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ABSTRACT

Geesey, Bryce A. M.S.M.E., Purdue University, May 2016. Utilizing Tunable Signal
Interference Control Topologies with Electromechanical Resonators. Major Profes-
sor: Jeffrey F. Rhoads, School of Mechanical Engineering.

Exploiting knowledge gained from previous investigations of channelized and trans-

versal filters, signal interference filters use transmission line differences to generate

transmission zeros through phase-shifted combinations of signals at the output of a

device. The transmission lines used in these circuits are straightforward to design,

but are limited to high-frequency signals (on the order of a few gigahertz) due to the

necessity for spatial compactness and low loss. More recent studies have used elec-

tromechanical resonators to achieve phase shifting and quality factor improvements

at slightly-lower frequencies. These concepts may prove useful if extended to micro-

and nanoscale resonators.

To explore signal interference topologies outside of purely-electrical, high-frequency

filtering domains, a generic system model is proposed herein, which is based upon high

quality factor resonant elements and continuously-tunable amplitude and phase com-

ponents. The mathematical models developed in this work are generalized to apply

the concept of signal interference to a variety of linear resonant systems. With this

approach, frequency response behaviors can be quickly modified from amplification

to cancellation through appropriate tuning of the phase and gain components.

The analytical models are simulated and implemented in electromechanical cir-

cuitry as a first step towards system integration. The prototypical circuits qualita-

tively match the desired frequency response and tuning behaviors, proving the use of

the mathematical models in the design of linear resonant signal interference systems.
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CHAPTER 1. INTRODUCTION

1.1 Background

Resonant micro- and nanoelectromechanical systems (M/NEMS) have been ac-

tively studied over the past few decades due to their potential to respond within

nanoseconds to changing inputs and provide observable resonance behaviors up to mi-

crowave frequencies. The high quality (Q) factors of these devices enable narrow-band

selectivity and improved signal-to-noise strength compared to their purely-electrical

analogues. These systems can also exhibit unique and useful nonlinearities, which has

further encouraged and facilitated the application of M/NEMS resonators in, for ex-

ample, mass and magnetic field sensing, signal amplification and filtering, and timing

circuits [1]. Another important attribute of M/NEMS is their inherently small size,

which motivates modeling these devices for very-large-scale integration (VLSI) [2].

Recently, signal interference architectures have been proposed for low-loss, purely-

electrical filtering circuits. These devices create destructive interference (transmission

zeros) through phase-shifted output combinations [3–7]. Signal interference filters

arose as passive adaptations of the active transversal or channelized filter concepts

primarily investigated by Rauscher [8, 9], which is why signal interference filters are

often referred to as transversal filtering sections (TFS). The basic operating principle

of both transversal active filters and signal interference filters is in the output sum-

mation of two or more signal paths originating from a single source. By individually

altering the amplitude and phase characteristics of each signal path, the recombined

output responses demonstrate constructive interferences at frequencies where the sig-

nals are collectively in-phase and destructive interferences where the signal phases

are opposed.
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These multi-path filtering topologies have also been implemented with tunable

concepts based upon, for example, transmission line switching and varactor diodes

[10, 11] or reconfigurable coupling [12] for passive filters, and varactor tuning for

active channelized filters [13]. The passive studies claim to achieve transitions from

narrow-band band-pass filters to wide-band ones (at gigahertz frequencies) through

appropriate switching and tuning elements [11]. Transversal interference architectures

have therefore been demonstrated in a number of electrical signal filtering contexts

with a reasonable degree of success, suggesting that this simple concept could prove

useful in other domains.

The aforementioned studies of electromechanical and purely-electrical systems fo-

cus on shaping the near-resonant frequency response of the devices. Broadly speaking,

interference filters accomplish frequency shaping in a static sense through transmis-

sion line differences in TFSs, whereas electromechanical techniques can leverage linear

Lorentzian responses or inherently nonlinear dynamics (e.g. Duffing-like structures)

in the frequency domain [1, 2, 14–16]. MEMS oscillators and timing circuits achieve

frequency response stability and noise reduction with closed-loop feedback phase shift-

ing [17,18]. In an effort to easily amplify or cancel frequency domain behaviors, this

work investigates tuning the resonant frequency response of high-Q mechanical de-

vices using the feedforward properties of signal interference. The proposed dynamic

control systems exhibit a wide range of resonance and cancellation behaviors through

the simple tuning of signal interference components. Generalized mathematical mod-

els are developed here, which are then simulated and implemented in analog circuitry

as a step towards other domains and implementations, including M/NEMS.

1.2 Project Goals

This work studies signal interference concepts outside of purely-electrical filtering

contexts to leverage their benefits of spatial compactness and simplicity in resonant

mechanical systems. Additionally, a parametrically-tunable system model is desired
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to further adapt signal interference to a wider range of problems by removing domain-

specific constraints on frequency, amplitude, and phase. To accomplish these goals,

the work presented here is organized in two main parts. First, dynamic system models

are developed for the proposed transversal feedforward system architectures. These

first-principles based models are generalized in a dimensionless sense to be applied to

a variety of resonant physical systems. Second, simulated and experimental proof-of-

concept devices are developed to show the applicability of the mathematical model to

a simple physical system. The experimental setups also prove the utility of the model

and an associated set of design equations for resonant signal interference systems.

1.3 Technical Approach

In the context of signal interference filters, simple passive transmission lines may

be used to alter the amplitude and phase characteristics of individual signal channels

before recombining them at an output. This works well in electrical filters at giga-

hertz frequencies, where the necessary path-length differences required to generate

appreciable phase offsets are short due to the small wavelengths involved. For a more

generic signal interference system that can model any arbitrary frequency range, a

more robust construction must be utilized.

Recent investigations of signal interference filters have incorporated the resonance-

amplification and phase-shifting benefits of electromechanical resonators in the signal

paths [7,19]. The high-Q characteristics of these resonators aid the filtering effect at

lower frequencies and provide an additional phase shift of about −90° near resonance.

However, the surface acoustic wave (SAW) resonators used in these studies included

several spurious modes due to their geometry and manufacturing tolerances, which

negatively impact the output responses of the filters. Figure 1.1 shows simplified

diagrams of (a) transmission line signal interference filters and (b) signal interference

filters including electromechanical resonators and transmission lines.
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(a)

 

 

  

(b)

Figure 1.1. Typical block diagrams of signal interference filters con-
sisting of (a) solely transmission line amplitude differences (Z1 and
Z2) and path-length differences (θ1 and θ2) and (b) a combination of
transmission lines and an electromechanical resonator.

