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Tiivistelmä

Langattomat monihyppyiset verkot edustavat langattoman viestinnän perustavanlaatuista kehitysaskelta, joka on osoit-
tautunut haasteelliseksi. Tällaisissa verkoissa tulee esiin monenlaisia uusia suorituskyky- ja suunnitteluongelmia,
joista useimmat ovat luonteeltaan geometrisia. Tässä väitöskirjassa käsitellään joitakin tällaisia ongelmia.

Työn ensimmäinen osa esittelee tutkimuksia, joissa verkon solmujen oletetaan vastaanottavan signaaleja riittävän
voimakkaina vain tietyn kiinteän toimintakantaman sisältä. Tämän yksinkertaisen mallin puitteissa kaksi en-
simmäistä tarkasteltavaa ongelmaa ovat ennustaa todennäköisyydet sille, että satunnaisesti sijaitsevien solmujen muo-
dostama verkko on yhtenäinen ja toisaalta täysin peittää annetun kohdealueen. Näiden kanssa ekvivalentit ongel-
mat on määrittää yhtenäisyyden tai täyden peiton tuovan pienimmän kantaman todennäköisyysjakauma. Työssä ke-
hitetään algoritmeja, joilla nämä kynnyskantamat määritetään annetulle solmujoukolle. Koska ongelmat ovat luon-
teeltaan monimutkaisia äärellisissä tapauksissa, lähestytään kumpaakin mallintamalla empiirisesti näiden jakaumien
suppenemista kohti tunnettuja asymptoottisia rajajakaumiaan. Seuraavaksi esitetään uusi optimointiongelma, jossa
tehtävänä on tehdä annetusta epäyhtenäisestä verkosta yhtenäinen sijoittamalla verkkoon mahdollisimman vähän
lisäsolmuja, ja kehitetään ongelmaan heuristisia algoritmeja.

Toisessa osassa näitä verkkoja tutkitaan käyttäen realistisempaa mallia, jossa verkon solmujen välisen viestinnän on-
nistumisehto ilmaistaan vastaanotetun signaali-häiriösuhteen minimiarvona. Aluksi yleistetään verkon yhtenäisyy-
den kynnyskantaman käsite tähän verkkomalliin. Koska verkon yhtenäisyyteen vaikuttaa nyt solmujen lähetyskuri
(medium access control; MAC), tarkastellaan kahta vaihtoehtoista MAC-protokollaa. Lopuksi tutkitaan ääretöntä sa-
tunnaista, aikajaettua Aloha-satunnaisliityntää käyttävää verkkoa tämän mallin puitteissa. Koska lähetyksen vastaan-
oton onnistumistodennäköisyys satunnaisessa aikavälissä on muiden solmujen sijaintien funktio, tämä ajallinen to-
dennäköisyys on satunnaismuuttuja, jolla on oma todennäköisyysjakaumansa yli erilaisten solmukonfiguraatioiden.
Tämän jakauman odotusarvon ja häntätodennäköisyyden arvioimiseksi kehitetään numeerisia approksimaatioita,
joiden tarkkuutta voidaan parantaa rajatta, numeerisen laskentatyön kustannuksella.
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Hyytiä, Jouni Karvo, and Pasi Lassila, as well as M.Sc. Olli Apilo, for their
work as co-authors of the publications, and the pre-examiners of this disser-
tation, Professor Christian Bettstetter and Dr. Bartłomiej Błaszczyszyn, for
their time, effort, and constructive comments.

My thanks also go to the rest of the people in the lab for creating such
a laid-back working atmosphere, especially coordinator Arja Hänninen and
secretaries Raija Halkilahti, Sanna Patana, and Irma Planman, who have all
in turn kept things running, and in particular my office mate, Aleksi Pent-
tinen, for sharing both his hysterical sense of humor and those moments of
frustration with the beeping Mathematica.

I am also deeply grateful to my dear parents Mauri and Pirjo for their
perpetual support, and to my sister and her “own family”, Reetta, Petri, and
Pyry, for my delightful role as an uncle. The Ressu gang, my study mates
at TKK, and all my other friends also deserve special thanks for being who
they are.

Finally, I thank you, Virpi, for the love.

Henri Koskinen



ii



CONTENTS

Preface i

Contents iii

List of publications v

1 Introduction 1
1.1 Wireless multihop networks . . . . . . . . . . . . . . . . . 1
1.2 Performance problems in wireless multihop networks . . . . 1

Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 1
Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Throughput and capacity . . . . . . . . . . . . . . . . . . . 4
Medium access control . . . . . . . . . . . . . . . . . . . . 5
Other problems . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Common models for wireless multihop networks . . . . . . 6
Homogeneous Poisson point process . . . . . . . . . . . . . 6
Boolean models . . . . . . . . . . . . . . . . . . . . . . . . 6
Physical model . . . . . . . . . . . . . . . . . . . . . . . . 7
Random Waypoint (RWP) mobility model . . . . . . . . . . 8

1.4 Structure and contribution of this thesis . . . . . . . . . . . 8

2 Studies under Boolean models 11
2.1 Connectivity of random networks . . . . . . . . . . . . . . 11

Problem statement . . . . . . . . . . . . . . . . . . . . . . 12
Review of existing results . . . . . . . . . . . . . . . . . . . 12
Connectivity probability as a learning problem . . . . . . . 14
Algorithms for finding Rk(N ) . . . . . . . . . . . . . . . . 14
Empirical models . . . . . . . . . . . . . . . . . . . . . . . 16
Connectivity probability under the RWP mobility model . . 21

2.2 Coverage of random networks . . . . . . . . . . . . . . . . 23
Problem statement . . . . . . . . . . . . . . . . . . . . . . 23
Review of existing results . . . . . . . . . . . . . . . . . . . 24
Expected area coverage . . . . . . . . . . . . . . . . . . . . 25
Probability of complete coverage as a learning problem . . . 26

2.3 Connectivity improvement as an optimization problem . . . 31
Problem statements . . . . . . . . . . . . . . . . . . . . . . 31
Review of related problems and existing results . . . . . . . 32
Heuristic algorithms . . . . . . . . . . . . . . . . . . . . . 32

2.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . 37

3 Studies under the Physical model 41
3.1 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 41

Review of existing results . . . . . . . . . . . . . . . . . . . 41
Studying graph connectivity under physical models . . . . . 42
Connectivity boundary in a CDMA network . . . . . . . . 43

iii



Connectivity in a slotted-Aloha network . . . . . . . . . . . 44
3.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Review of existing results . . . . . . . . . . . . . . . . . . . 48
Probability of successful transmission in a random slotted-

Aloha network . . . . . . . . . . . . . . . . . . . . 49
Problem statement . . . . . . . . . . . . . . . . . . . . . . 50
Probability of successful reception: expected value . . . . . 51
Probability of successful reception: distribution . . . . . . . 56

3.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . 60

4 Summaries of publications and author’s contributions 63

Appendix A Supplementary material for publications 65

Appendix B Erratum 69

References 71

Publications 79

iv



LIST OF PUBLICATIONS

[1] Henri Koskinen. A simulation-based method for predicting connectiv-
ity in wireless multihop networks. Telecommunication Systems, 26(2-
4): pages 321–338, June 2004.

[2] Henri Koskinen. Quantile models for the threshold range for k-
connectivity. In MSWiM ’04: Proceedings of the 7th ACM interna-
tional symposium on Modeling, analysis and simulation of wireless and
mobile systems, pages 1–7, October 2004. ACM Press, New York, NY,
USA.
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1 INTRODUCTION

1.1 Wireless multihop networks

A wireless multihop network refers to a network formed independently by
mobile, wireless terminal devices without the aid of any fixed infrastruc-
ture. Communication over this kind of network occurs in a decentralized
way, with the devices (or, henceforth, network nodes) relaying each other’s
traffic and connections between node pairs thus being formed over multi-
ple transmission hops. Thus, besides being terminals, the network nodes
also function as routers.

The application of wireless multihop networks is generally divided into
two scenarios: sensor networks consisting of dedicated devices that pro-
vide monitoring or measurement data on their surroundings, and ad hoc
networks formed anywhere and at any time, with communication as the
primary purpose. The latter term is often used synonymously with wireless
multihop networks in the literature.

Because of their intrinsic properties, wireless multihop networks have
remained a challenge for commercial implementation: although, e.g., cur-
rent Wireless LAN cards feature the ability to operate amongst themselves
in an ad hoc mode, they lack the multihop functionality. However, this has
far from discouraged the research community: wireless multihop networks
have been studied with constantly increasing activity, both before and since
the Internet Engineering Task Force (IETF) created the MANET working
group (short for Mobile Ad-Hoc NETworks) as a forum for the study of this
area in 1999 [MAN05].

1.2 Performance problems in wireless multihop networks

The nature of wireless multihop networks poses completely new perfor-
mance and design problems. In this section, we introduce some character-
istic problems, most of which we will be discussing further in this thesis.

Connectivity
Due to the nature of wireless links and the unconstrained locations of
network nodes, the topology of these networks is dynamic. This leads to
perhaps the most fundamental problem, namely, the requirement that the
nodes form a single connected network that allows them to communicate
with each other in a multihop fashion.

The natural analytical framework for studying connectivity is graph the-
ory. However, applying graph theory to these networks requires a definition
of when a single link is connected. This boils down to issues on the physical
layer: the quality of reception of a radio transmission depends on the signal-
to-noise-and-interference ratio (SINR) at the receiver. From an information
theory point of view, any positive SINR makes successful communication
possible; only the achievable rate of communication depends on the SINR
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[Sha49]. From this viewpoint, any link and hence any given network can
always be said to be connected.

To say that some link is not connected therefore requires us to set a
minimum value for the SINR corresponding to a required minimum rate
of communication. Such a minimum value may also be dictated by techni-
cal design choices, such as the existence of proper modulation and coding
schemes within a given communication framework. We will return to this
issue in the next section, where we introduce two network models, both
based on this idea but one more detailed than the other.

Another choice to be made when harnessing graph theory is whether to
consider unidirectional links, which may often exist in practice: transmis-
sions are well received in one direction but not in the other. As in most
studies, we choose not to consider unidirectional links, the reason being,
e.g., that they render acknowledged forms of communication difficult. This
allows us to concentrate on undirected graphs.

Finally, connectivity itself is also subject to definition. Throughout this
thesis, we study connectivity as defined in graph theory, namely, by the re-
quirement that all node pairs are connected by the network. We also study
the generalized property of k-connectivity, which means that the network
remains connected after the removal of any k − 1 nodes. In other words,
by k-connectivity we mean k-node-connectivity, as opposed to link con-
nectivity, which characterizes resilience against the removal of links. For
comparison, connectivity has also been identified with percolation, i.e.,
the existence of an unbounded connected component in infinite random
networks; we will also review existing results on percolation in the coming
chapters.

The assumptions outlined above lead to the modeling of the topology of
wireless multihop networks by geometric random graphs. In the simplest
case, such a graph contains an undirected edge between all node pairs –
and those node pairs only – that are less than some predefined distance
apart. As we will see in the next section, this case results from the Boolean
network model. However, the earliest existing analytical results concern
pure random graphs, or Erdős-Rényi random graphs [ER60], where every
pair among a total of n vertices is connected by an undirected edge inde-
pendently with some common probability, p. It has been shown that the
probability that such a graph is connected tends to one asymptotically if
and only if p(n) is such that n · p(n)− log n tends to infinity with n, i.e., if
the expected degree of a vertex n · p(n) increases faster than the logarithm
of n (see, e.g., [Bol85]). This condition was later shown also to hold true for
simple geometric random graphs on vertices distributed uniformly at ran-
dom [GK98], a case whose asymptotic k-connectivity properties have since
been derived fairly exhaustively [WY04]. Recently, it has been shown that
in the general case where the existence of an edge is dictated by any proba-
bility function of the pair of vertex locations, the logarithmic growth of the
expected degree is still a necessary condition for asymptotic connectivity
[Far05].

Beside the simplest geometric random graph, the connectivity problem
has recently been studied under increasingly diverse modeling assump-
tions. A log-normal radio model – which also falls under the above gen-
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eralized random graphs – is used in [HM04], where it is found that, as a
result of the randomness in the radio conditions, the connectivity behavior
resembles more closely that of pure random graphs. The benefit of using
randomly directed antennae for connectivity is investigated in [BHM05].

Coverage
One application of wireless multihop networks is sensor networks, where
the main purpose of the devices is to measure or monitor some property
in their surroundings, and the multihop communication ability serves the
secondary purpose of delivering the sensor data to some central entity; see
[ASSC02] for a survey on sensor networks. In this context, the coverage of
a sensor network measures how well it is able to monitor a given target area
(as, e.g., in the case of motion sensors).

Because of the large variety of possible sensor applications, coverage,
like connectivity, is subject to a choice of definition. In [MKPS01], it is
generally characterized as the measure of the quality of service (or quality of
surveillance) of a sensor network. Generalizing the Boolean network model
to sensor coverage leads to the modeling of the coverage region of a sensor
by a circular disk whose radius equals the sensing range of the sensor, which
indeed is the underlying assumption in the majority of existing studies.

Research topics related to sensor coverage can roughly be divided into
algorithmic problems and analytical work on coverage processes [Hal88].
Examples of the former include finding optimal paths through a given
bounded sensor network; the best-coverage path minimizes the distance
of all its points to the nearest sensor, while the worst-coverage path max-
imizes this distance for all points. Centralized algorithms for both prob-
lems utilizing the Voronoi diagram and its dual structure, the Delaunay
triangulation, are presented in [MKPS01], whereas localized algorithms
are given in [LWF02]. Polynomial-time distributed algorithms for the sen-
sor nodes to decide whether the target domain of the network is k-covered,
i.e., whether every point is covered by at least k sensors, have also been
developed [HT03].

Given that the sensors have limited energy reserves, density control
aims at maximizing the operational lifetime of the network by keeping a
minimal subset of sensors active at each moment and letting the remaining
sensors stand by in a low-power mode. One of the first studies addressing
this problem under the constraint of preserving coverage is [TG02], and
a recent, evolved algorithm for preserving both connectivity and coverage,
along with an extensive survey of algorithmic sensor coverage problems, is
given in [ZH05]. As in the latter study, many algorithms for maintaining
connected coverage rely on the elementary relation that if a given set of sen-
sors provides k-coverage of their target domain with a given common sens-
ing range, then they form a k-connected network with a transmission range
twice as great as the sensing range. Fundamental limits for the achievable
lifetime in large random sensor networks are explored in [ZH04]. More
results on the coverage of random networks will be reviewed in the next
chapter.

Recent analytical results suggest that sensor mobility improves the cov-
erage of sensor networks [LBD+05]. Indeed, several algorithmic studies
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consider directing mobile sensors so as to maximize coverage (see, e.g.,
[WCP04] and the references therein).

Throughput and capacity
The fact that the wireless medium must be shared among the network
nodes, together with the dual role of the nodes as both routers and ter-
minals in multihop networks, gives rise to a limitation as fundamental in
nature as the problem of connectivity. In the seminal paper [GK00], it was
shown that as the density of nodes increases in relation to the typical dis-
tance between communicating source-destination pairs (as is also the case
with larger and larger networks with constant node density and random des-
tinations for each node), the burden from relaying other nodes’ traffic grows
for each node, with the result that the throughput obtained by each node
for its own traffic diminishes. Thus, if every node is assumed to add its own
contribution to the total traffic demand, then, because of the restrictions
imposed by the spatial aspect, wireless multihop networks do not enjoy the
virtually unlimited scalability of other networks.

Stated more precisely, one of the main results in [GK00], further re-
fined in [AK04], states that under a so-called Physical model of communi-
cation, where the bit rate extracted from receiving a transmission is some
step function of the prevailing SINR, a wireless network of n nodes span-
ning a domain of area A is capable of transferring at most Θ(

√
An) bit-

meters per second. 1 (We will introduce the Physical model in detail
shortly; however, this result holds also for the Generalized Physical model,
where the bit rate is the Shannon-capacity logarithmic function of the SINR
([AK04, Gup00]).) Thus, if all nodes generate traffic with some common
constant rate, with destined receivers at average distance Θ(

√
A), there

are n flows requiring Θ(
√

A) bit-meters per second each, which yields a
throughput of Θ(1/

√
n) bit/s for each flow. Naturally, if the domain area

increases with n, i.e., A = Θ(n), but communication remains local so that
each flow requires Θ(1) bit-meters per second, the per-flow throughput also
remains at a constant level.

It is important to note that these results are not ultimate information-
theoretic capacity limits. The assumptions behind the Physical model are
based on the paradigms that dictate how current communication technol-
ogy operates, but they are unnecessarily restrictive for ultimate limits for in-
formation transfer. For example, the assumption that all interference is es-
sentially regarded as noise rules out the diverse possibilities of co-operative
communication, such as active interference cancellation by some nodes in
the network to improve the quality of reception of others. With this moti-
vation, the aim in [XK04a] is to connect information theory to the world
of networking, and find ultimate limits for how much information wireless
networks can transport without making preconceived assumptions. Among
the results in [XK04a], it is found that whenever the wireless medium is
absorptive – which is generally the case – the transport capacity is upper
bounded by a multiple of the total transmission power of all the nodes,
which means that there is a lower bound on the energy price in joules

1f(n) = Θ(g(n)) denotes that f(n) = O(g(n)) and g(n) = O(f(n)).
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per bit-meter of information transport. In addition, it is shown that at least
in certain basic scenarios, the “multihop strategy” of coding and decoding
packets successively hop by hop and letting concurrent transmissions be
useless noise – which is a commonly agreed-upon assumption in current
protocol development – is almost or completely order-optimal, meaning
that it does not lead to drastically suboptimal scaling of transport capac-
ity. This strategy is shown to be appropriate also for fading environments in
[XXK05].

Medium access control
One important design problem is medium access control (MAC). Although
it is not so great an issue in wired networks, the solution used in wireless
networks should allow the spatial reuse of the shared medium. Moreover,
the time-varying network topology and the lack of centralized control in
multihop networks render the use of coordinated MAC schemes difficult,
making random access seem the preferred choice.

For later reference, probably the simplest random access protocol is
Aloha [Abr70], in which network nodes transmit whenever they desire, and
conflicts resulting from simultaneous transmissions destructively interfer-
ing are deduced from missing acknowledgements. Retransmissions are ran-
domly delayed so as to avoid repeated collisions. The efficiency of this
scheme is improved if transmissions are only allowed to occupy synchro-
nized time slots; this is referred to as slotted Aloha [Abr73].

