
Kokkas, Nikolaos (2009) An investigation into semi-
automated 3D city modelling. PhD thesis, University of 
Nottingham. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/10610/1/Nick_Kokkas_PhD_thesis.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


 

 
 

 

AN INVESTIGATION INTO SEMI-AUTOMATED 
3D CITY MODELLING 

 

 

Nikolaos Kokkas, MSc, BSc 

 

 

 

 

 

Thesis submitted to the University of Nottingham for the degree of 
Doctor of Philosophy 

 

 

 

May 2008 

 

 



2 

 

ABSTRACT 
 

Creating three dimensional digital representations of urban areas, also known as 3D city 

modelling, is essential in many applications, such as urban planning, radio frequency signal 

propagation, flight simulation and vehicle navigation, which are of increasing importance in 

modern society urban centres. 

The main aim of the thesis is the development of a semi-automated, innovative workflow for 

creating 3D city models using aerial photographs and LiDAR data collected from various 

airborne sensors. The complexity of this aim necessitates the development of an efficient 

and reliable way to progress from manually intensive operations to an increased level of 

automation. The proposed methodology exploits the combination of different datasets, also 

known as data fusion, to achieve reliable results in different study areas. Data fusion 

techniques are used to combine linear features, extracted from aerial photographs, with 

either LiDAR data or any other source available including Very Dense Digital Surface Models 

(VDDSMs). 

The research proposes a method which employs a semi automated technique for 3D city 

modelling by fusing LiDAR if available or VDDSMs with 3D linear features extracted from 

stereo pairs of photographs. The building detection and the generation of the building 

footprint is performed with the use of a plane fitting algorithm on the LiDAR or VDDSMs 

using conditions based on the slope of the roofs and the minimum size of the buildings. The 

initial building footprint is subsequently generalized using a simplification algorithm that 

enhances the orthogonality between the individual linear segments within a defined 

tolerance. The final refinement of the building outline is performed for each linear segment 

using the filtered stereo matched points with a least squares estimation. 

The digital reconstruction of the roof shapes is performed by implementing a least squares-

plane fitting algorithm on the classified VDDSMs, which is restricted by the building outlines, 

the minimum size of the planes and the maximum height tolerance between adjacent 3D 
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points. Subsequently neighbouring planes are merged using Boolean operations for 

generation of solid features. The results indicate very detailed building models. Various roof 

details such as dormers and chimneys are successfully reconstructed in most cases.  
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1. INTRODUCTION 
 

1.1. Project introduction 
 

More than 50% of the world population lives in urban/suburban areas, so detailed and up-to-

date building information is of great importance to every resident, government agencies, and 

many private companies. Government agencies and private companies spend millions of 

dollars each year obtaining aerial photographs and other forms of remotely sensed data. The 

large amount of airborne data, acquired every year, require automated solutions for post-

processing in order to create 3D city models in a consistent and cost effective way. One of 

the key components of any 3D City Model is a three dimensional representation of the 

buildings present in the scene, the process of creating these 3D building models that 

includes a geometric three dimensional representation of roof and facades details is often 

referred to as building reconstruction. Building reconstruction is of primary importance in 

many varied applications, ranging from urban planning and telecommunication network 

propagation studies to application for next generation vehicle navigation. Currently the 

production of detailed 3D building models of urban areas is very expensive and time 

consuming and automated workflows are required in the industry. 

Unfortunately, manual reconstruction from photogrammetric techniques is time consuming 

and not a cost effective solution. It is estimated that an operator will have to commit several 

days or even weeks of stereo plotting for the production of every square kilometre of 3D city 

models. These time requirements justify the significant cost associated with these datasets 

and the main reason behind the lack of widespread use in different industries. It is evident 

that automated techniques and tools for data acquisition from remotely sensed imagery are 

needed and is the focus of many current research efforts. Automatic building reconstruction 

from multiple aerial images is however a difficult problem due to the presence of shadows, 

occluded regions introduced by vegetation and the perspective geometry of the scene. 

There are also issues regarding accuracy and consistency of the reconstructed building 
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models that need to be addressed. Most automatic approaches have to account for the 

complexity of roof structures and thus supply a general approach that can model most of the 

buildings present on a scene. At the same time simplifications of the roof shapes is needed 

for providing a fast and reliable solution. Currently most approaches are not designed to 

reconstruct roof details for dormer windows, chimneys and small building recesses, except 

where very high density LiDAR data are available. Therefore the goal of an automatic 

solution is to provide a generic 3D building reconstruction function that can be efficient in a 

variety of different situations. It should present reliable results with data collected from 

different sensors and adapt to projects with different specifications regarding the geometric 

accuracy and the desired level of detail. It is important at this point to introduce the concept 

of Level Of Detail (LOD) in the context of 3D city models which has been defined in Bildstein, 

2005. The definition of these categories was based on the evaluation of several applications 

related primarily to augmented reality and simulation but it can be adaptable to a variety of 

different applications. This thesis is concerned with the automation of 3D city modelling for 

the LOD1 and LOD2 models as illustrated in figure 1. 

 

 

Figure 1 LOD definition for city models, adapted from Bildstein, (2005) 
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Methods for building detection and reconstruction can be applied to LiDAR point clouds. 

Typically existing methods either directly derive the surface parameters in a parameter 

space by clustering the point cloud or segment a point cloud based on criteria like proximity 

of points or similarity of locally estimated surfaces (Vosselman et al., 2004; Heuel et al., 

2000). Kokkas and Dowman (2006) introduced a method that employs a semi-automated 

technique for generating the building reconstruction by fusing LiDAR data with stereo 

matched points extracted from the air photograph stereo model. The roof reconstruction is 

achieved by implementing a least squares plane fitting algorithm on the LiDAR point cloud 

and subsequently neighbouring planes are merged using Boolean operations for the 

generation of solid features. To complement this modelling various quantitative techniques 

have been developed in order to automate the interpretation of terrain features from DEMs 

using geomorphometric parameters in an attempt to characterize the landscape (Miliaresis 

and Kokkas, 2004). Most approaches in order to overcome certain difficulties introduce 

some kind of external knowledge, either as models of buildings (with gable, hip or flat roof 

shapes) which reduce the generality of the approach, or as constraints on primitives 

extracted from aerial images. 

Data fusion techniques between different data sources can be an effective solution for 

automated building reconstruction since they combine the advantages of very good vertical 

accuracy, usually provided from LiDAR data, and the precise location of the building outlines 

and roof details, derived from aerial images.  Building reconstruction using LiDAR, aerial and 

satellite imagery was introduced by Chen et al. (2004). A method proposed by Rottensteiner 

and Jansa, (2002) combines LiDAR with aerial photographs and performs the polyhedral 

modelling using Voronoi diagrams. Sohn and Dowman (2006) merges LiDAR with high 

resolution satellite data, and introduced a method for Binary Space Partitioning (BSP) while 

a combination of calibrated aerial images and DSM, produced from LiDAR datasets, was 

introduced by Institut Geographique National (French National Mapping Agency, IGN) for 

several test sites (Kaartinen et al., 2005). Although the effectiveness of data fusion between 

LiDAR and aerial photographs has been illustrated the potential high cost associated with 
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LiDAR data collection and, in addition, aerial imagery is a limiting factor for the commercial 

implementation of these approaches. Hence one aim of this research is to exploit the 

synergy between mapping products extracted using only high resolution airborne imagery. 

Due to varied complexity of different urban scenes, automatic or semi-automatic workflows 

for building reconstruction should be accompanied by robust quality assurance tools. So far 

most accuracy assessment studies have been focused on assessing 3D city models using 

methods for assessing either the planimetric accuracy of the building footprints or selectively 

analysing roof shapes. This research investigates the implementation of a robust semi-

automated approach for a comprehensive planimetric and vertical accuracy assessment 

proposed by Kokkas and Smith (2007). The methods described in this report were designed 

for the lower and average LOD city models up to LOD2. 

 

1.2. Aims and objectives 
 

The main aim of the project is the development of a semi-automated, innovative workflow for 

building reconstruction and 3D city modelling. The complexity of this aim dictates a staged 

development from manual reconstruction to an increasing level of automation. The main 

objective set from the beginning was to evaluate what level of automation is achievable 

using different workflows and datasets in order to perform 3D reconstruction and texture 

mapping and produce models that would satisfy a varied range of applications. 

The overall scope of the project is nevertheless limited by the data sources available, 

obtainable resolution, accuracy and overall detail. Due to timeframe constraints it was 

decided that this project would be restricted to use only data collected from airborne 

platforms. This decision was also made to satisfy the requirements of the fourth objective 

(see below) concerning cost efficiency. By setting the above limitation it was immediately 

evident that the solution would not be able to provide models detailed enough for 
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applications requiring LOD3 & 4 models (see figure 1), due to the use of airborne data. 

LOD3 & 4 models require geometric detail for building facades and interiors currently not 

achievable using only airborne data. This decision would ultimately set the scope of the 

project with consideration to the overall research timescale and the foundations for feasible 

milestones. Nevertheless there are multiple airborne data sources that either individually or 

using data fusion techniques could provide the desirable LOD models. All these limitations 

led to the identification of realistic objectives based on the datasets used and the overall 

timeframe as outlined below. 

Project objectives: 

1. The final solution would need to have a degree of automation exceeding 

current industry standards and previous research efforts 

2. The solution should present comparable accuracy and LOD characteristics 

with 3D models extracted from manual stereo plotting procedures and a 

method to perform accuracy assessment should be proposed. 

3. It should be a flexible and reliable solution that can be accommodated in 

different situations with different dataset characteristics (resolution, quality 

and number of data sources), adaptable to different scenes with different 

building architecture. 

4. Cost efficiency and availability of data sources should also be considered. 

Objective 1: The final solution would need to have a degree of automation exceeding 

current industry standards and previous research efforts. The first objective is very 

broad and further description was needed to define exactly the desired level of automation. 

Automated or semi-automated methods are sometime difficult to quantify and this project 

would define it as a threshold level related to the time required to process the data and the 

time spent by a single operator performing manual stereo plotting. For one square kilometre 

of LOD2, 3D city models (geometry only) a single operator using state-of-the-art stereo 

plotting facilities needs at least 40 working hours (this timeframe was verified internally by 
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manual 3D plotting performed at three test sites by the experienced researcher). A semi-

automated algorithm would be able to reduce the time requirements by at least 50% but still 

require the operator to perform several functions and setting parameters during these 20 

hours. In contrast an automated algorithm could be named as such if it could reduce the 

overall processing time by at least 50% and maintain the time spent by the operator for 

setting parameters within 1%. Essentially for one square kilometre of 3D city models a 

workflow would qualify as automatic if the operator was spending no more than 30 minutes 

setting parameters and altering variables and the unsupervised processing of the data was 

complete in less than 20 hours. 

Objective 2: The solution should present comparable accuracy and LOD 

characteristics with 3D models extracted from manual stereo plotting procedures and 

a method to perform accuracy assessment should be proposed. This objective was 

defined to set the milestones and the scope of the accuracy assessment methodology and 

the level of detail this solution should satisfy, although the achievable accuracy is mainly a 

function of the datasets used as well as the technique employed to extract features. In order 

for the solution to compete with manual methods it would have to achieve comparable 

results. Consider that high resolution state-of-the-art digital sensors, flying at a typical flying 

height (1000m) can achieve centimetre resolution and features extracted from these stereo 

pairs would have an estimated accuracy of 10-20cm on the ground. Features and shapes 

extracted from LiDAR data have been shown to have absolute Z accuracy in the order of 5-

10 cm (Maas, 2002). Based on the above it is safe to assume that manual photogrammetric 

techniques employing airborne datasets can create 3D city models with an absolute vertical 

and planimetric accuracy of 20-25cm. Apart from the accuracy characteristics another 

important factor is the completeness of the model at the LOD level. Due to the limitations of 

airborne datasets even manual photogrammetric techniques are restricted to LOD 2 models. 

That is models with roof details and textures, but with no geometric detail for the facades or 

interiors. Considering the above characteristics for accuracy and LOD and in order for the 
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solution to be adaptable in the industry and not purely stay a research prototype, the project 

adopted the objective that the derived models would be quantitatively assessed. The overall 

absolute errors (standard deviation) should not be worse than 50cm (for height and plan). 

The derived models would also need to have a comparable level of detail with the manual 

models, hence the solution should be able to generate LOD 2 city models, including the 

necessary geometric detail and textures. At this point it’s useful to consider that for most 

applications and projects requiring 3D city models the accuracy specifications are rarely 

defined, instead LOD is the predominant factor with the geometric quality in most cases 

unjustifiably overlooked. 

Objective 3: It should be a flexible and reliable solution that can be accommodated in 

different situations with different dataset characteristics (resolution, quality and 

number of data sources), adaptable to different scenes with different building 

architecture. In order to meet the requirements of the third objective three distinct test sites 

were chosen with different architecture and varied roof details. The first site is situated in 

Switzerland, Heerbrugg and represents Leica Geosystems headquarters and the 

surrounding area. The test site has a mixture of large industrial buildings and small cottage 

style houses. The second test site was in London, Bloomsbury, a challenging site due to the 

varied details of the building structures. The third test site was situated at the University Park 

of The University of Nottingham consisting of a mixture of different building types. 

Objective 4: Cost efficiency and availability of data sources should also be 

considered. The fourth objective is an assessment of the cost efficiency of the proposed 

methodology. This project is primarily concerned with exploiting the synergy between LiDAR 

and aerial photography. Data Fusion techniques for building reconstruction provide, in 

general, more accurate results since they combine the advantages of very good vertical 

accuracy characteristics, usually obtained from LiDAR data, with the precise location of the 

building outlines, derived either from aerial images or ground plans. A quantitative evaluation 

of extracted building footprints presented in Kaartinen et al. (2005) indicates the higher 
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geometric accuracy achieved with data fusion approaches. Considering the promising 

results introduced using data fusion of different datasets for building reconstruction, the 

project adopts a method that combines aerial imagery with LiDAR data for the first two test 

sites. For the Switzerland test site, airborne imagery from the ADS40 sensor was available. 

This sensor represents the state of the art in airborne pushbroom sensors. LiDAR data were 

also collected using the ALS50. The selection of the acquisition systems was related to the 

fact that they can be easily integrated and mounted in a single airborne platform for 

simultaneous data collection. Furthermore digital imagery acquired with the ADS40 is well 

suited for building reconstruction purposes mainly because of the three line pushbroom 

acquisition geometry that minimises occluded regions behind buildings when successive 

strips of data are available and due to the direction of the relief displacement. The three look 

angles (backward, nadir and forward) can effectively minimize occluded areas and provide 

multiple stereo pairs of imagery for feature extraction.  Apart from the minimization of the 

occluded regions ADS40 can acquire multispectral information by capturing one band in the 

near infrared which can be very useful for vegetation discrimination using a classification 

method. The effectiveness of the roof reconstruction process and the level of extracted roof 

details is affected by the density of the LiDAR point cloud. The selection of the ALS50 was 

based on this characteristic as it can acquire data with a maximum pulse rate of 83 kHz, 

which was considered one of the highest pulse rates in the industry when the data were 

chosen in 2006. Today’s LiDAR sensors can achieve up to 120kHz pulse rates. For this 

specific project the LiDAR point cloud has a density of approximately 5 points/m2 by 

combining two crossed flight paths. For the London – Bloomsbury test site scanned aerial 

photographs acquired from a Wild RC30 aerial camera were available. Post-processed 

LiDAR data with 1m density were also obtained from the UK Environment Agency using an 

Airborne Laser Thematic Mapper 3033 (ALTM 3033) manufactured by Optech. These 

datasets were deliberately chosen to contrast with the high quality data available in the first 

test site. So that a study of the impact of an alternative, or more widely used (traditional) 

datasets, could be made. 
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So the main objective for using the first two test sites was the evaluation of fusing conjugate 

points extracted from the aerial images with the LiDAR point cloud for automated building 

reconstruction. Emphasis is placed on the individual processing steps and the entire 

workflow is carefully designed so that it addresses the issues of reliability, robustness and 

efficiency of time. These three parameters are crucial in the design of an automated 

procedure as well as the geometric accuracy of the reconstructed buildings. 

What this workflow didn’t address at that point though is cost-efficiency. The issue with 

LiDAR data is that they are considerably more expensive to capture, compared to aerial 

photographs. Consider that the cost to purchase off-the-shelf aerial photographs per sq.km, 

as of late 2008, is approximately £100 but for LiDAR is double that to £200. This price 

difference equates to the higher cost of operating the aircraft at lower altitudes and extended 

period of time to cover the necessary area since LiDAR sensors have smaller coverage 

compared to aerial photos. Therefore considering the cost factor of purchasing LiDAR data, 

the project for the third test site adopts a modified workflow to utilise high resolution airborne 

imagery acquired by the UltraCam D sensor. This dataset represents the state of the art 

digital sensors based on frame CCD architecture and the acquisition of the UltraCamD 

imagery is less expensive than purchasing LiDAR data. 

It is evident that a lot of effort was put towards identifying adequate data sets and test sites 

to satisfy most of the project objectives. The final objective of the project was the design of a 

robust quality assessment workflow and assessing the effectiveness of vertical aerial 

photographs for automatic texture mapping. 
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1.3. Novelty and contribution to knowledge 
 

This section describes the main innovative processes and algorithms introduced in the 

proposed workflow for semi-automated 3D city modelling. Overall the novelty of the 

proposed workflow is that it is synthesized from a number of existing and new optimised 

individual processes that have been combined in such a way to present a unified end-to-end 

workflow for complete 3D city modelling. The initial working prototype of this workflow has 

been submitted to the UK Intellectual Property office for consideration of a patent. The 

patent evaluation process is nearly complete and since no objections were raised it is highly 

probable that a patent will be granted within 2009 (Kokkas, 2007).  

Evaluating the novelty of the individual processes comprising the proposed workflow, the 

following assertions can be made. 

• Edge extraction for image enhancement prior to stereo matching – This process 

was devised in order to enhance the contrast between the linear features visible on 

the aerial images and the background objects. Although edge operators have been 

widely used as documented, the successful enhancement of the linear features prior 

to the stereo matching process is indicating that this innovative process could be 

used on a regular basis for enhancing the quality and density of the stereo matched 

point cloud. 

• Building detection process – Although there have been several attempts to identify 

building models from optically derived data, this research presents an innovative 

generic process for identifying the building class from LiDAR data or Very Dense 

DSM (VDDSM) created solely from airborne imagery. More specifically the author 

makes use of an adaptive k-means classification algorithm in combination with 

geomorphometric region growing and parametric object representation to enhance 

the reliability of detecting building footprints. 
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• Data fusion for optimising building footprint and 3D breaklines – One of the 

most innovative stages introduced is a new method for fusing the LiDAR data with 

high density stereo matched points from aerial photographs. The novelty in this stage 

specifically is a new approach to creating a TIN from the merged data and 

generalising it in order to remove any blunders and registration issues between the 

two datasets. TIN generalization takes place using generic GIS functions that can be 

adapted in many systems available in the market. This new data fusion method was 

performed in order to improve the accuracy of the building footprint as well as the 

accuracy of the reconstructed 3D breaklines that are used subsequently to enhance 

the Level Of Detail of the reconstructed roof shapes. 

• Semi-automatic quality assurance – Another important aspect introduced in this 

research is the proposed workflow for accuracy assessment. Apart from the 

qualitative visual assessment and the use of building detection metrics, which are 

well known in the industry, the report introduces a new innovative process for a 

complete quantitative vertical accuracy assessment. The semi-automatic vertical 

accuracy assessment is based on the generation of TIN models for each building that 

are subsequently subtracted from reference building models. The novelty of the 

proposed method for quality assurance is also represented by its easy adaptation to 

existing open source GIS environments since it’s using standard GIS techniques to 

achieve a comprehensive quantitative evaluation. 

 

1.4. Outline of the report 

 

This section summarises the contents of the eight chapters included in this report. The first 

chapter provides an introduction to the challenges confronted for 3D city modelling and 

automatic solutions. The aims and objective are also stated in the first chapter.  
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The second chapter consists of an introduction to the applications requiring 3D City models, 

including their requirements and LOD for each case. It also provides a comprehensive 

literature review containing information about manual techniques and automatic or semi-

automatic workflows using one or multiple datasets. This chapter presents information 

regarding alternative methods and data sources for building reconstruction including, 

terrestrial methods, Synthetic Aperture Radar and shape from shadow techniques. It also 

places the work presented here in the context of the work of others, presenting previous 

research efforts that were adopted for further refinement in the proposed workflow.  

The third chapter gives details of the principles and design concepts of the sensors used to 

acquire the datasets for this research. Specifically the chapter contains information regarding 

the ADS40 pushbroom sensor, UltraCam D, Leica RC30 frame camera, the ALS50 LiDAR 

sensor, and the ALTM 3033.  

The fourth chapter provides information on the three test sites selected with information on 

building architecture and the variations of each test site that contributes to the overall 

objective of a generic and adaptable solution.  

Chapter five describes all the pre-processing stages necessary in order to orient the 

available imagery and perform the aerial triangulation for the different test sites. The pre-

processing stage includes all the operations necessary to perform accurate aerial 

triangulations using self-calibration and additional parameters to obtain the most accurate 

results. Although this stage is not part of the designed automated workflow, this process is 

nevertheless essential for the accuracy required in the final 3D models.  

Chapter six describes in detail the workflow and algorithms designed for automatic 3D city 

modelling. It provides initially an overview of the proposed method and then details the 

extraction of features from optical data, classification of LiDAR data for building detection, 

the generation and classification of very dense digital surface models, data fusion and 

building reconstruction algorithms. The proposed algorithms and discussion is given for each 
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stage. The sixth chapter also presents detailed results and critical analysis from the 

implementation of the designed workflow in each of the three test sites. For each stage a 

critical analysis and a discussion of advantages and drawbacks for the specific areas is 

presented.  

The seventh chapter presents detailed results from the algorithm designed for semi-

automatic accuracy evaluation of the automatic 3D city models. It includes a qualitative or 

visual comparison of the automatic 3D city models with reference models (manually created) 

for each of the three test sites. The 3D models from the test sites are quantitatively assessed 

with results for their planimetric and vertical accuracy. This chapter includes a method for 

automatic texture mapping using vertical airborne images. The final chapter (chapter eight) 

describes the conclusions and further prospects for future research in this field. 
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2. APPLICATIONS AND PREVIOUS RESEARCH EFFORTS 
 

2.1. Applications for 3D city models 
 

Compared to the application of 2D spatial data, the application of 3D city models is a 

communicative process that relies on the efficiency of presenting a specific meaning that can 

be transferred from creators and organizers of information to users and receivers of the 

same information (Zhu & Lin, 2004). 

Many practical applications show that data content definitions of 3D city models are based 

on the direction of the particular application. A report by Batty et al. (2000; 2002) defined 

twelve different categories of applications, including emergency response, urban planning, 

telecommunication, architecture design, facilities management, etc.  

The description of 3D city models for various applications often has distinctive 

characteristics. For instance, the geo-visualization applications stress the display of the real-

world realistically and authentically, whereas analysis applications, such as flood modelling 

or signal propagation, aim at the representation of the real-world in an abstractive and 

compact way (Qing et al., 2005). Traditional categories of 3D city model applications usually 

depend on the function of application, but the classification is random and cannot be unified 

(Batty et al. 2002). Different groups of professionals belonging to different disciplines have 

great difference in understanding the details, and the application type is changing 

ceaselessly. A series of example applications will now be discussed to highlight these 

issues. 

 

2.1.1. Virtual Tourism 
 

The tourism industry has seen recently the immergence of ‘virtual tourism’ as an alternative 

to interactive exploration of distant places. The tourism industry was essentially about 

providing people with experiences. The tourism industry found it difficult to deliver on its 
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promised 'dreamlike' experiences, it has had to provide not only alternative, but also 

substitute and surrogate experiences and destinations. The industry has even encouraged 

their development, for example by building theme parks modelled on foreign destinations 

(Williams, 1995) 

In recent years several web-based portals offering interactive 3D virtual environments have 

been introduced. Tourists planning their holidays can benefit from web-based interactive 

visualization tools with 3D city models. It can give prospective tourists a preview of their 

holiday area or the hotel they want to visit. They can also assess the best ways to explore 

and travel around the area. This is all thanks to the availability of spatial and descriptive 

information, available through a virtual 3D model of the holiday destination via the internet. A 

typical web-based tourism information system could combine a 2D map window with a 3D 

scene. Points of Interest of various categories can be displayed in both 2D and 3D.   

From a marketing perspective, Virtual Reality (VR) has the potential to revolutionize the 

promotion and selling of tourism. Tour operators and travel agents using this method would 

have the ability to offer potential tourists a simulated experience of their planned trip. Unlike 

brochures and videos which are passive tools, VR offers the ability to offer an interactive 

experience (Hobson, 1995). 

Nevertheless there are several issues with the virtual tourism concept. These applications 

tend to require higher Level of Detail (LOD) models (see section 1.1), usually LOD3 or even 

LOD4 which represent interior details of shopping malls, hotels and other tourist attraction 

through an immersive photorealistic environment. Occasionally LOD2 models are used for 

larger areas. Recent examples of online platforms that have the potential to be used for 

virtual tourism include Google Earth TM and Microsoft Live Local TM shown in figures 2 and 3 

respectively. 
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Although these two platforms may not yet have the necessary level of detail to satisfy a fully 

immersive requirement for virtual tourism they could be effectively used as the basis for 

introducing and updating the virtual world with more detailed models.  

Figure 2 3D City model of Las Vegas, Nevada, USA. Adapted from Google Earth 
TM

. 

Copyright Google Corporation 

Figure 3 3D City Model of Las Vegas, Nevada, USA. Adapted from Microsoft Virtual Earth 
TM

. 
Copyrights Microsoft Corporation 
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There is an apparent difference in the way the real world can be represented in a real time 

3D rendering environment and this is illustrated when comparing figures 2 and 3. Figure 2 

presents detailed 3D building models with roof details including some facade architectural 

details without though using any texture from images. Through a visual examination of the 

buildings present in figure 2, it is easily observed that these building models have been 

manually modelled, with respect to their exterior detail, using geometric primitives and solid 

colours. This method of building modelling, although very expensive and time consuming, 

provides very efficient models for real time rendering with small file sizes. The introduction of 

real time shading effects, using new generation graphics cards, assists also in the 

photorealism of these models. Despite the shading effects, these types of models tend to 

have a repetitive pattern and in most cases look artificial. In contrast figure 3 presents a 

different modelling method which incorporates texture from aerial photographs, draped 

automatically on the models, to give information about the building facade. Although this 

method is less expensive and more time efficient the quality of the textured facades is not 

always suited for virtual tourism when the observer expects a fully immersive realistic 

environment to explore. Although the introduction of terrestrial images can provide a high 

quality result consideration should be made about the efficiency of such models for real time 

rendering in a large scale. 

Issues of real time visualization are presented in section 2.2, describing recent 

advancements and proposed solution for large scale applications. 

 

2.1.2. Noise pollution studies 
 

Noise pollution of urban areas is one of serious factors that the local agencies and state 

authorities have to consider in decision making processes. Large cities have very often 

severe problems with ubiquitous traffic noise from multiple sources. Noise pollution in large 

urban areas is regarded as a growing problem. Present studies have shown that more than 

20% of the world population lives under unacceptable noise levels and nearly 60% of the 
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European population is exposed to high noise levels during the day (Silvia, 2003). In Europe, 

it is estimated that more than 90 million people suffer from unacceptable noise levels 

(European Commission News, 2005). 

There have been several recent efforts to introduce 3D city models for noise studies. In 

Hong Kong photorealistic 3D models were used to build 3D noise models (Wing, 2006). GIS 

data including buildings, roads, terrain, podiums and barriers were used for the Calculation 

of Road Traffic Noise (CRTN). Wing (2006) calculated a 3D noise grid model taking into 

consideration the traffic composition, flow, speed, noise propagation, etc. All the 3m by 3m 

noise grids were located vertically one metre from building façades, and their colours are 

categorized according to the calculated noise levels, indicating the traffic noise distribution 

on the façade of buildings. The 3D grid noise model was projected on the photorealistic 3D 

model of Hong Kong for visualization purposes as illustrated in figure 4. 

 

A 3D noise model was also implemented in Paris, (Butler, 2004) using aerial photographs to 

extract the building models. The most accurate way to map noise would be to place 

microphones every few metres throughout a city but that would take years and be 

expensive. Instead, noise analysts resort to 'virtual microphones', each of which is a point in 

a computer model that reports what the sound level would be at a certain place under given 

 

Figure 4. Photorealistic model of HK (left), 3D noise grid model projected on the City Model (right). 
Adapted from (Wing, 2006) 
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circumstances. The 3D noise map (figure 5) introduced by Butler (2004) added microphones 

up the sides of buildings at 3-metre intervals vertically and every 10 metres horizontally. In 

total, the 3D representation of Paris contains 26 million virtual microphones. Each 

microphone bases the sound level it reports on computer models of how sound from nearby 

noise-makers should behave. It's impossible to model all noise sources, such as neighbours 

arguing and pneumatic drills. So analysts are first tackling the traffic noise, which accounts 

for some 90% of urban noise pollution. 

 

 

The requirements for noise simulations have been specified by the European Commission 

which has passed legislation that requires the member states to create noise maps for all 

major cities, roads and railways and airports by 2007. On 13th January 2006, ‘European 

Commission Working Group Assessment of Exposure to Noise (WG-AEN)’ has published a 

position paper on guidelines for strategic noise mapping (European Commission Working 

Group, 2006). In this report, although there are no specific requirements set for 3D city 

models, it indicated the need for the development of new methods for converting 2D models 

into 3D models using a variety of different techniques such as interpretation of height 

attribute information, laser scan data, use of textual height information, etc. The report 

indicates that the height of buildings can have a significant effect on the propagation of noise 

particularly in built up areas. Simplification of building heights is often carried out to 

reduce computation time when carrying out noise mapping so roof details are not always 

Figure 5 Coloured 3D noise grid model with respect to building heights (left), noise propagation 
from traffic represented with blue colour in Paris (right). Adapted from Butler (2004) 
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desirable. Nevertheless the accuracy of the average building height is critical for the 

calculated accuracy of the noise level map which is estimated at 1.5dB (European 

Commission Working Group, 2006). 

In addition, the report specifies that when computation methods are used for the purpose of 

strategic noise mapping in relation to noise exposure in and near buildings, the assessment 

points must be at the most exposed façade. For this purpose, the most exposed façade will 

be the external wall facing onto and nearest to the specific noise source. The requirement for 

architectural details for the building facades indicates the need for LOD3 building models. 

 

2.1.3. Environmental Monitoring & Disaster management 
 

With the global climatic changes currently becoming apparent, a protection against natural 

disasters like floods is necessary in both developed and developing countries. Globally, 

natural disasters kill an estimated one million people and leave millions more homeless each 

decade. Floods killed more than ten thousand people, displaced 20 million and caused 82 

billion US dollars worth of damage in the year 2005 alone (Brakenridge et al., 2006). 

Historically, flooding has superseded all other disasters in terms of frequency of deaths, 

property destruction, and land degradation (Douben and Ratnayake, 2006) 

In a continuously changing and unpredictable environment the quality and availability of 

state-of-the-art & up-to-date 3D geographic information is of vital importance in flood 

modelling and natural disaster monitoring. 3D city models in combination with detailed Digital 

Terrain Models (DTMs) serve as a basis for numerical flood inundation simulations. An 

urban area flooding simulation is even more resource demanding and the conventional one-

dimensional (1D) hydrodynamic models are considered to be inadequate for simulating wave 

propagation over complex terrains, such as urban areas (Bates and De Roo, 2000). In 

contrast Yu and Lane (2006) developed a simplified 2D diffusion-wave based urban fluvial 

flood model, but admitted that a more sophisticated representation of the inundation process 

is required to effectively simulate the flooding process in an urban terrain. 
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Using detailed 3D city models, it is possible not only to predict whether parts of a city will be 

affected by the flood or not but also how severe the impact on the buildings will be. These 

simulations help to plan efficient flood protection measures. The 3D city models are usually 

integrated on the DTM of the study area and form a Digital Surface Model (DSM). The DSM 

is essential for the estimation of the flood volumes on the surface areas. In addition, the 

results are usually in the form of a flood inundation map that is based on water levels from 

the model simulation in conjunction with the DSM.  

Thus the quality of the model depends on the quality and accuracy of the DSM and the 3D 

City models that represent most of the man-made features. As shown by Mark et al. (2004) 

the interval of the spot heights should be small enough to account for features such as road 

curbs and the desirable accuracy of the DSM should be in the range of 10-40 cm. The most 

important requirements for 3D City models used in flood simulations is the need to represent 

the elevation at the bottom and curb level of the road systems as well as modelling of the 

building façades and architectural details that might affect the flood model. For this 

application 3D building models rarely have roof details as these don’t tend to influence the 

flood analysis. An illustration of a flood simulation for visualizations purposes is 

demonstrated in figures 6 and 7. The figures depict several flooding scenarios using the 

semi-automatically constructed building models presented in this report in two test sites, in 

Heerbrugg, Switzerland and London, UK. 
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Figure 6 Visualization of flood analysis in Heerbrugg, Switzerland (test site 1). Semi-automatic 
building models from designed algorithms. Flooding levels are 2m, 5m, 7m and 10m for top left, top 

right, bottom left and bottom right pictures respectively. 

 

Figure 7 Visualization of flood analysis in London, UK (test site 2). Semi-automatic building models 
from designed algorithms. Flooding levels are 1.5m, 1.8m and 2m for top left, top right and bottom 

pictures respectively. 
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Geospatial data and especially highly detailed 3D city models can be very effective for fire 

risk analysis in urban areas. In a pre-fire analysis scenario, detailed 3D city models can be 

used to assess roof structures for emergency response operations, the number of floors at 

risk, as well as determine proximities with nearby buildings for risk assessment. In situations 

like these where the most appropriate decision is required, 3D city models of the surrounding 

area can be invaluable for efficient emergency response and planning in post-fire response. 

2.1.4. Urban planning and Engineering 
 

Geographical Information Systems (GIS) have, over the last three decades, revolutionised 

the way that spatial data is generated stored, analysed and disseminated. This information 

helps us to manage what we know, by making it easy to organise and store, access and 

retrieve, manipulate and synthesize and apply to the solution of problems (Longley et al., 

2001). With the development of GIS technology and its widespread use and accessibility to 

home users, it is inevitable that its role in planning analysis and the property market will 

increase. Nevertheless the use of GIS as a 2D method for representing buildings and urban 

areas is fundamentally flawed since it is ignoring the complexity of the urban landscape, 

which is more efficiently defined by the third dimension. 

city models offer city planners and engineers the opportunity to visualize complex urban 

environments to assist in the planning and decision making process. It’s an efficient tool to 

visualize complex topographic structures and architectural details as well as assess future 

urban development projects.  

city models can be an excellent tool for planners to assist them in the decision making 

process for projects before involving implementation costs. Common projects include: 

• Traffic engineering. Allows engineers to perform pollution, noise and transport analysis 

• Evaluate new infrastructure proposals and assess ecological concepts  

• Fusing and visualizing urban development visions and simulating different planning 

options 
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• Shadow analysis 

• City regeneration projects and visualization throughout the various stages of completion  

• Decision making in competitions for architectural and engineering projects  

Urban planning is certainly one of the most important fields of application for 3D city models. 

Local governments find themselves often confronted with complex decision processes about 

larger restructuring projects of old town areas and investment projects (e.g. a new shopping 

centre, commercial area, industrial site). Using a 3D city model in a state-of-the-art realtime 

visualization solution, all parties involved in the decision-making process can fly interactively 

through the virtual 3D city model. Since real time visualization systems support a number of 

CAD-formats, participating architects may place their drafts of planned projects in the 3D city 

model and present it to the public. When a new road construction is planned, an interactive 

3D visualization may help to demonstrate the possible alternatives (variant planning). The 

impact on the natural landscape becomes most clear in the 3D virtual representation of the 

situation (Figure 8). Besides the terrain, image data and 3D city models, it is also possible to 

show various 3D objects like bridges. 
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3D visualization can be applied at different stages in the process of urban planning, and 

three different visual representations have been suggested by (Verbree et al., 1999). The 

visual representation contain three views: the Plan View (PV), an ordinary 2D colour map for 

initial orientation, the Model View (MV), a simple 3D map for professional volume analysis 

and the World View (WV), a detailed photorealistic map in 3D for public presentations (figure 

9). 

 

 
 
The requirements of the 3D City models for urban planning applications vary considerably. 

With respect to geometry and level of detail there have been models ranging from LOD1 up 

to LOD3. One of the most typical requirements is the need for additional attribute 

information. In urban planning scenarios the building models are treated as separate entities. 

Figure 9 The three views of (Verbree et al., 1999) applicable at different stages in urban planning. 
 a) PV, b) MV, and c) WV 

 

Figure 8 Visualising landscape differences in an urban planning scenario. Models used from the 
London – Bloomsbury test site with and without trees. 
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Information can be tagged to individual objects and this can be coupled back to a related 

database. The individual objects can be made to be non-fixed if the user wishes and hence 

rapidly create moveable chunks of a city (Hudson-Smith and Evans, 2001). This way, 

different scenarios can be viewed, for example what a region would look like if one building 

were moved out and another one took its place (figure 10).  

 

 

Another typical process is shadow analysis which in many countries is one of the 

prerequisites for planning permission considerations. Shadow analysis evaluates the 

relationships between the heights of the existing buildings and that of proposed buildings 

that could affect lighting in parts of a project area and could possibly affect the suitability, 

aesthetics, and functionality of some structures for their current uses.  

Another potential application of 3D city models is the ventilation analysis. With the 

emergence of more and more skyscrapers, air circulation and ventilation problems occur. 

Negative pressure behind the windward side of a tall building is good for the internal 

ventilation, but for outside it could produce an uncomfortable micro climate in cold weather. 

The taller the building, the more complex the airflow is. How to compute the airflow for a 

building and control its change accurately is a big challenge for the architect and the urban 

designer. The use of 3D city models can assist in the construction of the analytical models to 

simulate the airflow activity. 

 

Figure 10 An interactive model of the Tottenham Court Road region in London. The building 
highlighted with red colour can be moved from one location to another (adapted from Hudson-

Smith and Evans, 2001) 
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2.1.5. Simulation applications 
 

The use of 3D City models for training and simulation can be very effective. Extreme 

situations can be practised under varied weather conditions and at alternating daytimes 

without danger for the trainee and its environment. Training simulators usually consist of a 

replica of the original device, for instance the cockpit of an aircraft, the bridge of a ship or the 

interior of a car. To achieve a realistic environment, virtual scenery is projected on screens 

placed around the cabin simulator. The content of the scenery is defined within a visual 

database (figure 11). 

 

 

 

The visual database contains all geometry and image data of the training area which the 

image generator needs for rendering the scenery. The components of these databases for a 

simulation environment typically contain ground terrain, static and dynamic 3D objects with 

animation effects and photo realistic 3D city models. The dynamic models in the virtual 

database are special 3D models which are equipped with movable parts, like wheels and 

rotors, or even switchable parts, such as traffic lights.  

Figure 11 Components of a virtual database for training and simulation purposes (adapted from 
Bildstein, 2005) 
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Flight simulations have become increasingly popular. Civil airlines use simulators to teach 

new pilots, to simulate emergency situations and to adapt experienced pilots to new or 

modified aircrafts. For flight simulations the requirements for 3D city models in state of the 

art flight simulation environments are LOD2 buildings for large scale areas and LOD3 

models for airports and other landmarks of interest. Generic textures for the building facades 

are extensively used for fly over areas since they give the illusion of photorealistic 

representation when viewed from the flying altitude (figure 12). 

 

 

 

Airport buildings in flight simulations are used primarily for recognition and orientation 

purposes. The shape of the building should be correct in terms of collision detection when 

the trainee drifts from the specified route. Usage of 3D city models is also very beneficial for 

helicopter simulators since the trainee has the ability to hover and observe the surrounding 

environment and fly in lower altitude. Helicopter missions in urban environments comprise of 

Figure 12 Example of LOD2, 3D city models for flight simulations. (Adapted from PC video game 
Flight Simulator 2004 

TM
, Copyright Microsoft Corporation) 
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touch-down and take-off manoeuvres at different types of helicopter airfields. In this respect 

3D city models enable helicopter training in real world urban locations within extensive and 

highly detailed scenarios (figure 13). 

 

 

 

During the last few years, there has been growing interest in driving simulators because they 

have proved themselves to be a highly useful tool for training and instructing drivers, 

particularly professionals (bus, truck, emergency vehicle drivers, etc.). There are several 

driving simulations around the world in different research centres that are used for general 

driver training as well as for specific training needs like police patrol training or for education 

of public transport drivers. 

 

Figure 13 Use of LOD2 & 3 for helicopter flight simulations. (Adapted from PC video game Flight 
Simulator 2004 

TM
, Copyright Microsoft Corporation) 
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In order to describe individual vehicle dynamics, a wide range of models has been put 

forward. These vehicle dynamics models range from simple models that use basic logic and 

consists of a few operations having high performance up to more complex car-following 

models that provide more realistic modelling of driver and vehicular behaviour (Bham and 

Benekohal, 2004). 

Research related to the development and application of a driving simulator is not new. 

Driving simulators began to appear in primitive forms in the 1970s. With the advent of 

computer technologies, Daimler-Benz launched a high fidelity driving simulator in the 1980s 

(Drosdol and Panik, 1985), which created wide interest throughout the world. Since then, 

many automotive makers and research institutions worldwide have developed their own 

simulators. There are various levels of complexity of driving simulators ranging from a simple 

static base simulator to the most advanced simulators that are capable of simulating the 

dynamic motion and scenes of an actual vehicle. 

A typical virtual environment for vehicle simulation is shown in figure 14. The typical vehicle 

simulation environment consists of the geometry objects, lights, sound sources, tasks, 

behaviours, collision detection, and actions in the systems (driving actions in this case). All 

the objects or nodes are structured in a hierarchical way, in a tree structure. The base node 

is the so-called ground. The ground node includes a three-dimensional mesh representing 

the complete terrain geometry. The second types of nodes are the vehicles. These are 

movable nodes, changing position in each simulation step.  

Driving simulators databases contain an accurate representation of the roads, the sidewalks, 

traffic lights and signals. The 3D city models typically used for these applications should 

have a high level of detail for the building facades so the use of LOD2 or LOD3 building 

models is advisable. One of the main requirements of the driving simulations is the high 

refresh rate (60hz) as proposed by Bildstein (2005). In order to achieve this, the 3D city 

models should be very efficiently created for real time rendering. 
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2.1.6. Property management and cultural heritage 
 

Property management and the real estate industry was one of the early adopters of online 

platforms such as Google Earth that helped the industry manage and demonstrate future 

buildings to potential clients. For the real estate industry the two critical aspects of any 3D 

visualization environment is the use of thematic information and the ability to perform basic 

spatial analysis within a GIS environment.  

The generic idea of GIS is to incorporate geometric and semantic information in one system 

and to support analysis in both domains. A 3D GIS should satisfy various spatial operations. 

These operations can be summarized as follows: (Zlatonova, 1999). 

• Access to semantic properties of one type object, 

• Access to both semantic and location information, 

Figure 14 An example of a driving simulator using LOD2 city models (Adapted from Bildstein, 2005) 
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• Operations which create object-pairs. (e.g. buildings in a given parcel that have one 

owner.) 

• Operations to analyse semantics of object pairs from one or more types. 

• Operations which create a new type of object from existing objects. 

• Retrieval operations. (e.g. what is the current information about a particular building.) 

• Query operations retrieve data which satisfies some given conditions. 

• Retrieval and query of semantic data. 

• Integrated analysis of spatial and semantic data, (classification, measurement, 

overlay operations.) 

For the above operations, firstly the geometric and the thematic characteristics of objects 

and their spatial relationships should be integrated in a database. Topology between the 

building entities in a 3D City model as well as attributes are stored in relational databases 

(figure 15). 

 

 

Figure 15 General representation of geometry and topology for a 3D city model. Adapted from 
(Zlatonova, 1999). 
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With the representation shown in Figure 15, it is possible to manage the visualization tasks 

and database tasks in a flexible manner (independent and depending to each other). With 

the above representation even if the relational tables are not created, the operations which 

are shown in the boxes with the numbers V, VI and VII are ready and effectively can be 

performed in the 3D visualization pipeline. This means, one can query the geometry of the 

3D building’s geometric features such as point coordinates, ID of any cell (face, edge, 

surface etc.) by clicking on it with the mouse in the rendering window (figure 16). 

 

 

 

Figure 16 is an example from the addition of a relational database linked to 3D building 

models in Manchester. The relational database stores attribute information containing the 

number of floors, address, owner, house price and other valuable information for each 

building entity. The database query and data manipulation is handled by the database 

management system implemented in VirtualGISTM. Highlighting buildings that conforms to 

Figure 16 3D building models in Manchester area linked to a relational database in VirtualGIS
TM

. 
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user generated SQL queries provide a valuable tool for the property management and real 

estate industry. For property management applications the accuracy requirements of the 3D 

city models range from LOD2 to LOD3 models. 