The dynamic models developed in this work incorporate ideal Lorentzian resonant

elements along with ideal gain and phase-shifting components. By starting with an

ambiguous and idealized model system, it is assumed that the equations and results

obtained in the following chapters may be appropriately related to a diverse set of

physical structures and processes.
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CHAPTER 2. RESONANT SIGNAL INTERFERENCE SYSTEM MODELS

To better understand the signal-interference-type system in a linear sense, first-

principles models are developed here from an understanding of Lorentzian frequency

behaviors of electromechanical systems. The first approach starts with a single reso-

nant element with a separate feedforward interference structure. This control setup

demonstrates some of the results that have been achieved in prior signal interference

systems based on surface acoustic wave (SAW) resonators [7,19], but in a non-domain-

specific sense. The second approach then extends the model to include a second reso-

nant element, independent of the first, inside the feed-forward interference structure.

This topology demonstrates the myriad of frequency response shapes that are possi-

ble by simple combinations of tunable linear resonances. This chapter concludes with

a discussion of the assumptions and limitations included in these signal interference

system models.

2.1 Resonator Equation of Motion

Classical linear motion of a mechanical resonator is utilized as a starting point

from which to evaluate the behavior of the resonant elements in a given signal inter-

ference system. The equation of motion adopted here is then generalized through a

process called non-dimensionalization, which seeks to remove all dimensions from a

problem to observe its solutions independent of the domain, process, or environment.

Normalizing systems in this way is common and useful in differential equation models

since it can parameterize a problem to fit multiple scenarios.

First, the resonator is modeled by the classic inhomogeneous, second-order, linear

differential equation of motion:



6

mẍ+ cẋ+ kx = F sin(ωt) (2.1)

where m, c, and k are the effective mass, damping, and stiffness parameters associated

with the resonator (assumed to be constants), t is the time variable, and x is the

desired resonator output. The right hand side of Equation (2.1), F sin(ωt), is a

sinusoidal forcing input with amplitude F and angular frequency ω. This equation of

motion is scaled by dividing by m and then non-dimensionalized using the following

definitions:

x = x0x̂ ωt = rτ

r =
ω

ωn

ωn =

√
k

m

2ζ =
c√
mk

(•)′ =
d(•)
dτ

x0 =
F

k

(2.2)

where x0 is an arbitrary scaling parameter of x such that x̂ is non-dimensional, ζ is

the canonical damping ratio, ωn is the undamped natural frequency of the resonator,

and r and τ are normalized frequency and time variables, respectively. The arbitrary

definition x0 = F/k allows the dependence on input amplitude (F ) and resonator

stiffness (k) to be completely removed from this model. Since the ˙(•) operator in

Equation (2.1) represents a derivative with respect to time t, the substitution of τ

for t requires the definition of the new derivative operator (•)′ with respect to τ . It

is also important to note that the quality factor Q of the resonator can be defined

with respect to the dimensionless damping ratio ζ as Q = 1/2ζ. Performing all of the

above substitutions gives the form:

x̂′′ + 2ζx̂′ + x̂ = sin(rτ) (2.3)
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The solution to this simplified differential equation involves independent homo-

geneous and particular components. The transient behavior (homogeneous solution)

of this system is ignored here since steady-state effects are the more useful results

of signal interference systems, and transient behavior cannot be easily generalized

since it depends on specific initial conditions. Therefore, only the particular solution

is pursued here, assuming transient effects are allowed to decay during system ini-

tialization. Using the method of undetermined coefficients, the particular solution of

Equation (2.3) is:

x̂p(τ) = Â sin(rτ) + B̂ cos(rτ)

Â =
−(r2 − 1)√

(r2 − 1)2 + (2ζr)2

B̂ =
−2ζr√

(r2 − 1)2 + (2ζr)2

(2.4)

This form of the particular solution is more difficult to evaluate since it in-

cludes two separate magnitude terms and both sine and cosine components. Equa-

tion (2.4) can be condensed through trigonometric identities using the definitions

Ĉ =
√
Â2 + B̂2 and tanψ = B̂/Â to combine the two terms into one. Doing this

modifies the particular solution to:

x̂p(τ) = Ĉ sin(rτ + ψ)

Ĉ =
1√

(r2 − 1)2 + (2ζr)2

ψ = arctan

(
2ζr

r2 − 1

) (2.5)

which is straightforward to evaluate in the frequency domain as the amplitude Ĉ and

phase ψ responses of the equation of motion. Now that the resonant response is well

defined, the signal interference structure can be added around this solution.
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2.2 Single Resonator Signal Interference System

The proposed single resonator control design consists of a source signal that is

split into two signal paths, one that passes through a simple resonator and another

that passes through an ideal phase shifter φ and amplifier G, which are then added

together at the output. A model of this system is shown in Figure 2.1.

𝒙

𝒚

 

Figure 2.1. Block diagram of the proposed control system with two
signal branches, one with a resonator and another with a pure phase-
shifter φ and gain G. The input U is split equally between the two
branches, and the output V is the non-weighted sum of the individual
responses x and y.

This system is evaluated by supplying the sinusoidal input U = F sin(ωt) de-

scribed above to determine the steady-state output V . To calculate the output in

this configuration, the resonator response x from the previous section is added to the

phase-shifted signal y. The phase-shifted branch y has a response of the form:

y = GF sin(ωt+ φ) (2.6)

where the phase φ is assumed to add linearly to the argument of the input sinusoid,

and the amplitude G is assumed to scale the input linearly. To sum the responses

of x and y and maintain the desired level of generality, the y signal branch must

also be put in a non-dimensional form using a similar scheme as above. Here, the

definition y0 = x0 = F/k is incorporated for dimensional similarity between the two

signal paths, and these substitutions give the form:
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ŷ = Gk sin(rτ + φ) (2.7)

Combining Equation (2.5) and Equation (2.7), the non-dimensional output V̂ of

the system can be determined:

V̂ = x̂p(τ) + ŷ(τ)

V̂ = Ĉ sin(rτ + ψ) +Gk sin(rτ + φ)
(2.8)

As mentioned in the previous section, this steady-state form of the output solution

is more difficult to evaluate with two amplitude terms and two phase components,

so a single-term combined result is desired. The trigonometric sum of angles identity

was used here on each sine term to yield:

V̂ = Ĉ[sin(rτ) cosψ + cos(rτ) sinψ]

+Gk[sin(rτ) cosφ+ cos(rτ) sinφ]
(2.9)

Collecting terms, this simplifies to:

V̂ = [Ĉ cosψ +Gk cosφ] sin(rτ)

+ [Ĉ sinψ +Gk sinφ] cos(rτ)
(2.10)

This can be combined into a single sine term with definitions of D̂ and θ:

D̂ =

√
[Ĉ cosψ +Gk cosφ]2 + [Ĉ sinψ +Gk sinφ]2

tan θ =
Ĉ sinψ +Gk sinφ

Ĉ cosψ +Gk cosφ

(2.11)

giving the final non-dimensional form:

V̂ = D̂ sin(rτ + θ)

D̂ =

√
Ĉ2 + (Gk)2 + 2ĈGk cos(ψ − φ)

θ = arctan

(
sinψ + Gk

Ĉ
sinφ

cosψ + Gk

Ĉ
cosφ

) (2.12)
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The magnitude (D̂) of the output in Equation (2.12) depends on four parameters.