Another approach to accessing the medium, known as Carrier Sense
Multiple Access (CSMA), is that network nodes determine whether or not
to transmit by “listening” to any possible ongoing transmissions [KT75]. Al-
though this is perfectly viable as such in wired networks, its implementation
in wireless networks requires additional procedures around the receiver in
order to overcome problems concomitant with the spatial aspect, such as
so-called hidden and exposed terminals. CSMA is the basis for the medium
access protocols used in WLANs [IEE99], while slotted Aloha is used, e.g.,
in the Random Access CHannel of GSM/GPRS [3GP05].

It has recently been shown that slotted Aloha, while making decentral-
ized implementation possible, reaches the above upper bound for the scal-
ing of transport capacity in wireless multihop networks [BBM04] under the
Physical model. We will return to this matter in Chapter 3.

Other problems
Among the performance and design problems that we will not discuss fur-
ther in this thesis, one worth mentioning is routing. The dynamic topology
of these networks makes the task of maintaining routing information chal-
lenging. A proactive approach may result in overwhelming signaling traffic
as the information in a highly mobile network is updated, whereas relying
only on reactive routing can lead to long connection set-up delays.

Finally, the fact that wireless devices are bound to have limited energy
supplies calls for efficient power management: as we already mentioned,
maximizing the operational lifetime of a sensor network is a widely-studied
problem.
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1.3 Common models for wireless multihop networks

This thesis presents the results of studies where the above performance
problems are approached using diverse mathematical analysis techniques.
As always when applying mathematics to complex real-life phenomena, this
requires the object of interest to be represented with a model, stripped of all
the complexity that is not essential – and perhaps, for the sake of tractabil-
ity, even of some that may be essential. In this section, we introduce for
later reference some popular models used in analyzing wireless multihop
networks that our studies also rely on.

Homogeneous Poisson point process
As already made apparent by the problem of connectivity, the geographi-
cal locations of network nodes are an important factor affecting the perfor-
mance of wireless multihop networks, which underlines the need to model
these locations. To take into account the possibility of practically any con-
figuration of nodes, the locations are usually treated as random. Further-
more, unless more specific information is given, it is reasonable to assume
that, a priori, the locations are uniformly distributed.

To this end, let us assume that n nodes are randomly and independently
located according to the uniform distribution over some bounded domain
A ⊂ R

2 with an area |A| = A (generalization to a higher number of di-
mensions is straightforward). Then the number of nodes in any subdomain
D ⊂ A is random, with the distribution Bin(n, |D|/|A|). However, given
the number of nodes ñ in any other non-intersecting subdomain D̃, the
conditional distribution is different; hence, the two numbers are not inde-
pendent.

Keeping our attention on the arbitrarily selected domains D and D̃, let
us consider the effect of letting the domain A become larger and larger,
while keeping the average node density n/A

def= λ constant. Since this
makes |D|/|A|, the probability that an arbitrary node is in D, diminish but
keeps the expected number of nodes therein n|D|/|A| constant, in the limit
n,A → ∞ the above binomial distribution tends to a Poisson distribution
with the parameter λ|D|. In the same limit, the number of nodes in D
depends less and less on ñ (because this leaves n − ñ nodes outside D̃,
which also tends to infinity).

The point process that results in the limit is the homogeneous Poisson
point process, often denoted by Φ. It can be interpreted as points “uniformly
distributed” over the whole plane with average density λ. It is completely
characterized by the following two properties:

1. The number of points of Φ in a bounded setD has a Poisson distribu-
tion of mean λ|D| for some constant λ.

2. The numbers of points of Φ in k disjoint sets form k independent
random variables, for arbitrary k.

Boolean models
As mentioned earlier, applying graph theory to studying the connectivity
of wireless multihop networks requires defining when a single link is con-
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nected by setting a minimum value for the signal-to-noise-and-interference
ratio (SINR).

Let us consider the case where we neglect interference altogether and
instead only require some minimum value T > 0 for the ratio of the re-
ceived signal power to that of a constant-level ambient noise, i.e., the signal-
to-noise ratio (SNR). Then any node j located at point xj in Euclidean
space is assumed to successfully decode the signal transmitted by another
node i at xi with power Pi if and only if

Pil(||xi − xj ||)
N0

≥ T,

where N0 is the power of the background noise on the frequency channel
utilized by the network and l(·) is some strictly decreasing attenuation func-
tion of propagated distance, i.e. l(||xi − xj ||) gives the path loss in power
for a signal propagated from point xi to xj .

The above condition is equivalent to

||xi − xj || ≤ l−1

(
N0T

Pi

)
,

i.e., we may translate it into a maximum distance from the transmitter i
within which the signal is successfully received, referred to as the transmis-
sion range of node i. This simple model, where the assumed condition for
any two nodes being directly connected is that they are within each other’s
transmission ranges and hence only depends on these nodes, is known as
the Boolean model.

A similar Boolean model can be used to study coverage in sensor net-
works, by assuming that each sensor covers a disk around it with a certain
radius. This sensing range models the range within which a sensor must
be from a given point in order for this point to be considered reliably mon-
itored – or covered – by that sensor, perhaps to a predefined level of con-
fidence. For an example of where such a notion of coverage is valid, one
may think of motion sensors.

Physical model
The Boolean model, by neglecting all interference, makes successful com-
munication depend on the SNR rather than the SINR. The more accurate
Physical model, first introduced in [GK00], explicitly takes into account in-
terference from concurrent transmissions and replaces the above condition
with

Pil(||xi − xj ||)
N0 +

∑
k 6=i,j Pkl(||xk − xj ||)

≥ T.

Note that the inclusion of the interference term makes things considerably
more complicated than is the case with the Boolean model: whether or
not two nodes are able to communicate directly no longer depends only on
their transmission ranges and the distance between them, but also on the
locations of all other nodes and their instantaneous transmission powers
Pk.
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It was assumed in [GK00] that whenever the above condition holds, the
rate of communication from node i to j is always the same, no matter how
far beyond T the achieved SINR is; when referring to the Physical model,
we also incorporate this assumption. (In contrast, the relaxed case where
the bit rate is the Shannon logarithmic function of the SINR is named the
Generalized Physical model in [AK04].)

Random Waypoint mobility model
The mobility of nodes is integral to these networks and therefore also needs
to be modeled somehow. One of the most popular mobility models used
for wireless multihop networks, originally proposed for studying the perfor-
mance of routing protocols for ad hoc networks in [JM96], is the Random
Waypoint (RWP) model. In this model, a mobile node is assumed to move
in a convex domain A between successive waypoints drawn independently
and randomly from A; again, the lack of more specific information makes
uniform distribution a reasonable assumption. The leg between any two
waypoints is traversed directly along a straight line segment, with a con-
stant velocity that is also assumed to be an independent and identically
distributed random variable for each leg. Furthermore, the node may be
assumed to spend a random i.i.d. pause time at each waypoint. Finally, all
the nodes in the network are assumed to move independently, governed by
the same probability distributions for the waypoints, velocities, and pause
times.

1.4 Structure and contribution of this thesis

This thesis gathers observations from various performance studies of wireless
multihop networks. The first part comprises studies where these networks
are modeled using Boolean models, and the second part treats them using
the Physical model.

Studies under Boolean models
We first discuss the connectivity of random networks. Determining the
probability that a random network is k-connected is equivalent to knowing
the distribution of the threshold range for k-connectivity. These distribu-
tions are known only asymptotically, as the number of nodes in the network
tends to infinity. The joint contribution of Publications [1] and [2] is an
approach for predicting these distributions for finite configurations, based
on empirical models that describe the convergence of observed (simulated)
distributions to the known asymptotic ones. In Publication [1], we present
algorithms to determine the threshold range for a given set of nodes. These
algorithms facilitate simulations, on the basis of which we also present ini-
tial, purely empirical models that do not yet take into account asymptotic
distributions. The prior information regarding limit distributions is then
taken as the basis for these models in Publication [2], resulting in good
predictive power. Finally, in Publication [3] we use the qualitative implica-
tions of asymptotic distributions to approximate the probability of connec-
tivity in a mobile network where the nodes move according to the Random
Waypoint mobility model.
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We then move on to the coverage problem of random networks. In Pub-
lication [4], we first note that the covered fraction of a bounded domain is a
random variable and determine the expected coverage in a simple circular
domain. We then point out that the problem of determining the proba-
bility of complete coverage, like that of connectivity, is also equivalent to
knowing the distribution of a well-defined threshold range; we show how
this threshold range can be determined for a given set of nodes. Interpret-
ing previous analytical results as an asymptotic distribution of this threshold
range for complete coverage, we generalize the approach of predicting this
distribution for finite configurations by using empirical models. In a case
where the limit distribution is not known as a result of a complex border
effect, we derive an approximation for the asymptotic distribution.

Finally, we study connectivity as an optimization problem. Publication
[5] presents a novel problem where a given disconnected network is to be
made into a connected one by adding additional nodes to the network;
the objective is to minimize the number of nodes added. We point out
some connections of this problem to existing problems that are NP-hard
and present gradually better-performing heuristic algorithms, along with
their complexity analysis.

Studies under the Physical model
So far the percolation properties of infinite random networks have been
studied under the Physical model [DFM+06, DT04], but little has been
done to address connectivity as defined in graph theory when taking in-
terferences into account. In Publication [6], we generalize the notion of
the threshold range for connectivity to networks under the Physical model.
Connectivity is now affected by the medium access scheme used in the
network, through the time-varying interference; we consider two scenarios
from existing studies. Because there is now more than one free parameter in
the network, the threshold range generalizes into a boundary in the space
of these parameters that implies tradeoffs between different performance
quantities.

It has recently been shown that the optimal throughput scaling un-
der the Physical model can be achieved when the medium access con-
trol is handled using slotted Aloha [BBM04] (see also the journal version
[BBM06]). However, the quantitative results in this study are based on the
assumption that the transmission powers in the network are exponentially
distributed and hence unbounded. As our contribution in Publication [7],
we extend the analysis of the proposed scenario: assuming that all nodes
use some common constant transmission power, we develop numerical ap-
proximations for determining the probability of successful transmission in
an infinite random network. We point out that this probability is a function
of the locations of all surrounding nodes and therefore a random variable;
we address both the expected value and the tail probability of its distribu-
tion.
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2 STUDIES UNDER BOOLEAN MODELS

This chapter describes studies that all rely on Boolean models. The first two
sections focus on the connectivity and coverage, respectively, of random
networks. The final section presents an optimization problem of connec-
tivity.

2.1 Connectivity of random networks

We begin by discussing the problem of connectivity of random wireless
multihop networks when their topology is modeled using the Boolean model.
Before proceeding to the connectivity problem that we focus on, we briefly
review some related problem variations and previous work on them.

One problem studied under the Boolean model, motivated by the need
for distributed topology control, is the following. Assume that every node
in the network, by adjusting its transmission power, sets its transmission
range equal to the distance to its m-th nearest neighbor, so that, taking only
bidirectional links into account, any two nodes are directly connected if
and only if they are both one of each other’s m nearest neighbors. The
problem is to find such m that a network of n nodes uniformly and inde-
pendently distributed in a domain with a simple shape is connected with
high probability. Ending a long series of studies proposing different con-
stants, or “magic numbers”, it was shown in [XK04b] that m must grow
like the logarithm of the number of nodes, and explicit numerical, asymp-
totically almost sure lower and upper bounds for the multiplying constant
involved were derived. In [WY04], the upper bound was improved and was
furthermore shown to hold for k-connectivity in general.

The above problem statement deviates from the mainstream of the ex-
isting literature in that the majority of studies are based on the assump-
tion that all nodes have the same transmission range. This assumption can
be motivated by thinking of the common transmission range as resulting
from a common maximum transmission power that the nodes can achieve,
which can be deemed reasonable in many cases. Thus, such a range mod-
els the distance over which other nodes can be reached if need be, allowing
us to address ultimate limits for connectivity.

In this spirit, assuming that all nodes have some common transmission
range r, the connectivity of infinite networks has also been studied, in the
setting where the nodes of the network are located at the points of a homo-
geneous Poisson point process with some intensity λ in the infinite plane.
This rules out studying graph-theoretical connectivity, since for any finite
range r, there always exist isolated nodes with no other nodes within this
range. Instead, the connectivity problem is then related to percolation the-
ory. A fundamental theorem from continuum percolation [MR96] states
that there exists a finite critical value of the relative intensity λr2 (which is
scale-independent) below which all connected components in the network
are almost surely bounded, whereas a unique unbounded connected com-
ponent almost surely exists above this critical value. The probability that an
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arbitrary node belongs to the infinite component is referred to as the perco-
lation probability. The exact value of the critical relative intensity and the
explicit expression for the percolation probability are still open problems.
Percolation in such infinite networks was first studied in [Gil61] and later
on, e.g., in [PPT89, DTH02].

In [PPT89], Philips et al. studied the graph connectivity of finite net-
works with a common transmission range. Assuming the Poisson process
marking the node locations is restricted to a square with area A, it was
shown that the expected number of direct neighbors of a node, λπr2, must
grow logarithmically with the network area to ensure, in the limit, a moder-
ate probability of network connectivity. This setting is in fact very close to
the problem that we study and will present next; the only difference is that
the number of nodes in our problem statement is given, not random.

Problem statement
The problem that we examine closer is also based on the assumption that
all nodes in the network have some common transmission range r, i.e., any
two nodes are directly and bidirectionally connected if and only if they are
within distance r from each other.

We assume that the network consists of n nodes located independently
and randomly in some bounded, connected domain D in d-dimensional
Euclidean space with d > 1, and that the locations are identically dis-
tributed according to some probability density function fD(·) over D. If
N = {Xi ∈ D | i = 1, 2, . . . , n} denotes the set of random node loca-
tions, then by the assumption of one common transmission range r for
the nodes, the network topology can be represented by an undirected ge-
ometric graph G(N , E(N , r)) = G(N , r) with vertex set N and edge set
E(N , r) = {(Xi,Xj) |Xi,Xj ∈ N , i 6= j, ||Xi −Xj || ≤ r}.

The problem is then stated as follows.

Given n, fD(·) and r, what is the probability that the network,
i.e., the random geometric graph G(N , r), is k-connected?

This problem can also be stated in an alternative but equivalent form.
To this end, let Rk(N ) denote the smallest transmission range r with which
the graph G(N , r) with given node locations N is k-connected; we refer
to Rk(N ) as the threshold range for k-connectivity (also often called the
critical range in literature). Then the event {G(N , r) is k-connected} is
equivalent to {r ≥ Rk(N )}, whence the probability of interest to us is
equal to the cumulative distribution function of Rk(N ) (with given n and
fD(·)), evaluated at r. Therefore, being able to answer the above question
with any r reduces to knowing the probability distribution of Rk(N ) with
given n and fD(·).

Review of existing results
For a finite number of nodes n, the distribution of Rk(N ) is not known
even in the simplest cases such as uniform fD(·) on a domain D with a
simple shape; all the existing precise analytical results are asymptotic in
nature. Consequently, the tools used to address the problem in the finite
case can be divided into analytical approximations and empirical methods.
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In [Pen97], Penrose proved the following theorem for R1(N ) which,
as pointed out in [SMH99], is equal to the greatest edge-length in the Eu-
clidean minimum spanning tree ofN . In analogy with Rk(N ), let Mk(N )
denote the threshold range for minimum degree k, i.e., the smallest trans-
mission range r with which every vertex in the graph G(N , r) has degree at
least k.

Theorem 2.1 [Pen97] For uniform fD(·) on D = [0, 1]2,

lim
n→∞Pr[R1(N ) = M1(N )] = 1.

This implies that R1(N ) has the same asymptotic distribution as M1(N ):
in [DH89], for the same fD(·) andD, the distribution of nπM1(N )2−log n
has been shown to converge weakly to the Gumbel distribution. A similar
but weaker result has been derived by Gupta and Kumar in [GK98], stating
that for uniform fD(·) whenD is a unit-area disk, the probability Pr[r(n) ≥
R1(N )] tends to one if and only if r(n) is such that nπr(n)2− log n →∞.

As explained in [Pen97], Theorem 2.1 means that the longest edge is
likely to be the same for the Euclidean minimum spanning tree as for the
nearest-neighbor graph, and the qualitative meaning of the Gumbel distri-
bution for nπM1(N )2 − log n is that the asymptotics for M1(N ) are as
if the nearest-neighbor distances of the points N were independent. Pen-
rose conjectures these two properties to hold for more general distributions
fD(·): in [Pen98], he shows them to hold when fD(·) is the standard d-
dimensional normal distribution.

In [Pen99], Penrose generalized Theorem 2.1 to hold for Rk(N ) and
Mk(N ) with any k > 1, in the unit cube in d dimensions with any d > 1.
However, the exact asymptotic distribution of Rk(N ), k > 1, remained un-
determined because of a dominating border effect: the complicated effect
of nodes near the boundary of D having fewer direct neighbors, discussed
already in [DH90a].

The boundary was successfully analyzed and the asymptotic distribution
of Rk(N ) for all k thus derived only recently in [WY04], for uniform fD(·)
when D is both the unit-area square and the unit-area disk: it turns out that
when k = 1 and the border effect does not dominate, the distribution is
the same in both domains, whereas it is different in the two domains when
k > 1. Thus, for uniform fD(·), the asymptotic distribution of R1(N ) is at
least to some extent independent of the shape of the domain D, which is
no longer the case for k > 1.

Extensive work on the subproblem of determining such transmission
range r that results in a k-connected network with a predefined, high prob-
ability, has been done by Bettstetter. The theoretical basis for his approach
is Theorem 2.1 and its generalization to k > 1, along with the above-
mentioned asymptotic independent-like statistics of nearest-neighbor dis-
tances and the assumption of this holding in general for k-nearest-neighbor
distances. These assumptions make way to approximating the probability of
a k-connected network simply by the probability of a random node in the
network having at least k other nodes within range, raised to the power n.
In [Bet02], this was computed without consideration of the border effect, a
shortcoming remedied with Zangl in [BZ02]. Further applications of the
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approach when fD(·) is the stationary node location distribution of the Ran-
dom Waypoint mobility model or the normal distribution are demonstrated
in [Bet04]. In short, the approach gives reasonably tight lower bounds for
the required range when the target probability is at least 99% and the num-
ber of nodes is at least on the order of 100.

The approach taken by D’Souza et al. to this problem in [DRL03] is in
the same spirit as the one we will be discussing next. Studying the distribu-
tion of R1(N ) by simulation when the nodes are uniformly distributed in
a square region, their aim was to see whether determining the distribution
with various n had predictive power, by modeling the behavior of the mean
of the distribution as a function of n. The estimated parameter characteriz-
ing the model for the mean was the asymptotic value of R1(N ) as n tends to
infinity while the node density remains fixed — but this is in contradiction
with the result by Philips et al. mentioned in the beginning of this section
which implies that R1(N ) has no such finite limit.