Highly detailed 3D City models have been also used to visualize cultural heritage projects 

(figure 17). Cultural monuments often have an inestimable value. But often this is only 

recognized once the cultural monuments are endangered or already destroyed. 

 

 

 

The basis for the model shown in figure 17 was an existing wooden 3D model at a scale of 

1:500 which had been established around 1960. The wooden model was based on an 

abundance of archaeological evidence and had thus gained a certain level of acceptance 

(Salathé, 2001).  

 

Figure 17 3D city model of the ancient city of Augusta Raurica- Switzerland with modern 
orthoimages and height model (adapted from Salathé, 2001) 
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In archaeological and cultural heritage projects object semantics are typically just as 

important as the actual geometry. Thus, it is a key requirement to assign thematic 

information to entire objects and to individual geometric elements. This also makes it 

possible to select, analyse or edit the geometry and the appearance of objects based on 

semantic criteria. 

Cultural heritage 3D models present the most challenging task from an automation 

perspective. This is because cultural heritage objects often have a very irregular complex 

geometry. Thus, a good digital reconstruction requires a very detailed 3D model with a lot of 

geometry elements. So there are two main requirements to a 3D GIS. The first one is a 

support for the acquisition and handling of large amounts of complex and non-planar 3D 

geometry. The second one is the visualisation of these objects which consists of a lot of 

geometry elements. Typical 3D models suitable for these applications include LOD2, 3 and 

LOD4 models which have interior spaces also modelled. 

 

2.1.7. Navigation with portable navigation devices 
 

The last few years the car navigation and location based services industries have 

experienced significant growth. Competition in the car navigation industry forces companies 

to innovate and add unique features in their car navigation devices to improve the 

experience for the driver and passengers. One of the main features that most companies 

have focused on the introduction of 3D city models for car navigation systems. This presents 

a number of technical and safety issues that will need to be overcome before such systems 

are fully implemented in the mass market. 

Mobile applications of virtual 3D city models represent a major and complex research 

challenge due to limited bandwidth and graphics capabilities, restricted interaction 

capabilities, data standardizations and distribution techniques as well as and digital rights 
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issues. One of the biggest issues in implementing 3D city models in mobile units is the 3D 

rendering engine. 

In 3D computer graphics, numerous rendering techniques are available to cope with 

complex virtual environments, including discrete and continuous multi-resolution geometry 

and texture representations, view-frustum culling, occlusion culling, imposter techniques, 

and scene graph optimizations (Akenine-Möller and Haines, 2002). Virtual 3D city model 

visualizations require an efficient management of large-scale texture data, for example, for 

aerial photography and building facades (Buchholz and Döllner, 2005), and level-of-detail 

management for large heterogeneous 3D object collections (Davis et al., 1999) and 3D 

terrain surfaces (Döllner et al., 2000). Although these rendering techniques enable real-time 

rendering of complex 3D scenes, they generally cannot be transferred directly on mobile 

devices due to limited computational resources and power. 

One principal approach to efficient mobile 3D rendering was proposed by Royan et al. 

(2003) that describe a client-server architecture for mobile 3D virtual city visualizations 

based on a progressive and hierarchical representation, whereby the progressive and 

hierarchical representation is based on a tree data structure that holds the merging and 

simplifications of buildings.  Another solution proposed by Cheng et al. (2004), makes use of 

a progressive, compressed transmission of image sequences. They investigate a client- 

server approach for visualizing complex 3D models on thin clients (PDAs and mobile 

phones) by applying real-time MPEG-4 streaming to compress, transmit, and visualize 

rendered image sequences. To accelerate the MPEG-4 encoding process, Cheng et al. 

(2004) developed an online algorithm to calculate the block motion vectors using 3D 

information without having to employ an expensive search. Moreover, this computation is 

performed on the Graphics Processing Unit (GPU), which can be performed in parallel with 

the video encoding. The MPEG block was used as a matching technique to further search 

for the blocks whose motion vectors cannot be directly determined (Cheng et al., 2004) 

Other initiatives for the use of 3D city models in mobile devices include sketch based 

navigation techniques. Jurgen et al. (2005) presented a solution for accessing virtual 3D city 
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models on mobile devices with the user controlling the navigation within the virtual 3D city 

model by navigation command sketches drawn directly on the rendering window of the 

mobile client (Figure 18). The sketches are sent to the server, which reprojects the sketches 

onto the 3D scene correlating the sketches to scene objects, interprets these sketches in 

terms of navigation commands, and sends the resulting video-encoded image stream to the 

mobile client. That is, the mobile client enables users to specify and retrieve step-by-step 

created video sequences that correspond to their navigation intentions (Jurgen et al., 2005) 

 

 

 

Due to the limited system resources and low-end 3D graphics accelerators 3D city models 

for portable navigation devices are restricted to LOD2 models without any roof details and in 

most cases using generic texture libraries. 

 

 

 

Figure 18 A sketch based navigation system using LOD2 3D city models. Look around the area (left), 
sketching a navigation command to walk along the street (right). (Adapted from Jurgen et al., 2005) 



58 

 

2.1.8. Security and defence 
 

3D city models have played an important role for military training and homeland security 

ranging from battle simulations to visibility analysis in police enforcement scenarios. Military 

agencies around the world have a long history of investing in modelling and simulation to 

support objectives such as training and analysis programs and have indirectly supported the 

development of many of the fundamental computer graphics and networking technologies 

that underlie both military and entertainment applications of modelling and simulation.  

 

 

Military agencies use modelling and simulation for a variety of purposes, such as to train 

individual soldiers, conduct joint training operations, develop doctrine and tactics, formulate 

operational plans, assess war-fighting situations, evaluate new or upgraded systems, and 

analyze alternative force structures. As a result of this, defence models and simulations 

range in size and scope from components of large weapons systems through system-level 

and engagement-level simulations, to simulations of missions and battles, and theatre-level 

campaigns. 

 

Figure 19 Use of LOD2 city models for military flight simulations (adapted from CAE incorporation 
2008) 
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For military simulations there are four main critical points according to Smith (2006) which 

are tools for creating the 3D city models, the interface, networking technologies and 

computer generated forces and autonomous agents. 

Automated tools for creating 3D city models are very important for the military industry. 

Computer-based tools are needed to efficiently generate LOD2 and LOD3 building models 

with objects that can interact with participants, like doors that can open or destructible 

buildings. The interfaces provide the portal through which participants interact with a system. 

They include displays, entry devices such as keyboards or touch-sensitive screens, VR 

systems, and a host of other input/output devices that link the participant to the simulator. 

The increase in the richness of the participant's ability to interact with the synthetic 

environment and other people and agents similarly integrated there, is especially important 

as large-scale simulations are constructed. Networking technologies enable large numbers 

of participants to join in a simulation regardless of their physical locations. The network must 

be able to accommodate the volume of messages between and among participants in a 

timely fashion with a minimum amount of delay or latency. Computer-generated forces and 

autonomous agents control the actions of elements not directly under the control of a human 

participant in a simulation. They can be adversaries or companions and can represent 

individual players or aggregated forces. Computer-generated forces are critical in any 

simulation intended to be used by an individual participant or in large networked simulations 

in which it may not always be possible to ensure enough players to control all the necessary 

entities.  

In addition, the video game industry has demonstrated the potential use of 3D video games 

for military simulation.  The military has been one of the first and most avid adopters of game 

technologies. These games originated from military roots in the 1990’s and contain many 

similarities with the training devices that are used to train soldiers (Smith, 2007). 
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The gaming industry demonstrates the capability to create highly detailed LOD4, 3D city 

models that have created new areas of co-operation for military and homeland security 

agencies. The emergence and application of these technologies has been visible for a 

number of years. The National Research Council Committee on Modelling and Simulation 

described the convergence of entertainment and defence simulation in their 1997 report 

(National Research Council, 1997). 

 

 

For most military applications realism and interaction for the 3D city models is valued more 

highly compared to the accuracy of the models, hence the close synergy with the video 

games industry. Interaction and the introduction of physics engines (rendering algorithms 

and hardware that take into the physical properties of materials and objects in order to 

create particles from destructible objects and the effects of various interactions with the user)  

for realistic destructible environments are also very important. Typically 3D city models for 

Figure 20 Use of highly detailed LOD4 building models in modern warfare PC video games (adapted 
from Call of Duty 4 – Modern Warfare

TM
, Copyrights reserved by Activision Incorporated) 
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land simulations consist of LOD3 and LOD4 building models with interactive features such 

as doors, windows, etc.  

 

2.2. Real time visualization of detail 3D city models 
 

As highlighted above several applications would benefit from large scale detailed 3D city 

models deployed either through the internet or locally in the users platform.  These 

applications in most cases require powerful rendering engines to facilitate the interactive 

visualization of not only the 3D City models but other geospatial data critical for the 

photorealism of the product including high resolution Digital Terrain Models, high resolution 

true-orthophotos and other vector data. 

During the past few years a number of different technologies have been introduced to handle 

these datasets such as adaptive triangulation and paging of digital terrain models. LOD 

management of texture data and volumetric rendered clouds have helped generate more 

realistic 3D scenes (Beck, 2003). 

Even though over the past 5 years 3D graphics systems have achieved stunning 

performance gains there are still two remaining constraints in real time rendering of large 3D 

city models that is; the database and texture size constraints. In order to cope with these 

constraints efficient system architectures are needed.  

One of the first requirements is a real time rendering engine that should maintain a 30Hz 

frame rate at a reasonable flying speed while paging the database from disk in real time. 

LOD switching is also an effective practice during which geometric objects are displayed with 

the appropriate LOD depending on the distance from the viewer. LOD switching of discrete 

objects, for example buildings and vehicles, is relatively simple since the entire object can be 

replaced at once. LOD-switching of terrain data is more problematic though because a DTM 

needs to have a sustained continuation for efficient visualization. This effect is normally 

achieved by dividing the DTM in smaller tiles or rectangular blocks. Each tile can have 
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multiple LOD layers and can switch between these independently. Tiling schemes are 

categorized as the ‘replacement LODs’ where all LOD representations for a tile are the same 

size and the ’Quadtree LODs’ are where the current LOD tile is quartered at the next LOD 

level into four smaller tiles. In order for the grid of tiles to appear as a continuous surface, 

each tile must match its neighbour along their shared edge. This is typically accomplished by 

forcing the geometry of the shared edge to remain constant throughout all LOD 

representations of a tile (Beck, 2003). 

Objects such as trees, buildings walls and roof textures can also be represented with 

different LOD depending on the distance from the viewer. For this purpose image pyramids 

are employed for the building textures. An efficient data hybrid data structure has been 

proposed by Gruen and Wang (1999) that combines the geometry of 3D models, images 

and attribute information. The image data can be attached to the surface object, body object 

and DTMs while the thematic attributes are built in a separate data table. According to Gruen 

and Wang (1999) the 3D models are grouped into four different geometric object types: Point 

objects, Line objects, Surface objects and Body objects. The geometric data set contains 

information regarding the position, shape, size, structure definition and image index as 

illustrated in figure 21. 

 

 

Figure 21 The logical data structure of a hybrid visualization system proposed by Gruen and Wang 
(1999) 
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In the above data structure the topological relationships between geometric elements are 

implicitly defined by the data structure. 

Realistic environmental effects and cloud dispersion (figure 22) is another important 

component that improves the immersion in a virtual scene. Shading effects are also 

incorporated in many applications to improve photorealism. For a precise shading model two 

components should be considered. The first one is a multiple scattering due to particles in 

clouds and the other factor to be considered is sky light (Dobashi et al., 2000). 

 

 

 

2.3. Towards a unified representation of 3D city models 
 

During the last few years there has been an effort to propose a unified representation of 3D 

city models. Qing et al. (2005) proposed an interesting conceptual model which is classified 

based on Feature entities and Fields. According to the proposed model the Fields is an 

Figure 22 Volumetric clouds using particles physics OpenGL engine (Adapted from 
TerrainView

TM
, Viewtec) 
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association between a geometric description of entities and a set of attributes in OpenGIS 

specification. Compared with natural objects, the urban man-made objects are relatively 

regular in the terms of shape, distribution, and structure. This makes it possible for data 

model to abstract and represent urban spatial objects with some primary geometric 

elements. As shown in Figure 23, the point object, curve object, surface object, volume 

object, group object, LOD object, DEM and Texture object are then employed as the eight 

basic objects to describe urban spatial entities. 

In addition, Qing et al. (2005) propose a unified model for the spatial object property 

characteristics based on geometry properties, material properties, textural properties, 

resolution, thematic information, model recognition, integrity and consistency. 

 

 

Unified protocols for exchanging 3D city models are becoming increasingly important. These 

should be designed for efficient manipulation, minimising file sizes for real time rendering. 

Currently triangular meshes have become very popular for exchanging and viewing 3D data 

Figure 23 A conceptual description for unified 3D city models (adapted from Qing et al., 2005) 
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sets. This trend is reinforced by the wide spread use of 3D graphic libraries (openGL, VRML) 

and other 3D data exchange file formats and hardware 3D engines optimised for rendering 

triangles. A triangle mesh is usually stored as a list of coordinates, called vertex list and a list 

of triangles that reference to these coordinates, called connectivity (figure 24). 

A complex three-dimensional model with n vertices has about 2n triangles. 18 bytes per 

triangle are needed to store a vertex list and geometry plus additional cost for texture 

mapping and colour information. 

 

 

With increasing file sizes of 3D City models the importance of efficient compression 

techniques has become apparent for storing and handling the information. Although generic 

file compression algorithms can compress up to 60-70% of the file size, algorithms 

specialised on 3D meshes achieve a much better compression rate of about 95%.  

CityGML is a common information model for representing 3D urban objects. It defines 

classes and relations for the most relevant topographic objects in cities and regional models 

with respect to their geometric, topological, semantic and appearance properties. "City" is 

broadly defined to include not just built structures, but also elevation, vegetation, water 

Figure 24 VRML representation of a triangle mesh (Rossignac et al., 2001) 
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bodies, “sidewalk furniture” and more. Included are generalization hierarchies between 

thematic classes, aggregations, relationships between objects and spatial properties. These 

thematic information types go beyond graphic exchange formats and allow users to employ 

virtual 3D city models for sophisticated analysis tasks in different application domains. 

CityGML is an open data model and XML-based format for storing and exchanging virtual 3D 

city models. It is implemented as an application schema of GML3, the extensible 

international standard for spatial data exchange developed within the Open Geospatial 

Consortium (OGC) and ISO TC211. GML3, used with other OGC standards - mainly the 

OpenGIS Web Feature Service (WFS) Specification - provides a framework for exchange of 

simple and complex 3D models. However, WFS and GML3 only establish syntactic 

interoperability. A GML3 document needs to be structured by the definition of an application 

schema that is tailored to a specific application domain. In this case, the application domain 

is 3D city modeling and the GML3 application schema (or profile) is CityGML.  

CityGML takes advantage of other open standards and its development has proceeded in 

careful cooperation with other groups. For example, graphic rendering of data encoded in 

CityGML can be accomplished using standardized computer graphics data formats like 

VRML, GeoVRML, X3D or Universal 3D (U3D). To ensure European acceptance, the 

developers of CityGML have coordinated with EuroSDR, a spatial data research 

organization consisting of delegates from geographic information production organizations 

and research centers from 18 member states in Europe, together with participants from 

industry and the commercial sector. 

 

 

 

 

 

http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://www.isotc211.org/
http://83.138.131.106/eurosdr/2002/index.htm
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2.4. Building reconstruction from single data sources 
 

Building reconstruction is of primary importance in many applications as highlighted in the 

previous section. Unfortunately, manual reconstruction of 3D building models is very time 

consuming and therefore several research studies have been presented that deal with semi-

automatic building reconstruction, either from aerial images or from LiDAR datasets. 

Nevertheless the practical implementation for operational use remains limited. The main 

reason is the lack of reliability and the need of manual intervention which then only 

introduces a marginal gain in productivity. For instance, certain parts of the buildings will be 

hidden in optical data due to the scene perspective or occlusions and the feature extraction 

may not yield all the necessary roof planes for a reliable reconstruction. In contrast building 

models derived from LiDAR data lack the high planimetric accuracy of the building footprint 

and the ability to reconstruct small roof details. A summary of different methods for building 

reconstruction is now introduced. 

 

2.4.1. Building reconstruction from airborne optical data 
 

Automatic building reconstruction from aerial images is a difficult problem due to occlusions, 

introduced mainly from vegetation, scene perspective and the complexity of the roof 

structures. Early approaches tried to use a single image only (Huertas, 1988; Lin, 1998). 

Since the inference of 3D information from one image is very difficult and there are still some 

ambiguities in the detected buildings that can be only resolved by feature matching in 

multiple images, the application of the single-image approach is very limited. In this context, 

most of the recent work in this area has focused on the multiple-view analysis. In the context 

of building reconstruction from multiple aerial images the proposed methods can be 

categorized as data-based or model-based. In the data-based methods (Vozikis and Jansa, 

2008; Heuel et al., 2000; Ameri and Fritsch, 2000; Scholze et al., 2002) the building 

reconstruction is performed without any assumption for the structure of the roof and 
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therefore no restrictions are introduced in the method. On the contrary the model-based 

methods (Katartzis and Sahli, 2008; Dong-Min et al., 2008; Willuhn and Van Gool, 2005) use 

some models of buildings to restrict the set of possible shapes. This external knowledge 

enables the user to overcome the lack of detection due to occlusions.  

In the data-based methods it is very common to extract linear primitives from the imagery to 

assist in the reconstruction process. In Vozikis and Jansa (2008) buildings are extracted 

from airborne and spaceborne imagery by applying Hough Transformation procedures. The 

workflow in Vozikis and Jansa (2008) consists of 4 steps, namely the pre-processing of the 

data, nDSM (normalized Digital Surface Model) creation, building localization and building 

extraction. They concluded that the Hough Transfrmation is a very powerful tool for 

increasing the degree of automation during building extraction, while it is very robust against 

noisy data. Additionally the level of detail of the extracted buildings can easily be adjusted, 

but dark shadows in the images can make the algorithm produce erroneous results. In 

Scholze et al. (2002) 3D segments are extracted, edges are extracted in Heuel and al. 

(2000) and in Ameri and Fritsch (2000) planar patches are used to solve the lack of 

generality that is inherent in these strategies, by introducing heuristic rules (Fischer et al., 

1998). Despite the promising results this approach is still limited to simple forms and thus 

cannot handle all the shapes available in urban or suburban areas as a function of the 

limited number of models. Increasing the library of models would result in an increased 

complexity and a less robust method (Taillandier, F., Deriche, R., 2004). 

Most methods for building reconstruction divide the task using a two-phased approach 

whereby a detection phase is initially applied extracting the locations of single buildings and 

then a reconstruction phase is implemented. In Katartzis and Sahli (2008) a building 

reconstruction method from aerial images is employed using a stochastic image 

interpretation model, which combines both 2-D and 3-D contextual information of the imaged 

scene. Building rooftop hypotheses are extracted using a contour-based grouping hierarchy 

that emanates from the principles of perceptual organization. Katartzis and Sahli (2008) use 
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a Markov random field model to describe the dependencies between all available 

hypotheses with regard to a globally consistent interpretation. The hypothesis verification 

step is treated as a stochastic optimization process that operates on the whole grouping 

hierarchy to find the globally optimal configuration for the locally interacting grouping 

hypotheses, providing also an estimate of the height of each extracted rooftop. 

In Dong-Min et al. (2008) a method for building reconstruction is presented using the 

concept of disparity maps. In this approach the epipolar images are generated from the 

aerial images by epipolar resampling process. The disparity map is obtained between the 

epipolar pairs by stereo matching using area-based matching with non-parametric technique. 

From the disparity map, a DEM is generated as a 3D terrain model. The building location 

information extracted from the disparity map is used to remove the unnecessary line 

segments extracted in the low level process. After 2D lines are generated, perceptual 

grouping is applied to the filtered line segments in order to obtain the structural relationship 

features such as parallel line segment pairs and U-shapes. These are used to generate 

rooftop hypotheses. Among the generated hypothesis, the candidate rooftop is selected by 

searching close cycles in the undirected graph. An undirected graph is a graph in which the 

nodes are connected by undirected arcs. An undirected arc is an edge that has no arrow; 

both ends of an undirected arc are equivalent (Thomas et al., 2001). By using undirected 

graph, hypothesis selection becomes a simple graph search for close cycles. This 

significantly improves the performance of the system over the traditional hypothesis 

selection methods. Finally, the 3D buildings are retrieved by using 3D triangulation for each 

line segment of detected rooftops (Dong-Min et al., 2008). 

Apart from the above fully automated methods, semi- automated building detection 

approaches have been introduced with reliable results as in the case of Willuhn and Van 

Gool, (2005). This model based method combines a semi-automatic building detection, 

requiring minimal manual interaction, with a fully-automatic building reconstruction. The 

efficient semi-automatic detection is based on the concept of a building row. A building row 

as defined in Willuhn and Van Gool, (2005) is a number of buildings that are aligned along a 
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street. The detection starts with the user identifying a building row and the system 

calculating the exact orientation, approximate width and height range of the building row, as 

well as the start and end parameter of each building. Furthermore a pixel-based 

segmentation is used. The gray scale values of the pixels inside the strips on both sides 

along this line are analyzed by using a similar approach to region growing, starting with 

segments of high homogeneity, and extending them in both directions to account for the 

transition at the border of the segments. Then the homogeneous segments are determined 

based on homogeneity criteria and then the segments are merged together. Subsequently 

the merged segments are treated as seed points for a region growing algorithm that expands 

the segmented regions. Additional cues are introduced, such as 2D contours, to assist in the 

segmentation hypothesis. In the final step of the building detection the building hypothesis is 

evaluated and individual detected buildings 

belonging in the same roof structure are merged 

together. 

The building reconstruction in the model-based 

methods uses some kind of conceptual models. The 

conceptual model takes into account the various 

roof forms, such as flat, gabled, or hip form as 

illustrated in figure 25. This model, however, 

requires a high quality of data in order to ensure that 

the reconstructed object is indeed the roof that is 

captured in the image (Willuhn and Van Gool, 2005). 

For the building reconstruction process the building 

hypotheses are used together with straight line 

segments and planar surfaces in 3D. The automatic 

roof reconstruction produced high quality results for 

20 out of the 25 buildings in the scenes. A sample of 

Figure 26 Models for building roof 
structures. a) gable, b) hip and c) flat 

(Willuhn and Van Gool, 2005). 

Figure 25  Results from the building 
reconstruction process (Willuhn and 

Van Gool, 2005). 
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the reconstructed buildings is illustrated in figure 26. Nevertheless problems still exist in 

shadowed areas and in occluded regions, that resulted in insufficient quality of the extracted 

3D line segments and planar surfaces. This method demonstrates the advantages of 

separating the task into two phases. The first phase illustrates the efficiency of the 

segmentation to produce regions containing single buildings and the quality of an automatic 

reconstruction that can be achieved by focusing on individual buildings. The combination of 

a region-based and a contour-based segmentation in 2D and fusion of the results with 3D 

data, extracted from the aerial images, has been shown effective in keeping the user 

interaction at a minimum (Willuhn and Van Gool, 2005). In contrast Taillandier and Deriche, 

(2004) have presented a data-based approach which uses a novel system for automatic 

building reconstruction from multiple aerial images. This approach uses a generic concept 

that treats the buildings as polyhedral models.  

 

Figure 27 Diagram indicating an overview of the 
method by Taillandier and Deriche, (2004). 
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The method can be subdivided into three main steps that include the primitive detection, 

hypotheses extraction and choice of the best representation, together with geometric 

refinement (figure 27). In the primitive detection step, planar patches are extracted from a 

produced Digital Elevation Model (DEM) and subsequently are parametrically described 

based on their orientation (Taillandier and Deriche, 2004). 

 

From the initial hypotheses, a graph of 

hypothesis is generated that estimates 

the coherency of the adjacent facets. 

The coherency of the adjacent facets is 

determined as a function of the triple 

scalar product, as indicated in figure 28. 

In general two facets are coherent if the 

normal direction remains consistent when switching from one facet to the other one.  

Among these hypotheses the choice is done through a Bayesian formulation (Taillandier and 

Deriche, 2004).  

Furthermore, additional constraints are 

introduced, such as parallelism, edges or 

orthogonality constraints that are derived 

from any prior architectural knowledge of 

the scene. These constraints can enhance 

the overall procedure of selecting the 

appropriate building model, especially 

when ambiguities remain in the choice of 

the model. 

 

Figure 29 Reconstructed buildings 
projected on an orthophoto based on the 

method proposed by (Taillandier and 
Deriche, 2004). 

Figure 28 Coherency of the adjacent facets 
(Taillandier and Deriche, 2004). 
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This aproach compared to model based methods, uses a very generic modelling of buildings 

without assuming any prior information or restraining the model in predefined shapes. The 

use of additional constraints is also an important element, but complex roof structures still 

require a more brute force search method for reliable results (Taillandier and Deriche, 2004). 

2.4.2. Building reconstruction from LiDAR point clouds 
 

The main objective of the building reconstruction solely using point clouds is to extract 

surfaces from the dataset. In general these methods can be divided into two categories. The 

first includes the methods that directly derive the surface parameters in a parameter space 

by clustering the point cloud, which can be a very effective and robust approach when 

planes or other simple shapes are extracted (Karsli and Kahya, 2008; Rottensteiner, 2003). 

The second category includes methods that segment a point cloud based on criteria like 

proximity of points or similarity of locally estimated surfaces (Vosselman et al., 2004).  

Several approaches have been presented for building extraction from LiDAR data. Maas and 

Vosselman (1999) extracted parameters of standard gable roof type using invariant moment 

analysis. The method was based on intersection of planes fitted into a TIN model and had 

the ability to determine even more complex buildings. Merging of TIN meshes was used by 

Gorte, (2002) in order to compose the surfaces of the polyhedral building models. In this 

method the initial planar surfaces are created by the TIN mesh and then adjacent planes 

patches are merged if their plane equations are similar. The merging process is based on a 

similarity measure that is computed for each pair of neighbouring surfaces. The merging 

process continues until there are no more similar adjacent surfaces. Additional cues were 

used by Wang, (1998) that implemented a Laplacian of Gaussian edge detector to extract 

edges from a DSM produced from LiDAR data. Moment analysis was used to describe edge 

properties while shape and morphological parameters were used to classify the buildings 

edges from other features. 
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One of the most frequent methods for plane extraction, used for polyhedral modelling, is the 

3D Hough transform. The 3D Hough transform is an extension of the (2D) Hough transform 

used for the extraction of line segments in imagery. The 3D Hough transform uses the 

following formula that describes every non-vertical plane. 

          

From the above equation the (sx) and (sy) represent the slope of the plane along the X and Y 

axis respectively and d is the height of the plane at the origin. These three plane parameters 

define the parameter space. Every point (sx, sy, d) in this parameter space corresponds to a 

plane in the object space. The detection of planar surfaces in a point cloud can be performed 

by mapping all these object points to planes in the parameter space (Vosselman et al., 

2004).  

In Karsli and Kahya (2008) a sequential Hough transform process is introduced for detection 

of buildings in point clouds. The algorithm consists of two sequential steps of low 

dimensional Hough transforms. The first step, called Orientation Estimation, uses the 

Gaussian sphere of the input data and performs a 2D Hough Transform for finding strong 

hypotheses for the direction of building axis. The second step of Position and Radius 

Estimation consists of a 3D Hough transform for estimating building position and radius. This 

sequential breakdown reduces the space and time complexity while retaining the 

advantages of robustness against outliers and multiple instances. 

Rabbani and Van den Heuvel (2005) presented an efficient 3D Hough transform for 

detection of cylinders in point clouds. Although 3D Hough transform can be used for 

automatic detection of cylinders, the required Hough space has a prohibitively high time and 

space complexity for most practical applications. They addressed this problem and 

presented a sequential 3D Hough transform for automatic detection of cylinders in point 

clouds. 

(2.1) 
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Tarsha-Kurdi et al., (2007) focused on the 3D Hough transform and the RANSAC (Random 

Sample Consensus) algorithm. They made an analytic comparison of both algorithms, in 

terms of processing time and sensitivity to 3D point cloud characteristics. Despite the 

limitation encountered in both methods, RANSAC algorithm is more efficient than the Hough 

transform. The main advantage of RANSAC algorithm is rapidity and the percentage of 

successful detected roof planes. On the other hand, the 3D Hough transform is very 

sensitive to the segmentation parameters values.  

One of the major problems related with the building extraction process from LiDAR point 

clouds is the discrimination between buildings and vegetation. One solution proposed by 

Brunn and Weinder, (1998) was based on differential geometry via Bayesian networks in 

which edge information was used to extract vegetation areas and building roof structures. 

Another method introduced in NASA/ICREST Project report, (2001) makes use of watershed 

analysis on a DSM by extracting ridgelines that represent edges on the roof structure. The 

proposed approach for extracting building outlines consists of three processes, which 

include the generation of a DSM, detecting building outlines and simplifying the building 

footprints. Initially a Digital Surface Model (DSM) is generated from LiDAR data using a 

nearest neighbour interpolation. The nearest neighbour interpolation method was chosen 

because it will preserve the sharp difference between buildings and their surrounding 

ground.  

The building detection is based on general knowledge about buildings that utilize height and 

shape characteristics to discriminate buildings from other objects. A height threshold can 

remove objects with lower height, such as cars, and a size threshold will remove some 

smaller objects, such as single trees. The main problem of filtering larger tree canopies 

which cannot be addressed using height or size criteria can be resolved based on the 

roughness of the surface, measured by differential geometric criteria. The main assumption 

at this stage is that trees present more irregular shapes which can be modelled and detected 

from the shape description, given by the differential calculus. 
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In the following step the building outlines are transformed into vector format using raster-to-

vector conversion and simplified using an orthogonal simplification algorithm to reduce 

details in the outlines, while maintaining their essential shape and size (NASA/ICREST 

Project report, 2001). 

The 3D building reconstruction process in this method is based on the three common 

building roof models: flat, gabled, and hipped. The building roof type is determined from a 

watershed analysis that is conducted to extract ridgelines on the building roofs. Additionally, 

the height of each flat building can be determined by the average height of pixels within each 

building boundary. 

With the watershed analysis the accumulation and the direction of flow can be calculated. 

These two parameters can be used to define the watershed boundaries. Cells with a flow 

accumulation of zero are local topographic heights and can be used to identify ridges. After 

extracting the ridgelines from the building roofs, hipped and gabled buildings can be 

distinguished based on shape characteristics (NASA/ICREST Project report, 2001). 

Figure 30 Final result from the reconstructed buildings overlaid on a DTM of the 
proposed method by NASA/ICREST Project report, (2001) 
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The evaluation of the extracted buildings indicated in figure 30, is based on the 

completeness and correctness criteria. The completeness represents the percentage of the 

extracted buildings compared to the total number of buildings located in the study area. 

Correctness indicates the percentage of correct extraction. The comparison that was 

conducted indicated that 93.7% of the 79 buildings present in the scene were extracted while 

the correctness approached 90.9%. 

Building reconstruction utilizing invariant moments has been proposed by Maas, (2004), 

applied to LiDAR data for the determination of roof parameters for simple building types. 

One of the main advantages of the specific method is that it can be applied directly on the 

irregularly distributed LiDAR point cloud, thus avoiding effects caused by an interpolation to 

a regular grid. The invariant moments are used to calculate basic building parameters. The 

ratios from the 1st order invariant moments derived from the segmented point cloud can 

estimate the length, width and height 

of a building as illustrated in figure 31. 

Assuming a standard gable roof as 

represented in figure 31, the height of 

the building and the inclination of the 

roof can be derived from 2nd order 

moments. In addition, more complex 

roof structures can be modeled using 

higher order moments.  

The method initially is segmenting the 

dataset using height texture measures, followed by morphological filtering and connected 

component labelling for building detection. From the segmented regions the building 

parameters are derived as closed solutions from ratios of 0th, 1st and 2nd order invariant 

moments. After the determination of building model parameters, a goodness of fit can be 

determined by projecting the model into the point cloud and computing residuals for every 

Figure 31 Gable roof building and the parameters for 
building modelling calculated from the invariant 

moments (Maas, 2004). 
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data point. This allows for a rejection of the computed house model in case of bad fit and for 

the detection and elimination of outliers in the data points, or for a refinement of the 

segmentation (Maas, 2004). By analyzing differences between point cloud and building 

model, systematic deviations can be detected from the assumed model and thus dormers on 

roofs can be modelled. 

Alternative roof types may then be determined by the comparison of sets of invariant 

moments of detected houses with existing house models, stored in a database. The large 

number of roof types, including varied inclination values, would create a very large database, 

resulting in decreased reliability of the solution, because of the noise sensitivity of the higher 

order moments. The precision for the building parameters, is reported by Mass (2004) in the 

order of 0.1-0.2m for the building dimensions and 1-2 degrees for building orientation and 

roof inclination. 

Figure 32 represents the 

reconstructed buildings and the 

successful modelling of the 

dormers present on the roofs. In 

addition, this approach presents 

a time effective method with the 

computation time per building in 

the order of 0.8 seconds that 

was measured at an HP 9000 

workstation. The accuracy 

assessment conducted in the proposed method consisted of model fitting analysis that 

yielded an RMS of 10cm between point clouds and models of buildings (Maas, 2004). 

Nevertheless we should note that the success of this method, in modelling even the 

dormers, is related with the high density of the point cloud which was approximately 5 points 

per m2 as reported in Mass (2004). This characteristic also influences the accuracy of the 

Figure 32 Final results illustrating the reconstructed 
buildings including the dormers (Maas, 2004). 
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extracted building outlines and it was the main reason for the low RMS error estimated in the 

accuracy assessment. Advantages of the technique are the fact that the parameters of 

standard gable roof type buildings can be formulated as a closed solution as well as the 

avoidance of the time consuming interpolation procedure (Maas, 2004). 

 

2.5. Building reconstruction from fusion of different datasets 
 

Various research efforts (Wang, 2008; Cheng et al., 2008; Kaartinen et al., 2005; Vosselman 

and Dijkman, 2001) confirm that fusion techniques of different datasets for building 

reconstruction yield superior results. The LiDAR datasets can be very effective for deriving 

building heights or extracting planar roof faces but it is hard to obtain a detailed and 

geometric precise boundary using only LiDAR point clouds considering its low spatial 

resolution. To eliminate noise effects and get building boundaries with precise geometric 

position, some researchers used the minimum description length (MDL) method to regularize 

the ragged building boundaries (Weidner and Forstner, 1995; Suveg and Vosselman, 2004). 

Zhang et al., (2006) used Douglas–Peucker algorithm (Douglas and Peucker, 1973) to 

remove noise in a footprint, then adjusted the building footprints based on estimated 

dominant directions. Sampath and Shan (2007) performed building boundary tracing by 

modifying a convex hull formation algorithm  (Preparata and Hong, 1977), then implemented 

boundary regularization by a hierarchical least squares solution with perpendicularity 

constraints. However, regularization quality is also dependent on the point density of Lidar 

data; and limitation of Lidar data resolution and errors in filtering processes may cause 

obvious offset and artefacts in the final regularized building boundary (Sampath and Shan, 

2007). 

On the other hand, aerial images provide better results for length determination and deriving 

the building outline. Although many research efforts have been proposed for building 
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reconstruction from aerial imagery, few methods have been proposed for integrating 2D map 

data for building reconstruction. 

In Wang (2008), a new approach of Model-based Building Reconstruction (MBBR) from 

topographic maps and LiDAR data called Floating Models is proposed. Floating models are 

a series of pre-defined primitive models which are floating in space. A model’s size is 

adjustable by shape parameters, while its location and rotation is controlled by pose 

parameters. A building is reconstructed by adjusting these model parameters so the wire-

frame model adequately fits into the building’s outlines among the topographic maps, LiDAR 

data, aerial photos and DEM. This model-based reconstruction provides good constraints to 

the shape of the model in contrary to the data-based approach. In Wang (2008) the model 

parameters are re-arranged into two groups: plane and height parameters. The plane 

parameters are determined by fitting the top or bottom boundary of the model to the 

topographic maps. The height parameters are decided by fitting the top surface of the model 

to the LiDAR data and interpolating the datum point’s height from DEM. The proposed 

reconstructing procedure is semi-automated. First, the operator chooses an appropriate 

model and approximately fit to the building’s outlines on the topographic map. Second, the 

computer computes the optimal fit between the model and the topographic map based on an 

ad hoc least-squares model fitting algorithm. Third, the computer computes the roof or ridge 

height from the LiDAR points within the roof’s boundary. Finally, the model parameters and 

standard deviations are provided, and the wire-frame model is superimposed on all 

overlapped aerial photos for the operator to check the result. The operator can make any 

necessary modification by adjusting the corresponding model parameter. 

A method proposed by Jibrini et al. (2000) extracted the position and orientation of roof 

planes from aerial imagery, which was constrained from existing ground plans. The main 

problem at this stage was that the building height was not known from the ground plans and 

thus a back projection of the building outlines in the imagery would not be accurate. Hence 

in order to estimate the building main height, an affine transformation between the image 
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edges and the edges of the ground plan was introduced. Apart from the affine transformation 

further alignment is performed, between the ground plans and the edges present on the 

aerial images, by extending the roof faces beyond the vertical walls and thus taking into 

account the situations where inconsistencies exist between the two datasets. Research on 

the fusion of map information and aerial imagery for building reconstruction is focused on 

model-based reconstruction. Segments of a ground plan usually contain few extracted points 

and edges for the fitting of shape primitives per segment. Hence, fitting is only performed on 

aggregated segments. A more data driven segmentation of ground plans will be required in 

order to be able to deal with more complex buildings (Vosselman, 2002). 

A combination of aerial images and DSMs, produced from LiDAR datasets, was introduced 

by Institut Geographique National for several test sites (Kaartinen et al., 2005). The aerial 

images were used for the semi-automatic production of pseudo-cadastral maps, that 

described accurately the building outlines, as well as for the automatic production of true-

orthophoto. The building reconstruction was either fully automated or semi-automated, 

depending on the test site, using a model driven approach (prismatic models) by integrating 

the LiDAR DSM restricted by the pseudo cadastral maps. The overall workflow included a 

quality control step by comparing 3D building models with the existing DSM.  

Apart from the integration of aerial images with 2D ground plans, considerable research has 

been made for 3D building model generation by combining extracted roof faces from LiDAR 

point clouds with ground plans. A method proposed by Vosselman and Dijkman, (2001) 

utilizes a 3D Hough transformation for plane extraction combined with existing ground plans. 

The ground plans can accurately estimate the outline of the roof face and subsequently yield 

the precise location of the vertical walls. In addition this method uses the ground plans for 

locating roof face edges of buildings.  

The method introduces two strategies for combining the two datasets. The first strategy 

extracts planes from the LiDAR point cloud and segments the ground plan for restricting the 

plane extraction. Then the initial ground plan segmentation is refined until every segment 
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corresponds to only one planar face. The second strategy is more generic having the ability 

to reconstruct more complex roof structures. The second strategy refines the initial models 

on the bases of fitting models to point clouds that did not correspond to the initial models 

(Vosselman and Dijkman, 2001). 

As mentioned previously, the planar facets are extracted with a 3D Hough transform but 

spurious planes are generally introduced. In order to minimize the possibility of a region 

having many different faces, the proposed method splits the dataset into smaller partitioned 

regions. The partitioned regions are obtained by segmenting the ground plan and extending 

the edges of the building 

outline until intersected, as 

illustrated in figure 33. In 

addition, the planar facets are 

further refined by region 

growing the facets and 

merging them over the bounds 

of the segment, introduced 

from the partitioned ground 

plans and result in one planar 

point cloud for every roof 

plane. For each planar point cloud the final plane facet is then obtained by a least squares 

plane fitting process.  

At a subsequent step, the 3D models for each segment are created by combining the 

planimetric bounds of the ground plan segment with the detected plane. The building 

reconstruction in most cases requires the detection of ‘height jump’ edges, especially when 

complex structures need to be modelled and this stage presents considerable difficulties. In 

most cases several assumptions need to be integrated. In the method proposed by 

Figure 33 Partitioned building outlines overlaid 
on a DSM (Vosselman and Dijkman, 2001). 
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Vosselman and Dijkman, (2001) it is assumed that the height jump edge is parallel to one of 

the edges of the ground plan segment, for simplifying the process.  

The detected height jump edges together with intersection lines are two crucial features for 

the 3D building reconstruction. This is because the process of creating the 3D building 

models is based on splitting and merging the ground plan segments until there is a one-to-

one relationship between 

the segments and the roof 

faces. Therefore, the criteria 

for splitting the segments is 

based on the presence of 

intersection lines of height 

jump edges. The limitation 

of this strategy is that it can 

fail to further refine the initial 

ground plan segmentation in cases of insufficient evidence for the presence of intersection 

lines or height jump edges.  

The second strategy can reconstruct more details of the buildings and demonstrated the 

capability to reconstruct even chimneys, using LiDAR point cloud with density in the order of 

5-6 points/m2. The second strategy may lead to better results even with fewer points, but in 

some cases it leads to small details that are incorrect. 

Various research efforts have tried to combine LiDAR point clouds with aerial images. These 

methods usually consist of three main steps. Initially, hypothesis and building delineation is 

performed, either from an interpolated DSM or directly from the LiDAR point cloud. Then 

polyhedral building models are created for the delineated building regions by a bottom up 

procedure using both the DSM and the aerial images. Finally the polyhedral building models 

are verified. A method proposed by Rottensteiner and Jansa, (2002) combines LiDAR with 

aerial photographs and performs the polyhedral modelling using Voronoi diagrams 

Figure 34 Reconstructed building as resulted from the first 
method (Vosselman and Dijkman, 2001) 
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(Aurenhammer, 1991). The method follows the three steps described previously and verifies 

the results by projecting the building models in the aerial images to improve the accuracy of 

their geometric parameters. 

The method initially begins with the generation of the building hypothesis as indicated in 

figure 35, illustrating the overall workflow. The building hypothesis includes the 

discrimination between buildings and bare earth as well as the segmentation of the 

vegetation from the buildings. The method applies initially a hierarchical classification 

procedure of the LiDAR points with 

height thresholds to the normalized 

DSM. The detection of the buildings 

and the initial building mask is 

derived by thresholding the 

differences between the DSM and 

the DTM. As a result, regions of 

interest for the geometric building 

reconstruction are obtained by 

performing a connected component 

analysis on the aerial images 

(Rottensteiner and Jansa, 2002). 

The building detection from DSM is 

based on the method of linear 

prediction but additional processing 

is required for filtering the vegetation. A possible solution is the use of textural classifiers or 

Morphological opening filters (Rottensteiner and Jansa, 2002). This method uses terrain 

roughness, which is similar with the textural classifiers used for optical data, for filtering any 

remaining groups of trees. 

Figure 35 workflow of the method proposed by 
(Rottensteiner and Jansa, 2002). 
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After the building detection, the polyhedral models are created based on the initial building 

hypotheses for detecting planar patches in object space. At this stage the geometric 

parameters and the initial border polygons for each planar facet are determined. The 

detection of planar facets is based on a “segment label image” that is defined in the object 

space. The segmented pixel image is a binary image that contains pixels classified as being 

homogenious in relation with their surrounding pixels that have similar components to the 

normal vectors. The initial planar segments are obtained by an iterative connected 

component analysis process, restricted by 3D line segments that are extracted from the 

aerial images and a colour-based segmentation.  

In a subsequent step the polyhedral models are generated by grouping neighbouring planar 

segments, utilizing a Voronoi diagram based on a distance transformation of the segment 

label image. From the Voronoi diagram the neighbourhood relations of the planar segments 

are derived and the borders of the Voronoi regions can be extracted as the first estimates for 

the polygons of the planar segments (Rottensteiner and Jansa, 2002). 

 

Once the polyhedral model is completed it can be back-projected to the image where its 

edges can be matched with image edges. This step is crucial for assessing and improving 

the geometric accuracy of the building models, especially with respect to the building 

outlines (Rottensteiner and Jansa, 2002). 

Figure 36 Roof polygons back-projected for the model fitting step 
(Rottensteiner and Jansa, 2002). 
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Building reconstruction using more than two data sources has also been introduced by Chen 

et al. (2004). This approach combines LiDAR data, aerial imagery and satellite images 

obtained from the Quickbird sensor.  The proposed method is basically a two step procedure 

that initially detects building regions and then reconstructs the building models. In the stage 

of building detection, a region-based segmentation and knowledge-based classification are 

integrated, as indicated in figure 37. 

 

 

During the segmentation procedure the LiDAR point cloud are interpolated to create a DSM. 

The segmentation initially uses a region growing technique, in the produced DSM, to merge 

pixels with similar attributes. Furthermore a bare earth surface is obtained by applying 

Figure 37 Workflow of the proposed method (Chen et 
al., 2004). 
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elevation threshold for a rough discrimination of objects above ground and on the ground. 