First, the Ĉ term is a non-dimensional gain that exhibits a resonant behavior with

respect to the normalized frequency r, tending to 1/2ζ (the quality factor, Q) when

r = 1 [see Equation (2.5)]. Second, the product Gk is the non-dimensional constant

gain of the phase-shifted branch. Third, the angle ψ is the phase of the resonator,

which is 0° far below the resonant frequency and −180° far above resonance. Defining

the resonant frequency as ωr = ωn

√
1− 2ζ2, or rr = ωr/ωn =

√
1− 2ζ2, means that

ψ depends on ζ near resonance, according to Equation (2.5), and ψ is approximately

−90° at resonance for a high quality factor (low ζ) device. Lastly, the design param-

eter φ is a constant and tunable phase that can change the argument of the cosine

term, altering the qualitative behavior of the system.

To better understand how φ affects the frequency response of the system, Equation

(2.12) can be further evaluated at the resonant frequency rr = ωr/ωn =
√

1− 2ζ2,

which yields the resonance relationship:

V̂ = D̂ sin
(
τ
√

1− 2ζ2 + θ
)

D̂ =

√
1

(2ζ2)(1− ζ2)
+ (Gk)2 +

Gk

ζ
√

1− ζ2
cos(ψ − φ)

θ = arctan

(
sinψ + 2ζ

√
1− ζ2Gk sinφ

cosψ + 2ζ
√

1− ζ2Gk cosφ

) (2.13)

Clearly, the output amplitude D̂ at resonance is fixed for a given constant ζ and

k except for the design variables φ and G. Varying φ adjusts the resonant amplitude

from a maximum at φ = −90° (φ is in-phase with ψ) to a minimum at φ = 90° (φ

is 180° out-of-phase from ψ). In Equation (2.13), this behavior is due to the cosine

function reaching a maximum when its argument is 0° and a minimum when the

argument is +/ − 180°. If the gain is matched between the two signal branches by

the definition Gk = 1/(2ζ
√

1− ζ2), the minimum resonant amplitude is zero.

Figure 2.2 shows the described behavior of the resonant amplitude for this as-

signed definition of Gk and values of φ from −180° to 180°. This phenomenon is
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Figure 2.2. Theoretical phase θ and Q-scaled amplitude D̂ of the
non-dimensional output V̂ , evaluated at resonance (r = ωr/ωn =√

1− 2ζ2), plotted with respect to the tunable design parameter φ.
At φ = −90° the resonant amplitude is doubled, and at φ = 90° the
amplitude is canceled.

the operating principle of signal-interference-type circuits in which two signals create

transmission zeros where their phases are exactly 180° opposed, and they create dou-

bled amplitudes where their phases are the same, also described as destructive and

constructive interference, respectively.

With this understanding of resonance behavior, the frequency of the input is swept

near resonance [in Equation (2.12)] for a few characteristic values of φ. The pattern of

the response curves is shown in Figure 2.3, assuming a nominally high value of 10,000
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Figure 2.3. Various theoretical frequency responses of the non-
dimensional system output V̂ at frequencies r in a small range near
r = 1 for characteristic values of φ at 45° intervals. Clearly, φ = −90°

and φ = 90° lead to constructive and destructive interference, re-
spectively. Other values of φ map the transitions between the two
extremes. Resonance occurs in a narrow range of frequencies near
r = 1 due to the high-Q assumption, with Q nominally set to 10,000
here.

for Q to determine the phase and frequency scales. The amplitude response also

depends on Q, where the height of the resonant peak is determined by the inherent

damping of the resonator. As in Figure 2.2, the amplitude plot here is scaled by Q

to show the amplitude doubles for φ = −90° with respect to any arbitrarily-high Q

value.
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The qualitative potential of the proposed system is visible in the response of

Figure 2.3, namely the amplification or cancellation of a specific input frequency that

results from appropriate tuning of the phase-shift design parameter φ. A variety of

literature already exists describing the amplification and cancellation behaviors of

electrical filtering as observed here, however the continuously-tunable control system

designed above shows useful characteristics from which a variety of suitable physical

analogues may be derived.

2.3 Two Resonator Signal Interference System

Using the same method as above, the control topology of Figure 2.1 may be

extended to include a resonator in the phase-shifting branch as well. This setup is

shown in Figure 2.4, where y now represents the response of the second resonator and

z is the output of the second branch after phase shifting (φ) and amplifying (G).

Since the first signal branch here is unchanged from the single resonator case, the

equation of motion and its non-dimensionalized form are the same as those presented

in Equations (2.1) and (2.3) with the addition of subscripts on the damping ratio (ζ1),

natural frequency (ωn1), and other resonator parameters to denote the first resonator.

Thus, the particular solution of the first resonator equation of motion is again:

x̂p(τ) = Ĉ1 sin(rτ + ψ1)

Ĉ1 =
1√

(r2 − 1)2 + (2ζ1r)2

ψ1 = arctan

(
2ζ1r

r2 − 1

) (2.14)

To evaluate the other signal branch, the second resonator is modeled indepen-

dently with a similar second-order differential equation:

m2ÿ + c2ẏ + k2y = U = F sin(ωt) (2.15)
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Figure 2.4. Block diagram of the proposed two resonator control
system where each signal branch contains a resonator, and the second
branch also includes a pure phase-shifter φ and gain G. The input
U is split equally between the two branches, y is the response of the
second resonator, and the output V is the non-weighted sum of the
individual branch responses x and z.

This form was non-dimensionalized using the same approach as Equation (2.2),

which also introduces ωn1 into the equation of motion for the second resonator to

maintain dimensional similarity between signal branches. This is simplified with the

definitions:

2ζ2 =
c2√
m2k2

ωn2 =

√
k2
m2

y0 =
F

k2
α =

ωn2

ωn1

(2.16)

where α is a detuning parameter for the natural frequencies of the two resonators.

