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Abstract

A wireless multi-hop network consists of a group of decentralized and self-organized

wireless devices that collaborate to complete their tasks in a distributed way. Data

packets are forwarded collaboratively hop-by-hop from source nodes to their respec-

tive destination nodes with other nodes acting as intermediate relays. These networks

can be used to collect and exchange data for a variety of applications in both civilian

and military �elds. Existing and future applications in wireless multi-hop networks

will greatly bene�t from better understanding of the fundamental properties of such

networks. This thesis is concerned with wireless multi-hop networks operating with

distributed Media Access Control (MAC) protocols - Carrier Sense Multiple Access

(CSMA) protocols. In recent decades, CSMA protocols have become prevailing with

widespread adoption.

In this thesis we explore two fundamental properties of wireless CSMA multi-hop

networks, connectivity and capacity. We start o� with investigating the connectivity

of wireless CSMA multi-hop networks. A network is said to be connected if and only

if there is at least one (multi-hop) path between any pair of nodes in the network.

Despite that interference is a major performance-limiting factor, the research results

reported in the literature is very limited on the connectivity properties of wireless

multi-hop networks where the impact of interference is taken into account. Therefore

in this thesis we investigate the critical transmission power for asymptotic connec-
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tivity in large wireless CSMA multi-hop networks under the SINR model that can

account for the mutual interference due to multiple concurrent transmissions. The

critical transmission power is the minimum transmission power each node needs to

transmit to guarantee that the resulting network is connected asymptotically almost

surely. Both upper bound and lower bound of the critical transmission power are

obtained analytically. The two bounds are tight and di�er by a constant factor only.

The comparison with previous work assuming no interference shows that the trans-

mission power only needs to be increased by a constant factor to combat interference

and maintain connectivity. This result is also in contrast to the previous results

considering the connectivity of ALOHA networks under the SINR model.

Next we shift our focus to the capacity of wireless CSMA multi-hop networks.

First, we develop a distributed routing algorithm where each node makes routing de-

cisions based on local information only. This makes the routing algorithm compatible

with the distributed nature of large wireless CSMA multi-hop networks. Second, we

demonstrate that by carefully choosing controllable parameters of the CSMA proto-

cols, together with our routing algorithm, a network running distributed CSMA pro-

tocols is able to achieve the order-optimal throughput scaling law of Θ
(

1√
n

)
, which

is the same as that of large networks employing centralized routing and scheduling

algorithms. Note that scaling laws are only up to order and most network design

choices have a signi�cant e�ect on the constants preceding the order while not af-

fecting the scaling law. Therefore we take a further step to analyze the pre-constant

by giving an upper and a lower bound of throughput. The tightness of the bounds

is validated using simulations.
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Chapter 1

Introduction

This chapter gives a brief review of two fundamental problems of the wireless multi-

hop networks, followed by the research problems addressed in this thesis. The moti-

vations behind each research problem and our main contributions for each problem

are included. A concise outline for the remainder of the thesis is given in the last

section of this chapter.

1.1 Fundamental Problems in Wireless Multi-hop

Networks

In recent decades, technological advances have made it plausible to envisage the

development of massively large communication systems composed of low-cost and

ubiquitous wireless devices. These networks, often referred to as wireless multi-hop

networks, can be used to collect and exchange data for a variety of applications in

both civilian and military �elds [1], such as human communication, environmental

and habitat monitoring, security and surveillance. There are two de�ning features

that characterize a wireless multi-hop network:
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1.1. Fundamental Problems in Wireless Multi-hop Networks

• Wireless devices (or, henceforth wireless nodes) are self-organized to form a

network and collaborate to complete their tasks in a distributed way;

• Data packets are forwarded collaboratively hop-by-hop from source nodes to

their respective destination nodes with other nodes acting as intermediate re-

lays .

Various questions are of interest in this context of wireless multi-hop networks. The

�rst and most fundamental one deals with connectivity, which expresses a global

property of the network: can information be transferred through the network from

sources to destinations? In other words, are any two nodes in the network connected

by at least one (multi-hop) path of adjacent links? The second question naturally

arises following the �rst one: what is the network capacity in terms of sustainable

information �ow under the given connectivity regime? In the remainder of this

section, we �rst introduce these two fundamental problems which have attracted

signi�cant attention from researchers and developers in the �eld, then the research

problems addressed in this thesis and the motivations behind.

1.1.1 Connectivity

Connectivity is considered as one of the most fundamental properties of wireless

multi-hop networks as it is a prerequisite for providing many network functions, e.g.

routing, localization, and topology control [2�5]. The research on connectivity prob-

lems in wireless multi-hop networks dates back to the work of Gilbert et al. [6] in 1961

who considered a random network formed by connecting pairs of nodes of a Poisson

point process (p.p.) on an in�nite plane if their Euclidean distance is smaller than or

equal to a certain threshold, known as the transmission range. Gilbert's connection

model is often referred to as the unit disk model (UDM). Using the above network
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1.1. Fundamental Problems in Wireless Multi-hop Networks

model, they established the existence of a critical transmission range, above which

the network contains a connected component formed by an unbounded collection of

nodes, i.e., the network percolates [7, 8]; in contrast, below the critical transmission

range, only components of �nite size exist. Since their pioneering work [6], percola-

tion models have been an important branch in the �eld of modeling connectivity of

wireless multi-hop networks. Percolation models mostly deal with networks on in�-

nite plane with nodes distributed following a Poisson p.p.. Studying random network

models on an in�nite plane allows the possibility of observing a phase transition in

connectivity behavior: depending on some critical parameters such as node density

or transmission range, the network percolates or only components of �nite size are

formed.

In this thesis, our focus is on studying asymptotic connectivity of �nite networks

that grow su�ciently large. A wireless multi-hop network is said to be connected

if and only if (i�) there is at least one (multi-hop) path between any pair of nodes

in the network. Signi�cant results have been obtained in the study of connectivity

problem using the random geometric graph and the UDM, which is usually obtained

by randomly and uniformly distributing n nodes in a given area and connecting any

two nodes i� their Euclidean distance is smaller than or equal to the transmission

range r (n). Particularly in the late 1990s and early 2000s, Penrose [9] and Gupta and

Kumar [2] proved that in a disk of unit area, the above network with a transmission

range of r (n) =
√

logn+c(n)
πn

is asymptotically almost surely (a.a.s.) connected as

n → ∞ i� c (n) → ∞. An event ξn depending on n is said to occur a.a.s. i� the

probability that the event occurs approaches one as n→∞. Under the same model

as above, Philips et al. [10] provided a necessary condition on the average node degree

required for connectivity (the degree of a node is the total number of its neighbors);

other work [11�13] provided upper and lower bounds on the node degree required

3



1.1. Fundamental Problems in Wireless Multi-hop Networks

for guaranteeing an asymptotically connected network as n→∞.

Although the UDM has been widely used in many connectivity studies, it is

far less than a realistic model. More realistic models have recently been consid-

ered for studying connectivity, including the log-normal shadowing connection model

[4,14�17] which takes a shadow fading e�ect into account, and the SINR (signal-to-

interference-plus-noise ratio) model [18�20] that can account for the mutual inter-

ference due to multiple concurrent transmissions. In most recent work [21�23], the

connectivity problem is investigated under a generic random connection model, where

nodes directly connect to each other probabilistically depending on the Euclidean

distances between them.

1.1.2 Capacity

Capacity of a communication system is the maximum data-rate in bits per second

that can be reliably and sustainably transferred from transmitter to receiver. In

wireless multi-hop networks, due to the multi-hop communication nature between

nodes and that wireless channel is shared by multiple transmitter-receiver pairs,

capacity of a network becomes much more complex to de�ne and analyze and perhaps

one of the most challenging problem in information theory [3].

The most general approach in the �eld, pioneered by Gupta and Kumar [24], stud-

ies the so-called transport capacity, which quanti�es the end-to-end throughput that

can be transported over a physical distance for randomly chosen source-destination

pairs in the network. An alternative approach is to evaluate a metric termed trans-

mission capacity (TC). The TC, �rst proposed by Weber et al. in [25], quanti�es

the maximum spatial density of single-hop concurrent transmissions, subject to a

constraint on outage probability (OP) related to SINR threshold.

4



1.1. Fundamental Problems in Wireless Multi-hop Networks

Transport capacity

Signi�cant results have been obtained on characterizing the asymptotic scaling law of

the transport capacity as the network becomes su�ciently large. Particularly, Gupta

and Kumar [24] showed that in a network of n nodes uniformly and independently

and identically distributed (i.i.d.) on an area of unit size and each node is capable

of transmitting at W bits per second and employing a common transmission range,

the achievable per-node throughput is Θ
(
W√
n

)
1if nodes are optimally and determin-

istically placed to maximize capacity; the achievable per-node throughput is only

Θ
(

W√
n logn

)
when nodes are randomly located, by using a speci�c multi-hop commu-

nication strategy. Gupta and Kumar's work sparked an enormous research interest

in the �eld. On one side, several alternative strategies have also been developed

to achieve the same bound as Θ
(

W√
n logn

)
[26, 27]. On the other side, research has

focused on seeking bounds on the capacity scaling law that is independent of com-

munication strategies. With assumptions made only on radio propagation process,

it was established by many researchers [28�31] that Θ
(

1√
n

)
is an upper bound on

the per-node throughput of wireless multi-hop networks. All of these results suggest

that a
√

log n factor in denominator is the price to pay for the randomness due to the

locations of the nodes. Franceschetti et al [32] considered the same network as that

in [24] and showed that by using the so-called highway routing protocol and a central-

ized/deterministic Time Division Multiple Access (TDMA) protocol, the per-node

throughput can reach Θ
(

1√
n

)
even when nodes are randomly located. Hence, the

gap between capacity scaling law of randomly located and deterministically located

nodes is closed. Since then, a number of solutions have been proposed to achieve the

above upper bounds of scaling law under various network settings and using various

routing and scheduling algorithms [24,27,32�41].