The above ground surface includes buildings and vegetation that are higher than the 

elevation threshold. For discriminating between vegetation and buildings, spectral 

information is used from the multispectral images acquired from QuickBird sensor, together 

with shape, texture, and elevation information in a knowledge based classification procedure 

in order to detect the building regions.  

The near infrared band provides useful spectral information for estimating the Normalized 

Vegetation Index (NDVI), which is included as an additional layer in the knowledge-based 

classification. 

Once the building regions are extracted, a TIN-based region growing is performed, to 

generate 3D planes from the building regions. In addition, the position of the vertical walls is 

determined by the edges extracted from optical imagery. The method uses approximate 

location of the edges, constituting the vertical walls extracted from the LiDAR point cloud and 

subsequently back-projected on the aerial images. The approximate edges are treated as 

initial values for the Hough transform that is used for extracting accurate straight lines in the 

image space. The final three dimensional edges are generated, given the image coordinates 

and the height information, from 3D planes together with the exterior orientation parameters.  

After the straight line extraction, the reconstructed vertical walls are combined with the 

reconstructed rooftops, generated by a ‘Split-Merge-Shape’ method for building 

reconstruction. The Split and Merge steps are the two main procedures for topology 

reconstruction from non-related roof-edges. The Shape step uses the available roof-edge 

height information to define an appropriate rooftop (Chen et al., 2004). The Split-Merge-

Shape method provides high reliability and flexibility, even in cases where the 3D building 

lines are broken. 
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2.6. Commercial systems for semi-automated building reconstruction 
 

CyberCity Modeler 

Following the semi-automatic approach ‘‘TOBAGO’’ (Grun and Dan, 1997), ‘‘CyberCity 

Modeler’’ was proposed in 1998 (Grun and Wang, 1998). It is now being commercially 

offered by CyberCity AG. This modeler is based on conventional, manual measurement of 

corresponding image points. It uses two basic steps. In the first step (see Fig. 38, left), a so-

called ‘‘weakly structured’’ point cloud is obtained by manual stereo measurement. It 

consists of all gable and roof points, possibly with additional points covering roof structures 

such as dormer windows. The point cloud is structured by two measures. First, the point 

measurement has to take place in a certain order, and second, points are assigned certain 

codes which will guide the second, automatic step. This can be obtained by placing the 

points into corresponding layers, a functionality which is usually available in existing 

photogrammetric or CAD software. The second step is a fully automatic processing which 

uses a relaxation approach to derive the topology of the roof (see Fig. 38, right).  

 

Figure 38 Illustration for the ‘‘CyberCity Modeler’’. A saddleback roof is obtained by measurement of 
the points 1–6 in succession, in a single layer. For a hipped roof, eaves and gable points are assigned 

different layers, for complex structures there are even more layers. From Grun and Wang (1998) 
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Then, using the known correspondences between planes and points, the point positions can 

be corrected using a least squares adjustment. The result has to be checked, since in some 

cases, the relaxation might have recovered the wrong roof topology. However, in Grun and 

Wang (1998) success rates of 95% are given for the automatic structuring step. As 

compared to a strictly manual measurement, CyberCity Modeler only automates the 

topology generation step. The point measurement itself is not accelerated. Since the 

modelling is based on points and planar patches only, the approach is able to reconstruct 

general polyhedral roof surfaces, as compared to methods using a limited set of building 

primitives. 

 

inJECT 

This system has been developed at the University of Bonn over a long period. It has evolved 

from earlier approaches termed ‘‘Hase’’, ‘‘Hase+’’, and ‘‘ObEx’’ (Gulch et al., 1998, 1999). It 

is now being commercially offered under the name ‘‘inJECT’’ by inpho GmbH. Buildings are 

modelled using a fixed number of parametric primitives like flat-, desk-, saddleback-, hipped-

roof, etc. (see Fig. 39). The selection of the appropriate primitive is carried out manually by 

an operator. Then, the wireframe model is overlaid in two images and the operator can adapt 

the parameters accordingly. A guided mode is available where the operator is asked to 

measure certain points only. For example, for a saddleback roof, the operator has to 

measure only the two gable points in one image—after that, the system tries to find the 

corresponding points in the other image as well as the remaining parameters automatically. 

After the automatic step, the operator can assess the result and can correct it by manual 

measurements, if necessary. For the automatic methods, a success rate of 50–90% is given 

in Gulch et al. (1999). Complex buildings are subdivided by the operator into building parts 

which are modelled independently. The parts are then later on merged by an external CAD 

software to obtain the final buildings. Using this constructive solid geometry (CSG) approach 

the number of required measurements by the operator is reduced considerably. It is even 

further reduced by the provided automatic matching and snapping procedures. On the other 



90 

 

hand, as with any system which uses CSG as a modelling principle, some more complex 

buildings might be quite hard to model using the fixed set of primitives. 

 

 

Figure 39 Illustration for inJECT. The operator chooses a primitive, which is then fitted to the images 
using manual measurement as well as automated measurement procedures. 

 

 

2.7. Strengths and weaknesses of previous research efforts 
 

In summary most of the research efforts introduced so far for automatic building 

reconstruction from aerial images have several reliability issues and problems due to 

occlusions, introduced mainly from vegetation, scene perspective and the complexity of the 

roof structures. That is especially true for the data-based methods as introduced before 

(Wang, 2008; Cheng et al., 2008; Heuel et al., 2000; Ameri and Fritsch, 2000; Scholze et al., 

2002) because the building reconstruction is performed without any assumption for the 

structure of the roof and in most cases artefacts and errors are introduced. One of the main 
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strengths of all the data-based methods using aerial photography is that there are no 

restrictions introduced by using a set of finite roof models and these methods can potentially 

reconstruct a wide variety of roof styles. On the contrary the model-based methods (Willuhn 

and Van Gool, 2005) use some models of buildings to restrict the set of possible shapes. 

This external knowledge enables the user to overcome the lack of detection due to 

occlusions but also restricts the solution to the pre-defined roof styles.  

Previous research efforts for automatic building reconstruction from LiDAR data have one 

characteristic weakness. That is the lack of adequate planimetric accuracy for the building 

footprints and loss of roof detail when only coarse LiDAR point clouds are available. 

Nevertheless when high density LiDAR is used with methods that directly derive the surface 

parameters in a parameter space by clustering the point cloud, the solutions are very 

effective and robust when planes or other simple shapes are extracted (Vosselman, 1999; 

Gorte, 2002). Mass, 2004 introduced a very efficient and fast method for building 

reconstruction utilizing invariant moments on LiDAR point clouds. 

Fusion techniques for building reconstruction provide more accurate results, since they 

combine the advantages of very good vertical accuracy, usually provided from LiDAR data, 

and the precise location of the building outlines derived either from aerial images or ground 

plans. A quantitative evaluation presented in Kaartinen et al. (2005) indicates the higher 

geometric accuracy achieved by data fusion approaches. The evaluation indicates that in the 

assessment of all test sites, the RMS error of photogrammetric methods for extracting 

building outlines ranged from 14 to 36 cm with a standard deviation of 7.2 cm. The 

corresponding values for aerial images assisting laser scanning ranged from 20 to 76 cm 

with std of 18.5 cm. Laser scanning-based building outline errors ranged from 20 to 150 cm 

with a std of 33.2 cm (Kaartinen et al. 2005). 

This thesis presents an effort to improve the weaknesses of the data-based methods by 

improving the reliability of the building detection and 3D reconstruction stage. This is 

achieved using data-fusion techniques between stereo matched points and LiDAR point 
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clouds to improve the building footprint and 3D roof breaklines. The building detection is 

performed using an adaptive k-means classification algorithm in combination with 

geomorphometric region growing and parametric object representation to enhance the 

reliability of detecting building footprints. The strength of the proposed workflow is that it 

doesn’t use any building primitives for the 3D building reconstruction as opposed to the 

model based methods but maintains a high level of reliability, and level of detail. Another 

weakness of the previous research efforts discussed above is the issue of adaptability. Most 

methods are suitable for specific datasets and sites with specific building architecture. This 

thesis presents a unified, end-to-end workflow that can use data-fusion techniques or Very 

Dence DSMs created solely from airborne imagery to detect buildings and reconstruct the 

roof structures 

 

2.8. Adopting previous methods in the proposed workflow for semi-
automated 3D city modelling 

 

From the previous section it is evident that the efficiency of different approaches is strongly 

related to the data at hand and each method presents some advantages and weaknesses. 

The proposed method presented in this thesis has four major steps; the feature extraction 

from the optical data, the building detection, the adjustment of the building outline using data 

fusion techniques and the building reconstruction.  

The method for feature extraction follows the general workflow of the method proposed in 

Chen et al. (2004). According to this method the approximate location of the edges, 

constituting the vertical walls, is extracted initially from the LiDAR point cloud and 

subsequently is refined based on the features derived from the optical data. The main 

difference in the proposed method of this thesis is that the features are conjugate points 

from stereo pairs of aerial photographs, instead of edges used in Chen et al. (2004). Another 
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difference is that the adjustment of the building outline is performed using a least square 

fitting solution and not the Hough transform used in Chen et al. (2004). 

The classification of vegetation in the study area is performed using two generic tree models 

that scan the LiDAR data. Therefore, the proposed method for classifying vegetation does 

not follow any of the previously mentioned methods. Further details for this procedure and 

the reasons for choosing this approach are described in section 5.3.  Nevertheless the 

classification of low features, above the ground, is performed by adopting the method used 

in Chen et al. (2004). That is, after the classification of the ground points, low features that 

are not related to buildings are filtered using a range of relative heights above the ground 

surface. 

The procedure of building detection and generating the building hypothesis is performed with 

the method proposed in Rottensteiner and Jansa, (2002), whereby the generation of the 

building hypotheses is based on the detection of planar patches in the LiDAR point cloud. 

The roof reconstruction process utilizes the first approach introduced by Vosselman and 

Dijkman, (2001). According to this approach, the adjusted building boundaries can 

accurately estimate the outline of the roof face and subsequently yield the precise location of 

the vertical walls. The first strategy introduced in Vosselman and Dijkman, (2001), extracts 

planes from the LiDAR point cloud and segments the ground plan for restricting the plane 

extraction. A similar approach is used in the proposed method with the adjusted building 

outline restricting the plane fitting of the roof structures and therefore producing an accurate 

result for the building models. 
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Figure 40 The major components of the ADS40 
(ADS40 flyer, 2004) 

3. AIRBORNE DATA COLLECTION SYSTEMS  
 

This chapter describes in detail the characteristics of the data collections systems used to 

capture aerial photography and LiDAR data from the three test sites, Switzerland, London 

and Nottingham. The chapter describes the ADS40 digital camera, the ALS50 LiDAR 

system, the Leica RC30 frame camera, the ALTM 3033 LiDAR system and Vexcell UltraCam 

D digital camera. 

3.1. Airborne Digital Sensor ADS40 
 

The ADS40 (figure 40) was used to capture the airborne imagery available for the Swiss, 

(Heerbrugg) test site. It was introduced at the XIXth ISPRS Congress in Amsterdam in July 

2000. It was developed jointly with LH systems and Deutsches Zentrum für Luft-und 

Raumfahrt (German Aerospace Centre – DLR) utilizing forward, nadir and backward-looking 

linear arrays on the focal plane to acquire panchromatic and multispectral imagery. It 

presents one of the first attempts to design a digital airborne sensor that could achieve 

similar spatial resolution and coverage 

compared to a film based aerial 

camera. 

The development of the ADS40 was 

split into four stages to ensure the 

quality of the digital sensor: The 

functional model, the engineering 

model, the prototype model and finally 

the series model, which included the 

final ADS40 product (Eckardt et al., 

2000). 

One of the major advantages of the 



95 

 

Figure 41. Scanning principle of the three-
line digital sensor (Sandau et al. 2000). 

three line airborne digital sensor compared to area array sensors is the acquisition of strip 

imagery which produces a seamless scene that provides continuous processing in all 

photogrammetric procedures. Therefore it considerably increases the coverage and reduces 

the time requirements during the tedious process of mosaicking numerous individual images 

(Fricker, 2001).  

 

3.1.1. Design principles 
 

The basis of the design is the three-line scanning principle that results in three different 

views, forward from the aircraft, vertically down and looking backward (figure 41). The 

imagery from each scan line provides 

information about the objects on the ground 

from the different viewing angles assembled 

into three strips.  

The panchromatic linear sensors consist of 

pairs of 12,000 pixel arrays, one member of 

the pair staggered laterally from the other by 

half a pixel (3,25ȝm). The result is that every 

portion of the ground surface is imaged three 

times, far superior to the 60% triple coverage 

of the conventional film aerial photography. 

Additionally on the focal plane are four further 

linear arrays of 12,000-pixels acquiring imagery, through interference filters, in the red, 

green, blue, and near infrared portions of the spectrum (Fricker, 2001). 
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Figure 42 The trichroid beam splitter, 
adapted from ADS40 brochure, 2002. 

Copyrights reserved by Hexagon Corp. 

 

The colour linear CCD arrays are optically superimposed during the flight. This is 

accomplished with trichroitic mirrors as illustrated 

in figure 42, which divide a single light ray into its 

three colour components without significant energy 

loss. The advantage of this approach is that the 

RGB bands are co-registered without significant 

post-processing, thus resulting in a good quality 

colour composite. The near infrared sensor lines 

are 12000 pixels long and slightly offset from the 

RGB triplet. The precise position of each pixel is 

known after the calibration process (Tempelmann 

et al. 2000). 

The performance of the linear CCD arrays and 

the filters is maximized through the use of a telecentric lens. The incoming light rays are 

impinged on the focal plane at right angles regardless of their angle of incidence at the front 

nodal point (Fricker, 2001). 

The attitude and positioning of the ADS40 is provided by a Position and Orientation System 

(POS) from Applanix. It consists of an inertial measurement unit (IMU), located internally in 

the camera head and therefore eliminating the problem of relative motion between the 

camera and the IMU, that may be present if the IMU were mounted externally. The data 

generated by the POS are stored as part of the mission data in the mass memory system 

and can be retrieved for post-processing after the flight. For flight guidance and navigation 

purposes the real-time data of the POS are provided to the navigation module (Sandau et al. 

2000). 

The integrated GPS/Position and Orientation System (POS) is used during the post 

processing stage for direct georeferencing and the production of Level 0 images. The main 
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key features of the integrated GPS/POS system include the reduction of the time 

requirements for data processing and price/performance ratio of the system. 

The main components of the GPS/POS system are illustrated in figure 43. It consists of the 

IMU mounted on the focal plane head that tracks the six degrees of freedom providing high 

frequency information for the velocity, attitude and relative position.   

 

 

3.1.2. ADS40 Sensor Calibration 
 

The geometric calibration of a digital sensor includes the determination of two basic 

parameters. 

• Accurate measurement of the position of the CCD detectors and determination of the 

image co-ordinates. 

 • Determination of the modulation transfer function (MTF), see below, along-truck and 

across flight directions. 

Figure 43 Main components of the integrated IMU/GPS system in the ADS40, 
adapted from Sandau et al. 2000. 
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Figure 44 MTF along the flight direction (a) and 
across track direction (b) for the nadir looking view 

(Schuster and Braunecker, 2000) 

The determination of the position of the light sensitive elements is made by illuminating the 

pixels with a collimating instrument. The direction of the illuminated pixel to the collimator 

axis is determined by the angle along the line direction and the angle perpendicular to the 

line direction. These two angles can be exchanged in the case of horizontal mounting of the 

camera (Schuster and Braunecker, 2000) 

The MTF is determined for both directions along the flight path and across track by 

estimating initially the point spread function (PSF). The PSF characterizes the optical 

performance of the digital camera 

system, which is mainly determined 

by the pixel size and the optics. 

With the estimation of the PSF the 

MTF can then be calculated by a 

Fast Fourier Transform (FFT) along 

an arbitrary number of points on the 

linear CCD. Figure 44 indicates the 

MTF curves for the along and 

across track. From early calibration 

tests it is evident that the resolution 

always seems to be better in the flight direction rather than in the across track direction. 

Another stage of the geometric calibration is the measurement of the distortions present 

along the linear CCD sensor. The distortion curves along the nadir looking CCD sensor are 

given in figure 45, determined from two calibration centres that indicate distortions of less 

than one pixel over the whole line of 12,000 pixels. The measurements performed from the 

two calibration centres for the geometrical calibration process include two polar angular co-

ordinates, assigned to each measured pixel.  
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3.1.3. Post-Processing workflow of ADS40 data 
 

The mass memory MM40 is removed from the aircraft and connected to a docking station on 

the ground, where the ground processing system obtains the data through SCSI interface. 

The images and metadata are downloaded which can take several hours since the capacity 

of the mass memory is 0.5 TB. 

 After archiving, the GPS/IMU data are processed with the GPS base station data using the 

Applanix PosProc software. The orientation data are then used together with the camera 

calibration parameters to create Level 1 rectified images, which can be used for 

photogrammetric processing in digital photogrammetric workstation. Further products and 

level 2 rectified orthophotos can also be created (Figure 46).  

 

Figure 45 Distortion in pixels estimated from the engineering models of DLR and LH systems 
for the nadir line (Schuster and Braunecker, 2000). 
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3.1.4. Geometric accuracy and overall quality 
 

The first series of test flights for ADS40 were conducted in Switzerland above Waldkirch and 

Sion. The aerial triangulation for these blocks of images was performed with the ORIMA 

software package (Fricker, 2001). Table 1 summarises the characteristics of the early test 

flights. 

Figure 46 Ground processing workflow of the ADS40 dataset (Tempelmann, et al. 2000). 
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Table 2 Characteristics and accuracy results from the test flight in the area of Sion (Fricker, 2001) 

From the post-processing of the early test flights it was concluded that a robust bundle 

adjustment, few ground control points and automatically extracted tie points were still 

necessary in order to produce a parallax free stereo model, suitable for accurate feature 

extraction. This was evident since the Level 1 rectified images using the GPS/IMU data can 

produce good stereo viewable images but in most cases they maintain a small amount of 

parallax and therefore, hinder the ability to comfortably view the stereo model and extract 

features for large scale applications. 

One of the early triangulation tests was conducted over the area of Sion in the southwest of 

Switzerland. The block consisted of four parallel strips with two strips at right angles. A total 

of 18 check points were used for assessing the geometric accuracy of the aerial 

triangulation.  No preparation was made to signalize points or determine ground control 

points in advance. The bundle adjustment included self calibration parameters and 

automatic gross errors detection, yielding a standard error of unit weight equal with 5.3ȝm 

Table 1 Block configuration of the initial test sites (Fricker, 2001). 
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and a RMS of 5cm, compared to the ground control points. Table 2 summarizes the block 

configuration characteristics and the accuracy of the results. 

Evaluation of the ADS40 was additionally conducted over the area of Waldkirch in 

Switzerland described in Alhamlan et al. (2004). The characteristics of the block 

configuration are indicated in table 3. 

The evaluation was based on 18 

check points, measured by GPS, 

used for evaluating the accuracy of 

the different geometric configurations, 

created from the multiple look angles.  

The quality of the georectified imagery 

can be improved with an aerial 

triangulation. The four parallel strips consisting the block of rectified imagery were 

triangulated and the accuracy was evaluated based on 30 check points. Table 4 summarizes 

the RMS errors of the check points for the forward and backward scenes. Similar results 

were obtained for the other combinations of look angles. 

 From the specific test site it was concluded that despite the use of GPS/IMU data, the aerial 

triangulation of ADS40 images requires a few GCPs in order to provide good precision and 

the required accuracy for photogrammetric applications. 

 

 

 

 

 

 

Table 3 Characteristics of the block configuration for 
the Waldkirch test site. (Alhamlan et al. 2004). 

Table 4 RMS for the forward/backward scene 
combination (Alhamlan et al. 2004). 
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3.2. Airborne frame film camera, Leica RC30 
 

The Leica RC30 was used to capture the pair of aerial photographs of the second test site in 

London, Bloomsbury area.  

 

Figure 47. The Leica RC-30 aerial frame camera with navigation sight (adapted from Leica RC30 
brochure, 2007, Copyrights reserved by Hexagon Corp.) 

 

The Leica RC30 aerial film camera is the continuation of a series that started with Wild’s first 

aerial camera in the 1920s. Since then there have been several new features added and the 

latest model is enhanced with the PAV30 gyro-stabilized mount and other sub-systems such 

as the NSF3 navigation sight. The camera can also be supplemented with airborne GPS and 

IMU systems. The Leica RC series of aerial camera systems has been characterised by the 

robust design and their overall quality and long term reliability and has made them a popular 

choice for many mapping companies and national mapping agencies. 

The latest model, the RC30, offers two interchangeable lenses, minimal distortion and 

reaches lens/film resolutions well over 100 lp/mm. Apertures up to f/4 and shutter speeds 

from 1/100 to 1/1000 second maximise applicability. Forward motion compensation 
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produces sharp photos at low light levels and altitudes. One of the advantages of the RC30 

is that additional film cassettes are inexpensive, so prolonged missions are feasible. Other 

big advantages include the PEM-F automatic exposure control and the flexible data 

annotation on each photograph. Navigation sights, viewfinders and a wide range of filters 

complete this solution. 

The RC30 can be combined with the PAV30 Gyro-stabilized Camera Mount and the Aerial 

Survey Control Tool (ASCOT) for a complete aerial survey system. 

 

 

3.2.1. RC30 main Components 
 

The PTW30 drive unit consists of the Forward Motion Compensation mechanism, the PEM 

automatic exposure control, the EDI film data recording and a RS232 interface.  

The EDI records several internal and external data such as the aircraft voltage, shutter and 

aperture settings, mission data from aircraft as well as navigation data. The FMC 

mechanism can provide a maximum correction of 640ȝm image motion with both manual 

and automatic modes. The PEM automatic exposure control consists of a control board with 

an embedded microprocessor that controls the shutter and aperture settings, the film speed, 

exposure correction etc. The microprocessor is linked to a sensor that records the 

illumination conditions with a spectral sensitivity of around 700nm and a spectral range from 

400nm to 1000nm. The film cassette compartment consists of a pair of PKA4 film cassettes 

with a width of 240mm and three different film lengths ranging from 120m up to 219m. 

Additional film cassettes can be used during the flight. 

Two interchangeable lens cones are provided with the RC30. The 15/4 UAG-S lens cone 

and the 30/4 NAT-S lens cone. The first lens cone has a wide angle lens with 90o field of 

view and a calibrated focal length of 15cm. The later lens cone has a normal angle lens with 

a 55o field of view and a 30cm calibrated focal length. 
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The Leica PAV30 Gyro-Stabilized Camera Mount compensates for angular aircraft 

movements due to turbulence, including pitch, roll and drift. As a result, survey flights are 

more efficient and result in sharper images, as well as reduced stress on the flight crew. The 

PAV30 is designed to carry a variety of camera payloads. 

 

 

3.3. UltraCam D digital sensor 
 

The UltraCam D digital sensor was used to capture the block of aerial images of the third 

test site, covering The University of Nottingham University Park campus. The UltraCam D 

digital sensor was introduced in 2003 by Vexcel Corporation which since 2006 has been 

owned by Microsoft Corp. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 48. The UltraCamD sensor depicting the panchromatic and colour cones (Copyrights reserved 
by Microsoft Corporation) 
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3.3.1. Design Concepts & Calibration 
 

The sensor unit of Vexcel’s UltraCamD consists of eight independent cameras, so-called 

cones. Four of them create the large format panchromatic image at a size of 11500 by 7500 

pixels. The other set of four cones is responsible for the multi spectral channels of the 

UltraCamD, i.e. red, green blue and near infrared (figure 48) (Smith et al., 2005, Kruck, 

2006, Gruber and Ladstädler, 2006). The main sensor specifications are given below 

• Panchromatic, RGB and Near Infrared imagery captured on a single pass 

• 11500 pixels perpendicular to the flight direction 

• 7500 pixels along the flight direction 

• Focal length = 101.400mm 

• CCD array sensor size =103.5 x 67.5mm 

• CCD pixel size = 9 ȝm 

The 4 lens cones in a line through the centre of the cone cluster are used to capture the 

panchromatic image which is made up of 9 overlapping sub-images to create a composite 

image as shown schematically in figure 49. The sub-images have been given a letter to 

show which images were captured by the same lens cone. 

 

Figure 49. Schematic of the 9 sub-images making up the panchromatic image with one image 

highlighted (Adapted from Smith et al. 2007) 
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The panchromatic part of the camera combines a set of 9 medium format CCD sensors into 

a large format panchromatic image. The multispectral channels are supported by four 

additional CCD sensors.  Each of these 13 CCD sensors is the front end of a separate 

imaging module. It consists of the sensor, the sensor electronics, a high end analog/digital 

converter (ADC) and the IEEE 1394 data transfer unit.  The raw image data is transferred via 

the IEEE 1394 interface to a separate storage module of the Storage and computing Unit of 

UltraCamD. The computing unit consists of the UltraMap Server with a tape robot, with 

200,000 uncompressed images available near line via the Internet or an Intranet. Included 

are RAID disks and multiple CPUs, plus considerable software for cataloging, archiving, 

project management and processing of UltraCam images.The camera offers a frame rate of 

more than 1 frame per second, exploiting the benefit of its parallel system architecture 

(Leberl et al. 2003). 

The UltraCam produces for each collected image an independent set of 5 spectral bands: 

pan, blue, green, red and near-infrared. As an object moves through the camera’s field-of-

view, it gets repeatedly imaged and a set of new spectral observations gets collected. The 

UltraCamD produces the pan-channel at a geometric resolution exactly 3 times greater than 

the resolution of the color bands. The visualization therefore employs a process of “pan-

sharpening” at the ratio 1:3, to take the best from each channel (Leberl et al. 2005).  

The ‘new’ multi cone digital camera systems are geometrically complex systems. The image 

used for photogrammetric analysis is made up of a number of images produced by a cluster 

of camera cones and various groups of CCD arrays. This produces a resultant image which 

is not just based on traditional single lens/focal plane camera geometries but is dependent 

on the joining of images from multiple lens (different perspectives), groups of focal planes 

and the matching of overlapping image areas (Smith et al. 2007) 

This joining of images from the multiple lenses is of critical importance and is determined 

through a calibration procedure. The same calibration procedure estimates also the 
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additional interior orientation parameters. The basis for the calibration is a set of images 

from a well defined and precisely surveyed control point field (Kropfl et al. 2004) . 

The mathematical background of the calibration procedure is the co-linearity equation as it is 

known from traditional analogue cameras and is used to determine the parameters of the 

pinhole camera plus lens distortions. In addition though, a third set of parameters is involved 

in the UltraCamD geometric calibration.  

The parameters derived through the calibration procedure build up the full geometric 

description of each cone of the UltraCamD. The internal linear transformation between 

cones is determined by a stitching process, based on highly redundant tie point matching 

results. Calibration parameters and internal transformation parameters are then used to 

produce the distortion-free UltraCamD output image. 

More specifically the entire adjustment procedure is a fourfold process and includes the 

following steps: 

• Calculation of the initial solution of camera parameters including parameters of CCD 

position, principal distance and principal point coordinates and lens distortion.  

• Transformation of image coordinates (the measurements) to clear CCD position 

parameters. This step needs several iterations in order to avoid any eccentricity of 

the radial distortion parameters of the lens cone.  

• Description of remaining distortion on the CCD defined by a look up table.  

• Estimation of transform parameters between cones in order to guide the post-

processing (stitching) of the large format panchromatic image and the registration of 

the multispectral channels to the panchromatic image (pansharpening) (Kropfl et al. 

2004). 
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3.3.2. Accuracy assessment & performance 
 

There have been several attempts to quantify and evaluate the performance of the 

UltraCamD digital camera. Smith et al., 2005 were one of the first groups to critically 

evaluate the sensor using data from the UK, specifically over Milton Keynes. The data 

collected from that particular study included a block of 18 images taken from a nominal flying 

height of 1500m with a Ground Sample Distance (GSD) of 0.13m and a second block of 30 

images taken from a nominal flying height of 760m and a 7cm GSD. Both blocks had a 60% 

overlap. Because the data were captured initially for commercial purposes the amount and 

distribution of ground control points (GCPs) was not ideal and the GPS base station used 

was at Northampton some 30km from the test flight. That was a long baseline for high quality 

kinematic GPS (Smith et al., 2005). The tests were divided into two categories. 

• Aerial triangulation based only on ground control. 

• Aerial triangulation based on ground control and inflight GPS and IMU 

measurements. 

The results from the aerial triangulations using only ground control points are given in figure 

50. 

 

Figure 50 The block of images taken at 1500m and distribution of control points (left), residuals of tie 
and control points from the different Aerial Triangulations using only the GCPs (right). (adapted from 

Smith et al., 2005) 
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The results are very good when considering the flying height and a 60% overlap instead of 

80% overlap that would give a base to height ratio closer to one. Tie point RMSE values are 

reasonably consistent where as there is some variation in the RMSE of the residual for the 

GCPs. When the number of control points is small the influence of an individual point 

becomes more significant. As can be seen there is a small RMSE in Z for the two strips of 12 

GCP solution and the Z RMSE for the tie points standard deviations is probably showing the 

effects of the relatively small airbase (base to height ratio, 0.27) (Smith et al., 2005). 

It is interesting to note that in that study the results from the aerial triangulations including in-

flight GPS and IMU didn’t present any 

particular improvement over the 

original GCP only solutions (Table 

5).This might be the expected effect 

from the long baseline that was used 

to compute the in-flight GPS values 

(30km). With a shorter baseline that 

would normally be used an improved 

solution might be expected. In addition, 

it does show the strong solution produced by the imagery and ground control. 

Smith et al. 2007 presented a new methodology for self calibrating the UltraCamD sensor. 

The project involved datasets from a EuroSDR test site in Fredrikstad-Norway with two 

Table 5. Tie and CGP analysis for the ATs using 
GCPs/GPS and IMU (adapted from Smith et al., 2005) 

Figure 51. Mean image residuals in 24x24 sub areas. On the left are results of AT 
without calibration model (low flown). The right diagram shows results of AT with 

IESSG calibration model (low flown) (adapted from Smith et al. 2007) 
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blocks of images obtained from 3800m and 1900m altitude respectively. 

By identifying and quantifying the systematic residuals in the image space a new calibration 

method was proposed that re-computes the bundle adjustment based on the analysis of the 

systematic residual patterns. Only very small systematic patterns could be visually identified 

in small areas of the image (figure 51).  

                                                             

The IESSG calibration approach for the low flight has been particularly beneficial in 

improving the RMSE in Z and reducing image residuals. However, the method was relatively 

less successful at improving the high flown results. (Smith et al. 2007). The results from the 

processed blocks (table 6 & 7) of images indicate that the UltraCamD camera achieves 

under certain condition sub pixel accuracy horizontally with slightly worse results for the 

vertical residuals.    

 

 

Another noteworthy capability of the UltraCam D camera that makes it suitable for urban 

modelling is the image sharpness.  “Image sharpness” is usually being judged subjectively 

by the naked eye. However, it can also be measured and assessed quantitatively. Perko 

(2005) has used the edge response function to obtain edge sharpness values for scanned 

Self 

Calibration 

method 

Ground control points 

RMSE (m) of residuals 

Ground check points 

RMSE (m) of residuals 

RMSE (ȝm)of 

Image 

residuals 

X Y Z X Y Z x y 

No  0.054 0.034 0.042 0.042 0.038 0.186* 1.32 1.31 

Yes  0.052 0.037 0.033 0.031 0.032 0.093 1.24 1.20 

IESSG  0.055 0.038 0.028 0.037 0.037 0.038 1.06 1.00 

Table 7 Summary of low flight results 
(* includes a dominant residual) 

Self 
Calibration 

method 

Ground control points 
RMSE (m) of residuals 

Ground check points 
RMSE (m) of residuals 

RMSE (ȝm) 
of Image 
residuals 

X Y Z X Y Z* x y 

No  0.048 0.026 0.031 0.108 0.102 0.278 1.69 1.82 

Yes  0.042 0.024 0.020 0.120 0.104 0.248 1.59 1.73 

IESSG  0.038 0.022 0.018 0.129 0.098 0.280 1.53 1.62 

Table 6 Summary of high flight results 
(* removing a dominant residual and the values drop to around 0.1m) 
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film imagery as well as UltraCam D images. Generally the findings are very favourable for 

the digitally sensed data. Table 8 provides a summary of some of Perko’s results with ȝ 

denoting microns. 

 

Table 8. Edge sharpness values present the width of an edge in pixels when considering distinct 
transitions from dark to bright areas. The analysis method is by Blonski et al. (2002) and is described 

by Perko (2005). 
 

 

Some comparisons were made with imagery flown simultaneously with a film and a digital 

camera, some show comparisons when the data were collected over the same terrain but at 

different times. In all cases investigated by Perko, the UltraCamD images were superior in 

edge sharpness to the scanned film data, with the differences encompassing a factor of 

~1.7. The UltraCam D has demonstrated the ability to capture images with as small pixel 

size as 3cm (Leberl et al. 2005). In order to achieve this ground resolution the aircraft should 

fly at an altitude of 330 meters above the ground. At such a large scale sufficient forward 

motion compensation (FMC) and a high frame rate is essential. To obtain stereo overlaps at 

a pixel size of 3 cm requires a rapid succession of image triggers. At a typical velocity of 75 

m per second, a 70% forward overlap with 3 cm pixels results in covering each ground point 

3 times. To achieve this coverage the camera needs to be triggered every 0.96 seconds. 

Another benefit of using the UltraCamD digital camera for 3D Urban Modelling is the good 

radiometric quality that enables dense stereo matching. As will be shown later, the proposed 

workflow for semi-automatic 3D city modelling uses stereo matching techniques to substitute 

for LiDAR data were these are not available (third study area). The good quality result of the 
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stereo matching process is related to the higher dynamic range compared to film diapositive 

and also the benefit of having ‘no-grain’. The improved density of match points when 

applying the same acceptance criterion for the match points is shown in table 9.  

 

Table 9. Comparison of stereo matching results. “Fwhh” is the “full width at half height” of the 
histogram of errors. The columns with “Nr. of Points” presents the successful matches found in each 

image segment. Adapted from Perko (2005) 
 

Digital source data produce more match points than scanned film. We can also study the 

match accuracy by a method using epipolar relationships between image pairs. Table 9 

provides root mean square match errors found from scanned film and from UltraCamD 

image pairs. It is evident from table 9 that UltraCamD provides on average 100% more 

matched points with half the RMS compared to film based cameras. 

 

3.4. Airborne Laser Scanner - ALS50 
 

Elevation data from LiDAR systems is an alternative method for capturing ground elevations, 

preferably in featureless terrain, for the production of digital surface models under conditions 

that are challenging for aerial photogrammetry. The Airborne Laser Scanner ALS50, from 

Leica Geosystems is designed for the acquisition of elevation information with the ability to 

also record intensity information of the reflected signal.  
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The ALS50 is a compact laser-based system designed to capture elevation data using laser 

range and return signal intensity measurements, which are recorded in-flight along with 

position and attitude data derived from airborne GPS and inertial subsystems. Further 

analysis of the operating principles is given in the following section. 

 

3.4.1. Operating and design principles 
 

The computation of the elevation for each laser 

pulse can be determined when the location and 

attitude of the aircraft, the distance-to-ground and 

the scan angle are accurately known. The 

operating principle of the airborne laser scanners 

is illustrated in figure 53. 

The main characteristics of the ALS50 include: 

• 83 kHz maximum pulse rate and three-return 

range detection system (1st, 2nd, 3rd and last) 

• Automatic adaptive roll compensation 

Figure 52 ALS50 system components representing the scanner 
assembly (lower left), equipment rack (right) and laptop control 

computer, adapted from ALS50 brochure, 2004, copyright 
reserved by Hexagon Corp. 

 

Figure 53 Diagram illustrating the 
operating principles of the ALS50 

(ALS40 brochure, 2002) 
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• Up to 75° field of view 

The scanner assembly consists of several components for generating, aiming and receiving 

the laser pulse. The laser pulses are generated initially by a diode-pumped laser transmitter 

that includes a beam expander/collimator and output optics that focus the laser output to the 

scanner mechanism.  The scanner mechanism consists of a galvanometer that controls the 

movement of a scan mirror. The scan mirror is controlling the direction of the transmitted 

pulse, with the direction measured by an accurate optical encoder. The high speed scan 

mirror is optimized for fields-of-view up to 75° at maximum operating altitudes of 4000 m 

(ALS50 product description, 2003). The scanner assembly includes also a receiver that 

collects a sample of the reflected laser pulse and an IMU, mounted in the scanner housing.  

The equipment rack contains several components, responsible for raw data measurement 

and data recording. One of the main components is the System Controller that measures 

and stores the slant range distance for each laser pulse and records the scan angle along 

with GPS timing information. In addition the equipment rack includes the aircraft’s Position 

and Orientation System (POS). As in the case of the ADS40 the POS system is responsible 

for recording the information provided by the GPS receiver and the IMU. 

The laptop control computer provides a graphical user interface for system setup, operation 

and monitoring. In addition it includes the AeroPlan software for in-flight management and 

for improving the mission planning monitoring process. Furthermore, it contains post-

processing software for processing the raw data from the POS system and subsequently 

calculating the elevation points and their intensity values. The default data output is a 

compact binary format in WGS84 coordinates (ALS50 product description, 2003). 

Another useful feature of the ALS50 is the multi-return intensity digitization capability of up to 

3 return reflections from each outbound laser pulse.  Thus, the sensor has the ability to 

approximately represent the shape of the waveform by providing 3 amplitudes and 3 ranges, 

without degrading the maximum pulse rate.  With this feature multiple reflected pulses from 

different levels of a forest canopy are recorded. Multiple reflected laser pulses  from a forest 
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canopy can assist in filtering the data and creating digital terrain models by identifying the tip 

and bottom of the forest canopy.  This can be achieved, since the intensity image can reveal 

the presence of differing surface materials, by detecting the higher or lower reflectivity of a 

surface and ultimately distinguish between different surfaces. The raw intensity is initially 

digitized at the 8-bit level and subsequently an automatic gain control function effectively 

increases the dynamic range to12bit. 

While in operation the ALS50 provides sinusoidal scan patterns of the LiDAR points in a 

plane nominally orthogonal to the longitudinal axis of the aircraft, with an Instantaneous Field 

of View equal with 0.33 mrad. 

 

 

 

3.4.2. Calibration and overall performance 
 

One of the most common methods for calibrating an ALS sensor is also the least rigorous, 

and it requires extensive manual measurements. In this method an experienced operator 

compares profiles of overlapping strips and manually adjusts the misalignment angles until 

the strips appear to visually fit (Morin and El-Sheimy, 2002). Since this method consists of a 

visual adjustment, it presents a qualitative method without providing any statistical measure 

on the quality of the calibration. Additionally this method is time consuming and labour 

intensive. 

According to initial reports, the system produces data after post-processing with a standard 

deviation in plan of 0.13-0.61m and a vertical accuracy of 0.14-0.36m, depending on the 

flying height (ALS50 product description, 2003). Figure 54 illustrates the relationship of the 

vertical and planimetric accuracy for an atmospheric visibility of 23.5 km and flying heights 

up to 4000m. From figure 54 it is evident that a FOV of 75 degrees (dashed lines) have a 
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more significant negative impact in the planimetric and vertical accuracy. The planimetric 

accuracy is represented with the blue lines, while the orange lines represent the vertical 

accuracy. 

 

The performance of the LiDAR sensor is determined primarily by three factors, which include 

the maximum and minimum slant range limits, the scan rate and the pulse rate. The 

maximum slant range for the standard scan mirror configuration is approximately 3800m, 

whilst the minimum slant range is 500m. 

The scan rate is user-selectable, ranging from 0 to 70 Hz in 0.1 Hz increments, but it should 

be noted that the maximum scan rate degrades as a function of increasing FOV. The 

maximum pulse rate is determined by the maximum slant-range and the desired number of 

intensity responses, that the system is recording.  These two factors are user-defined and 

affect the operational pulse rate. For example, a system set to collect data at maximum slant 

range of 1100m with 2 responses of the reflected intensity stored, would be capable of 

Figure 54 Estimated vertical and planimetric accuracy as a function of the field of view and 
operating altitude (ALS50 product description, 2003). 
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operating at a pulse rate of 47 kHz, but a further increase in the intensity responses would 

decrease the operational pulse rate. 

 

3.5. Airborne Laser Terrain Mapper - Optech ALTM 3033 
 

The ALTM 3033 was designed and distributed by Optech Inc. and was used to collect the 

LiDAR data for the second test site over London – Bloomsbury area. The sensor, operated 

by the UK Environment Agency, has been used to cover most of the rural areas and 

floodplains in the UK. Figure 55 shows the ALTM sensor with the different components. 

 

 

Figure 55 The latest ALTM sensor including the navigation system, onboard storage and sensor 
head. (Adapted from Optech, ALTM brochure 2008. Copyrights reserved by Optech Inc.) 

 

 

3.5.1. Operating and design principles 
 

The ALTM sensor was introduced in 2001 as a replacement for the ALTM 1225. It is a 33 

kHz laser scanner usually flown at 3km altitude. It consists of 5 main units, the pulsed, solid 

state laser scanner, range finder, the IMU, GPS and the onboard storage rack. It can capture 

up to 4 pulse returns using a multi-pulse operation, with intensity and waveform capture 
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provided the return pulses are separated in time. The waveform digitizer is another important 

feature that enables advanced analysis to be carried out. The waveform digitizer is 

responsible for capturing the whole waveform, capable of recording up to 70,000 waveforms 

per second. The advantage of the full waveform digitization is that additional details and 

features can be detected even within the same pulse footprint. In addition waveform 

information can be valuable for automatic classification. 

The ALTM sensor has been already integrated with a variety of different sensors including 

• Rollei AIC, 22 megapixel digital camera 

• Applanix DSS 322, 22.2 megapixel digital camera(figure 56) 

• Vexcel UltraCam digital camera 

• Intergraph DMC digital camera 

• Hyperspectral – Itres CASI 150 digital sensor 

 

 

Figure 56 The integrated ALTM sensor with the Applanix DSS camera (adapted from ALTM brochure, 
2008) 

 

The ALTM LiDAR sensor has an operating altitude that ranges from 80 – 3,500 m. The 

vertical accuracy as stated by the manufacturer (ALTM brochure, 2008) is less than 15cm at 
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1.2km altitude and less than 35cm at 3km. It provides up to 4 range measurements for each 

pulse with a 12-bit dynamic range and a 1cm vertical discrimination. The scan angle is 

variable ranging from 0 – 25o with a 1o increment and achieves a swath width of 

approximately 3000m from a 3.5km altitude. 

The ALTM sensor is integrated with an Applanix POSAV 510 position orientation system, 

including an internal 12 channel, dual frequency 2Hz GPS receiver. The sensor comes with 

onboard storage facilities that consists several removable hard drives that can record a 

minimum of 7 hours continuous data. 

 

3.6. Error sources for airborne laser scanners 
 

There are many sources of error that affect the quality of the laser scanning data. The 

resulting errors are related to the laser ranging computation, the scanning system, 

topography, the atmosphere, positioning and navigation systems, and system integration 

factors (Alharthy et al. 2004). The three parameters that are directly related with the airborne 

laser scanner that could introduce errors are the following.  

• sensor position 

• distance to reflecting object 

• viewing direction to reflecting object 

The position of the sensor in relation to the GPS antenna can be determine ideally with an 

accuracy of 0.05m and is directly related to the quality of the GPS data (Katzenbeisser, 

2003). Any disruption of the spacecraft signals can incorporate errors in the determination of 

the position. Therefore, in most cases Differential GPS is used, acquiring data at a time 

interval of 1Hz, using a dual frequency receiver that records code and phase information for 

post processing. Another major requirement is a good distribution of the GPS satellite 

constellation and the reference GPS station positioned within 25km away from the rover 
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receiver onboard the aircraft. Ultimately the precision of the Differential GPS is a function of 

the accuracy in the solution of the ambiguities and from the various positioning errors. 

Apart from the position of the sensor, the accuracy of the slant range distance directly affects 

the quality of the calculated elevation values. The distance is measured with a time of flight 

method by counting the number of cycles (n) of an oscillator operating at a frequency f and 

then converted into distance using the following formula.  

 

 

Where f is the frequency of the oscillator, ∆t and ∆s compensate for delays and optical paths 

within the sensor and c
a
 is the speed of light within the atmosphere. From the above 

equation the frequency of the oscillator f can introduce significant errors even with minor 

deviations from the nominal frequency.  

Another important parameter is the speed of light c
a 

within the atmosphere, because it 

should take into account the deviations in density (or pressure), humidity and temperature. 

The difference in pressure is critical, especially when the data are acquired at varied altitude. 

The accuracy of the viewing direction to the reflecting object is also affecting the quality of 

the estimated elevation values. The viewing direction or more precisely the beam direction is 

a function of the sensor orientation, which is given by the IMU system, and the beam 

deflection that describes the direction of the laser beam with respect to the laser generating 

device.  