The non-dimensional frequency parameter r is still defined here as r = ω/ωn1. The

second resonator equation of motion is now:

ŷ′′ + 2ζ2αŷ
′ + α2ŷ = α2 sin(rτ) (2.17)

Again, using the method of undetermined coefficients, the particular solution of

this equation is given by:
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ŷp(τ) = Ĉ2 sin(rτ + ψ2)

Ĉ2 =
α2√

(r2 − α2)2 + (2ζ2αr)2

ψ2 = arctan

(
2ζ2αr

r2 − α2

) (2.18)

Next, the ideal phase shift and gain blocks are applied to the ŷp response, which

yields:

ẑ(τ) = GĈ2 sin(rτ + ψ2 + φ) (2.19)

The ẑ response is then summed with x̂p and simplified using trigonometric iden-

tities to obtain the final form of the output:

V̂ = D̂ sin(rτ + θ)

D̂ =

√
Ĉ2

1 +G2Ĉ2
2 + 2GĈ1Ĉ2 cos(ψ1 − ψ2 − φ)

θ = arctan

(
Ĉ1 sin(ψ1) +GĈ2 sin(ψ2 + φ)

Ĉ1 cos(ψ1) +GĈ2 cos(ψ2 + φ)

) (2.20)

In the single resonator system, there were two design variables to tune the output

interference response, φ and G, for a given high-Q resonator. Now in the two resonator

system there are three design variables to tune, φ, G, and α, assuming that the

two resonators have the same high-Q value. The frequency response space can be

mapped by adjusting these three parameters independently. Figure 2.5 shows various

amplitude response shapes that can be obtained by setting G = 1 and adjusting φ and

α for a pair of resonators with Q = 10, 000. The φ parameter is iterated from 0° to

180° in 45° intervals, and α is adjusted slightly above and below unity corresponding

to natural frequency differences of 1 and 1.5 times the resonators’ bandwidth.
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The results of Figure 2.5 show (a) amplitude doubling at resonance where the

resonators are in-phase (φ = 0°) and have the same natural frequency (α = 1), (b)

complete amplitude cancellation (φ = 180° and α = 1), (c) a flat band-pass-type

response, (d) combinations of resonance and cancellation, etc. Results (a) and (b)

are intuitively referred to as constructive and destructive interferences, respectively,

making results such as (c) and (d) the more unusual and interesting ones to replicate

experimentally. According to Yagubizade [20], a band-pass-type response obtained

from the output of two parallel resonators is optimally flat when the resonators’

natural frequencies are offset by one bandwidth, as in (c).

As with the single resonator case, the qualitative potential of this proposed topol-

ogy is in shaping the frequency behavior of a system by simply combining two inde-

pendent linear resonance responses. The theoretical results of this study may now be

employed in a physical proof-of-concept.

2.4 Model Limitations

To develop the system models presented in this chapter, a number of simplifying

assumptions were made. The homogeneous solution to the resonator equation of mo-

tion was ignored because transient responses based on initial conditions quickly decay

in many second-order linear systems. This assumption imposes a steady-state condi-

tion on the responses for which these models are appropriate; i.e. the system must

be allowed to oscillate for long enough that transient effects are no longer significant.

In physical experiments this may simply mean allowing sufficient settling time when

changing the frequency or amplitude of the forcing input.

Additionally, it was discovered that the single resonator signal interference systems

impose a gain definition of Gk = 1/(2ζ
√

1− ζ2) to obtain a complete destructive

interference (transmission zero) at resonance when φ = 90°. In the two resonator

system, this corresponds to a definition of G = 1 to match the resonant amplitudes

of each signal path. The two resonator system also requires knowing the quality
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factors of the resonators so the α detuning parameter may be adequately set based

on the bandwidths. In these models it was assumed that both resonators have the

same quality factor, but this may not be the case depending on the specific physical

implementation or manufacturing tolerances.

Linear resonance is considered in this work and it is assumed the resonators are

not coupled, however nonlinear effects are commonly encountered in M/NEMS and

other physical systems. This work may be expanded in the future to account for

familiar nonlinearities, such as Duffing responses, or inter-resonator coupling. Simi-

larly, it is assumed that the ideal phase and gain elements are linear and constant in

the frequency domain, although physical implementations of these elements may be

frequency dependent.
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CHAPTER 3. PROTOTYPE DESIGN AND SIMULATION

3.1 Developing a Prototype System in Electromechanical Circuits

As previously stated, the goal of this work is to study signal interference concepts

outside of the purely-electrical filtering domain. To validate the mathematical results

described above, any linear resonant system may be used, but an electromechanical

circuit is prescribed in this chapter due to the commercial availability and rapid

assembly and test benefits of electronics. Mechanical, acoustic, optical, magnetic, and

biological resonant systems, for example, may be amenable to this signal interference

approach, however they typically incur higher manufacturing time and cost and may

be more difficult to observe compared to commercial electromechanical components.

3.1.1 Frequency Considerations

Signal interference circuits have been demonstrated in wireless frequency ranges

from several hundred megahertz to a few gigahertz using passive setups [5,19]. How-

ever, MEMS and NEMS resonators can operate at much lower frequencies (for ex-

ample, around 42.7 kHz in a MEMS [21] and 25 MHz in a NEMS [2, 22]). At lower

frequency ranges the required electrical lengths of the passive transmission line el-

ements in signal interference devices become too significant for practical use with

small systems. An active circuit was derived here instead of a passive one due to this

limitation and to prove the modeled results can be scaled to lower frequency ranges

than prior work.

In this work, simulations and experimental implementations of the control sys-

tems of Figures 2.1 and 2.4 are proof-of-concept architectures at a nominal resonator

frequency of 50 MHz. A 50 MHz nominal frequency is chosen to demonstrate a lower

frequency application than previous signal interference devices while also being suf-
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ficiently fast to accommodate some state-of-the-art M/NEMS capabilities. In theory

and practice the resonator may be any high-Q system accurately modeled by Equation

(2.3).

In an electromechanical system, it may at first seem advantageous to observe

the input and resonator output in order to process the phase-shifting, gain, and

summation steps in a digital implementation. However, sampling at 10 times the

input frequency means a sample-and-hold operation results in a phase lag of 36°

between samples, and sampling at 100 times the input frequency still yields 3.6° of

lag. For less than 1° of phase error, the sampling rate of a digital implementation must

be at least 360 times the input frequency, which becomes impractical at a nominal

resonator frequency of 50 MHz. A digital implementation also involves discrete-time

operations, which reduce the applicability to continuous-time systems. For these

reasons, an analog signal processing chain was selected.