Connectivity probability as a learning problem
Exact analytical determination of the k-connectivity probability or, equiva-
lently, the distribution of the threshold range for k-connectivity Rk(N ), in
finite networks is complicated: unlike in the asymptotic limit, the nearest-
neighbor distances cannot be treated as independent, and minimum degree
k does not imply k-connectivity with high probability.

Because analytical treatment of these complicated phenomena is daunt-
ing, we opt to encapsulate them in an empirical model. The purpose of this
model is to describe how the distribution of Rk(N ) changes with n, with
the aim of allowing the prediction of this distribution over as wide a range
of different n as possible. Thus, we approach our problem as that of learn-
ing, by which we mean improving our knowledge with the aid of observed
data.

In our case, this observed data consists of samples of Rk(N ) determined
from a large number of simulated random realizations of N , with different
numbers of nodes n. Our data acquisition therefore requires algorithms
that determine Rk(N ) for given input N ; in Publication [1], we present
such algorithms. Detailed algorithms are described for k = 1, 2, 3, but the
general principle is applicable for any k.

The next section will briefly describe these algorithms, and the empir-
ical models for the distribution of Rk(N ) are discussed in the section that
follows.

Algorithms for finding Rk(N )
All our algorithms treat the input N as a fully connected Euclidean graph,
in which the number of edges is quadratic in n. Since, for example, the
Euclidean minimum spanning tree for n points in the plane can be com-
puted in O(n log n) time by utilizing the Delaunay triangulation [Aur91],
the strength of our algorithms lies rather in their very simple implemen-
tation and effective operation with small n than in good scaling to large
n.

The idea in the algorithms is to find the threshold range incrementally.
For a given N , the initial range r0 is chosen so that the geometric graph
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G(N , r0) satisfies the necessary conditions for k-connectivity. Finally, the
range is increased if required, to satisfy the sufficient condition as well.
The necessary conditions are that G(N , r0) is (k − 1)-connected and has
minimum degree k; the sufficient condition is that there is no (k−1)-tuple
of nodes T whose removal would disconnect the graph. The smallest range
needed to eliminate a given such T equals R1(N\T ).

For k = 1, the above descriptions of (k − 1)-connectivity and (k − 1)-
tuples of nodes are naturally not defined, and the steps of the algorithm can
be described very concisely:

1. Set the range to r = M1(N ) and find the connected components of
G(N , r).

2. If there is only one connected component, R1(N ) = r. Else, treat-
ing the components as single elements making up the set N and
defining the distance between two components as the shortest node
distance between them, go to step 1.

Figure 2.1 illustrates an example network after two rounds of the above
steps. This algorithm can also be seen as a simplified variation of Boruvka’s
algorithm for finding the minimum spanning tree [NMN01], where we
only keep record of the greatest edge length in the tree formed on each
round, instead of the tree itself.

The algorithm generalized to k > 1 can be summarized as follows:

1. Set the initial range to r0 = max{Mk(N ), Rk−1(N )}.

2. Find all the (k − 1)-tuples of nodes Ti whose removal would discon-
nect G(N , r0).

3. If no such Ti were found, Rk(N ) = r0,
else Rk(N ) = maxi{R1(N\Ti)}.

(a) (b)

Figure 2.1: The network formed by a sample set N of 15 nodes with the
range (a): M1(N ) and (b): R1(N ).
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(a) (b) (c)

Figure 2.2: The network formed by the 15-node sample set N with the
range (a): M3(N ), (b): r0 = R2(N ) > M3(N ) (each separation pair Ti is
marked with a distinct symbol), and (c): R3(N ).

(See Figure 2.2 for an example with k = 3.) Despite this seemingly
general formulation, the task of finding the disconnecting (k − 1)-tuples
Ti (also done in step 1 with k − 2 to check whether G(N ,Mk(N )) is
(k − 1)-connected) becomes increasingly complex very rapidly as k in-
creases. When k = 2, the disconnecting nodes, or cutvertices, are found in
linear time with respect to the size of the graph by using depth-first-search
(DFS), a basic text-book graph traversal algorithm. With k = 3, finding the
separation pairs is already notably more difficult, but a data structure called
the SPQR-tree makes it possible to do this in linear time as well.

The SPQR-tree was introduced by Di Battista and Tamassia in [DT96]
and only recently correctly implemented by Gutwenger and Mutzel in
[GM00]. Due to the apparent difficulty of implementing the SPQR-tree
and the fact that no implementation is publicly available, a simpler – and
suboptimal – algorithm for finding the separation pairs is developed in Pub-
lication [1]. In short, this algorithm is based on storing a DFS tree of the
biconnected network (obtained with the initial range r0) with enough in-
formation to justify each node not being a cutvertex. The effects of single
node removals on the DFS tree are then examined to find out whether a
removal creates cutvertices in the network: if so, the removed node com-
prises separation pairs with the cutvertices. The emergence of cutvertices
is determined by preserving those parts of the DFS tree that are known to
be unaffected by the removal and rebuilding the rest of the tree. To find all
the potential separation pairs, n − 1 node removals have to be considered
in this way. For further details, the reader is referred to Publication [1].

Note that these algorithms are also motivated by Theorem 2.1, its gen-
eralization to k > 1, and the conjectured generalizations to other spatial
distributions of nodes: as n increases, the initial range r0 = Mk(N ) is the
sought range with increasing probability.

Empirical models
We apply the use of empirical models to our connectivity problem with
uniform fD(·) on D = [0, 1]2. The data used as the basis for these models
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Figure 2.3: Squared inverses of estimated q-quantiles of Rk, k = 1 (upper
points) and k = 3 (lower points).

consists of samples of R1(N ), R2(N ), and R3(N ) determined using the
above algorithms from 5000 random realizations of N with every fixed n;
the different values of n ranged from 5 to 350.

Our first models are presented in Publication [1]. There we observe,
purely by visual inspection, that the squared inverse of any fixed quan-
tile of the simulated distribution of Rk(N ) seems to grow linearly with n
(see Figure 2.3). This suggests that the q-quantile rk(q, n) behaves like
rk(q, n) = 1/

√
a(k, q) · n + b(k, q) with some parameters a(k, q) and

b(k, q). (Note that the q-quantile of the distribution of Rk(N ) is the trans-
mission range that provides a connected network with probability q.)

This model implies that when n increases while the transmission range
equals rk(q, n), thus maintaining the probability q for k-connectivity, the
expected degree of a node nπ[rk(q, n)]2 (ignoring the border effect) has the
limit limn→∞ nπ[rk(q, n)]2 = π/a(k, q). On the other hand, the asymp-
totic Gumbel distribution of nπR1(N )2 − log n implies that in this limit,
nπ[r1(q, n)]2 equals the sum of log n and − log(− log q), the q-quantile of
the Gumbel distribution, and therefore increases indefinitely. (Naturally, it
then follows that nπ[rk(q, n)]2 must increase indefinitely for all k.) Thus,
this model exhibits the same contradiction with asymptotic results as the
one used in [DRL03]. We point out this contradiction already in Publica-
tion [1].

In Publication [2], we correct this deficiency. Taking the asymptotic
distributions as the bases of the models, we let a model for a quantile en-
compass only the deviation from the asymptotic distribution, caused by the
various complicated phenomena in the non-asymptotic regime.

More precisely, in the case k = 1 we let the model describe the devia-
tion of nπ[r1(q, n)]2− log n from its asymptotic limit− log(− log q). As an
example, Figure 2.4(a) shows these deviations as estimated from the simu-
lation data for q = 0.5, together with the fitted four-parameter regression
model which assumes that

nπ[r1(q, n)]2 − log n + log(− log q) = a · n−b − c · e−d·n, a, b, c, d > 0,
(2.1)

where the power-law part is sufficient to describe the tail of the model.
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Figure 2.4: The model of the form (2.1) (a) and its residuals (b) obtained
for nπ[r1(0.5, n)]2 − log n + log(− log 0.5), and the overall absolute (c)
and relative (d) residuals for r1(0.5, n).

The residuals, i.e. the differences between the data points and the fitted
model, plotted in Figure 2.4(b), seem to be evenly scattered around zero
level, showing no trend as an indication of the convergence parting with the
model. Furthermore, their variance around the zero level seems to remain
constant as n increases, implying that all the data points yield equally accu-
rate information for fitting the model. Note that this is not the case with the
residuals thus obtained for r1(0.5, n) itself, plotted in Figure 2.4(c), which
demonstrate how the variance of R1(N ) and hence that of the quantile es-
timate r̂1(q, n) decreases with n. Finally, Figure 2.4(d) shows the relative
residuals for r1(0.5, n): the near-identical pattern with Figure 2.4(b) im-
plies that the fitting of the model can be considered almost equivalent to
minimizing the sum of squared relative residuals of r̂1(q, n).

The median was chosen as the first quantile for building this model to
maximize the accuracy of the used quantile estimates, as these estimates
are obtained from simulation data with limited sample sizes. However, the
same model is well able to describe the convergence of any quantile: Figure
2.5 shows the equivalent of Figure 2.4(d) for two more extreme quantiles.
One can observe that due to the increasing inaccuracy inherent in estimat-
ing extreme quantiles from limited-sized data, the model error is roughly
within 1% for q = 0.95 and within 1.5% for q = 0.99, as opposed to only
0.3% for q = 0.5.
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Figure 2.5: Relative residuals for other quantiles of R1, obtained by using
the model (2.1).

We now demonstrate the qualitative meaning of the asymptotic Gum-
bel distribution of nπM1(N )2 − log n with uniform fD(·) on D = [0, 1]2.
Let us first write the probability that a random node of N is isolated, i.e.,
is out of range r from all other nodes. If we neglect the possibility that
this node is within range from the border, the probability that a given other
node is out of range is 1−πr2. Because the node locations are independent,
the probability that the node is isolated then equals (1− πr2)n−1.

We are interested in what happens when n tends to infinity; naturally,
if the range r is fixed, the above probability goes to zero. In the non-trivial
case where r decreases as n increases, the probability satisfies

Pr[Random node isolated] =
(1− πr2)n

1− πr2
−−−−→
n→∞ (1− πr2)n

=
(

1− nπr2

n

)n

−−−−→
n→∞ exp(−nπr2),

where the last limit is equal to the probability that there are no points of
a Poisson process with intensity n in a circle with radius r. Note that the
complement probability, as a function of r, is the cumulative distribution
function of a randomly selected node’s nearest-neighbor distance. On the
other hand, the probability that none of the nodes is isolated is the cumu-
lative distribution function of M1(N ).

Now, let us write the latter cumulative distribution as that of the max-
imum of n independent and identically distributed nearest-neighbor dis-
tances, and take the logarithm of both sides:

Pr[M1(N ) ≤ r] = [1− exp(−nπr2)]n (2.2)

⇔ log Pr[M1(N ) ≤ r] = n log [1− exp(−nπr2)].

Again, in the non-trivial case where the probability above does not tend to
zero with increasing n, the probability that one random node is
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isolated, exp(−nπr2), diminishes with increasing n. Making use of the
limit log (1 + x) −−−−→

|x|→0
x, we then have

log Pr[M1(N ) ≤ r] −−−−→
n→∞ −n exp(−nπr2)

⇔ − log(− log Pr[M1(N ) ≤ r]) −−−−→
n→∞ nπr2 − log n

def= α.

Expressing the event M1(N ) ≤ r equivalently using the definition of α ,
we arrive at

Pr[nπM1(N )2 − log n ≤ α] −−−−→
n→∞ exp(−e−α),

i.e., the asymptotic Gumbel distribution of nπM1(N )2 − log n.
The above derivation shows that the border effect does not dominate

in the asymptotic distribution of M1(N ) (and hence that of R1(N )). In
Publication [2], which was submitted before becoming aware of the exact
asymptotic distributions recently derived in [WY04], we derive approximate
asymptotic distributions for Rk(N ), k > 1, as the bases of the correspond-
ing quantile models. We do this as above, by neglecting border effects and
writing the distribution of Mk(N ) as that of the maximum of n i.i.d. k-
nearest-neighbor distances; we refer the reader to the publication for the
details.

Finally, as the most important argument in favor of using these models,
in Publication [2] we demonstrate their ability to predict the independent
simulation data presented in [Bet02]. Figure 2.6, excerpted from [Bet02],
shows the simulation results: here, r has been fixed while n has been var-
ied. (The analytical curve represents the asymptotic relation (2.2).) The

Figure 2.6: “Simulation results for n nodes with r0 = 20m uniformly dis-
tributed on A = 500× 500m2 〈...〉, 3000 random topologies” [Bet02].

20



Table 2.1: The number of nodes n required to achieve k-connectivity with
probability q when r/

√
A is as in Figure 2.6, as predicted by our quantile

models for R1(N ), R2(N ), and R3(N )

q

50% 75% 90% 95% 99%

k = 1 2057 2387 2790 3144 3871

k = 2 2805 3262 3807 4208

k = 3 3533 4065

predictions of our quantile models to this example scenario are given in Ta-
ble 2.1. Comparison of the two shows that although the models were fitted
to simulation data involving no more than n = 350 nodes, their predictions
turn out to be quite accurate even with up to ten times as many nodes. Fur-
thermore, the models for R2(N ) and R3(N ) seem to perform as well as
those for R1(N ), implying that the derived asymptotic distributions serve
as reasonable approximations when k > 1.

Connectivity probability under the Random Waypoint mobility model
Recall from the literary review of this section that Theorem 2.1 general-
izes to Rk(N ) and Mk(N ) when k > 1, and that the asymptotic distribu-
tion of M1(N ) as that of the maximum of n independent nearest-neighbor
distances also holds for normally distributed points, which gives reason to
assume that these properties should hold for more general spatial distribu-
tions.

The Random Waypoint (RWP) mobility model has been treated as
a special case of a more general class of models using Palm calculus in
[LV05], where it is rigorously proven that the RWP model reaches a sta-
tionary state distribution if and only if the inverse of the random velocity
drawn for each leg and the pause time drawn after each leg have finite ex-
pectations, and that this stationary distribution is unique.

Assuming such a velocity distribution, consider the steady-state distribu-
tion fD(·) for the location of a node moving according to the RWP model
with uniform waypoint distribution over the convex domain of movement
D and no pause times (apart from the condition for reaching stationarity,
this distribution is independent of the velocity distribution [Le 05]). This
distribution is not uniform: the probability mass is concentrated around the
center of D whereas the probability density reaches zero at the boundary of
D. While this stationary distribution is expressed in a complicated form for
rectangularD in [NC04], approximated for various shapes ofD in [BRS03],
and given a formal yet high-level representation in [LV05], an explicit ex-
pression for any convexD has been derived recently [HV05, HLV06]. With
the theoretical motivation that started this subsection, in Publication [3] we
utilize this exact distribution in estimating the probability that a network of
n nodes moving according to the RWP model is k-connected at a random
time instant; in other words, we address the problem statement of this sec-
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tion when fD(·) is the stationary node location distribution in the RWP
model.

The approximation method is the same as in the work by Bettstetter, i.e.,
we approximate the probability of k-connectivity by the probability that a
random node has at least k other nodes within range, raised to the power
n. This is equivalent to approximating the distribution of Rk(N ) by that of
the maximum of n i.i.d. k-nearest-neighbor distances. However, whereas
Bettstetter uses an approximation in deriving the latter probability from the
spatial distribution, we derive it exactly. The other difference is that we
use the exact node location distribution, unlike the approximation from
[BRS03] used by Bettstetter in [Bet04].

Figure 2.7, demonstrating the accuracy of our approximation, shows
that the approximation is quite poor with small n but indeed improves as
n increases, which supports our assumption that the approximation is in
fact asymptotically accurate. Furthermore, the approximation turns out to

Pr[Rk(N ) ≤ r]

0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.4

0.6

0.8

1

k=1

k=3

r

(a) n = 20

Pr[Rk(N ) ≤ r]

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.2

0.4

0.6

0.8

1

k=1

k=3

r

(b) n = 100

Pr[Rk(N ) ≤ r]

0.15 0.2 0.25 0.3

0.2

0.4

0.6

0.8

1

k=1

k=3

r

(c) n = 500

Figure 2.7: Probability that n nodes with range r moving in a unit disk make
a k-connected network at a random point in time, as determined using the
approximation in Publication [3] (solid lines) and by simulation (dashed
lines).
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Figure 2.8: Probability that a network of n nodes with range r moving in a
unit disk is connected, as determined using the approximations presented in
[Bet04] (dotted lines) and in Publication [3] (solid lines), and by simulation
(dashed lines).
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improve with increasing k. The improvement brought by our approxima-
tion to that used in [Bet04] is depicted in Figure 2.8.

The general conclusion drawn in [Bet04] was that with any given n and
r, the connectivity probability under the spatial node distribution caused
by RWP mobility is always lower than when the nodes are uniformly dis-
tributed. One additional finding in Publication [3] is that with small n, the
case is in fact the opposite. This can be observed from simulation data but is
also correctly predicted by our approximation. The reason why this was not
discovered in [Bet04] was that only values of n greater than 200 were ob-
served: the reverse situation can be observed roughly when n < 100. The
intuitive explanation for this phenomenon is that when only few points are
drawn from the centralized RWP spatial distribution, they are all likely to
lie in the center of the domain, close to each other in comparison to the
uniform case. As the number of points increases, it becomes more likely
that there are individual outlying points located far – relative to the uni-
form case – from the rest of the nodes.

2.2 Coverage of random networks

In this section, we study the coverage of random sensor networks under
a Boolean coverage-disk model. The random locations of the sensors are
motivated by the vision of large numbers of small sensors, often referred
to as “smart dust”, being scattered over some terrain from, say, an aircraft.
On the other hand, networks of mobile sensors have also been studied; at a
random time instant, the locations of such sensors are random.

Existing work on the coverage of mobile sensors under this coverage
model has addressed, e.g., the time until a point is covered by sensors in
Brownian motion [KKP03] and various coverage dynamics of sensors un-
der a random-direction mobility model [LBD+05]. Taking into account
the limited operational lifetime of sensors, the temporal aspect of coverage
also with stationary sensors has been studied in [ZH04], where the authors
derive an upper bound for the α-lifetime of large random networks, i.e., the
maximum time for which at least the fraction α of some target domain is
covered.

Problem statement
We preserve much of the notation and assumptions used in the context of
our connectivity problem in the previous section. We now assume through-
out that the locations N of the n sensors are independent and uniformly
distributed in some domain S ⊇ D where D is the bounded domain to be
covered, and that all the sensors have a common sensing range r: see Fig-
ure 2.9 for an illustration. We take S and D to be subsets of the Euclidean
plane R

2, although the generalization to a higher number of dimensions is
straightforward.