1The notation Θ, Ω and O shall be formally de�ned in Chapter 3.
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1.1. Fundamental Problems in Wireless Multi-hop Networks

Moreover, some papers showed that a throughput higher than Θ
(

1√
n

)
can be

achieved by changing the assumptions on the basic network settings. Notably, Gross-

glauser and Tse [37] considered a network with mobile nodes and showed that mo-

bility of nodes can be exploited to considerably increase the throughput to Θ (1) at

the expense of large delay. Their work [37] has sparked huge interest in studying

the capacity-delay tradeo�s in mobile networks assuming various mobility models

and the obtained results often vary greatly with the di�erent mobility models being

considered (see [26, 42�46] and references therein for examples). In [47], Chen et al.

studied the capacity of wireless networks under a di�erent tra�c distribution. In par-

ticular, they considered a set of n randomly deployed nodes transmitting to a single

sink or multiple sinks where the sinks can be either regularly deployed or randomly

deployed. They showed that with a single sink, the transport capacity is given by

Θ (W ); with k sinks, the transport capacity increases to Θ (kW ) when k = O(n log n)

or Θ (n log nW ) when k = Ω (n log n). It was established in [35, 39] that a through-

put of Θ (1) can also be achieved by deploying (randomly placed) infrastructure/base

stations. Furthermore, there is also signi�cant amount of work studying the impact

of infrastructure nodes [48] and multiple-access protocols [49,50] on the capacity and

the multicast capacity [51]. We refer readers to [3] for a comprehensive review of

related work.

Transmission capacity

The scaling laws provide an insight on how the performance of networks is deter-

mined by di�erent network features, such as network size, mobility of nodes and

infrastructure support. However, a �ner view of capacity limits is however needed

when the focus is on the impact of di�erent techniques and channel states on the

capacity of large networks, for example channel inversion and fading [52].

6



1.1. Fundamental Problems in Wireless Multi-hop Networks

For a given constraint ε on the OP, i.e., the probability that SINR of a transmis-

sion falls below the target SINR, the TC is expressed as

TC (ε) , (1− ε) sup {η : OP < ε} (1.1.1)

where η is the spatial density of concurrent transmitters in the network. In words,

the TC is the maximum number of possible successful concurrent transmissions per

unit area, subject to a constraint on the OP.

Di�erent technologies have been proposed to improve the network capacity us-

ing TC as the metric, including multiple antennas [53], guard zone around each

receiver [54] and information cancellation [55]. Notably, Andrews et al. [56] made an

extension of the original TC metric, termed random access transport capacity, which

quanti�es the average maximum rate of successful end-to-end transmissions, multi-

plied by the communication distance, and normalized by the network area. Ganti et

al. [57] analyzed asymptotic OP and TC for generic isotropic node distributions and

generic fading as the spatial density of concurrent transmitters goes to zero.

Combining with a homogeneous Poisson distribution for concurrent transmitters,

the TC framework yields very good analytical tractability for detailed study of the

network capacity in terms of system parameters and design choices, such as fad-

ing and interference cancellation techniques. This is generally very di�cult to do by

studying the transport capacity alone. In essence, the TC metric is more the descrip-

tion of a given technology through its achieved SINR than of technology-independent

fundamental limits [3].

7



1.2. Research Problems Addressed in This Thesis

1.2 Research Problems Addressed in This Thesis

1.2.1 Connectivity under SINR model

In large wireless multi-hop networks which are distributed, some transmissions nec-

essarily occur at the same time in the same frequency band. Interference is the main

performance-limiting factor and the SINR is the relevant �gure of merit. Due to the

randomness nature of such networks, SINRs are not tightly controllable and subject

to considerable uncertainty. If a node attempts to improve the SINR of its own trans-

mission by raising its transmission power, it causes an increase on interference to all

the other nodes. The interference can be mitigated quite e�ciently with centralized

control, for example coordinating the channelization or the transmission power of

individual nodes [58]. However, centralized control is not compatible with the kind

of networks investigated in this thesis, which requires more distributed operation

protocols. In Chapter 4, we investigate the connectivity problem in wireless multi-

hop networks where distributed MAC protocol - CSMA is assumed. We analytically

derive a su�cient and a necessary condition on the critical transmission power for

connectivity in the presence of interference.

1.2.2 Transport capacity of distributed networks

Despite the great achievements on characterizing the scaling law of per-node through-

put of wireless multi-hop networks assuming centralized MAC protocol [24, 27, 33,

35,36,38�40], limited work exists on analyzing capacity of large networks operating

in distributed/decentralized fashion. Chau et al. [34] took the lead in studying the

capacity of networks employing the distributed CSMA protocols and showed that

these networks can achieve the same order-optimal throughput of Θ
(

1√
n

)
as net-

works employing centralized TDMA schemes. While the use of CSMA for scheduling

8



1.3. Thesis Outline

in [34] constitutes a signi�cant advance compared with the centralized protocols con-

sidered in previous work, the routing scheme in [34] still relies on the highway system

proposed in [32] where the centralized coordination is needed to identify the high-

ways. Moreover, the deployment of highway system in CSMA networks requires two

di�erent carrier-sensing ranges to be used, which exacerbates the hidden node (HN)

problem in CSMA networks. In Chapter 5, we investigate the transport capacity of

wireless CSMA networks. First, we develop a distributed routing scheme, together

with carefully tuning controllable parameters in CSMA protocols, to achieve the

order-optimal throughput scaling law of Θ
(

1√
n

)
, which is the same as that of large

networks employing centralized routing and scheduling algorithms. Note that scaling

laws are only up to order and most network design choices have a signi�cant e�ect

on the constants preceding the order while not a�ecting the scaling law. Therefore

we take a further step to analyze the pre-constant by giving an upper and a lower

bound of throughput. The tightness of the bounds is validated using simulations.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we discuss relevant work

to the aforementioned research problems in the literature. In Chapter 3, we describe

the basic elements commonly needed in the subsequent chapters to formulate each

research problem. Chapter 4 and 5 comprise the major contributions of this thesis in

which we investigate the connectivity and transport capacity problems, respectively.

In Chapter 6, we conclude this thesis.

9



Chapter 2

Literature Review

The focus of this thesis is on studying asymptotic behavior of �nite networks that

grow su�ciently large. Be more speci�c, we investigate the connectivity and capac-

ity of wireless multi-hop networks employing distributed CSMA protocol. In this

chapter, we �rst discuss some closely related work in the �eld of connectivity and

capacity of wireless multi-hop networks. We then identify the main challenge of

charactering properties of CSMA networks, due to which di�erent approaches have

been used to rise the challenge. The existing approaches are then discussed.

2.1 Connectivity

Unit disk model

The literature is rich in studying connectivity using the UDM. It is usually considered

that a network is formed by randomly and uniformly distributing n nodes in a given

area and connecting any two nodes i� their Euclidean distance is smaller than or

equal to a certain threshold r (n). Signi�cant outcomes have been achieved for both

asymptotically in�nite n [2, 9, 59] and for �nite n [60, 61]. Particularly, Penrose [9]

10



2.1. Connectivity

and Gupta and Kumar [2] proved that under the UDM and in a unit-area disc, the

above network with a transmission range of r (n) =
√

logn+c(n)
πn

is a.a.s. connected as

n → ∞ i� c (n) → ∞. Philips et al. [10] proved that the average node degree must

grow logarithmically with the area of the network to guarantee a connected network,

where nodes are distributed on a square according to a Poisson distribution with a

constant density. The result by Philips et al. in fact provides a necessary condition

on the average node degree required for connectivity. The work [11�13] advanced the

results in [10] by providing upper and lower bounds on the node degree required for

guaranteeing an asymptotically connected network as n → ∞. Most of the results

for �nite n are empirical results [60, 61].

Log-normal connection model

The work [4, 14�16] investigated the necessary condition for the same network as

considered in [2,9,59] to be a.a.s. connected under the log-normal connection model,

where two nodes are directly connected if the received power at one node from the

other node, whose attenuation follows the log-normal model [62], is greater than a

given threshold. These results however rely on the assumption that the node isolation

events are independent, which is yet to be proved.

SINR model

Despite the signi�cant impact of interference due to concurrent transmissions on

connectivity, limited work exists on analyzing connectivity under the SINR model.

In [20, 63], the authors studied connectivity from the perspective of channel assign-

ment. Speci�cally, channel/time slots are assigned to each link for all active links

to be simultaneously transmitting while satisfying the SINR requirement. The most

relevant work is by Dousse et al. [18, 19], in which the impact of interference on the

11



2.1. Connectivity

connectivity was investigated from the percolation perspective. In their work, nodes

were assumed to transmit independently, which corresponds to the ALOHA proto-

col. Unlike in ALOHA, where each node accesses the channel independently with

a prescribed probability, nodes of CSMA networks su�er from a spatial correlation

problem, which means that the activity of a node is dependent on the activities of

other nodes due to the carrier-sensing operation. This correlation problem makes the

analysis of interference and capacity of CSMA networks more challenging than that

of ALOHA networks. Therefore, although both ALOHA and CSMA are distributed

MAC protocols, the results obtained for ALOHA networks are not directly applicable

to CSMA networks. In Chapter 4, we shall show results obtained in CSMA networks

are actually in stark contrast to the results obtained in these two papers [18,19].

Random connection model

The random connection model is a generalization of the UDM. Under this model, two

nodes separated by a Euclidean distance x are directly connected with probability

g (x), where g : [0,∞) → [0, 1] satis�es the properties of integral boundedness, ro-

tational invariance and non-increasing monotonicity [7, 8], independent of the event

that another pair of nodes are directly connected. Mao et al. [21] investigated the

connectivity problem under the random connection model and established the re-

quirements for the same network as considered in [2,9,59] to be a.a.s. connected. Ng

et al. [23] studied the connectivity problem under the random connection model as

well but from the perspective of percolation, and they derived the analytical bounds

of critical node density for percolation in 2-Dimension and 3-Dimension networks.

