steps shown in Figure 5 were fol-
lowed resulting in the dissolved slope polygon file,
indexed and joined to the drainage polygon file by
utilizing their common HydroID field in the attrib-
ute table. The slope dataset was statistically di-
vided into 6 equal groups, each of which was
assigned a risk code (1—6).

Weighting of Input Parameters and Final Combi-
nation into Model
The weighting for each of the input parameters
was determined using a pairwise comparison ma-
trix first described by Saaty (1980) (Table 3). The
matrix scores the relative importance of each
input with respect to the other two. A score of one
represents equal importance; a maximum score
of 9 indicates much greater importance. The recip-
rocal score is awarded to the partner input for
each comparison.

The weight of each layer (w) was calculated by
dividing the sum of the row, Mi by the denomina-
tor of the matrix (Wang et al., 2010):

The resulting weightings were multiplied by
100 to avoid the use of decimals, which is favor-
able in ArcGIS. The weightings were added to the
mine waste attribute table as new fields. The total

 

 =  /  
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Table 2 Distance to nearest watercourse (stream/lake/estuary) and number of waste tips in each cate-
gory for South Devon (SD), North Devon (ND) Tamar, North Cornwall (NC) and West Cornwall (WC).

Distance to Stream/River/Estuary Risk Score Risk Classification Number of Waste Tips

SD ND TM NC WC Combined

Direct contact (2 m buffer) 6 Extreme 31 8 89 38 173 339

2 - 50 m 5 Very High 27 5 59 23 133 247

50 - 100 m 4 High 30 2 43 26 107 208

100 - 250 m 3 Moderate 27 4 61 43 292 427

250- 500 m 2 Moderate - Low 1 4 48 43 311 407

> 500 m 1 Low 14 0 9 11 232 266

1894 (Total)

Use Times tool in 

spatial analyst to 

multiply DTM raster 

by 1000000.

Preserves accuracy 

when grid is truncated

Use Int tool in spatial 

analyst to create 

integer grid 

(truncated)

Use Fill Sinks tool in 

Terrain Pre-

processing to fill 

artificial lows in the 

integer grid.

Catchment Hydrogrid

Figure 3 Pre-processing steps required to produce a hydrogrid from a catchment DTM.
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Figure 4 Processes used to: invert the catchment hydrogrid (light grey boxes), sort and prepare mine
waste polygon file (dark grey boxes), index drainage polygons to mine waste areas (white boxes). TP =

Terrain Preprocessing and WP = Watershed Processing menus in ArcHydro.

MineID field populated with consecutive ID field

Catchment Hydrogrid

Inverted Catchment DTM created 

using raster calculator (DTM * -1)

Inverted Flow Direction Grid (IFDG) 

created with ArcHydro TP

Mine Waste Polygon File (MWP) 

containing waste tip areas

New fields “BatchDone”, “SnapOn”, 

“Descript”, “HydroID” and DrainID 

added to MWP2 File

New copy of  MWP created with 

consecutive numbering in ID field 

(MWP2)
Tip drainage areas 

calculated in ArcHydro  

WP using Batch 
Watershed Delineation  
for Polygons tool, IFDG 

and MWP2 input files

Output Drainage Polygon file checked for errors and joined to 

MWP2 using ID field 

Output drainage area file cross matched to mine waste tip ID

In spatial analyst 
toolbar, set analysis 

mask to extent of 
drainage polygon file.

(Reduces processing 

time)

Use Slope tool in 
spatial analyst to 

create slope raster (in 
degrees).

RESULT: Average 

Slope (*1000) 

Polygons for each Tip 

Drainage Area, 

indexed by HydroID

Use Times tool in 
spatial analyst to 

multiply slope raster 
by 1000.

(Preserves accuracy 
when grid is 
truncated)

Use Int tool in spatial 

analyst to create 

integer grid 

(truncated).

Convert integer grid 

to polygons in spatial 

analyst using convert
tool. 

Intersect slope 

polygon file with 

drainage polygon file 

using intersect tool. 

(Provides index to 

polygons)

Dissolve polygons 

based on “HydroID” 

index number. Use 

statistics function to 

calculate mean slope 

for each dissolved 

polygon.

Figure 5 Process steps to produce average slope value (degrees x 1000), for each mine waste drainage
polygon. The final slope field may be divided by 1000 to give result in degrees, if required.

Table 3 Pairwise comparison matrix used to calculate input weightings for proximity, area and slope.