For given N , D and r, let C(N ,D, r) denote the area coverage as de-
fined in [LT03], i.e., the fraction of the area of D that is covered by at least
one sensor. As a function of the random sensor locations N , C(N ,D, r) is
a random variable. Our problem is the following.
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Figure 2.9: Illustration of the coverage problem definitions. The locations
N (black points) of n = 15 sensors have been drawn uniformly at random
in the rectangular region S. Each sensor has the same sensing range r and
thus covers a disk drawn in gray. With this particular realization, the frac-
tion C(N ,D, r) of the area of the square-shaped target domain D covered
by the sensors is around 50%.

Given n, S, D and r, what is the probability distribution
of C(N ,D, r)?

Note that in the unbounded limit where S is infinitely enlarged to be
R

2 while keeping the average sensor density n/|S| fixed, the point pro-
cess marking the sensor locations becomes a Poisson process with intensity
λ = n/|S|.

Review of existing results
To our knowledge, this problem has not been addressed as such, in the
general form stated above. Furthermore, many existing studies on different
subproblems assume instead that the sensors are located on the points of a
Poisson point process on some bounded set to be covered. Overall, as with
the problem of connectivity of random networks, exact analytical results in
finite settings do not exist.

When D = S in the above unbounded limit, the area coverage has a
deterministic value: by the properties of the Poisson process, this value is
1− e−λπr2

, as pointed out in [LT03].
In the case of sensors on the points of a Poisson process on a unit-area

disk S = D, with some intensity λ, it has been shown in [Hal88] that the
probability that D is completely covered has the bounds

max{0, 1− 3(1 + πr2λ2)e−λπr2} < Pr[C(N ,D, r) = 1]

<
1
20

max{0, 1− (1 + πr2λ2)e−λπr2}.
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As noted in [GK98], if the number of points n is fixed to n = λ and r(n) is
such that nπr(n)2 − (log n + log log n) −−−−→

n→∞ ∞, then this result implies

that Pr[C(N ,D, r(n)) = 1] → 1, and if nπr(n)2 − (log n + log log n) →
−∞, then limn→∞ Pr[C(N ,D, r(n)) = 1] ≤ 19/20.

The following asymptotic result by Janson, also about complete cov-
erage, is actually a special case, adapted to the context of our problem,
of a much more general result presented in [Jan86]. Let |S| denote the
Lebesgue measure of S.

Theorem 2.2 Suppose that D = [0, 1]2, that Closure(D) ⊂ Interior(S)
and that |S| < ∞. Suppose further that A is the disk with unit radius.

For r > 0, consider the set of disks rA + X , where X is a set of ran-
dom points uniformly distributed on S, and let Nr be the number of disks
required to cover D completely.

Let U have the extreme value distribution Pr(U ≤ u) = exp(−e−u).
Then, as r → 0,

πr2

|S| Nr + log πr2 − 2 log(− log πr2) d−→ U.

The original theorem is stated for covering a more general D any given
number of times with random sets A, in any number of dimensions, but
in this general case the above asymptotic expression is more complicated.
Note that just as with the threshold range for connectivity, we have here
again a quantity with an asymptotic Gumbel distribution.

Complementing the above results, sufficient conditions for asymptoti-
cally almost surely covering D = [0, 1]2 any given number of times, and
also for not covering D, have been derived in [KLB04], in the cases of n
sensors located on the points of a regular grid or points drawn uniformly at
random, and sensors at the points of a Poisson point process.

Finally, as a curiosity, we remark that the sufficient conditions regard-
ing asymptotic probability of complete coverage derived in [ZH04] can be
obtained as direct corollaries from [Jan86].

In Publication [4], we address the expected value of C(N ,D, r) over
N , as well as the probability of complete coverage in the non-asymptotic
regime. We devote the next two sections to discussing these quantities.

Expected value of C(N , D, r) over N
In line with our problem statement, assume that n, S, D and r are given.
Then the conditional expected value of the area coverage over the different
sensor configurations, EN [C(N ,D, r) |n,S,D, r], is simply the integral
of C(N ,D, r) over the joint probability distribution of N , in this case, a
uniform distribution over Sn. On the other hand, when also N is fixed,
C(N ,D, r) is equal to the conditional probability that a random point inD
is covered by a sensor. Thus, it is easy to see that EN [C(N ,D, r) |n,S,D, r]
= PrN [Random point in D is covered |n,S,D, r].

In Publication [4], we examine the expected area coverage when D is a
disk with radius R by solving this probability. We consider two alternative
cases. When S = D, we must account for the border effect, i.e., the fact
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Figure 2.10: The number of sensors per area πR2 required to ensure
EN [C(N ,D, r) |n,S,D, r] = 0.99 if D is a disk with radius R, when
S = D causing a border effect (solid line) and when S → R

2, eliminating
the border effect (dashed line).

that points near the boundary are less likely to be covered. In this case, we
obtain by straightforward calculation

EN [C(N ,D, r) |n,S,D, r] = 1−
[
π(R− r)2

πR2

(
1− min{πr2, πR2}

πR2

)n

+
∫ R

|R−r|

2ρ

R2

(
1− A(ρ,R, r)

πR2

)n

dρ

]
,

where we allow also the case R > r. Here, A(ρ,R, r) denotes the area
of the intersection of two disks with radii r and R when their centers are
separated by ρ > |R− r| (else this area equals min{πr2, πR2}).

In the second case, we consider the limit S → R
2, which eliminates the

border effect; by the properties of the resulting Poisson process, we know
that in this case the expected area coverage equals 1− e−λπr2

.
Figure 2.10 demonstrates the border effect by comparing the sensor

densities required to ensure a 99% expected area coverage on this particular
D in the two cases, as implied by these results.

Probability of complete coverage as a learning problem
We now turn to the subproblem of determining the probability that D
is completely covered, i.e. Pr[C(N ,D, r) = 1]. In Publication [4], we
point out that this problem, like the connectivity problem discussed ear-
lier, also reduces to knowing the distribution of a well-defined threshold
range: given D, let Rc(N ) denote the smallest sensing range r with which
D is completely covered by sensors at given locations N , i.e., with which
C(N ,D, r) = 1. We refer to Rc(N ) as the threshold range for complete
coverage. Now, the event {C(N ,D, r) = 1} is equivalent to {r ≥ Rc(N )},
whence this problem reduces to knowing the probability distribution of
Rc(N ) with given n, S and D.

For given N , Rc(N ) is equal to the distance from a point in D to the
nearest point in N , maximized over all points in D. It follows that Rc(N )
can be easily determined using the sensors’ Voronoi diagram: it can be de-
duced to be the longest distance from a sensor to an edge of its Voronoi cell

26



(a) (b)

Figure 2.11: Example of the threshold range for complete coverage when
a) 25 sensors are placed randomly inside the square-shaped domain S = D,
and b) sensors are scattered uniformly over the whole plane with average
density 25/|D|. The critical coverage ranges are shown with solid circles.

in D. Moreover, when the boundary of D is piecewise linear, it is suffi-
cient to concentrate on cell corners. Like the expected area coverage, the
probability of complete coverage is strongly influenced by the border effect:
Figure 2.11 shows examples of the threshold range determined for a square-
shaped D, both when S = D and when the border effect is eliminated.

Recall that Theorem 2.2 gives the asymptotic distribution of the num-
ber of sensors required on the set S to cover D completely, as their sens-
ing range tends to zero. It also allows us to solve the inverse cumulative
distribution function of this number: to have D completely covered with
probability at least q, the number of sensors with range r must be at least
n(r) = [− log(− log q)− log πr2 + 2 log(− log πr2)] · |S|/πr2.

On the other hand, we may also want to know the inverse cumulative
distribution function of the threshold range for complete coverage, i.e., ask
how large the sensing range should be with a given number of sensors n to
guarantee a coverage probability of at least q: of course, the range should
then not be less than the smallest r with which the given n is at least n(r).
By the continuity and monotonicity of n(r), it follows that r should be at
least r−1(n), the inverse function of n(r). We may thus conclude that The-
orem 2.2 also holds with the given number of sensors n and the threshold
range for complete coverage Rc(N ) substituted in the place of Nr and r,
respectively. Because the resulting expression with the asymptotic Gumbel
distribution is a monotonically increasing function of Rc(N ) with given n,
it follows that this result gives the asymptotic distribution of the threshold
range for complete coverage when the number of sensors n tends to infinity.

The above observations provide the ingredients for treating the proba-
bility of complete coverage as a learning problem, exactly as done and dis-
cussed earlier with the connectivity probability. In what follows, we model
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the convergence of the distribution of the threshold range for complete
coverage using empirical models when D = [0, 1]2.

The purpose of requiring that the set S completely encompass D in
Theorem 2.2 is to eliminate the border effect, i.e., to avoid complications
resulting from the otherwise likely event that the boundary of D is the last
part to be covered. In other words, Theorem 2.2 does not apply to the case
S = D demonstrated in Figure 2.11(a). We will next discuss the empirical
models in the setting without the border effect but will return to the case
S = D shortly.

To eliminate the border effect, the set S where the n sensors are ran-
domly placed for each sample of the threshold range Rc(N ) is chosen as a
larger square centered around the unit squareD. This other square is made
large enough so that the resulting threshold range is never greater than the
shortest distance from the boundary of D to that of S; this way, sensors out-
side S would not affect the threshold range. (This requirement is checked
for each sample of Rc(N ); if it is not met, the set S is enlarged further
and all the simulations for the particular sensor density are repeated.) As
when simulating the threshold range for connectivity, Rc(N ) was deter-
mined from 5000 random realizations of N with every fixed sensor density
n/|S|, and the value of n/|S| was varied up to 350.

Now, let rc(q, n) denote the q-quantile of Rc(N ). In the same spirit as
with the models in Publication [2], we let the model describe the deviation
of n

|S|πrc(q, n)2 + log πrc(q, n)2 − 2 log(− log πrc(q, n)2) from its asymp-
totic limit − log(− log q). Figure 2.12 is the equivalent of Figure 2.4, now
showing as an example the corresponding information for these deviations
for q = 0.95 along with a fitted four-parameter regression model of the
form

n

|S|πrc(q, n)2 + log πrc(q, n)2 − 2 log(− log πrc(q, n)2) + log(− log q)

= a · n−b + c · n−d, a, b, c, d > 0, (2.3)

i.e., a combined power-law where a slower-decaying component character-
izes the tail of the model. In short, this figure allows for the same conclu-
sions as Figure 2.4.

We now turn to the case S = D. In [Jan86], Janson is able to derive
the equivalent of Theorem 2.2 when S = D = [0, 1]2 and the set A is
the square [−1/2, 1/2]2 instead of the unit disk. In this case, covering D
can be decomposed into the asymptotically seemingly independent events
of covering the interior [r/2, 1 − r/2]2, i.e., the region where the effect
of the randomly placed scaled squares rA is not affected by the boundary
of D, and covering its normal projections to the boundary such as {0} ×
[r/2, 1 − r/2] with intersections of the overlapping squares, with length r.
This is because when A is chosen as the square, covering the boundary of
D implies covering the strip between the boundary and the interior. Thus,
the problem with border effects can be decomposed into subproblems in
one and two dimensions, both free of border effects.

When A is chosen as the disk with unit radius as in Theorem 2.2 adapted
to our problem, covering the boundary ofD no longer implies covering the
strip between the boundary and the interior, and this decomposition is no
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Figure 2.12: The model of the form (2.3) (a) and its residuals (b) obtained
for n

|S|πrc(0.95, n)2 + log πrc(0.95, n)2 − 2 log(− log πrc(0.95, n)2) +
log(− log 0.95), and the overall absolute (c) and relative (d) residuals for
rc(0.95, n).

longer equivalent to the original problem. However, we may still derive the
asymptotic probability that the interior [r, 1−r]2 and its normal projections
to the boundary of D are covered by the scaled disks rA, by repeating the
steps shown in [Jan86] when A is [−1/2, 1/2]2; the reader is referred to
the appendix of Publication [4] for the details. Given these coverings, we
assume that the remaining parts are covered asymptotically with high prob-
ability and thus use the result as an approximation for the asymptotic distri-
bution for the threshold range for complete coverage of S = D = [0, 1]2:

lim
n→∞Pr

[
nπRc(N )2 + log πRc(N )2 − 2 log(− log πRc(N )2) ≤ u

]
= exp

(
− 4√

π
e−u/2 − e−u

)
. (2.4)

Note that here |S| = 1, so the quantity with the converging distribution is
in effect the same as in the case without the border effect; only the limiting
distribution is now different.

We use again the model (2.3) to describe the convergence as in the pre-
vious case, with the obvious difference that the limiting q-quantile is now
−2 log(

√
4/π − log q− 2/

√
π) instead of that of the Gumbel distribution,

− log(− log q). We show here as examples only the relative residuals ob-
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Figure 2.13: Relative residuals for two quantiles of Rc(N ), obtained by
applying the model (2.3) to the approximate asymptotic distribution (2.4)
when S = D = [0, 1]2.

tained after fitting this model to 50% and 99% quantiles estimated from
simulation data, again with 5000 samples generated for each n and n rang-
ing up to 350: see Figure 2.13.

We opt to validate these models in Publication [4] only in the latter
case with S = D = [0, 1]2, i.e. when the models are based on the approxi-
mate asymptotic distribution (2.4), since it is fair to assume that the models
based on the exact distribution in the case without border effects should
perform at least as well. To this end, we test how well these models are
able to predict the distribution of additional samples of Rc(N ) determined
from simulated random realizations with n = 1000 sensors; because of the
resulting extensive computation times, only 1000 samples were generated.
The result is shown in Figure 2.14: slight differences are noticeable, which
may be due to the approximation (2.4), invalidity of the model (2.3), inac-
curacy in the model parameter estimates, or the small number of samples
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Figure 2.14: The empirical cumulative distribution of Rc(N ) determined
from 1000 random realizations with n = 1000 sensors in S = D = [0, 1]2

(solid line), and the predictions (drawn as points) of empirical models fitted
to five different quantiles (indicated with the dashed lines).
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in the validation data. However, the fact that the prediction errors are in
both directions makes a systematic error seem less likely.

2.3 Connectivity improvement as an optimization problem

In Publication [5], we view the connectivity problem from a new perspec-
tive: we are concerned with what can be done when a wireless ad hoc
network needs to be formed but the network nodes are too far apart to form
a network with a desired level of connectivity. More precisely, we study the
option of improving the connectivity of a static ad hoc network by placing
additional network nodes at optimized locations. Networks where adding
extraneous nodes is feasible are some sensor networks and such ad hoc net-
works that are used in a controlled situation where some central entity can
organize the deployment of the nodes.

To our knowledge, the connectivity problem in ad hoc networks has
not been addressed so far from this practical viewpoint: probably the closest
related work has been done in [DTH02], where the authors study how the
existence of base stations attached to fixed, wired network infrastructure
improves the connectivity of random networks.

Problem statements
Reusing the notation introduced in Section 2.1, we assume that the exist-
ing network is disconnected and consists of n nodes with given locationsN
in a bounded and convex deployment region D ⊂ R

d, d > 1, and that we
may place additional nodes in D to be used as relays in the network. To
distinguish between the two, we will refer to the existing nodes as terminal
nodes and the additional nodes as relay nodes. We assume that the terminal
nodes and the relay nodes have equal transmission and reception capabil-
ities and hence have a common transmission range r. In this setting, the
basic form of our problem is as follows:

GivenN and r, find a set of locationsNr with minimum cardinality
nr that makes the geometric graph G(N

⋃
Nr, r) connected.

Obviously, Nr is the set of locations to place relay nodes.
We also study the following problem variant which comes into question

when too few relay nodes are available to make the network connected. In
this case, we need to define the utility of the network.

Given N and r, find Nr that maximizes the chosen utility met-
ric U = U(G(N

⋃
Nr, r)), subject to nr ≤ nmax

r ∈ Z+.

The choice of the utility metric depends on the target application. Through-
out Publication [5], we use the greatest number of terminal nodes that are
all in the same connected component of the graph G(N

⋃
Nr, r). In light

of the above problem, this is equivalent to using the greatest number of
terminal node pairs, i.e. the number of possible connections that can be
formed within a connected component. In addition to this latter problem,
we use the utility metric also in defining greedy approaches to the first prob-
lem.
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The key assumptions behind these problem statements are that the lo-
cations of the terminal nodes are known and that the location information
of these nodes can be collected even though the network is not connected.
The motivation behind the latter assumption is that depending on the so-
lutions on the physical layer, it can be possible to be able to sustain a low
rate of communication over much further distance than to provide quality
of service. In this case, the network is able to convey control information
even if efficient communications are not possible. In other words, in this
problem the transmission range r models the longest distance that allows
direct communication at the rate required by the application to be utilized
over the network.

Review of related problems and existing results
The closest related problem with existing literature is that of the Euclidean
shortest-connection network, where the task is to form a connected net-
work between a given set of points with minimum total edge length. This
problem has two variants, depending on whether or not the addition of new
points is allowed before forming the edges: when permitted, the problem is
known as the minimum Steiner tree (or Steiner minimal tree) problem, and
when not, it is the minimum spanning tree problem. Whereas finding the
minimum spanning tree is a straightforward task, the Steiner tree problem
is NP-hard [GGJ77]. A fundamental relation between the two problems
is the greatest possible ratio between their optimal solutions, known as the
Steiner ratio [DH90b]: for any set of points in the plane, the total edge
length of their Euclidean minimum spanning tree is at most 2/

√
3 ≈ 1.15

times the total edge length of their Euclidean Steiner minimal tree.
Our problem in its basic form can be seen as a special variation of the

shortest-connection network problem, where the geometric graph provides
the edges implicitly and we are therefore restricted solely to adding new
points. Accordingly, the objective function is then the number of added
points.

Our problem could as well be stated with the generalized goal of mak-
ing the network k-connected. The corresponding generalization of the
shortest-connection network problem without the possibility to add points
leads to the graph augmentation problem: in commonly used terms, the
task in the minimum augmentation problem is to add to a given graph the
set of edges with minimum total weight so that the resulting graph is k-
connected. Thus, the case k = 1 corresponds to the minimum spanning
tree problem, but for any k > 1 the problem is known to be NP-hard:
see, e.g., [Hsu93] and the references therein. In this context, a somewhat
related problem has been studied in [BR04], where an ad hoc network of
mobile robot nodes is already assumed to be connected, and the task is to
move the robots to make the network biconnected so that the total distance
travelled by the robots is minimized.

