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On the Fundamental Limits of Broadcasting in

Wireless Mobile Networks
Giovanni Resta, and Paolo Santi

Abstract—In this paper, we investigate the fundamental prop-
erties of broadcasting in mobile wireless networks. In particular,
we characterize broadcast capacity and latency of a mobile
network, subject to the condition that the stationary node spatial
distribution generated by the mobility model is uniform. We
first study the intrinsic properties of broadcasting, and present
a broadcasting scheme, called RIPPLECAST, that simultaneously
achieves asymptotically optimal broadcast capacity and latency,
subject to a weak upper bound on the maximum node velocity.
This study intendedly ignores the burden related to the selection
of broadcast relay nodes within the mobile network, and shows
that optimal broadcasting in mobile networks is, in principle,
possible. We then investigate the broadcasting problem when
the relay selection burden is taken into account, and present a
combined distributed leader election and broadcasting scheme
achieving a broadcast capacity and latency which is within a

Θ((log n)1+
2
α ) factor from optimal, where n is the number of

mobile nodes and α > 2 is the path loss exponent. However, this
result holds only under the assumption that the upper bound
on node velocity converges to zero (although with a very slow,
poly-logarithmic rate) as n grows to infinity.
To the best of our knowledge, our is the first paper investigating
the effects of node mobility on the fundamental properties of
broadcasting, and showing that, while optimal broadcasting in a
mobile network is in principle possible, the coordination efforts
related to the selection of broadcast relay nodes lead to sub-
optimal broadcasting performance.

Index Terms—wireless networks; mobile networks; broadcast
capacity; broadcast latency; SINR interference model.

I. INTRODUCTION

Investigation of fundamental properties of wireless networks

has received considerable attention in the research community,

starting from the seminal Gupta and Kumar [7] work that

characterized the capacity of a wireless multi-hop network

for unicast transmissions. Since then, fundamental properties

of wireless multi-hop networks have been investigated for a

variety of communication patterns including unicast [6], [16],

[18], [24], broadcast [8], [20], [25], multicast [12], [23], and

convergecast [13], [14]. It has been shown that wireless multi-

hop network scaling laws significantly change depending on

network parameters such as node deployment (e.g., random

vs. arbitrary), traffic pattern, and node mobility. Node mobility

in particular has been shown to have considerable effects on

wireless network scaling laws: for instance, per-node capacity

of unicast transmission has been shown to be asymptotically

vanishing with the number n of network nodes independently

on the node deployment (see [7]), but to become constant (i.e.,

asymptotically optimal) in case network nodes are mobile [6]

(under the assumption that very large delays in packet delivery

can be tolerated). The reason of the beneficial effect of node

mobility on per-node capacity is that what limits per-node
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unicast capacity in a static wireless multi-hop network is the

relaying burden, i.e., the fact that the same packet has to be

sent several times before it can reach the destination1. If nodes

are mobile, the relay burden can be avoided (or at least signif-

icantly reduced) by exploiting a “wait and deliver” strategy2:

since nodes move randomly, there is a high probability that

the sender and the destination eventually come into each other

reach, and the packet can be delivered to the destination with

no (or only few) re-transmission(s).

To the best of our knowledge, none of the existing papers

has investigated the effect of mobility on broadcasting scaling

laws. Broadcasting scaling laws have been recently charac-

terized in a series of papers [8], [25], including our work

[20], [21] showing that, contrary to what happens for uni-

cast transmission, asymptotically optimal capacity and latency

can be achieved simultaneously for broadcast communication.

However, all these results are based on the assumption that

network nodes are static. An implicit consequence of this

assumption is that the communication burden induced by

the need of selecting broadcast relaying nodes within the

network (called the coordination burden in the following) is

consistently ignored in the analysis. This is acceptable in a

static network, since the selection of broadcast relaying nodes

can be assumed to be done once and for all at the beginning

of the broadcasting session, implying that the coordination

burden can be safely ignored in the analysis as long as

the duration of the broadcasting session is sufficiently long.

However, if relay nodes are mobile, a change in their position

might cause an incomplete coverage of the broadcast packets,

which must be received by all network nodes. Thus, the

role of broadcast relay node must be continuously rotated

amongst network nodes in a mobile network, in order to ensure

broadcast coverage in spite of node mobility. Given this,

evaluating the coordination burden cost becomes an integral

part of the characterization of broadcasting scaling laws in

mobile networks.

In this paper, we make a first step towards gaining a better

understanding of the effect of mobility on the broadcasting

communication paradigm. We first show that broadcasting is

not inherently capacity nor latency limited by node mobility:

we present a simple cell-based broadcasting scheme, called

RIPPLECAST, that simultaneously achieves optimal broadcast

capacity and latency under the assumption that: i) nodes

move in a bounded region according to a mobility model

1This is true unless the destination is the vicinity of the sender, which occurs
with vanishingly probability in a sufficiently large network with randomly
selected source/destination pairs.

2This strategy has become the fundamental communication paradigm in
delay tolerant networks [4].
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whose stationary node spatial distribution is uniform; and ii)
maximum node velocity is upper bounded by a (very large)

constant. However, when the cost related to the coordination

burden is taken into account the picture changes consider-

ably: broadcasting capacity and latency degrades of a factor

Θ((log n)1+
2
α ) with respect to optimal – n is the number

of network nodes and α > 2 is the path loss exponent –

, and the upper bound on maximum node velocity becomes

asymptotically vanishing as n →∞. We thus formally prove

that what limits broadcast performance in a mobile network

are not the inherent properties of broadcast communication,

but the coordination burden induced by the need of frequent

re-selection of relay nodes within the network.