3.1.2 Resonator Design

A piezoelectric crystal resonator was selected for this proof-of-concept system.

Piezoelectric devices are readily available, well understood, and cost-effective. They

are also commonly used in oscillators and timing circuits due to their high quality fac-

tors and frequency stability. In a series application (often described by Butterworth-

Van Dyke equivalent circuit models) these crystal devices have a detectable current

output proportional to the motional behavior of the crystal. The piezoelectric effect

in these materials generates electric current due to an applied mechanical stress, and

conversely applying an electric current to these crystals induces mechanical stress.

It is more convenient to control laboratory function generators, power supplies,

and oscilloscopes with respect to voltage, so the current output of the piezoelectric

device must be appropriately converted. A load resistor may be used to transform

current to voltage, but this adds a DC offset and ground noise to the oscillating

resonator signal. Also, including resistors in series with a piezoelectric device lowers
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the effective quality factor by increasing damping in the system. To avoid excessive

damping, the required load resistor would be too small to provide a sufficient gain for

accurately measuring an output voltage amplitude. Instead, a simple transimpedance

amplifier setup can be used to transform the piezoelectric current output to a voltage,

as described by Bajaj [16], for example. Transimpedance amplifiers are commonly

used in similar circuits to detect small currents from photodiodes or other capacitive

sensors.

There are two important stipulations regarding the phase of the transimpedance

amplifier output. First, the physical motion of the resonator can be described by

the voltage across the piezoelectric crystal, not the current through it. By the ca-

pacitive nature of the device, the current output of the crystal is proportional to the

time-derivative of the voltage across it. To obtain the resonator voltage, Vcrystal, an

integrator may be used on the transformed current output of the crystal, Icrystal (as

described by Bajaj [16], which also requires a high-pass filter to eliminate DC offset),

or more simply it can be noted that for sinusoidal signals the current will lead the volt-

age by 90°. Second, the transimpedance amplifier itself will additionally contribute

a 180° phase lag to the signal, since the output voltage of the transimpedance am-

plifier, VTI , is proportional to the input current Icrystal with opposite sign. Table 3.1

summarizes the phase-offsetting that occurs as the input signal propagates through

the resonator and transimpedance amplifier below resonance, near resonance, and

above resonance. The resulting phase offset of VTI will simply require that the design

variable φ be additionally offset by −90° to match the theoretical results above. This

phase offset is only a concern for the single resonator circuit, since the two resonator

design has equivalent offsets on both channels such that the relative phase difference

between signal branches is simply φ.

In the prototype circuits presented here, the input signal voltage is split equally

between the two signal branches, which are isolated from each other by a pair of buffer

operational amplifiers. Similarly, the outputs of each branch are isolated and summed

back together with buffers and a summing amplifier. The individual branch voltages
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Table 3.1. Phase Offsets of Piezoelectric Crystal Resonator and Tran-
simpedance Amplifier.

Vcrystal Icrystal VTI

Below Resonance 0° 90° −90°

Near Resonance −90° 0° −180°

Above Resonance −180° −90° −270°

are measured independently with another set of buffered outputs. It is important to

isolate the signal branches and measurements using buffers because the resonators

must remain uncoupled from other signal paths to match the corresponding system

block diagram.

3.1.3 Phase Shifting Element

There are several ways to implement a phase shifting element in electrical hard-

ware. Signal interference filters at high radio frequencies use transmission line dif-

ferences, which is typically seen as varied microstrip trace lengths in FR-4 copper-

cladded printed circuit boards (PCB). As previously stated, this technique does not

scale well to lower frequency ranges, but a trial circuit is evaluated here to confirm

this claim.

A constant width microstrip trace was designed in an FR-4 copper PCB using a

wide serpentine pattern for compactness, as seen in Figure 3.1. This was then tested

by connecting a function generator and oscilloscope to the microstrip through BNC

cables. Supplying a 50 MHz input to this simple transmission line, it was noted

that the combined effect of 2 ft of BNC cables and 15 in of total microstrip length

were only able to phase shift the signal by about 107°. This large transmission line

setup is too long to suit lower-frequency applications. To generate a phase shift

of 180° in microstrip alone, it was determined that a total length of about 60 in

would be required. Also, making these long transmission lines more compact through



23

special patterns causes increased inductance of the transmission line. Although these

transmission lines are easy to design, they cannot be continuously tuned as preferred

for this work.

Figure 3.1. Serpentine microstrip trace used to test the capability of
transmission lines for the phase-shifting element in the experimental
signal interference systems at 50 MHz. It was determined that the
combined effect of BNC cables, microstrip, and junctions did not suf-
ficiently phase shift the signal for use in these lower-frequency signal
interference systems.

Lumped element capacitors, inductors, and resistors are used in numerous filter

configurations for their phase-shifting properties, including low-pass, high-pass, band-

pass, band-stop, and delay equalizer circuits. Though these phase-shifting elements

can be scaled to lower frequencies without drastically affecting component size, they

typically attenuate the signal. Phase shifting with low-pass, high-pass, or band-pass

filters attenuate the voltage signal directly by requiring operation near or above the

filter cutoff frequency. Delay equalizers and passive all-pass circuits have ideally

flat amplitude responses, but they include inductor and capacitor architectures that

are costly and non-ideal at high frequencies. These passive devices commonly rely

on accurately matched component values, which increases manufacturing cost and

makes tuning the phase shift more difficult to control.

An active all-pass filter circuit leverages the ideally constant amplitude response

of the passive all-pass and delay equalizers, but without inductive elements. This
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simplifies the design and allows for the phase shift to be easily tuned from 0° to 180°

by varying a resistor or capacitor element. It should be noted that all of the phase

shifting techniques discussed in this section are frequency dependent. Other phase

shifting methods were considered, such as phase-locked loops (PLLs), but these proved

far too costly and complex for a simple proof-of-concept signal interference system.

Therefore, the ideal phase shifter φ is realized here with an active all-pass filter: a

high-pass RC filter is placed on the non-inverting pin of an operational amplifier, and

equal input and gain-setting resistors (RI and RG, respectively) are placed on the

inverting pin, as seen in [23]. The basic circuit diagram for this setup is shown in

Figure 3.2.

Figure 3.2. Circuit diagram of the active all-pass filter with an RC
high-pass filter on the non-inverting input and equal input resistor
(RI) and gain-setting resistor (RG) on the inverting input. This circuit
ideally passes all frequencies with equal amplitude, and it employs a
phase shift near the cutoff of the high-pass RC filter.