Heuristic algorithms
Our problem differs from the original shortest-connection network prob-
lems, e.g., in that it is solely the addition of new points that it is all about;
hence, unlike in the original counterparts, the objective function is integer-

32



valued. However, as we point out in Publication [5], our problem reduces
to the shortest-connection network problem in the limiting case as r → 0:
the optimal solution is then to place the relay nodes along the edges of the
Euclidean minimum Steiner tree for N . In the general case, our problem
poses the additional complication that we are not connecting only single
points to each other, but connected components in the graph G(N , r),
where the best point for connecting to other components must be chosen.

Therefore, given the complexity of our problem, in Publication [5] we
propose heuristic algorithms that are applicable to both of its forms stated
earlier. In what follows, we present these algorithms and conclude with a
brief analysis of their performance. Our complexity analysis is to a large part
based on results gathered in [Aur91]; see the publication for more details.

Minimum Spanning Tree algorithm

Our first algorithm utilizes the minimum spanning tree: if we only require
that each relay node or contiguous chain of relay nodes connect exactly
two connected components of the graph G(N , r), the optimal solution is to
place the relay nodes along the edges of the Euclidean minimum spanning
tree (MST) calculated for the components, when the distance between two
components is defined as the shortest distance between two terminal nodes
in these distinct components. See Figure 2.15 for an example.

In fact, it is not difficult to show that this MST consists of exactly those
edges of the MST for N that are longer than r. To this end, consider,
e.g., Kruskal’s algorithm [Kru56] for finding the MST applied to the set of
points N : form the MST by drawing edges between points in the order of
increasing length, drawing each edge only if it does not create a cycle with
the edges drawn earlier. It is easy to see that when we halt this algorithm
at edge length r, the terminal nodes in any given subtree formed so far are
exactly those in a connected component of the graph G(N , r), and hence
the rest of the algorithm also finds the MST for these components.

Figure 2.15: Minimum Spanning Tree algorithm. The initially connected
components in this example realization of 70 terminal nodes are connected
with solid edges, and the edges to place relay nodes are dotted. The trans-
mission range is 10% of the side of the domain, as illustrated by the circle.
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If the number of relay nodes available limits the solution, the optimal se-
lection of edges of the MST to place nodes generally requires going through
all possibilities. In this case, we propose the greedy method of selecting
edges in the order of added utility (with respect to the initial graph G(N , r))
per used relay node. With this approach, the running time of the algorithm
is in any case determined by that of finding the MST, which is O(n log n)
in the plane.

Note that with a non-negligible transmission range, the Steiner ratio
no longer gives a valid approximation ratio for utilizing the MST in our
problem: as a simple example, consider a regular pentagon whose vertices
are on a circle with radius equal to the transmission range, and assume
one terminal node at each of these vertices. These initially disconnected
terminal nodes can be connected with a single relay node placed at the
center of the circle, whereas the MST suggests placing as many as four
relay nodes.

Greedy Tessellation algorithm

The stricter requirement that a single relay node should, when possible,
join more than two connected components of the network suggests points
that are equally distant from several components as potential points of place-
ment: our second algorithm is based on the observation that the points
equally distant from three components are a subset of the vertices, i.e. the
coinciding corners of the convex sets also called cells, of the Voronoi di-
agram of the existing nodes. Note that in practice, points equally distant
to more than three nodes do not exist, but placing a relay node at a ver-
tex close to other vertices may well result in connecting more than three
components.

This is the motivation for our Greedy Tessellation algorithm. In every
iteration of the algorithm, we examine the Voronoi diagram ofN

⋃
Nr and

Figure 2.16: An example of the Greedy Tessellation algorithm, when ap-
plied to the same realization as in Figure 2.15. The edges of the Voronoi
tessellation are shown with dotted lines, the candidate points for relay node
insertion with ’+’-signs. The first location to add a relay node is marked
with an asterisk.
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regard as candidate points for node insertion the coinciding corners of such
Voronoi cells that contain nodes all in different connected components;
the candidate point that yields the maximal increase in the chosen utility
metric is added to Nr. Finally, if the candidate points are all further than r
from the existing components, the remaining network is connected using
the Minimum Spanning Tree algorithm. The final result is an algorithm
that takes O(n2) time in R

2 and O(n3) in R
3 to connect the network.

Figure 2.16 illustrates the algorithm.

Greedy Triangle algorithm
With a closer look, we see that points equally distant from different com-
ponents are not always optimal for relay nodes: the point equally distant
from three given terminal nodes may fall outside the triangular convex hull
of their locations, in which case it cannot be the optimal place for a relay
node to connect the three nodes (optimal in the sense that the range re-
quired from the relay node to connect the terminal nodes is minimized).
For example, the point marked in Figure 2.16 as the place for the first re-
lay node is such a point. Thus, if looking only at the Voronoi diagram,
one may not find all the places where connecting three components with a
single relay node is possible.

However, for given locations of three disconnected terminal nodes, the
optimal place for a relay node can be exhaustively determined: the point
equally distant from the terminal nodes is optimal only if it is inside the tri-
angle spanned by the terminal nodes; if the point is outside the triangle, the
midpoint of the longest side of the triangle is the optimal place. Similarly,

(a) (b)

Figure 2.17: Applying the Greedy Triangle algorithm to the realization of
Figure 2.15. (a): The first point to place a relay node in the first phase,
as indicated by the ’+’-sign. Note the difference from Figure 2.16 in the
placement. (b): The first pair of points to place relay nodes, as determined
in the second phase, after several relay nodes have been added in the first
phase. Note that in this case, four components are connected.
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one can find jointly optimal places for two relay nodes to connect three ter-
minal nodes. Our analysis of this case, which is already more complicated,
is presented in Appendix 4.

The analyses of the above two cases are the basis for our last algorithm.
The Greedy Triangle algorithm proceeds through two rounds of iterations.
The first round consists of repeatedly finding candidate triplets of terminal
nodes that are all in different components and pairwise at most 2r apart,
and connecting the triplet that yields the maximal increase in the chosen
utility metric with a single relay node. This is then repeated in the second
round by connecting triplets at most 4r apart with two relay nodes in each
iteration. Finally, as in the Greedy Tessellation algorithm, the Minimum
Spanning Tree algorithm is invoked to connect the network partitions that
remain. The result of one iteration in both the two rounds is illustrated in
Figure 2.17. The running time of this algorithm is of the same order as in
the previous algorithm in two and three dimensions.

Comparison of the algorithms
Finally, we present results from applying our three algorithms to simu-
lated realizations of randomly and uniformly distributed terminal nodes in
a square-shaped domain in the plane. The purpose is partly to compare
the performance of the algorithms relative to each other, and in part to
gain some idea on how close to optimal their solutions are. The latter is a
problematic task, as the optimal solution for a general realization is usually
unknown. We used as a benchmark the method of placing the relay nodes
on those edges of the Euclidean minimum Steiner tree for N that connect
different components of the graph G(N , r). This method should be close
to optimal with sparse networks, i.e. when the transmission range is small
compared to the typical distance between neighboring terminal nodes.

Figure 2.18(a) shows the average number of relay nodes needed to con-
nect random configurations with varying number of terminal nodes using
each of the different algorithms. The transmission range was set to 10% of
the side of the square domain, in order to demonstrate a “feasible” scenario
where the number of relay nodes needed is still a fraction of the number of
terminal nodes, making the addition of relay nodes sensible. As expected,
our three algorithms produce gradually better solutions. The two greedy
algorithms also outperform utilizing the Steiner tree with these parameters,
as the minimum Steiner tree simply optimizes the wrong measure from our
problem’s viewpoint.

The gain from utilizing the Steiner tree is captured in Figure 2.18(b)
which shows corresponding results with the transmission range set to 5% of
the side of the domain. In a very sparse initial network, the existence of
suitable candidate triangles is unlikely, and the Greedy Triangle algorithm
practically reduces to the Minimum Spanning Tree algorithm, while the
Steiner tree yields the best results. As the density of the initial network
increases, the Greedy Triangle algorithm surpasses the Steiner tree method
in performance.

The quantity that best describes what we referred to as the density of the
network is the average number of other terminal nodes directly connected
to a random terminal node in the initial configuration. Ignoring the border
effect, this quantity is given by n/A ·πr2 where A is the area of the domain.
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Figure 2.18: Average number of relay nodes needed to connect the net-
work, as a function of the number of terminal nodes initially in the network,
taken over 1000 random realizations. (a): The transmission range is 10% of
the side of the square-shaped domain. (b): The transmission range is 5% of
the side of the domain; the Greedy Tessellation algorithm has been omitted
for clarity.

In essence, this quantity determines which method yields the best results,
and for example the two greedy algorithms bring significant advantage over
the MST algorithm at proper intermediate values of this quantity, when
suitable candidate triangles are likely to exist.

2.4 Summary and Conclusions

This chapter focused on studies where wireless multihop networks are mod-
eled with Boolean models. When used to describe the network topol-
ogy, these models implicitly account for some constant-level background
noise but not for interference from concurrent transmissions in the net-
work. Thus, such a model is adequate for studying ultimate limits for con-
nectivity, or connectivity in cases where interference is not a limiting factor
for communications. The latter is the case in networks with low transmis-
sion activity or transmission powers, or when nodes are sparsely located and
hence separated by long distances.

We first addressed the problem of determining the k-connectivity prob-
ability of random, finite networks. Scenarios where this problem arises in-
clude network dimensioning: for example, how densely should network
nodes with given communication capabilities be scattered in order to have
a k-connected network with high probability? As this problem is equivalent
to knowing the distribution of the threshold range for k-connectivity, our
first approach to this problem was to model empirically the convergence of
these distributions, studied by simulation, to their previously analytically de-
rived asymptotic limits, allowing the prediction of the k-connectivity prob-
ability for finite configurations. To this end, we developed algorithms to
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determine the threshold range for 1-, 2-, and 3-connectivity for a given set
of network nodes.

We also studied the connectivity of mobile networks, where n nodes
are assumed to move according to the Random Waypoint (RWP) mobil-
ity model. In this context, we applied an alternative approach, namely,
an analytical approximation where the threshold range for k-connectivity
is treated as the maximum of n i.i.d. k-nearest-neighbor distances, which
reflects the properties of the known asymptotic statistics.

Overall, because our empirical method is devoid of the systematic er-
ror present when assuming that the asymptotic properties of connectivity
statistics also hold in the non-asymptotic regime, it provides the most ac-
curate prediction results thus far. However, the requirements for using this
approach with good results are that obtaining ample observations from fi-
nite configurations is not an obstacle and that the asymptotic distribution is
known in analytical form; the case of RWP mobility is an example of where
the latter does not hold true.

Next, we discussed the coverage of random networks under the Boolean
model, which is of importance when dimensioning a sensor network with
randomly scattered nodes. In this context, we formulated the problem as
that of determining the distribution of the area coverage caused by ran-
domly placed sensors in a bounded target domain. We showed that the
expected value of this distribution is equal to the probability that a random
point in the domain is covered, making possible the analytical calculation
of this quantity in a simple setting. We also addressed the problem of deter-
mining the probability of full coverage and pointed out that this problem,
like that of connectivity, is also equivalent to knowing the distribution of
a well-defined threshold range. We showed how to determine this range
for a given set of nodes and target domain, and interpreted existing analyt-
ical results as an asymptotic distribution of this threshold range. We also
derived an approximate limit distribution of the threshold range in a case
with border effects. With all the same ingredients as with the connectivity
problem at hand, we also treated the problem of full coverage as a learn-
ing problem, with the result of predicting the distribution of the threshold
range for full coverage from independent simulations with good accuracy.
To our knowledge, no analytical approximations aiming at accurately pre-
dicting the probability of full coverage have been presented to date, which
makes our empirical approach all the more important.

Finally, we presented a novel problem representing the algorithmic side
of connectivity research. The problem is motivated by a practical disaster re-
covery scenario: given a disconnected network of terminal nodes deployed
at known locations and the possibility of adding relay nodes with the same
properties to the network, the task is to connect the network by adding a
minimal number of relay nodes. We interpreted this problem as a special
variation of the shortest-connection network problem and, in particular,
pointed out its connection to the Euclidean minimum Steiner tree prob-
lem, known to be NP-hard. We presented three increasingly advanced,
centralized heuristic algorithms along with their complexity analysis, and
compared their performance by simulation. The more evolved algorithms
are most useful at proper intermediate densities of the initial network.
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In the assumptions of the last problem, we precluded the mobility of
terminal nodes. The approach of adding relay nodes in optimized locations
has little application if all the terminal nodes tend to move all over the net-
work region. However, by keeping track of the locations of terminal nodes
over time, it should be possible to recognize those nodes that are nearly
stationary and place relay nodes to connect these nodes. This question has
been taken under further study.
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3 STUDIES UNDER THE PHYSICAL MODEL

The studies in this chapter have the assumption of the Physical model as the
common denominator. The first section deals with generalizing the notion
of connectivity to this model, and the second section discusses throughput
in a particular network scenario.

3.1 Connectivity

In this section, we discuss connectivity when studied under the Physical
model. In this case, connectivity is subject to a more difficult choice of
definition than under the Boolean model. Whereas in the latter all the
variables that dictate whether two nodes can communicate directly can be
woven into a single parameter, viz. the transmission range within which
direct connections exist, in the Physical model successful communication
also depends on the interference from all other nodes that is time-varying
in nature. Thus, not only will the existence of a direct link between two
nodes be governed by the locations of all nodes in the network, but the
condition for its existence should be defined with this temporal aspect in
mind. On the other hand, the dependence on the interference means that
connectivity is also affected by medium access control.

The existing literature on connectivity under the Physical model is
sparse in comparison to that under the Boolean model; we will begin with
a review of earlier studies.

Review of existing results
The pioneering work in assessing the impact of interferences on connec-
tivity has been made in [DBT03] (see also the journal version [DBT05])
where the authors study a CDMA network. In line with the Physical model,
they assume that node j can successfully receive the signal transmitted by
node i if and only if

Pi · l(||xi − xj ||)
N0 + γ

∑
k 6=i,j Pk · l(||xk − xj ||)

≥ T, (3.1)

where the factor 0 ≤ γ ≤ 1 weighting the interference power sum is moti-
vated by the partial orthogonality of CDMA codes and can be interpreted
as the inverse of the processing gain of the system. Neglecting unidirec-
tional links, an undirected edge is assumed to exist between nodes i and
j if and only if (3.1) also applies with i and j interchanged; the resulting
graph is named the Signal To Interference Ratio Graph (STIRG). Note that
the case γ = 0 reduces to the Boolean model.

Recently refined from the initial result presented in [DBT03, DBT05],
it is then shown in [DFM+06] that in an infinite STIRG whose nodes are
located on the points of a Poisson process on R

2 and transmit with some
common power, i.e. Pi ≡ P , percolation occurs when the node density λ
is greater than the much-studied critical intensity λc of the case γ = 0 (with
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the given T · N0/P ), provided that γ is sufficiently small (but not zero).
More precisely, assuming that the attenuation function l(·) ≤ 1 is con-
tinuous, strictly decreasing, and satisfies some additional non-degeneracy
conditions, for any node density λ > λc(T ·N0/P ), there exists γ∗(λ) > 0
such that for γ ≤ γ∗(λ), the graph has an infinite connected component.
In [DT04], it is further shown that as λ tends to infinity, the condition for
the occurrence of percolation is that either γ∗(λ) or the SINR threshold
T must decrease at least as fast as 1/λ. Since decreasing γ requires using a
wider frequency band and decreasing T implies a lower rate of communica-
tion, this means in either case that the available transport capacity per fixed
bandwidth decreases. This establishes thus a trade-off between connectivity
and capacity.

Also an infinite random network, but employing slotted Aloha instead
of CDMA, is analyzed in [BBM04, BBM06]. In the presented medium
access scheme, time is slotted and each node is allowed to transmit in any
slot with a fixed medium access probability p. The condition for node j
successfully receiving node i’s transmission in any time slot – producing
what is chosen as the unit throughput from i to j over this time slot – now
becomes

Pi · l(||xi − xj ||)
N0 +

∑
k 6=i,j ekPk · l(||xk − xj ||)

≥ T, (3.2)

where ek is the indicator variable of the event that node k is allowed to
transmit in that time slot. The individual permissions to transmit are in-
dependent among both nodes and time slots, so that the variables {ek}
in every time slot are independent Bernoulli-distributed random variables
with parameter p.

In this study, connectivity is defined as a dynamic property: the au-
thors show that slotted Aloha allows the transmission of packets over time
from any node to any other node, under simple independence and non-
degeneracy assumptions on node mobility, and also in the case without
mobility if N0 = 0, i.e., if there is no background noise. However, this def-
inition places no requirements on the long-term rate of successful commu-
nication and can therefore be regarded as coincident with the omnipresent
information-theoretic connectivity discussed in Chapter 1.

Thus far, in the context of network models that account for interference
– such as the Physical model – little has been done to address connectivity
of finite networks as defined in graph theory, namely, the requirement that
all node pairs be connected through the network. The aim in Publication
[6] is to take a first step in this direction.

Studying graph connectivity under the Physical model
In Publication [6], we generalize the notion of the threshold range for con-
nectivity from the Boolean model to the Physical model. We do this under
the two scenarios reviewed above, i.e., assuming first a CDMA network and
then a network using slotted Aloha. As we will see, since there is more than
one free parameter in these scenarios, unlike in the Boolean model char-
acterized solely by the transmission range, the threshold range generalizes
into a boundary in the space of these parameters. This boundary consists
of segments of individual link connectivity constraints that are linear with
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respect to at least some of the free parameters, and it can be traced in the
parameter space by keeping track of the prevailing network topology and, in
particular, the critical link for connectivity by applying a very simple rule.

Like in the definition of the threshold range under the Boolean model,
we also assume throughout that all network nodes employ some common
constant transmission power P . Further, although not at all necessary, we
restrict ourselves to the commonly used power-law attenuation function

l(||xi − xj ||) = (C||xi − xj ||)−α, (3.3)

to allow easy scaling of any configuration of network nodes to arbitrary phys-
ical node densities. Here, C > 0 sets the scale and α > 2.