II. RELATED WORK

The fundamental properties of broadcasting in wireless

multi-hop networks have been investigated only very recently.

In [25], Zheng investigated the broadcast capacity of random

networks with single broadcast source under the generalized

physical interference model, and presented a broadcast scheme

providing asymptotically optimal capacity. The author also

presented a different broadcast scheme, and proved its asymp-

totically optimal performance with respect to information dif-

fusion rate, which is closely related to latency. The authors of

[8] confirmed that optimal broadcast capacity can be achieved

in a more general network model, in which arbitrary node

positions are allowed, an arbitrary subset of the network nodes

is assumed to generate broadcast packets, and accurate SINR-

based interference models are used. In [20], we have shown

that asymptotically optimal broadcast capacity and latency

can be simultaneously achieved in a static network, under

the assumption of single broadcast source. This result has

been recently extended to the case of an arbitrary number of

broadcast sources in [21].

While several papers have proposed broadcasting schemes

for mobile networks (see, e.g., [17], [19]), to the best of

our knowledge none of them attempted at characterizing the

fundamental properties of broadcasting in mobile networks.

The work that is closest to our is [2], where the authors

present a location-based broadcasting protocol for mobile ad

hoc networks, and formally characterize the number of com-

munication steps needed to deliver a broadcast packet to all

network nodes. Similarly to our approach, the authors propose

selecting broadcast relay nodes based on their position, and

present theoretical results that hold under the assumption that

node velocity is upper bounded by certain constants. However,

the authors in [2] are concerned with delivering a single

broadcast packet, while in this paper we are interested in

characterizing the maximum rate at which broadcast packets

can be sent by the source. Furthermore, the results of [2] are

valid under a simplistic interference model based on the notion

of conflict graph, while ours hold under the more realistic,

SINR-based physical interference model.

III. NETWORK MODEL AND PRELIMINARIES

We consider a wireless network composed of n+1 wireless

nodes distributed in a square region R of side L = L(n). One

of the nodes is stationary, and is located in the center of the

deployment region. This node, denoted s in the following, is

the broadcast source. The remaining n nodes are mobile, and

move within R according to some mobility model M. Model

M is such that the induced stationary node spatial distribution

(which is assumed to exist) is uniform. In other words, a

snapshot taken at time t of the positions of n nodes moving

according to M, for a sufficiently large t, is statistically

equivalent to a uniform random distribution of n nodes into

R. Examples of mobility models satisfying this assumption

are random walks, brownian motion, random direction model

with proper border rules, etc (see [11] and references therein).

We assume nodes communicate through a shared wireless

channel of a certain, constant capacity W , and that the nodes

transmission power is fixed to some value P . Correct message

reception at a receiver node is subject to an SINR-based

criterion, also known as physical interference model [7]. More

specifically, a packet sent by node u is correctly received at a

node v (with rate W ) if and only if

Pv(u)

N +
∑

i∈T Pv(i)
≥ β ,

where N is the background noise, β is the capture threshold, T
is the set of nodes transmitting concurrently with node u, and

Pv(x) is the received power at node v of the signal transmitted

by node x.

We also make the standard assumption that radio signal

propagation obeys the log-distance path loss model, according

to which the received signal strength at distance d from the

transmitter (for sufficiently large d, say, d ≥ 1) equals P ·d−α,

where α is the path loss exponent. In the following, we make

the standard assumption that α > 2, which is often the case in

practice. We then have3 Pv(x) = P ·d(x, v)−α, where d(x, v)
is the Euclidean distance between nodes v and x, and the SINR

value at node v can be rewritten as follows

SINR(v) =
d(u, v)−α

N
P +

∑

i∈T d(i, v)−α
.

For given values of P , β, α, and N , we define the

transmission range rmax of a node as the maximum distance

up to which a receiver can successfully receive a message

in absence of interference. From the definition of physical

interference model, we have rmax = α

√

P/(βN).
The maximal communication graph is a graph G = (V, E)

representing all possible communication links in the network,

i.e., V is the set of the n + 1 nodes, and (undirected) edge

(u, v) ∈ E if and only if d(u, v) ≤ rmax. Given that existence

of a link in G depends only on distance between node, graph

G is equivalent to a unit disk graph, which has well-known

limitations in modeling wireless networks [10]. However, up

to straightforward technical details, the results presented in

this paper can be extended to the more realistic cost-based

radio propagation model of [22], which is shown to closely

resemble log-normal shadowing propagation.

We define the broadcast capacity of the network as the

maximum possible rate λ(n) such that all packets generated

by source s are received by the remaining n nodes within a

certain time Tmax, with Tmax < ∞. The broadcast latency

3To simplify notation, in the following we assume that the product of the
transmitter and receiver antenna gain is 1.
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Fig. 1. Cell subdivision of the deployment region.

of the network is the minimal time T (n) such that the packet

generated by s at time t is received by all the n nodes within

time t + T (n). It is clear that, in order to have meaning-

ful values of broadcast capacity and latency, the maximal

communication graph of a network must be connected. Thus,

the assumption of connected maximal communication graph

is made throughout this paper. More specifically, we assume

that graph G is connected w.h.p. under the assumption that

nodes are distributed according to the asymptotic node spatial

distribution resulting from mobility model M which, we

recall, is assumed to be uniform4.

Given the assumption of stationary uniform node spatial

distribution of the mobility modelM, the critical transmission

range for connectivity is [3]:

ctr(n) = Θ

(

L(n)

√

log n

n

)

.