Since the beam direction is directly related to the sensor orientation, the quality of the IMU 

data are influencing the overall accuracy. The IMU devices include gyros and 

accelerometers that are not free of errors and thus, simple integration will lead to a drift of 

the results (Katzenbeisser, 2003). The attainable accuracy in determining the orientation is 

greatly improved by integrating DGPS position, movement direction and speed derived 

t =(the time of flight), s = (slant 

range distance) 
(3.1) 
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information. With operational IMU devices used in airborne sensors the roll and pitch can be 

determined with accuracies in the range of 0.004 deg to 0.02 deg. 

In the case of the ALS50 the beam 

deflection is achieved by an oscillating 

mirror. The equation used for calculating 

the instantaneous look angle is given by  

 
 
 

Where (Ĭ/2) is the maximum angular 

position. The first error that might be 

introduced at this stage is known as the 

zero-offset (ǻ฀), possibly related to 

mechanical miss-alignments of mirror and encoder, or a zero-shift within the Analog/Digital 

converter.  

A second error presented at this stage is a scaling factor, introduced by a false gain-control 

within the A/D converter or by the encoder itself. Therefore, the instantaneous angle of view 

now becomes  

 

Figure 58 shows the geometry of the 

beams in the case of a false scaling in 

the viewing angle, which is depicted here 

as a positive error. The false scaling 

factor results in a scaling of the swath 

width which can be either wider or 

narrower and results in miscalculated 

Figure 58 Geometry for scaling factor. The actual 
laser beam (dotted line) and its calculated 

direction (solid line) for an offset (Katzenbeisser, 
2003). 

Figure 57 Geometry of a zero offset. The actual 
laser beam (dotted line) and calculated direction 

(solid line) (Katzenbeisser, 2003). 

(3.3) 

(3.2) 
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elevation values. These errors can only be corrected by calibration, when they are 

systematic in nature, or in other words if they are introduced because of a mechanical 

movement. A possible solution for a fibre scanner can be given, in which the individual beam 

direction is defined by the number of the fibres in use. As these fibres are tightly coupled the 

deflection cannot vary over time. 

 As it was mentioned previously, the beam direction is a function of the beam deflection 

angle with respect to the aircraft 

orientation. For this reason the position 

of the IMU must be precisely known 

relative to the beam deflection device 

in order for the beam direction to be 

determined. Hence an alignment 

between the IMU and the beam 

deflection device is established by an 

initial calibration in the airborne laser scanners, as illustrated in figure 59. Nevertheless the 

distance between the two devices may become unstable, as indicated by the red dashed 

line, because of bending forces during mounting the sensor into the aircraft or from thermal 

effects that result in the deformation of the carrying plate. A thorough description of the 

deformation effect on the carrying plate is described in Katzenbeisser, (2003) whereby a 

carrying plate of distance d = 300mm and a deformation a = 1mm are assumed, which result 

in a 3m displacement on the ground from a measuring distance of 1000m.  

The main problem introduced when calibrating the sensor, for correcting the errors described 

so far, is the requirement that the individual measurements from the different elements of the 

sensor are taken at the same instant of time. The time requirement is critical for associating 

the individual errors together and applying the necessary corrections. The precise time 

requirements between two devices are even more difficult, if we consider that they operate 

at different frequencies. For example, establishing the time instances between the IMU 

Figure 59 Mounting of IMU and deflection device on 
a carrying plate (Katzenbeisser, 2003) 
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(operating at 200Hz) and the deflection device (20-80Hz), can introduce errors especially 

when bumpy conditions are present during flight.  

Apart from the errors introduced from the mechanical and electronic components of the 

airborne laser scanners, topography and surface features can also introduce erroneous 

effects in the LiDAR point cloud. The large footprint of the laser beam on the ground is a 

limiting factor in the cases of steep slopes or rough terrain, which can introduce erroneous 

effects and elevation errors. These effects are related to the operating altitude and the beam 

direction, combined with the slope angle, but most important the flight direction with relation 

to the slope.  These errors will be more severe when the flight direction is parallel to the 

slope contour, but is minimized when the flight direction is parallel to the direction of the 

gradient. Tree canopies and other features introduce systematic errors, since they don’t 

represent the actual terrain surface. 

In addition errors can be introduced when the laser pulse hits the side of a vertical object, 

which yields a misleading profile. Furthermore gaps in the data might be introduced if the 

return pulse cannot be detected due to the weak response. Specular reflections may also 

produce regions of missing data, as well as occluded regions for high features. In most 

cases these gaps can be corrected by crossed flight paths. These errors are not correctable 

in a rigorous sense, but some of their values can be minimized with careful mission planning 

and operation (Alharthy et al. 2004). 

Daveport et al. 2004 performed an extensive accuracy assessment of the Airborne Laser 

Terrain Mapper. The study was conducted to analyze the fine temporal detail and elevation 

accuracy. Daveport et al. 2004 analyzed 37 min of laser altimetry data acquired over a very 

flat 120 m 120 m area, and compared it with 408 ground-acquired differential GPS 

measurements of the surface. They concluded that on average a point measured using the 

laser altimetry system is displaced 36 cm from the mean in each dimension, in 78% of cases 

is 40 cm or closer, and no more than 70 cm displacement.  
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In comparing heights between swathes, if the area is being measured in two swathes, the 

difference in height due to instrument error is on average 6.3–6.4 cm, seemingly due to the 

DGPS-induced drift (Daveport et al. 2004).  The maximum possible systematic difference 

between swathes depends on GPS optimization. In addition to the systematic swathe–

swathe error, there is a random error contribution to each measured point, due to the 

measurement of the laser return time and INS/DGPS system random noise. This imparts a 

normal distribution noise with a standard deviation of 4.1 cm, or 3.5 cm for points closer than 

50 ms. This could be eliminated on large-scale data by collecting points into, say 3 m 3 m 

cells, and using the mean of the ten or so points that would fall within each cell using typical 

acquisition parameters 

 

3.7. The significance of the selected data collection systems in 3D city 
modelling 

 

This section summarizes the main reasons for the selection of the previously mentioned data 

collection system and their advantages in automating building reconstruction. 

The ADS40 represents one of the next generation digital sensors and is well suited for 

building reconstruction, mainly because of the three line pushbroom acquisition geometry 

and the form of the relief displacement that minimizes occluded regions.  The minimization of 

occluded regions in the optical data is critical, especially in the proposed workflow, because 

the extracted stereo matched points are subsequently used for adjusting the building outline. 

Therefore, having an adequate number of conjugate points, representing most of the 

building façades, will immediately affect the effectiveness of the proposed method. This is 

the key point of using data from the ADS40 since the pushbroom scanning mechanism 

results in one dimensional relief displacement instead of two dimensional, as in the case of 

frame cameras. The three look angles (backward, nadir and forward) can provide multiple 

stereo pairs of imagery for feature extraction with different base to height ratios, but most 
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importantly it can provide alternative views in the case some features are not observable 

from a given stereo pair.  In addition, ADS40 can acquire multispectral information that can 

be very useful for vegetation discrimination using classification methods. The ability to obtain 

multispectral information is a major advantage over conventional aerial mapping cameras 

and can be used to filter the LiDAR point cloud before the process of building reconstruction. 

During the building reconstruction process, and depending upon the complexity of the 

buildings, the extraction of roof details is affected by the density of the LiDAR point cloud. 

The ALS50 has the advantage of using a maximum pulse rate of 83 kHz, which depending 

on the flight altitude, can yield very dense point clouds. Since the proposed method uses the 

initial building outline, derived from LiDAR data, to filter the stereo matched points, the 

planimetric accuracy of the initial building outline is of major concern. Therefore with a 

planimetric accuracy in the range of 0.13-0.61m and a vertical accuracy of 0.14-0.36m, the 

ALS50 can produce good approximations for the initial building outlines and furthermore, 

accurate elevations for the reconstructed roof planes.  

For the second test site in London Bloomsbury instead of using state of the art LiDAR and 

digital imagery, it was thought that the designed workflow should be tested against more 

conventional or traditional datasets. Hence the selection of one of the most widely used film 

based cameras (RC30). The use of the RC30 would introduce all the disadvantages of a 

scanned film dispositive which was especially important in evaluating the deterioration of the 

feature extraction quality. 

The LiDAR device selected was used extensively by the Environment Agency to capture 

data across the UK so LiDAR data from that ALTM sensor have been utilised by several 

public and commercial organisation. In contrast though to the high density data collected 

from the ALS50, the ALTM data are down sampled and distributed with a 1m density. Hence 

presenting a particular challenge for the designed algorithms, especially in an urban 

environment like London with complicated building structures. 



127 

 

The data selected for the third test site reflect the willingness to ‘breakthrough’ the 

dependence on LiDAR data. Avoiding the use of LiDAR in the designed workflow would 

introduce additional advantages, considering the limited availability and cost of LiDAR data. 

Therefore the decision to adapt the workflow in cases where LiDAR data are not available 

demanded the use of state of the art digital sensors capable of substituting the LiDAR data. 

The selection of the UltraCam D camera was based on that reason since it brings a number 

of qualities for 3D urban modelling, including: 

• Digital sensor based on a frame geometry able to collect images with as high ground 

resolution as 3cm. 

• Good quality stereo matching, compared to frame cameras, resulting in dense point 

clouds, potentially able to substitute LiDAR. This quality is due to the higher dynamic 

range compared to film dispositive and also the benefit of having ‘no-grain’. 

• High image sharpness, compared to film photography, that improves the efficiency of 

edge operators and subsequently the feature extraction  process. 

It should be noted that although the UltraCam D imagery has a very good radiometric quality 

and therefore it is expected to perform well in the stereo matching process, recent research 

in evaluating digital sensors (Jacobsen, 2008) indicates that the DMC sensor has an even 

better radiometric quality. Unfortunately DMC imagery could not be obtained for any of the 

test sites. 
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4. STUDY AREAS AND AVAILABLE DATASETS 
 

This chapter describes the three different test sites and characteristics concerning urban 

modelling as well as introducing the available datasets collected from the sensors described 

in the previous chapter.  

4.1. Study area (Heerbrugg, Switzerland) 
 

The study area is situated 5 miles west of Heerbrugg-Switzerland (figure 60), representing 

Leica’s headquarter facilities as well as the surrounding region.  

Figure 60 Study area representing Leica’s headquarter facilities and the surrounding region at 
Heerbrugg, Switzerland. (adapted from

 ©
search.ch / Endoxon AG, TeleAtlas) 
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The study area situated approximately 5 miles west of the centre of Heerbrugg is mostly 

large industrial buildings with complex roof structures which are part of Leica’s facilities. 

These buildings provide an excellent opportunity to test the efficiency of the proposed 

method for building reconstruction on large industrial buildings. In addition, the study region 

represents two semi-urban regions, west and southeast of the main facilities, with smaller 

houses having a gable or hip type roofs. These semi-urban regions are very useful for 

evaluating the influence of the density of the LiDAR point cloud in the building reconstruction 

process. Various tree canopies of different shape and height can be identified in the study 

area, which introduce the necessity for designing a robust and reliable method for vegetation 

filtering from the LiDAR data. 

 

4.1.1. Data Provided 
 

The data and the supporting material were provided by Leica Geosystems, Heerbrugg for 

the needs of the specific project. The available dataset included, an oriented stereo-model 

acquired with Leica’s Airborne Digital Sensor (ADS40) and LiDAR data for the study region 

obtained with Leica’s Airborne Laser Scanner (ALS50).  

4.1.1.1. ADS40 digital strip imagery 
 

The airborne optical data included three bands of strip imagery acquired from the same flight 

Figure 61 Panchromatic band from the strip imagery acquired with a forward look angle of 28
o
 

from the ADS40. Study area is highlighted in the red rectangle. 
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path. Specifically the data consisted of a green band, obtained from the nadir looking view, 

one panchromatic band acquired from the 14o backward looking view and another 

panchromatic band from the 28o forward view. Figure 61 illustrates the last band. 

The provided data included the raw Level 

0 support files and the precision Level 1 

support and image files, for the given 

bands, that formed high resolution stereo 

viewable images. The Level 0 imagery 

provides the initial raw data calculated by 

the ground post-processor and is required 

in order to recover the instantaneous 

position and attitude associated with any 

pixel in the Level 1 image and 

subsequently used for the aerial 

triangulation.  

The green nadir looking view and forward 

panchromatic bands have an overlap of 

84% and provided full coverage over the 

study region indicated in figure 62. In contrast the overlap between the green and backward 

looking panchromatic band was 92%, without providing any coverage over the study region. 

Therefore, only the first stereo model was used for the subsequent processing steps. The 

accompanying data included the calibration and orientation files for the sensor, which are 

essential for establishing the relationship from the Level 0 to Level 1 images.  

The data were acquired from a flight altitude of approximately 2430m, yielding images with 

photo scale equal to 1:38900. The entire scene represented in figure 64 is covering an area 

of 2558 hectares, bounded by co-ordinates X= 544526.50m, Y= 5244511.84m for the upper 

left corner and X= 547797.64m, Y=5252845.91m for the lower right corner. The co-ordinate 

Figure 62 Study area represented by the forward 
looking panchromatic band. Subset of the entire 

scene with reference to figure 61. 
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Figure 63 Color coded, shaded relief image of 

the LIDAR point cloud obtained from the first 

flight path (Line ID: 050114_141115) 

system and projection parameters for the study area are based on the UTM system which 

will be described in section 4.1.1.3 in detail. The sensor had a lens with a focal length of 

64.7mm. Each detector on the CCD has a size of 6.5 ȝm, which resulted in a Ground 

Sample Distance (GSD) equal to 0.25m. The digital images had approximately 33690 

columns and 12520 rows. Note that the amount of columns and rows was slightly altered 

between the three images. In addition the number of rows exceeds the nominal number of 

CCD detectors due to the rectification process which is evident in figure 61 from the irregular 

outline and black regions along the edges of the image. 

 

4.1.1.2. Airborne LiDAR data 
 

The LiDAR data were acquired with the ALS50 and consist of two separate point clouds 

acquired from different flight paths, which 

intersected at approximately right angles over 

the study area. The LiDAR point cloud 

acquired from the first and second flight paths 

cover an area of approximately 803170 m2, 

having a density of 2-3 points per square 

metre. Figures 63 & 64 illustrate a colour 

coded, shaded relief map of the two flight 

paths. The visualizations were generated by 

triangulating the raw point clouds and 

subsequently applying ray tracing methods for 

creating the shading effects. 
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The first point cloud (line ID: 050114_141115) was obtained by the sensor from an operating 

altitude of 1207m (770m mean AGL), using a Field of View (FoV) equal to 45.798o. The 

aircraft was flying at a speed of 81 knots, while the oscillating mirror was operating at a scan 

rate set at 34.1 Hz and the laser transmitter operating at a pulse rate of 84.9 kHz. 

During the second flight path (line ID: 050114_141444) the operating altitude was almost 

identical at 1211m, while the FoV was slightly decreased to 45.07o. The scan rate of the 

oscillating mirror and the pulse rate remained the same as in the previous flight path. In both 

cases the sensor was adjusted to detect and store the first and second signal return of the 

laser pulse. A total of 4.8 million points were collected from both flight paths with a density of 

two to three points per square meter. Table 10 summarizes the most important parameters 

from the specific flight mission.  

Figure 64 Color coded, shaded relief image of the LiDAR point cloud obtained from the second 

flight path (Line ID: 050114_141444) 
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Table 11 Results from the vertical 
evaluation of the LIDAR point cloud 

 

 

Table 10 Flight parameters during the acquisition of the LiDAR data over Heerbrugg- Szitzerland 

 

A vertical accuracy assessment was also conducted by Leica Geosystems, SAT Group, 

using 34 GCPs. The GCPs are located in the study area which corresponds to the 

overlapping regions between the two LiDAR datasets. The location of the GCPs used for the  

vertical evaluation is depicted in figure 65. 

 

The assessment indicates a good vertical 

Flight Path ID 050114_141115 050114_141444 

Sensor ALS50 ALS50 

Actual FOV 45.798o 45.07o 

Scan Rate 34.1 Hz 34.1 Hz 

Pulse rate 84.9 kHz 84.9 kHz 

Altitude  1207m 1211m 

Heading of flight path 151.217o (Clockwise from North) 238.718 o (Clockwise from 
North) 

Speed  81 knots 85.6 knots 

Swath width 628m 631 

Vertical accuracy assessment (34 GCP 

Average dz                +0.004m 

Minimum dz              -0.130m 

Maximum dz             +0.160m 

Average magnitude     0.064m 

Root mean square       0.075m 

Std deviation              0.077m 

Figure 65 Location of the GCPs (blue points) 
used for the vertical accuracy assessment 
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accuracy with the standard deviation in the order of 7.7 cm (Table 11), while the maximum 

vertical difference observed was in the order of 16cm. 

4.1.1.3. Co-ordinate system for the study area 
 

The co-ordinate system used for the specific project was based on the WGS84 system with 

UTM projection. The specific co-ordinate system was defined mainly because of the 

integrated GPS system onboard the aircraft that directly measures on this specific datum 

and was subsequently used for the entire post-processing of the optical and LiDAR data. In 

addition GCPs used for direct georeferencing and the aerial triangulation are usually 

measured with geodetic GPS antennas in the same co-ordinate system. Therefore instead of 

applying geometric transformations between different datums and spheroids it is more 

convenient and reliable to sustain this co-ordinate system for the entire processing stage. 

The study area is located at the north zone 32 of the UTM system. This zone covers regions 

from longitudes 6o – 12o east of the prime meridian. The characteristics of the co-ordinate 

system for the specific project are given in table 12. 

 

 

 

 

 

 

 

 

 

 

Co-ordinate system parameters 

Projection system Universal Transverse Mercator  

Zone 32, north of the equator 

Vertical spheroid  World Geodetic System 1984 

Datum  World Geodetic System 1984 

Table 12 Parameters of the co-ordinate system used for the 
study area 
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4.2. Study area (London – Bloomsbury) 
 

Bloomsbury area is located in central London (figure 66) encompassing very popular 

landmarks such as the British Library and the Kings Cross, St. Pancras train stations. 

 

 

Figure 66. Overview of the second study area located in London-Bloomsbury. Adapted from Google 
Earth 

TM
. Copyright Google Corporation 
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The area presents one of the most challenging environments when it comes to urban 

modelling due to the complexity of building structures and the varied architectural design. 

Building designs range from modern block 

skyscrapers and industrial buildings to 

gothic style architecture. Figure 67 

illustrates the complexity of some of the 

building sites with pipes and ventilation 

equipment covering most of the roof 

space. It was evident that in many cases 

the density of the LiDAR data would not 

be able to sufficiently represent structures 

of less than 1m2 and generalization of the 

roof structures would have to take place.  The introduction of vegetation and individual trees 

between buildings will potentially introduce significant problems during the tree segmentation 

and building hypothesis stage.  

 

4.2.1. Data Provided 
 

The data for this test site were provided by Ordnance Survey and the Environment agency 

for the purpose of evaluating the designed workflow for semi-automated building 

reconstruction. This test site has a particular significance since it will enable the performance 

evaluation of the proposed workflow under very difficult circumstances. That is, trying to 

model a very complicated urban environment with more widely accessible or traditional data 

sources that are primarily used by mapping professionals. 

 

 

 

Figure 67. Example of complex building roof 
geometry present in the second study area 
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4.2.1.1. Leica RC30 aerial images 
 

This test site consists of a single strip of three consecutive aerial photographs acquired by 

the Ordnance Survey in 2000 using a Leica RC30 frame camera with the 30/4 NAT-S lens 

cone having a calibrated focal length of 304.791mm. A camera calibration certificate was 

also provided but no in-flight GPS or IMU data were collected during the aerial survey. The 

aerial photographs (figure 68) are only a subset from an aerial survey with a 60% overlap. 

The images were acquired from an altitude of 1800m, yielding an image scale of 1:6,000. 

The film negative was subsequently scanned at 13.6ȝm creating true-colour imagery with 

16861x16861 pixels and a GSD of 8cm. The true colour images contain only three bands 

(R,G,B) with an 8bit dynamic range and a  file size of approximately 350MB each. The triplet 

of images was collected during a leaf-on season over central London covering an area of 

2sq. km 

 

Figure 68.  The available triplet of images for the 2
nd

 study area over London-Bloomsbury. (Crown 
Copyright) 
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The scanned images don’t appear to have any scratches or any other artefacts. 

Nevertheless there seems to be a few overexposed areas and small variations in the overall 

brightness are evident. In addition despite the high ground resolution the feature 

identification is affected by the ‘grain effect’ as illustrated in figure 69 and is expected to have 

an adverse effect during the feature extraction. 

 

Figure 69 Subset of the original aerial photographs over London – Bloomsbury indicating the ‘grain 
effect’ (Crown Copyright) 

 

 

4.2.1.2. ALTM 3033 LiDAR data 
 

The LiDAR data used for the second study area were acquired by the Environment Agency 

using their Airborne Laser Terrain Mapper - Optech ALTM 3033 in 2003 during the leaf-on 

season. Due to the three year difference there have been some temporal changes between 

the aerial photography and the LiDAR data. The LiDAR point cloud represents Bloomsbury 

area in central London bounded by co-ordinates (lower left: 529174, 181500, upper right: 
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530199, 182525) in the British National Grid (OSGB36). The point cloud has been post-

processed by the UK Environment Agency and was delivered with a 1m by 1m sampling 

resolution covering an area of approximately 2 km2 (1700 rows and 1100 columns consist 

the derived regular grid DEM). The post processed raster surface resulting from the raw 

point cloud is illustrated in figure 70. 

 

 

 

 
 
 
 
 
 

 
Figure 70 The LiDAR data represented as a color coded raster surface and the elevation frequency 

histogram on the right using orthometric heights based on the OSGB36 vertical datum 

 

As illustrated in figure 70 the elevation frequency histogram indicates that the majority of 

DEM cells (98.94%) present elevation in the range 20 to 60 m. It is also important to note 

that the post processed LiDAR data from the UK Environment Agency don’t have any 

additional return pulses; instead they represent only the first pulse return, thus introducing 

additional difficulties for effective tree segmentation. Although this means the proposed 

workflow will need to take this into account, this situation represents the majority of 

distributed data. Hence a more generic workflow able to address this issue can have a wider 

implementation in the research and commercial community. 
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Upon further investigation of the LiDAR data over London – Bloomsbury it’s evident that the 

post processing and down sampling of the raw point cloud to a regular 1x1m raster surface 

will impact the level of detail when it comes to building detection and 3D reconstruction of 

roof details. Note, that in the specific study area there are buildings with very complex roof 

details as illustrated in figure 67. Figure 71 presents a 3D perspective view of a subset area 

from the LiDAR surface. 

Figure 71 3D perspective scene from the LiDAR data representing the overall density of the surface 
and highlighting the limitations for adequate representation of roof details. 

 

Upon further visual inspection it is evident that the LiDAR dataset by itself will be unable in 

most cases to provide the necessary information to model roof details and instead will 

probably result in very generalised roof models. Thus additional roof features will need to be 

extracted from the aerial photography as mentioned before. 

 

4.3. Study area (The University of Nottingham, University Park campus) 
 

The third and final study area selected for further implementing and optimizing the semi-

automated workflow was the University Park, the main campus for The University of 
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Nottingham. University Park campus is located just 3.2km west of Nottingham’s city centre 

with a total area of 133 hectares.  The study area consists of various building structures with 

different architecture ranging from residential buildings with flat and gable type roofs to 

industrial buildings with complicated roof details. The topography of the terrain is 

characterized by rolling hills with dense vegetation and tree clusters present in many 

locations (figure 72). 

 

Figure 72. Satellite view of the third study area located in The Nottingham University Park campus 

 

The third study area presents a less difficult environment to model since most of the building 

roofs are less complex than the second study area over London - Bloomsbury. One of the 

most complicated buildings is one of the chemical engineering buildings (figure 74) due to 

the ventilation equipment and pipes present on the roof. Because this area is not as complex 

as the previous, it was decided that this area should be the basis for evaluating an optimized 

or adapted workflow for 3D modelling without the use of costly LiDAR data. Note that the 
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proposed workflow for the first two study areas is based on the synergy or data fusion of 

LiDAR with aerial photographs. In contrast for the third study area a revised workflow is 

presented for semi-automatic 3D modelling using only aerial photographs and effectively 

substituting the LiDAR data with Very Dense DSMs (VDDSM). The decision to exclude 

LiDAR was based on the fact the there is still limited availability for urban areas and due to 

the increased cost for data supply. It was also an excellent opportunity to test whether the 

high resolution UltraCamD images could substitute LiDAR data. 

Hence the third study area presents a significant deviation from the initial workflow and 

highlights the adaptability of the proposed method in alternative scenarios with limited data 

sources. In the subsequent sections this study area will be simply referred to us ‘Nottingham 

test site’ for convenience. 

4.3.1. Data Provided 
 

A block of high resolution aerial imagery from the UltraCam D sensor was collected and 

distributed by BlomAerofilms Ltd. for research purposes. 

 

4.3.1.1. UltraCamD images 
 

A block of 85 UltraCamD images was provided by Blom Aerofilms Limited captured in 

November 2006 over the University 

Park campus. The block of images 

consists of 4 strips flown west to east 

and reverse, with 20% lateral overlap 

and 60% forward overlap. Flight 

altitude was 500m that led to a 6cm 

GSD. The composite true-color 

images have 11500x7500 pixels.  
Figure 73. The block of UltraCam images with the distribution 

of GCPs 
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Each pixel has 9ȝm physical dimensions while the nominal focal length was equal to 

101.4mm. In-flight GPS and IMU data were also available. 

A total number of 37 coordinated ground points were available with a good distribution in the 

block of images (figure 73). These points were collected using static GPS observation of at 

least 20 minutes in duration and an estimated accuracy of 3cm which was used as the 

standard deviation of the ground control points in the aerial triangulations.  

One of the main advantages of using the UltraCam D images for this study area is the 

impressive radiometric quality and ground resolution as indicated in section 3.8 that has the 

potential to create very dense DSMs to substitute the absence of LiDAR data. The overall 

quality and ground resolution of the UltraCam images is indicated in figure 74. 

 

Figure 74. Subset of an UltraCam D image over Nottingham test site representing one of the chemical 
engineering buildings of increased roof complexity 
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Figure 75 ADS40 data workflow for the production of the orientation data 
imagery. 

5. PRE-PROCESSING AND DATA PREPARATION 
 

This chapter describes in detail the pre-processing analysis implemented in the three 

different study areas in order to prepare the datasets before utilising the proposed workflow. 

The chapter contains information and critical analysis of the results obtained from the aerial 

triangulations of the airborne images. It is important to note that trying to automate the AT 

process was beyond the scope of this research. Instead conventional workflows and 

software packages were used during this stage in order to define the ‘benchmark’ or the 

optimum results for each dataset and study area. 

 

5.1. Switzerland data – Pre-processing and AT of the ADS40 imagery 
 

The first step of the post-processing includes the determination of the position and 

orientation of each scan line in the imagery based on the GPS and IMU data. At this stage 

optional GPS base station data are also included, to calculate the smoothed best estimate of 

trajectory.  

 

 

 

 

 

 

 

 

 



145 

 

Since different lines may be using different sampling frequencies, the data are processed 

into separate files for all sensor lines. Thus, at the end of this processing step, there is one 

data file for each sensor line, containing the position and attitude for each line of the image. 

Figure 75 indicates the workflow for the generation of the orientation data required for the 

rectification of the Level 0 imagery. Note that because this operation requires access to the 

raw positioning data and the use of the proprietary software Leica GPro the processing of 

the orientation data ODF and generation of Level 0 imagery was performed by Leica 

Geosystems. 

After post-processing the GPS/IMU data, the position and attitude files are created which are 

represented as the orientation data ODF. These parameters together with the camera 

calibration and a simplified interior orientation of the camera are used to rectify the images. 

The rectification consists of correcting the distortions present in the Level 0 images by 

projecting the data to a ground plane at a user-specified elevation. This allows the correction 

of the aircraft motion and results in the Level 1 imagery that can be used in various software 

packages for further processing. Figure 76 indicates the workflow for the production of Level 

1 images. 

 

 

 

 

 

 

 

 

Figure 76 ADS40 data workflow for the production of Level 1 imagery 
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During the generation of the Level 1 imagery, the continuous strip of data is divided in user 

defined blocks for displaying the data. However the imagery is still treated as continuous 

strips by the ground processing system. Additionally during the rectification process, a look 

up table is created which provides a fast method for applying a transformation between the 

raw Level 0 images and the Level 1 images. This information is necessary, in order to 

recover the instantaneous position and attitude associated with any pixel in the Level 1 

image and subsequently used for an aerial triangulation (Tempelmann, et al. 2000). 

Apart from the rectified images the ground processing system can produce the “precision 

Level 1” imagery that results in a high resolution stereo viewable imagery. It uses an existing 

DEM and combines both lines of the staggered pairs and the geometric model of the sensor.  

 

Further processing of the ADS40 Level 1 imagery was applied by performing an aerial 

triangulation. This stage is implemented in order to precisely determine the exterior 

orientation by combining the short-term, high frequency precision of the IMU system with the 

Figure 77 ADS40 data workflow for the aerial triangulation 



147 

 

high global accuracy of GPS.  Because of the integrated GPS/IMU, the requirements for 

ground control points are greatly reduced. Figure 77 indicates the workflow for the aerial 

triangulation using SOCET SET®. 

The aerial triangulation is performed using a combined bundle adjustment that compensates 

systematic effects, which include primarily the misalignment between IMU and camera axes 

and the datum differences between IMU/GPS. The combined bundle adjustment uses the 

generalized collinearity equations to determine the position and orientation for the sensor 

lines at a certain interval, which are called orientation fixes. The orientation and position of 

the sensor lines between two orientation fixes are determined by interpolation using the 

IMU/GPS measurements. The generalized collinearity equations are given below. 

 

Where the Xk,Yk,Zk and Xk+1,Yk+1,Zk+1 define the position of the two GPS fixes and Ȧț, ĳț, kk, 

Ȧț+1, ĳț+1, kk+1 define the orientation angles given by the IMU. The triangulation process 

involves automatic measurement of tie points and interactive measurement of control points 

using the APM module from SOCET SET®. The observations are image coordinates, and 

the position/attitude values computed by the IMU/GPS post processing software. The 

observation equations used to compensate datum differences are: 

 

The left-hand side indicates the co-ordinates calculated from the integrated IMU/GPS 

system, derived from the post-processing software, which has corrected the measurements 

from the offset between the antenna and the projection centre. The right-hand side indicated 

the position of the projection centre as calculated from the bundle adjustment. In between 

are the 7 parameters of the 3D similarity transformation that are treated as unknowns in the 

bundle adjustment (Tempelmann, et al. 2000). 

(5.1) 

(5.2) 
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The results from the aerial triangulation 

performed on the ADS40 image strips is 

given in table 13. The aerial triangulation was 

based on the 34 GCPs provided from Leica 

Geosystems Ltd with an estimated precision 

of 5cm. Due to the non-optimal distribution (all 

gathered around Leica’s facilities) and due to the relatively small image scale (25cm GSD) 

the results obtained are not indicative of the achievable performance of the ADS40 sensor 

compared to results from other researchers as shown in section 3.1.4.  

 

5.2. London - Aerial Triangulation of RC30 scanned aerial photographs 
 

In contrast to the ADS40 data the RC30 aerial photographs were processed using traditional 

workflows in Leica Photogrammetry Suite (LPS), by performing the interior orientation, 

measuring GCPs and automatic tie points and carrying out the aerial triangulation. In 

addition in order to identify the optimum solution several AT results are presented using 

different self calibration models. 

5.2.1. Interior orientation  
 

The process of interior orientation reconstructs the bundle of 

light rays passing through the perspective centre as they 

existed during the image acquisition. The first stage is to 

transform the pixel co-ordinate system of the digital images in 

the camera’s co-ordinate system defined by the axes of the 

fiducial marks and the position of the principal point. The 

specific frame camera has eight fiducial marks and figure 78 

provides an overview of their position in the frame. 

Total image 
unit weight 
RMSE = 
7.8ȝm 

Control Point 
RMSE (no pts) 

Check Point 
RMSE (no pts) 

Ground X m 0.188  (10) 0.205  (24) 

Ground Y m 0.162  (10) 0.192  (24) 

Ground Z m 0.215  (10) 0.271  (24) 

Image x µm 4.6     (30) 3.8   (72) 

Image y µm 3.5     (30) 3.9   (72) 

1 2 

3 4 

5 

6 

7 

8 

Table 13 Aerial Triangulation results from the 
ADS40 imagery 

Figure 78 Location of the fiducial 
marks in the frame 
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The measurement of the fiducial marks using a semi-automatic process, whereby the first 

two points are measured manually and the rest are automatically measured using a cross-

correlation matching algorithm using a primitive target matched against the fiducial mark.  

The cross-correlation matching uses a cross correlation coefficient as the main variable. An 

important key parameter in the internal orientation is the selection of the most appropriate 

mathematical model for the two dimensional transformation. Most softcopy photogrammetric 

system have either a 2D similarity transformation (four unknown parameters) or an affine 

transformation to correct distortions caused by non orthogonality and different scale 

distortions along the two axes. In order to account for any film distortions the affine 

transformation is selected in this project. The results from the interior orientation are 

summarized in table 14. 

Image 1 (residuals in pixels) 

RMSE:      0.47 pixels  or  6.7ȝm 

Point ResidualX ResidualY Coeff 

1 0.15 -0.18  

2 0.13 0.29  

3 -0.31 -0.43 0.92 

4 0.51 -0.39 0.96 

5 -0.04 -0.15 0.99 

6 -0.62 -0.09 0.92 

7 0.04 0.67 0.91 

8 0.12 0.33 0.96 

 

 

 

 

 

 

Table 14 The interior orientation results from the automatic measuring process 

Image 2 (residuals in pixels) 

RMSE:      0.48 pixels  or  6.8ȝm 

Point ResidualX ResidualY Coeff 

1 0.26 -0.56  

2 -0.01 0.40  

3 -0.28 -0.08 0.92 

4 0.35 -0.56 0.96 

5 0.09 0.10 0.98 

6 -0.50 -0.15 0.97 

7 0.25 0.55 0.93 

8 -0.18 0.29 0.96 

Image 3 (residuals in pixels) 

RMSE:      0.40 pixels  or  5.6ȝm 

Point ResidualX ResidualY Coeff 

1 0.23 -0.27  

2 -0.02 0.17  

3 -0.10 -0.34  

4 0.30 -0.31 0.97 

5 0.18 0.04 0.99 

6 -0.46 -0.15 0.96 

7 0.19 0.55 0.94 

8 -0.32 0.29 0.97 
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Investigating the results from the interior orientation we can easily identify the high cross 

correlation coefficient used in all matches. This indicates significant reliability and matching 

precision. The total RMS of 6ȝm for the transformation is typical of what is expected from 

relatively old scanned photographs where scanning and film distortions might be present. 

The interior orientation was also performed using manual observations but in most cases the 

results were not improved and even got worse. 

 

5.2.2. Automatic tie point extraction and GCP measurement 
 

A total of 11 GCPs were available for this study area.  The ground control point observations 

were performed using static observations using dual frequency GPS receivers and in many 

cases the duration was extended well beyond 30min in order to account for errors caused by 

multipath and limited open horizon due to tall buildings. The estimated precision from the 

differentially post processed GPS observations was 

10cm. 

The observation of the GCPs on the aerial 

photographs in many cases was hindered by the poor 

radiometric quality of the scanned images. In addition 

the points did not have an optimal distribution (figure 

79) since the GCPs were initially measured for a 

previous pair of photographs that had less coverage of 

the study area.  

The automatic tie point measurement in LPS is an 

area based matching algorithm, utilizing a least 

squares correlation workflow.  

Figure 79 Distributions of the GCPs 
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Least squares correlation uses the least squares estimation to derive parameters that best fit 

a search window to a reference window. It accounts for both gray scale and geometric 

differences, making it especially useful when ground features on one image look somewhat 

different on the other image (differences which occur when the surface terrain is quite steep 

or when the viewing angles are quite different).  

Least squares correlation is iterative. The parameters calculated during the initial pass are 

used in the calculation of the second pass and so on, until an optimum solution is 

determined. Least squares matching can result in high positional accuracy (about 0.2 pixels). 

However, it is sensitive to initial approximations. The initial coordinates for the search 

window prior to correlation must be accurate to about two pixels or better. Thus the process 

requires either a good distribution of existing tie points measured by the operator or 

previously measured GCPs to determine the Exterior Orientation values of each image. 

In most softcopy photogrammetric systems the change in gray values between two 

correlation windows is represented as a linear relationship given below.  

g2(c2, r2) = h0 + h1g1(c1, r1)  

Also assume that the change in the window’s geometry is represented by an affine 

transformation. 

c2 = a0+a1c1+a2r1 

r2 = b0+b1c1+b2r1 

In the above equations, 

c1,r1 = the pixel coordinate in the reference window 

c2,r2 = the pixel coordinate in the search window 

g1(c1,r1) = the gray value of pixel (c1,r1) 

g2(c2,r2) = the gray value of pixel (c2,r2) 

h0, h1 = linear gray value transformation parameters 

a0, a1, a2 = affine geometric transformation parameters 

b0, b1, b2 = affine geometric transformation parameters 

 

(5.3) 

(5.4) 
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Based on the above assumptions, the error equation for each pixel is derived, as shown in 

the following equation: 

 

v = (a1+a2c1+a3r1)gc+(b1+b2c1+b3r1)gr – h1 – h2g1(c1, r1)+ǻg  

with ǻg = g2(c2, r2)– g1(c1, r1) 

The values gc and gr are the vertical and horizontal gradients for pixels g2(c2,r2) based on 

the brightness difference with surrounding pixels. The results from the implementation of the 

auto tie point extraction are given in table 15 with the distribution represented in figure 80. 

 

 

 

 

 

 

 

 

In total 53 unique points were extracted with a satisfactory distribution since most of the 

overlapping area was covered by tie points. At this point we have to note that the auto tie 

point extraction process is much more reliable when adequate number of GCPs or tie points 

are measured beforehand. This is because by having measured GCPs or tie point before 

hand the exterior orientation and therefore the relationship of the images can be established 

and effectively minimise any mismatches of conjugate points. A visual inspection was also 

carried to identify and gross errors and mismatched points without excluding any tie points. 

Img ID 
Num of 

Intended 
Pts 

Num of 
Pts Found 

Num of 
Patterns 

Point 
Success 

Rate 

Pattern 
Success 

Rate 

1 50 33 25 66.00% 46.00% 

2 50 52 25 100.00% 76.00% 

3 50 36 25 72.00% 52.00% 

Average Point Success Rate: 79.33% 

Average Pattern Success Rate:  58.00% 

Total unique tie points found:  53 

Figure 80 Distributions of the tie 

points in the stereo model 

Table 15 Report from the auto tie point extraction 

(5.5) 

(5.6) 
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5.2.3. Aerial Triangulation results 
 

The AT in LPS employs a least squares adjustment to estimate the unknown parameters, 

including the exterior orientation parameters, co-ordinates of tie points and any additional 

self-calibration parameters we may have. The least squares adjustment is achieved by 

minimizing and distributing data error through the network of observations. Data errors are 

attributed to the inaccuracy associated with the input GCP coordinates, measured tie point 

and GCP image positions, camera information, and systematic errors. The least squares 

approach requires iterative processing until a solution is attained. A solution is obtained 

when the residuals, or errors, associated with the input data are minimized. 

A simplified version of the least squares condition can be broken down into a formula that 

includes a weight matrix P, as follows 

V = A X – L 

Where: 

V = the column matrix containing the image coordinate residuals 

A = the matrix containing the partial derivatives with respect to the unknown parameters, including 

exterior orientation, interior orientation, XYZ tie point, and GCP coordinates 

X = the column matrix containing the corrections to the unknown parameters 

L = the column matrix containing the input observations (i.e., image coordinates and GCP 

coordinates) 

 

The A matrix is formed by differentiating the functional model, which is based on collinearity 

equations, with respect to the unknown parameters such as exterior orientation, etc. The L 

matrix is formed by subtracting the initial results obtained from the functional model with 

newly estimated results determined from a new iteration of processing. The X matrix 

contains the corrections to the unknown exterior orientation parameters. The X matrix is 

calculated in the following manner. 

 

(5.7) 

(5.8) 
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Where: 

X = the column matrix containing the corrections to the unknown parameters t 

A = the matrix containing the partial derivatives with respect to the unknown parameters 

t = the matrix transposed 

P = the column matrix containing the weights of the observations 

L = the column matrix containing the observations 

The first set of results for the London datasets were computed without any additional self 

calibration model. In addition 5 points were chosen as ground control points with 10cm 

precision, 5 points were selected as check points while one GCP was excluded due to high 

residuals (distribution of GCPs and check points is given in figure 81). The interior 

orientation parameters were kept fixed and the initial Exterior Orientation (EO) values were 

left floating. Note that no initial values were provided since no in-flight GPS/IMU data were 

available, instead the EO values were set as ‘unknown’. The triangulation converged due to 

the amount of GCPs available to initialise the EO parameters. Results from the first trial AT 

trial are summarised in figure 81 and table 16. 

1ST Aerial Triangulation trial 

 

 

 

 

 

 

 

  

 

 

 

Total image 
unit weight 
RMSE = 
6.2ȝm 

Control Point 
RMSE (no pts) 

Check Point 
RMSE (no pts) 

Ground X m 0.069  (5) 0.103  (4) 

Ground Y m 0.071  (5) 0.150  (4) 

Ground Z m 0.064  (5) 0.171  (4) 

Image x µm 2.5     (12) 1.8   (86) 

Image y µm 2.8     (12) 4.9   (86) 

Figure 81 Ground residuals for control 
and check points from Trial 1           

(scale           = 10cm). 
(ǻ = control points, O = check points) 

Table 16 Image and ground residuals from AT 
results without self calibration – Trial 1 
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From the results shown in table 16 it is evident that even without any self calibration 

parameters and no in-flight GPS the results are satisfactory given the poor radiometric 

quality and the ground resolution (8cm). Most of the ground residuals of the GCPs are of 

subpixel accuracy while the check points exhibit larger residuals as expected. There is no 

apparent systematic pattern in the image residuals as represented in figure 85 but this is 

primarily related to the limited number of GCPs. No significant image residuals are present 

exempt from very few exemptions in some of the check points. No mismatches or gross 

errors were observed in the tie points while the overall image residuals are within the range 

of 0.4-0.5 pixels. 

In addition different self calibration models were also defined in an effort to optimise the AT 

results. However the use of self calibration models introduced even larger ground residuals 

in the check points. A typical example of this is given in figure 82 and table 17 using the 

Jacobsen model with 4 additional parameters. 

 2nd Aerial Triangulation trial 

 

 

 

 

 

 

 

 

 

 

Total image 
unit weight 
RMSE = 
5.6ȝm 

Control Point 
RMSE (no pts) 

Check Point 
RMSE (no pts) 

Ground X m 0.056  (5) 0.106  (4) 

Ground Y m 0.050  (5) 0.152  (4) 

Ground Z m 0.031  (5) 0.241  (4) 

Image x µm 1.8     (12) 1.8   (86) 

Image y µm 2.7     (12) 4.9   (86) 

Figure 82 Ground residuals for control 
and check points from Trial 2         

(scale           = 10cm) 
(ǻ = control points, O = check points) 

Table 17 Image and ground residuals from AT 
results Jacobsen’s self calibration model – Trial 2 
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In table 17 we can clearly notice the introduction of significant vertical ground residuals in the 

check points. Clearly the self calibration model in an effort to distribute the image residuals is 

introducing large vertical ground residuals. There is also a noticeable forcing of the solution 

on the GCPs, particularly in the vertical direction, even though the block was left floating. 

There are only minor differences as to the direction and pattern of the residuals as illustrated 

in figure 82. 

In conclusion better results might have been obtained from self calibration models if more tie 

points were extracted but the first trial was considered satisfactory for the objectives and 

requirements of this project.   

 

5.3. The University of Nottingham campus - Aerial Triangulation of 
UltraCamD imagery 

 

This section describes in detail the pre-processing of the block of 85 UltraCamD images 

consisting of the interior orientation, ground control and tie point measurement as well as 

several aerial triangulation results using different parameters.  

5.3.1. Interior orientation 
 

The UltraCam D imagery was delivered as a single image tile with 11500x7500 pixels and as 

such the interior orientation can be defined by specifying the calibrated focal length, the 

position of the principal point, lens distortion parameters and the physical dimensions of the 

CCD. Since digital sensors do not have any fiducials marks the physical dimensions of a 

single CCD detector will suffice for the reconstruction of the camera geometry. The block of 

images was also accompanied by an up-to-date camera calibration report, performed one 

year before the image acquisition.  
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The radiometric calibration is based on a series of 60 flat field images for each aperture size 

and sensor. The flat field is illuminated by two normal light lamps with known spectral 

illumination curves. These images are used to calculate the specific sensitivity of each pixel 

to compensate local as well as global variations in sensitivity. Sensitivity tables are 

calculated for each sensor and aperture setting, and applied during post processing from 

level 0 to level 1. Outlier Pixels that do not have a linear behaviour as described in the CCD 

specifications are marked as defective during the 

calibration procedure. These pixels are not used or only 

partially used during post processing and the 

information is restored by interpolation between the 

neighbourhood pixels surrounding the defective pixels. 