Connectivity boundary in a CDMA network
We begin with the conceptually simpler scenario with the CDMA net-
work which allows easy and unambiguous determination of the connectiv-
ity boundary. We will derive this boundary for a STIRG graph representing
a network with given node locations {xk} and a fixed attenuation exponent
α in the above attenuation function. As in [DBT03], we assume that all
nodes transmit constantly, representing a worst-case scenario. In this case,
(3.1) is equivalent to

A ≤ −B
∑

k 6=i,j

||xk − xj ||−α + ||xi − xj ||−α, (3.4)

where we have defined the two free parameters A = Cα T
P/N0

and B = Tγ.
Hence, in a given network, the condition for node j successfully receiving
node i’s transmission is satisfied on and below the descending line in the
B/A-plane with slope −

∑
k 6=i,j ||xk −xj ||−α and intercept ||xi−xj ||−α,

both of which we may calculate (see Figure 3.1 for three instances of such
lines). Since our attenuation function is reciprocal, i.e. l(||xi − xj ||) =
l(||xj −xi||), which can also be said to hold in reality on a fixed frequency,
the resulting condition for an edge existing between nodes i and j in the
undirected STIRG is determined by this common intercept and the steeper
one of the two slopes calculated in both directions (i.e., the receiver under
more noise).

The domain in the B/A-plane in which the given network is connected
then lies below a connected curve consisting of segments of descending
lines, representing the constraints of different links that are critical for net-
work connectivity at each point; this curve is the connectivity boundary
(see Figure 3.1 for an example). It can be found as follows. Start at B = 0,
whence γ = 0. This makes the model coincide with the Boolean model,
meaning that that the critical link is found as the longest edge in the Eu-
clidean minimum spanning tree of the nodes. The descending line corre-
sponding to this link determines the boundary of the connectivity region as
long as no line of the other links is crossed. When this happens, we may
determine the new critical link using the following simple rule:

• When a line is crossed from below (as in the first intersection encoun-
tered in Figure 3.1 when increasing B from 0), i.e. the connectivity
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Figure 3.1: The connectivity domain of the network of Figure 3.2 when
α = 3. The solid line indicates the border of the domain. Taking A = 0
implies neglecting background noise; the case γ = 0 ⇒ B = 0 implies
neglecting interference.

region of another link is left when tracing the current line, the corre-
sponding disappearing link is the critical link from this point onwards
if the remaining links no longer form a single connected graph. Oth-
erwise, the critical link does not change.

• When a line is crossed from above (as in the second intersection of
Figure 3.1), i.e. the connectivity region of another link is entered
when tracing the current line, the corresponding appearing link is
the critical link from this point onwards if it connects the two net-
work partitions separated by the current critical link. Otherwise, the
critical link does not change.

As an example, Figure 3.1 shows the resulting connectivity boundary of the
network in a unit square shown in Figure 3.2.

In this model, we assumed that all other nodes transmit constantly. It
would of course be more reasonable to assume that at least half of the nodes
are receiving instead of transmitting at any instant. In general, if we assume
that on average every kth node is transmitting, we should regard γ as a
general interference thinning factor γ = γ̃/k, where γ̃ is the actual code
orthogonality factor.

Connectivity in a slotted-Aloha network
We then extend the definition of the connectivity boundary to the slotted-
Aloha network. In addition to the node locations and the attenuation expo-
nent, we assume that the medium access probability p has been fixed. The
equivalent of (3.4) is now

A ≤ −T
∑

k 6=i,j

ek||xk − xj ||−α + ||xi − xj ||−α, (3.5)

where the sum
∑

k 6=i,j ek||xk − xj ||−α is a random variable independent
in every time slot, having a discrete probability distribution with generally
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Figure 3.2: An example network in the unit square. The prevailing topology
with the identified critical links have been drawn at each of the vertices of
the border in Figure 3.1. The dashing of the links corresponds to that used
in Figures 3.1 and 3.3.

2n−2 distinct possible values, with n denoting the number of all the network
nodes. Given the assumed information, we may calculate this distribution.

In addition to the free parameters A = Cα T
P/N0

and T , we then define
a third parameter, link confidence q. For a given q, the q-quantile of the
distribution of the above random sum describing the scaled interference
gives the level below which the latter remains with confidence (probability)
q for each directed link i → j. The difference from the previous section
is that instead of the function fij(γ) = γ

∑
k 6=i,j ||xk − xj ||−α that can

be seen in (3.4), which is linear in its argument 0 ≤ γ ≤ 1, we now have
the nonlinear function F−1

ij (q) where Fij(·) is the cumulative distribution
function of the random sum

∑
k 6=i,j ek||xk − xj ||−α. (To be exact, we
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define the inverse function of this discrete-valued cumulative distribution
as F−1

ij (q) = min{t : Fij(t) ≥ q}.) Because of this nonlinearity, the
parameter q can no longer be incorporated into the second free parameter
with T but has to be treated as a separate, third parameter. Note however
that the two functions fij(γ) and F−1

ij (q) coincide at γ = q = 1.
The connectivity boundary is a surface in the space of the three free

parameters A = Cα T
P/N0

, T , and q, a cross-section of which with fixed q

looks similar to Figure 3.1: (3.5) can be written in the form

A ≤ −F−1
ij (q) · T + ||xi − xj ||−α, (3.6)

which, with fixed q, is satisfied on and below the descending line in the
T/A-plane with slope −F−1

ij (q) and intercept ||xi − xj ||−α. As in the
previous section, we define the condition for nodes i and j being bidirec-
tionally connected to be determined by the steeper slope, i.e., the greater
interference with the given confidence q.

With any fixed q, the cross-section of the connectivity boundary in the
T/A-plane is found exactly as in the previous section, by tracing along the
critical links. The reason why the longest edge in the Euclidean mini-
mum spanning tree is again the critical link as T → 0 is that in this
limit, the above condition (3.6) for every link is dominated by the intercept
||xi − xj ||−α which is a monotonically decreasing function of the link dis-
tance.

To demonstrate the connectivity boundary in this case, we examine
again the example network of Figure 3.2. We assume that α = 3 and
take p = 0.1, the latter representing a magnitude found suitable for the
medium access probability in [BBM04]. Figure 3.3 shows the connectivity
domain in the T/A-plane with q fixed to different values; it is easy to see
that q = 1 leads to the domain of Figure 3.1 with T in the place of B. The
connectivity surface of the network in the space of all three parameters is
depicted in Figure 3.4.

Next, we will show that the connectivity requirement in the slotted-
Aloha network constitutes a boundary condition for a tradeoff between the
delay and throughput of the network links and allows for an optimization
between the two as desired.

To this end, recall that the link confidence q defines when a pair of
nodes is considered directly connected: we say that there is a link from any
node i to any other node j only if, with given parameters A = Cα T

P/N0

and T , the probability q̃ that (3.2) holds in a random time slot is at least q.
Assume that the conditions for a completely successful transmission from i
to j are that (i): node i is allowed to transmit, (ii): node j does not transmit
in the same time slot, and (iii): the states of the remaining nodes are such
that (3.2) holds. Then, due to the nodes’ independent operation, the num-
ber of time slots needed for one successful transmission from i to j obeys
a geometric distribution with parameter p(1 − p)q̃. Furthermore, for the
critical link in a network with many nodes it is reasonable to assume that
q̃ ≈ q. Hence, requiring a higher link confidence means requiring a lower
maximum average link delay in the network, whereas allowing a lower link
confidence means allowing a higher maximum average link delay.
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Figure 3.3: The connectivity domain of the network of Figure 3.2 when
α = 3 and p = 0.1, with the boundary indicated by a solid line where
needed. Note that in this case, there is no interference in an arbitrary time
slot with probability (1−0.1)8 ≈ 0.43, hence the zero-slope with q = 0.40.
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Figure 3.4: The surface below which the network of Figure 3.2 is connected
when α = 3 and p = 0.1. The cross-section of the surface is as in Figure
3.3(d) for all q ≤ (1− 0.1)8 ≈ 0.43.
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On the other hand, the probability p(1 − p)q̃ is also the proportion of
time slots with successful transmissions from node i to j over time. The
defined unit throughput of each successful transmission in turn depends
on the SINR threshold T : if we take as a reference the Shannon capacity
of a channel with Gaussian noise and interference and a given SINR, this
is proportional to log(1 + SINR). Then the minimum time-averaged link
throughput in the network is proportional to q log(1 + T ).

The two parameters q and T that together determine the maximum av-
erage link delay and the minimum link throughput are bound together by
the connectivity constraint, which dictates that the greatest achievable T
depends on the required q: Tmax = Tmax(q). For a given network, the re-
quired link confidence q can be increased from zero to some positive value
without sacrificing minimum link throughput (with our example network,
we know that this value is at least q = (1 − 0.1)8). The maximum of the
minimum link throughput with respect to q marks the beginning of Pareto-
optimal combinations of maximum link average delay and minimum link
throughput, meaning that neither quantity can be improved without mak-
ing the other quantity worse: beyond this maximizing value of q, a delay-
throughput tradeoff must then be made according to design preferences.

The computational task of determining the distribution of the interfer-
ence from a given network of n nodes for a given transmitter-receiver pair
grows exponentially with n, as it entails evaluating all the possible 2n−2 val-
ues of the interference and their probabilities. The end of Publication [6] is
devoted to presenting a computationally efficient method for determining
an approximation for this distribution.

3.2 Throughput

This section addresses throughput in networks under the assumptions of the
Physical model, both as an aggregate quantity in the whole network and as
experienced by an individual node. The most fundamental existing results,
which we will discuss first, concern the highest achievable throughput un-
der the restrictions of this model.

Review of existing results
The aim in the study [GK00] that first presented the Physical model is to
determine bounds and scaling laws for the achievable throughput under
that model. For this purpose, the authors define bit-meter as the basic unit
of information transfer in the network, and the transport capacity of the
network as the bitrate-distance products summed over all concurrent single-
hop transmissions taking place in the network, measured in bit-meters per
second, in analogy with, e.g., the passenger-kilometers-per-year metric used
by airlines.

The authors then derive bounds for the best-case transport capacity
achievable in arbitrary networks, where the various parameters such as node
locations, transmission powers and the traffic pattern can be arbitrarily op-
timized. The main result, further refined in [AK04], is that for a net-
work of n nodes in a domain with area A under the Physical model and
the power-law attenuation function (3.3), when the maximum transmission
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power is bounded by Θ(nα), the transport capacity has the upper bound
Θ(
√

An). This bound is sharp, in the sense that it is also an achievable
lower bound. Furthermore, in the case without power constraints, the up-
per bound O

(
n

α−1
α

)
holds.

In [BBM04, BBM06], Baccelli et al. analyze infinite random slotted-
Aloha networks where the transmission powers are assumed independent
random variables with identical probability distribution. The authors define
an alternative throughput measure, the spatial density of progress, which
is measured in bits per second crossing a meter of the line perpendicular
to the direction of transfer in the planar network. The mean density of
progress is proposed as the optimization criterion in selecting the medium
access probability p; the optimal value depends only on the required SINR
threshold T and, more importantly, not on the density of nodes. This makes
a decentralized implementation possible, provided that nodes have some
local information on the location of other nodes. In contrast, the authors
point out that for optimal spatial reuse and hence optimal throughput scal-
ing in a network using CSMA, the range within which one transmission
should be prohibited from another depends on the density of nodes, which
is an impediment to the decentralized implementation of CSMA in wire-
less multihop networks.

Translating the mean density of progress to Gupta and Kumar’s trans-
port capacity, it is then shown in [BBM04] that a network with node den-
sity λ in the infinite plane transports Θ(

√
λ) bit-meters per second, per

unit area, which is equivalent to the above bound Θ(
√

An). Thus, the up-
per bound for the scaling of transport capacity in multihop networks is in
fact reached by random networks using slotted Aloha. This, along with the
possibility for decentralized implementation, certainly makes this simple
random-access scheme seem appealing.

Most of the quantitative analysis in [BBM04] assumes that the random
transmission powers of the nodes are exponentially distributed and hence
unbounded. In Publication [7], we extend the analysis by departing from
this assumption, and evaluate the probability of successful transmission –
or, more aptly, reception – when all nodes transmit with a common con-
stant transmission power. As the basis of the more evolved analysis also
in [BBM04], this probability is one of the most fundamental performance
quantities in the network and, as pointed out using the concept of link con-
fidence in the previous section, also determines the long-term throughput
of any given link. We discuss this in more detail in what follows.

Probability of successful transmission in a random slotted-Aloha network
We begin by briefly going through the network modeling assumptions. As
in [BBM04], the network that we study is infinite, with nodes located at
the points of a Poisson point process Φ = {Xi} with intensity λ on the
plane R

2. As with most results in [BBM04], we also assume the power-
law attenuation function (3.3) and that the power of the background noise
N0 = 0, so that the condition for successful reception reduces to the one for
the Signal-to-Interference Ratio (SIR). We remark, however, that since the
evaluation of the probability of successful transmission reduces to that of the
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distribution of the random interference, the assumption N0 = 0 is made
merely to allow compact results; in a practical scenario with numerical
parameter values available, the following work could easily accommodate
a non-zero noise power.

This setting where we neglect the background noise is equivalent to the
extreme limit of an interference-dominated case, which results when trans-
mission activity is high and the transmission powers or the spatial density
of the network nodes is increased: these changes all have the same effect
of diminishing the parameter A introduced in the previous section. This
can be contrasted with the noise-dominated case which results under the
opposite conditions and whose extreme limit is equivalent to the Boolean
model.

Problem statement
Under the above assumptions, by the properties of the homogeneous Pois-
son process the probability of node i at xi successfully receiving node j’s
transmission only depends on the distance d = ||xj − xi|| and not on the
specific locations xi, xj . Thus, without loss of generality we may select xi

as the origin, whence the condition for successful reception can be written
in the following equivalent forms:

P (Cd)−α

I
≥ T ⇔ I ≤ P (CT 1/αd)−α

⇔ I

P (CT 1/αd)−α
=

∑
k

ek

(
||Xk||
T 1/αd

)−α

≤ 1, (∗)

where I =
∑

k ekP (C||Xk||)−α is the interference power sum at the re-
cipient. In Publication [7], we are interested in the probability that this
condition holds given d. However, as will next be explained, we take a
deeper look at this quantity than was done in [BBM04].

First of all, we may ask what is the probability, accounting for both
the random locations {Xk} and medium access states {ek} of all other
nodes, that (∗) holds in a random time slot. In other words, if a random
configuration {Xk} is observed in a random time slot, what is the proba-
bility that (∗) holds, given the distance d? Let us write this probability as
Pr{Xk},{ek}[(∗) holds | d]. This is the probability that was derived analyt-
ically for exponentially distributed transmission powers in [BBM04], and
which we will discuss first.

Then we study the probability that (∗) holds in a random time slot for
a given configuration of surrounding nodes {Xk} = {xk} representing
– and completely characterizing – the interference environment of one
receiving node in the network; we write this conditional probability as
Pr{ek}[(∗) holds | d; {Xk} = {xk}]. This probability is different for dif-
ferent configurations {xk}, but it is fully determined once given the {xk}.
It is thus a function of the random node locations {Xk} and therefore itself
a random variable with a probability distribution over {Xk}. This distri-
bution describes how different nodes in the network are in different posi-
tions with regard to the success of communication. In fact, the probability
Pr{Xk},{ek}[(∗) holds | d] discussed in the next section can be seen to be
the expected value of this distribution over {Xk}.
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Probability of successful reception: expected value over {Xk}
We begin with the probability that (∗) holds for a random configuration
{Xk} in a random time slot, given the distance d of the transmitting node
from the receiver. Determining this probability reduces to knowing the dis-
tribution of the random interference power sum I ; as will become evident
shortly, the Laplace transform of such a power sum is known in closed form,
up to a certain integral. In our case, this integral requires resorting to nu-
merical evaluation, making the inversion of the Laplace transform difficult.
For this reason, we utilize a decomposition of the total interference power
into two parts. By deriving the distribution of the interference power from
some neighborhood of the receiver exactly, we are left with the remain-
ing interference whose distribution can be deduced to be approximately
Gaussian; the larger that neighborhood, the smaller the difference. The
Gaussian approximation can be improved by utilizing the known Laplace
transform with the aid of so-called Bahadur-Rao approximation. This way,
combining the exact distribution of the near-by interference power and the
approximate one of the remaining interference, we obtain a numerical ap-
proximation for the probability we are interested in that can be improved
to an arbitrary level of accuracy. We sketch out the details in what follows.

Because we are interested in any random configuration for only one
time slot, we may limit our attention in any configuration to the nodes
that transmit in that time slot. By the properties of the Poisson process,
we may then write the interference power sum in (∗) as I = IΦ(λp) =
P

∑
k(C||Yk||)−α, the shot noise of a Poisson process {Yk} with intensity

λp at the origin. As pointed out in [BBM04], the Laplace transform of a
general Poisson shot noise IΦ(λ) with i.i.d. transmission powers Pk ∼ P ,
calculated at the origin, is

I∗Φ(λ)(s) = exp
(
−λ

∫
R2

1− EP
[
exp(−sP(C||x||)−α)

]
dx

)
. (3.7)

The generalization of the above to the interference at the origin from trans-
mitters in some arbitrary domain simply amounts to integrating over that
domain instead of R

2.
Let Pr denote the power received from a transmitter at distance r, i.e.

Pr = P (Cr)−α = PT 1/αd

(
r

T 1/αd

)−α. By (3.7), the Laplace transform of
I is now

I∗Φ(λp)(s) = exp
[
λp2π

∫ ∞

0

(
e
−sP

T1/αd

“
r

T1/αd

”−α

− 1
)

r dr

]
,

from which it follows that

I∗Φ(λp)

(
s

PT 1/αd

)
= exp

[
λp2π(T 1/αd)2

∫ ∞

0

(
e−st−α − 1

)
t dt

]
,

(3.8)
where the last expression can also be seen as the Laplace transform of
I/PT 1/αd. Note that it is precisely I/PT 1/αd whose distribution we are
interested in, since (∗) is also equivalent to I/PT 1/αd ≤ 1. (With a pos-
itive background noise power N0, the corresponding condition would be
I/PT 1/αd ≤ 1 − N0/PT 1/αd, the probability of which reduces to zero as
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the distance d reaches the value with which PT 1/αd = N0; this value equals
the transmission range of the Boolean model.)

A closer look reveals that I/PT 1/αd has infinite expectation and vari-
ance. This is a side effect caused by the assumed power-law attenuation
function (3.3) which has a singularity at zero distance. This shortcoming is
implicitly dealt with by the following decomposition of the interference.

We will treat the total interference power I as the sum of two parts.
The distribution of one part is approximated using its Laplace transform,
whereas the distribution of the other part is calculated exactly. The key
observation allowing this division is that for (∗) to hold, there may be at
most m active transmitters at distances y satisfying

P (Cd)−α

(m + 1)P (Cy)−α
< T ⇔ y < [(m + 1)T ]1/αd

def
= rm,

i.e., m+1 active transmitters alone at distance rm would still satisfy the con-
dition (∗), but moving them any closer would violate this condition. Now,
we will partition the total interference power into two parts originating from
different zones, i.e. IΦ(λp) = I = Iin + Iout, where Iin denotes the interfer-
ence power originating from distances up to rm and Iout denotes that from
distances beyond rm (see Figure 3.5).