We recall that the critical transmission range for connectivity

is the minimal common value of the transmission range such

that the resulting maximal communication graph is connected.

Assume the deployment region R is divided into non-

overlapping square cells of side l, with l = rmax

2h
√

2
, for some

constant h > 1. In turn, each of these cells is partitioned into

9 square mini-cells of side l
3 (see Figure 1). The following

proposition defines a value of L(n) such that several properties

of the resulting node deployment hold, w.h.p.

Proposition 1: Assume L(n) = rmax

6h
√

2

√

n
log n for some

constant h > 1, and assume n nodes are distributed uniformly

at random in a square region of side L(n). Then, the following

properties hold w.h.p.:

(a) the minimally occupied mini-cell contains at least one

node;

(b) the maximally occupied mini-cell contains Θ(log n) nodes;

(c) the maximum transmission range rmax is asymptotically

minimal to ensure network connectivity.

Proof: To prove (a), we observe that when L(n) =
rmax

6h
√

2

√

n
log n , the total number C of mini-cells in the deploy-

4Given the probabilistic characterization of mobile node positions assumed
in this paper, most of the properties proved in this paper hold with high
probability (w.h.p.), i.e., with probability approaching 1 as n goes to infinity.

ment region is

C =

(

L(n)

l/3

)2

=





rmax

6h
√

2

√

n
log n

rmax

6h
√

2





2

=
n

log n
.

It follows that the ratio η between the number of nodes and

the number of cells is log n. Theorem 5, page 111 of [9] states

that, when η = log n, the number of nodes in the minimally

occupied cell is greater than zero w.h.p., which implies the

result when L(n) = rmax

6
√

2

√

n
log n .

The proof of (b) follows directly from Lemma 1 of [13].

The proof of (c) follows by observing that the critical trans-

mission range for connectivity when n nodes are distributed

uniformly at random in a square of side L(n) is [3]

Θ =

(

L(n) ·
√

log n

n

)

=

(

rmax

6h
√

2
·
√

n log n

n log n

)

= Θ(rmax) .

Finally, we introduce the notion of cell distance, which will

be extensively used in the following. Given any two cells A
and B in the deployment region, the cell distance between A
and B, denoted d(A, B), is the minimum number of adjacent

cells (horizontal, vertical, and diagonal adjacency) that must

be traversed to reach A starting from B (and viceversa).

IV. BOUNDS ON BROADCAST CAPACITY AND LATENCY

The following upper bound on the broadcast capacity triv-

ially follows by observing that the maximum rate at which any

receiver can receive broadcast packets is W [8]. The bound

holds for an arbitrary network.

Claim 1: In any network with n nodes, we have λ(n) ≤ W .

Define D(n), the diameter of the network (relative to

the broadcast source), as the maximum Euclidean distance

between a network node u and the source s. Given that

nodes are mobile, the diameter of the network changes over

time. However, Proposition 1 implies an invariant property of

network diameter under our deployment assumptions, as stated

in the following proposition:

Proposition 2: Let D(n, t) be the network diameter at time

t. If t is sufficiently large, L(n) = rmax

6h
√

2

√

n
log n for some

constant h > 1, n nodes move according to a mobility model

with stationary uniform node spatial distribution in a square

region of side L(n), and the source node is located in the

center of the deployment region, then D(n) ≥
√

2
2 (L(n) −

2
3 l) = Ω(L(n)), w.h.p.

Proof: The proof follows immediately by observing that,

by Proposition 1, every mini-cell in the deployment region

(and in particular those at the corners) contains at least one

node, w.h.p.

We are now ready to prove a lower bound for broadcast

latency in mobile networks, subject to an upper bound on node

velocity.

Theorem 1: Suppose the same assumptions of Proposition

2 hold, and the maximum node velocity is ṽ = rmax

τ , where

τ is the (constant) time required to send and correctly receive

a packet. Then, the broadcast latency is Ω
(
√

n
log n

)

,w.h.p.



4

Proof: By Proposition 2, the packet generated by the

source at time t has to travel distance at least
√

2
2 (L(n)− 2

3 l),
w.h.p., to reach the nodes that were in the corner mini-cells at

time t. Consider one such node u, and consider the segment us
connecting u to s. Since the progress of the packet generated at

time t towards node u is at most rmax at each communication

step of duration τ , and node u in the best case travels along

us directed towards s with speed at most ṽ = rmax

τ , it is

easy to see that at least
√

2
4 (L(n)− 2

3 l) communication steps

(each of duration τ ) are required for the packet to reach

node u. Observing that τ is a constant, we can conclude that

T (n) = Ω(L(n)) = Ω
(
√

n
log n

)

.

Notice that the upper bound ṽ on node velocity is compa-

rable to the speed of radio signal propagation in the air, i.e.,

to the speed of light.

V. MATCHING CAPACITY AND LATENCY BOUNDS

In this section we present a broadcasting algorithm achiev-

ing asymptotically optimal capacity and latency bounds in

mobile networks, under the assumption that broadcast relaying

nodes are somewhat magically selected within the network.

This assumption, although admittedly not realistic, is made

with the purpose of separately studying the fundamental

properties of broadcasting in mobile networks from those of

electing leaders (i.e., relay nodes). While using specific relay

nodes to forward broadcast packets is indeed the most common

approach to broadcasting, strictly speaking leader election is

a separate task from broadcasting, which in principle can be

achieved also without explicit leader election (e.g., through

cooperative communication). Indeed, a major finding of this

paper is that, while capacity and latency optimal broadcasting

can in principle be achieved in mobile networks (subject

to a very reasonable upper bound on node velocity), the

burden incurred by leader election causes a poly-logarithmic

performance degradation with respect to both capacity and

latency, and imposes an asymptotically vanishing upper bound

on node velocity.