Certain pixels that are named Qmax pixels due to the 

fact that they can only store and transfer charge up to a 

certain maximum amount are detected in an additional 

calibration step. These pixels are treated differently 

during post processing, since their behaviour can affect 

not only single pixel values but whole columns. 

 

The orientation of the camera co-ordinate system is 

also defined in the calibration report in relation to the 

flight direction as indicated in figure 83. As there are no measurements made by the 

operator to establish the relationship between the pixel co-ordinate system and the photo-co-

ordinate system there are no errors reported for the transformation. This does not mean the 

interior orientation is error free. Lens distortions (radial and tangential) could still be present 

for example or deformation on the CCD sensor due to thermal variations. 

 

Figure 83 Camera co-ordinate 
system for UltraCam D as defined 
by the camera calibration report 
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5.3.2. Automatic tie point extraction and GCP measurement 
 

A total number of 37 coordinated ground points were available. These points were collected 

using static GPS with an estimated accuracy of 5cm which was used as the standard 

deviation of the ground control points in the triangulations. The observation for the GCP in 

UltraCamD images was performed manually. Most of the GCP were easily identifiable due to 

the good radiometric quality of the images. The tie points for the UltraCamD block were 

automatically extracted using a cross-correlation area based matching technique available in 

Leica Photogrammetric Suite (LPS) as described in section 5.2.2. Blunders and mismatched 

points were identified manually by the operator based on the image residuals and were 

excluded in an iterative process after rerunning the AT. A total of 1000 tie points were 

extracted while 100 tie points were manually excluded after analyzing the image residuals. 

From the 37 points available in the area 5 points were excluded from all the Aerial 

Triangulation results due to high residuals, 8 were selected as control points and 24 check 

points for the first two AT trials while only one control point was selected for the third and 

fourth AT trials. The distribution of the tie points and control/check points are shown in 

figures 84 and 85 respectively. 

 

 
Figure 84 Distribution of measured 

control (ǻ) and ckeck points (ȅ) 
Figure 85 Distribution of extracted tie 

points 
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5.3.3. Aerial Triangulation results 
 

The aerial triangulation trials consist of four different solutions using a combination of 

different parameters. In the first two trials in-flight GPS and IMU data are used only as initial 

values without any weighting so that effectively the block is not constrained during the least 

squares iterations. The difference between the first and second trial is the introduction of a 

self calibration model. In addition the third and fourth trials use the in-flight GPS/IMU with 

appropriate weighting and only one control point in an effort to evaluate the direct 

georeferencing performance of the provided imagery. Again the third and fourth AT trials are 

distinguished by the utilization of self calibration models. 

During the aerial triangulation computations 5 points were rejected due to large image or 

ground control residuals. The results from the best self-calibration method are presented.  

1st AT trial: The first Aerial Triangulation trial was conducted using the in-flight GPS/IMU 

only as initial values. The block was left floating. Using 8 control and 24 check points. 

Control points had 5cm standard deviation for the weighting. No additional self calibration 

model was used and the interior orientation parameters were kept fixed. Figure 86 and table 

18 illustrate the distribution and magnitude of ground residuals respectively. 

 

 

 

 

 

 

 

Total image 
unit weight 
RMSE = 
3.1ȝm 

Control 
Point 

RMSE (no 
pts) 

Check 
Point 

RMSE (no 
pts) 

Ground X m 0.064  (8) 0.058  (24) 
Ground Y m 0.057  (8) 0.049  (24) 
Ground Z m 0.057  (8) 0.148  (24) 
Image x µm 2.7     (21) 3.0     (86) 
Image y µm 2.8     (21) 2.5     (86) 

Figure 86 Ground residuals for control and 
check points from Trial 1                   

(scale           = 5cm) 
(ǻ = control points, O = check points)  

Table 18 Image and ground residuals from AT 
results. No self calibration model – Trial 1 



160 

 

2nd AT trial: The second Aerial Triangulation trial was conducted using the in-flight GPS/IMU 

only as initial values. The block was left floating, using 8 control and 24 check points. Control 

points had 5cm standard deviation for the weighting. The best self calibration model was the 

Jacobsen model with 4 additional parameters. Figure 87 and table 19 illustrate the 

distribution and magnitude of ground residuals respectively. 

 

 

 

 

 

 

 

 

 

3rd AT trial: The third Aerial Triangulation trial was conducted using the in-flight GPS/IMU 

with an appropriate standard deviation as weighting that reflects the expected precision of 

the GPS/IMU performance and minimizes the ground and image residuals. Thus in order to 

evaluate the direct georeferencing of the provided data only 1 control point was used, 

located in the centre of the block, while 31 check points were used. In a direct geoferencing 

scenario the weighting of the EO values is critical to the performance of the aerial 

triangulation and in many cases adjustment needs to be made in the weighting so that 

optimal results are achieved. The reader should note that the weighting should reflect the 

Total image 
unit weight 
RMSE = 
2.9ȝm 

Control 
Point 

RMSE (no 
pts) 

Check 
Point 

RMSE (no 
pts) 

Ground X m 0.049  (8) 0.055  (24) 
Ground Y m 0.035  (8) 0.042  (24) 
Ground Z m 0.025  (8) 0.106  (24) 
Image x µm 2.7     (21) 2.9     (86) 
Image y µm 1.8     (21) 2.5     (86) 

Figure 87 Ground residuals for control and 
check points from Trial 2                  

(scale        = 5cm) 
(ǻ = control points, O = check points)  Table 19 Image and ground residuals from AT 

results. Jacobsen self calibration model – Trial 2 
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expected precision of the EO values. In this project after a trial an error the weighting for the 

Xo,Yo,Zo, was set to 0.3m and for the Ȧ,ĳ,ț to 0.05o. The selected standard deviation 

values minimised the residuals as well as reflecting the expected precision of the raw EO 

values. Any increase or decrease from the selected weighting was increasing ground 

residuals. Note that the positional accuracy of the EO values was less than expected due to 

the quality of the GPS data and reference stations used during the GPS post-processing. 

For this trial no self calibration model was used. Figure 88 and table 20 illustrate the 

distribution and magnitude of ground residuals respectively. 

 

 

 

 

 

 

 

 

 

 

 

4th AT trial: The fourth and last Aerial Triangulation trial was conducted using the in-flight 

GPS/IMU with an appropriate standard deviation as explained previously. Only 1 control 

point was used, located in the centre of the block, while 31 check points were used. The 

weighting of the raw EO values for the Xo,Yo,Zo, was set to 0.3m and for the Ȧ,ĳ,ț to 0.05o. 

Total image 
unit weight 
RMSE = 
3.7ȝm 

Control 
Point 

RMSE (no 
pts) 

Check 
Point 

RMSE (no 
pts) 

Ground X m 0.112  (1) 0.088  (31) 
Ground Y m 0.002  (1) 0.116  (31) 
Ground Z m 0.048  (1) 0.135  (31) 
Image x µm 3.0     (2) 2.8     (105) 
Image y µm 2.6     (2) 2.5     (105) 

Figure 88 Ground residuals for control and 
check points from Trial 3                  

(scale        = 5cm) 
(ǻ = control points, O = check points)  

Table 20 Image and ground residuals from AT 
results. No self calibration model – Trial 3 
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The selected standard deviation values minimised the residuals as well as reflecting the 

expected precision of the raw EO values. Any increase or decrease from the selected 

weighting was increasing the ground residuals. For this trial Bauer’s simple self-calibration 

model with 3 additional parameters presented the best results. Figure 89 and table 21 

illustrate the distribution and magnitude of ground residuals respectively. 

 

 

 

 

 

 

 

 

 

 

From the trials presented above it is clear that the optimum result with the lowest ground 

residuals is the second trial using Jacobsen’s self-calibration model and 8 ground control 

points. Nevertheless it is important to note the impressive performance of the direct geo-

referencing when it comes to in-flight GPS/IMU. The fourth trial with the use of Bauer’s 

simple self calibration model presents satisfactory results even with the use of only one 

GCP. However we could expect even better performance for the in-flight GPS data. From a 

Total image 
unit weight 
RMSE = 
3.6ȝm 

Control 
Point 

RMSE (no 
pts) 

Check 
Point 

RMSE (no 
pts) 

Ground X m 0.105  (1) 0.046  (31) 
Ground Y m 0.009  (1) 0.087  (31) 
Ground Z m 0.009  (1) 0.116  (31) 
Image x µm 3.2     (2) 2.8     (105) 
Image y µm 1.1     (2) 2.5     (105) 

Figure 89 Ground residuals for control and 
check points from Trial 4                  

(scale        = 5cm) 
(ǻ = control points, O = check points)  

Table 21 Image and ground residuals from AT 
results. Bauer’s simple self calibration model – 

Trial 4 
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comparison between the raw EO values and the calculated EO values after the AT there 

were significant positional deviation of the order of 0.5m. The 0.3m standard deviation 

chosen for the in-flight position reflects the non optimal GPS performance. The in-flight 

inertial system performed much better with the standard deviation in the order of 0.05 

degrees. In both cases the use of self calibration parameters seems to improve primarily the 

vertical ground residuals and the overall image residuals as well. Investigating the 

distribution of the ground residuals in the first two cases there is no noticeable pattern with 

some higher residuals concentrated on the left from the block’s centre. In contrast the aerial 

triangulation results using the in-flight GPS/IMU have noticeable patterns. In the third trial the 

residuals seem to have two predominant directions while in the fourth trial the influence of 

the self calibration model in re-distributing the residuals is evident and the patterns noticed 

before less obvious. 

For the remaining tasks of this project and the implementation of the design algorithms the 

result from the second trial are adopted. With a planimetric accuracy, as given by the check 

points, in the sub-pixel range and 10cm vertical ground residuals, the results are considered 

satisfactory for the requirements of the project. 
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6. PROPOSED WORKFLOW FOR AUTOMATIC 3D CITY 
MODELLING AND ANALYSIS OF THE RESULTS 

 

This chapter provides a detailed description of the proposed semi-automatic workflow for 3D 

city modelling and analyzes the results from the implementation of the algorithms in the 

three study areas. It is divided in four main sections each describing the algorithms and 

analysing the results created for extracting features from optical data, classifying LiDAR or 

Very Dense Digital Surface Models (VDDSM), data fusion for optimising building footprint 

and 3D polyhedral modelling. The design workflow and algorithms are implemented in such 

a way as to decrease the level of user interaction and it has been refined so that it produces 

acceptable results in all the three test sites and as such is reliable in different areas with 

various data sources available. The individual stages were designed to address the issues 

introduced in the building reconstruction process with the potential view to be fully 

automated.  

6.1. Overview of the proposed method  
 

The proposed workflow (see figure 90) for semi-automated 3D city modelling can be 

summarised as follows. The dashed outlines in figure 90 indicate that the enclosed 

processes are described in a particular section. 

• Perform aerial triangulation (AT) on the block of images. Extracting edges from 

images using Laplace or Sobel operators. Extracted edges used for optimized stereo 

matching. 

• If LiDAR data are available linear segments are extracted using geomorphometric 

parameters and used to refine the building footprints. If LiDAR data are not available 

stereo matched points are used to refine footprints and roof details by fitting 3D linear 

segments. The linear segments are used to create an optimized TIN which is 

converted to a VDDSM. 
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• Classification is performed either on the LiDAR data or on the VDDSM to extract the 

ground surface, tree clusters and perform the building detection. Finally 3D city 

modelling is performed using least squares plane fitting on classified building points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 90 Flow chart diagram indicating the proposed workflow for semi-automated 3D 
city modelling 
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Although the method utilizes the provided datasets, most of the processing steps were 

designed in order to be efficient in a variety of different situations. That is, the proposed 

method is not limited in using for example only sensors that collect multispectral optical data, 

but instead provide reliable results even when scanned aerial photographs are used. In fact 

the provided data were limited to panchromatic bands and true colour composites. Hence, 

the method had to utilize more generic approaches for solving certain aspects of the 

processing stages.  

Nevertheless the crucial aspect of this method is the use of data fusion techniques between 

two different datasets, optical and LiDAR data in this case, in order to enhance the overall 

result. The improvement from the proposed method is apparent in both the generation of the 

building hypothesis and the building reconstruction phases. In addition in order to improve 

the scope of the workflow and deal with the limited availability of LiDAR data (note that the 

third test site didn’t include any LiDAR data) there is an alternative process for creating very 

dense digital surface models (VDDSMs) to substitute LiDAR data. 

The method for feature extraction follows the general workflow of the method proposed in 

Chen et al. (2004). According to this method the approximate location of the edges, 

constituting the vertical walls and additional roof features, are extracted initially from the 

LiDAR point cloud (if available) and subsequently are refined based on the linear features 

derived from the optical data. The information from the linear features will not only refine and 

improve the accuracy of the building outlines but provide information for smaller roof details 

that are not modelled correctly in the case of using only low density LiDAR data.  A major 

difference of the proposed method is that the adjustment of the building outlines and related 

features will be performed using a least square adjustment and not the Hough transform 

used in Chen et al. (2004). The reason for not implementing the Hough transform is because 

it’s a brute-force method which can be very complex and computationally demanding. Thus it 

has two main disadvantages, large memory requirements and slowness.  
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From the diagram depicted in figure 90, it’s evident that the creation of building hypothesis 

(building detection) is applied on a LiDAR point cloud or VDDSM for classifying the data. 

This stage is briefly mentioned in the diagram but in fact is one of the most complicated 

stages of the entire project. This stage requires a certain level of user interaction and 

therefore the entire procedure of building detection is only semi-automated. 

 

6.2. Extracting features from optical data 
 

The section describes the process of extracting 

conjugate points from the available stereo pair of 

images as shown in figure 91. The results from the 

aerial triangulations were presented in chapter 5. 

There are three main steps for extracting the 

desired features from the optical data: 

• Select the most appropriate stereo pair, if 

multiple overlapping images exist, for the 

study area. 

• Apply edge detector and add the extracted 

features to the radiometric values of the 

initial image. 

• Optimize stereo matching algorithm for 

extracting conjugate points in urban areas. 

 

At this point it is important to summarise some of the 

previous research efforts in stereo matching from airborne and satellite imagery to set the 

background for the work that was carried out in this section. Most stereo matching 

techniques can be categorised as either area-based methods or feature-based methods. 

Area-based methods, sometimes called correlation-like methods or template matching 

(Fonseca and Manjunath, 1996) merge the feature detection step with the matching part. 

Aerial imagery 

Perform AT 

Apply edge detector Laplace 

or Sobel and extract edges 

Optimise stereo matching 

algorithm using appropriate 

strategy. Use edges for 

stereo matching. 

Figure 91 Subset of overall workflow 
showing the process of feature 
extraction. Colours indicate the 

software used for each operation 

 
Leica Photogrammetry 

Suite (LPS) 
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These methods deal with the images without attempting to detect salient objects. Windows 

of predefined size or even entire images are used for the correspondence estimation during 

the second registration step, (Althof et al., 1997). The limitations of the area-based methods 

originate in their basic idea. Firstly, the rectangular window, which is most often used, suits 

the registration of images which locally differ only by a translation. If images are deformed by 

more complex transformations, this type of the window is not able to cover the same parts of 

the scene in the reference and sensed images (the rectangle can be transformed to some 

other shape). Several authors proposed to use circular shape of the window for mutually 

rotated images. However, the comparability of such simple-shaped windows is violated too if 

more complicated geometric deformations (similarity, perspective transforms, etc.) are 

present between images.  

Classical area-based methods like cross-correlation (CC) exploit image intensities for 

matching directly, without any structural analysis. Consequently, they are sensitive to 

intensity changes, introduced for instance by noise, varying illumination, and/or by using 

different sensor types. 

In feature-based matching techniques spatial features are usually detected in both images 

and the aim is to find the pair-wise correspondence between them using their spatial 

relations or various descriptors of features. 

Goshtasby and Stockman (1985) described the registration based on the graph matching 

algorithm. He was evaluating the number of features in the sensed image that, after the 

particular transformation, fall within a given range next to the features in the reference 

image. The transformation parameters with the highest score were then set as a valid 

estimate. Clustering technique, presented by Stockman et al. 1982, tries to match points 

connected by abstract edges or line segments. The assumed geometrical model is the 

similarity transform. For every pair of spatial features from both the reference and sensed 

images, the parameters of the transformation which maps the points on each other are 

computed and represented as a point in the space of transform parameters. The parameters 

of transformations that closely map the highest number of features tend to form a cluster, 
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while mismatches fill the parameter space randomly. The cluster is detected and its centroid 

is assumed to represent the most probable vector of matching parameters. Mapping function 

parameters are thus found simultaneously with the feature correspondence. Local errors do 

not influence globally the registration process. The clustering technique was implemented, 

for example, in (Chang et al., 1997). Borgefors (1988) proposed an improved version, where 

better measure of correspondence, the sequential distance transform, together with the root 

mean square average was applied. The algorithm employs also the pyramidal speed-up. 

Even though this overview does not intend to cover 3D registration methods, here the well-

known Iterative Closest Point (ICP) algorithm, introduced by Besl and McKay (1992) is 

mentioned, because it represents a key approach for registering 3D shapes (including free-

form curves and surfaces). 

Feature-based matching methods are typically applied when the local structural information 

is more significant than the information carried by the image intensities. They allow the 

registration of images with completely different nature (like aerial photograph and map) and 

can handle complex between-image distortions. The common drawback of the feature-based 

methods is that the respective features might be hard to detect and/or unstable in time. The 

crucial point of all feature-based matching methods is to have discriminative and robust 

feature descriptors that are invariant to all assumed differences between the images. 

This section presents an effort to combine the advantages of both techniques mentioned 

above by detecting edges on the aerial photographs to enhance the geometric shapes of the 

buildings and then performing a cross correlation, area-based matching. 

 

6.2.1. Selecting appropriate stereo pair 
 

The selection of the most appropriate stereo model may seem a relatively unimportant step 

but in the case of airborne digital sensors such as the ADS40, it becomes an important 

consideration. The reason is that the sensor collects 4 bands of data in three look angles 

resulting in different combinations of stereo pairs. One of the parameters that must be taken 
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into account is the base to height ratio in the vertical accuracy of the extracted conjugate 

points. Therefore, considering only the base to height ratio as a factor, a straightforward 

solution would be to use the 28o forward and 14o backward looking panchromatic bands. At 

this stage, there are two major issues that should also be taken into consideration. That is, 

the possibility of the study area being located outside the overlapping region of the two look 

angles and also the occlusions introduced from the relief displacement. The latter issue is 

the most critical, especially in this specific project, because the stereo matched points are 

subsequently used for adjusting the building outline and therefore, having conjugate points 

representing the planimetric position of all the building façades is more important than 

having the highest vertical accuracy possible. 

The location of the study area should not be neglected, when designing the method, since 

rarely an automatic building reconstruction process will take place in the entire scene, 

because it is very computationally intensive. Therefore it is evident that a check mechanism 

should be introduced in the algorithm to determine the location of the study area on the 

imagery. The proposed method incorporates the generalized collinearity equation for back-

projecting a polygon enclosing the study area at the image space and checking if it is within 

the extend of the image (equation 5.1). 

This check mechanism does not require any substantial user interaction since in most cases 

the polygon, enclosing the study region, is previously defined from the project specifications. 

From the discussion so far it is evident that the optimum selection is to have a stereo pair of 

the nadir and 14o backward looking panchromatic bands in order to have a small 

convergence angle and thus decreased occluded regions. The second option is a stereo pair 

between the nadir and forward looking images. This step applies only to the Swiss study 

area with the availability of the ADS40 data. For this study area the second option was 

selected since there was no overlap between the nadir and backward looking images. 
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6.2.2. Applying edge detection algorithm 
 

The selected edge detector implemented for extracting edge features was the Sobel edge 

detection operator. In principle this operator uses the first derivative of a continuous function 

that is subsequently approximated by the following equation (Duda and Hart, 1972). 
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Where f(x,y) represents a continuous function for the pixel values. 

The above equation leads to the concept of the image gradient for a discrete digital 

representation. Nevertheless in order to be more computationally efficient, this algorithm 

uses a kernel window of size 3x3 to scan the entire digital image. The defined window has 

the following form: 

A B C 

D E F 

G H I 

 

With the utilization of the above kernel window the updated value for the central pixel is 

calculated based on the following equation. The value (S) represents the gradient of the 

central pixel in relation to the surrounding pixel values. 

22
YXS +=                

Where  

)2()2( GDAIFCX ++−++=             

)2()2( IHGCBAY ++−++=             

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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Although there is a variety of edge detection operators, Sobel presents one of the most 

widely used operators. The extracted edges from the implementation of the Sobel operator 

with a 3x3 kernel size in the three study areas are illustrated in figure 92. 

 

 

Switzerland 

London 
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Figure 92 Results from the implementation of the Sobel edge detector in the three study areas 
 

 

At this point it should be noted, that this research effort was focused on implementing a 

reliable edge detector operator that can enhance the image for assisting the stereo matching 

process. Hence the motivation for applying an edge detector is to increase the probability of 

the stereo matching algorithm producing as many conjugate points as possible along the 

enhanced linear features. 

Upon further investigation of the results shown in figure 92, it is evident that the best results 

from the edge detection are achieved in the third study area, using the UltraCam D images 

over Nottingham. The edges from the third study area are sharply defined and there is little 

noise or any major artefacts. The results obtain from the third test site are related to the 

good radiometric quality of the specific images in combination with the high ground 

resolution. A visual comparison of the edges obtained in the three study areas indicates that 

the worst results are obtained over London with significant noise and background artefacts 

Nottingham 
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present in the scene which was due to the poor radiometric quality of the 8bit scanned 

photos, the excessive scattering that took place during the image acquisition and the low 

ground resolution. The result from the Swiss study area were not as impressive as expected, 

although there are several well defined edges it seems that the low resolution of the ADS40 

images for the Switzerland area deteriorated the effectiveness of the Sobel operator. 

Subsequently the extracted edges are merged with the initial aerial imagery in order to 

enhance the discrimination of the linear features present on the optical data. This process 

has no impact in the geometric properties of the image since it influences only the 

radiometric values of the pixels coinciding with the detected edges 

 

6.2.3. Optimised stereo matching 
 

For the specific project the stereo matching was performed using the automatic terrain 

extraction tool available in Leica Photogrammetry Suite (LPS). The stereo matching 

algorithm implemented in LPS calculates the cross correlation coefficient between the 

template window and the search window, in order to identify and match conjugate points 

according to the following equation. 

 

 

 

 

 

From the above equation  

ȡ = the correlation coefficient 

g(c,r) = the DN value of the pixel (c,r)  

c1,r1 = the pixel coordinates on the left image 

(6.6) 

(6.7) 
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n = the total number of pixels in the window 

i,j = pixel index into the correlation window 

 

Based on the cross correlation formulation the proposed method should optimize 3 basic 

parameters in order to provide a reliable solution in urban areas. These parameters include 

the size of the search window, the size of the correlation (template) window and the 

correlation coefficient limit. 

The search window defines the search area along the X and Y direction, where X direction is 

equivalent to the epipolar lines (in aerial photos) in order to locate the conjugate points (in 

the right image) of the previously extracted interest points. The search length in the X 

direction is directly related to the amount of relief displacement present on the scene and 

thus, in urban cases a value of 20 pixels is adequate to account for large relief 

displacements caused by tall buildings. The search length in the Y direction is related to the 

geometric configuration of the stereo pair. In a normal case of a stereo pair, consisting of 

aerial images, the epipolar lines pass over the same scan line between the two images. 

Deviations from the normal case or inaccurate results from the aerial triangulation result in 

an increase in the search length along the Y direction. These deviations from the normal 

case are also increased in the case of the pushbroom sensors.  The proposed method 

utilizes a search length of 5 pixels in the Y direction, which provides adequate results over 

urban areas. 

The correlation or template window defines the size of the area to be matched in the left 

image. This area defines the density of the points of interest and subsequently the density of 

the stereo matched points. For regions containing a high degree of topographic relief this 

window should be small to increase the density of the DSM. The proposed method 

implements a correlation window of size 3x3 in order to extract as many conjugate points 

as possible for the urban area. 

The correlation coefficient limit defines the correlation threshold used to determine whether 

or not two points are considered possible matches. This parameter should be balanced 
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between the desired reliability and density of the extracted points and requires a certain level 

of user interaction. The proposed method used the value of 0.80 with acceptable results in 

all three study areas and could be treated as a default value. At this point it should be noted 

that for the specific method there is more emphasis given to the density of points rather than 

the reliability since any outliers introduced in this stage will be identified and removed in the 

step of data fusion, before adjusting the building outlines and roof polygons. Having an 

adequate amount of conjugate points, describing most of the building footprints and roof 

details, is an important consideration. 

In summary, the values proposed for the parameters of the automatic stereo matching are; 

the search window values are 20 and 5 pixels respectively along the X and Y direction; the 

selected correlation window size is 3x3 and the correlation coefficient limit is 0.80. In 

addition, the stereo matching algorithm was applied only inside the polygons representing 

the study areas in order to reduce the computation requirements. The results from the stereo 

matching are the conjugate points in a 3D shapefile format and therefore no interpolation or 

DEM filtering was applied in the extracted features. 

The stereo matching algorithm can additionally estimate the quality of the extracted points 

which provides a rough indication of the overall performance. This quality statistic is in the 

form of percentage per category, computed from external information, such as GCPs 

available for the study area or the tie points calculated during the aerial triangulation. The 

results from the automated quality system use the following categories: 

Excellent % (1-0.85): 

Good % (0.85-0.70): 

Fair % (0.70-0.5): 

Isolated % (less than 0.3): 

Suspicious % (0.5-0.3):  
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The number in parenthesis is the cross correlation coefficient range calculated for the 

extracted tie points and it’s related to the standard deviation compared to the reference data 

(tie or GCPs). These quality statistics provide the opportunity for automating the stereo 

matching algorithm and minimizing any user interaction when considering the best cross 

correlation coefficient to use. Further details of the iterative adjustment of the cross 

correlation coefficient are given in the proposed algorithm described in Appendix I. Figure 93 

presents the results from the implementation of the optimized stereo matching strategy in the 

three study areas and a comparison against stereo matching results without the use of 

edges . 

 

 

Switzerland 

London – stereo matching with edges 
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Figure 93 Comparison of the optimised stereo matching process with and without the use of edges for 

the three study areas. 

 

From figure 93 it is evident that the majority of the building outlines are adequately described 

by a number of extracted stereo matched points. It is also clear that the introduction of the 

edge enhancement stage prior to stereo matching managed to increase the density of the 

points representing roof details. This is evident in all the three study areas with few 

exceptions. As in the edge extraction process the Nottingham test site presents the best 

 

Nottingham – stereo matching with 
edges 

London – stereo matching 
with edges 

London – stereo matching 
without edges 

Nottingham – stereo matching 
without edges 
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results which are indicative from the high density of the extracted points that represent 

adequately most of the building outlines and roof details. In many cases the stereo matched 

points in the Nottingham test site represent the outline of small roof details such as pipes, 

chimneys and small ventilation equipment. The efficiency of the stereo matching algorithm 

over the Nottingham test site is a combination of the good radiometric quality and very small 

ground resolution of the UltraCam D images. The stereo matched points over London also 

present better results than expected, considering the lower resolution and poor radiometric 

quality from the film scanning. In most cases roof outlines are adequately represented by a 

number of stereo matched points but the level of detail for the inner roof structures is limited 

to larger structures, larger than chimneys and small dormers. The London test site presents 

an additional challenge, that is in many cases the roof texture and material resembles the 

texture of the pavements and road tarmac that makes the differentiation of breaklines and, 

as an extension, the extraction of stereo points very difficult. This is evident in some cases 

when certain facades of smaller gable type buildings are not well represented. In general the 

results are considered acceptable and could be subsequently used for the next stages of 

adjusting the initial building footprints. The stereo matching algorithm can additionally 

estimate the quality of the extracted points which provides a rough indication of the overall 

performance and as described in the next section they are important for the quality check 

loop of the optimized stereo matching workflow. The stereo matching quality output is given 

below (table 22) and it highlights the general observations that were made before about the 

efficiency of the stereo matching process over the test sites. 
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Table 22 The results of the quality statistics from the implementation of the stereo matching process 
over the three test sites 

 

The implementation of the quality check loop introduced in the proposed algorithm is shown 

in the next section. 

 

6.2.4. Discussion for the stage of semi-automated feature extraction from 
optical data 

 

Based on the description of the proposed method for feature extraction in section 6.2.3., a 

generic algorithm can be formed as shown in Appendix I (algorithm 1). The algorithm also 

indicates which software was used and whether any 

customization of third party software has taken place.  

The proposed method for feature extraction produces an 

overall acceptable result since most of the linear features 

were represented by at least five conjugate points. Having 

at least five points would ensure in most cases that a linear 

segment can be fitted subsequently. In addition the method 

is relatively straightforward and easy to implement on digital 

airborne images or photographs from frame cameras. 

Furthermore, the method has the potential for being fully 

automated since in most operations user interaction is not 

Switzerland   London   Nottingham   

Excellent  (1-0.85): 57.5 % 

Good  (0.85-0.70): 29.5 % 

Fair  (0.70-0.5): 0% 

Isolated : 0 % 

Suspicious : 13 % 

Excellent (1-0.85): 60.3 % 

Good  (0.85-0.70): 28.4% 

Fair  (0.70-0.5): 0% 

Isolated : 0% 

Suspicious : 11.3 % 

Excellent (1-0.85): 65.9 % 

Good (0.85-0.70): 30.2% 

Fair (0.70-0.5): 0% 

Isolated: 0% 

Suspicious : 3.9 % 

Figure 94 An example of inadequate 
extraction of stereo matched points for 
adjusting the building outlines over the 

Switzerland test site 
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required. Even at the tedious process of optimizing the parameters of the stereo matcher, 

the incorporation of the quality statistics for checking the results and accordingly adjusting 

the parameters can minimize the need of user interaction. 

Nevertheless this step introduces a number of disadvantages because of the assumptions 

inherent in the process. One of the critical characteristics is the assumption that the density 

of the points is more important than the vertical accuracy, in order to have an adequate 

number of points representing as many linear features as possible. Based on this 

assumption the method accepts the selection of image pairs with small convergence angles 

in case of ADS40 data (nadir and 14o backward look angle) and also a relatively small cross 

correlation coefficient for all the data sources available. This assumption introduces another 

problem, that the reduced vertical accuracy of the extracted points will also affect the 

planimetric position of the features and thus decrease the accuracy of the building outline 

adjustment. However blunders and large errors in the stereo matching will, in most cases, be 

identified and removed from the quality statistics check loop as shown in algorithm 1 which 

acts as the decision making tool for assessing the quality of the conjugate points. 

Finally despite the overall acceptable results of the specific step, there are still few building 

outlines without a significant number of extracted points (figure 94). This problem is 

introduced due to the lack of radiometric differences present in some building outlines, as a 

result of shadows, noise in the CCD and the angle of view with respect to the direction of the 

illumination (BRDF). 
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6.3. TIN Generalization and Very Dense DSM generation 
 

As can be seen in the subset flowchart in figure 95 the process described in this section is 

triggered only when there is low density LiDAR or no LiDAR data available. At this point it 

should be clarified that the proposed workflow will classify a LiDAR dataset as ‘’coarse’’ if 

after the density analysis process the raw point cloud has less the 3 points per square meter. 

In contrast LiDAR data with more the 3 pt / sq.m are classified as high density. This 

distinction is critical for the reliability of the workflow and the threshold is based on the 

minimum number of points required to fit a plane on the point cloud so that it is possible to 

reconstruct roof details as small as 1m2. Hence the smallest geometric detail this workflow is 

aiming to reconstruct is 1m2. This threshold is also reinforced by the results from the 

implementation of the proposed workflow in the study areas where the LiDAR data had less 

than 3 points per square meter density.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 95 Subset of the overall workflow indicating the proposed processing steps when LiDAR data 
is not available or dense enough. 
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Once the stereo matched points are extracted as described in the previous section the 

algorithm creates a density map to evaluate the density of the LiDAR data (if available). If 

the density is less than 3 points per square meter then the LiDAR data are merged together 

with the stereo matched points. Merging of the stereo matched points with the LiDAR took 

place in the second study areas in London since the LiDAR data only had 1 point per square 

meter density (figure 96).  

 

 

 

 

 

 

 

 

Figure 96 Merging of LiDAR with stereo matched points in the London test site, all superimposed on 
the orthoimage. 

Stereo matched points LiDAR point cloud 
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The merged point cloud is subsequently used to create a TIN surface using the Delaunay 

Triangulation. In the absence of LiDAR data as was the case in the third study area in 

Nottingham the TIN surface is created using only the stereo matched points. In order to 

minimize the number of blunders and small spikes appearing due to noise and low 

radiometric quality the TIN surface is generalized to reduce the number of vertices present 

but without filtering breaklines of the roof details (Figure 97). 

 

 

 

 

 

 

 

 

Figure 97 Initial TIN (left) and the generalized TIN (right) from the second and third study areas. 

Nottingham 

London 
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From figure 97 it is evident that the superior quality and performance of the stereo matching 

workflow on the UltraCam D images has produced a stereo matched point cloud with few 

artefacts, noise or even spikes. After the generalization, the TIN in the Nottingham area is in 

most cases free from any small artefacts on the roof structures while preserving most of the 

roof breaklines. In contrast the TIN over London is the result of the union between the stereo 

matched points and the 1m LiDAR data and is easily identifiable that there is significant 

noise and several artefacts in the stereo matched points. Once the initial TIN is generalized 

most of the excessive noise is reduced significantly but the overall quality of the generalized 

TIN is still affected in some cases by the remaining artefacts. As a result these artefacts are 

expected to have an adverse effect during the extraction of roof breaklines. 

The TIN generalization process follows a drop heuristic method as introduced by Lee (1989). 

The process takes a TIN as an input, and iteratively rejects one vertex at a time to create a 

TIN with less vertices. It can also be applied to a grid of points as input if we regard it to be a 

triangulated regular grid. If a vertex is excluded, the incident edges are also rejected and a 

polygon appears in the subdivision. To get back to a triangulation, the polygon entity is 

triangulated using the Delaunay triangulation. This will make certain that if the algorithm 

starts with a Delaunay triangulation, then after each iteration we'll still end up using a 

Delaunay triangulation. 

 

Figure 98 Left, a TIN with one vertex represented by a white circle. Middle, the polygon that is created 
when the specific vertex is excluded. Right, a Delaunay triangulation of the polygon 

 

To identify which vertex should be excluded, each vertex is temporarily isolated and the 

appearing polygonal shape is triangulated (Figure 98). Then the process calculates the 
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vertical distance between the isolated point and the new, generalised TIN. The excluded 

vertex is located within one of the new triangles in the polygon.  

This vertical distance represents essentially the error introduced by the deletion. Once we 

know the error that would be introduced, we insert the excluded vertex back to the TIN and 

temporarily isolate another vertex. After we have done so for a number of vertices, the 

algorithm identifies the one for which the vertical distance (or the computed error) is smallest 

and permanently excludes it. The process is repeated until the created error is more than the 

predefined allowed error by the user.  

For the semiautomatic identification of the error threshold when trying to generalize a TIN 

surface, the proposed workflow utilizes the vertical ground residuals of the check points as 

calculated from the AT process. This provides generalized TINs with most of the mismatches 

and blunder points successfully filtered as illustrated in figure 97. 

The generalized TIN is then converted to a very dense digital surface model (VDDSM) using 

an inverse distance weighted, quadratic polynomial interpolation algorithm as introduced by 

Franke and Nielson (1980). The VDDSMs have a sampling size of 0.20m and will be used 

subsequently for performing the building hypothesis and building detection (figure 99). 

 

 

 

 

 

 

 

London 

 



187 

 

 

Figure 99 The generated VDDSM for the second and third study areas from the generalized TINs 

 

Once the VDDSM is created the proposed workflow calculates two basic geomorphometric 

parameters, slope and aspect (slope pointing direction). The two parameters are calculated 

for all the grid cells in the VDDSM and will be used during the stage of extracting 3D linear 

primitives of roof structures. If the partial derivatives of elevation (H) along the east (x) and 

the north (y) direction are known then slope and aspect (slope pointing direction) are 

computed from Burrough, 1987. 

  

  

Figure 100 illustrates the calculated slope and aspect from the VDDSMs for the two study 

areas. 
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Figure 100 The calculated slope and aspect surfaces from the VDDSMs of the second and third study 
areas 

London - Aspect 

Nottingham - Slope 
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The slope and aspect is critical for the reconstructions of linear features representing roof 

shapes because the stereo matched points that form these linear segments will be grouped 

in clusters of points with the same aspect and slope. The generic algorithm of the TIN 

generalization and VDDSM creation as described before is given in Appendix I (Algorithm 2). 

 

6.4. Building detection and classification of LiDAR data and VDDSMs 
 

This section provides a detailed description of the proposed workflow for semi-automatic 

building detection. Even though these steps seem trivial in the overall workflow (figure 101) 

this is the most complicated stage of the entire process and certain degree of user 

interaction is still required to optimize certain parameters. 

 

 

 

 

 

 

 

 

 

 

Figure 101 Subset from the overall workflow indicating the building detection and classification of 
either LiDAR or VDDSMs 

 

As shown in figure 101 the process of building detection follows two alternative routes. As 

discussed in the previous section it depends whether high density LiDAR are available or 
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not. The differentiation is based on the density of the point cloud, exactly as described in 

section 6.3. Due to the nature of the two different input datasets (VDDSM versus high 

density LiDAR) the proposed workflow utilizes alternative classification techniques in order to 

optimize the building detection process. 

There are two main subsections that describe the proposed building detection method when 

a VDDSM is available and an alternative method to use when high density LiDAR is 

available. The final extracted information in both cases are building outlines or building 

polygons. As shown in figure 101 the process starts initially by merging all the available 

LiDAR point clouds since multiple flight paths could have been used. 

 

6.4.1. Classification and building detection using high density LiDAR data 
 

This section provides a description of the workflow, designed to address the issues of 

classifying the high density LiDAR data and detecting building entities. From the study areas 

and the data available, only the first study area was classified as having high density LiDAR 

and therefore this workflow was implemented only in the Switzerland study area. The 

diagram in figure 102 provides a summary of the individual processes implemented to detect 

buildings in the Switzerland study area. 

The proposed method does not employ any information derived from the multispectral 

imagery, not even for delineating tree canopies. Many researchers have proposed tree 

detection undertaken using multispectral information and calculating Normalized Difference 

Vegetation Index (NDVI), (Chen et al. 2004). A reason for not applying classification 

techniques using the near infrared band collected from few digital sensors is that in this case 

the method would not be suitable for use with traditional film aerial photographs. Hence at 

this point a textural classifier would be more appropriate since it can be applied with LiDAR 

and VDDSM. Despite the potential use of a textural classifier there is a major disadvantage. 

The methods of textural classifiers and multispectral classification are extremely dependent 
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upon seasonal conditions, in other words if the tree canopies are in a leaf-on or leaf-off 

condition. In a leaf-off condition it is obvious that both methods will fail to delineate tree 

canopies, since there are neither textural differences nor high radiometric responses in the 

near infrared bands.  
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Figure 102 Diagram indicating the overall workflow of the building extraction process from 
high density LiDAR 
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The disadvantages of the textural and multispectral classifier mentioned before are also 

evident when the optical and LiDAR data have been acquired in different seasons. This was 

the case for the data provided in the specific project for the first two tests sites. For example, 

for the first test site the ADS40 imagery was collected with the trees in a leaf-off condition. 

Therefore the proposed method is designed, taking into account the above considerations to 

present reliable results even if the tree canopies in the LiDAR data are in a leaf-on or leaf-off 

condition. 

As described above before the implementation of the classification workflow any LiDAR data 

acquired from different flight paths are merged together. The first study area in Switzerland 

had two LiDAR point clouds available which are merged together. The overlapping region 

between the two flight paths is located over the study area. This procedure is performed in 

order to increase the density of the point cloud from 3 points per sq.m to 5 points per sq.m. 

The advantage of having a denser point cloud is the ability to reconstruct even smaller roof 

details, during the plane fitting procedure, which results a detailed polyhedral model. The 

entire procedure of the proposed method was repeated using only a single flight path, in an 

attempt to quantitatively 

assess the influence of the 

decreased density in the 

building reconstruction stage. 

The resulting building models 

from the single path LiDAR are 

given in chapter 7. The 

resulted surface model from 

the combination of the two 

LiDAR point clouds is illustrated in figure 103, where a colour-coded, shaded relief image is 

indicated. 

 

Figure 103 Perspective scene of the combined LiDAR data, 
visualized as a colour coded shaded relief map. 
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6.4.1.1. Delineating tree canopies from high density LiDAR 
 

This stage is implemented in order to apply an initial delineation of the tree canopies. The 

primary purpose is to perform a rough detection of large trees without necessarily detecting 

all types of vegetation, present on the study area. For the tree detection, two generic tree 

models are utilized in order to scan the entire point cloud. The algorithm uses the tree 

models as geometric primitives to identify clusters of points that match the shape of the 

primitives through a correlation process. This process was carried out using the TerraScan 

software package. The geometric shape of the tree models used in the proposed workflow is 

indicated in figure 104. 

 

 

 

 

Figure 104 Geometric shape of the generic tree models used to scan over the entire point cloud 

 

There are three parameters associated with the specific procedure that should be optimized 

in order to achieve acceptable results. These parameters specify the shape of the tree 

models and include the minimum and maximum height as well as the width variation in 

percentage. The width variation factor determines the width of the tree model as a function 

of the height. Although one might consider that this stage requires pre-existing knowledge of 

the tree heights in the scene, it’s not a prerequisite since the minimum and maximum range 

can be defined as broad as possible, in order to encompass most of the potential sizes 

present at the scene. The algorithm essentially scans the point cloud using successive 

increments between the defined tree height ranges, to match clusters of points that resemble 

the geometric shapes shown in figure 104. As noted before, for each height the width is 

adjusted accordingly as a percentage of the search height. Hence the increase of the height 
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range has a negative impact only on the computational requirements, since the search range 

is increased. Once the scan has been completed, using the generic tree models, the 

algorithm labels the clusters of points that match the models to the high vegetation category 

(figure 105). 

 

The proposed workflow utilizes a minimum tree height of 2.5m since features lower than 

2.5m will be filtered in the subsequent steps. The maximum height for both tree models was 

selected equal to 40m in order to encompass a broad range of tree heights. The width 

percentage was defined equal to 30%. These two tree models with the previous parameters 

can yield satisfactory results in many different situations and can be treated as default 

parameters in the design of the algorithm. The results illustrated in figure 105 provide an 

indication of the effectiveness of the method, with most of the tree canopies successfully 

detected in the study area. 

Nevertheless, there are occasions were the two tree models are inadequate to detect every 

individual tree, present in the study area (figure 106). This is a function of the limited number 

of tree models used and the non optimization of the width percentage parameter. The width 

Figure 105 Results from the tree detection using the two tree models over the LiDAR point cloud. 
Top view of the study area (left), TIN model with tree points superimposed (right) 

Unclassified points High vegetation 
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percentage is a critical factor, but selecting the appropriate percentage is a tedious process 

that is very difficult to be automated. Instead the method suggests the use of 30% as a 

general guideline. 

 

 

 

 

 

 

 

 

Despite the existence of undetected individual trees the method successfully filters tree 

canopies which are the crucial aspect of this stage. The main reason is that even if individual 

trees remain in the LiDAR point cloud, they can be filtered when applying a minimum plane 

size criterion during the building detection process. If tree canopies are not detected they 

can introduce significant problems during the building detection. 

 

6.4.1.2. Classifying ground surface (DTM) from high density LiDAR data 
 

This stage of classifying LiDAR points belonging to the ground surface is an important step 

that is required before the building detection process, as well as for classifying points with a 

specified relative height. The classified ground surface is also crucial in assigning elevation 

to the projected building outlines during the building reconstruction process.  

The proposed method employs TerraScan’s algorithm that detects ground points by 

iteratively building a triangulated surface model. There are four parameters that must be 

Figure 106 Example of undetected individual trees resent in the 
study area 

Undetected 

individual trees  
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optimized during this procedure, which include the maximum building size, the maximum 

terrain angle, maximum iteration angle and distance values (see below). The maximum 

building size controls the number of initial points selected for the generation of the initial TIN 

model. For the proposed workflow a maximum building size of 300m was selected as the 

most appropriate value. According to this value the algorithm will assume that any area of 

size 300x300m will have at least one ground point and will select the point with the lowest 

elevation within this area. The other factor that affects the initial selection of ground points 

from the initial TIN is the maximum terrain angle. The maximum terrain angle is used to 

restrict the selection of initial points, if the slope between them exceeds the defined value. 

