5,446 research outputs found

    Utilizing tunable signal interference control topologies with electromechanical resonators

    Get PDF
    Exploiting knowledge gained from previous investigations of channelized and trans-versal filters, signal interference filters use transmission line differences to generate transmission zeros through phase-shifted combinations of signals at the output of a device. The transmission lines used in these circuits are straightforward to design, but are limited to high-frequency signals (on the order of a few gigahertz) due to the necessity for spatial compactness and low loss. More recent studies have used electromechanical resonators to achieve phase shifting and quality factor improvements at slightly-lower frequencies. These concepts may prove useful if extended to micro- and nanoscale resonators. To explore signal interference topologies outside of purely-electrical, high-frequency filtering domains, a generic system model is proposed herein, which is based upon high quality factor resonant elements and continuously-tunable amplitude and phase components. The mathematical models developed in this work are generalized to apply the concept of signal interference to a variety of linear resonant systems. With this approach, frequency response behaviors can be quickly modified from amplification to cancellation through appropriate tuning of the phase and gain components. The analytical models are simulated and implemented in electromechanical circuitry as a first step towards system integration. The prototypical circuits qualitatively match the desired frequency response and tuning behaviors, proving the use of the mathematical models in the design of linear resonant signal interference systems

    Power Approaches for Implantable Medical Devices.

    Get PDF
    Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health). In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources

    Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection

    Get PDF
    The acousto-ultrasonic method has proven to be a most interesting technique for nondestructive evaluation of the mechanical properties of a variety of materials. Use of the technique or a modification thereof, has led to correlation of the associated stress wave factor with mechanical properties of both metals and composite materials. The method is applied to the nondestructive evaluation of selected fiber reinforced structural composites. For the first time, conventional piezoelectric transducers were replaced with laser beam ultrasonic generators and detectors. This modification permitted true non-contact acousto-ultrasonic measurements to be made, which yielded new information about the basic mechanisms involved as well as proved the feasibility of making such non-contact measurements on terrestrial and space structures and heat engine components. A state-of-the-art laser based acousto-ultrasonic system, incorporating a compact pulsed laser and a fiber-optic heterodyne interferometer, was delivered to the NASA Lewis Research Center

    Redesign of the MMOC microgripper piezoactuator using a new topological optimization method.

    Get PDF
    International audienceThis paper presents a new method developed for the optimal design of piezoactive compliant mechanisms. It is based on a flexible building blocks method, called FlexIn, which uses an evolutionary approach, to optimize a truss-like structure made of passive and active piezoelectric building blocks. An electromechanical approach, based on a mixed finite element method, is used to establish the model of the piezoelectric blocks. A planar monolithic compliant microactuator is synthetized by the optimization method, based on the specifications drawn from a piezoelectric microgripper prototype (MMOC). Finally, some performances comparisons between the optimally FlexIn synthetized gripper and the previous gripping system demonstrate the interests of the proposed optimization method for the design of microactuators, microrobots, and more generally for adaptronic structrures

    A review of pzt patches applications in submerged systems

    Get PDF
    Submerged systems are found in many engineering, biological, and medicinal applications. For such systems, due to the particular environmental conditions and working medium, the research on the mechanical and structural properties at every scale (from macroscopic to nanoscopic), and the control of the system dynamics and induced effects become very difficult tasks. For such purposes in submerged systems, piezoelectric patches (PZTp), which are light, small and economic, have been proved to be a very good solution. PZTp have been recently used as sensors/actuators for applications such as modal analysis, active sound and vibration control, energy harvesting and atomic force microscopes in submerged systems. As a consequence, in these applications, newly developed transducers based on PZTp have become the most used ones, which has improved the state of the art and methods used in these fields. This review paper carefully analyzes and summarizes these applications particularized to submerged structures and shows the most relevant results and findings, which have been obtained thanks to the use of PZTp.Peer ReviewedPostprint (published version

    HIGH PERFORMANCE PIEZOELECTRIC MATERIALS AND DEVICES FOR MULTILAYER LOW TEMPERATURE CO-FIRED CERAMIC BASED MICROFLUIDIC SYSTEMS