A. Algorithm overview
While broadcasting in mobile networks is apparently a

very complex task due to mobility of individual nodes, this

apparent complexity can be tamed by observing that the

identity of a specific node within the network is not relevant to

a broadcasting scheme, as long as reception of each broadcast

packet by each of the (mobile) nodes can be guaranteed.

In other words, what is relevant to a broadcasting scheme

it is not the identity of a node, but its position within the

network. Thus, instead of selecting specific nodes to relay

broadcast packets, a smart broadcasting scheme for mobile

networks should focus on invariant properties of the node

spatial distribution generated by the mobility model, and use

such properties to select relay nodes based on their location

within the network.

The broadcasting scheme, which we call RIPPLECAST, is

based on the following assumptions:

– a spatial TDMA approach is assumed at the MAC layer:

time is divided into transmission slots, and a carefully

chosen set of links (transmission set) is activated in each

)
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Fig. 2. Two-dimensional coloring of parameter k = 3.

ss

Fig. 3. The propagation front (ripple) of a broadcast packet. Stars represent cell
leaders sending a certain packet p, and shaded cells are those which already
received p. Propagation proceeds in a pipelined fashion, and eventually at
each step each ripple is propagating a different packet.

slot. The duration of a slot is sufficient to transmit a

packet from the sender to the receiver, including prop-

agation time;

– the deployment region is divided into cells and mini-

cells, as described in Section III. Cell subdivision is

used to virtualize the broadcasting task from a node-

related process to a cell-related process. In particular,

broadcast relaying nodes (leaders) are chosen within

the central mini-cell of each cell, and the broadcasting

process becomes one of propagating broadcast packets

between cells. Without loss of generality, we assume that

the source node s is in the central cell.

RIPPLECAST is based on a cell coloring scheme, as in Figure

2, composed of a constant number k̄2 of colors, which is

used to spatially separate simultaneously active transmissions.

In particular, the coloring scheme ensures that, under the

assumption that at most one transmitter is active in each

cell with the same color, all transmitted packets are correctly

received by all the nodes located in the cells adjacent to

the transmitter cell. A round of transmission is composed

of k̄2 transmission slots, one for each color. The color of a

cell A is denoted col(A) in the following. Similarly, col(u)
denotes the color of the cell to which node u belongs. With

RIPPLECAST, propagation of broadcast packets occurs along

concentric “waves” (ripples, whence the name RIPPLECAST):

in the first round, a packet is transmitted to nodes located in

cells at cell distance one from s; in the second round, the

packet is propagated to nodes located in cells at cell distance

two from s, and so on, till the packet is propagated to the

furthest cells in the deployment region (see Figure 3). Since

a new packet is generated by source s at each round, the

propagation proceeds in a pipelined fashion, and eventually

at each round each ripple of leaders is propagating a different

packet.
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Algorithm for source node s:
Let i be the color of the current time slot; ID is the
current packet ID
1. if col(s) = i then
2. transmit new packet; ID = ID + 1

Algorithm for a generic node v:
Let i be the color of the current time slot; if v is a leader node,
let j be the ID of the last packet received by node v
1. listen to the channel
2. if new packet arrive then
3. receive the packet
4. let j′ be the ID of the received packet
5. if (j′ = j + 1) then
6. store packet in transmit buffer
7. if (col(v) = i) and cellLeader(v) then
8. if buffer(v) is not empty then
9. transmit packet and empty transmit buffer

Fig. 4. The RIPPLECAST broadcasting scheme.

B. RIPPLECAST

The RIPPLECAST algorithm is reported in Figure 4. The

algorithm for the source node is very simple: when the trans-

mission slot correspondent to col(s) is scheduled, the source

node transmits a new packet, and increments the packet ID by

one. Any non-source node v acts as follows. Independently of

the color of the scheduled slot, node v listens to the channel,

and receives new packets. Note that a node in general receive

packets with the same ID several times; only new packets are

received at step 3. of the algorithm. If the ID of the new

received packet equals the ID of the most recently received

packet increased by one, then the new packet is stored in the

transmit buffer. If the color of the current slot equals col(v),
v is the cell leader, and the transmit buffer is not empty, the

packet is transmitted and the transmit buffer emptied.

Function cellLeader() at step 7. checks whether node v is

currently a leader node. Leader selection obeys the following

rules. During round t, a node (call it v) currently (more

specifically, at the beginning of the round) located within a

central mini-cell is selected5 as leader node for that cell (call

it A) for that round. More specifically, during round t node

v will be in charge of transmitting the packet received by the

cell it belonged to at round t− 1. As we shall see in the next

section, the fact that leader nodes are selected amongst the

nodes in the central-mini cell, coupled with an upper bound

on node velocity, ensures that node v was in cell A also during

the entire round t−1, thus guaranteeing a correct propagation

of broadcast packets. If node v is still in the central mini-cell

of cell A at the beginning of round t + 1, it keeps the leader

role also in the next round, otherwise a new node amongst the

ones currently present in the central mini-cell is selected as

leader for round t + 1.