Distribution of Iin

Because of the above limitation to at most m active transmitters within
rm, we may determine the distribution of Iin exactly, as follows. By the
properties of the Poisson process, given the number of nodes in the inner
zone, their locations in that zone are i.i.d. uniformly distributed. Thus, the
distribution of the interference I1 from a single node in this zone can be
easily determined: denoting by R the distance of the node from the origin

d

rm = [(m + 1)T ]1/αd

Iin

Iout

Figure 3.5: Division of the interference into that originating from two
zones, for some (m + 1)T > 1
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and noting that I1 = PR = PT 1/αd

(
R

T 1/αd

)−α def
= PT 1/αdQ where PT 1/αd

is constant, we easily obtain the probability density of Q as

fQ(q) =

{
2

α(m+1)2/α q−(2+α)/α, q > 1
m+1 ,

0, q ≤ 1
m+1 .

The total interference power from i nodes in the inner zone is then the sum
of i.i.d. random variables PT 1/αd·

∑i
j=1 Qj , where the probability density of∑i

j=1 Qj is obtained as the convolution of i instances of the above density
fQ(q), which we denote by f∗iQ (q). Given the condition that there are at
most m active transmitters within rm, the conditional distribution of Iin

is then obtained by conditioning on i with the Poisson distribution with
parameter λpπr2

m, truncated at m:

fIin/P
T1/αd

(q) =

∑m
i=0

(λpπr2
m)i

i! f∗iQ (q)∑m
k=0

(λpπr2
m)k

k!

.

For example, with m = 2 this conditional distribution can still be calcu-
lated analytically (see Publication [7]).

Distribution of Iout

Let us next turn to approximating the distribution of Iout. Applying (3.7)
again yields the Laplace transform

I∗out(s) = exp
[
λp2π

∫ ∞

rm

(
e−sPrm( r

rm
)−α

− 1
)

r dr

]

⇒ I∗out

(
s

Prm

)
= I∗out

(
s

PT 1/αd/(m + 1)

)

= exp
[
λp2πr2

m

∫ ∞

1

(
e−st−α − 1

)
t dt

]
,

where the last expression can also be seen as the Laplace transform of

J
def
= Iout/Prm

= (m + 1)Iout/PT 1/αd. After a change of variables u =
t−(α−2), we then have for the logarithmic moment generating function
ϕ(β) = log E

[
eβJ

]
= log J∗(−β) of J ,

ϕ(β) = 2λpπr2
m

∫ ∞

1

(eβt−α − 1)t dt =
2λpπr2

m

α− 2

∫ 1

0

eβuα/(α−2) − 1
uα/(α−2)

du,

ϕ′(β) =
2λpπr2

m

α− 2

∫ 1

0

eβuα/(α−2)
du, (3.9)

ϕ′′(β) =
2λpπr2

m

α− 2

∫ 1

0

uα/(α−2)eβuα/(α−2)
du,

which yields, e.g., the mean and variance of Iout as E[Iout] = Prm
ϕ′(0)

and Var[Iout] = P 2
rm

ϕ′′(0).
Now, consider generating a random realization of Iout, taking only

nodes within some maximum distance into account for conceptual sim-
plicity. This can be done by drawing the Poisson-distributed number of
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interfering nodes, placing these nodes independently and uniformly at ran-
dom on the considered domain, neither closer than rm nor further than
the maximum distance, and calculating Iout as the sum of the individual
interference powers. Thus, Iout is the sum of i.i.d. random variables, and
hence, by the Central limit theorem (see, e.g., [Lin22]), should obey a dis-
tribution that tends to the Gaussian as the node density tends to infinity.
More precisely, provided that the density is so large that there is likely to
be many nodes at the smaller distances with nearly equal contributions to
Iout, the distribution of Iout – and hence that of the scaled quantity J –
should be close to Gaussian.

Note that given α, the distribution of J is fully characterized by the
product λp r2

m. In fact, the quantity λpπr2
m is the expected number of trans-

mitting nodes within distance rm from an arbitrary reference point. This
quantity also determines how close to Gaussian the distribution of Iout –
and hence J – is: if this number is small, then the total interference power
is likely to be dominated by few terms, resulting in a distribution far from
the Gaussian. Accordingly, the larger the value, the better the Gaussian
approximation. Figure 3.6 shows how the Gaussian approximation agrees
with the simulated distribution of J with different values of λpπr2

m. To fa-
cilitate the simulation, interference from distances beyond k · rm, with k
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Figure 3.6: Cumulative distribution of J = Iout/Prm
with different values

of λpπr2
m when α = 3. The simulation domain has been defined using

k = 100. Upper line: simulated distribution; dashed line: Gaussian ap-
proximation; lower line: Bahadur-Rao approximation.
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chosen to be some large number, was neglected; this changes the results in
(3.9) so that the upper limit ∞ in any of the integrals now becomes k and
the lower limit 0 becomes k−(α−2). One can see in the figure that the accu-
racy of the approximation indeed improves as λpπr2

m increases, but the fit
at the tails of the distribution remains poor. This can be remedied by adopt-
ing an approximation from large deviations theory (see [BR60, Section 6])
and applying it also below the mean; this approximation is introduced in
the appendix of Publication [7]. This Bahadur-Rao (BR) approximation sig-
nificantly improves the fit in the tails, while it coincides with the Gaussian
approximation at the mean of the distribution: it is also shown in Figure
3.6.

Adding up Iin and Iout

We may now combine the means to evaluate the distributions of Iin and
Iout to obtain an approximation for the probability that (∗) holds: this can
be written as

Pr [(Iin + Iout)/PT 1/αd ≤ 1]
= Pr(at most m active transmitters within rm)

×
∫ 1

0

fIin/P
T1/αd

(q)Pr [Iout/PT 1/αd ≤ 1− q] dq

= e−λpπr2
m

m∑
k=0

(λpπr2
m)k

k!

∫ 1

0

∑m
i=0

(λpπr2
m)i

i! f∗iQ (q)∑m
k=0

(λpπr2
m)k

k!

× Pr[(m + 1)Iout/PT 1/αd ≤ (m + 1)(1− q)]dq

= e−λpπr2
m

∫ 1

0

m∑
i=0

(λpπr2
m)i

i!
f∗iQ (q)Pr[J ≤ (m + 1)(1− q)]dq. (3.10)

The accuracy of different approximations for Pr{Xk},{ek}[(∗) holds | d] is
demonstrated in Figure 3.7. In comparison, we point out that the Laplace
transform (3.8) of I/PT 1/αd can also be used directly, by applying the BR
approximation; this method has also been included in the figure and can
be seen to result in a very poor approximation. On the other hand, using
(3.10) with m = 2 already proves to be notably accurate and gives a sig-
nificant improvement from using m = 0. One may also note in Figure
3.7(a) how the probability behaves differently under the assumption of ex-
ponentially distributed transmission powers. In particular, the probability
makes a sharper transition with increasing distance d in our case. This is
because the signal-to-interference ratio at reception varies less due to the
lack of randomness in the transmission powers.

Note that we can improve the approximation to any level of accuracy by
choosing sufficiently large m. The gain from increasing m is twofold. First,
through increasing λpπr2

m, it makes it possible to approximate the distri-
bution of J more accurately, as shown by Figure 3.6. Second, it decreases
the share of Iout in the total interference, thus mitigating the effect of the
remaining inaccuracy. The cost of increasing m is the added numerical
labor in computing further convolutions f∗iQ (q).

We conclude by noting that a similar decomposition of interferers into
near-by and distant ones is used in [WYAd05], in determining upper and
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Figure 3.7: The probability of (∗) holding when α = 3, determined us-
ing (3.10) and applying the BR approximation with different values of m
(solid lines), and by simulation (points). For comparison, the correspond-
ing probability in the case of exponentially distributed transmission powers
as derived in [BBM04] (gray line) and the result of applying the BR ap-
proximation directly to the Laplace transform (3.8) of I/PT 1/αd (dashed
line) are also shown. The interference from distances beyond 100T 1/αd
has been neglected in all cases.

lower bounds for what is called the transmission capacity of a CDMA net-
work under the Physical model. To bound the probability of outage, the
complement event of (∗), the authors utilize the probability that a certain
neighborhood of the receiver is free of interferers (which results in a lower
bound for the outage probability), along with a bound for the remaining
interference power obtained using the Chebyshev inequality. Although the
resulting bounds were quite crude, the authors consider the cases of both
one common and individual transmission powers: in our terms, the used
decompositions correspond to some real-valued m ∈ [0, 1] optimized in
each case.1

Probability of successful reception: distribution over {Xk}
We now turn to evaluating the probability that (∗) holds in a random time
slot, given the distance d and the configuration of surrounding nodes
{Xk} = {xk}. As we mentioned earlier, this probability is a function
of {Xk} and therefore itself a random variable; for brevity, we will use the
notation Pr{ek}[(∗) holds | d; {Xk}] = Π({Xk}). We are interested in the
distribution of Π({Xk}).

With α and T fixed, the last form in (∗) can be seen to be a condition
for the transmission indicators {ek} and the distances to the other nodes
from the recipient, relative to the distance T 1/αd. Thus, with {Xk} fixed,
Π({Xk}) only depends on the medium access probability p. Under the
assumption that {Xk} is a realization of a Poisson process, the distribution
of Π({Xk}) then depends only on p and the average number of nodes

1In fact, the preliminary version [WYdA04] of this reference appeared before our work in
Publication [7], but until pointed out by Dr. Błaszczyszyn during the pre-examination of this
thesis, we were unaware of [WYdA04, WYAd05].

56



within distance T 1/αd, equal to λπ(T 1/αd)2. This should be contrasted
with the fact that the averaged probability Pr{Xk},{ek}[(∗) holds | d] studied
above, i.e. the mean of the distribution of Π({Xk}), only depends on the
product λpπ(T 1/αd)2, a scaling result pointed out already in [BBM04].

In what follows, we will concentrate on the tail probability
Pr{Xk}[Π({Xk}) > P̂ ]. Let I(S) denote the random interference power
originating from the set S ⊆ R

2 and observed by the recipient at the origin
in any time slot, with the convention I = I(R2). Also, let Br denote the
disk with radius r centered at the origin, i.e. Br = {x : ||x|| ≤ r}, and
denote its complement with B̄r.

With this notation, let us assume that the locations of nodes in some
neighborhood Br and hence the probability distribution of I(Br) in any
time slot are given, and focus on the conditional tail probability of Π({Xk}),

Pr{Xk∈B̄r}
{

Π({Xk}) > P̂ |FI(Br)(t)
}

, (3.11)

where we have denoted the distribution of I(Br) by its cumulative distri-
bution function FI(Br)(t). We will now derive a method to approximately
evaluate this conditional probability. Let us partition the exterior of Br into
an annulus with inner radius r and some outer radius r̂ > r and the rest,
as shown in Figure 3.8, and make the approximation that the interference
from every transmitting node in the annulus (drawn as black points in the
figure) is equal to Pr̃, for some r ≤ r̃ ≤ r̂. Then, given the number of
nodes N in the annulus, the interference originating from the annulus in
each time slot is I(B̄r

⋂
Br̂) |N = X · Pr̃ with X ∼ Bin(N, p), and we

have I(Br̂) |N = I(Br) + I(B̄r

⋂
Br̂) |N . Since this makes it possible

to compute the distribution of I(Br̂) |N , conditioning on N – which in

r r̃ r̂

Br

B̄r
TBr̂ B̄r̂

Figure 3.8: Schematic representation of the partitioning of B̄r and the ap-
proximation made in the annulus B̄r

⋂
Br̂
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our model is Poisson-distributed with mean λπ(r̂2 − r2) – now leads to the
following recursion for the conditional probability (3.11):

Pr{Xk∈B̄r}
{

Π({Xk}) > P̂ |FI(Br)(t)
}

=
∞∑

n=0

Pr(N = n) · Pr{Xk∈B̄r̂}
{

Π({Xk}) > P̂ |FI(Br̂)|N (t|n)
}

.

In fact, by starting with r = 0 and FI(B0)(0) = 1, this recursion can be used
to evaluate the tail probability Pr{Xk}[Π({Xk}) > P̂ ] to an arbitrary level
of accuracy, by partitioning the plane into sufficiently many thin annuli.

Of course, this recursion in itself is infinite, through the infinitely many
possible values of N on the one hand and through the partitioning of R

2

into an infinite number of annuli on the other. Proper pruning and termi-
nation conditions are therefore needed. The first and obvious termination
condition is that (3.11) equals 0 for such a distribution of I(Br) for which
Pr[I(Br) ≤ PT 1/αd]≤ P̂ . Since a high enough value of N gives I(Br̂) |N
such a distribution, we only need to add new terms to the above sum as long
as the conditional probability Pr{Xk∈B̄r̂}

{
Π({Xk}) > P̂ |FI(Br̂)|N (t|n)

}
on the right-hand side differs from zero by this termination condition.

As for dealing with the infinite plane, we may, for some rmax, ignore
how different configurations of nodes in B̄rmax result in different distribu-
tions of I(B̄rmax), and instead use the distribution averaged over all possible
configurations, as if the configuration of nodes producing the interference
was different in every time slot. This amounts to approximating the dis-
tribution of interference from transmitters in B̄rmax , located according to
a Poisson process with intensity λp, by utilizing its Laplace transform ex-
actly as done earlier. With such an approximation for the distribution of
I(B̄rmax), the final level of recursion simply gives

Pr{Xk∈B̄rmax}
{

Π({Xk}) > P̂ |FI(Brmax )(t)
}

=

{
1, Pr

[
I(B̄rmax) + I(Brmax) ≤ PT 1/αd

]
> P̂ ,

0, Pr
[
I(B̄rmax) + I(Brmax) ≤ PT 1/αd

]
≤ P̂ ,

where the probability is calculated by conditioning on I(Brmax), which has
a discrete distribution with a finite number of values.

Because of the scaling result that applies to the distribution of Π({Xk}),
the parameter that completely characterizes the above recursion for evalu-
ating the tail probability Pr{Xk}[Π({Xk}) > P̂ ] is an increasing sequence
{r/(T 1/αd)} of distances r, starting with zero and ending with rmax, given
relative to T 1/αd. These are the outer radii of the nested annuli to consider
at the successive levels of recursion. Because no other node may transmit
within distance T 1/αd for (∗) to hold, it is sensible to choose the first two
distances as {r/(T 1/αd)} = {0, 1}. Our method of choosing the remain-
ing distances is to fix rmax and the number of annuli to divide the distances
[T 1/αd, rmax], and select the annuli so that the expected interference from
each annulus is equal, i.e. the integral

∫ r̂

r
λp2πtP (Ct)−αdt is the same for

each annulus.
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The choice of r̃ with which the interference from every node in an
annulus with inner and outer radius r and r̂, respectively, is taken to be
Pr̃, determines the nature of our approximation: choosing r̃ = r naturally
results in a conservative approximation, whereas setting r̃ = r̂ results in
underestimating the interference. Aiming at an approximation as accurate
as possible, we may choose Pr̃ as the expected interference power from a
node placed uniformly at random in the annulus; this is our choice in the
demonstration that follows. The fact that this expected interference from
the inmost, degenerate annulus is infinite does not affect the final result,
since the condition (∗) in any case prohibits all nodes in this annulus from
transmitting.

We conclude with a validation of this recursion. In Figure 3.9 we
compare the results given by the recursion with simulated distributions of
Π({Xk}). Each simulated sample represents the proportion of 1000 time
slots in which (∗) was satisfied in a given configuration of nodes, and 10000
random configurations were considered. The two subplots show how the
accuracy of the recursion improves as the range covered by the annuli is in-
creased and a larger number of annuli is used. This is particularly clear in
the latter subplot, where the most accurate setting already required rather
extensive computation time from the recursion, due to the high value of
λπ(T 1/αd)2, i.e. wide ranges of numbers of nodes to consider in each annu-
lus. For comparison, upper and lower bounds obtained by choosing r̃ = r
and r̃ = r̂ have also been plotted; these points are connected with dashed
lines in the figure.

The (T, p)-pairs selected for the two validation cases represent values
of p(T ) maximizing the mean density of progress with exponentially dis-
tributed transmission powers as presented in [BBM04]. The quantity λπd2
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Figure 3.9: Cumulative distribution functions of 10000 simulated estimates
of Π({Xk}) (solid curves) and 1−Pr{Xk}

[
Π({Xk}) > P̂

]
as determined

by the recursion using different radius sequences (see legends), with α = 3
and λpπ(T 1/αd)2 = 0.598. To ease simulations, interference from dis-
tances beyond 10T 1/αd was neglected in all cases.
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was chosen to make λpπ(T 1/αd)2 the same in both cases, implying the
same means for the two distributions. The means obtained from the simula-
tion data can be compared with Figure 3.7, considering that here√

λpT 1/αd ≈ 0.44. The slightly lower value predicted by the figure is
due to the fact that here we have only taken interference from distances up
to 10T 1/αd into account, as opposed to 100T 1/αd in Figure 3.7; substitut-
ing these distances in the place of rm along with the assumed α = 3 in the
mean E[Iout] = Prm

ϕ′(0) obtained from (3.9), we see that we have here
neglected 1/10 of the expected interference from distances beyond T 1/αd,
whereas only 1/100 was neglected in Figure 3.7.

The fact that the latter distribution with a higher value of λπ(T 1/αd)2

has a smaller variance can be explained by the fact that the number of
nodes in any annulus with given inner and outer radii (relative to T 1/αd) is
Poisson-distributed with parameter proportional to λπ(T 1/αd)2, whereby
a higher value implies a lower coefficient of variation for this number.
Therefore, the number of nodes located within any distance interval has the
smaller relative variance the greater the λπ(T 1/αd)2, resulting in a smaller
variance for Π({Xk}).

3.3 Summary and Conclusions

In this chapter, we studied the properties of networks modeled using the
Physical model, which also takes into account the interference from simul-
taneous transmissions in the network.

We began by addressing the graph connectivity of finite networks un-
der this model, which has seen few or no prior contributions. To this
end, we generalized the notion of the threshold range for connectivity to
the Physical model. In this case, connectivity also depends on medium
access control through the time-varying interference: we focused on two
previously-studied scenarios, a CDMA network and a network employing
slotted Aloha.

In the former setting, we made the worst-case assumption that all nodes
transmit constantly and thereby ignored the time dependence. In this case,
the connectivity condition of each link is a linear constraint on the two
free parameters, and the threshold range for connectivity generalizes into
a boundary in this parameter space, consisting of connectivity constraint
segments of individual links that are critical for connectivity at each point.
We showed how to trace this boundary using a simple rule.