A critical assumption used in the analysis of connectivity under the UDM, the

log-normal connection model and the random connection model is that connections

are independent, i.e., the event that a pair of nodes are directly connected and the
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event that another distinct pair of nodes are directly connected are independent.

Under the SINR model that we consider in this thesis however, due to the presence

of interference, connections are correlated. That is to say, the existence of a direct

connection between a pair of nodes depends not only on the Euclidean distance

between them but also on both the locations and the activities of all the other nodes

in the network.

2.2 Transport capacity

In addition to the work mentioned in Section 1.1.2 on the study of network capacity,

in this section we further review work closely related to the research and theoretical

analysis in this thesis.

Limited work exists on analyzing capacity of large networks running distributed

routing and scheduling algorithms, despite their extensive deployment in real net-

works. Byun et al [64] showed that networks with slotted ALOHA protocol can have

order-optimal throughput. However, the ALOHA protocol has become obsolete [65].

The more advanced distributed MAC protocols, e.g. CSMA and CSMA/CA (Car-

rier Sense Multiple Access with Collision Avoidance) [62] have become prevailing

with widespread adoption. Reference [34] discussed in Section 1.1.2 is among the

�rst work studying the capacity of networks employing distributed and randomized

CSMA protocols and showed that these networks can achieve the same order-optimal

throughput of Θ
(

1√
n

)
as networks employing centralized TDMA schemes. In our

previous work [41], we studied the achievable throughput of three dimensional CSMA

networks and provided a lower bound on the scaling law of throughput. Ko et al [66]

showed that in CSMA networks, by jointly optimizing the transmission range and

packet generation rate, the end-to-end throughput and end-to-end delay can scale as
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Θ
(

1√
n logn

)
and Θ

(
n√

logn

)
, respectively.

Improving spatial frequency reuse of CSMA networks is an important problem

that has also been extensively investigated, see [67�69] for the relevant work. How-

ever, high level of spatial frequency reuse does not directly lead to increased end-

to-end throughput because the latter performance metric also critically relies on the

communication strategies, e.g., routing algorithm and scheduling scheme, used in the

network. In this thesis we focus on the study of achievable end-to-end throughput.

2.3 Other related work

Extensive research e�orts have been devoted to modeling the spatial distribution of

concurrent transmitters observing carrier-sensing constraints and the distribution of

interference resulting from these transmitters. A major challenge in analyzing the

performance of CSMA networks is that in CSMA networks, the locations of con-

current transmitters are correlated, i.e., a minimum separation distance is imposed

among concurrent transmitters due to the carrier sensing mechanism. Therefore,

even if all nodes are initially distributed following a Poisson p.p., the set of con-

current transmitters cannot be obtained by independent thinning of the Poisson

p.p.. The set of concurrent transmitters no longer forms a Poisson p.p. but a more

complicated p.p..

Busson et al. [70] proposed to use the Matérn hard-core p.p. to model the set

of concurrent transmitters in CSMA networks. Haenggi [71] considered two types

of hard-core p.p. and compared the mean interference generated by the two types

of hard-core p.p. with the mean interference generated by a Poisson p.p. of the

same node density. It was shown that the gap is negligible for one type of hard-core

p.p., but increases exponentially with the minimum separation distance for the other
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one. While the hard-core p.p. captures a key property of the concurrent transmitter

set, i.e., two concurrent transmitters have to be separated by a minimum distance,

such hard-core point processes and the associated interference are very challenging to

characterize analytically. Therefore, approximation is often used in order to obtain

closed-form analytical results [50,57,58,72,73]. In [58,72], homogeneous Poisson p.p.

was used to approximate the spatial distribution of the set of concurrent transmitters

in CSMA networks. Alfano et al. [50] considered an approach where the distribu-

tion of concurrent transmitters is approximated by an inhomogeneous Poisson p.p.

whose local intensity depends on the distance from the desired transmitter. Ganti

et al. [57] analyzed asymptotic OP and TC for generic isotropic node distributions

and generic fading as the spatial density of concurrent transmitters goes to zero.

To be speci�c, they showed the procedure to obtaining two constants γ and κ such

that, for general node distribution and fading distribution, the success probability

ps, viz. the complement of the OP, can be approximated by ps ∼ 1 − γηκ when

η → 0, where η is the spatial density of concurrent transmitters (f (x) ∼ g (x) means

that limx→∞
f(x)
g(x)

= 1.). Nguyen and Baccelli in a more recent work [74] proposed

to use the Random Sequential Absorption (RSA) p.p. as a more natural model for

representing the spatial distribution of concurrent CSMA transmitters. They stud-

ied the RSA p.p. by characterizing its generating functional and derived upper and

lower bounds for the generating functional. Furthermore, they derived the network

performance metrics, viz., average medium access probability and average transmis-

sion success probability (two commonly used metrics in the study of transmission

capacity), in terms of the generating functional. The work [74] and [50] studied the

transmission capacity by investigating the transmission success probability and the

medium access probability of a typical node, which quanti�es the spatial average

performance of the network. In comparison, the transport capacity often quanti�es
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the throughput that can be achieved by every source-destination pair (a.a.s.), which

is often associated with the worst case performance.

In this thesis, we circumvent the above di�culty involving accurate modeling of

the spatial distribution of concurrent transmitters in CSMA networks by pursuing

bounds on performance metrics. Di�erent from the above results [57, 72, 73], which

have to resort to approximations of the spatial distribution of concurrent transmit-

ters and empirical validation of the accuracy of such approximations, the results

established in this thesis are analytically rigorous.
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Chapter 3

Network Models

In this chapter, we describe the basic concepts and notations commonly required in

the subsequent chapters to formulate each research problem.

This thesis is concerned with the asymptotic behavior of random networks that

grow su�ciently large. In general, there are two network models that are consid-

ered in the study of asymptotic properties of networks of growing size: the extended

network model where the network size scales with the network area while the node

density is �xed; and the dense network model where the network size scales with the

node density while the network area is �xed. By appropriate scaling of the distances,

the results obtained under one model can often be extended to be applicable under

the other one. Throughout this thesis, we consider the extended network model.

Speci�cally, we consider a network with nodes deployed on a box Bn ⊂ R2 of size

√
n ×
√
n following either a uniform distribution or a homogeneous Poisson distri-

bution. These two random node location models have been widely used in the �eld

of wireless multi-hop networks.
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Uniform distribution

Under this model, a network comprises a set of n nodes which are independently,

identically distributed (i.i.d.) in a given bounded region in R2 following a uniform

distribution.

Homogeneous Poisson distribution

Under the homogeneous Poisson distribution with density λ, the random set of nodes

satisfying the following three properties [75]:

• The number of points N (A) located in A ⊂ R2 is a Poisson random variable

with the expected value E [N (A)] = λ |A| where |A| is the Lebesgue measure

of A. That is,

Pr {N (A) = k} =
(λ |A|)k

k!
e−λ|A| (3.0.1)

for integer k ≥ 0;

• The number of nodes in any two non-overlapping regions are independent of

each other;

• Conditioned on a given number of nodes in a region, these nodes are uniformly

distributed in the region.

In the thesis, we consider that a total number of n nodes are uniformly i.i.d. on Bn

in Chapter 4; and consider that nodes are distributed according to a homogeneous

Poisson distribution with unit density on Bn in Chapter 5. We are mainly concerned

with the events that occur inside Bn a.a.s. as n → ∞. The following notations are

used throughout the thesis concerning the asymptotic behavior of positive functions:

• f (n) = O (g (n)) if that there exist a positive constant c and an integer n0 such

that f (n) ≤ cg (n) for any n > n0;
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3.1. SINR model

• f (n) = Ω (g (n)) if g (n) = O (f (n));

• f (n) = Θ (g (n)) if that there exist two constants c1, c2 and an integer n0 such

that c1g (n) ≤ f (n) ≤ c2g (n) for any n > n0;

• f (n) = o (g (n)) if lim
n→∞

f(n)
g(n)

= 0.

3.1 SINR model

Let xk, k ∈ Γ, be the location of node k, where Γ represents the set of indices of

all nodes in the network. Throughout the thesis, we also refer to a node by its

location. Let Pk be the transmission power used by node k, for k ∈ Γ. A node j can

successfully receive the transmitted signal from a node i i� the SINR at xj, denoted

by SINR (xi → xj), is above a prescribed threshold β, i.e.

SINR (xi → xj) =
Pi` (xi, xj)

N0 + γ
∑
k∈Ti

Pk` (xk, xj)
≥ β, (3.1.1)

where Ti ⊆ Γ denotes the subset of nodes transmitting at the same time as node

i, i.e., interferers, and N0 is the background noise power. The function ` (xi, xj) is

the power attenuation from xi to xj. We consider that the attenuation function `

depends on Euclidean distance only and is a power-law function [18,19], i.e.,

` (xi, xj) = ‖xi − xj‖−α (3.1.2)

where α is the path-loss exponent which typically varies from 2 to 6 [62, p139]. In

this thesis we assume α > 2. Since in many practical situations the background noise

is typically negligibly small compared to the interference due to multiple concurrent

transmissions [3, 58], we ignore N0. The coe�cient 0 ≤ γ ≤ 1 is the inverse of
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3.2. CSMA protocol

the processing gain of the system and it weighs the impact of interference. In a

broadband system using CDMA, γ depends on the orthogonality between codes used

during concurrent transmissions and γ < 1; in a narrow-band system, γ = 1 [3, 18].

When γ = 0, the SINR model degrades to the UDM. In this thesis, we assume that

all data transmissions are conducted over one common wireless channel, i.e., γ = 1,

which corresponds to a narrow-band system.

3.2 CSMA protocol

The general idea of CSMA protocol is that nearby nodes will not be scheduled to

transmit simultaneously. Each node has to sense the channel to guarantee that there

is no other ongoing transmissions in its vicinity. This exclusion rule is realized as

follows: a node j is said to be in the contention domain of node i if the received

power by node i from node j is above a certain detection threshold [76], i.e.,

Pj ‖xi − xj‖−α > τi,

where τi is the detection threshold adopted by node i. The node i is allowed to

transmit if there is no other transmitting node in its contention domain, or in other

words, the node i senses the medium idle.

