330 research outputs found

    Impact of network structure on the capacity of wireless multihop ad hoc communication

    Full text link
    As a representative of a complex technological system, so-called wireless multihop ad hoc communication networks are discussed. They represent an infrastructure-less generalization of todays wireless cellular phone networks. Lacking a central control authority, the ad hoc nodes have to coordinate themselves such that the overall network performs in an optimal way. A performance indicator is the end-to-end throughput capacity. Various models, generating differing ad hoc network structure via differing transmission power assignments, are constructed and characterized. They serve as input for a generic data traffic simulation as well as some semi-analytic estimations. The latter reveal that due to the most-critical-node effect the end-to-end throughput capacity sensitively depends on the underlying network structure, resulting in differing scaling laws with respect to network size.Comment: 30 pages, to be published in Physica

    Connectivity in Dense Networks Confined within Right Prisms

    Full text link
    We consider the probability that a dense wireless network confined within a given convex geometry is fully connected. We exploit a recently reported theory to develop a systematic methodology for analytically characterizing the connectivity probability when the network resides within a convex right prism, a polyhedron that accurately models many geometries that can be found in practice. To maximize practicality and applicability, we adopt a general point-to-point link model based on outage probability, and present example analytical and numerical results for a network employing 2×22 \times 2 multiple-input multiple-output (MIMO) maximum ratio combining (MRC) link level transmission confined within particular bounding geometries. Furthermore, we provide suggestions for extending the approach detailed herein to more general convex geometries.Comment: 8 pages, 6 figures. arXiv admin note: text overlap with arXiv:1201.401

    Connectivity of confined 3D Networks with Anisotropically Radiating Nodes

    Get PDF
    Nodes in ad hoc networks with randomly oriented directional antenna patterns typically have fewer short links and more long links which can bridge together otherwise isolated subnetworks. This network feature is known to improve overall connectivity in 2D random networks operating at low channel path loss. To this end, we advance recently established results to obtain analytic expressions for the mean degree of 3D networks for simple but practical anisotropic gain profiles, including those of patch, dipole and end-fire array antennas. Our analysis reveals that for homogeneous systems (i.e. neglecting boundary effects) directional radiation patterns are superior to the isotropic case only when the path loss exponent is less than the spatial dimension. Moreover, we establish that ad hoc networks utilizing directional transmit and isotropic receive antennas (or vice versa) are always sub-optimally connected regardless of the environment path loss. We extend our analysis to investigate boundary effects in inhomogeneous systems, and study the geometrical reasons why directional radiating nodes are at a disadvantage to isotropic ones. Finally, we discuss multi-directional gain patterns consisting of many equally spaced lobes which could be used to mitigate boundary effects and improve overall network connectivity.Comment: 12 pages, 10 figure

    The Practical Challenges of Interference Alignment

    Full text link
    Interference alignment (IA) is a revolutionary wireless transmission strategy that reduces the impact of interference. The idea of interference alignment is to coordinate multiple transmitters so that their mutual interference aligns at the receivers, facilitating simple interference cancellation techniques. Since IA's inception, researchers have investigated its performance and proposed improvements, verifying IA's ability to achieve the maximum degrees of freedom (an approximation of sum capacity) in a variety of settings, developing algorithms for determining alignment solutions, and generalizing transmission strategies that relax the need for perfect alignment but yield better performance. This article provides an overview of the concept of interference alignment as well as an assessment of practical issues including performance in realistic propagation environments, the role of channel state information at the transmitter, and the practicality of interference alignment in large networks.Comment: submitted to IEEE Wireless Communications Magazin

    Performance studies of wireless multihop networks

    Get PDF
    Wireless multihop networks represent a fundamental step in the evolution of wireless communications, a step that has proven challenging. Such networks give rise to a wide range of novel performance and design problems, most of which are of a geometric nature. This dissertation addresses a selection of such problems. The first part of this thesis presents studies in which the network nodes are assumed to receive signals sufficiently clearly only from within some fixed range of operation. Using this simple model, the first two problems addressed are to predict the probabilities that a network with randomly placed nodes is connected or completely covers a given target domain, respectively. These problems are equivalent to determining the probability distribution of the minimal range providing connectivity or coverage. Algorithms for determining these threshold ranges for a given set of network nodes are developed. Because of the complex nature of these problems in finite settings, they are both approached by empirically modeling the convergence of these distributions to their known asymptotic limits. Next, a novel optimization problem is presented, in which the task is to make a given disconnected network into a connected one by adding a minimal number of additional nodes to the network, and heuristic algorithms are proposed for this problem. In the second part, these networks are studied in the context of a more realistic model in which the condition for successful communication between network nodes is expressed as an explicit minimum value for the received signal-to-noise-and-interference ratio. The notion of the threshold range for connectivity is first generalized to this network model. Because connectivity is now affected by medium access control (MAC), two alternative MAC schemes are considered. Finally, an infinite random network employing slotted Aloha is studied under this model. Since the probability of successful reception in a random time slot is a function of the locations of other nodes, this temporal probability is a random variable with its own probability distribution over different node configurations. Numerical approximations for evaluating both the mean and the tail probability of this distribution are developed. The accuracy of these approximations can be improved indefinitely, at the cost of numerical computations.reviewe

    Characterization of the fundamental properties of wireless CSMA multi-hop networks