C. Analysis

We start borrowing a result from [20], which shows that

cells can be colored using k̄2 = Θ(1) colors, in such a way that

the packet transmitted by a leader node is correctly received

by all nodes located in neighboring cells (horizontal, vertical,

and diagonal adjacency), under the assumption that at most

5The actual rule used to selected leaders in case more than one nodes are
present in a mini-cell is irrelevant.

one node per cell with the same color is transmitting. The

coloring scheme depicted in Figure 2 assigns the same color

to cells at cell distance k̄ along the horizontal and vertical

direction (details can be found in [20]). The following result

has been proved in [20].

Proposition 3: Given a deployment region divided into

square cells of side l = rmax

2h
√

2
, for some constant h > 1, it

is possible to devise a coloring scheme with k2 colors, where

k ≥ k̄ =
⌈

2 + 2
3
2
+ 4

α (βζ(α− 1)hα/(hα − 1))
1
α

⌉

, and ζ is

the Riemann’s zeta function, such that the packets transmitted

by leader nodes with the same color are received by all

nodes located in cells adjacent to the cell of a transmitter

node (horizontal, vertical, and diagonal adjacency), under the

assumption that at most one node per cell with the same color

is transmitting.

Note that, being h, α and β constants, the number of colors

k̄2, which coincides with the number of transmission slots in

a round, is Θ(1).

The next Lemma, whose straightforward proof is omitted,

states that source node s generates new packets at rate W
k̄2 =

Ω(W ), which is asymptotically optimal.

Lemma 1: Assume algorithm RIPPLECAST is used to

broadcast packets in the network. The source node s generates

packets at rate W
k̄2 = Ω(W ).

We next show that each packet generated by the source

is correctly received all network nodes within time T (n) =

O
(
√

n
log n

)

.

Lemma 2: Assume n nodes move within a square region

of side L(n) = rmax

6h
√

2

√

n
log n according to a mobility model

M with: i) uniform stationary node spatial distribution, and

ii) maximum node velocity equal to v̄ = l
3k̄2τ

, where τ
is the duration of a transmission slot and l is the side of

a cell. Furthermore, assume algorithm RIPPLECAST is used

to broadcast packets. Then, a packet generated by the source

node at round t is received by all network nodes within round

t + O
(
√

n
log n

)

, w.h.p.

Proof: Let us call the cells at cell distance i from the cell

containing the source node the i-th ripple. We start showing

that: a) for each cell A in the i-th ripple, the leader node of

cell A transmits during round t + i the packet generated by

the source node at round t. The proof is by induction on i.
Property a) trivially holds when i = 0. Assume now property

a) holds for each j < i. In order for a) to hold also for i, we

need to show that, for any cell A in the i-th ripple, the node

selected as leader for A during round t + i, which is going to

transmit during round t+ i, has received the packet generated

by the source at round t before its transmission opportunity

during round t+ i. Given that a) is assumed to hold for j < i,
we have that the leader node of cell B, where B is any of the

cells in the (i−1)-th ripple adjacent to A (note that at least one

such cell always exists), has transmitted during round t+ i−1
the packet generated by source node at round t. Given the

rules for selecting leader nodes, we have that the leader node

at round t + i − 1 for cell B is selected amongst the nodes

located in the central mini-cell of B at the beginning of round

t+i−1. By Proposition 1, we have that at least one such node
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Fig. 5. Assume the source s is somewhere south of the diagrams, and the
propagation front of packet p moves northward. Stars represents cell leaders
active in a certain round, and the checkered region is the region covered by
them. The white area has not yet been covered by packet p, while the gray
area represents cells in Cov(p) during a certain round. On the left, a circle
represents a node lying in the white area which has not yet received p at a
certain round t+ j−1. To avoid reception of packet p, the node must cut the
propagation front and reach the gray area during round t + j (right), where
p is no longer transmitted. Thus, the node should travel distance at least 2l
between the two consecutive rounds.

exists, w.h.p. Furthermore, the upper bound v̄ on node velocity

guarantees that a node travels at most v̄k̄2τ = l
3 in the time

elapsing between the beginning of round t + i − 1 and the

beginning of round t + i. Since the leader node of cell B was

within the central mini-cell of cell B at the beginning at round

t + i − 1 and given the above observation about the distance

traveled by nodes, we have that the leader node of cell B is

still within cell B when it is scheduled for transmission during

round t+i−1. Hence, by Proposition 3, we have that the packet

transmitted by the leader node of cell B during round t+i−1,

which by induction is the packet generated by the source node

at round t, is correctly received by all nodes within cell A at

the time of transmission. In particular, the leader node w for

cell A at round t+ i is within the central mini-cell of A at the

beginning of round t + i, which given the above observation

about maximum traveled distance, ensures that w was within

cell A also during the entire round t + i − 1. Thus, node w
can correctly receive the packet sent by the leader node of cell

B during round t + i − 1, and can forward it in the network

when scheduled for transmission at round t+ i, which implies

property a).

Let us now define the set of covered cells Cov(p) for a certain

packet p as the set of cells such that their respective leader

nodes have already transmitted packet p. By property a), and

assuming packet p is generated by the source at round t, we

have that Cov(p) at round t+ i is the union of all the cells in

ripples 0, . . . , i. Given the assumption on the size L(n) of the

deployment region, we have that Cov(p) contains all the cells

in the deployment region at round t + L(n)
2l = t + O(

√

n
log n ).

Let us now consider an arbitrary mobile node u, and assume

by contradiction that node u has not received packet p by the

end of round t + L(n)
2l . Since Cov(p) contains all the cells

in the deployment region by then, and considering that each

of the ripples propagating packet p is a “closed curve”6, the

only possible way for node u to avoid receiving p is to cut

through the ripple propagation front during round j, for some

0 < j < L(n)
2l . However, for this to be possible, node u should

travel distance at least 2l between two successive rounds (see

6For the sake of simplicity, we use the intuitive notion of “closed curve”
when referring to a ripple, although the ripple is not a curve in standard
geometric sense.