To prevent the situation where several nearby nodes start transmitting simultane-

ously when their common neighbor stops its transmission, hence causing a collision,

a backo� mechanism is often employed such that a node sensing the channel idle

will wait a random amount of time before starting its transmission. The following

backo� mechanism is considered in this thesis. Each node senses the channel con-

tinuously and maintains a countdown timer, which is initialized to a non-negative

random value. The timer of a node counts down when it senses the channel idle;
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3.2. CSMA protocol

when the channel is sensed as busy, the node freezes its timer. A node initiates

its transmission when its countdown timer reaches zero and the channel is sensed

as idle. After �nishing its transmission, the node resets its countdown timer to a

new random value for the next transmission. The distribution of the random initial

countdown timer will be speci�ed in Chapter 5 when necessary.

21



Chapter 4

Connectivity

In this chapter, we investigate the critical transmission power for connectivity in

wireless CSMA networks under the SINR model. The critical transmission power

is the minimum transmission power each node needs to transmit to guarantee that

the resulting network is connected asymptotically almost surely. Speci�cally, we

consider a network with n nodes uniformly i.i.d. on the box Bn ⊂ R2 and each

node is capable of performing carrier-sensing operation. A pair of nodes are directly

connected i� the SINR requirements can be met at both ends of a link, i.e., both

(4.2.1) and (4.2.2) are satis�ed. We provide a su�cient condition and a necessary

condition, i.e. an upper bound and a lower bound on the critical transmission power,

required for having an a.a.s. connected CSMA network as n→∞. The two bounds

di�er by a constant factor only, as n → ∞. Compared with that considering the

UDM without interference, the transmission power only needs to be increased by

a constant factor to combat interference and maintain connectivity. This result is

also in stark contrast with previous results considering the connectivity of ALOHA

networks under the SINR model. The results of this chapter appear in [J1, C1, C3].
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4.1 Introduction

Due to the nature of wireless communications, signals transmitted at the same time

will mutually interfere with each other. The SINR model described in Section 3.1 has

been widely used to capture the impact of interference on network connectivity [3,18,

24]. Under the SINR model, the existence of a directional link between a pair of nodes

is determined by the strength of the received signal from the desired transmitter, the

interference caused by other concurrent transmissions and the background noise.

Dousse et al. [18] use the SINR model to analyze the impact of interference on

connectivity from the percolation perspective. They consider a network where all

nodes are distributed in R2 following a homogeneous Poisson p.p. with a constant

intensity λ and an attenuation function ` with bounded support. Recall that the

coe�cient 0 ≤ γ ≤ 1 appears in (3.1.1) and (4.2.2) weighs the impact of interference.

By letting Tj = Γ/ {i, j}, i.e. all other nodes in the network transmit simultaneously

with node i irrespective of their relative locations to xi and xj, it is shown that

there exists a very small positive constant γ′ such that if γ > γ′ there is no in�nite

connected component in the network, i.e., the network does not percolate. Further,

when γ < γ′, there exists 0 < λ′ <∞ such that percolation can occur when λ > λ′.

An improved result by the same authors [19] shows that under the more general con-

ditions that λ > λc and the attenuation function has unbounded support, percolation

occurs when γ < γ′. Here λc is the critical node density above which the network

with γ = 0 (i.e. UDM with no interference) percolates [8, p48]. These results suggest

that percolation under the SINR model can happen i� γ is su�ciently small. They

assume that each node transmits randomly and independently, irrespective of any

nearby transmitter. This corresponds to the ALOHA-type MAC protocol [3], which

however has become obsolete [65].

The more advanced multiple access strategies, e.g. CSMA and CSMA/CA [62]
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have become prevailing with widespread adoption. With CSMA protocol, nearby

nodes will not be scheduled to transmit simultaneously, i.e., a minimum separation

distance is imposed among concurrent transmitters. Therefore, it is natural to expect

that CSMA could improve the performance of ALOHA by alleviating interference,

particularly under heavy tra�c. On the other hand, due to the di�culty in �nding

the accurate distribution of concurrent transmitters and the associated interference,

as discussed in Section 2.3, in this chapter, we use an entirely di�erent approach.

Particularly, we investigate the bounds on interference, instead of an accurate char-

acterization of interference distribution.

Our major contributions can be summarized as follows:

• We show that the interference experienced by any receiver in the network is

upper bounded. Based on this result, we further show that for an arbitrarily

chosen SINR threshold, there exists a transmission range R0 such that a pair

of nodes are directly connected if their Euclidean distance is smaller than or

equal to R0. On that basis, we derive a su�cient condition, i.e., an upper

bound on the critical transmission power, for the CSMA network to be a.a.s.

connected under the SINR model as n→∞.

• We provide a necessary condition, i.e., a lower bound on the critical transmis-

sion power, for the CSMA network to be a.a.s. connected. The two bounds

are tight and di�er from each other by a constant factor only.

• We show that the transmission power only needs to be increased by a constant

factor to combat interference and maintain connectivity compared with that

considering UDM without interference. This result is in stark contrast with

previous results considering the connectivity of ALOHA networks [18,19] under

the SINR model which shows that connectivity is much harder to achieve in
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the presence of interference and is impossible in a narrow band system where

γ = 1.

The remainder of this chapter is organized as follows. Section 4.2 de�nes network

models and notations; In Section 4.3 we �rst derive an upper bound on the interfer-

ence in CSMA networks, and a su�cient condition for connectivity is obtained based

on the upper bound; Section 4.4 derives a necessary condition for connectivity; �nally

Section 4.5 summarizes the chapter.

4.2 Network Model and Notations

In this chapter, we consider a decentralized wireless multi-hop network with nodes

uniformly i.i.d. on a
√
n×
√
n box Bn ⊂ R2 and each node is capable of performing

carrier sense.

4.2.1 Connection model

For the connection model, we consider the SINR model which has been widely used to

capture the impact of interference on network connectivity [3, 18,24]. As commonly

done in the connectivity analysis [2, 8, 9, 18, 19], the impact of small-scale fading is

ignored and only bidirectional communication links are considered. In this chapter,

we assume all nodes use the same transmit power P . A node j is directly connected

to node i i�

SINR (xi → xj) =
P ‖xi − xj‖−α

N0 +
∑
k∈Ti

P ‖xk − xj‖−α
≥ β; (4.2.1)

similarly, node i is directly connected to node j i�

SINR (xj → xi) =
P ‖xj − xi‖−α

N0 +
∑
k∈Tj

P ‖xk − xi‖−α
≥ β. (4.2.2)
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Therefore node i and node j are directly connected, i.e. a bidirectional link exists

between node i and node j, i� both (4.2.1) and (4.2.2) are satis�ed. Since in many

practical situations the background noise is typically negligibly small compared to

the interference due to multiple concurrent transmissions [3, 58], we ignore N0.

4.2.2 Carrier-sensing range

In this chapter, we assume all nodes use the same detection threshold τ . From the

power-law path loss, given by (3.1.2), a minimum Euclidean distance is imposed

between any two concurrent transmitters, known as the carrier-sensing range and

given by

Rc = (P/τ)1/α (4.2.3)

One may alternatively consider a scenario where a node transmit when the aggre-

gated interference is below τ , which forms a trivial extension of the scenario consid-

ered in this chapter.

4.3 A Su�cient Condition on the Critical Transmis-

sion Power

A major technical challenge in connectivity analysis under the SINR model is due to

the correlation problem. We shall resort to a technique, called coupling, to handle the

connection correlations. The coupling technique amounts to building the connection

between a more complicated model and a simpler model with established results

such that if a property, e.g. connectivity, is true in the simpler model, it will also be

true in the more complicated one. It then immediately follows that if the network is
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connected under the simpler model, then it is also connected under the complicated

counterpart.

We �rst establish an upper bound on the interference experienced by any receiver

in the network. On that basis, we show that for an arbitrarily chosen SINR thresh-

old β, there exists a transmission range R0 such that a pair of nodes are directly

connected if their Euclidean distance is smaller than or equal to R0. Then we can

use existing results on connectivity under the UDM to analyze connectivity under

the SINR model.

4.3.1 An upper bound on interference and the associated trans-

mission range

The following theorem provides an upper bound on the interference.

Theorem 4.1. Consider a CSMA network with nodes distributed arbitrarily on a

�nite area in R2. Denote by r0 the Euclidean distance between a receiver and its

nearest transmitter in the network, which is also the intended transmitter for the

receiver. When r0 < Rc, the maximum interference experienced by the receiver is

smaller than or equal to N (r0) = N1 (r0) +N2, where

N1 (r0)=
4P
(

5
√

3
4
Rc − r0

)1−α (√
3

4
(3α− 1)Rc − r0

)
R2
c (α− 1) (α− 2)

+
3P

(Rc − r0)α
+

3P(√
3Rc − r0

)α +
3P
(

3
2
Rc − r0

)1−α

(α− 1)Rc

(4.3.1)

N2 =
3P

Rα
c

+
3P (3

2
)1−α

(α− 1)Rα
c

+
3P(√
3Rc

)α +
3P
(

5
4

)1−α
(3α− 1)

(α− 1) (α− 2)
(√

3Rc

)α (4.3.2)
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Proof. See Appendix A.

Remark 4.1. The upper bound in Theorem 4.1 is valid for any node distribution. For

a sparse network or a network where nodes are placed in a coordinated or planned

manner, replacing Rc with the minimum distance among concurrent transmitters,

Theorem 4.1 can be extended to be applicable.

Remark 4.2. The assumption that r0 < Rc is valid in most wireless systems which

not only require the SINR to be above a threshold but also require the received signal

to be of su�ciently good quality. However Theorem 4.1 does not critically depend

on the assumption. For r0 ≥ Rc, so long as there exists a positive integer c such that

r0 < cRc the upper bound can be revised to accommodate the situation by changing

the range of the summation in (A.0.2) (in Appendix A) from [3,∞] and [2,∞] to

[c+ 2,∞] and [c+ 1,∞] respectively and revising the results accordingly.