The proposed workflow utilizes a maximum terrain angle of 60o. 

After the generation of the initial TIN, the algorithm iteratively adds new points to the existing 

TIN model. The iterative selection of new ground points uses as conditions the maximum 

iteration angle and maximum iteration distance (TerraScan 2004). The iteration angle is the 

maximum angle between a point, its projection on triangle plane and closest triangle node. 

Iteration distance prevents abrupt vertical changes when the triangles of the TIN are large 

(figure 107). These two parameters prevent buildings from being classified as ground 

surface. 

 

 

 

 

 

The proposed method utilized a maximum iteration angle equal to 5o and a maximum 

iteration distance of 1m which were determined after a trial and error process. The resultant 

ground surface from the filtered points is illustrated in figure 108. 

Initial TIN planes 

New point added on 

TIN surface 

Figure 107 Diagram illustrating the iterative selection of new points at the ground 
surface 

Height 
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Classifying the ground surface requires a certain amount of user interaction that can be 

minimized if assumptions are integrated in the algorithm, as described below. The proposed 

algorithm for estimating the maximum building size employs the value of 300m as a rule of 

thumb. The advantage using a large value is that it’s suitable for smaller as well as for 

industrial buildings because the algorithm can populate the TIN with the iterative approach 

as depicted in figure 97. In contrast the maximum terrain angle is more crucial and at the 

same time very difficult to automatically estimate. The difficulty arises because the value 

must be balanced in such a way, to take into account the topography present in the scene 

but at the same time excluding buildings from further calculation. In most cases this requires 

the user to have prior knowledge of the topography and the technical characteristics of the 

project (flightpath, density, altitude of sensor) or as an alternative to experiment with the data 

and optimize the value. In an attempt to simplify the problem the proposed algorithm 

assumes that the steepness of the slope, present at the building facades, is only related with 

the density of the LiDAR point cloud. This assumption is oversimplified because in fact the 

slope of the building facades are related with the altitude of the sensor, the look angle with 

Figure 108 Resultant ground surface points (orange points) over the 1
st
 study area, classified 

using the iterative selection algorithm 
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relation to the building height and other variables, but it serves the purpose of approaching a 

semi-automated solution.  

Therefore the value of 60o as the maximum terrain angle determined is treated as being 

representative for any LiDAR point cloud with density of 4 points/m2. Hence point clouds with 

coarser or higher density are adjusted accordingly with respect to a linear relationship. The 

density of the point cloud can also be determined automatically by calculating a “density 

map”. The density map is a popular function among GIS packages that use a kernel window 

of size 1 by 1m to scan the point cloud and create a raster image of the density. Each pixel 

of the raster image represents the number of enclosed points. The overall density is then 

calculated from the average value of the floating point values, in each pixel. 

The maximum iteration angle and iteration distance can be treated as a rule of thumb, in 

the proposed algorithm, since the values are very small and will avoid detecting buildings in 

almost every situation unrelated to the density of the LiDAR point cloud, but at the same time 

populate the initial TIN model. Because the selected values are relatively small there are still 

remaining unclassified ground surfaces (figure 109).  

 

 

 

 

 

 

 

 

 

 

Unclassified ground 

surface 

Figure 109 Classified points (red) representing the ground surface, overlaid on the 
shaded relief map of the LIDAR data and unclassified ground regions 
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Despite the presence of unclassified points as ground surface, this is not a major concern 

since this will be solved in the following stage. Figure 109 illustrates the efficiency of the 

method since the proposed process was able to distinguish cars and other small features 

from the ground surface. 

 

6.4.1.3. Classifying low vegetation and background features from high 
density LiDAR data 

 

Points not related with the building entities, such as parked cars and low vegetation, can be 

effectively removed by applying a height range filter above the ground surface. As a 

representative value the range of 0-2.5m was selected that can be used for most 

applications. This step will also classify the points representing the ground surface that 

weren’t classified from the previous stage and exclude them from further calculation. This 

process uses the initial ground model to create a temporary TIN model and then compare 

the unclassified points to estimate the height from the initial TIN model. Features and low 

vegetation with height equal or less than 2.5 meters are filtered out. This classification step 

was also implemented with the use of TerraScan software package. The results from the 

above procedure are illustrated in figure 110. 

 

 

 

 

 

 

Figure 110 Classified features and low vegetation with height in the range of 0-2.5m, 
superimposed on the TIN model for the study area 
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Figure 111 Remaining unclassified tree crowns and points representing building 
roof tops. 

6.4.1.4. Generating building hypothesis from high density LiDAR 
 

With the completion of the previous stage, ideally the only remaining points would 

correspond to the buildings present on the scene. Nevertheless, as discussed previously, 

the stage of tree detection in most cases will not be able to filter all the individual trees. As a 

consequence the unclassified points at this stage include remaining individual tree crowns 

with height greater than 2.5m as indicated in figure 111. 

 

 

 

 

 

 

 

 

The building classification algorithm is based on a plane fitting method that will be further 

described in the building reconstruction section. The plane fitting algorithm is applied inside 

the void areas introduced from the classified ground points. At this point it should be noted 

that before the procedure of building detection, the proposed method merges the ground 

points with the low vegetation (height up to 2.5m) points in order to minimize void regions not 

related to building entities. Several conditions are introduced at this stage to optimize the 

performance of the algorithm. The minimum building parameter is used in order to avoid 

performing the plane fitting in holes, with areas smaller than the one defined for the minimum 

building criterion. This value should be large enough to bypass individual remaining trees but 

at the same time, taking into account smaller cottage style houses that might be present in 

the scene. 
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The proposed method implements a minimum building size of 40m2 with acceptable results 

that can be treated as the default value for many different situations since it is small enough 

to detect a variety of building sizes. This value assumes that the tree segmentation step has 

successfully filtered tree canopies from the study area and only individual trees remain in the 

unclassified LiDAR points. Another criterion used, during the selection of void areas on the 

ground, is the maximum building size. Although this condition is used for avoiding 

extremely large gaps in the ground surface, in the proposed method every large void area is 

related to a building entity. Therefore the proposed method utilized a maximum building size 

of 30000m2. 

During the plane fitting, on the unclassified points, there are four conditions that must be 

addressed. The minimum detail parameter defines the minimum size of the desired plane. 

This parameter can be automatically determined with respect to the density of the LiDAR 

point cloud. Considering that a plane requires at least three LiDAR points, the minimum 

detail can be defined as three times the average spacing calculated from the density map 

previously. 

 

Another important parameter is the maximum roof angle. This parameter is useful for 

discriminating between gable or hip type roofs and remaining tree crowns with an area 

Figure 112 Top view of the initial building detection for the 1
st
 study area, laser 

points representing buildings superimposed on the colour coded shaded relief 
map. 
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greater than 40m2. The valid assumption at this point is that in most cases tree crowns will 

introduce steeper plane angles (depending on the tree type) than the roof planes. The 

proposed method uses a maximum roof angle of 60o, since small cottage style houses exist 

in the study areas. The elevation tolerance is utilized as a restriction for the least squares 

plane fitting process. That is, only clusters of points within the specific height tolerance will 

be used for estimating the least squares location of the individual planes. For the specific 

project the elevation tolerance can be defined as equal to the minimum vertical 

discrimination of the LiDAR system as defined by the sensor manufacturer. In the absence 

of this information the elevation tolerance can be safely assumed to be equal with the 

horizontal spacing between the LiDAR points. From the above procedure, an initial building 

classification is performed as indicated in figures 112 and 113. 

 

 

 

 

 

 

 

 

6.4.1.5. Generating DSM from the initial building classification 
 

From the initial classification obtained with the previously mentioned procedures, vegetation, 

ground surface, features with height up to 2.5m and buildings should be successfully 

segmented. The main issue introduced at this stage are the LiDAR points representing roof 

details with area smaller than 40m2. Recall that for classifying buildings a restriction was 

used that excluded points inside void regions with area smaller than 40m2. The restriction 

Figure 113 Perspective view of the initial building detection for the 1
st
 study 

area, superimposed building points on the colour coded, shaded relief map 
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was used so that the process does not take into account small remaining trees that have not 

been previously classified. Therefore, there are still few remaining unclassified LiDAR points 

representing small roof details (figure 114). 

 

 

 

 

 

 

 

 

In order to assign the unclassified building points, a building vector hypothesis should be 

created to filter the desired points. The first stage toward the creation of the vector building 

hypothesis is to generate a raster DSM using only the detected building class. The selected 

spacing can be equal to the LiDAR point spacing. The resultant DSM represents only the 

buildings of the study area, with every other feature assigned in the background (figure 115). 

 

 

 

 

 

 

 

Figure 114 Remaining unclassified points (white features) 
representing individual trees and roof details overlaid on a TIN model 

for the study area 

Figure 115 Digital Surface Model of the initial detected buildings and 
surrounding features in the background 
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6.4.1.6. Reclassification and raster to vector conversion of the DSM 
 

Before the raster to vector conversion, the raster DSM has to be reclassified into a binary 

image. During the reclassification, pixels representing building entities are assigned to the 

foreground (value 1), while the surrounding features remain in the background (value 0).  

The raster to vector conversion was performed with the ArcScan module in ArcGIS, using a 

smoothing weight of 2, without any gap closure parameters and a void area size closure of 3 

pixels. The resultant polygon layer from the raster to vector conversion is depicted in figure 

116. 

The polygon layer is subsequently used to filter the unclassified LiDAR points, as described 

in the following section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 116 Polygon layer of building hypothesis, produced form the raster to vector conversion 
process. 
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6.4.1.7. Filtering and merging unclassified LIDAR points to the building 
class 

 

The filtering is performed in a GIS 

environment by overlaying the unclassified 

LiDAR point cloud on the building polygon 

hypothesis. Only the LiDAR points located 

within the polygon layer are selected (figure 

117) and subsequently merged with the initial 

building detection. This is the final step of the 

proposed method for the building detection 

procedure from high density LiDAR data. 

 

 

 

 

 

6.4.1.8. Discussion for the stage of building extraction from high density 
LiDAR data 

 

From the proposed method for building detection using a high density point cloud a generic 

algorithm can be formed as shown in Appendix I (Algorithm 3). 

The proposed algorithm includes an additional stage of splitting the entire LiDAR point cloud 

into subsets, if the study area is larger than 1km2. This stage takes place before the building 

classification and it should be incorporated in the algorithm in order to avoid any RAM 

overloading on the workstation. This problem is introduced, because during the building 

classification process the fitted planes are stored temporarily and in general the entire 

process of building detection is very computationally intensive. Therefore by splitting the 

Figure 117 Selected unclassified points 
located within the building hypothesis 
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study area and running the procedure separately can effectively reduce the computation 

requirements. The proposed method for building detection described in this section produces 

very promising results with nearly all buildings in the study area successfully detected, 

unrelated to their size and roof type. The main advantage is the generic approach of the 

algorithm that can be implemented in a variety of situations. In addition, the method is not 

restricted by the condition of the tree canopies (leaf-off or leaf-on condition) and despite that 

the tree delineation step (first step) is not able to detect all the individual trees, the method 

can effectively disregard them during the building classification stage. 

 

 

 

 

 

 

 

 

 

 

Nevertheless the proposed method for building detection has a major disadvantage. It 

requires a certain level of user interaction for some crucial parameters which are very 

difficult to define automatically. Even though the algorithm suggests some default values, 

their effectiveness in varied situations is questionable and further research is required. 

Therefore the proposed stage for building detection presents a semi-automated solution 

rather than a fully automated one. Another difficulty is introduced when individual trees, not 

segmented in the initial step, are bordering buildings. In these circumstances the minimum 

Figure 118 Incorrectly classified building points (highlighted in blue ellipses), 
superimposed on a rectified true colour composite 
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area parameter specified during the building classification process will not exclude the tree 

points, since the void area is including both buildings and vegetation. An example of this 

problem is illustrated in figure 118. 

 

6.4.2. Classification and building detection using course LiDAR or VDDSM 
 

As mentioned before the building detection workflow presented previously is very efficient 

and reliable when high density LiDAR data are available. If no LiDAR data are available an 

alternative building detection process is utilized on the VDDSM. This alternative workflow is 

based on geomorphometric analysis of raster surfaces rather than using the raw 3D points 

as in the workflow introduced in section 6.4.1. The reason for this is that the previous 

workflow introduced is very effective when high quality, very dense LiDAR point clouds are 

available but it is unreliable when course LiDAR or stereo matched points are used, because 

of the lower density and increased number of outliers. The workflow presented in this section 

is even more flexible when dealing with low density surfaces and maintains a satisfactory 

reliability at the expense of few artefacts and errors introduced in the building footprints. The 

workflow described in the chapter is also implemented when LiDAR data with a density of 

less than 3 points per square meter is available. 

This alternative building detection algorithm introduces a new method for extraction of the 

building class from LiDAR DEMs on the basis of the geomorphometric segmentation 

principles. Thus, an object partition framework of the LiDAR DEM will be defined (Milliaresis 

and Kokkas, 2007). Objects will be represented on the basis of geomorphometric 

parameters combined by object classification which is expected to allow the extraction and 

mapping of the building class. The workflow starts by initially analysing the hypsometric 

characteristics of the study area. Then seeds cells and region growing criteria are defined. 

Finally, region growing segmentation is performed and an object partition framework is 
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defined. Connected components labelling identifies background and foreground objects that 

are parametrically represented on the basis of elevation and slope and then classified. 

 

6.4.2.1. Seed sells and histograms analysis 
 

The first step before any analysis can be carried out is for the operator to quantify the 

elevation frequencies present in the study area. The elevation histograms for the two study 

areas in London and Switzerland (figure 119) can be useful during the interactive statistical 

analysis at a later stage.  

 

 

London  

Nottingham  

Figure 119 The elevation frequency histogram for London and Nottingham study areas. Elevation is in 
range 12– 215 m and 18-86m respectively, the lighter a point is the greatest its elevation. 
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The elevation frequency histogram (figure 119) indicates that the majority of the VDDSM 

cells (98.9 %) present elevation in the range 20-60m and 18-86m for London and 

Nottingham study areas respectively.  

The next step in the building detection workflow is to define reliable seed cells along building 

edges prior to the region growing segmentation. In order to achieve this, a median filter is 

applied for seed pixels to be defined. The seed points are computed in a limited size kernel 

window. More specifically, the kernel size is 5x5 grid cells; note that each grid cell is related 

to the size of the LiDAR DSM sampling size. Usually the sampling size for the VDDSM or 

LiDAR DSM is no greater than 1-2m. Due to the very small kernel size, it is very difficult for 

the seed points to be affected by the regional topographic surface. Additionally, the regional 

topographic surface in all the study areas is a gently sloping terrain. Even if the regional 

topographic surface is more complicated (either 2nd or 3rd order polynomial surface), the 

elevation differences computed within a 25-50m2 area would be residual elevation anomalies 

and not regional elevation anomalies especially in an urban (city) environment. Median 

filtering removes very high and very low elevation values within the selected kernel size 

while at the same time preserves edges (Mather, 1987). Once the Median filtered DSM is 

calculated, it is spatially subtracted from the original VDDSM or LiDAR DSM and forms a 

Difference DSM as depicted in figure 120.  

London  
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The Difference DSM (figure 120) revealed the cells of the LiDAR DSM or VDDSM where 

severe median filtering occurs. Once the difference DSM is calculated a histogram of the 

frequency of the elevation differences is generated that indicates the concentration of the 

elevation differences. The operator can then visually identify if the distribution is positively 

skewed (greater frequencies occur for positive elevation differences with respect to the 

corresponding negative elevation differences). Note that in figure 120 elevation differences 

less than 1m are depicted in both study areas as white while for the London area, 

differences greater than 9m are depicted black. For the Nottingham area differences greater 

than 3m are depicted black due to the shorter buildings present in the scene. The frequency 

of the elevation differences indicates that the majority of the DSM cells (97.1%) present 

differences in the range of (-4,11) for London and (-10,25) for Nottingham. 

Nottingham  

Figure 120 The difference DSM (VDDSM – Median DSM) for the second and third study areas shown 
in (a). Enlarged portions of selected buildings are shown in (c) and (d) with differences less than 1m 
depicted as white  while differences greater than 9m and 3m are depicted as black for London and 

Nottingham respectively 

a  

c  

d  
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Positive differences are interpreted to be associated to building edges. As can be seen by 

figures 120 (c) and (d), the greater the elevation difference, the more the detected cells 

stand along the borders of the interpreted city buildings. Under a trial and error procedure 

though experimentation and visual interpretation of the histogram and difference DSM, it was 

found that positive elevation differences in the range of 5-9m are more associated to the 

building edges in London. For the Nottingham study area the elevation difference range of 3 

-12m is more associated to the building edges. On the contrary differences greater than 9m 

in London and 12m in Nottingham were interpreted to be associated to the internal 

building/roof structure (chimneys, dormers etc). Thus seed cells were selected as those that 

are located within the pixels with elevation differences in the range of 5-9m for London and 

3-12m in Nottingham (Miliaresis and Kokkas, 2007). 

 

 

6.4.2.2. Region growing segmentation 
 

Once the seed cells have been selected a region growing segmentation can be applied. 

Region growing segmentation is an effective method to form the initial building cells and it is 

therefore employed in the proposed workflow. Although it can be very efficient, one of the 

main disadvantages is that it requires a certain level of user interaction to optimise the region 

growing criteria. Initially the region growing criteria should be defined (Miliaresis and Kokkas, 

2007) on the basis of slope and elevation. If the partial derivatives of elevation (H) along the 

east (x) and the north (y) direction are known then slope and aspect (slope pointing 

direction) are computed as given in equations 6.8 and 6.9. 
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In order to estimate the partial derivates of elevation over a 3x3 kernel, Evans (1980) fitted a 

6-parameter quadratic equation while Zevenbergen and Thorne (1987) used a 9-parameter 

quadratic equation. Evans (1980) method results in a polynomial surface which will not 

necessarily pass through the 9 grid cells included in the 3 by 3 kernel, while the opposite is 

true for Zevenbergen and Thorne (1987). A review and a comparison of these methods 

(Skidmore, 1989) proved that Evans (1980) method is more precise, since Zevenbergen and 

Thorne (1987) method is affected more by random noise and errors evident in DEMs. The 

slope image as well as the frequency histogram for the second and third study area is given 

in figure 121. 

 

 

 

 

 

Figure 121 Slope image for London and Nottingham on the left side (The higher the slope value the 
darkest a cell is). Frequency histogram of slope in the interval 1-90

o
 on the right side. 

London  

Nottingham  
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The frequency histogram of the slope (figure 121) for the two study areas in London and 

Nottingham are completely different than the slope frequency distributions normally 

observed in geomorphologic applications (the slope frequency decreases gradually for 

increasing slope values) where digital terrain models (DTMs) are used (Miliaresis and 

Kokkas, 2004; Miliaresis et al., 2005). So in DTMs (with spacing 30–1000 m), the ground 

elevation prevails and thus the slope frequency distribution is the outcome of 

geomorphologic (erosion, deposition) and geologic (tectonism) processes (Miliaresis, 2006). 

On the contrary in urban LiDAR DSMs or VDDSMs, the building structure prevails and due 

to the high DSM resolution (usually less than 1-2m), the slope frequency distribution 

observed is the outcome of the interaction of the building surface (abrupt changes of 

elevation, high and abrupt changes of slope). 

The interpretation and study of both a slope image and the slope frequency histogram is 

crucial for the operator to determine the slope cut-off values. Through a trial and error 

procedure the slope cut-off values for the region growing criteria were defined in the interval 

of 400-900. These slope cut-off values were used both in London and Nottingham test sites. 

Once the slope cut-off values are determined an iterative region growing segmentation 

algorithm is implemented. The seed cell is determined from the initial set of building cells. 

For each iteration of the region growing algorithm, if a cell of the DSM has a slope within the 

cut off angles is an 8-connected neighbour to the current set of cells, it is flagged as a new 

building cell and the current set of building cells are updated. Note that the 8-connected 

neighbours are the 8 pixels surrounding the central pixel in a 3x3 kernel. The segmentation 

stops if no more cells are added during the current iteration. For the London test site a total 

of 448,865 cells were identified after 29 iterations while for the Nottingham test site 269,734 

cells were identified after 25 iterations (figure 122). 
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London  

Nottingham  

Figure 122 The resultant foreground and background object class from the implementation of 
the region growing segmentation workflow in second and third study areas  



215 

 

Once the region segmentation is complete a connected component-labelling algorithm 

(Pitas, 1993) is applied and regions formed by the 8-connected background cells (black 

pixels) are grouped and labelled (figure 123).  

 

 

 

 

 

 

 

 

 

 

 

 

 

London  

Nottingham  

Figure 123 The resultant grouped and labelled foreground and background object class from 
the connecting-component labelling process in the second and third study areas 
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At this stage many objects (most of them very small in size) are evident in the segmented 

images in both study areas (figure 123). The very small-sized objects correspond to residual 

objects evident either on the roofs or in the non-building class. These residual objects are 

classified as such when their area size is less than 40m2 which is the minimum building size 

we have adopted for the building detection workflow. Small in size foreground (white) and 

background (black) objects are eliminated by applying object size filtering. More specifically, 

foreground objects with size less than 40m2 cells were initially merged to the background 

class. For the London study area 6633 cells were merged to the background and so the 

foreground cell class was formed by 441,828 cells. For the Nottingham study area 8532 cells 

were merged to the background and so the foreground cell class was formed by 245,982 

cells. 

Once the foreground cells are merged to the background class the reverse process takes 

place. That is background objects (formed by black cells) that are located within foreground 

closed objects are merged in the foreground class (figure 124). 

 

 

London  
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For the London test site a total of 114,009 of the background cells (black cells) were merged 

to the foreground object class while 134,551 background cells were merged to the 

foreground class in Nottingham. Figure 124 shows the resultant foreground and background 

objects in Nottingham. Any of the foreground or background objects with an area of less than 

40m2 were also filtered out. Finally the remaining foreground and background objects were 

labelled by the connected components algorithm and merged into a single image. Thus each 

of the background and foreground objects has a unique ID (figure 125). 

 

Nottingham  

Figure 124 The resultant grouped and labelled foreground and background objects after the 
implementation of the object size filtering where background cells within enclosed foreground objects 

were merged to the foreground class. 



218 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 125 The merged image that contains both foreground and background objects after the 
implementation of size filtering and the components labelling algorithm. Different brightness values 

indicate different ID for each object 

London  

Nottingham  
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From figure 125 it is evident that in both study areas most of the artefacts representing 

smaller features in figure 124 have been successfully filtered out and there are three 

predominant object classes remaining in the segmented images. That is the building class, 

non building class and vegetation. There have been several instances were problems occur 

when vegetation and buildings are sharing common borders or overlapping and this issue 

will be addressed in the following section. 

The region growing segmentation, connected components labelling, size filtering and the 

subsequent object parametric representation were performed with GeoLogic Shell software 

which is freely available for download from the website of the International Association for 

Mathematical Geology (GeoLogic Shell software, 2008). 

 

6.4.2.3. Parametric representation and final building classification 
 

The objects from the implementation of the connected components process as described in 

the previous section are interpreted to belong either to the building class or to the non-

building class (roads, vegetated areas, components of a building, etc.). The main problem at 

this stage is that objects that are adjacent or ones enclosing others could both belong to the 

building class. In order to identify which additional clusters should be merged in the building 

class each object is parametrically represented by a set of geomorphometric attributes and 

then an unsupervised classification defines clusters of objects that belong either to the 

building or the non-building class. 

For the parametric representation of the objects resulting from the connected components 

algorithm (figure 125), four attributes are used. 

• H, mean elevation that was computed as the average elevation of the cells that 

belong to an object’s region. 

• R, roughness, the standard deviation of elevation of the cells forming the object (a 

measure of the vertical variability of object’s height). 
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• S, object’s mean slope. 

• SR, standard deviation of slope (a measure of the variability of object’s slope). 

 

From the implementation of the unsupervised classification based on the above parameters 

the proposed workflow calculates the cross correlation matrix of the attributes based on the 

cluster of objects. The attribute correlation matrix for the London and Nottingham study 

areas is given in table 23. 

 

Attribute correlation matrix (London) 
 

H   R   S   SR 

H   1 

R   0.28   1 

S   -0.12   0.56   1 

SR  -0.03   0.63   0.72   1 

 
 

Attribute correlation matrix (Nottingham) 
 

H   R   S   SR 

H   1 

R   0.32   1 

S   -0.08   0.67   1 

SR  -0.15   0.51   0.79   1 

 
Table 23 Attribute correlation matrix for the second and third area 

 

 

It is observed that in both study areas a partial correlation exists between S and SR, as well 

as R and SR. In other words, if the slope is high then for most of the objects standard 

deviation of slope and elevation should be high, but this is not always true.  
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Cluster analysis is a multivariate procedure, which is commonly used for regional 

classification. It is based on some measurement of distance among objects (for example 

Euclidean distance), which is calculated in a c-dimensional space, where c represents the 

number of attributes used in the clustering process (Mather, 1987). The centroid method is 

employed that requires a priori definition of the number of clusters. The main problem in 

cluster analysis has to do with the different value range of the different attributes (for 

example elevation and slope) included in the distance calculation. In order to solve this 

problem, the data are standardized (transformed to a new dataset in which the 

corresponding attribute mean value is zero and the corresponding attribute std. dev. is 1) 

before the exploratory (K-means) clustering algorithm is applied (Miliaresis and Argialas, 

2002).  

Thus, the data values are transformed by subtracting the corresponding attribute mean value 

and dividing the outcome by the corresponding attribute standard deviation (Clark and 

Hosking, 1986). Ten clusters of objects are considered, giving satisfactory results for both 

study areas and are implemented as a default value. Each object is assigned to a cluster on 

the basis of its Euclidean distance from the cluster centroid. The cluster gravity centres are 

computed on the basis of the standardised centroid co-ordinates as defined in table 24 

which also represents the total number of objects defined in each of the 10 clusters. 

 

Cluster   standardised centroid co-ordinates   Number of 

ID  H  R  S  SR  objects 

1  3.23  8.50  -0.46  2.24      1 
2             -1.16            -0.34   -0.58            -0.37    81 
3   0.12            -0.35             -0.37             -0.50   119 
4   4.29  9.47    1.91   2.37       1 
5             -0.32  0.93   1.63   1.97    56 
6   0.46   2.56    2.27   1.34       2 
7             -0.61   0.86    2.33   0.06     19 
8   4.90            -0.13             -0.39            -0.02       2 
9  6.35             8.78  -0.18   2.24       1 
10   0.98            -0.35   -0.56            -0.42     85 
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Cluster   standardised centroid co-ordinates   Number of 

ID  H  R  S  SR  objects 

1  4.52  9.12            -0.23            -1.78      2 
2   4.67            -0.11   1.01   0.56    37 
3   5.01   0.13   0.98             -0.42   158 
4   6.54  3.32            -0.91   3.08      - 
5   1.02            -1.22            -1.54             -2.01    34 
6   4.98   3.12   5.02   1.34     29 
7   5.12   4.54   6.54   1.09     32 
8             -3.90            -0.15            -1.23  0.77       1 
9           10.21   7.12  0.44            -4.89       1 
10             -0.23   1.12            -0.05            -1.67       3 
 
Table 24 Final cluster (standardized) centroids and the number of objects in each cluster for London 

(first table) and Nottingham (second table) 

 
 
 
The similarity among cluster centroids can be assessed by the operator by the divergence of 

the clusters as well as the cluster compactness. Divergence indicates the distance between 

cluster centroids. The cluster compactness is computed on the basis of 

 

Compactness =  

 

Where mean and std. dev. are the mean distance and the corresponding standard deviation 

of the objects from the gravity centre of the cluster. The similarity assessment is performed 

only for the clusters with a significant number of objects, in other words classes 1,4,6,8,9 

were excluded from further investigation in London and classes 1,4,8,9,10 were also 

excluded in Nottingham. Tables 25 and 26 indicate the distances between the cluster 

centroids (divergence) and the cluster compactness for London and Nottingham 

respectively. 

 

 

 

(6.10) 
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Distance between cluster    Statistics for the objects distance from 
       The corresponding cluster centroid 
 
Cluster    2 3 5 7 10 Cluster  Mean  St.dev   Compact. 
 

2   0     2  0.57  0.26   54.4 % 
3   1.32 0    3  0.44  0.21   52.3 % 
5   3.58 3.47 0   5  0.65  0.34   47.7 % 
7   3.24 3.12 2.05 0  7  0.63  0.38   39.7 % 
10   2.15 0.88 3.74 3.56 0 10  0.61  0.38   37.7 % 
 

Table 25 London study area - Distances between cluster centroids (divergence) and cluster 
compactness for clusters 2,3,5,7,10 

 

 
Distance between cluster    Statistics for the objects distance from 
       The corresponding cluster centroid 
 
Cluster    2 3 5 6 7 Cluster  Mean  St.dev   Compact. 
 

2   0     2  0.60  0.25   58.3 % 
3   0.98 0    3  0.64  0.28   56.2 % 
5   3.79 4.21 0   5  0.72  0.38   47.2 % 
6   4.01 3.78 1.34 0  6  0.68  0.42   38.2 % 
7   3.35 5.01 0.94 1.46 0 7  0.75  0.45   40.0 % 
 

Table 26 London study area - Distances between cluster centroids (divergence) and cluster 
compactness for clusters 2,3,5,6,7 

 

By analysing tables 25 and 26, based on the distance between clusters, it is concluded that 

the clusters can be grouped in two categories on the basis of similarity/divergence. For the 

London study area clusters 2, 3 and 10 form the first category and clusters 5 and 7 form the 

second category. For the Nottingham study area the first category consists of clusters 5,6 

and 7 and the second category consists of the clusters 2 and 3. 

In the first category the clusters are differentiated on the basis of mean elevation while the 

second category is formed by objects with almost equal mean elevation. In addition tables 

36 and 37 indicate that clusters 7,10 in London and clusters 6,7 in Nottingham are less 

compact, meaning that they could be divided into possible to sub-clusters. 

At this stage it should be pointed that the VDDSM on Nottingham and the enhanced LiDAR 

DSM in London are still quite noisy while at the same time residual elevation objects are 

observed over the roofs. These objects correspond either to artificial objects induced by 
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noise effects or to small elevated features that are difficult to recognise and assign to a 

certain feature type.  

Through a visual interpretation of the classified objects (figure 126 and figure 127) to the 

selected cluster and with the assistance of cluster statistics the operator can identify which 

clusters belong to the non-building, vegetation and building classes. 

 

 

Figure 126 Visualization of the objects assigned to each of the 5 cluster (2,3,5,7,10) after the 
implementation of the K-means classification algorithm in London study area. White colour represents 

the objects of each cluster 

 

Figure 126 indicates that in the London study area the non-building class is formed by 

cluster 2 while the urban vegetation class corresponds to cluster 7. It is interesting to note 

though that the classification workflow presented in this section is not without problems as in 

some cases building roofs are incorrectly assigned to the tree cluster (cluster number 7, 

circled in red) as highlighted in figure 126. This is due to the similar roof slope variability with 

gable type roofs and a similar mean elevation.  The interpretation of the cluster centroids 

and the statistics presented in tables 25 and 24 it is evident that the non-building class is 

formed by the less elevated, mostly flat, less variable with respect to slope and elevation 

London  
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objects. The urban vegetation is formed by objects with the highest slope and with significant 

slope variability.  

 

 

Figure 127 Visualization of the objects assigned to each of the 5 cluster (2,3,5,6,7) after the 
implementation of the K-means classification algorithm in Nottingham study area. White colour 

represents the objects of each cluster 

 

Thus the vegetation class is usually formed by low mean elevation (but higher than the 

elevation of the non-building class), while slope is maximised while the standard deviation of 

slope and elevation is high. The last remarks are functions of tree canopy properties and 

thus different vegetation types might present different parametric representation. For the 

Nottingham area the non building class is formed by the objects in cluster 5 while the 

vegetation category is a combination of the objects in cluster 6 and 7. 

The building class in London is formed mainly by the objects of cluster 5 while in Nottingham 

is formed by cluster 3. For the objects of the building class, slope variability of maximised 

Nottingham  

2 3 

4 5 7 6 



226 

 

while slope is among the maximum ones. The interpretation for this is due to the building 

edges that are in contact with the non-building class. The clusters 10 and 3 in London 

correspond primarily to internal portions of building and in Nottingham, cluster 2 represents 

some buildings and building rooftops. That is why the roughness, slope and slope variability 

is among the minimum while mean elevation is maximised. At this stage it should be pointed 

that another difficulty was introduced in Nottingham where the building class (cluster 3) had 

incorrectly classified some tree canopies due to the similarity in slope variability and mean 

height. These misidentifications were manually removed from the classified objects. 

As a conclusion of the workflow presented in this section, the geomorphometric region 

growing segmentation combined by median filtering for identifying seed cells, connected 

components labelling, size filtering and object labelling, object parametric representation on 

the basis of slope and elevation attributes and classification has proved capable of 

delineating the building class from both study areas. The interpretation of cluster centroids 

allowed the identification of building sub-classes with different geomorphometric 

characteristics that are associated with different building portions. 

Nevertheless, the proposed method for building class detection has a major disadvantage. It 

requires a certain level of user interaction for some crucial parameters, which are very 

difficult to define automatically in varied situations and further research is required for full 

automation. In addition, although most of the building footprints were successfully extracted 

there were several instances of building roofs assigned to the tree clusters and small tree 

clusters assigned to the building class that required a small level of manual intervention to 

rectify.  
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6.5. Data fusion for optimizing building footprint and roof details 
 

This section describes the proposed method for the initial generation of the building outlines 

and subsequently the data fusion step, with the stereo matched points, for refining and 

adjusting the initial building outlines and roof details. The diagram shown in figure 128 

indicates the steps of the proposed workflow that will be covered in the section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 128. Diagram indicating the steps of the Data Fusion process 
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Before the introduction of the data fusion method it is useful at this point to recap some of 

the previous steps and the processing that has taken place since the entire workflow can be 

complicated at times. The data fusion method as shown in figure 128 can have two main 

inputs at a time, which are the stereo matched points and the classified buildings. The 

process of extracting the stereo matched points from the available aerial photos was 

described in section 6.2.3. The classified buildings can come from two sources, either from 

high density LiDAR or from a VDDSM. Note that a VDDSM is created either by combining 

low density LiDAR with a DSM extracted from the aerial photographs or just using the DSM if 

no LiDAR data exist. The VDDSM generation process was described in section 6.3. In the 

case where a VDDSM is used for the data fusion process the additional input of the 

calculated slope and aspect parameters are used. The calculation of the slope of aspect 

from the VDDSM was also described in section 6.3. 

The classification of buildings was divided in two processes, one for high density LiDAR as 

explained in section 6.4.1 and another method for the VDDSM, described in section 6.4.2. 

 

6.5.1. Data fusion process for High Density LiDAR 
 

Since the data fusion process depends on whether we have high density LiDAR or low 

density/no LiDAR this section will describe the data fusion process separately for high 

density LiDAR and for the VDDSMs. 

 

6.5.1.1. Extracting initial building footprint from High Density LiDAR 
 

From the workflow described in section 6.4.1 the high density LiDAR data have been 

classified and the points representing buildings have been isolated. Nevertheless there is 

still the need to create the building polygons and subsequently derive the building outlines 

from the classified 3D points. For this reason a least median of squares (LMS) plane fitting 
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algorithm is implemented on the classified building points. Parameters such as minimum 

plane size and height tolerance between adjacent roofs are automatically determined by the 

density of the point cloud.   

The least medians of squares (LMS) is a robust regression method that estimates the 

parameters of a plane by minimizing the median of the absolute residuals, these are defined 

as the difference between the measurement ( ) and estimation  : for the  th sample 

. That is, we search the parameters ȕ that minimizes the median of the 

residuals: 

   

 

The above equation can be solved using the following random sampling algorithm 

(Fleishman et al. 2005); k points are selected at random from a total of N points, and a plane 

is fitted to the points. Then the median of the residuals of the remaining N −k points is 

computed. The process is repeated T times to generate T candidate planes. The plane with 

minimal is selected as the final plane. If g is the probability of selecting a single good 

sample at random from the sample set, then the number of iterations that are required to 

have a probability of success of P can be computed by A small value of k 

does not use the entire available sample to fit a plane, while a larger value of k requires 

more iterations. 

Based on the classified building points, the LMS algorithm iteratively fits planes on the 

LiDAR points. The basic difference with the building detection algorithm is that the procedure 

is restricted only to the classified points without having the need to differentiate between 

building and vegetation. Furthermore, instead of the planes being stored temporarily at the 

building reconstruction stage, the planes are visualized at the user interface dialog window. 

The complexity and the time requirements for reconstruction is a function of the specified 

minimum size of the plane that the algorithm will try to detect, the size of the roofs and the 

density of the LiDAR point cloud. 

(6.11) 
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An additional parameter is the possible merging between planes with a specified vertical 

separation. This option is useful for applying a certain level of generalization in the 

reconstructed roofs and potentially avoids multiple superimposed planes, representing the 

same roof surface. The proposed method was implemented in the Switzerland study area 

since the LiDAR data 

provided are classified as 

high density. The 

algorithm was 

implemented using a 

merging function between 

planes with a vertical 

difference up to 25cm. An 

example of a 

reconstructed roof from 

that study area is shown in figure 129. 

The next step is to extrude the roof planes on the ground surface and create the vertical 

facades of the buildings (figure 130). 

 

 

 

 

 

 

 

 

Figure 130 Extruded roof planes on the ground surface (grey lines) representing 
the vertical facades of the buildings 

Figure 129 Perspective scene of reconstructed roof planes 
(red boundary), with building points superimposed over the 

ground TIN. 

Roof plane 
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6.5.1.2. Spatial cleaning and generating topology for the 2D building 
footprints 

 

After the initial 3D building reconstruction, the vertical facades of the buildings are 

transformed in two dimensional polygons for subsequent use in a GIS environment.  

The individual polygons introduced from the building reconstruction are not consistent since 

adjacent planes are not automatically merged (left side of figure 131). In order to overcome 

this problem and create a single 

polygon for each building, spatial 

cleaning is utilized. The spatial 

cleaning process is the fundamental 

function for topology generation. 

Topology organizes the spatial 

relationships between features in a set 

of feature classes, using specific 

topological rules that will constrain 

different feature’s topological 

relationships. Once the participating 

feature classes have been added to 

the topology and the rules defined, the 

topology is validated. Two basic 

topology rules are used during the 

spatial cleaning. The first rule requires 

that the interior of polygons in the 

feature class don’t overlap. The 

polygons can share edges or vertices. 

Figure 131 Resulting building outline from the 
procedure of topology generation and spatial 

cleaning in Switzerland test site 

Extruded planes before 

topological correction 

Building outline after 

spatial cleaning 
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This rule is used when an area cannot belong to two or more polygons. The second rule 

requires that polygons not have voids within themselves or between adjacent polygons. 

Polygons can share edges, vertices, or interior areas.  

There are two parameters that are used to validate the second rule, which include the 

dangle length and fuzzy tolerance.  

The dangle length removes dangling arcs that are shorter than the specified dangle 

tolerance. The dangling arc is an arc having the same polygon on both its left and right sides 

and having at least one node that does not connect to any other arc. It often occurs where a 

polygon does not close properly (undershoot) or where arcs don't connect properly. The 

fuzzy tolerance defines small distances used to resolve inexact intersection locations. It 

defines the resolution of a coverage resulting from the spatial clean operation. 

This value of the dangle length should be optimized so that roof planes representing the 

same building are merged together but at the same time avoid merging neighboring 

buildings. This is especially evident in densely structured areas and a certain level of user 

interaction is required for specifying these parameters. For the Switzerland study area the 

proposed method utilized a dangle length tolerance and fuzzy tolerance equal to 2m with 

satisfactory results. 

 

6.5.1.3. Generalization and simplification of the building outline 
 

This important stage is implemented so that the number of vertices describing the building 

footprint are decreased and therefore simplifying the building outline. The main assumption 

at this stage is that all the buildings in the scene are described by orthogonal boundaries and 

therefore the simplification is preserving and enhancing the orthogonality between the linear 

segments of the building footprint. 
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There are two parameters which regulate the simplification algorithm, which include the 

linear tolerance and the minimum size of the polygon. In general, straight lines will be 

enhanced so that all linear near 90 degrees angles become exactly 90 degree. Based on the 

given tolerance, isolated small intrusions will be either filled up or widened. Isolated small 

extrusions will be filtered out. Any building or group of connected buildings with a total area 

smaller than the minimum area will be excluded from the result (figure 132). 

The proposed method utilizes a linear tolerance of 3m that presents acceptable results for all 

three study areas. The minimum area was specified equal to 10m2. Despite the efficiency of 

Figure 133 Simplified building outline (green boundary) compared to the initial building footprint 
(blue boundary) superimposed on a TIN model of the Switzerland study area 

Generalized building outline Initial building outline 

Figure 132 Oversimplified building outline in the London test site, as a function of the increased 
linear tolerance in relation to the size of the building footprint 
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the generalization algorithm, to enhance the orthogonality as indicated in figure 132, there is 

a potential problem of oversimplifying the footprint. An example of oversimplified building 

outlines over the London study area is depicted in figure 133. 

The oversimplification is directly related to the specified linear tolerance and therefore, the 

results should be evaluated from the operator in order to avoid oversimplifications in the 

majority of the buildings. 

6.5.1.4. Filtering stereo matched points with simplified building outline 
 

Apart from few occasions, where the building boundary is oversimplified from the 

simplification process, in most cases it could be considered as a good approximation of the 

optimum building outline and it is subsequently used to filter the stereo matched points.  

Initially this stage requires the polygon layer to be converted into a polyline feature class 

where it is subsequently used to create buffer regions around the generalized footprint. The 

size of the buffer regions is directly related to the expected planimetric accuracy of the 

generalized footprint. The buffer distance will also define the maximum possible planimetric 

correction that can be applied in the simplified footprint. Therefore, this parameter is related 

to a number of different variables, like the laser footprint size on the ground, the density of 

points, the building height and the position and direction of the flight path. Even if the above 

characteristics where known, it could still be difficult to automatically determine a reliable 

value for the buffer size. 

Instead, the proposed method utilizes a search algorithm to determine the buffer size for 

each individual linear segment. The method initially breaks the polylines into the constituent 

linear segments. Each linear segment is then treated independently and buffer zones with 

width of 25cm are created at an increment of 25cm around the linear segment (figure 134). 

The assumption at this point is that the generalized building footprint will have a similar 

direction to the actual footprint and therefore the two building outlines will be nearly parallel. 

For each buffer zone of 25cm width, the algorithm counts the number of stereo matched 
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points that lie within the zone. If more the 5 points are located inside the zone, the process is 

completed and the buffer size is defined for the specific linear segment. If less the 5 points 

are present, the algorithm will create 

the next buffer zone between the range 

of 25-50cm from the position of the 

linear segment and the counting will be 

repeated.  

Because the stereo matching process 

may not yield conjugate points, for 

every segment of the building outline, 

the proposed algorithm employs a 

maximum search range that is acting 

as a termination criterion. This 

termination function is useful in order to 

minimize the possibility of adjusting the 

simplified footprint using stereo 

matched points not related with the actual building outline. The maximum search range can 

be estimated approximately as 2-3 times the point spacing of the LiDAR point cloud, as 

calculated from the density map. For the Switzerland test site the maximum search range 

was defined equal to 1.5m, which defines the maximum possible planimetric correction as 

well. Figure 135 depicts the filtered stereo matched points selected with the procedure 

described above. 

 

 

 

 

Simplified 

building outline 

Figure 134 Generated buffer zones of width 
25cm at an increment of 25cm around the linear 

segments constituting the building outline. 
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6.5.1.5. Adjustment and refinement of the building outline 
 

 

The final adjustment of the building footprint is performed using the filtered stereo matched 

points. The footprint adjustment uses the individual linear segments that are refined when 

the sum of the squared distances of the stereo matched points from the line is minimized. 

This algorithm is implemented in TerraScan and essentially minimizes the perpendicular 

distance between the points and the line. Using the linear segments instead of the entire 

outline for the adjustment has the advantage of avoiding distortions from the adjustment and 

therefore preserving the orthogonality between the lines obtained from the previous stage.  

The least squares adjustment is restricted in taking into account only filtered points within the 

buffer distance. The results from the adjusted linear elements for the Switzerland test site 

are illustrated in figure 136. The refinement of the building footprints was deemed necessary 

Figure 135 Filtered conjugate points derived from the stereo matching algorithm in LPS (red 
points) based on incremental buffer regions around the simplified building outline (green polyline) 
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for improving the planimetric accuracy, something that was proved successful from the 

results of the quantitative accuracy assessment, presented in chapter 7. 