Figure 5), which is possible only if node velocity is at least

v′ = 2l
2k̄2τ

> v̄. Thus, the assumption about maximum node

velocity is contradicted, and the Lemma is proved.

Is the upper bound on node velocity imposed by Lemma

2 restrictive? The answer, for typical values of the network

parameters, is no, owing to the very high packet propagation

speed within the network. For instance, assuming an outdoor

propagation environment with path-loss α = 3, channel

parameters typical of an 802.11a/g network with 54Mbs
data rate (more specifically, β = 22dB, P = 100mW ,

and N = −90dBm), a packet size of 1KB, and setting

h = 2 in the cell partitioning scheme, we have that k̄ = 50,

rmax = 858m, l = 151m, τ = 180µsec (leaving adequate

margin for radio signal propagation time), and the upper bound

on velocity is v̄ = 111.852m/sec ≈ 403km/h .

We are now ready to prove the main result of this section:

Theorem 2: Assume n nodes move within a square region

of side L(n) = rmax

6h
√

2

√

n
log n according to a mobility model

M with: i) uniform stationary node spatial distribution, and

ii) maximum node velocity equal to v̄ = l
3k̄2τ

, where τ is

the duration of a transmission slot and l is the side of a

cell. Algorithm RIPPLECAST provides asymptotically optimal

broadcast capacity and latency.

Proof: The proof is a straightforward consequence of

lemmas 1 and 2, and of the observation that the duration of

a round (which is composed of k̄2 transmission slots, each of

constant duration τ ) is Θ(1).

VI. BROADCASTING WITH LEADER ELECTION

In this section, we revisit the broadcasting problem taking

into account also the burden incurred by leader election.

Distributed leader election is one of the most investigated

problems in the distributed computing literature. Though, the

leader election problem we face is non-standard: although each

single leader election in a mini-cell corresponds to the classical

single-hop leader election problem [15], we have to perform

several such elections: one for each of the n
log n mini-cells

in the deployment region. Since sequentially executing these

elections would considerably impact both broadcast capacity

and latency, we propose running as many simultaneous leader

elections as possible, subject to the condition that simultane-

ously active leader elections do not corrupt each other.

The approach we pursue to tackle the problem at hand is a

combination of the ID-based leader election scheme proposed

in [1] for network-wide election of a single leader node in

a wireless multihop network, and of the carrier sense based

technique used in [22] to distributedly build a dominating set

in a wireless multihop network. The main idea is to run parallel

leader elections in the cells colored with the same color. As we

shall see, in order to ensure that mutual interference does not

corrupt concurrent leader elections, we have to use a relatively

larger (and non-constant) number of colors, which leads to a

poly-logarithmic broadcast capacity and latency degradation

with respect to optimal. Even worse, using a non-constant

number of colors leads to an asymptotically vanishing upper

bound on node maximum velocity.

The leader election process in a cell is performed as follows.

Each of the n mobile nodes in the network is assigned with
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Algorithm for any non source node u:
Time is divided into log n phases of constant duration

1. if u is not in a central mini-cell then exit //not a leader
2. for i = 1 to log n do //phase i
3. if bit(ID(u), (log n− i)) = 1 then
4. transmit a “1” bit
5. else
6. listen to the channel
7. if sensed signal > Ts then exit //not a leader
8. set leader =true //node u is leader

Fig. 6. The leader election algorithm.

a unique binary ID. Let ID(u) denote the ID of node u.

Similarly to [1], the binary representation of node IDs is used

to elect leader nodes: at the end of the election process, the

leader node for a certain cell A is the node with highest

ID among the nodes within the central mini-cell of A at the

beginning of the leader election process. The leader election

process, reported in Figure 6, is divided into log n phases of

constant duration, where the duration of a phase is sufficient

to transmit a single bit of information on the channel. During

phase i, node u, if still active, checks whether the i-th most

significant bit of its ID is 1, and in that case transmits a “1”

bit on the channel. Otherwise, it listens to the channel, and

becomes inactive if the signal sensed on the channel exceeds

a certain threshold Ts. As we shall see, threshold Ts is set in

such a way that the following two properties are satisfied:

a) if at least one node within the same mini-cell of u is

transmitting, then the sensed signal at u is > Ts.

b) if no node within the same mini-cell of u is transmitting,

then the sensed signal at u is < Ts.

Note that, in order for such threshold Ts to exist, we must

be able to upper bound the aggregate power received at u
generated by nodes in other mini-cells; furthermore, in order

for a) and b) to simultaneously hold, this upper bound must

not depend on n. We now show that a threshold Ts satisfying

properties a) and b) above can actually be defined if we use

(k∗)2 colors, where k∗ = Θ(log n).
We first prove the following technical lemma, which pro-

vides a bound on the amount of power received by a node

from nodes in cells with the same color.

Lemma 3: Let us assume a cell coloring with k2 colors as

defined in Figure 2 and that each cell contains at most m
nodes. Let us fix an arbitrary node u in an arbitrary cell C.

If k ≥ 2 and all the nodes in all the cells (apart C) with the

same color as C transmit simultaneously, then the interference

PI experienced by u satisfies

PI < m
16Pζ(α− 1)

(k − 1)αlα
, (1)

where ζ is the Riemann’s zeta function.