With the slotted-Aloha network, we defined a third free parameter, link
confidence, which is the required minimum probability of successful trans-
mission. The link connectivity constraint is no longer linear with respect to
link confidence, but the connectivity boundary can be determined with any
fixed link confidence according to the same principle as with the CDMA
network.

Overall, the connectivity boundary can be seen to imply tradeoffs be-
tween different performance quantities in the network. Our results make
it possible to extend the approach of studying connectivity of wireless mul-
tihop networks by simulation to interference-dominated scenarios such as
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networks under a high traffic load, as well as studying the sensitivity of con-
nectivity to different network parameters.

In the remainder of this chapter, we studied the temporal probability
of successful transmission (or, more precisely, reception) in an infinite ran-
dom slotted-Aloha network employing constant transmission power: this
medium access scheme has recently been shown to achieve the optimal
throughput scaling under the Physical model, but the existing quantita-
tive results were based on exponentially distributed and hence unbounded
transmission powers [BBM04].

We first focused on the probability of successful reception averaged over
all configurations of other nodes surrounding the receiver. This probability
only depends on the distribution of a certain Poisson shot noise. By deriving
the distribution of interference power from the proximity of the receiver
exactly, the distribution of the remaining interference can be approximated
using its Laplace transform, making the evaluation of the overall averaged
success probability possible.

We also addressed the distribution of the temporal probability of suc-
cessful reception over different configurations of surrounding nodes and
hence over different recipients. Dividing the neighborhood of the receiver
into zones where each transmitter is assumed to produce equally strong
interference and taking the effect of different configurations outside this
neighborhood as an average, we obtained a recursion for evaluating the tail
probability of this distribution.

Thus, both results are numerical approximations that can be improved
to an arbitrary level of accuracy, at the cost of added numerical computa-
tions; we validated these approximations with the aid of simulations. As a
potential direction for future work, it might be interesting to utilize these
results in studying how the assumption of a common transmission power
changes the values of the medium access probability that maximize the
mean density of progress, determined for the exponentially distributed pow-
ers in [BBM04].
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4 SUMMARIES OF PUBLICATIONS AND AUTHOR’S CONTRIBUTIONS

Publication [1] presents algorithms for determining the threshold ranges for
k-connectivity for a given set of nodes under the assumption of the
Boolean model with a constant transmission range. In addition, purely
empirical models fitted to simulation data obtained by using these al-
gorithms are presented. We conclude the publication by pointing out
that these models are not consistent with existing asymptotic results.

Publication [1] is the sole work of the present author.

Publication [2] augments Publication [1] by taking the known asymptotic distribu-
tions of the threshold ranges as the bases of the empirical models.
The models thus describe the convergence of the distributions to
the known asymptotic ones. In addition, independently of the ex-
act asymptotic distributions for k-connectivity with k > 1 derived at
the time of writing, we derive approximations for these distributions.
Finally, we demonstrate the ability of these models to predict these
distributions for finite networks.

Publication [2] is the sole work of the present author.

Publication [3] applies the recently derived exact expression for the stationary spa-
tial distribution of nodes in the Random Waypoint mobility model to
predicting the connectivity of networks of n nodes moving according
to this model. Motivated by asymptotic properties, the distribution of
the threshold range for k-connectivity is approximated by that of the
maximum of n i.i.d. k-nearest-neighbor distances. In addition, ap-
proximations for the mean durations of connectivity periods are pre-
sented, also based on recently derived properties of the RWP model.

The present author pointed out the way to utilize the stationary distri-
bution to approximate the probability of connectivity and contributed
the analytical motivation for this approximation to the paper. In addi-
tion, the efficient way of validating the approximation, by comparison
against the empirical cumulative distribution of the threshold range
for k-connectivity, was suggested by the present author.

Publication [4] focuses on the coverage of random networks in a bounded domain
when using a Boolean coverage disk model. The covered fraction
of the target domain is defined as the random variable of interest,
whose expectation is determined in a simple circular domain. It is
pointed out that the problem of full coverage is analogous to that of
connectivity, in that it also reduces to knowing the distribution of a
well-defined threshold range that can easily be determined. Exist-
ing asymptotic results are interpreted as a limit distribution of this
range, and an approximation for this distribution in the case domi-
nated by border effects is derived. Finally, the applicability of empir-
ical models in predicting these distributions for finite configurations
is demonstrated.
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Publication [4] is the sole work of the present author.

Publication [5] presents the problem of making a given network connected by adding
as few additional nodes as possible to the network. The connections
of the problem to existing NP-hard problems are shown, and increas-
ingly advanced heuristic algorithms are proposed for the problem,
together with their complexity analysis. Finally, the performance of
the algorithms is compared by simulation.
The problem was originally presented by Dr. Karvo. The contribu-
tions of the present author include pointing out the connection with
the Euclidean minimum Steiner tree problem, the idea of utiliz-
ing the Voronoi diagram, the exhaustive optimizations used in the
most advanced algorithm, and the complexity analysis of all the algo-
rithms. The present author is also the first author of this publication,
having written most of the paper.
The optimization presented in the Appendix was omitted from the
publication because of space restrictions, although it was included in
the submission evaluated in the review process.

Publication [6] presents a generalization of the notion of threshold range for con-
nectivity to the Physical model. Because connectivity is now also
affected by medium access control through the time-varying interfer-
ence, two scenarios from existing studies are considered. In contrast
to the Boolean model, there is more than one free parameter, and the
threshold range generalizes to a boundary in the space of these pa-
rameters that implies tradeoffs between different performance quan-
tities; we show how to determine this boundary for a given network.
Publication [6] is the sole work of the present author.

Publication [7] extends the analysis of random slotted-Aloha networks by assuming
that all nodes in the network transmit with some common constant
power. We evaluate the probability of successful transmission in a
random time slot. As a function of the random node locations, this
temporal probability is a random variable with its own distribution.
We develop numerical approximations for evaluating both the mean
and the tail probability of this distribution. The accuracy of our ap-
proximations can be improved indefinitely, at the cost of added nu-
merical computations.
In studying the success probability averaged over different config-
urations, the present author noticed that the constant transmission
power can be translated into zones with maximum numbers of active
transmitters, whereas Prof. Virtamo contributed the idea that the in-
terference power from outside these zones should be approximately
normally distributed, making it possible to apply the Bahadur-Rao
approximation from large-deviations theory to evaluate this distribu-
tion. Following Virtamo’s observation that the temporal probability
is a random variable with its own distribution, the present author de-
rived the recursion for evaluating the tail probability of this distribu-
tion. The present author is the first author of this publication, having
composed the paper.
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APPENDIX A SUPPLEMENTARY MATERIAL FOR PUBLICATIONS

Optimal placement of two relay nodes to connect three terminal nodes

For completeness, we present here the optimization of the placement of
two relay nodes to connect three terminal nodes, utilized in the Greedy
Triangle algorithm in Publication [5] but omitted from the final publica-
tion due to space restrictions.

By the optimal placement we mean that the transmission range re-
quired from the relay nodes is minimized. Recall that the case of one relay
node is simple: if the point equally distant from the three terminal nodes
falls inside the triangle spanned by the terminal nodes, then that is the op-
timal place for the relay node, else the midpoint of the longest side of the
triangle is.

Then consider the problem of connecting three terminal nodes at given
locations with the jointly optimal placement of two relay nodes. Let us
name the locations of the three terminal nodes as points A, B, and C,
forming the vertices of a triangle ABC . Without loss of generality, we
assume that |AB | ≤ |CA| ≤ |CB |. We will choose Euclidean coordi-
nates in R

2 so that point C is chosen as the origin and the first dimen-
sion is in the direction

−→
CA, so that the position vector r̄A = (a 0). Let

r̄B denote the position vector of terminal node B. Given the assumption
|AB | ≤ |CA| ≤ |CB |, the triangle can always be flipped and rotated so
that point B is located inside the bounded set depicted in Figure 4.1(a).
Also, note that any triplet of points in R

d is located on a R
2 plane, and thus

this algorithm generalizes easily to R
d.

The optimal solution for the locations of the two relay nodes is either

A to use the relay nodes to split in half the two shortest sides (CA, AB )
of the triangle ABC (as in the final two example figures in Table 4.1
at the end of this section), or

B first, to connect two terminal nodes (A and B) with one relay node
and then place the second relay node midway between the first relay
node and the remaining terminal node C to be connected (the other
example figures in Table 4.1).

It can be deduced that whenever case B is optimal, the first relay node
must connect the two terminal nodes closest to each other. This is because
by the possibility of case A, the least required transmission range cannot
exceed half the second-shortest distance between two of the three terminal
nodes.

For now, assume that case B above is optimal (we will derive the con-
ditions for this later). Under this assumption, our task is to optimize the
location of the first relay node, point P , so as to minimize the required
range max{f1(P ) = |CP |/2, f2(P ) = |AP |, f3(P ) = |BP |}. For an ex-
planation of f1(P ), recall that in case B, the second relay node is placed
in the middle of edge CP . We know that the optimal P must lie inside the
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Figure 4.1: The set of possible locations of terminal node B (a); example
triangle (b)

triangle ABC , for otherwise it would be possible to decrease the distance to
all the points A, B, and C by moving P . Furthermore, in the optimum we
must have fi(P ) = fj(P ) ≥ fk(P ), for some i 6= j 6= k; i, j, k ∈ {1, 2, 3},
otherwise P could again be improved. Here, strict inequality applies if the
two equal functions have attained their least possible common value.

The equation f1(P ) = |CP |/2 = f2(P ) = |AP | is satisfied by points
P located on the circle with radius 2

3 |CA|, centered at 4
3 r̄A. Another circle

is defined accordingly by the equation f1(P ) = f3(P ). The solutions of
the equation f1(P ) = f2(P ) = f3(P ) are hence the intersections of these
two circles, which are on the line |AP | = |BP |, as shown by Figure 4.1(b).
It is easy to show that under the assumption |AB | ≤ |CA| ≤ |CB |, these
intersections always exist. In light of the above, the optimal P is located at
such an intersection if it is inside the triangle, otherwise it is at the intersec-
tion of the line or circle fi(P ) = fj(P ) and the side of the triangle where
the value fi(P ) = fj(P ) is smallest.

We know that one of the intersections f1(P ) = f2(P ) = f3(P ) always
falls outside the triangle ABC . In order that the other intersection not fall
outside the side AB , the midpoint of AB must lie inside the two circles.
In fact, it suffices to write this condition for one circle only, since it implies
the other, so we get∣∣∣∣ r̄A + r̄B

2
− 4

3
r̄A

∣∣∣∣ <
2
3
|CA| ⇔

∣∣∣∣r̄B −
5
3
r̄A

∣∣∣∣ <
4
3
|CA|, (4.1)

i.e. point B must lie inside the circle with radius 4
3 |CA|, centered at 5

3 r̄A.
If this condition is not satisfied, the optimal P — given the assumption
that case B really is optimal — is located midway between A and B, at
(r̄A + r̄B)/2. On the other hand, the condition for the other intersection
not falling outside the side CB is∣∣∣∣23 r̄B −

4
3
r̄A

∣∣∣∣ >
2
3
|CA| ⇔ |r̄B − 2r̄A| > |CA|, (4.2)

i.e. point B must lie outside the circle with radius |CA|, centered at 2r̄A. If
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this condition is not satisfied, the optimal P — given the assumption that
case B really is optimal — is located on the segment CB at 2

3 r̄B . (Under
the assumption |AB | ≤ |CA| ≤ |CB |, the other intersection cannot fall
outside the side CA.)

In general, case B is optimal if the optimal P presented above satis-
fies |CP | < |CA|. It is easy to check that whenever the optimal P is at
(r̄A + r̄B)/2, this condition is always satisfied. When it is at 2

3 r̄B (i.e. when
|r̄B − 2r̄A| < |CA|), the condition becomes

2
3
|CB | < |CA| ⇔ |CB | < 3

2
|CA|. (4.3)

Finally, let us derive the condition |CP | < |CA| for the intersection
f1(P ) = f2(P ) = f3(P ) falling inside the triangle ABC . Let
r̄B = (x y). A general point P on the line |AP | = |BP | is then at
r̄P = ((a 0) + (x y))/2 + t · (y − 0 − (x − a)). The value of the
scalar t corresponding to the intersection f1(P ) = f2(P ) = f3(P ) falling
inside the triangle ABC can be solved to be

t = {4 a y − [16 a2 y2 −
(
3 a2 − 10 a x + 3x2 + 3 y2

)
×

(
12 a2 − 24 a x + 12x2 + 12 y2

)
]1/2}

/
(
12 a2 − 24 a x + 12x2 + 12 y2

)
.

On the other hand, the value of t that makes |CP | = |CA| and results in
the greater x-coordinate for P , is

t =
−2 a y + (3 a4 − 8 a3 x + 6 a2 x2 − x4 + 6 a2 y2 − 2x2 y2 − y4)1/2

2 (a2 − 2 a x + x2 + y2)
.

We get the boundary for the condition of interest by setting these two values
equal. The resulting equation is satisfied on the circles with radius |CA|/2,
centered at

(
7
8a ±

√
15
8 a

)
. Only the upper one of these creates a bound-

ary in the domain of interest. Simple experimenting shows that given the
conditions (4.1) and (4.2), case B is optimal if∣∣∣∣∣r̄B −

(
7
8
a

√
15
8

a

)∣∣∣∣∣ < |CA|/2. (4.4)

The labels of the conditions (4.1) to (4.4) have been placed near their re-
spective boundaries in Figure 4.2, so that each label is on the side of the
boundary where the condition is satisfied. The resulting five subsets of the
possible locations of terminal node B have been labelled using Roman nu-
merals, and the optimal solution in each subset is summarized in Table 4.1.
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Figure 4.2: The division of the possible locations of terminal node B ac-
cording to the optimal placement of two relay nodes

Table 4.1: Optimal placement of relay nodes according to the locations of
terminal node B in Figure 4.2

Subset Solution and example

I

Place first node P at
r̄P = (r̄A + r̄B)/2,
place second node
midway between C
and P

II

Place first node P
in the intersection
f1(P ) = f2(P ) =
f3(P ) inside the
triangle, place sec-
ond node midway
between C and P

Subset Solution and example

III
Place first node P at
r̄P = 2

3 r̄B , place
second node midway
between C and P

IV,V

Place one node mid-
way between C and
A and the other node
midway between A
and B
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[Bol85] Béla Bollobás. Random Graphs. Academic Press, 1985.

[BR60] R. R. Bahadur and R. Ranga Rao. On deviations of the sample
mean. The Annals of Mathematical Statistics, 31(4):1015–
1027, December 1960.

[BR04] P. Basu and J. Redi. Movement control algorithms for realiza-
tion of fault-tolerant ad hoc robot networks. IEEE Network,
18(4):36–44, July 2004.

[BRS03] C. Bettstetter, G. Resta, and P. Santi. The node distribution
of the Random Waypoint mobility model for wireless ad hoc
networks. IEEE Transactions on Mobile Computing, 2(1):25–
39, 2003.

[BZ02] C. Bettstetter and J. Zangl. How to achieve a connected ad hoc
network with homogeneous range assignment: an analytical
study with consideration of border effects. In Proc. 4th IEEE
International Conference on Mobile and Wireless Commu-
nication Networks (MWCN’02), pages 125–129, September
2002.

[DBT03] O. Dousse, F. Baccelli, and P. Thiran. Impact of interferences
on connectivity in ad hoc networks. In Proceedings of the
22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), volume 3, pages
1724–1733, April 2003.

[DBT05] O. Dousse, F. Baccelli, and P. Thiran. Impact of Interferences
on Connectivity in Ad Hoc Networks. IEEE/ACM Trans. on
Networking, 13(2):425–436, 2005.

[DFM+06] Olivier Dousse, Massimo Franceschetti, Nicolas Macris,
Ronald Meester, and Patrick Thiran. Percolation in the sig-
nal to interference ratio graph. Journal of Applied Probability,
43(2), 2006.

[DH89] H. Dette and N. Henze. The limit distribution of the largest
nearest-neighbor link in the unit d-cube. Journal of Applied
Probability, 26:67–80, 1989.

[DH90a] H. Dette and N. Henze. Some peculiar boundary phenom-
ena for extremes of rth nearest neighbor links. Statistics &
Probability Letters, 10:381–390, 1990.

[DH90b] D.-Z. Du and F.K. Hwang. An approach for proving lower
bounds: solution of Gilbert-Pollak’s conjecture on Steiner ra-
tio. In Proceedings of 31st Annual Symposium on Foundations
of Computer Science, volume 1, pages 76–85, October 1990.

[DRL03] R. D’Souza, S. Ramanathan, and D. Lang. Measuring per-
formance of ad hoc networks using timescales for information
flow. In Proceedings of the 22nd Annual Joint Conference of

72



the IEEE Computer and Communications Societies (INFO-
COM), April 2003.

[DT96] G. Di Battista and R. Tamassia. On-line maintenance of
triconnected components with SPQR-trees. Algorithmica,
15:302–318, 1996.

[DT04] O. Dousse and P. Thiran. Connectivity vs capacity in dense ad
hoc networks. In Proceedings of the 23rd Annual Joint Confer-
ence of the IEEE Computer and Communications Societies
(INFOCOM), volume 1, March 2004.

[DTH02] O. Dousse, P. Thiran, and M. Hasler. Connectivity in ad-hoc
and hybrid networks. In Proceedings of the 21st Annual Joint
Conference of the IEEE Computer and Communications So-
cieties (INFOCOM), volume 2, pages 1079–1088, 2002.
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[HLV06] Esa Hyytiä, Pasi Lassila, and Jorma Virtamo. Spatial node dis-
tribution of the Random Waypoint mobility model with appli-
cations. IEEE Transactions on Mobile Computing, 2006. To
appear.

[HM04] R. Hekmat and P. Van Mieghem. Study of connectivity in
wireless ad hoc network with an improved radio model. In Pro-
ceedings of the 2nd Workshop on Modeling and Optimization
in Mobile, Ad Hoc and Wireless Networks (WiOpt’04), March
2004.

[Hsu93] Tsan-sheng Hsu. Graph Augmentation and Related Problems:
Theory and Practice. PhD thesis, University of Texas at Austin,
1993.

[HT03] Chi-Fu Huang and Yu-Chee Tseng. The coverage problem in
a wireless sensor network. In WSNA ’03: Proceedings of the
2nd ACM international conference on Wireless sensor net-
works and applications, pages 115–121, New York, NY, USA,
2003. ACM Press.
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