The all-pass design can be used to phase shift the signal from 0° to 180° by

altering the RC filter values according to φ = 2 arctan(1/2πfRC) without affecting
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the amplitude response (hence the name “all-pass”). For example, a φ = 45° phase

shift may be obtained with a C = 100 pF capacitor at a frequency of f = 50 MHz

using a resistance of about R = 76.85 Ω. An inverting operational amplifier with a

gain of -1 can also be switched into the circuit before the all-pass phase shifter to

contribute an additional 180° of phase lag to map the entire range of φ from −180°

to 180°.

The gain parameter G is realized with a non-inverting operational amplifier with

a nominal gain of 1. The G parameter is easily tuned through varying the feedback

resistance of the amplifier.

3.2 Simulations in SPICE Software

An added benefit of generating an experimental proof-of-concept system in ana-

log circuitry is that many simple circuit elements can be rapidly simulated before

building and testing a physical implementation. The circuits developed here were

simulated first using SPICE-based software with circuit element models to ensure

the validity of these analog designs. The circuits in this study were simulated using

the free version TINA-TI SPICE-based software available from Texas Instruments

(www.ti.com/tool/tina-ti).

3.2.1 Single Resonator System

The one resonator simulation approach is shown in Figure 3.3. The input signal

is split and kept isolated by ideal buffer amplifiers (+1), and the individual branch

voltages are also measured through buffers. The resonator output is transformed to a

voltage by the transimpedance amplifier (TI) and the second signal branch included

a switchable inverter (−1), an all-pass phase shifter (φ), and a non-inverting gain

amplifier (G).

Based on the all-pass relationship given above, values of RC were chosen to yield

the same characteristic φ values as in Figure 2.3. The second-order response of the
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Figure 3.3. Schematic of the simulated one resonator system using
ideal buffer amplifiers for power splitting, power combining, and iso-
lated output measurements. The resonator is a piezoelectric crystal
and the phase shifter φ is an ideal all-pass filter. The resonator output
is transformed to voltage using a transimpedance amplifier (TI) and
the amplitudes of the two branches are matched with a gain G. An
inverting amplifier section (line with long segments) can be inserted
into the signal path between the input and phase shifter (line with
short segments) to incorporate an additional 180° of phase lag.

piezoelectric crystal resonator was simulated using a series RLC network with a nat-

ural frequency of f = 50 MHz and a Q-factor of 10,000, according to 2πf = 1/
√
LC

and Q = (
√
L/C)/R with R assumed to be 50 Ω. Figure 3.4 shows the simulated

output responses of the above control setup with ideal active and passive components.

These results show that the simulated system qualitatively matches the modeled

output response for the setup described above. The primary difference between sim-

ulated and theoretical results is the −90° resonator branch phase offset mentioned

in Table 3.1, which causes φ = 180° and φ = 0° to be constructive and destructive,

respectively, instead of φ = −90° and φ = 90° as predicted from the model. Al-

though this proposed design is not optimized for a specific application, it is clear

from these simulation results that the fundamental operation of this analog circuit

is sufficiently understood and described by the system diagram in Figure 2.1 and
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Figure 3.4. Simulation frequency responses for characteristic values of
φ using operational amplifiers and passive components. Here a series
RLC is used to model the second order response of the piezoelectric
crystal resonator with a Q-factor of 10,000 and a natural frequency
of 50 MHz.

the non-dimensional model of Equation (2.12). By using passive and active compo-

nents and a piezoelectric crystal resonator the modeled system can now be confidently

constructed using the architecture of Figure 3.3.

3.2.2 Two Resonator System

The two resonator mathematical model was simulated using the circuit architec-

ture shown in Figure 3.5. For the first resonator, a nominal natural frequency of
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ωn1 = 50 MHz was chosen, which was again represented in the SPICE software using

an equivalent RLC circuit with a Q-factor of 10,000. The second resonator’s natural

frequency was varied near a nominal 50 MHz value to yield α values of 0.9999 and

1.0001 by adjusting the L and C values of its RLC equivalent circuit.

+1 

+1 

+1 

+1 

+1 

+1 

+ 

-1 

Figure 3.5. Schematic of the simulated two resonator system, which
includes an additional resonator and transimpedance amplifier in the
second signal path. The phase shift φ and gain G are still design
variables along with the relative detuning ratio α of the natural fre-
quencies of the resonators. It is assumed that both resonators have
the same quality factor.

Two results of these simulations are shown in Figure 3.6. Note that plots (c)

and (d), as indicated in the figure’s key, are reflective of the corresponding model

predictions shown in Figure 2.5. The same qualitative band-pass and notch response

shapes are observed here in the simulated system, confirming the utility of this simple

circuit as a proof-of-concept design.
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Figure 3.6. Simulation frequency responses of the two resonator
signal interference system matching the noted results of Figure 2.5,
where (c) is a band-pass-type response and (d) shows a combination
of resonance and cancellation.
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CHAPTER 4. EXPERIMENTAL RESULTS

To implement the prototype design described above, an appropriate operational am-

plifier was chosen for all active components. The LMH6609 from Texas Instruments is

an ultra-wideband voltage feedback operational amplifier that is unity gain stable and

has a small-signal −3 dB bandwidth well above the desired 50 MHz operating range.

The LMH6609 is also well designed for high-speed buffering and transimpedance ap-

plications, making it appropriate for the active devices in this circuit. The next step

in designing this circuit was to choose an appropriate piezoelectric crystal with a

resonant response of the form of Equation (2.1). The CX3225GB bulk-mode 50 MHz

surface-mount quartz crystal from Kyocera was used for this application, most of

which had a resonant frequency near 49.992 MHz when tested.

Physical circuits were built according to the simulation architectures presented

above using KiCad open source PCB design software (http://kicad-pcb.org/). Spe-

cial care was given to reducing the trace lengths between components in the signal

paths. Standard size 0603 or 0805 commercially-available passive components were

used for compactness and better signal propagation characteristics as compared to

through-hole components. Decoupling capacitors were included for each operational

amplifier according to the LMH6609 specifications, and BNC junctions were added

for interfacing with the laboratory signal source, power supplies, and measurement

equipment. A ground plane on the PCB and coaxial BNC cables were utilized for

noise-reduction and signal integrity purposes. An example of these PCB circuits is

shown in Figure 4.1 for the two resonator system.

The DC power supplies employed here were two Agilent E3645A that provide

+5V, -5V, and ground to the circuit. The sinusoidal input was provided at 200 mV

peak-to-peak amplitude from an 80 MHz Agilent 33250A function generator. The

outputs of the circuit were then measured on a 1 GHz, 4-channel Agilent DSO8104A
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Figure 4.1. An example of the types of PCB proof-of-concept circuits
built in this work. This depiction is the two resonator electromechan-
ical circuit, according to the experimental schematic of Figure 4.5.

oscilloscope. The experimental setup was controlled by a LabVIEW program using

GPIB connections and drivers (obtained from National Instruments and Agilent).