Proof: Let us consider now the interference experienced

by u under the condition in each cell with the same color

there are at most m nodes. Assume w.l.o.g. that cell(u) has

coordinates (0, 0). Given the coloring scheme, interferers lie

in the cells with bottom left corner at (x · k · l, y · k · l) with

x, y ∈ Z and (x, y) 6= (0, 0) (shaded cells in Figure 2).

The distance d(x, y) between u and an interferer located in

cell (x · k · l, y · k · l), with x, y 6= 0, can be lower bounded as

x

y x = y

2 3 4 5

Fig. 7. 8-fold symmetry in the derivation of the upper bound to the total
interference.

follows:

d(x, y) ≥
√

(|x|kl − l)2 + (|y|kl − l)2 , (2)

where the term −l depends on the actual positions of u and

I inside their respective cells.

Since a2 + b2 ≥ (max{a, b})2, from (2) we obtain the

following lower bound on d(x, y):

d(x, y) ≥ max{|x|, |y|}kl − l = l(k max{|x|, |y|} − 1) ≥
≥ (k − 1)l max{|x|, |y|} .

Note that the last bound is always strictly positive, since we

are assuming k ≥ 2 and |x|, |y| are not both 0.

The interference received by u thus satisfies

PI < m
∑ P

((k − 1)l max{|x|, |y|})α
=

= m
P

(k − 1)αlα

∑ 1

max{|x|, |y|}α
,

where the sum is extended over all the pairs (x, y) 6= (0, 0),
with x, y ∈ Z.

Counting twice the contributions along x = 0, y = 0, and

|x| = |y|, we have

∑

(x,y)6=(0,0)

1

max{|x|, |y|}α
< 8

∞
∑

x=1

x
∑

y=0

1

xα

due to the 8-fold symmetry of the summation shown in Figure

7. Collecting the values for which max(x, y) = x we obtain

8
∞
∑

x=1

x
∑

y=0

1

xα
= 8

∞
∑

x=1

x + 1

xα
< 16

∞
∑

x=1

1

xα−1
= 16ζ(α− 1) ,

where ζ(·) is the Riemann’s zeta function and summarizing

we obtain formula (1).

Lemma 4: Assume the cell coloring scheme is composed

of k2 colors, with

k > k∗ = 1 +
24/α ·

√
2 · ζ(α− 1)1/α

3
· (c log n)1/α ,

for some constant c > 1. Then, there exists a (constant)

threshold Ts such that properties a) and b) above are satisfied.

Proof: We first lower bound the intensity PT of the signal

received by a node u within a mini-cell when another node

within the same mini-cell is transmitting. Given the assumed

radio propagation model, we have

PT ≥ P

(

l

3

√
2

)−α

= T ′s ,
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round i round i+1

LeadEl RippleCast LeadEl RippleCast

Fig. 8. The broadcast scheme with leader election.

which implies that we must have Ts < T ′s.

We now upper bound the intensity of the signal received

at node u generated by nodes belonging to other mini-cells

with the same color within the network. Observing that the

maximally occupied mini-cell contains at most c log n nodes,

for some constant c > 1 (see Proposition 1), and letting m =
c log n and k = k∗ in Lemma 3, we obtain that the aggregate

power PI at node u generated by nodes within mini-cells with

the same color is upper bounded by:

PI < (c log n)
16Pζ(α− 1)

(k − 1)αlα
= T ′′s ,

for some constant c > 1, where k is the step of the coloring

scheme (i.e., we have k2 colors in total). Thus, if we set Ts >
T ′′s , we are guaranteed to satisfy property b). The proof of

the Lemma follows by observing that, when k > k∗, we have

T ′s > T ′′s , and a threshold satisfying both properties a) and

b) above can be obtained by choosing any value Ts such that

T ′′s < Ts < T ′s.

We are now ready to introduce the broadcasting scheme,

which is a combination of RIPPLECAST with the leader

election scheme presented above. A round of the broadcast

scheme is composed of two steps (see Figure 8): in the first

step, leader nodes for each cell are elected according to the

leader election algorithm described above; in the second step,

RIPPLECAST is executed using leader nodes elected in the

first step to propagate broadcast packets.

We are now ready to characterize the asymptotic properties

of this combined broadcasting scheme.

Lemma 5: Assume n nodes move within a square region of

side L(n) = rmax

6h
√

2

√

n
log n according to a mobility model M

with: i) uniform stationary node spatial distribution, and ii)
maximum node velocity equal to v∗ = l

3(τ ′·(k∗)2·log n+k̄2τ)
,

where τ ′ is the duration of a phase of the leader election

process, τ is the duration of a transmission slot, and l is the

side of a cell. Furthermore, the above described combined

leader election and broadcasting scheme is used to broadcast

packets. Then, a packet generated by the source node at round t

is received by all network nodes within round t+O
(
√

n
log n

)

,

w.h.p.

Proof: Similarly to Lemma 2, we can show that the packet

transmitted by the source during round t is received by each

network node within round t + O
(
√

n
log n

)

. However, the

upper bound on node velocity must take into account the

longer duration of a communication round, which comprises

also the leader election step. The leader election step lasts for

(k∗)2 · log n phases overall (leader election processes, each

lasting log n phases, are performed in parallel for each of the

(k∗)2 colors). Note that the duration τ ′ of a phase should be

sufficient to send a single bit of information of the channel, i.e.,

τ ′ ≪ τ . The total duration of a communication round is then

τ ′ · (k∗)2 · log n + k̄2τ . Similarly to Lemma 2, the maximum

node velocity must be set in such a way that the maximal

traveled distance within a communication round equals l
3 ,

from which we derive v∗ = l
3(τ ′·(k∗)2·log n+k̄2τ)

.