 

 

 

 

 

 

 

 

After the least squares adjustment, each individual linear segment is extended in both 

directions until it is intersected with a neighbouring line segment. This operation is 

implemented for creating topologically correct closed polylines representing the building 

footprint. Figure 137 indicates the differences between the adjusted outlines and the 

simplified footprint for the Switzerland study area. 

 

 

 

 

 

 

 

 

Figure 136 Individual linear segments in Switzerland  (blue lines) after the least 
squares adjustment using the stereo matched points (red) 

Figure 137 Initial simplified building outline (green boundary) versus adjusted 
building footprint, superimposed on a TIN model 
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6.5.2. Data fusion for VDDSMs 
 

When a VDDSM has been classified as described in section 6.4.2, the building class is a 

raster representation of all the building in the study area. Because a VDDSM is 

characterised by not only larger planimetric errors of the building footprint but also a lower 

detail of the building roofs there is the need to enhance the roof details using the stereo 

matched points. Thus the main difference in the data fusion technique for VDDSMs is that 

the stereo matched points are not only used to refine the planimetric accuracy of the building 

footprint but enhance the level of detail of the roof geometry within the classified buildings. 

The data fusion process that takes place when a VDDSM is present contains the following 

main steps. 

• Deriving the initial building outline from the raster building class 

• Generalization and simplification of the building outline * 

• Filtering stereo matched points with simplified building outline * 

• Adjustment and refinement of the building outline * 

• Fitting 3D Linear segments and TIN refinement to improve roof geometric detail 

• Converting refined TIN to a dense 3D point cloud 

 

The steps marked with an asterisk (*) follow the same process for the high density LiDAR as 

described in section 6.5.1.3, 6.5.1.4, and 6.5.1.5 respectively and as such they won’t be 

described in detail. 

 

6.5.2.1. Deriving the initial building outline from the raster building class 
 

From the classification of the VDDSM, as described in section 6.4.2, the building class has 

been formed as a collection of raster grid cells having the same DN values to represent the 

building polygons (figures 138). 
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Figure 138 The raster polygons as created from the VDDSM classification process for London and 
Nottingham. Note each raster building object has been assigned a unique DN value 

London  

Nottingham  
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At this stage the only process that needs to take place is a simple raster to vector conversion 

so that the raster building class is converted to vector building polygons. The results from the 

raster to vector conversion are illustrated in figures 139 and 140. 

 

Figure 139 The resulted vector building polygons from the raster to vector conversion in London  

 

 

Figure 140 The resulted vector building polygons from the raster to vector conversion in Nottingham 

London  

Nottingham  
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As can be seen from figures 139 and 140 in all study areas the raster to vector conversion 

creates non-orthogonal/fuzzy outlines and there is a need to implement the generalisation 

algorithm as described in section 6.5.1.3. The results from the generalisation algorithm are 

given in figure 141. 

 

 

 

 

Figure 141 The result from the generalization of the building polygons (left) and the comparison with 
the initial building polygon prior to generalization (right) 

 

London  

Nottingham  
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Once the generalised building polygons are created the building outlines can be used to filter 

the stereo matched points just as described in section 6.5.1.4. The filtered stereo matched 

points will be used subsequently for the adjustment of the individual linear segments of the 

generalized building footprints. The filtered stereo matched points are illustrated in figure 

142. 

 

 

 

Figure 142 An example of the filtered stereo matched points for adjusting the building outlines for 
London and Nottingham study areas 

London  

Nottingham  
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Once the stereo matched points have been successfully filtered by the adaptive algorithm, 

as described in section 6.5.1.4, the workflow proceeds with the implementation of the least 

square adjustment for the individual linear segments. At this point it should be noted that the 

planimetric adjustments in most cases are very small (quantitative results given in chapter 7) 

since the initial stereo matched points were previously merged with the initial LiDAR or 

VDDSM (figure 143).   

 

Figure 143 The adjusted building footprints (right) compared to the initial footprint (left) for London and 
Nottingham using the filtered stereo matched points 

Nottingham  
IESSG 

London  
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6.5.2.2. Fitting 3D Linear segments and TIN refinement to improve roof 
geometric detail 

 

Within the building footprint the process employs two geomorphometric parameters, the 

slope and aspect from the VDDSM to define the clusters of points from the stereo matched 

points. If the partial derivatives of elevation (H) along the east (x) and the north (y) direction 

are known then slope and aspect (slope pointing direction) are computed from Burrough, 

1987 as shown in equations 6.8 and 6.9. 

With the slope calculated the workflow applies a slope threshold that segments the 

breaklines where the slope change between the two sides exceeds 200. Note that the slope 

change threshold is applied only inside the building footprints and the extracted breaklines 

are also generalized to remove any excessive vertices. From this operation the initial 3D 

breaklines of roof details are formed (figure 144).  

 

 

 

 

 

London  
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Figure 144 The initial 3D breaklines of the internal roof structures formed when the slope change is 

greater than 20 degrees. 

 

At this points it should be noted that the efficiency to extract initial 3D breaklines depends  

on the quality of the original data (LiDAR, VDDSMs and stereo matched points etc). In both 

study areas there are several instances were smaller breaklines are not successfully 

extracted based on the slope threshold criteria simply because there is not enough detail on 

the roof structure. These initial 3D breaklines are nevertheless derived from the VDDSM and 

may not represent an accurate depiction of the roof geometry. Thus they need to be refined 

using the stereo matched points extracted from the aerial photography. 

At this stage the process employs the iterative buffering technique described in section 

6.5.4.1 but applied in the three dimensional space. In more detail the initial 3D breaklines are 

used as a starting point for the generation of the first 3D buffer zone (creating essentially a 

cylinder of 25cm diameter). If more than 5 stereo matched points lie within the first buffer the 

operation stops, otherwise it continuous until the variable is satisfied. At this stage though it 

is important to note that once the stereo matched points are selected within the buffered 

there is an additional parameter, that is the calculated aspect. Note that the aspect is 

Nottingham 
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calculated for each pixel of the VDDSM. Therefore the selected stereo matched points will 

need to have the same aspect. This ensures that the selected stereo matched points belong 

to the same linear segment. As it has been discussed the calculated aspect is categorized in 

8 orientations. The final outcome of this operation is filtered stereo matched points that form 

cluster of points with the same aspect that are used to subsequently fit the final 3D linear 

segments representing the roof details. These clusters of points represent in most cases roof 

outlines as well as several roof details such as chimney outline and dormers.  

3D Linear segments are then fitted when the sum of the squared distances of the 3D points 

from the line is minimized. This process essentially minimizes the perpendicular distance 

between the points and the line. The parametric equation for a 3D line is:  

Xp = X0 + Vx*t 

Yp = Y0 + Vy*t   

Zp = Z0 + Vz*t 

Where (X0,Y0,Z0) is some point on the line and <Vx,Vy,Vz> is a vector defining the direction 

of the line and t is the parameter whose value scales the vector to define points away from 

the line. The 3D linear 

segments are extended 

and snapped to adjacent 

line nodes based on 

proximity criteria to create 

closed 3D polylines of roof 

details although this does 

not ensure that all 

breaklines will form closed 

polylines (figure 145). 

London  

(6.12) 
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Figure 145 The adjusted 3D breaklines forming closed polylines of roof details in London and 
Nottingham study areas 

 

In order to avoid potential issues from linear primitives that do not form closed 3D shapes 

the workflow utilizes a new iterative process for creating a detail TIN model before the final 

building reconstruction. 

In a TIN surface every node is joined with its nearest neighbours by edges to form triangles, 

which satisfy the Delaunay criterion. The Delaunay criterion ensures that no vertex lies 

within the interior of any of the triangles in the network. If the Delaunay criterion is satisfied 

everywhere on the TIN, the minimum interior angle of all triangles is maximized. The result is 

that long, thin triangles are avoided as much as possible. There is a wide variety of 

algorithms available to create a Delaunay triangulation from a point cloud. The algorithm 

described by Watson, (1981) has been one of the most robust methods. 

Nottingham 

javascript:glossary_delaunay_triangulation87097.Click()
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There are certain challenges when trying to generate a TIN building model using detailed 3D 

linear features. The first issue is that the vertical building facades cannot be represented as 

such in a TIN surface and the second issue is that the footprints of small roof details exist on 

the ground level rather than on the main roof top. The first issue can be resolved by 

expanding the main footprint by a small distance using buffer regions. To tackle the second 

issue the individual small roof polylines will have to be categorized in a hierarchical way 

depending on their height level. The proposed workflow for detail TIN generation is 

described below. 

• Employ Delaunay triangulation using the extracted points representing the ground 

surface to create a bare-earth TIN surface. 

• Categorize in different height levels the roof polygons depending on their size and height 

level. 

• Begin iterative TIN generation 

For the first roof level do 

Project vertically the 3D polygon outlines on the ground TIN 

Get ground elevation for each node of polygons 

Create final footprint by creating a buffer of 5cm 

Add 3D polygons and footprints on ground TIN and create Level 1 TIN 

end 

For each subsequent roof level repeat loop using the TIN generated from the 

previous roof level. 

      end   

From the implementation of the above workflow in the second and third study area an 

optimised TIN surface of the building structures is generated as illustrated in figure 146. 
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Figure 146 The optimized TIN surface of the building structures for London and Nottingham, for 
illustration purposed the TIN of the ground surface is also represented. 

London  

Nottingham 
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6.5.2.3. Converting refined TIN to a dense 3D point cloud 
 

Once the refined TIN is generated it needs to be converted to a dense point cloud. The need 

for 3D points is related to the data input format during the final building reconstruction. The 

plane fitting algorithm employed uses 3D points. 

The conversion of the refined TIN to a 3D point cloud is a trivial process that takes place 

within a GIS environment using basic GIS functionality. The first step is to create an artificial 

grid of points with a desired spacing. In our case a 20cm spacing is adequate for most areas 

and will provide enough points to reconstruct even small roof details. Once the artificial grid 

of 2D points is generated every point is projected orthogonally upwards until it intersects the 

TIN surface. At that intersection the elevation value is calculated and assigned to each point. 

The final output of this operation is a dense 3D point cloud for the second and third study 

area as illustrated in figure 147. 

 

 

 

 

 

 

Figure 147 The dense 3D point cloud of the building structures created from the optimized 
TIN surface 

 

London  

Nottingham 
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6.5.3. Discussion for the stage of data fusion 

From the proposed method for data fusion a generic algorithm can be written as shown in 

Appendix I (Algorithm 4). The proposed method for generating and adjusting the building 

outlines introduces promising results. In most cases the method successfully improved the 

planimetric accuracy (results from the evaluation are given in chapter 7) of the building 

footprint by incorporating fusion techniques with the stereo matched points. The proposed 

method is fairly robust by minimizing user interaction, since most of the critical parameters 

can be automatically defined. The proposed algorithm employs automated estimation for two 

of the most critical parameters which include the linear tolerance, during the simplification of 

the footprint, and the robust estimation of the buffer size for filtering the stereo matched 

points. The robust estimation for the linear tolerance of the footprint simplification initially 

obtains the lengths of the linear segments between each node. The lengths can be retrieved 

automatically from the geodatabase that has been created from the generated topology. 

Then the algorithm estimates the average length of the linear segments. Based on the 

average length, the algorithm in the next step, selects only the small linear segments with 

length below the average value. Based on the assumption that these lines will contain the 

unnecessary intrusions, the algorithm estimates the linear tolerance as the average length 

value of the selected short linear elements. Nevertheless, the efficiency of the simplification 

step is arguable and further research is needed to assess the effectiveness of simplifying the 

footprints. One of the main assumptions in the creation of the buffer zones and the entire 

concept for estimating the maximum search size is that both data have been geo-rectified 

with the same level of horizontal accuracy. In other words the accuracy in the determination 

of the exterior orientation parameters for all the data involved is nearly identical. If the two 

datasets have varied absolute horizontal accuracy, then the proposed method will not 

provide reliable results. 

The reconstruction of the 3D breaklines in most cases was deemed to provide acceptable 

results as several roof details are enhanced in the optimized TIN surface. Nevertheless there 
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are still limitations to the amount of extracted 3D breaklines from a VDDSM that is primarily 

related to the quality and density of the LiDAR DSM, the efficiency of the stereo matcher and 

the overall quality of the VDDSM. There were several instances were initial 3D breaklines of 

roof structures were not successfully extracted and that was especially evident in the London 

study area. 

6.6. Building Reconstruction for generating final polyhedral models 
 

This section describes the procedure of the building reconstruction for the creation of the 

final polyhedral building models. This is the last part of the proposed workflow and it follows 

the same process independent of whether High Density LiDAR or VDDSM were initially 

available.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Adjusted building outlines and 

roof 3D linear primitives 

From Data Fusion 

Classified 3D building points 
From LiDAR or VDDSM 

Project building outlines on the 

ground surface to assign ground 

elevation 

Merge optimized building outlines 

and roof 3D linear primitives with 

classified building points 

Create vertical walls using building 

footprints and intersect with the 

reconstructed roof planes 

Utilize Boolean functions to merge 

adjacent roof planes within the 

vertical facades 

Perform plane fitting on the classified building 

points restricted by the building outlines and roof 

3D linear primitives 

Figure 148 Diagram indicating the overall workflow for the building reconstruction process 

ESRI ArcGIS  

 TerraScan 
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Note that as described in the previous section the VDDSM has been converted into a dense 

3D point cloud with enhanced point density for the roof details. Hence the 3D point cloud 

from the VDDSM should ideally be comparable to a high density LiDAR point cloud. The 

building reconstruction is based on the least medians of squares (LMS) algorithm introduced 

in section 6.5.1.1. for fitting planes on high density 3D point clouds, while Boolean logic is 

implemented for merging adjacent planes to complete the polyhedral models. The diagram 

in figure 148 depicts the overall workflow for building reconstruction. 

 

6.6.1. Combining building footprint with 3D point cloud 
 

This stage is implemented in order to merge the two dimensional building outlines and the 

3D breaklines of the roof details with the classified 3D point cloud. Combining the building 

outlines and roof breaklines with the classified building points will restrict the algorithm 

during the roof plane reconstruction and provide adequate information for the planimetric 

position of the vertical building facades. 

The building footprints are orthographically projected on the ground surface (using the 

classified ground points) in order to 

assign elevation values at the 

vertex of the polylines (figure 149). 

The workflow automatically defines 

any intermediate vertices of the 

building footprint so that the 

resulting polylines follow the 

topography. The vertex density 

depends on the density of the 3D 

point cloud. 

 

Figure 149 Projected building footprints at the ground 
level 
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6.6.2.  Final 3D Building reconstruction 
 

The building reconstruction process is based on the least medians of squares (LMS) 

algorithm introduced in section 6.5.1.1.  At this stage the starting locations are not the void 

regions introduced in the classified ground points, but the building footprints. Furthermore 

the roof planes are restricted to be within the boundaries specified by the building outlines 

and the rood 3D breaklines.  

This stage consists of the plane reconstruction process and the generation of the vertical 

walls from the building outline. For the roof reconstruction the same parameters as 

previously are used, which include the minimum plane size equal to 1m2, the elevation 

tolerance equal to 20cm and the minimum vertical difference between adjacent planes equal 

to 25cm. Figure 150 illustrates a selection of reconstructed roof planes for the three study 

areas. The triangles for London and Nottingham were formed on the roof shapes because 

the models were converted to the VRML format for efficient rendering. The VRML format 

automatically stores 3D facets as triangles. 
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Ventilation systems, 
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Adjacent planes not 

merged together  

Switzerland 



255 

 

 

 

 

 

 

 

 

After the successful roof reconstruction, the vertical building facades are generated by 

extruding the planes on the projected building footprint as depicted in figure 151. 

Figure 150 Visualization of the reconstructed planes (hidden lines are excluded) for the three study 
areas. Successful reconstruction of small roof details (ventilation equipment, dormers etc.) 

London 

Nottingham 
Ventilation equipment 

successfully reconstructed 

Missing planes in some 

steep angles 
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Figure 151 Perspective views for the three study areas (part of the study areas) 
with the reconstructed roofs and vertical building facades-hidden lines excluded 

Extruded 

vertical walls 

Extruded 

vertical walls 

Extruded 

vertical walls 

Switzerland 

London 

Nottingham 
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6.6.3. Merging adjacent roof planes utilizing Boolean functions 
 

The final stage in the creation of polyhedral building 

models is the implementation of Boolean functions for 

merging adjacent roof planes of the same building. The 

Boolean merging function utilized is essentially 

converting the “boundary representation” (individual 

planar facets) of the buildings into a solid feature. In 

order for this conversion to be performed the planar 

facets must be transformed into volume primitives and 

then merged together using the Constructive Solid 

Geometry (CSG).   

The CSG modelling is used widely in computer aided 

design (CAD) systems, since the modelling is much 

more intuitive and the primitives can be parameterized. 

In addition CSG enables the association of the primitives 

with other, additional information and the determination 

of volumetric primitive parameters is quite robust.  

The proposed method utilizes the CSG for each 

separate building entity, as defined from the optimized 

building footprint and therefore there isn’t any possibility 

of merging planes that do not belong to the same 

building. Within each building boundary adjacent planes 

are extended and intersected if they are located within 

2m from each other. This buffer region is calculated 

similarly as the “linear tolerance” during the spatial 

cleaning, as two times the minimum plane size specified 

Figure 152 Resulting solid building models 
(rendered models- smooth shading) from the 

implementation of Constructive Solid 
Geometry at the planar facets. 
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for the plane fitting. Figures 152 and 153 illustrate some examples of the implementation of 

the CSG in the study areas. 

 

With the implementation of Boolean logic, the building reconstruction process is completed. 

The final results of the reconstructed building models for Switzerland, London and 

Nottingham are depicted in figures 154, 155 and 156 respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 153 Resulting solid building models (rendered models- smooth shading) from the implementation of 
Constructive Solid Geometry at the planar facets. 

Figure 154 Perspective scene of the final building reconstruction for the entire study area in 
Switzerland. Rendered scene with global illumination and phong shading 



259 

 

 
Figure 156 Perspective scene of the final building reconstruction for the entire study area in London. 

Rendered scene with global illumination and phong shading 

Figure 155 Perspective scene of the final building reconstruction for the entire study area in 
Nottingham. Rendered scene with global illumination and phong shading 
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6.6.4. Discussion for the stage of building reconstruction 
 

From the previously described method for building 

reconstruction, a generic algorithm is formulated as shown in 

Appendix I (Algorithm 5). The method seems to be very 

reliable, with most building models visually correct. In 

addition, the amount of reconstructed roof details is 

impressive since ventilation equipment, dormers and 

chimneys were obtained in many cases (figure 157). The level 

of detail at the 3D building models is related to the density of 

the point cloud or the VDDSM the quality of the extracted 

stereo matched points and the overall radiometric quality of 

the aerial photographs. In addition the vertical facades of the 

buildings are created from the refined building footprint and 

therefore improving the overall planimetric accuracy of the 

solid models.  

Nevertheless, despite the high density of the LiDAR point 

cloud or the stereo matched features, there are few situations 

where small roof planes are not reconstructed from the 

algorithm (figure 158). These situations are a function of 

the decreased point density on the specific roof planes 

(less than 4 points) or lack of adequate stereo points to 

recreate the 3D breaklines, due to occlusions or from 

the arrangement of the plane (orientation) with respect 

to the look angle of the sensor. One of the crucial steps 

is the implementation of Boolean functions for 

implementing the Constructive Solid Geometry. In most 

Reconstructed dormers 

in the 3D models 

Figure 158 Roof details in 
the 3D models 

Non existing roof planes 

Figure 157 Missing roof planes 
from 3D building model 

Small intrusions from 

the Boolean merging 

function 

Figure 159 Deficiencies introduced as 
small intrusions during the plane 

merging function 
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cases the process yields reliable results with the majority of the adjacent roof planes merged 

together. There are a few occasions where the snapping function between neighbouring 

planes is not very efficient, as small intrusions are introduced in the 3D models (figure 159). 

The following figure shows some additional examples of the semi-automatically extracted 

building models in London and Nottingham. 

 

 

 

Figure 160 Examples from the semi-automatically reconstructed building models in London and 
Nottingham 

London 

Nottingham 
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7. PROPOSED WORKFLOW FOR AUTOMATIC QUALITY 

ASSURANCE AND TEXTURE MAPPING  

 

This chapter provides a description of two important aspects of a typical 3D city modelling 

project. That is the quality assurance and accuracy assessment stage and the automatic 

texture mapping of the reconstructed models. Due to varied complexity of different urban 

scenes, automatic or semi-automatic workflows for building reconstruction should be 

accompanied by robust quality assurance tools. The existence of these tools is critical to the 

adoption of automated algorithms in the industry to ensure the final products meet client 

requirements and project specifications. So far most accuracy assessment studies have 

been focused on assessing 3D city models using abstract methods by assessing either the 

planimetric accuracy of the building footprints or visually comparing roof shapes. This 

research presents a robust semi-automated approach for a comprehensive planimetric and 

vertical accuracy assessment of a selection of the reconstructed 3D building models. It 

should be noted that the design and reliability of automatic quality assurance methods is a 

function of the Level of Detail (LOD) of the city models. The methods described in this report 

were designed for the lower and mid LOD city models up to LOD2 (Kokkas and Smith, 

2007). 

7.1. Semi-automated Quality Assurance workflow 
 

In order to perform any kind of quality assessment there is the need to collect some 

reference data for the three study areas. The reference data should have higher accuracies 

when it comes to the planimetric and vertical accuracy of the reconstructed buildings and 

also have superior roof detail. The reference data for evaluating the planimetric and vertical 

accuracy of the semi-automatically reconstructed building were obtained from manual stereo 

plotting using the stereo pairs of aerial photographs. In an industry environment where large 

datasets need be checked the proposed workflow can be utilised for a sample of buildings in 
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the area. The manual plotting of the 3D building models was performed by Leica Stereo 

Analyst and was a tedious process since the highest amount of roof detail was required for a 

meaningful comparison. In addition, certain roof details in the Switzerland study area were 

difficult to extract due to shadow effects or low contrast of the ADS40 imagery.  The stereo 

plotted buildings obtained for the three study areas are depicted in figure 161. 
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The accuracy assessment is divided in the quantitative and qualitative evaluation. The 

qualitative evaluation includes a visual comparison between the reconstructed buildings and 

the reference stereo plotted buildings. This comparison will provide a useful indication of the 

overall quality and therefore, only a selection of the most interesting structures will be 

illustrated in this section.  

The quantitative assessment performed on the reconstructed building models evaluated the 

planimetric and vertical accuracy. The planimetric evaluation is conducted by employing the 

widely used building detection metrics suggested by Shufelt, (1999). For the vertical 

accuracy assessment a robust method is proposed for evaluating each building separately, 

in order to provide statistical parameters for the vertical accuracy. 

 

 

Figure 161 Stereo plotted buildings for the three study areas. Rendered with a smooth shading 
effect and global illumination parameters 

Nottingham 

1 

2 

3 

4 

5 
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7.1.1. Qualitative evaluation of the reconstructed building models 
 

The qualitative evaluation is performed for a selection of the total reconstructed buildings. 

The numbering system used for identifying each building is depicted in figure 161. At this 

point it should be mentioned that for the first study area in Switzerland the entire process of 

the building reconstruction workflow as described in chapter 6 was applied once on the 

combined LiDAR data (density of 5pt/ sq.m) and once on the single LiDAR data (density of 3 

pt/ sq.m). This will allow us to evaluate the efficiency of the proposed workflow under 

different LiDAR densities. Note that in both cases the data for the Switzerland area were 

classified as High Density LiDAR and thus followed exactly the same workflow as described 

in the previous chapter. The qualitative comparison for the reconstructed building in 

Switzerland is given in figure 162. 

 

 

 

Building 2 – combined LiDAR Building 2 – single path LiDAR 

Building 2 – reference 

Roof details not detected 

in the single path LiDAR 
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Planes not merged 

together, resulting in 

multiple overlaying 

planes 

Roof details well defined 

as a single plane 

Ventilation equipment 

not automatically 

reconstructed 
Roof details not existing 

in automatic 3D models 

Building 3 – combined LIDAR 
Building 3 – single path LIDAR 

Building 3 –reference  

Building 12 –combined LIDAR  Building 12–single path LIDAR  

Building 12 –reference  

Few of the existing dormers 

were not reconstructed 

The majority of the roof details 

were not reconstructed 

Missing planes not stereo 

plotted due to low 

contrast 

Lower structures of the 

building, well defined in 

the combined LIDAR  
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The qualitative comparison for the reconstructed building models in London is given in figure 

163. 

 

 

 

Building 14 & 16 – combined LIDAR  Building 14 & 16 – single path LIDAR  

Dormers successfully reconstructed in 

both LIDAR data 

Non existing chimney due 

to decreased point density 

Pipelines as expected were 

not reconstructed in either 

case (building 17) 

Building 14 & 16 – reference 

Figure 162 Qualitative comparison between the automatically reconstructed buildings and the 
reference stereo plotted 3D models for Switzerland 

Non existing building details  
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Building 1 Reference building 1 

Missing planes in 

steep angles 
Oversimplified 

building outline 

Problems for 

cylindrical objects 

Building 2 
Reference building 2 
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Figure 163 Qualitative comparison between the automatically reconstructed buildings and the 
reference stereo plotted 3D models for London 

 

The qualitative assessment for the reconstructed buildings in Nottingham is given in figure 

164. 

 

 

 

 

 

 

 

 

 

 

 

 

Building 3 Reference building 3 

Small details in smaller 

buildings are not 

reconstructed correctly 

Building 1 

Reference building 1 

Problems reconstructing 

doughnut (courtyard) type 

buildings  

Some roof details were not 

reconstructed successfully  
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Building 2 
Reference building 2 

Multiple overlapping roof 

structures   Non existing roof 

details  

Building 3 Reference building 3 

Missing chimneys and 

footprint details   

Building 4 

Reference building 4 

Most bigger roof details 

are reconstructed   

Problems with doughnut 

type structures   

Missing bridge 

structure   

Figure 164 Qualitative comparison between the automatically reconstructed buildings and the 
reference stereo plotted 3D models for Nottingham 
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Figures 162, 163 and 164 illustrated only a selection of the reconstructed buildings that 

showed significant differences between them. The majority of the buildings in the study area 

presented minor differences that weren’t able to be distinguished visually. Nevertheless, the 

qualitative assessment of the reconstructed buildings depicted before indicates the 

impressive overall quality of the 3D models.  

The level of detail for the 3D models in Switzerland, derived from the combined LiDAR point 

cloud (density 5 points/m2), is comparable with the level of detail acquired from the manual 

stereo plotting. In contrast the 3D models derived from the single path LiDAR data, although 

they don’t present significant differences, in many cases present an incomplete building 

model since dormers and chimneys are not modelled. At this point special reference to 

building 3 in the Switzerland study area has to be made. This is one of the few situations 

where the 3D model from the single path LiDAR data, presented visually a better result. This 

is evident from the way that the roof details were modelled. The 3D model from the 

combined LiDAR has multiple superimposed planes that exceed the 25cm merging threshold 

and therefore the continuous feature is introduced as several individual planes. In contrast, 

as the merging threshold is increased in the single LiDAR data to 35cm (due to the 

decreased density), the features are properly modelled as a single plane. 

The qualitative building comparison for the London study area indicates several cases where 

3D planes of steep angled roof features are not reconstructed properly due to the insufficient 

quality of the 3D breaklines and the lower point density from the stereo matched points. In 

general the London study area presents the most artefacts in the semi-automatically 

reconstructed building models and the overall lower quality and level of detail is evident 

throughout the entire study area. 

In contrast the Nottingham study area is reconstructed to a higher level of detail with a better 

overall quality since there are fewer artefacts introduced. Nevertheless there are certain 

cases where the plane fitting algorithm is performing very poorly and this is especially 

evident in courtyard (doughnut) type buildings. 
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7.1.2. Semi-automated Quantitative evaluation of the reconstructed building 
 

The quantitative assessment was performed for 17 buildings depicted in figure 161 

(Switzerland study area) and the majority of all the other buildings present in London and 

Nottingham. The semi-automated quantitative evaluation was performed by evaluating the 

planimetric accuracy of the building footprints and the vertical accuracy of the roof planes. At 

this point it should be noted that the expected accuracy of the reference models used in this 

comparison is equivalent to the RMS of the check points calculated from the Aerial 

Triangulations of each test site. 

7.1.2.1. Planimetric accuracy assessment of the building footprint 
 

The planimetric evaluation was performed using the building detection metrics suggested by 

Shufelt, (1999). The evaluation was conducted using as a reference source the stereo 

plotted building outlines from the stereo pairs of the three study areas. The comparison was 

performed twice, once using the optimized building outline and the second time using the 

initial building outlines. Recall that the initial building outlines were generated from the LiDAR 

point cloud or VDDSM whilst the optimized footprint was adjusted using the filtered stereo 

matched points. The accuracy assessment therefore, attempts to investigate the level of 

improvement in the horizontal accuracy of the adjusted footprints. The building detection 

metrics adopted for the evaluation can be defined as: 

Building Detection Percentage = 100*TP / (TP+FN) 

Branching Factor = FP / TP  

Quality Percentage = 100*TP / (TP + FP + FN) 

 The branching Factor or building delineation errors are caused when the building outlines 

are not properly extracted by the automated method. TP (True Positive) is a building 

classified by both datasets, TN (True Negative) is a non-building object classified by both 

datasets, FP (False Positive) is a building defined only by the automated building 

(7.1) 
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reconstruction process, and FN (False Negative) is a building defined only by the reference 

stereo plotted buildings. The building detection metrics were obtained with basic GIS 

functions (overlying, clipping), using the building footprints as polygon entities. Consequently 

the detection metrics are expressed in square meters and not as number of pixels.  

Tables 27, 28, 29 and 30 present the results from the evaluation between the reconstructed 

building footprints and the reference building outlines for the 1st study area in Switzerland. 

 

Building detection metrics for adjusted building outlines in Switzerland 

Derived from the combined LiDAR data 

entire study 
region 308537 m

2
 building detection percentage 96.6127 

true positive 47181.34 m
2
   

false positive 4055.17 m
2
 Branching Factor  0.08595 

false negative 1654.21 m
2
   

true negative 255646.28 m
2
 Quality Percentage  89.2053 

 
Table 27 Results from the planimetric evaluation of the adjusted building outlines, derived from the 

combined LiDAR point cloud in Switzerland 

 

Building detection metrics for initial building outlines in Switzerland 

derived from the combined LiDAR data 

entire study 

region 308537 m
2
 building detection percentage 96.3032 

true positive 47035.07 m
2
  

false positive 4096.58 m
2
 Branching Factor  0.0871 

false negative 1805.56 m
2
  

true negative 255599.79 m
2
 Quality Percentage 88.8507 

 

Table 28 Results from the planimetric evaluation of the initial building outlines, derived from the 
combined LiDAR point cloud in Switzerland 
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Building detection metrics for adjusted building outlines in Switzerland 

derived from the single path LiDAR data 

entire study 
region 308537 m

2
 building detection percentage 95.2698 

true positive 46525.03 m
2
  

false positive 3017.16 m
2
 Branching Factor 0.06485 

false negative 2310 m
2
  

true negative 255646.28 m
2
 Quality Percentage  89.7263 

 
Table 29 Results from the planimetric evaluation of the adjusted building outlines derived from the 

single path LIDAR point cloud in Switzerland 

 

Building detection metrics for initial building outlines in Switzerland 

derived from the single path LIDAR data 

entire study 

region  308537 m
2
 building detection percentage 94.9095 

true positive 46349.58 m
2
   

false positive 3476.05 m
2
 Branching Factor 0.075 

false negative 2485.97 m
2
   

true negative 255646.28 m
2
 Quality Percentage  88.6029 

 

Table 30 Results from the planimetric evaluation of the initial building outlines derived from the single 
path LIDAR point cloud 

 

 

Tables 31 and 32 provide the building detection metrics for the adjusted and initial building 

footprints respectively for the study area of London. 
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Building detection metrics for adjusted building outlines in London 

 

entire study 
region  105189 m

2
 building detection percentage 85.35 

true positive 39538.01 m
2
   

false positive 11834.33 m
2
 Branching Factor 0.30 

false negative 6784.10 m
2
   

true negative 47032.56 m
2
 Quality Percentage  67.98 

 

Table 31 results from the planimetric evaluation using building detection metrics for the adjusted 
building outlines in London 

 

Building detection metrics for the initial building outlines in London 

 

entire study 

region  105189 m
2
 building detection percentage 85.11 

true positive 39281.75 m
2
   

false positive 12201.93 m
2
 Branching Factor 0.31 

false negative 6871.30 m
2
   

true negative 46834.02 m
2
 Quality Percentage  67.31 

 

Table 32 results from the planimetric evaluation using building detection metrics for the initial building 

outlines in London 

 

Tables 33 and 34 present the calculated building detection metrics for the adjusted and initial 

building footprints respectively, for the study area in Nottingham 
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Building detection metrics for adjusted building outlines in Nottingham 

 

entire study 
region  941671 m

2
 building detection percentage 89.33 

true positive 151632.78 m
2
   

false positive 14052.43 m
2
 Branching Factor 0.092 

false negative 18093.86 m
2
   

true negative 757891.93 m
2
 Quality Percentage  82.51 

 

Table 33 results from the planimetric evaluation using building detection metrics for the adjusted 

building outlines in Nottingham 

 

Building detection metrics for the initial building outlines in Nottingham 

 

entire study 

region  941671 m
2
 building detection percentage 88.87 

true positive 151255.29 m
2
   

false positive 15931.22 m
2
 Branching Factor 0.105 

false negative 18945.45 m
2
   

true negative 755539.04 m
2
 Quality Percentage  81.26 

 

Table 34 results from the planimetric evaluation using building detection metrics for the initial building 

outlines in Nottingham 

 

The accuracy assessment depicted in the previous tables presents promising results as the 

building detection and quality percentage are significantly high in all the study areas with the 

worst results obtained for the detected buildings in London. The building detection 

percentage was increased for the adjusted building outlines as the area of the buildings 

defined only by the reference stereo plotted buildings (false negative) was decreased in 

most study areas. It’s worth noting that in most cases the building areas, defined only by the 
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Adjusted footprint Reference footprint Initial footprint 

1.7m 

0.4m 

Figure 165 Example of improved 
planimetric accuracy at the adjusted 

building footprint. 

automated procedure (false positive) are very similar with the exception of the Nottingham 

study area where the false positive between the initial and adjusted building outlines 

presents more significant differences.  

The Building Delineation errors (branching factor) are caused when the building outlines are 

not properly extracted by the automated method. These errors are estimated with respect to 

the size of the building footprint, defined by both datasets (true positive). These errors are 

related to the inherent planimetric accuracy of the input data and subsequently with the point 

density of the LiDAR point cloud and the overall quality of the stereo matched points. The 

building delineation errors for the Switzerland study area in both building footprints were 

minimized to approximately 0.08 indicating that the high density LiDAR point clouds are 

usually adequate in extracting a 

good approximation of the building 

footprint without the presence of 

significant linear artefacts. The same 

case is presented for the building 

footprints of the Nottingham study 

area indicating that the VDDSM 

created from high quality stereo 

matched points present satisfactory 

results of the building footprint. In 

contrast the London study area 

presents the worst branching factor (0.30) indicating the presence of significant artefacts for 

the footprint geometric shape due to the low density of the initial LiDAR point cloud and the 

overall degraded quality of the stereo matched points. 

The overall quality of the extracted of the building outlines is given by the quality percentage, 

which in all cases is indicating a good overall quality (greater than 65%). Nevertheless, the 

difference in the quality between the adjusted building outline and the initial footprints is not 
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as large as was expected. Although, there is an improvement in the statistical parameters for 

the adjusted footprint, it is evident that the difference is relatively small. The main reasons for 

this situation are the procedure of simplifying the building outline and the high density of the 

LiDAR or the VDDSM. The high density of the combined LiDAR point cloud in Switzerland is 

improving the accuracy of the extracted initial building footprints and therefore, small 

horizontal corrections are applied in the adjusted footprints. A similar situation is also 

observed for the second and third study areas with the optimised building outlines presenting 

better results by small margins compared to the initial building outlines. As a result it is 

assumed that the implementation of the simplification algorithm for generalizing the adjusted 

building outlines may have a negative impact since small building areas might be 

oversimplified. 

At this point it’s interesting to note that the planimetric accuracy from the single path LiDAR 

point cloud is very similar with that obtained from the combined LiDAR data in Switzerland. 

Although the density of the LiDAR data seems to have a significant negative impact on the 

level of reconstructed roof details, the building outlines on the contrary are accurately 

extracted in both cases. Switzerland produced the best results during the building detection 

stage with high overall quality (89%), very small branching factor and high building detection 

percentage (95%). These impressive results for the Switzerland area where obtained due to 

the high quality of density of the LiDAR point cloud, coupled with the effectiveness of the 

proposed workflow for LiDAR classification and building detection. The building detection for 

the Nottingham study area was also very impressive, with a lower building detection 

percentage due to the presence of misclassified objects of the building class to the tree 

class, but with very small branching factor indicating that the shape of the objects classified 

correctly as buildings was representing the correct shape of the footprints. The impressive 

results for the Nottingham study area is evidence of the effectiveness of the high quality 

airborne imagery that produced a stereo matched point cloud of superior quality. In contrast 

the results for the London area, although deemed acceptable, were far worse compared to 
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the other two study regions. The relatively poor results obtained for London were a function 

of the low quality of the initial LiDAR, poor quality of the airborne imagery that produced a 

low density stereo matched point cloud and complex building geometry. It is concluded that 

further research is needed for alternative workflows when it comes to building detection from 

low quality datasets to enhance the final result of the building outlines. 

 

7.1.2.2. Semi-automated vertical accuracy assessment of reconstructed 
building models 

 

The proposed method for a robust estimation of the vertical accuracy includes the 

generation of raster Digital Surface Models for each building. With the use of DSMs, 

functions such as overlaying and subtraction with reference DSMs can provide a robust 

estimation of the vertical accuracy using 

statistical parameters. The procedure of creating 

the DSMs from the 3D building models consists 

of two basic steps. Initially each separate roof 

plane of the building model is treated 

independently to create a TIN plane. Each TIN 

plane can accurately represent each roof plane, 

since the planes are treated independently. The 

next step includes the conversion of the TIN 

features into a raster representation. The raster 

representation has a small spacing to handle 

even the small boundary details, while the 

elevation information is stored as a floating point format to preserve the precision of the 

interpolated elevation values. The TIN to raster conversion is performed for each roof plane 

independently. 

Figure 166 Example of a raster DSM 
created from the individual roof planes 
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Finally the raster planes (with spacing of 5cm), constituting a single building are merged 

together using Map Algebra functions. The procedure was conducted in a GIS environment 

with Visual Basic scripts, designed to automate the process since the buildings used in the 

evaluation of the three study areas had over 2000 individual roof planes. Figure 166 depicts 

a created DSM for one of the reconstructed buildings in Switzerland. 

The procedure is repeated for the reference 3D building models and the comparison is 

performed by subtracting the two DSMs. The result is a difference image indicating the 

height differences between automatically derived roof planes and reference roof planes. The 

difference image is estimated only where the buildings overlap and therefore the calculation 

of the standard deviation does not take into account differences in the footprint of the 

buildings. The results from the vertical evaluation in Switzerland are summarized in table 35. 

Vertical accuracy parameters for study area in Switzerland 

(3D building models from the combined LiDAR data compared to the reference models) 

Building number Total pixels Min. error (m) Max. error (m) 
Mean 

value(m) 

Standard 

deviation (m) 

Building 1 1171303 -0.65 1.1 0.34 0.35 

Building 2 554643 -0.39 0.97 0.23 0.36 

Building 3 810867 -1.27 1.56 0.21 0.53 

Building 4 1549708 -0.64 2.51 0.61 0.56 

Building 5 717449 -1.42 0.36 -0.59 0.48 

Building 6 2317549 -0.56 0.90 -0.26 0.30 

Building 7 1331752 -0.99 0.36 -0.49 0.22 

Building 8 807336 -0.23 0.09 -0.08 0.07 

Building 9 1120424 -0.09 0.54 0.16 0.13 

Building 10 1958496 -2.45 3.63 -0.47 1.09 

Building 11 312927 -0.86 0.60 0.12 0.22 

Building 12 780007 -2.09 0.62 -0.84 0.39 

Building 13 514909 -1.78 0.51 -0.51 0.46 

Building 14 460316 -1.10 0.91 0.06 0.31 

Building 15 394981 -2.23 1.23 -0.75 0.78 
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Building 10 

Building 15 

Figure 167 Difference images for buildings 10 & 15, indicating the vertical errors of the two 
models in Switzerland 

Large vertical differences due to 

different chimney sizes in the two DSMs 

Building 16 605751 -1.20 1.31 0.19 0.58 

Building 17 1974890 -2.94 1.23 -0.37 0.79 

Average values -0.14m 0.45m 

Table 35 Vertical accuracy characteristics of the semi-automatic building models derived from the 
combined LiDAR data in Switzerland. 

 

The results from the evaluation of the automatic building models, derived from the combined 

LiDAR point cloud, indicate a small overall vertical shift of -14cm. The average standard 

deviation of the 17 buildings is in the order of 45cm, indicating the presence of significant 

vertical errors. This is evident also from the maximum and minimum vertical deviation, with 

building 10 introducing the largest vertical differences in the study area. 

 

 

 

The majority of the large vertical errors were introduced as a function of the planimetric 

deviation between the roof planes. An example is the vertical errors introduced when planes 

representing a chimney in the two DSMs have different sizes. As a result, the planimetric 

deviations between the DSMs have a significant impact on the estimated standard deviation 
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(figure 167). The second evaluation was a comparison between the reconstructed building 

models in Switzerland, derived from the single path LiDAR data and the reference building 

models. The results are summarized in table 36. 

Vertical accuracy parameters for study area in Switzerland 

(3D building models from the single path LIDAR data compared with the reference models) 

Building number Total pixels Min. error (m) Max. error (m) 
Mean 

value(m) 

Standard 

deviation (m) 

Building 1 1175297 -0.61 1.25 0.37 0.36 

Building 2 557484 -1.05 1.45 0.27 0.38 

Building 3 839059 -2.38 2.70 0.19 0.74 

Building 4 1520296 -1.09 2.24 0.56 0.53 

Building 5 709248 -1.34 0.18 -0.57 0.48 

Building 6 2090061 -0.70 0.10 -0.31 0.05 

Building 7 1311480 -0.96 0.05 -0.47 0.21 

Building 8 800887 -0.18 0.12 -0.03 0.06 

Building 9 1136059 -0.23 0.52 0.18 0.16 

Building 10 1902309 -4.09 3.52 -0.46 1.06 

Building 11 297410 -0.84 3.90 0.19 0.45 

Building 12 779186 -3.99 1.89 -0.88 0.47 

Building 13 511057 -1.78 1.52 -0.47 0.50 

Building 14 458164 -2.28 1.30 0.04 0.44 

Building 15 392560 -3.79 2.78 -0.76 0.79 

Building 16 603290 -1.67 1.93 0.22 0.62 

Building 17 1935371 -3.29 1.50 -0.47 0.94 

Average values -0.141m 0.48m 

Table 36 Vertical accuracy characteristics of the semi-automatic building models derived from the 
single path LiDAR data in Switzerland. 

 

The accuracy evaluation of the reconstructed buildings from the single path LiDAR point 

cloud in Switzerland indicates very similar results with the first evaluation. The overall 

vertical shift is in the same level as before and surprisingly the standard deviation is 
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introducing a small reduction. It is evident that the reduced density of the point cloud 

(approximately half the density of the combined LiDAR data) does not have a significant 

influence in the vertical accuracy.  Table 37 indicates the results from the vertical evaluation 

of the reconstructed models in London. 