 

Proximity to 
Water Body 

Area of 
Waste 

Slope of Drainage 
Pathway Sum of row 

Proximity to Watercourse 1 2 2 5 
Area of Waste 1/2 1 2 3.5 
Slope of Drainage Pathway 1/2 1/2 1 2 

 
Sum of Column 2 3.5 5 10.5

 
Denominator of 

matrix 

Weighting 0.48 0.33 0.19 1.0 
Sum of 

weightings 
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risk for each mine waste polygon was calculated
from:

Where w is the weighting of each layer and R
the risk score (1—6). The final total risk field may
be sorted to give a prioritisation list for the catch-
ment; a ranking may be added as a new field. The
simplest way to populate this field is to export the
layer to excel and add the priority number, then
import back into ArcMap. The final attribute table
for one of the catchments (North Devon) is shown
in Figure 6.

Results and Discussion
The attributes of the nearest mine record (EA data-
base of mine names, locations and available data)
were joined by location to the results of the priori-
tisation exercise for each mine tip (Figure 8). The
five waste tip/mine site combinations bearing the
highest total risk for each of the five catchments
are summarized in Table 4 and serve as an exam-
ple of the output of such a prioritisation exercise,
which may be subsequently explored further as
site investigations.

Uncertainty in any GIS model similar to that
presented here can arise from three areas,
namely: errors in the input data sets, errors in the
processing steps within the model, and incorrect
assumptions made when designating the risk
scores to attributes of an input. The first two may
be minor if good quality data can be sourced and
are processed by a knowledgeable GIS user. How-
ever it must be stressed that the time taken to con-
struct the model is highly dependent on the
quality of the input data and the amount of pre-
processing required to remove errors. Expert judg-
ment may be tested by testing the model’s
sensitivity to differences in relevant parameters,
classifications and weightings.

This model considered three physical proper-
ties of the mine waste tips only. However a more
complex model has been developed and run for
the Tamar catchment (paper in preparation). This
model followed the same principles outlined here
but was extended to include additional input pa-
rameters, namely: bedrock geology, superficial ge-
ology, annual rainfall, rainfall intensity, vegetation
cover and wind exposure. This flexibility, together
with the power of GIS to consolidate many
sources of information in an easy to access form

 
   =  .  
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Figure 6 Final attribute table for catchment prioritisation. Key to fields: Area = area of waste in m²;
(Area/Prox/Slope)_Risk = risk score 1—6, (Area/Prox/Slope)_W = weighting attributed to each layer,

Mean_Slope = average slope for drainage area in degrees x 1000; Total_Risk = result of Equation 2 for
each object, Priority_N = priority number based on total risk score (and area when tied).

Table 4 Results of prioritisation exercise showing nearest mine name to tips scored with highest total
risk in each catchment. Likely contaminants identified in EA database shown in parenthesis.

Priority  South Devon North Devon Tamar North Cornwall West Cornwall 

1 
Waterhill 
(Sn) 

Fullabrook 
(Mn, Fe) 

Harewood 
(Cu, As, Fe) 

Esther 
(Sn) 

Blue Hills (As, Cu, Fe) 

2 
Waterhill 
(Sn) 

Ivy Tor 
(Cu, As, Fe, Bi, 
Ag) 

Betsy 
(Pb, Ag, Zn, 
Cd, Fe) 

West Caradon 
(Cu, As, Fe) 

Friendly (Pb, Fe, Cu) 

3 
Hexworthy 
(Sn) 

Bampfylde 
(Cu, Fe, Ag) 

South Devon 
(Cu) 

Penhale 
(Fe, Cu, Pb, Sb) 

Ellen (Cu, Pb, Zn, Ag, Cd?) 

4 
Crownley Parks 
(Cu, Ag) 

Steeperton 
(Sn) 

Harewood 
(Cu, As, Fe) 

Credis 
(Cu, Fe) 

Carclaze (Zn, Pb, Cd?) 

5 
Great Eleanor 
(Sn) 

Ramsley 
(Cu, As, Pb, Fe) 

Hawkmoor 
(Cu, Fe, As) 

Trehane 
(As, Pb, Ag, Cu, 
Fe, Cd?) 

Geevor 
(Cu, Pb, Zn, As, Sb, Co, Mo, 
Fe, Ag, Hg, Bi, U, Rn?) 
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are the main advantages of the GIS models pre-
sented here. This preliminary exercise not only di-
rects regulators to sites of potential harm, but
may be used to aid the design of site investiga-
tions. For example, the modeling of tip drainage
pathways can assist in the accurate placing of
boreholes and stream samplers to capture
drainage waters.

Conclusions
The work presented here represents a principle
rather than an absolute approach. The judgments
made are flexible and any number of input param-
eters may be addressed depending on available
data and the requirements of the user. The
methodology presented here has already played a
role delivering the EA’s obligations under the WFD

and, with some minor modifications, can meet
the requirements of Article 20 of the MWD for pre-
selection of potentially harmful abandoned mine
sites.
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