Theorem 3: Assume n nodes move within a square region

of side L(n) = rmax

6h
√

2

√

n
log n according to a mobility modelM

with: i) uniform stationary node spatial distribution, and ii)
maximum node velocity equal to v∗ = l

3(τ ′·(k∗)2·log n+k̄2τ)
,

where τ ′ is the duration of a phase of the leader election

process, τ is the duration of a transmission slot, and l is

the side of a cell. The above described combined leader

election and broadcasting scheme provides broadcast capacity

and latency within a factor Θ((log n)1+
2
α ) from optimal.

Proof: The duration of step 1 (leader election) in each

round is Θ((log n)1+2/α). In fact, leaders must be elected

for each cells, which are divided into (k∗)2 = Θ((log n)2/α)
groups. The leader election process, which lasts log n time,

goes on in parallel for all the cells in a group, implying that the

overall duration of step 1 in a round is Θ(log n ·(log n)2/α) =
Θ((log n)1+2/α). Even if step 2 of a round has a constant

time duration (this is because the required number of colors

k̄2 for RIPPLECAST is a constant), the overall duration of a

round of communication is Θ((log n)1+2/α). Since the source

transmits a new broadcast packet at each round, we have

that the broadcast rate is Θ

(

W

(log n)1+
2
α

)

, which, according

to Claim 1, is within a factor Θ((log n)1+
2
α ) from optimal.

By Lemma 5, the packet generated by the source at round t is

received by each network node within round t+O
(
√

n
log n

)

.

Given that the duration of a round is Θ((log n)1+
2
α ) and Claim

1, we have that the broadcast latency achieved by our scheme

is also within a factor Θ((log n)1+
2
α ) from optimal.

Comparing theorems 2 and 3, we observe a polylogarithmic

performance degradation with respect to both capacity and

latency when the burden for leader election is taken into

account. Most importantly, the burden related to the leader

election process considerably strengthen the upper bound on

node velocity, which becomes asymptotically vanishing as

n grows to infinity. Thus, the larger the network, the more

stationary the nodes must be in order to achieve near-optimal

broadcast capacity and latency. However, owing to the orders

of magnitude smaller value of τ ′ as compared to τ (we

recall that τ ′ is the time necessary to transmit a single bit

of information, instead of an entire packet) and logarithmic

dependence on n, the actual bound on maximal node velocity

is only marginally influenced by the number of network

nodes. For instance, the upper bound v∗ on node velocity is

v∗ = 111.816m/sec when n = 210 = 1024 (assuming the

same parameters as in Section V-C, and setting τ ′ = τ
1000 ),

which should be compared to v̄ = 111.852m/sec when the

leader election burden is ignored. When n = 250 (far above

the size of any practical network), the upper bound becomes

v∗ = 111.415m/sec, which is only marginally smaller than

v̄.

VII. DISCUSSION AND FUTURE WORK

In this paper, we have investigated the fundamental limits of

broadcasting in mobile wireless networks, and we have shown
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that, while broadcasting is not inherently limited (in terms of

both capacity and latency) by node mobility, the coordination

burden caused by the need of repeatedly selecting broadcast

relay nodes does indeed reduce broadcast performance of

a poly-logarithmic factor. Our results hold under a set of

assumptions: nodes move within a square region according

to a mobility model with stationary uniform node spatial

distribution, and node velocity is upper bound by a constant

(which becomes an asymptotically vanishing function of n
when the coordination burden is taken into account).

We first observe that some generalizations of our results are

straightforward: up to tedious technical details, our findings

can be extended to deployment regions of different compact

shapes, as long as broadcast ripples are still “closed curves”.

Extension to mobility models whose stationary node spatial

distribution is “almost uniform” is also straightforward; by

“almost uniform”, we mean that the ratio between the larger

and smaller value of the two-dimensional probability den-

sity function describing stationary node positions within the

deployment region is an arbitrary positive constant. A more

challenging generalization of our results, which we leave as

open problem, is considering the case of mobile broadcast

source. Here, the challenge is that broadcast ripples move

along with the source, thus the analysis presented in this paper

should be considerably re-formulated.

What are the implications of our findings for the design

of practical broadcasting protocols for mobile networks? The

main implication is that network designers should focus their

design on identifying invariant properties of the mobile net-

work (e.g., node spatial distribution), and then build their pro-

tocol exploiting these properties. Clearly, location-awareness

is likely to be a key feature in designing efficient broadcasting

protocols for mobile wireless networks.

It is interesting also to discuss the relative effect of node

mobility in case of unicast and broadcast communications: in

unicast communication – under the assumption that arbitrarily

high delays can be tolerated–, node mobility can be used as a

mean to suppress (or considerably reduce) the relaying burden,

thus bringing capacity up to the optimal value; on the contrary,

in case of broadcast, node mobility introduces the need of

frequently re-selecting broadcast relay nodes, thus inducing a

coordination burden which causes a poly-logarithmic capacity

and latency degradation with respect to optimal. However, it

is important to observe that this performance degradation is

not inherently due to the broadcast communication pattern,

but rather to a “common practice” of performing broadcast

communications based on the selection of broadcast relay

nodes. Hence, a promising research direction is to investigate

whether alternative broadcasting approaches can be used to

reach the capacity and latency limits. In particular, we intend

to explore cooperative communications, which have already

been successfully used to improve capacity limits for unicast

communications (see, e.g., [5], [18]).
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