    Get PDF
    The incorporation of active piezoelectric elements and fluidic components into micro-electromechanical systems (MEMS) is of great interest for the development of sensors, actuators, and integrated systems used in microfluidics. Low temperature cofired ceramics (LTCC), widely used as electronic packaging materials, offer the possibility of manufacturing highly integrated microfluidic systems with complex 3-D features and various co-firable functional materials in a multilayer module. It would be desirable to integrate high performance lead zirconate titanate (PZT) based ceramics into LTCC-based MEMS using modern thick film and 3-D packaging technologies. The challenges for fabricating functional LTCC/PZT devices are: 1) formulating piezoelectric compositions which have similar sintering conditions to LTCC materials; 2) reducing elemental inter-diffusion between the LTCC package and PZT materials in co-firing process; and 3) developing active piezoelectric layers with desirable electric properties. The goal of present work was to develop low temperature fired PZT-based materials and compatible processing methods which enable integration of piezoelectric elements with LTCC materials and production of high performance integrated multilayer devices for microfluidics. First, the low temperature sintering behavior of piezoelectric ceramics in the solid solution of Pb(Zr0.53,Ti0.47)O3-Sr(K0.25, Nb0.75)O3 (PZT-SKN) with sintering aids has been investigated. 1 wt% LiBiO2 + 1 wt% CuO fluxed PZT-SKN ceramics sintered at 900oC for 1 h exhibited desirable piezoelectric and dielectric properties with a reduction of sintering temperature by 350oC. Next, the fluxed PZT-SKN tapes were successfully laminated and co-fired with LTCC materials to build the hybrid multilayer structures. HL2000/PZT-SKN multilayer ceramics co-fired at 900oC for 0.5 h exhibited the optimal properties with high field d33 piezoelectric coefficient of 356 pm/V. A potential application of the developed LTCC/PZT-SKN multilayer ceramics as a microbalance was demonstrated. The final research focus was the fabrication of an HL2000/PZT-SKN multilayer piezoelectric micropump and the characterization of pumping performance. The measured maximum flow rate and backpressure were 450 ÎĽl/min and 1.4 kPa respectively. Use of different microchannel geometries has been studied to improve the pumping performance. It is believed that the high performance multilayer piezoelectric devices implemented in this work will enable the development of highly integrated LTCC-based microfluidic systems for many future applications

    Nanowire Zinc Oxide MOSFET Pressure Sensor

    Get PDF
    Fabrication and characterization of a new kind of pressure sensor using self-assembly Zinc Oxide (ZnO) nanowires on top of the gate of a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is presented. Self-assembly ZnO nanowires were fabricated with a diameter of 80 nm and 800 nm height (80:8 aspect ratio) on top of the gate of the MOSFET. The sensor showed a 110% response in the drain current due to pressure, even with the expected piezoresistive response of the silicon device removed from the measurement. The pressure sensor was fabricated through low temperature bottom up ultrahigh aspect ratio ZnO nanowire growth using anodic alumina oxide (AAO) templates. The pressure sensor has two main components: MOSFET and ZnO nanowires. Silicon Dioxide growth, photolithography, dopant diffusion, and aluminum metallization were used to fabricate a basic MOSFET. In the other hand, a combination of aluminum anodization, alumina barrier layer removal, ZnO atomic layer deposition (ALD), and wet etching for nanowire release were optimized to fabricate the sensor on a silicon wafer. The ZnO nanowire fabrication sequence presented is at low temperature making it compatible with CMOS technology

    InMyFace: Inertial and Mechanomyography-Based Sensor Fusion for Wearable Facial Activity Recognition

    Full text link
    Recognizing facial activity is a well-understood (but non-trivial) computer vision problem. However, reliable solutions require a camera with a good view of the face, which is often unavailable in wearable settings. Furthermore, in wearable applications, where systems accompany users throughout their daily activities, a permanently running camera can be problematic for privacy (and legal) reasons. This work presents an alternative solution based on the fusion of wearable inertial sensors, planar pressure sensors, and acoustic mechanomyography (muscle sounds). The sensors were placed unobtrusively in a sports cap to monitor facial muscle activities related to facial expressions. We present our integrated wearable sensor system, describe data fusion and analysis methods, and evaluate the system in an experiment with thirteen subjects from different cultural backgrounds (eight countries) and both sexes (six women and seven men). In a one-model-per-user scheme and using a late fusion approach, the system yielded an average F1 score of 85.00% for the case where all sensing modalities are combined. With a cross-user validation and a one-model-for-all-user scheme, an F1 score of 79.00% was obtained for thirteen participants (six females and seven males). Moreover, in a hybrid fusion (cross-user) approach and six classes, an average F1 score of 82.00% was obtained for eight users. The results are competitive with state-of-the-art non-camera-based solutions for a cross-user study. In addition, our unique set of participants demonstrates the inclusiveness and generalizability of the approach.Comment: Submitted to Information Fusion, Elsevie
    • …
    corecore