Each device was characterized by sweeping the input frequency within a tight range

of frequencies around resonance, with the source and oscilloscope both set to 50 Ω

impedance.

4.1 Single Resonator System

The experimental schematic for the single resonator circuit is depicted in Figure

4.2. The outputs of this circuit were measured without averaging, and LabVIEW

recorded amplitude and phase information for each channel at 50 Hz increments
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between 49.965 MHz and 50.015 MHz. The all-pass phase-shifter included a constant

22 pF capacitor and incorporated a 1 kΩ variable resistor as the tuning element. By

adjusting the resistor position, roughly similar characteristic values of φ as above

were evaluated. In the results that follow, the reported φ values were the relative

phases between branches, which allowed the −90° transimpedance phase offset to

be ignored. To ensure exact amplitude matching (G = 1) between the two signal

branches at resonance, a second 1 kΩ variable resistor was included on the gain

amplifier to adjust the phase-shifted branch amplitude.
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Frequency sweeps were performed for four all-pass resistor settings and are shown

in Figure 4.3. The data from these experimental sweeps was processed in order to

estimate the phase φ, Q-factor, natural frequency fn, and gain G. These characteristic

values were then substituted into the mathematical model to produce the model

curves in Figure 4.3. The purpose of this process was to demonstrate the applicability

of the model as a set of design equations rather than simply curve-fitting the model

to the data (as in a least squares regression, for example). Table 4.1 details the

experimentally-measured parameters that these model curves were based on.
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Figure 4.3. Frequency responses of the experimental and modeled
single resonator signal interference output. By adjusting the all-pass
variable resistor, several values of φ were obtained to tune the circuit
behavior. The model curves were generated by approximating system
parameters from the experimental results, as shown in Table 4.1.

The qualitative nature of the experimental output response matched expectation

from the mathematical model for each value of φ. However, there was some slight

quantitative disagreement between the model and experiment. This likely arose from
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Table 4.1. Experimentally-Measured Parameters for Generating the
Single Resonator Model Curves in Figure 4.3.

φ Q fn (MHz) G

−93° 8063 49.99190 1.01023

−8° 8129 49.99170 1.00762

111° 8195 49.99175 1.00551

190° 8263 49.99180 1.01082

the discrete nature of the experimental results (50 Hz increments), which caused the

measured parameters of Table 4.1 to be approximate. Since the model curves here

were designed to the experimental measurements, the agreement between model and

experiment in Figure 4.3 is reasonable.

A small amount of noise was also seen in the experimental system (on the order of

a few mV), likely caused by the function generator and DC supplies. This noise could

be easily smoothed out using the oscilloscope’s averaging functions or by adding a

low-pass filter with sufficiently high cutoff on the circuit output.

To be certain that the experimental device was well modeled by theory, it was im-

portant to determine if the device was operating in a linear amplitude and phase range.

This was confirmed by exciting the device with higher and lower input amplitudes

and observing the similarity of the gain and phase of the outputs at each amplitude.

Figure 4.4 shows the gain of the circuit (output amplitude with respect to input am-

plitude) as well as its phase for the constructive interference case (φ = −90°). Clearly

all three distinct input amplitudes tracked the same output response, indicating the

device was operating in a linear range. Therefore, the experimental proof-of-concept

circuit devised here was an appropriate physical representation of the proposed the-

oretical system.
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Figure 4.4. Three frequency responses of the signal interference test
circuit at the constructive interference value of φ = −90°. The input
amplitude was adjusted above and below the nominal 200 mV input
in order to test the linearity of this circuit. The gain and phase plots
tracked the same response for all three values of input magnitude, so
the circuit was operating in a linear response range.

4.2 Two Resonator System

The experimental setup for the two resonator system was the same as the single

resonator, with the exception that the input was swept in 100 Hz increments from

49.9775 MHz to 50.0005 MHz. Also, a 4-point averaging setup was implemented in

the oscilloscope data recording scheme to reduce measurement noise. The experimen-
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tal schematic is shown in Figure 4.5, where a second resonator and transimpedance

amplifier were added to the second signal branch.

As in the single resonator trials, the variable gain-setting resistor was set to match

the amplitude between the two channels (G = 1). Again, the variable phase-setting

resistor was roughly set to yield similar characteristic φ values, and the experimental

results were evaluated to determine appropriate model design parameters for com-

parison.
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4.2.1 Nominal Frequency Detuning of α ≈ 1

For the first trial, shown in Figure 4.6, the two resonators were tested without

alteration such that α was approximately 1. The measured parameters that were

used to generate the model curves are presented in Table 4.2.
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Figure 4.6. Frequency responses of the experimental and modeled two
resonator signal interference output with α ≈ 1. By adjusting the all-
pass variable resistor, several values of φ were obtained to tune the
circuit behavior. The model curves were generated by approximating
system parameters from the experimental results, as shown in Table
4.2.

The experimental and modeled results shown here were again qualitatively similar,

though there was still a slight amount of disagreement due to the discrete data pa-

rameter estimation described above (which was more significant here due to decreased

frequency resolution from 50 Hz to 100 Hz increments). The 4-point oscilloscope av-

eraging seemed to have eliminated most of the noise observed in the single resonator

trials.



40

Table 4.2. Experimentally-Measured Parameters for Generating the
α ≈ 1 Two Resonator Model Curves in Figure 4.6.

φ Q1 Q2 fn1 (MHz) fn2 (MHz) G α

170° 7691 8332 49.99185 49.99170 1.00823 0.999997

127° 7691 8195 49.99190 49.99170 1.00000 0.999996

93° 7691 8332 49.99190 49.99170 1.00823 0.999996

50° 7811 8332 49.99195 49.99175 1.00000 0.999996

1° 7691 8473 49.99195 49.99175 1.01240 0.999996

4.2.2 Nominal Frequency Detuning of α ≈ 0.9999

Next, the two resonator system was evaluated with G = 1 and α ≈ 0.9999. Since

commercial quartz crystals were not available at such a small frequency offset as

those required in this experiment, and because the manufacturing tolerances of these

crystals were tighter than the desired frequency detuning, the resonators used in this

experiment were modified to give the desired offset. From a mechanical standpoint,

the natural frequency of the crystals depends primarily on the effective stiffness k

and mass m [see Equation (2.2)]. Since the stiffness of these piezoelectric resonators

is difficult to modify after production, the effective mass was changed. This was

accomplished with a custom-mounted thermal inkjet picojet printing system provided

by Hewlett-Packard, which applied small amounts of inert polystyrene to the surface

of the crystal. Figure 4.7(a) shows the quartz resonator with the cover removed, and

Figure 4.7(b) shows the resonator with mass added. This process is not detailed here,

as it is the operating principle employed in many linear (and nonlinear) mass sensing

systems [16].