Vertical accuracy parameters for study area in London 

(3D building models compared to the reference models) 

Building number Total pixels Min. error (m) Max. error (m) 
Mean 

value(m) 

Standard 

deviation (m) 

Building 1 134528 -0.69 1.05 0.23 0.43 

Building 2 309029 -0.75 2.46 -0.11 0.22 

Building 3 598132 -1.38 0.78 0.32 0.12 

Building 4 733498 -1.94 1.98 0.21 0.87 

Building 5 891109 -0.39 0.72 -0.34 1.12 

Building 6 1090745 -0.95 0.23 -0.42 1.42 

Building 7 1609639 -0.88 0.94 0.21 0.74 

Building 8 529076 -2.25 0.82 0.29 0.48 

Building 9 289407 -0.42 1.88 0.17 0.38 

Building 10 310752 -3.45 2.05 0.09 0.62 

Building 11 529104 -0.63 3.22 -0.10 1.01 

Building 12 1105982 -2.63 2.07 -0.28 0.29 

Building 13 407276 -1.16 2.11 -0.31 0.15 

Building 14 728710 -1.94 1.03 0.02 0.41 

Building 15 953072 -2.01 1.53 -0.20 0.69 

Building 16 947010 -0.38 1.21 -0.31 1.05 

Building 17 1682913 -0.92 0.83 0.16 1.38 

Building 18 1590387 -0.74 2.83 0.19 0.44 

Building 19 429690 -1.49 2.59 0.22 0.73 

Building 20 1210078 -2.03 2.02 0.29 0.28 

Building 21 1230784 -2.44 3.01 -0.31 0.31 

Building 22 735960 -2.31 3.28 0.09 0.71 

Building 23 100638 -1.55 1.05 -0.41 0.63 
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Building 24 297057 -1.23 1.59 0.27 0.42 

Building 25 410836 -1.02 2.01 0.12 0.19 

Building 26 372289 -0.39 1.99 0.36 0.72 

Building 27 191067 -0.82 1.42 -0.21 0.32 

Building 28 1107949 -0.92 2.03 -0.17 0.98 

Building 29 1302989 -1.37 1.80 0.39 1.42 

Building 30 1220989 -4.86 1.25 0.03 0.48 

Building 31 1568924 -3.72 0.34 -0.08 1.38 

Building 32 583807 -2.85 0.39 0.10 1.01 

Average values 0.02m 0.67m 

Table 37 Vertical accuracy characteristics of the semi-automatic building models derived from the 

study area in London 

From table 37 it is evident that in contrast to the Switzerland study area in London there is a 

very small vertical shift in the reconstructed building models. This indicates that there were 

very few systematic errors in the initial LiDAR data and GCPs used in the aerial triangulation 

of the aerial photographs. In contrast the standard deviation of the reconstructed building 

roof planes is higher compared to Switzerland that is caused by the differences in the roof 

plane shape and the absence of the reconstructed roof details in comparison to the 

reference buildings. Figure 168 depicts some examples from the vertical accuracy 

assessments. 

 

 

 

 

 

 

 
Figure 168 Difference DSM of two buildings in the London study area representing vertical deviation 

between the semi-automatic and reference roof planes 
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The following table 38 provides the summary statistics from the vertical accuracy 

assessment performed on the buildings in the test site of Nottingham. 

 

Vertical accuracy parameters for study area in Nottingham 

(3D building models compared to the reference models) 

Building number Total pixels Min. error (m) Max. error (m) 
Mean 

value(m) 

Standard 

deviation (m) 

Building 1 736821 -1.73 2.05 -0.03 0.29 

Building 2 308919 -1.24 1.49 0.04 0.17 

Building 3 142368 -0.62 0.94 0.21 0.11 

Building 4 857932 -0.83 0.39 0.34 0.03 

Building 5 650233 -0.92 0.78 -0.23 0.08 

Building 6 1123293 -0.04 1.94 -0.12 0.59 

Building 7 1274329 -0.73 1.02 -0.31 0.39 

Building 8 1345702 -2.64 1.75 0.23 1.05 

Building 9 436875 -2.29 2.08 0.28 0.20 

Building 10 328764 -1.39 1.75 0.41 0.05 

Building 11 589692 -2.42 2.37 -0.23 0.10 

Building 12 445703 -1.02 2.54 0.21 0.31 

Building 13 879324 -0.03 2.19 0.28 0.11 

Building 14 438593 -0.10 1.93 -0.16 0.02 

Building 15 632489 -0.38 0.49 -0.18 0.28 

Building 16 1232892 -0.92 0.71 -0.37 0.71 

Building 17 1263189 -0.51 0.60 0.15 0.06 

Building 18 326472 -0.29 0.31 0.22 0.19 

Building 19 215381 -0.42 0.95 0.25 0.30 

Building 20 879234 -0.71 0.89 -0.10 0.09 

Building 21 675237 -0.62 1.49 -0.20 0.14 

Building 22 237498 -0.79 1.04 0.14 0.15 

Building 23 329478 -0.12 2.94 0.36 0.20 

Building 24 874932 -0.28 2.39 -0.28 0.18 
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Building 25 675371 -0.31 2.16 0.64 0.05 

Building 26 1223987 -0.49 1.68 -0.44 0.10 

Building 27 328746 -0.10 0.84 0.11 0.14 

Building 28 873932 -1.33 0.47 -0.31 0.27 

Building 29 762824 -1.59 0.55 0.29 0.22 

Building 30 643287 -2.03 1.39 0.13 0.19 

Building 31 234989 -2.79 1.84 0.21 0.68 

Building 32 564483 -3.62 2.04 -0.26 0.20 

Building 33 218937 -0.52 1.92 -0.41 0.38 

Building 34 986434 -1.84 0.39 0.25 0.22 

Building 35 891274 -0.38 0.10 0.18 0.32 

Building 36 274832 -2.85 1.28 0.24 0.09 

Building 37 673243 -2.69 2.68 -0.21 0.13 

Building 38 383429 -2.24 1.83 0.13 0.08 

Building 39 782163 -3.81 2.38 -0.31 0.60 

Building 40 487367 -0.39 2.59 -0.11 1.03 

Building 41 541736 -0.29 1.38 0.36 0.21 

Building 42 785374 -0.84 1.82 0.24 0.17 

Building 43 216375 -0.92 0.49 0.28 0.23 

Building 44 347826 -1.04 0.29 -0.23 0.12 

Building 45 897923 -1.25 0.38 -0.34 0.27 

Building 46 973864 -1.92 0.77 -0.25 0.07 

Building 47 216347 -0.29 1.39 0.36 0.30 

Building 48 1327864 -0.62 2.95 0.17 0.24 

Building 49 1230934 -0.49 2.58 0.19 0.15 

Building 50 372842 -1.92 2.93 -0.26 0.18 

Building 51 912738 -2.71 0.93 0.49 0.05 

Average values 0.04m 0.25m 

Table 38 Vertical accuracy characteristics of the semi-automatic building models derived from the 

study area in Nottingham 

 

Table 38 presents promising results from the vertical accuracy assessment from the 

Nottingham study area. The small mean errors indicate the absence of significant systematic 
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vertical errors on the reconstructed roof planes. The standard deviation is significantly lower 

compared to the other two test sites and it is comparable to the vertical accuracy statistics 

obtained for the aerial triangulation of the aerial imagery. It is understandable that the 

vertical accuracy of the stereo matched points and the VDDSM created has an equivalent 

vertical accuracy. Thus it is safe to assume that for the Nottingham test site the plane fitting 

algorithm hasn’t introduced any significant artefacts to affect the vertical accuracy. Figure 

169 depicts some examples from the vertical accuracy assessment performed on the 

reconstructed buildings in Nottingham. 

 

 
Figure 169 Difference DSM of four buildings in the Nottingham study area representing 

vertical deviation between the semi-automatic and reference roof planes 

Building 5 

Building 4 

Building 1 Building 6 
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At this point it should be noted that the evaluation for the Switzerland study area was 

conducted for relatively large buildings and the influence of the decreased point density was 

evident only in the ability to reconstruct small roof details. Therefore, it is apparent from the 

evaluation that small roof structures, apart from the visual differences, don’t seem to greatly 

affect the vertical accuracy of the building models. As a general conclusion from the 

evaluation it could be said that the LiDAR dataset with a density of 3 points/m2 yield 

reconstructed models with very similar planimetric and vertical accuracy results, compared 

to the 3D building models derived from the combined LiDAR data (density of 5 points/m2). 

 

7.2. Automatic texturing using vertical airborne images 
 

Automatic texture mapping of building rooftops and facades is of particular significance for 

an aesthetically pleasant representation of reconstructed 3D city models. There have been 

various techniques and data sources used to texture city models. Previous methods have 

tried to tackle the issue into texturing building rooftops using vertical aerial photographs, and 

texturing facades by utilizing ground-based images (Brenner et al. 2001).  

In these cases, roofs and terrain are often texture mapped with only one single vertical aerial 

image while building facades not accessible from terrestrial photography are not textured 

(Lee et al. 2002). However, to ensure that all building facades in a city area are covered and 

properly textured, it is necessary to utilize multiple oblique and vertical aerial images with 

different viewing angles. In this case, it is necessary to cope with most parts of a model 

being visible in several images, under varied viewing angles, resolutions, and potentially 

different lighting conditions. 

Despite the necessity for multiple viewing angles, oblique airborne images are not always 

easily accessible for all the study areas. This project presents interesting findings from the 

implementation of an automatic texture mapping workflow in the three study areas. Note that 

the first two study areas in Switzerland and London consist of vertical airborne imagery 
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(Switzerland test site had oblique imagery from ADS40 but only one band and thus true-

color texture mapping was not properly implemented). The Nottingham test campus utilises 

the vertical UltraCamD airborne photography. 

The texture mapping workflow described in this section was implemented in Leica 

Photogrammetry Suite once the final building models were generated and the aerial 

triangulations of the available aerial images were completed. 

The first stage in the automatic texture mapping workflow is the registration of the 3D models 

with the aerial images. In a photogrammetric system this is easily achieved using the 

colinearity equations and solving for the image x,y of each polygon node. In other words 

each polygon is back-projected on the images using the linear form of the collinearity 

equations (see equation 5.1). Since the exterior and interior orientation parameters have 

been accurately determined from the aerial triangulations the registration between the 3D 

models and the airborne images is usually to a high degree of accuracy. Hence all the 3D 

polygonal facets of the 3D city models are projected on all the available aerial images. When 

the 3D polygon is projected from the object space to the image space it will either return a 

set of x,y image co-ordinates or will return null values in case the polygons falls outside 

photographs image extent. 

The second stage of the workflow deals with the selection of the optimum image for texturing 

each polygon. This stage follows the method proposed by (Früh et al., 2004). Note that from 

the above process a single polygon might be projected onto multiple aerial photographs. The 

assumption made at this point by the workflow is that that all the images were taken under 

similar lighting conditions, thus difference in illumination conditions are not taken into 

account. This might have an adverse effect on the overall texture quality but the complexity 

of the workflow otherwise would have been beyond the scope of this project. 

The selection of the optimal aerial image for texturing a specific 3D polygon is based on the 

following criteria as defined in (Früh et al., 2004). 
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• Resolution 

Resolution is defined as the number of pixels within the projected 3D polygon at the image 

space. Since there are multiple images sometimes with different viewing angle the number 

of corresponding pixels within a projected polygon ranges. To determine the resolution Rij for 

each image Ii and triangle Tj the workflow divides the number of pixels within each projected 

2D triangle by the area of the corresponding 3D triangle. 

• Occlusion 

Occlusion Șij is determined as a percentage of a 3D triangle Tj that is visible on an image Ii. 

The workflow detects the occlusions on a pixel by pixel basis by implementing a z-buffer 

algorithm. The z-buffer algorithm is an image space visibility determination workflow, it may 

also be referred to as hidden surface removal process. 

 

• Viewing angle 

The desirable aerial image for texturing a 3D polygon should have approximately the same 

orientation as the 3D polygon, in other words taken from a direct, perpendicular viewing 

position. Otherwise large distortions could be introduced. For each image Ii and triangle Tj 

the viewing direction ij as the vector between the image principal point and the centre point 

of the 3D polygon. The workflow then uses the scalar product between the viewing direction 

and the surface normal ij of the 3D polygon to quantify how direct the view of an aerial 

image is. 

The selection of the most appropriate image is then given from the highest score obtained 

from the following equation (Früh et al., 2004). 

 

Ȝij = Rij x Șij x ij x ij  

Leica Geosystems has implemented the workflow described previously in Leica 

photogrammetry Suite and it was utilized for the automatic texture mapping of the 3D city 

models.  

(7.2) 
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7.2.1. Automatic texture mapping and visualization for study area in 
Switzerland 

 

This section describes the process of texture mapping, applied on the reconstructed building 

models in Switzerland for visualization purposes. Initially an ortho-rectified true colour 

composite was generated using the available bands of the stereo model and a DTM of the 

study area. The DTM was created from the filtered combined LiDAR point cloud.  

 

The true colour composite was subsequently used in conjunction with the reconstructed 

building models to obtain texture information from the image. The texture information was 

obtained by back-projecting only the roof planes on the true colour composite (image space) 

by implementing the workflow described in the section 7.2 with the ADS40 true colour 

composite.  

Figure 170 Perspective view of the textured building models for the study area superimposed 
on the ortho-rectified true color composite and draped over a DTM 
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The generic images, representing vertical building facades were used from a material library 

for texturing the reconstructed facades. The procedure described in this section was 

performed using Leica Photogrammetry Suite and the Virtual GIS module in ERDAS 

Imagine. Visualizations of the reconstructed buildings are depicted in figures 170 & 171. 

 

7.2.2. Automatic texture mapping and visualization for the study area in 
London 

 

The automatic texture mapping performed on the reconstructed building models in London 

was implemented by utilizing only the available stereo pair of aerial photographs in the area. 

The virtual scene consists of a DTM, created from the filtered LiDAR data, and an ortho-

rectified aerial photograph which is draped on the DTM. Figure 172 illustrates some 

examples of the textured mapped building models. 

Figure 171 Detailed perspective view of the textured building models, superimposed on the 
orthorectified true color composite which was draped over a DSM 
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Figure 172 Perspective views of the automatically textured mapped building models in London 

As can be easily seen from figure 172 the texture quality of the building models in London is 

considerably degraded especially for the facades. Most of the roof structures have good 

quality textures which are equivalent to the quality of the aerial photographs without any 

significant artefacts. In contrast the vertical lower resolution imagery with 60% overlap 

proves to be inadequate for façade texturing which in most cases is significantly distorted 

except for a few occasions. 

 

7.2.3. Automatic texture mapping and visualization for the study area in 
Nottingham 

 

The texture mapping process for the reconstructed building models in Nottingham presents 

the most interesting results compared with the other two study areas due to the availability of 

high resolution vertical UltraCam D imagery. The automatic texture mapping process was 

performed using the UltraCam D imagery with the workflow described in section 7.2. The 

results from the texture mapping are given for both cases in figure 173. 
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Figure 173 The automatically textured buildings models using the available Ultracam D airborne 
images with 80% overlap. 

 

From the images presented in figure 173 it is safe to assume that in most cases with very 

few exceptions the automatically textured building models using the Ultracam D images 

achieved superior quality for the roof textures but even with the 80% overlap the façade 

textures where poor at best and heavily distorted in most cases. 

In addition there are several texture artefacts on the façade polygons and it is speculated 

that these artefacts are caused by errors or occasional bugs of the texture mapping 

algorithm, coupled with flipped vector normal of the 3D polygons comprising the building 

models. Clearly more research is required in automatic or semi-automatic texture mapping 

before high quality and reliable results can be produced. 

 

 

UltraCam D 
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8. CONCLUSIONS AND FURTHER PROSPECTS 
 

The research introduced a method for the entire workflow of semi-automated building 

reconstruction, quality assurance and texture mapping using data fusing techniques to 

increase the accuracy and Level of Detail of the building models. The proposed method was 

implemented on a variety of different datasets of varied accuracy, resolution and overall 

quality with the aim to evaluate the effectiveness of the proposed workflow in different 

situations. The feature extraction process from the ADS40, film/scanned aerial photographs 

and UltraCam D images, all produced an overall acceptable result, with most of the linear 

features adequately represented. Furthermore, the implementation of the feature extraction 

stage was straightforward and easily adaptable to data collected from different sensors. One 

of the main disadvantages during the stage of feature extraction was the extraction of 

conjugate points instead of matching linear features directly in the model space. Extracting 

conjugate linear features could potentially enhance even more the stage of reconstructing 

the 3D breaklines, instead of trying to detect the 3D breaklines from the VDDSM at a later 

stage. Despite the acceptable results, there were still a number of building outlines without 

an adequate number of extracted points.  

The stage of building detection produced very promising results since most of the buildings 

were successfully detected, independent of their size, roof type or when high density LiDAR 

were available or using VDDSMs. The main advantage is the generic approach of the 

algorithm that can be implemented in a variety of different situations and datasets of 

alternative density of resolution. The method is not restricted by the leaf condition of the tree 

canopies and even undetected individual trees can be filtered during the building 

classification stage. Nevertheless the proposed method requires a certain level of user 

interaction since some crucial parameters are very difficult to estimate automatically. 

Undetected individual trees that are bordering buildings can introduce a false building 

detection.  
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The adjustment of the extracted building outlines and 3D breaklines in most cases improved 

the planimetric accuracy of the building footprint and the Level of Detail of the VDDSMs by 

incorporating fusion techniques with the stereo matched points. The proposed method is 

fairly robust by minimizing user interaction since most of the critical parameters can be 

automatically defined. Nevertheless the accuracy improvement of the building outlines was 

hindered in some cases by the simplification process.   

The procedure of building reconstruction presented accurate and visually impressive results. 

The method seems to be very reliable, having the ability to reconstruct a large number of 

roof details. One of the crucial steps is the use of Boolean functions for implementing the 

Constructive Solid Geometry. In most cases the process yields reliable results with the 

majority of the adjacent roof planes merged together.  

The planimetric evaluation indicated in most cases a small improvement in the accuracy of 

the building footprint with the use of the stereo matched points for the London and 

Nottingham study areas. For the Switzerland area it is interesting to note that the 

improvement in the accuracy was more noticeable in the building outlines derived from the 

single path LiDAR data. In addition, from the accuracy evaluation in the Switzerland study 

region it was evident that the planimetric and vertical accuracy of the building models, 

obtained from the single path LiDAR data were very similar with those obtained from the 

combined LiDAR data. Although the lower density of the single path LiDAR point cloud 

seems to have a negative impact on the level of reconstructed roof details, the building 

outlines and the overall vertical accuracy is similar in both cases. It is also concluded that the 

vertical accuracy assessment has highlighted the direct link between the accuracy of the 

reconstructed roof planes and the quality of the Aerial Triangulation and the quality of the 

GCPs used. It was evident that the best vertical accuracy was obtained for the Nottingham 

study area were very precise GPS were used and accurate Aerial Triangulation results were 

obtained. 
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8.1. Addressing the aims and objectives  
 

This section will address the specific aims and objectives that were set for this project based 

on the analysis of the results and the presented workflow. The main aim of this project as 

described in section 1.2 was the development of a semi-automated, innovative workflow for 

building reconstruction and 3D city modelling. 

The main aim as defined above has two important phrases, semi-automated and innovative 

workflow. The aim of semi-automation will be address at a later stage. The aim to have 

some innovative processes in the overall workflow was of particular importance. Throughout 

the proposed workflow for 3D city modelling there were several innovative processes 

introduced as summarised below. 

Addressing the aim of innovation and novelty: 

• Edge extraction for image enhancement prior to stereo matching – This process 

was devised in order to enhance the contrast between the linear features visible on 

the aerial images and the background objects. Although edge operators have been 

widely used as documented, the successful enhancement of the linear features prior 

to the stereo matching process is indicating that this innovative process could be 

used on a regular basis for enhancing the quality and density of the stereo matched 

point cloud. 

• Building detection process – Although there have been several attempts to identify 

building models from optically derived data, this research presented an innovative 

generic process for identifying the building class from LiDAR data or Very Dense 

DSM (VDDSM) created solely from airborne imagery. 

• Data fusion for optimising building footprint and 3D breaklines – One of the 

most innovative stages introduced is a new method for fusing the LiDAR data with 

high density stereo matched points from aerial photographs. This new data fusion 

method was performed in order to improve the accuracy of the building footprint as 
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well as the accuracy of the reconstructed 3D breaklines that are used subsequently 

to enhance the Level Of Detail of the reconstructed roof shapes. 

• Semi-automatic quality assurance – Another important aspect introduced in this 

research is the proposed workflow for accuracy assessment. Apart from the generic 

visual assessment and the use of building detection metrics, which are well known in 

the industry, the report introduces a new innovative process for a complete vertical 

accuracy assessment. The semi-automatic vertical accuracy assessment is based on 

the generation of TIN models for each building that are subsequently subtracted from 

reference building models. 

Apart from the main aim of novelty and innovative processes the following objectives were 

also set at the beginning of the project. 

Project objectives: 

The project objectives as defined in section 1.2 are summarised below. 

1. The final solution would need to have a degree of automation exceeding current 

industry standards and previous research efforts 

2. The solution should present comparable accuracy and LOD characteristics with 3D 

models extracted from manual stereo plotting procedures and a method to perform 

accuracy assessment should be proposed. 

3. It should be a flexible and reliable solution that can be accommodated in different 

situations with different dataset characteristics (resolution, quality and number of 

data sources), adaptable to different scenes with different building architecture. 

4. Cost efficiency and availability of data sources should also be considered. 

 

Addressing 1st objective on the level of automation: 

The first objective states that the final ‘’workflow should have a degree of automation 

exceeding current industry standards’’. The ‘’current industry standards’’ were confirmed by 
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the time required to manually stereo plot the reference 3D building models used in the 

accuracy assessment presented in chapter 7. The manual stereo plotting was performed by 

the author, who is an experienced operator of Leica Stereo Analyst, and the time required for 

an area of one square kilometre was approximately 40 working hours. Although this 

timeframe fluctuated between the test sites depending on the complexity and density of the 

building models, it can be considered a representative timeframe for an urban area.  

The time requirements for unsupervised processing and manually adjusting parameters from 

the implementation of the proposed workflow are given in table 39. The processing was 

performed using a high specification dual core workstation with 4GB or RAM and a powerful 

3D graphics card. 

Test Site Area covered by 
models (sq.km) 

Unsupervised 
processing (hours) 

Manual intervention 
(hours) 

Switzerland 1 12 2 

London 0.5 8 3 

Nottingham 2 15 2 

 
Table 39 Time requirements for unsupervised processing and manually adjusting parameters from the 

implementation of the proposed workflow in the test sites. 

 

In table 39, the column ‘manual intervention’ represents the time spent by the operator to 

adjust parameters and prepare the data for processing in the different software packages. 

Note that a number of packages were used for the completion of the entire workflow 

including ERDAS Imagine, LPS, ArcGIS, TerraScan and Geomagic Studio. The time for the 

‘manual intervention’ is in addition to the ‘unsupervised processing’. So the total time 

required for the production of 3D city models in Switzerland, London and Nottingham was 

14, 11 and 17 hours respectively. Comparing the required time with the manual methods it is 

evident that all three test sites have introduced reduction on the required timeframe. 

Nottingham test site presented the bigger gain, by reducing the time requirements as much 

as 78%. The time requirements for Switzerland were reduced by 65%, while London 

presented the smallest gain by reducing time requirements by nearly 50%. Analysing the 
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results in table 50 we can conclude that the benefit of the proposed workflow in reducing the 

required time for the production of 3D city models is maximised as the size of the area gets 

bigger. It is also evident that increased complexity of building models (London site) has a 

negative impact on the time reduction benefits. 

As stated in section 1.2 in order for the workflow to be considered semi-automatic it would 

need to reduce time requirements by 50% but still require the operator to perform several 

functions and setting parameters during this time. In contrast an automated algorithm could 

be named as such if it could reduce the overall processing time by at least 50% and maintain 

the time spent by the operator for setting parameters within 1%. Essentially for one square 

kilometre of 3D city models a workflow would qualify as automatic if the operator was 

spending no more than 30 minutes setting parameters and altering variables and the 

unsupervised processing of the data was complete in less than 20 hours. 

Based on the above consideration the proposed workflow does not qualify as automatic 

because the time spent for manual intervention in all three test sites exceeds 1% of the total 

processing time. Since though the benefit from the time reduction was more than 50% and 

still require time for manual intervention the workflow can be classified as semi-automatic 

and has effectively met the first objective of the project. 

Addressing 2nd objective on accuracy and LoD: 

The second objective was set to define a milestone for the accuracy assessment 

methodology and the level of detail this solution should satisfy. Section 1.2 stated ‘’that in 

order for the solution to be adaptable in the industry and not purely stay a research 

prototype, the derived models should be quantitatively assessed and the overall accuracy 

(standard deviation) should not be worse than 50cm (for height and plan) compared to 

current manual methods’’. The derived models would also need to have a comparable level 

of detail with the manual models, hence the solution should be able to generate LOD 2 city 

models, including the necessary geometric detail and textures. 
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As discussed in chapter 7 the accuracy of the 3D city models was evaluated based on a 

novel workflow that combined a planimetric and vertical accuracy assessment method. The 

advantages of the proposed workflow for accuracy assessment is that it presented a unified 

workflow for a complete quantitative evaluation by using building detection metrics and a 

new method for evaluating vertical deviation. For the comparison reference models are used 

created by manual stereo plotting techniques. The use of an adequate number of stereo 

plotted reference models is the main limitations of this workflow since in a production 

environment only a sample of reference building models need to be created to reduce the 

overall time requirements. In a production environment it is estimated that the reference 

models should cover at least 10% of the area in order to produce reliable quantitative 

results. The results from the vertical accuracy assessment are summarised in table 40. 

Test Site Vertical accuracy (St.dev.) Vertical accuracy (Mean 
value) 

Switzerland 0.45m -0.14m 

London 0.67m 0.02m 

Nottingham 0.25m 0.04m 

Table 40 Summary from the vertical accuracy assessment for all three test sites 

 

As it is indicated in table 40 two out of three test sites achieved the accuracy milestone set in 

the project objectives section. The London models fell short of achieving the accuracy 

requirements and it was due to a number of reasons as described in section 7.1.2.2, 

including the quality of the initial data as well as the complexity of the buildings. It is safe to 

assume that the proposed workflow creates accurate 3D city models that satisfy the project 

objectives when the study area does not consist of very complicated building structures. It’s 

clear that in areas with very complicated building models there is the need for higher density 

LiDAR and airborne imagery of high ground resolution to satisfy these accuracy 

requirements. 

The completeness or Level of Detail of the reconstructed building models was assessed 

visually by comparing them against the reference models as presented in section 7.1.1. In all 
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three test sites the models were fairly similar and despite some inconsistencies with very 

small roof details most of the reconstructed models would classify as LoD 2 models, thus 

satisfying the project objective set initially. 

Addressing 3rd objective on adaptability and reliability: 

The third objective set in section 1.2 stated that ‘’the solution should be flexible and reliable 

with different dataset characteristics (resolution, quality and number of data sources), 

adaptable to different scenes with different building architecture’’. The results presented from 

implementation of the proposed workflow in three test sites are a testament of the 

adaptability and reliability of the solution. These three test sites presented areas with 

different building architecture, landscape and model complexity. In addition the datasets 

available presented different challenges in each case but the solution, despite few 

differences, was able to produce similar results with respect to the level of detail and 

accuracy of the models.  

Addressing 4th objective on cost efficiency: 

The fourth and last project objective as defined in section 1.2 stated that ‘’consideration 

should be given to the cost efficiency and availability of data sources’’. The first two study 

areas (Switzerland and London) presented an ideal scenario where both LiDAR and aerial 

photography is available. These datasets presented the opportunity to utilise the benefits of 

data fusion techniques for obtaining superior 3D modelling results as discussed in section 

1.2. For the third test site though in Nottingham, instead of obtaining LiDAR and airborne 

imagery it was decided that this study area should present a more cost-effectively solution. 

Thus the decision to constrain the available datasets to only airborne imagery was made and 

that decision signified a major challenge since the existing workflow would need to be 

changed. Therefore the proposed workflow as presented in this report was defined after 

seriously considering the best alternatives for a cost efficient solution able to provide reliable 

results even when LiDAR data are not provided. 
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8.2. Further Prospects 
 

Finally, further research is needed in order to assess the effectiveness of the simplification 

algorithm, during the adjustment of the building outlines and the reconstruction of the 3D 

breaklines from VDDSMs. One aspect that requires further examination is the improvement 

in the automation of the building detection stage since in all cases irrespective of the 

datasets used, the process required significant user interaction and assessment of the 

statistics by the operator.  Furthermore, additional research for efficient texture mapping 

using oblique airborne imagery and terrestrial moving platforms (such as a van with direct 

geo-referencing capabilities and multiple cameras) that could prove particularly useful for 

providing superior visual results. 
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APPENDIX I 
 

Algorithm 1 Feature extraction from optical data 

Data: Multiple stereo pairs of aerial images, polygons of the AOI 

Result: Stereo matched points 

Begin 

  Select panchromatic bands for all look angles 

   If only vertical images are used then 

    Proceed to step 6.2.2 

            Else  

continue from step 6.2.1 

            End 

6.2.1          foreach interest area polygon do 

 Back project on image space and calculate image co-ordinates 

If image co-ordinates are within the 140 backward view then  

    Select 14o backward look angle for stereo matching 

            else 

    Select 28o forward look angle for stereo matching 

            end 

   Select nadir look angle for stereo matching 

  end 

6.2.2  foreach selected image of the stereo pair do 

   Apply Sobel edge operator with kernel size 3x3 

Merge extracted edges and calculate new DN values for images 

  end 

6.2.3  foreach enhanced stereo pair do 

   Back-project polygons of interest areas on image space 

   Set parameters for stereo matcher 
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    Search window size (x,y) = 20,5 

    Correlation window (x,y) = 3x3 

    Correlation coefficient limit = 0.80 

   Apply stereo matching on overlapping areas inside interest polygons 

   Calculate quality statistics 

    If “suspicious percentage” < 20% then  

    Accept results and export 3D points in a shapefile format 

            else  

    Increase correlation coefficient by 0.02 and repeat from 6.2.3 

            end 

Continue loop from point 6.2.3 until “suspicious percentage” > 20%  

up to maximum of 10 iterations 

  end 

 end 
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Algorithm 2 TIN generalization and VDDSM generation 

Data: Previously stereo matched points, AT results, LiDAR data 

Result: VDDSM, Geomorphometric parameters 

Begin 

  Check if liDAR data are available 

   If LiDAR data exist then 

    Create density map and measure density of points (D) 

If (D) < 4 pts/sq.m then merge LiDAR with stereo  

   matched points and proceed to step 6.3.1 else 

      Skip process and go to building detection 

              End  

            Else  

Proceed to step 6.3.1 

            End 

6.3.1          Create TIN surface with a Delaunay Triangulation from merged dataset 

          Perform TIN generalization 

   Set parameters for TIN generalization 

    Error threshold = vertical RMS check point residuals from AT 

          Convert generalized TIN to VDDSM 

   Set parameters for VDDSM generation 

    Grid Sampling= 4 pixels per square meter 

          foreach grid cell of the VDDSM do 

   Calculate Slope in degrees 

Calculate Aspect and classify pixels in 8 orientation groups 

  End 

 End 
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Algorithm 3 Building detection from high density LiDAR data 

Data: LiDAR data from multiple flight paths, polygon of the study area 

Result: Classified LiDAR points representing only buildings 

Begin   
6.4.1  foreach study area polygon do 

Calculate density map from LiDAR data & average density value (D) 
  If multiple LiDAR point clouds overlap then  

    Merge LiDAR points from multiple flight paths  
              else 
    Select LiDAR point cloud where (D) is higher 
              end 
  end 
  foreach selected point cloud do 
6.4.1.1   Set parameters for scanning point cloud with generic tree models 
    Minimum tree height = 2m 
    Maximum tree height = 40m 
    Width percentage = 30% 

Delineate trees and remove detected points from selected point cloud 
6.4.1.2   Set parameters for classifying ground 
    Maximum building size = 300m 
    Maximum terrain angle (Ta) = “user defined” 
       If maximum terrain angle (Ta) = “null” then 
      Calculate Ta = 60o * D / 4 
      Set maximum value for (Ta) = 80o 
         If (Ta) > 80 o then 
        assign Ta = 80o 
       else 
        maintain calculated (Ta) 
       end 
     else 
      Maintain user defined (Ta) 
     end  
    Maximum iteration angle = 5o 

Maximum iteration distance =1m 
   Detect ground surface and create ground TIN model 
6.4.1.3   Classify LiDAR points up to 2.5m above ground TIN as low features 
   Merge points classified as low features with the ground surface 
      If study region has area > 1km2 then 
     Split region into four subset areas 
    else  
     Retain existing study area 
    end 
  end 
  foreach subset point cloud do 
   Calculate average point spacing from the density map (Sm) 
6.4.1.4   Set parameters for building detection 
    Minimum building size = 40m2 
    Maximum building size = 30000m2 
    Minimum detail = 4* Sm 
    Maximum roof angle = “user defined” 
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       If maximum roof angle = “null” then 
      Set maximum roof angle = 600 
     else 
      Utilize user defined value 
     end 
    Elevation tolerance = Sm 
   Perform building detection and assign points to building class 
  End 
  Unite individual subsets to create a single classified point cloud 
6.4.1.5  Create DSM using only the building class 
6.4.1.6  Reclassify DSM into a binary image 
  Perform raster to vector conversion and create building polygons 
6.4.1.7  Overlay unclassified laser points and select remaining building points 
  Merge selected points with initial building detection   
 end 
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Algorithm 4 Data fusion for adjusting building outlines and 3D breaklines 

Data: classified High density LiDAR (H.D.LiDAR), Stereo Matched Points, Classified 

building class from VDDSM 

Results: Adjusted building footprint for H.D.LiDAR, optimised 3D point cloud from 

VDDSM 

Begin 

Check input 

If input is H.D.LiDAR  then 

 Calculate average point spacing from the density map (Sm) 

6.5.1.1  foreach void area larger then 10m2 on the classified ground points do 

Check if classified building points are present 

  If classified building points exist then  

    Set parameters for plane fitting algorithm 

     Minimum plane size (Ps) = 4*Sm 

     Elevation tolerance = Sm 

     Merge planes (increase in tolerance) = Sm + (Sm/4) 

    Perform plane fitting and visualize roof planes 

              else 

    Exclude void area from further processing 

              end 

  end 

  foreach roof plane do 

   Extrude plane boundary on the ground surface 

   Transform vertical facades into 2D polygons 

6.5.1.2   Set topology rules for spatial cleaning 
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    Dangle length tolerance = “user defined” 

Fuzzy tolerance = “used defined 

               If either “dangle length” or fyzzy tolerance =“null” then 

      Dangle length tolerance = 2*(Ps) 

      Fuzzy tolerance =  2*(Ps) 

              else  

      Utilize user defined values 

              end 

   Perform spatial cleaning and produce unified building polygons 

   Convert vector polygons to vector polylines 

  End 

  foreach vector polyline do 

6.5.1.3    Set parameters for simplification algorithm 

    linear tolerance  = “user defined” 

    minimum area = 10m2 

       If linear tolerance = “null” then 

               Obtain lengths of the constituent linear segments 

               Calculate average length value (Al) 

      Select linear segments (Ls) with length< Al 

      linear tolerance  = average of (Ls) lengths 

     else 

      Utilize user defined values 

     end  

   Create simplified building footprints  

  end  

  foreach simplified polyline do 

6.5.1.4                        Break polylines into the constituent linear segments 
Overlay stereo matched points 

      foreach linear segment do 
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    Estimate buffer size 

        Set maximum search size (Ms) = 3* (Sm) 

        Generate buffer zone rings of 25cm until (Ms) is reached 

        Obtain number of points (Np) within buffer zone1 

 If (Np) within buffer zone1 (0-25cm) < 5 then 

       Repeat loop for second zone (0-50cm) until (Np) >5 

 else 

        Specify buffer zone size = 25cm 

 end 

    Create buffer zones and filter stereo matched points 

6.5.1.4                                        Apply least squares adjustment using filtered points 
    Extend linear segments until intersected 

    Create closed building footprint 

         end 

  end 

 If input is Classified building class from VDDSM then 

  Calculated Slope and Aspect raster map 

6.5.2.1  Convert raster building class to vector building polygon 

  Convert vector building polygons to vector polylines 

   foreach vector polyline do 

6.5.1.3   Set parameters for simplification algorithm 

    linear tolerance  = “user defined” 

    minimum area = 10m2 

       If linear tolerance = “null” then 

               Obtain lengths of the constituent linear segments 

               Calculate average length value (Al) 

      Select linear segments (Ls) with length< Al 

      linear tolerance  = average of (Ls) lengths 

     else 

ArcGIS 

TerraScan 

ArcGIS 



334 

 

      Utilize user defined values 

     end  

   Create simplified building footprints  

  end 

  foreach simplified footprint do 

 6.5.1.4                       Break polylines into the constituent linear segments 
Overlay stereo matched points 

      foreach linear segment do 

    Estimate buffer size 

        Set maximum search size (Ms) = 3* (Sm) 

        Generate buffer zone rings of 25cm until (Ms) is reached 

        Obtain number of points (Np) within buffer zone1 

 If (Np) within buffer zone1 (0-25cm) < 5 then 

       Repeat loop for second zone (0-50cm) until (Np) >5 

 else 

        Specify buffer zone size = 25cm 

 end 

    Create buffer zones and filter stereo matched points 

6.5.1.4                                        Apply least squares adjustment using filtered points 
    Extend linear segments until intersected 

    Create closed refined building footprint 

                end      

  end 

6.5.2.2  foreach refined building footprint do   

   Project footprint on the slope raster map 

   Apply threshold for slope map (SL.M) = 200 

   Identify breaklines where slope change is > SL.M 

   Create initial 3D breaklines 

  end 
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  foreach initial 3D breakline do 

1.5.2.2.                   Break 3D breaklines into the constituent 3D linear segments 
Overlay stereo matched points 

      foreach 3D linear segment do 

    Estimate 3D buffer size 

        Set maximum search size (Ms) = 3* (Sm) 

        Generate buffer zone rings of 25cm until (Ms) is reached 

        Obtain number of points (Np) within buffer zone1 

 If (Np) within buffer zone1 (0-25cm) < 5 then 

       Repeat loop for second zone (0-50cm) until (Np) >5 

 else 

        Specify buffer zone size = 25cm 

 end 

    Create buffer zones and filter stereo matched points 

     Foreach filtered stereo matched check point do 

Project point on the Aspect raster map and get 

value 

     End  

     If all filtered points have same aspect value then  

                      Fit refined 3D linear segment using filtered 

Points 

     else 
      Reject points with different aspect value 

      

 

    Extend linear segments until intersected 

                end      

   Create closed refined 3D roof polygons 

  End 

Employ Delaunay triangulation using the extracted points representing the 

ground surface to create a bare-earth TIN surface 

Group 3D roof polygons in height levels depending on their size and 

elevation. 
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6.5.2.2.         Begin iterative TIN generation 

For the first roof level do 

Project vertically the 3D polygon outlines on the ground TIN 

Get ground elevation for each node of polygons 

Create final footprint by creating a buffer of 5cm 

Add 3D polygons and footprints on ground TIN and create Level 

1 TIN 

        End 

       For each subsequent roof level repeat loop using the TIN generated from 

the previous roof level. 

          end  

6.5.2.3  Begin generation of optimized 3D point cloud 

   Create grid of 2D points (input : spacing and coverage) 

    Specify spacing = 20cm 

    Specify coverage = User input or polygon of study area if 

    available 

   End 

   Foreach 2D point do 

    Project point vertically until it’s intersected with the refined TIN 

    Calculate elevation from the TIN triangle and store in point 

    Database 

    Keep 3D points that are within the building footprint 

   end 

  end 

          end 
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Algorithm 5 Building reconstruction from using 3D point cloud  

Data: Classified LiDAR point could, classified 3D point cloud from VDDSM, adjusted 

building outlines, roof 3D breaklines 

Result: Solid 3D building models 

Begin 

6.6.1    Merge building footprints and roof breaklines with 3D point cloud 

Orthographically project building outlines on the ground surface  

6.6.2   foreach projected building footprint do 

   Set parameters for plane fitting algorithm  

    Minimum plane size (Ps) = 4*Sm (spacing from density map) 

    Elevation tolerance = Sm 

    Merge planes (increase in tolerance) = Sm + (Sm/4) 

    Restrict plane fitting within roof 3D breaklines 

   Fit planes and visualize results 

   Create vertical facets from footprints and intersect with roof planes 

6.6.3                         Convert planar facets to volumetric primitives 

Set parameters for Constructive Solid Geometry and Boolean merging 

 Buffer distance = 2* (Ps) 

Apply Boolean union and create solid 3D building models   

  end 

   

 end 

 

 

 

ArcGIS 

TerraScan 

AutoCad 

ArcGIS 


	ABSTRACT
	LIST OF PUBLISHED PAPERS
	ACKNOWLEDGMENTS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Project introduction
	Aims and objectives
	Novelty and contribution to knowledge
	Outline of the report

	APPLICATIONS AND PREVIOUS RESEARCH EFFORTS
	Applications for 3D city models
	Virtual Tourism
	Noise pollution studies
	Environmental Monitoring & Disaster management
	Urban planning and Engineering
	Simulation applications
	Property management and cultural heritage
	Navigation with portable navigation devices
	Security and defence
	Real time visualization of detail 3D city models
	Towards a unified representation of 3D city models
	Building reconstruction from single data sources
	Building reconstruction from airborne optical data
	Building reconstruction from LiDAR point clouds
	Building reconstruction from fusion of different datasets
	Commercial systems for semi-automated building reconstruction
	Strengths and weaknesses of previous research efforts
	Adopting previous methods in the proposed workflow for semi-automated 3D city modelling

	AIRBORNE DATA COLLECTION SYSTEMS
	Airborne Digital Sensor ADS40
	Design principles
	ADS40 Sensor Calibration
	Post-Processing workflow of ADS40 data
	Geometric accuracy and overall quality
	Airborne frame film camera, Leica RC30
	RC30 main Components
	UltraCam D digital sensor
	Design Concepts & Calibration
	Accuracy assessment & performance
	Airborne Laser Scanner - ALS50
	Operating and design principles
	Calibration and overall performance
	Airborne Laser Terrain Mapper - Optech ALTM 3033
	Operating and design principles
	Error sources for airborne laser scanners
	The significance of the selected data collection systems in 3D city modelling

	STUDY AREAS AND AVAILABLE DATASETS
	Study area (Heerbrugg, Switzerland)
	Data Provided
	ADS40 digital strip imagery
	Airborne LiDAR data
	Co-ordinate system for the study area
	Study area (London – Bloomsbury)
	Data Provided
	Leica RC30 aerial images
	ALTM 3033 LiDAR data
	Study area (The University of Nottingham, University Park campus)
	Data Provided
	UltraCamD images

	PRE-PROCESSING AND DATA PREPARATION
	Switzerland data – Pre-processing and AT of the ADS40 imagery
	London - Aerial Triangulation of RC30 scanned aerial photographs
	In contrast to the ADS40 data the RC30 aerial photographs were processed using traditional workflows in Leica Photogrammetry Suite (LPS), by performing the interior orientation, measuring GCPs and automatic tie points and carrying out the aerial trian...
	Interior orientation
	Automatic tie point extraction and GCP measurement
	Aerial Triangulation results
	The University of Nottingham campus - Aerial Triangulation of UltraCamD imagery
	Interior orientation
	Automatic tie point extraction and GCP measurement
	Aerial Triangulation results

	PROPOSED WORKFLOW FOR AUTOMATIC 3D CITY MODELLING AND ANALYSIS OF THE RESULTS
	Overview of the proposed method
	Extracting features from optical data
	Selecting appropriate stereo pair
	Applying edge detection algorithm
	Optimised stereo matching
	Discussion for the stage of semi-automated feature extraction from optical data
	TIN Generalization and Very Dense DSM generation
	Building detection and classification of LiDAR data and VDDSMs
	Classification and building detection using high density LiDAR data
	Delineating tree canopies from high density LiDAR
	Classifying ground surface (DTM) from high density LiDAR data
	Classifying low vegetation and background features from high density LiDAR data
	Generating building hypothesis from high density LiDAR
	Generating DSM from the initial building classification
	Reclassification and raster to vector conversion of the DSM
	Filtering and merging unclassified LIDAR points to the building class
	Discussion for the stage of building extraction from high density LiDAR data
	Classification and building detection using course LiDAR or VDDSM
	Seed sells and histograms analysis
	Region growing segmentation
	Parametric representation and final building classification
	Data fusion for optimizing building footprint and roof details
	Data fusion process for High Density LiDAR
	Extracting initial building footprint from High Density LiDAR
	Spatial cleaning and generating topology for the 2D building footprints
	Generalization and simplification of the building outline
	Filtering stereo matched points with simplified building outline
	Adjustment and refinement of the building outline
	Data fusion for VDDSMs
	Deriving the initial building outline from the raster building class
	Fitting 3D Linear segments and TIN refinement to improve roof geometric detail
	Converting refined TIN to a dense 3D point cloud
	Building Reconstruction for generating final polyhedral models
	Combining building footprint with 3D point cloud
	Final 3D Building reconstruction
	Merging adjacent roof planes utilizing Boolean functions
	Discussion for the stage of building reconstruction

	PROPOSED WORKFLOW FOR AUTOMATIC QUALITY ASSURANCE AND TEXTURE MAPPING
	Semi-automated Quality Assurance workflow
	Qualitative evaluation of the reconstructed building models
	Semi-automated Quantitative evaluation of the reconstructed building
	Planimetric accuracy assessment of the building footprint
	Semi-automated vertical accuracy assessment of reconstructed building models
	Automatic texturing using vertical airborne images
	Automatic texture mapping and visualization for study area in Switzerland
	Automatic texture mapping and visualization for the study area in London
	Automatic texture mapping and visualization for the study area in Nottingham
	CONCLUSIONS AND FURTHER PROSPECTS
	Addressing the aims and objectives
	Further Prospects

	REFERENCES
	APPENDIX I