The following result can be obtained as a ready consequence of Theorem 4.1.

Corollary 4.1. Under the same settings as in Theorem 4.1, assume that the SINR

threshold is β. There exists a transmission range R0 < Rc such that a pair of nodes

are directly connected if their Euclidean distance is smaller than or equal to R0, given

implicitly by

PR−α0 /N (R0) = β. (4.3.3)

Proof. Theorem 4.1 established that the interference experienced by a receiver z at

r0 from its transmitter w, denoted by I (r0) is upper bounded by N (r0). Note that,

for r0 < Rc, N (r0) is increasing with r0 and Pr−α0 is decreasing with r0. Therefore,

using (4.3.3) the SINR of a receiver at r0 ≤ R0 from its transmitter, denoted by

SINR (r0), satis�es SINR (r0) =
Pr−α0

I(r0)
≥ Pr−α0

N(r0)
≥ β.

By symmetry, when the transmission occurs in the opposite direction, i.e. from

z to w, the interference generated by the set of nodes that are transmitting at the
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same time as z is also upper bounded by N (r0). Therefore the SINR at w is also

greater than or equal to β.

Finally the existence of a (unique) solution to (4.3.3) can be proved by noting

that
Pr−α0

N(r0)
→ ∞ as r0 → 0,

Pr−α0

N(r0)
→ 0 as r0 → R−c and that

Pr−α0

N(r0)
is monotonically

decreasing with r0.

Corollary 4.1 relates R0 to transmission power P and allows the computation of

R0 given P and the converse. A more convenient way to study the relation between

P and R0 is by noting that P = τRα
c and considering R0 as a function of Rc. Using

(4.3.1), (4.3.2) and letting Rc
R0

= x, (4.3.3) can be rewritten as

1

β
=

4
(

5
√

3
4
x− 1

)1−α (√
3

4
(3α− 1)x− 1

)
x2 (α− 1) (α− 2)

3

(x− 1)α
+

3(√
3x− 1

)α +
3
(

3
2
x− 1

)1−α

(α− 1)x

+
3

xα
+

3(3
2
)1−α

xα (α− 1)
+

3(√
3x
)α +

3
(

5
4

)1−α
(3α− 1)

(α− 1) (α− 2)
(√

3x
)α . (4.3.4)

Figure 4.3.1 shows the ratio Rc
R0

as a function of β. Di�erent curves represent di�erent

choices of the path loss exponent α. For instance, when β = 10 and α = 4, we

have Rc
R0

= 3.6.

4.3.2 A su�cient condition on the critical transmission power

Based on the transmission range R0 derived in Corollary 4.1, we obtain another main

result:

Theorem 4.2. Consider a CSMA network with a total of n nodes uniformly i.i.d.

on Bn ⊂ R2. A pair of nodes are directly connected i� both (4.2.1) and (4.2.2)

(γ = 1 and N0 = 0 in (3.1.1)) are satis�ed. As n→∞, the above network is a.a.s.
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Figure 4.3.1: Variation of the ratio Rc
R0

with the SINR requirement β when
the path loss exponent α equals to 2.5, 3, 4, respectively.

connected if the transmission power

P = τbα1 (log n+ c (n))
α
2 , (4.3.5)

where b1 = b′/
√
π, c (n) = o (log n) and c (n)→∞ as n→∞ and ∞ > b′ > 1 is the

solution to (4.3.4).

Proof. By proper scaling of distances, the results in [2, 9] show that, for a network

with a total of n nodes uniformly i.i.d. on a
√
n ×
√
n square and a pair of nodes

are directly connected i� their Euclidean distance is smaller than or equal to a

given threshold r (n) (i.e., UDM), the network is a.a.s. connected as n → ∞ i�

r (n) =
√

logn+c(n)
π

where c (n) → ∞ as n → ∞. Using this result, (4.3.4) (letting

b′ = Rc
R0
), Corollary 4.1 and Theorem 4.1, the result in the theorem follows.

The implication of Theorem 4.2 is that in CSMA networks, since the interference

is bounded above by a constant almost surely as shown in Theorem 4.1, to meet an

arbitrarily high β (albeit constant with the increase in n), the power needs to be

increased only by a constant factor compared with that under the UDM to maintain
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the same set of connections. This result is in contrast to the ALOHA networks

considered in [18,19] in which percolation occurs only for a su�ciently small γ.

4.4 A Necessary Condition on the Critical Trans-

mission Power

Section 4.3 derives a su�cient condition for a connected CSMA network as n→∞

in the presence of interference. A logical question arises: what is the necessary

condition for the same CSMA network to be connected as n→∞.

In a CSMA network, any set of nodes can transmit simultaneously as long as the

carrier-sensing constraints are satis�ed. Further, in a large-scale network, schedul-

ing is often performed in a distributed manner. In the absence of accurate global

knowledge of which particular set of nodes are simultaneously transmitting at a

particular time instant, it is natural that a node sets its transmission power to be

above the minimum transmission power required for a network to be connected un-

der any scheduling algorithm (It is trivial to show that, see also the proof of Lemma

4.1, when the transmission power increases, connectivity will also improve). Denote

that minimum power by P ′Ω where Ω represents the set of all scheduling algorithms

satisfying the carrier-sensing constraints. In this section, we investigate P ′Ω, i.e., a

necessary condition required for connectivity as n → ∞. This is done by analyz-

ing the transmission power required for the above network to have no isolated node

which is a necessary condition for having a connected network. The following lemma

is required for the analysis of P ′Ω:

Lemma 4.1. Denote by PΩ (respectively, Pω) the minimum transmission power

required for the network to have no isolated node under any scheduling (respectively,
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4.4. A Necessary Condition on the Critical Transmission Power

under a particular scheduling ω). We have

P ′Ω ≥ PΩ = max
ω∈Ω

Pω.

Proof. We prove the lemma by showing that the minimum transmission power re-

quired for the network to have no isolated node under any scheduling has to be

greater than or equal to the minimum transmission power required for the same

network to have no isolated node under a particular scheduling.

De�ne a set of nodes that can simultaneously transmit while satisfying the carrier-

sensing constraints as an independent set. Obviously the independent set depends on

the transmission power of nodes. As the transmission power decreases, other things

being equal, Rc will decrease and the number of nodes that can simultaneously

transmit will increase or remain the same.

Denote by φ′ a set of nodes that are scheduled to transmit simultaneously in the

CSMA network. It follows that φ′ must be an independent set. Given φ′, a node

v ∈ φ′ is isolated if there is no node in the network that can successfully receive from

it when the nodes in φ′ are simultaneously transmitting. Further, as explained in the

last paragraph, the independent set depends on the transmission power. When the

transmission power is decreased from P1 to P2, where P2 ≤ P1, if φ
′ is an independent

set at power level P1, it will also be an independent set at power level P2. Based on

the above observation and using (4.2.1) and (4.2.2), a decrease in the transmission

power will cause a decrease in the SINR, it readily follows that if a node v ∈ φ′

is isolated at power level P1 when the set of active transmitters is φ′, it will also

be isolated at power level P2 when the set of active transmitters is φ′. For any

transmission power less than PΩ = maxω∈Ω Pω, there exists a scheduling that will

result the network to have an isolated node at that power level. Therefore, PΩ has
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4.4. A Necessary Condition on the Critical Transmission Power

to satisfy PΩ = maxω∈Ω Pω.

Remark 4.3. As an easy consequence of Lemma 4.1, the probability that a CSMA

network has no isolated node is a non-increasing function of the transmission power.

Now the task becomes constructing a particular scheduling which gives as large

Pω as possible, i.e. a tight lower bound on P ′Ω. Next we construct such a scheduling

ω heuristically.

4.4.1 Construction of scheduling ω

Obviously, ω needs to satisfy the constraint on the minimum separation distance

between concurrent transmitters imposed by the carrier-sensing requirement. Mean-

while, ω needs to schedule as many concurrent transmissions as possible to maximize

interference, hence Pω.

We start with a lemma that is required for the construction of ω. We place Bn

on the Cartesian coordinate system on the plane in a way that Bn coincides with

the square
[
−
√
n

2
,
√
n

2

]2

.

Lemma 4.2. Partition Bn into non-overlapping hexagons of equal side length sn such

that the origin o coincides with the centre of a hexagon and two diagonal vertices of

this hexagon, whose Euclidean distance is 2sn, are located on y axis, as shown in

Figure 4.4.1. We call a hexagon an interior hexagon if it is entirely contained in Bn.

When sn =
√

(2 log n) /5, a.a.s. each interior hexagon is occupied by at least one

node as n→∞.

Proof. Because nodes are uniformly i.i.d., the probability that an arbitrary interior

hexagon is empty is
(

1− 3
√

3s2n
2n

)n
. Let ξi be the event that an interior hexagon i is

empty, where i ∈ Ξ and Ξ denotes the set of indices of all interior hexagons. There

are at most 2n
3
√

3s2n
interior hexagons.
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Figure 4.4.1: An illustration of the hexagonal partition of the network area. The
shaded hexagons represent simultaneously active hexagons, where k = 3.

Denote by An the event that there is at least one empty interior hexagon in Bn. It

follows that Pr {An} = Pr {∪i∈Ξξi}. Using the union bound, we have Pr {∪i∈Ξξi} ≤∑
i∈Ξ Pr {ξi} ≤

2n

(
1− 3

√
3s2n
2n

)n
3
√

3s2n
. Using the fact that 1−x ≤ exp (−x) and sn =

√
2 logn

5
,

we have lim
n→∞

Pr {An} ≤ lim
n→∞

2ne−
3
√
3s2n
2

3
√

3s2n
= lim

n→∞
5n

3
√

3n
3
√
3

5 logn
= 0 which completes the

proof.

Hereinafter, we declare a hexagon to be active if there is a node transmitting in it.

We consider a scheduling ω that uses the hexagons as the basic unit for scheduling.