Figure 4.8 shows the trials for α ≈ 0.9999, which were performed by lowering

the second resonator’s natural frequency through inkjet-based mass-deposition. The

measured parameters for generating the model curves are detailed in Table 4.3.



41

(a) (b)

Figure 4.7. Images of the Kyocera CX3225GB 50 MHz bulk-mode
quartz resonator (a) with the cover removed and (b) after depositing
drops of polystyrene (brown spots on the electrode).

Table 4.3. Experimentally-Measured Parameters for Generating the
α ≈ 0.9999 Two Resonator Model Curves in Figure 4.8.

φ Q1 Q2 fn1 (MHz) fn2 (MHz) G α

160° 7811 7574 49.99195 49.98555 1.00410 0.999872

127° 7691 7461 49.99195 49.98565 1.02058 0.999874

89° 7691 7461 49.99195 49.98565 1.00000 0.999874

38° 7811 7461 49.99195 49.98565 1.00000 0.999874

−11° 7811 7351 49.99190 49.98565 1.00000 0.999875

These results show the development of the aforementioned band-pass-type re-

sponses for sufficiently large φ values. Here the experimental and model results also

match reasonably well, with slightly more deviation than the α ≈ 1 case, which is

primarily caused by the inability of the oscilloscope to measure φ values as accurately

as desired.
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Figure 4.8. Frequency responses of the experimental and modeled
two resonator signal interference output with α ≈ 0.9999. By adjust-
ing the all-pass variable resistor, several values of φ were obtained
to tune the circuit behavior. The model curves were generated by
approximating system parameters from the experimental results, as
shown in Table 4.3.

4.2.3 Nominal Frequency Detuning of α ≈ 1.0001

Finally, this system was evaluated with G = 1 and α ≈ 1.0001, as shown in Figure

4.9. These trials are performed by lowering the first resonator’s natural frequency rel-

ative to the second resonator through inkjet mass-printing. The measured parameters

for generating the model curves are detailed in Table 4.4.

These results show the development of the aforementioned combinations of reso-

nance and anti-resonance behaviors. Here, the experimental and model results match

quite well, except for the φ = 96° case in which it was observed that a small amount

damping in the laboratory BNC junctions and cables may have prevented the exper-

imental results from achieving the same level of amplitude-canceling behavior as the

model predicts.
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Figure 4.9. Frequency responses of the experimental and modeled
two resonator signal interference output with α ≈ 1.0001. By adjust-
ing the all-pass variable resistor, several values of φ were obtained
to tune the circuit behavior. The model curves were generated by
approximating system parameters from the experimental results, as
shown in Table 4.4.

Table 4.4. Experimentally-Measured Parameters for Generating the
α ≈ 1.0001 Two Resonator Model Curves in Figure 4.9.

φ Q1 Q2 fn1 (MHz) fn2 (MHz) G α

180° 5375 5375 49.9863 49.99165 0.98795 1.000107

135° 5375 5494 49.9863 49.99165 0.97605 1.000107

96° 5493 5375 49.9863 49.99165 0.97633 1.000107

50° 5375 5375 49.9865 49.99170 0.97590 1.000104

10° 5318 5434 49.9862 49.99170 0.98182 1.000110
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CHAPTER 5. CONCLUSIONS

Two mechanical resonance control systems were modeled to show continuously-tunable

frequency response behaviors. These systems demonstrate signal interference charac-

teristics in which input signal frequencies are selectively amplified or canceled through

phase-shifted combinations at the output.

Generalized first-principles dynamic models were developed in Chapter 2 through

a process of non-dimensionalization beginning with linear second-order differential

equations. Section 2.2 evaluated a signal interference system with one high-Q res-

onator, and Section 2.3 established a two resonator structure. Model limitations were

discussed in Section 2.4, including the assumption of linear resonance responses.

In Chapter 3, these mathematical models were used to construct an ideal proof-

of-concept system in electromechanical circuitry to demonstrate an application of

signal interference using high-Q resonant elements. Section 3.1 detailed the choices

of piezoelectric resonators and all-pass phase shifting circuitry, and SPICE simula-

tions were performed in Section 3.2. Prototype experimental circuits were then devel-

oped in Chapter 4 to show the qualitative nature of the proposed resonant systems.

These circuit architectures were implemented using PCB technology and commonly-

available discrete components. The one resonator structure was tested in Section 4.1,

and inkjet mass deposition enabled natural frequency shifting for the two resonator

designs in Section 4.2.

The experimental circuits matched the model predictions well as a proof-of-concept,

so the generalized theoretical models derived in Chapter 2 adequately describe the

dynamics of this real control system. As such, the model equations may be appropri-

ately utilized in a design context for any combination of Q-factors, natural frequen-

cies, relative gains, and relative phase offsets for given Lorentzian resonant elements

in these signal interference topologies. In general, the proposed control systems can
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be expanded to a wider range of feedforward or signal-interference-based frequency

response tuning.

The primary motivation of this work was to combine mechanical resonance with

feedforward control as achieved through signal interference and to develop analyt-

ical models to predict the observable frequency response tuning behaviors of these

architectures. The control topology described here does not seek to design specific

resonant elements, but instead to develop a means to shape frequency domain behav-

iors by encapsulating resonators in feedforward systems. This work therefore serves

as a step toward understanding on-chip system integration for arrays of micro- and

nanosystems. One recommendation for future work in this area is to connect arrays

of the one and two resonator devices in parallel to generate more complex frequency

response behavior with attendant tuning and control. The electromechanical circuits

built in this work could ideally be linked together in a modular system approach,

or enhanced tuning behaviors may be achieved with additional feedforward signal

branches.

Observations of nonlinear frequency response behaviors are routine and often use-

ful in M/NEMS devices. Future implementations of the analytical models of this

work should investigate nonlinear resonance behaviors. Specifically, it should be de-

termined how some common resonator nonlinearities might impact tuning and in-

terference output amplitudes in this form of feedforward control. This work has

facilitated the application of signal interference concepts outside electrical filtering

domains, and the models here should be further improved to understand the extent

to which signal interference can be utilized as a tool for resonant control.
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