    Get PDF
    A wireless multi-hop network consists of a group of decentralized and self-organized wireless devices that collaborate to complete their tasks in a distributed way. Data packets are forwarded collaboratively hop-by-hop from source nodes to their respective destination nodes with other nodes acting as intermediate relays. Existing and future applications in wireless multi-hop networks will greatly benefit from better understanding of the fundamental properties of such networks. In this thesis we explore two fundamental properties of distributed wireless CSMA multi-hop networks, connectivity and capacity. A network is connected if and only if there is at least one (multi-hop) path between any pair of nodes. We investigate the critical transmission power for asymptotic connectivity in large wireless CSMA multi-hop networks under the SINR model. The critical transmission power is the minimum transmission power each node needs to transmit to guarantee that the resulting network is connected aas. Both upper bound and lower bound of the critical transmission power are obtained analytically. The two bounds are tight and differ by a constant factor only. Next we shift focus to the capacity property. First, we develop a distributed routing algorithm where each node makes routing decisions based on local information only. This is compatible with the distributed nature of large wireless CSMA multi-hop networks. Second, we show that by carefully choosing controllable parameters of the CSMA protocols, together with the routing algorithm, a distributed CSMA network can achieve the order-optimal throughput scaling law. Scaling laws are only up to order and most network design choices have a significant effect on the constants preceding the order while not affecting the scaling law. Therefore we further to analyze the pre-constant by giving an upper and a lower bound of throughput. The tightness of the bounds is validated using simulations

    Characterization of the fundamental properties of wireless CSMA multi-hop networks

    Get PDF
    A wireless multi-hop network consists of a group of decentralized and self-organized wireless devices that collaborate to complete their tasks in a distributed way. Data packets are forwarded collaboratively hop-by-hop from source nodes to their respective destination nodes with other nodes acting as intermediate relays. Existing and future applications in wireless multi-hop networks will greatly benefit from better understanding of the fundamental properties of such networks. In this thesis we explore two fundamental properties of distributed wireless CSMA multi-hop networks, connectivity and capacity. A network is connected if and only if there is at least one (multi-hop) path between any pair of nodes. We investigate the critical transmission power for asymptotic connectivity in large wireless CSMA multi-hop networks under the SINR model. The critical transmission power is the minimum transmission power each node needs to transmit to guarantee that the resulting network is connected aas. Both upper bound and lower bound of the critical transmission power are obtained analytically. The two bounds are tight and differ by a constant factor only. Next we shift focus to the capacity property. First, we develop a distributed routing algorithm where each node makes routing decisions based on local information only. This is compatible with the distributed nature of large wireless CSMA multi-hop networks. Second, we show that by carefully choosing controllable parameters of the CSMA protocols, together with the routing algorithm, a distributed CSMA network can achieve the order-optimal throughput scaling law. Scaling laws are only up to order and most network design choices have a significant effect on the constants preceding the order while not affecting the scaling law. Therefore we further to analyze the pre-constant by giving an upper and a lower bound of throughput. The tightness of the bounds is validated using simulations

    A Framework for Analysis of Connectivity and Performance Bounds in Ad Hoc Networks and Its Application to a Slotted-ALOHA Scenario

    Get PDF
    In this paper, a framework is proposed to analyse the problems of connectivity and performance in ad-hoc networks through an analytical approach. To this aim, available results regarding the application of percolation theory to the study of connectivity in ad-hoc networks are exploited jointly with communication theory models in order to derive the configuration of network parameters that ensures long range connectivity among nodes and the corresponding available capacity on the wireless medium. The framework is then applied to a slotted ALOHA ad-hoc network. Theoretical and numerical results validate the approach and allow the derivation of interesting design principles for ad-hoc networks that consider the impact of physical and MAC-level parameters on network connectivity and end-to-end performance

    On the Fundamental Limits of Broadcasting in Wireless Mobile Networks

    Get PDF
    In this talk, we investigate the fundamental properties of broadcasting in mobile wireless networks. In particular, we characterize broadcast capacity and latency of a mobile network, subject to the condition that the stationary node spatial distribution generated by the mobility model is uniform. We first study the intrinsic properties of broadcasting, and present a broadcasting scheme, called RippleCast, that simultaneously achieves asymptotically optimal broadcast capacity and latency, subject to a weak upper bound on the maximum node velocity. This study intendedly ignores the burden related to the selection of broadcast relay nodes within the mobile network, and shows that optimal broadcasting in mobile networks is, in principle, possible. We then investigate the broadcasting problem when the relay selection burden is taken into account, and present a combined distributed leader election and broadcasting scheme achieving a broadcast capacity and latency which is within a Theta((logn)1+frac2alpha)Theta((log n)^{1+frac{2}{alpha}}) factor from optimal, where nn is the number of mobile nodes and alpha>2alpha>2 is the path loss exponent. However, this result holds only under the assumption that the upper bound on node velocity converges to zero (although with a very slow, poly-logarithmic rate) as nn grows to infinity. To the best of our knowledge, our is the first paper investigating the effects of node mobility on the fundamental properties of broadcasting, and showing that, while optimal broadcasting in a mobile network is in principle possible, the coordination efforts related to the selection of broadcast relay nodes lead to sub-optimal broadcasting performance
    corecore