Due to the minimum separation distance, any two simultaneously active hexagons

should be separated by a minimum Euclidean distance (depending on the carrier-

sensing range given in (4.2.3)). Let k be an integer and represent the minimum

number of inactive hexagons between two closest simultaneously active hexagons

(see Figure 4.4.1). Any two nodes inside the two active hexagons are separated

34



4.4. A Necessary Condition on the Critical Transmission Power

by a Euclidean distance of at least
√

3ksn. With a bit twist of terminology, we

further de�ne a maximal independent set for scheduling to be the set of hexagons

that a) includes as many hexagons as possible; and b) closest hexagons in the set are

separated by exactly k adjacent hexagons. Figure 4.4.1 illustrates such a maximal

independent set with k = 3.

We de�ne ω such that only hexagons belonging to the same maximal independent

set can be active at the same time. No nodes in the same hexagon can be scheduled

to transmit simultaneously. (Note that if a hexagon intersecting the border of Bn

has node(s) in it, it is also included into the maximal independent set and its node(s)

are treated in the same way as other nodes in interior hexagons.) As a consequence

of the CSMA constraint and the de�nition of k, we have

√
3ksn ≥ Rc ≥

√
3 (k − 1) sn. (4.4.1)

4.4.2 Probability of having no isolated node

In this subsection, we derive a lower bound on Pω for ω de�ned in the previous

subsection. This is done by analyzing the event that the network has no isolated

node under ω. The following theorem summarizes another major outcome of this

chapter:

Theorem 4.3. Under the same setting in Theorem 4.2 and the scheduling algorithm

ω, a necessary condition on Pω for the CSMA network to have no isolated node a.a.s.

as n→∞ is

Pω ≥ τbα2 (log n)
α
2 (4.4.2)

where b2 =
√

6/5 (b− 1) and b is the smallest integer satisfying the inequality:

2(
√

3(b+1)+1)
1−α

(
√

3(α−1)(b+1)+1)
(b+1)2(α−1)(α−2)

≤ 1
β

(
2π
5

)α
2 .
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Proof. The main strategy used is to couple the network under the SINR model with

the associated network under UDM. Then, an upper bound on the probability of

having no isolated node in the network under the SINR model is obtained by using

existing results for UDM.

Denote the Euclidean distance between the centers of two closest hexagons in a

maximal independent set by L =
√

3 (k + 1) sn. See Figure 4.4.1 for an illustration.

Divide the hexagons belonging to the same maximal independent set as a hexagon

hi into tiers of increasing Euclidean distance from the centre of hi using a similar

strategy as that in the proof of Theorem 4.1. The mth tier of hi has at most 6m

hexagons. Further, we declare that the mth tier of hi is complete in a given area if

all the 6m hexagons are entirely enclosed in this given area. Recall that Bn coincides

with the square
[
−
√
n

2
,
√
n

2

]2

. Denote by CA ⊂ Bn a square
[
−
√
cn
2
,
√
cn
2

]2

(0 < c < 1

and the exact value of c will be decided later in this paragraph). The hexagon

containing the origin o has a number of t =

⌊
c
√
n

2
−
√
3sn
2

L

⌋
complete tiers in CA. As c

increases, t increases as well. For the hexagons located in CA but near the border of

CA, the number of complete tiers in Bn decreases with an increase in c. We choose

the value of c such that each hexagon inside CA has at least t complete tiers in Bn,

and the value of t is maximized. Let C ′A be the union of hexagons entirely contained

in CA. With a little bit abuse of terminology, we use CA (C ′A) to denote both the

area itself and the size of the area. We can obtain lim
n→∞

C′A
CA

= 1.

Consider an arbitrarily node i transmitting inside a hexagon hi in C
′
A. If there is

no node that can receive from it, then node i is isolated. Let Imin be the minimum

interference that could possibly be experienced by a potential receiver of node i under

ω. Note that the Euclidean distance between the transmitter inside a hexagon in the

mth tier of hi and the centre of hexagon hi is less than mL + sn (see Figure 4.4.1).

36



4.4. A Necessary Condition on the Critical Transmission Power

Using Lemma B.1 provided in Appendix B gives

Imin ≥
t∑

m=1

6m (mL+ sn)−α P

= 6Ps−αn

t∑
m=1

m
(√

3m (k + 1) + 1
)−α

= 6Ps−αn

∫ t

1

bxc
(√

3 bxc (k + 1) + 1
)−α

dx (4.4.3)

≥ 6Ps−αn

∫ t

1

x
(√

3x (k + 1) + 1
)−α

dx (4.4.4)

where bxc denotes the largest integer smaller than or equal to x. (4.4.4) is ob-

tained due to the fact that x
(√

3x (k + 1) + 1
)−α

is a decreasing function when

x > 1√
3(k+1)(α−1)

and
√

3 (k + 1) (α− 1) > 1 for α > 2 and k ≥ 1. Therefore

x
(√

3x (k + 1) + 1
)−α

is a decreasing function when x > 1. Further, noting that

lim
n→∞

t = lim
n→∞

⌊ √
cn
2
−
√
3sn
2

L

⌋
=∞, it follows that

lim
n→∞

6

∫ t

1

x
(√

3x (k + 1) + 1
)−α

dx

=
2
(√

3 (k + 1) + 1
)1−α (√

3 (α− 1) (k + 1) + 1
)

(k + 1)2 (α− 1) (α− 2)
, f (k) .

The above equation implies that for an arbitrarily small positive constant ε, there

exists a positive integer nε such that when n ≥ nε,

RHS of (4.4.4) ≥ Ps−αn (f (k)− ε) , Jn. (4.4.5)

Let d be the Euclidean distance between node i and its receiver. By (3.1.1),

(4.2.2), it follows that only when Pd−α

Jn
≥ β, the transmission from node i to its

receiver could possibly be successful. In other words, if there is no node within a

Euclidean distance of R = (βJn/P )−
1
α to node i, then it is isolated.
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Denote by M and MSINR the (random) number of isolated nodes in the CSMA

network on Bn and in C
′
A ⊂ Bn respectively. Denote byM

UDM the (random) number

of isolated nodes in the area C ′A ⊂ Bn in a network with a total of n nodes uniformly

i.i.d. on the square Bn under UDM with the transmission range R. Based on the

discussion in the last paragraph and using the coupling technique, it can be shown

that Pr {M ≥ 1} ≥ Pr
{
MSINR ≥ 1

}
≥ Pr

{
MUDM ≥ 1

}
. Consequently,

Pr {M = 0} ≤ Pr
{
MUDM = 0

}
. (4.4.6)

It remains to �nd the value of Pr
{
MUDM = 0

}
. We �rst consider a network

with a total of n nodes distributed on Bn under UDM with a transmission range

r (n). It is well-known that when the average node degree in the above network

equals to log n + ζ (n) and lim
n→∞

ζ (n) = ζ where ζ is a constant (ζ = ∞ is allowed),

the probability that there is no isolated node in the above network asymptotically

converges to e−e
−ζ

as n→∞ [8,77]. Further, it was shown in [22,77] that boundary

e�ect has an asymptotically vanishing impact on the number of isolated nodes. Let

Z be a random integer representing the number of nodes located inside CA ⊂ Bn.

It follows from the distribution of nodes that E [Z] = cn and Var [Z] = cn (1− c).

Let M r(n) be the number of isolated nodes within CA in the above network with a

transmission range r (n). Based on the above results, conditioned on that Z = cn

we have (here we have omitted some trivial discussions involving the situation that

cn is not an integer)

lim
n→∞

Pr
{
M r(n) = 0

∣∣Z = cn
}

= e−ce
−ζ

(4.4.7)
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Using Chebyshev's inequality, for 0 < δ < 1
2
, we obtain that

lim
n→∞

Pr
{
|Z − cn| ≥ (cn)

1
2

+δ
}
≤ lim

n→∞

Var [Z](
(cn)

1
2

+δ
)2 = 0 (4.4.8)

Let g (n) = (cn)
1
2

+δ. Using the following two equations: log (n+ g (n)) + ζ (n) =

log n + log
(

1 + g(n)
n

)
+ ζ (n) and limn→∞ log

(
1 + g(n)

n

)
+ ζ (n) = limn→∞ ζ (n) = ζ

and (4.4.7), it can be shown that limn→∞ Pr
{
M r(n) = 0

∣∣Z = cn+ g (n)
}

= e−ce
−ζ
.

Hence, for any integer y satisfying −g (n) ≤ y ≤ g (n), it can be shown that

limn→∞ Pr
{
M r(n) = 0

∣∣Z = cn+ y
}

= e−ce
−ζ
. This equation, together with (4.4.8),

allows us to conclude that when r (n) =
√

logn+ζ(n)
π

,

lim
n→∞

Pr
{
M r(n) = 0

}
= e−ce

−ζ
. (4.4.9)

As a result of (4.4.6), a necessary condition for lim
n→∞

Pr {M = 0} = 1 is that

lim
n→∞

Pr
{
MUDM = 0

}
= 1. Using the fact that lim

n→∞
C′A
CA

= 1 and (4.4.9), it follows

that a necessary condition for the network under the SINR model to a.a.s. have

no isolated node is that R ≥
√

logn+ζ(n)
π

and ζ (n) → ∞ as n → ∞. As denoted

R = (βJn/P )−
1
α , together with the value of Jn given by (4.4.5) and the value of sn

given by Lemma 4.2, we obtain that f (k) ≤ 1
β

(
2π
5

logn
logn+ζ(n)

)α
2

+ ε. Letting n → ∞

and then ε→ 0 in the above inequality yields f (k) ≤ 1
β

(
2π
5

)α
2 . Based on the above

equation, together with (4.2.3) and (4.4.1), Theorem 4.3 results.

The following corollary is obtained as a ready consequence of Theorem 4.3 and

Lemma (4.1).

Corollary 4.2. A necessary condition required for the CSMA networks to be a.a.s.

connected as n → ∞ under any scheduling algorithm, i.e., a lower bound on P ′Ω, is

given by

39



4.5. Summary

Figure 4.4.2: A plot of the two constant factors b1 and b2 in the upper bound (4.3.5)
and in the lower bound (4.4.10) when α = 4.

P ′Ω ≥ τbα2 (log n)
α
2 . (4.4.10)

Comparing the lower bound on P ′Ω in (4.4.10) with the upper bound in (4.3.5) and

noting that c (n) = o (log n), it can be shown that, given an arbitrary β, the two

bounds di�er by a constant factor only as n → ∞. Figure 4.4.2 shows a plot of

the two constant factors, viz. b1 and b2, in (4.3.5) and in (4.4.10) respectively as a

function of β when α = 4. The curve representing b2 is a step function due to the

granularity caused by the integer k in the scheduling algorithm ω.

4.5 Summary

In this chapter, we studied the connectivity of wireless CSMA networks considering

the impact of interference. We showed that, di�erent from ALOHA networks, the

aggregated interference experienced by any receiver in CSMA networks is upper

bounded even when the coe�cient γ in (3.1.1) equals to 1.

An upper bound and a lower bound were obtained on the critical transmission
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power required for having an a.a.s. connected CSMA network. The two bounds

are tight and di�er by a constant factor only. The results suggested that any pair

of nodes can be connected for an arbitrarily high SINR requirement so long as the

carrier-sensing capability is available. Compared with that considering UDM without

interference, the transmission power only needs to be increased by a constant factor to

combat interference and maintain connectivity. This is an optimistic result compared

with previous results on the connectivity of ALOHA networks under the SINR model.

The gap between the two bounds can be further narrowed by considering more

�ner geometric shapes than hexagons. However such improvement is possibly of

minor importance. The implication of the results in this chapter is that there exists

a spatial and temporal scheduling algorithm in a large-scale CSMA network that

allows as many as possible concurrent transmissions, and meanwhile, allows any pair

of nodes in the network to be connected under an arbitrarily high SINR requirement.

We also introduce a hexagon-based scheduling algorithm that allows the CSMA

network to be connected. However, it remains a major challenge to �nd the optimum

scheduling algorithm that gives the minimum delay and the maximum capacity under

a speci�c tra�c distribution.
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Chapter 5

Transport Capacity

In the preceding chapter, we have investigated the connectivity of wireless CSMA

multi-hop networks under the SINR model. In this chapter, we take a further step

by studying the transport capacity of large wireless CSMA multi-hop networks. Dif-

ferent from previous studies which rely on the use of centralized scheduling and/or

centralized routing algorithm to achieve the optimal capacity scaling law, we show

that the optimal capacity scaling law can be achieved using distributed routing and

scheduling algorithms. Speci�cally, we consider a network with nodes Poissonly

distributed with unit intensity on a
√
n ×
√
n square Bn ⊂ R2. Furthermore, each

node chooses its destination randomly and independently and transmits following the

CSMA protocol. By resorting to the percolation theory and by carefully tuning the

three controllable parameters in CSMA protocols, i.e. transmission power, carrier-

sensing threshold and count-down timer, we show that a throughput of Θ
(

1√
n

)
is

achievable in distributed CSMA networks. Furthermore, we derive the pre-constant

preceding the order of the transport capacity by giving an upper and a lower bound

of the transport capacity. The tightness of the bounds is validated using simulations.

The results of this chapter appear in [J2].
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5.1 Introduction

In a wireless multi-hop network, nodes communicate with each other via wireless

multi-hop paths, and packets are forwarded collaboratively hop-by-hop by interme-

diate relay nodes from sources to their respective destinations. Studying the capacity

of these networks is an important problem. Capacity of large wireless networks has

been extensively investigated with a particular focus on the throughput scaling laws

when the network becomes su�ciently large [24,27,28,32,34�39,78].

In the ground-breaking work [24] by Gupta and Kumar, it was shown that in a

static network of n nodes uniformly and i.i.d. on an area of unit size and each node

is capable of transmitting at W bits/second and using a �xed and identical trans-

mission range, the achievable per-node throughput is Θ
(

W√
n logn

)
when each node

chooses its destination randomly and independently. If nodes are optimally and

deterministically placed to maximize capacity, the achievable per-node throughput

becomes Θ
(
W√
n

)
. As discussed in Chapter 1, with assumptions made only on radio

propagation process, it was established by many researchers [28�31] that Θ
(

1√
n

)
is an upper bound on the per-node throughput of wireless multi-hop networks, re-

gardless of the scheduling and routing algorithm being employed. A network is said

to achieve the optimal capacity scaling law if it achieves a per-node throughput of

Θ
(

1√
n

)
. A number of solutions have been proposed to achieve the optimal capacity

scaling law under various network settings and using various routing and scheduling

algorithms [24,27,32�34,36,38�41]. In [32], Franceschetti et al. considered the same

network as that in [24] except that nodes are allowed to use two di�erent transmission

ranges. They showed that by using a routing scheme based on the so-called �highway

system� and a centralized/deterministic TDMA protocol, the per-node throughput

can reach Θ
(

1√
n

)
even when nodes are randomly located. Speci�cally, the highway

system is formed by nodes using the smaller transmission range, whereas the larger
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transmission range is used for the last mile, i.e., between the source (or destination)

and its nearest highway node. The existence of highway system was established us-

ing the percolation theory. The above work of Franceschetti et al. [32] and Gupta

and Kumar [24], and most other work in the �eld [27, 33, 35, 36, 38�40], established

the capacity of wireless multi-hop networks using centralized scheduling and routing

schemes, which may not be appropriate for large-scale networks being investigated

in [24,28,32].

Chau et al. [34] took the lead in studying the throughput of CSMA networks.

They showed that CSMA networks can achieve the optimal capacity scaling law

Θ
(

1√
n

)
, the same order as networks using centralized TDMA, if multiple backo�

countdown rates are used in the distributed CSMA protocol and packets are routed

using the highway system proposed in [32]. While the use of distributed CSMA for

scheduling in [34] constitutes a signi�cant advance compared with the centralized

TDMA considered in previous work, the routing scheme in [34] still relies on the

highway system, which needs centralized coordination to identify the highway nodes

and to establish the highway. The centralized routing scheme used in [34] is not

compatible with the distributed CSMA scheduling scheme. In this sense, the routing

and scheduling scheme in [34] is not entirely distributed and may not be suitable

for large-scale networks. Furthermore, the deployment of the highway system in

CSMA networks in [34] requires two di�erent carrier-sensing ranges to be used: a

smaller carrier-sensing range used by the highway nodes and a larger carrier-sensing

range used by the remaining nodes to access the highway. The use of two di�erent

carrier-sensing ranges may exacerbate the hidden node (HN) problem, which shall

be formally de�ned in Section 5.4. To conquer the potential HN problem brought

by the use of two di�erent carrier-sensing ranges, the entire frequency bandwidth is

divided into two sub-bands for use by the two types of nodes employing di�erent
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carrier-sensing ranges respectively. This imposes additional hardware requirements

on the nodes and also causes spectrum waste.

Based on the above observations, we are motivated to develop a distributed

scheduling and routing algorithm to achieve the order-optimal throughput in CSMA

networks in this chapter. Speci�cally, by resorting to the percolation theory and by

carefully tuning the three controllable parameters in CSMA protocols, i.e., trans-

mission power, carrier-sensing threshold and count-down timer, we show that a

throughput of Θ
(

1√
n

)
is achievable in distributed CSMA networks operating with

one frequency band. More important, we analyze the pre-constant preceding the or-

der of the transport capacity by giving an upper and a lower bound of the transport

capacity. The tightness of the bounds is established using simulations.

The following is a detailed summary of our contributions:

• We develop a distributed routing and scheduling algorithm that is able to

achieve the order-optimal throughput in CSMA networks. More speci�cally,

the routing decision relies on the use of local neighborhood knowledge only

and each node competes for channel access in a distributed and randomized

manner using CSMA protocols.

• We demonstrate that by jointly tuning the carrier-sensing threshold and the

transmission power, the HN problem can be eliminated even for nodes us-

ing di�erent carrier-sensing thresholds, di�erent transmission powers and one

common frequency band. This is di�erent from the techniques used in the pre-

vious work [34] where nodes using di�erent carrier-sensing ranges have to use

di�erent frequency band for transmission. The technique developed provides

guidance on setting the carrier-sensing threshold and the transmission power

to avoid the HN problem in CSMA networks in a more general setting.
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• As pointed out in [3], the pre-constant is important to fully understand the

impact of various parameters on network capacity. We analyze the pre-constant

preceding the order of the transport capacity by giving an upper and a lower

bound of the transport capacity.

• Extensive simulations are carried out which validate the tightness of our ana-

lytical results.

The rest of this chapter is organized as follows. Section 5.2 de�nes notations and

concepts used in the later analysis; Section 5.3 describes the routing algorithm and

analyzes the tra�c load of each node; Section 5.4 presents the solution for obtaining a

hidden node free CSMA network; Section 5.5 optimizes the medium access probabil-

ity for each node by tuning the backo� timer and analyzes the per-node throughput

under our proposed communication strategy; Finally, Section 5.6 summarizes this

chapter.

5.2 De�nitions and Notations

5.2.1 Data rate

Despite the common knowledge that a higher SINR can lead to an increased link

capacity, in reality transmission from a transmitter to a receiver can only occur at

one of a set of preset data rates after the SINR threshold is met [68, 69]. Therefore

for a transmitter-receiver pair, when its associated SINR is above β, it is considered

that the transmitter can transmit to the receiver at a �xed rate of

W = log2 (1 + β) bits per second. (5.2.1)
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5.2.2 De�nition of throughput

Each node sends packets to an independently and randomly chosen destination node

via multiple hops. A node can be a source node, a destination node for another

source node, a relay node or a mixture.

The per-node throughput or equivalently the transport capacity of the network,

denoted by λ (n), is de�ned as the maximum rate that could be achieved a.a.s. by

all source-destination pairs simultaneously. Similar as that in [24], we say that a

per-node throughput of λ (n) is feasible if there is a temporal and spatial routing

and scheduling scheme such that every node can send λ (n) bits per second on time

average to its destination a.a.s., i.e., there exists a su�ciently large positive number

µ such that in every �nite time interval [(j − 1)µ, jµ] every node can send µλ (n)

bits to its destination a.a.s..

5.3 Routing Algorithm and Tra�c Load

In this section we describe the routing algorithm to be used and analyze the tra�c

load for each node under the algorithm. The routing algorithm chooses the sequence

of nodes to deliver a packet from its source to its destination without considering

physical layer implementation details.

To begin the construction of our routing algorithm, we partition Bn of size
√
n×

√
n into squares of side length c1 log n where c1 is a positive constant. Each of these

squares is then further subdivided into smaller cells of constant side length c. The

values of c1 and c will be speci�ed later. See Fig. 5.3.2 for an illustration. Following

common terminology used in the percolation theory, we also refer to these cells as

sites and use the two terms cells and sites exchangeably. We call a site open if it

contains at least one node, and closed otherwise. Due to the Poisson distribution of
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nodes with unit intensity, a site is open with probability p , 1− e−c2 . Furthermore,

the event that a site is open or closed is independent of the event that another

distinct site is open or closed. The total number of sites in a square is
(
c1
c

log n
)2
,

the total number of sites in Bn is
(√

n
c

)2

and the total number of squares in Bn

is
( √

n
c1 logn

)2

. The techniques to handle the situation that c1
c

log n,
√
n
c

and
√
n

c1 logn

are not integers are well-known [32]. Therefore in this paper we ignore some trivial

discussions involving the situations that c1
c

log n,
√
n
c

and
√
n

c1 logn
are not integers and

consider them to be integers.

Before we can further explain our routing algorithm, we need to �rst establish

some preliminary results. The network area Bn can be sliced into horizontal rectan-

gles of size c1 log n×
√
n, where each horizontal rectangle consists of

√
n

c1 logn
squares.

Denote by Hi the i
th horizontal rectangle where 1 ≤ i ≤

√
n

c1 logn
. We call two sites

adjacent if they share a common edge. We de�ne a left to right open path in Hi as

a sequence of distinct and adjacent open sites that starts from an open site on the

left border of Hi and ends at an open site on the right border of Hi. The following

theorem, due to [8, Theorem 4.3.9], gives a lower bound on the number of open paths

contained in Hi.

Theorem 5.1. [8, Theorem 4.3.9]Consider site percolation with parameter p = 1−

e−c
2
. For c su�ciently large, there exist constants c1 and ω1 independent of n,

satisfying

5

6
< p < 1, (5.3.1)

2 + c1 log (6 (1− p)) < 0 (5.3.2)

and

ω1 log
p

1− p
+ c1 log (6 (1− p)) + 2 < 0, (5.3.3)
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Figure 5.3.1: An illustration of left-to-right open paths in a rectangle obtained by
computer simulations. Black cells represent closed sites while white cells represent
open sites.

such that a.a.s. there exist at least ω1 log n left to right disjoint open paths in every

horizontal rectangle.

Fig. 5.3.1, drawn from a simulation, further gives an intuitive illustration of the

open paths in a horizontal rectangle.

By symmetry, if we partition Bn into
√
n

c1 logn
vertical rectangles. Each one is of

size c1 log n×
√
n and consists of

√
n

c1 logn
squares. Denote by Vj the j

th, 1 ≤ j ≤
√
n

c1 logn

vertical rectangle. It can also be established that a.a.s. there are at least ω1 log n

top to bottom disjoint open paths in every Vj, 1 ≤ j ≤
√
n

c1 logn
. The following result

can be readily established:

Corollary 5.1. There are a.a.s at least ω1 log n left-to-right open paths and ω1 log n

top-to-bottom open paths in every square.

We are now ready to describe our routing algorithm. Denote by SDi the line

segment connecting node i to its destination. The packets generated by source node

i are routed along the squares intersecting SDi. A square will only serve the tra�c

of a source-destination pair if the associated SD line intersects the square. Note that

it is trivial to establish that a.a.s. every square has at least one node. The routing

can be divided into three stages:
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In the �rst stage, a source node S, if it is not a node located in an open site

that forms one of the open paths, will transmit its packet to a node in a randomly

chosen open site that forms an open path. If there are multiple nodes in an open

site, a node will be designated randomly to relay all tra�c passing through the site.

If the source node is already in a site that forms an open path, this stage of routing

can be omitted and the routing proceeds directly to the next stage. The maximum

distance between the source node and its next-hop node in this stage is bounded

by
√

2c1 log n because the distance between any two nodes located in a square is at

most
√

2c1 log n.

In the second stage, the packet will be routed to the adjacent square intersecting

the SD line along one of these left-to-right open path or top-to-bottom open paths

until the packet reaches a node in the next square. Depending on the location of

the open path containing the relay node and the location of the adjacent square, the

packet may be routed along a left-to-right open path (when the adjacent square is

on the left or on the right of the current square) or along a top-to-bottom open path

(when the adjacent square is on the top or on the bottom of the current square). If

the packet needs to be switched from a left-to-right open path to a top-to-bottom

open path (e.g., when the previous square is on the left of the current square but the

next square is on the bottom of the current square), a top-to-bottom open path is

chosen randomly from the at least ω1 log n open path available. The above process

continues until the packet reaches the square that contains the destination node. In

this stage, the maximum distance between a node and its next-hop node is bounded

by
√

5c because the distance between any two nodes located in two adjacent cells is

at most
√

5c.

In the third stage, after reaching the square containing the destination node, if

the destination node is located on one of the open paths, the packet will be routed
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Figure 5.3.2: An illustration of partition of Bn and the routing algorithm. Black
square represents a closed site and white square represents an open site. Grey square
represents an open site that forms an open path. S and D, indicated by two small
hollow circles, are a pair of source and destination nodes. H1 and H2, indicated by
two small black squares, are two nodes located in open sites that form open paths.
First S transmits its packets to H1 using a transmission range of up to

√
2c1 log n.

Then the packets will be routed along the open paths to H2, using a transmission
range of up to

√
5c. Finally, H2 transmits the packets to the destination D. If H1

itself is a source node, then it transmits its packet directly to the next-hop node
along the open path, using a transmission range of up to

√
5c.

along a multi-hop path to the destination via open paths; if the destination is not

located on one of the open paths, the packet will be transmitted to the destination

directly and the maximum transmission distance is bounded by
√

2c1 log n.

The same route is used for all packets belonging to the same source-destination

pair.

The feasibility of the above routing algorithm is guaranteed by Corollary 5.1. A

node only needs neighborhood information of nodes no more than
√

5c1 log n away

to make a routing decision. The required information for making a proper routing

decision is vanishingly small compared with that in the highway algorithm. Further-

more, compared with the network size, the required information is also vanishingly
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Figure 5.3.3: An illustration of the number of left-to-right open paths in a horizontal
rectangle as the network size varies. Vertical axis shows the ratio of the number of
open paths to log n.

small as n → ∞. Therefore the routing algorithm can be executed in a distributed

manner.

Corollary 5.2 is a ready consequence of Theorem 5.1:

Corollary 5.2. Let c = 1.7308 and c1 = 3, a.a.s. there are at least 0.5474 log n

left-to-right open paths in every horizontal rectangle.

In the rest of this paper, we carry out analysis assuming that c and c1 take values

speci�ed in Corollary 5.2 and ω1 = 0.5474. Fig. 5.3.3 shows simulation results of the

number of open paths in a horizontal rectangle as the network size n varies. Each

random simulation is repeated a large number of times and the average result is

shown. The con�dence interval is very small and negligible, and thus not plotted in

the �gure. The lower bound on the number of open paths suggested in Corollary 5.2

is also plotted for comparison. As shown in Fig. 5.3.3, the lower bound is reasonably

tight.

After establishing the routing algorithm, next we analyze the tra�c load for each

node under the algorithm, which forms a key step in analyzing the network capacity.
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Figure 5.3.4: The number of SD lines passing through a square versus the upper
bound in Lemma 5.1. Vertical axis shows the ratio of the number of SD lines passing
through a square to

√
n log n.

Lemma 5.1 shows that the random number of SD lines passing through an ar-

bitrarily chosen square, including the SD lines originating from and ending at the

square, is upper bounded.

Lemma 5.1. For an arbitrary square in Bn, the random number of SD lines passing

through it, denoted by Y , satis�es that

lim
n→∞

Pr
{
Y ≤ ω2

√
n log n

}
= 1 (5.3.4)

where ω2 = 3.2 (1 + ε) (1 + δ1) c1, ε and δ1 are arbitrarily small positive constants.

Proof. See Appendix C.

As a way of establishing the tightness of the bound in Lemma 5.1, Fig. 5.3.4

shows simulation results of the number of SD lines passing a square in comparison

with the upper bound in Lemma 5.1.
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Using Corollary 5.1 and Lemma 5.1, the following result can be readily estab-

lished:

Lemma 5.2. Each relay node needs to carry the tra�c of at most ω2
√
n

0.5474
source-

destination pairs a.a.s.

Note that a node not on an open path does not need to carry the tra�c of other

source-destination pairs.

5.4 A Solution to HN Problem

Our routing algorithm described in the last section needs to use two di�erent trans-

mission ranges of lengths Θ (1) and Θ (log n) respectively. The use of two di�erent

transmission ranges in CSMA networks will exacerbate the HN problem. See Fig.

5.4.1 for an illustration. Assume that the same carrier-sensing threshold is used by

node A and B. The transmission of A using a lager transmission power (node B

using a smaller transmission power, respectively) can be detected by nodes located

within a distance RA (RB, respectively), and RA > RB. Consequently B can detect

A's transmission but node A cannot detect node B's. Therefore even when node B

is transmitting, node A still can start its own transmission, thereby resulting in a

collision and causing the HN problem. In [34], the problem was addressed by letting

nodes operate on two frequency bands, namely, short-range transmissions operate on

one frequency band while long-range transmissions operate on the other. Their solu-

tion may result in lower spectrum usage because long-range transmission is used less

frequently and also pose additional hardware requirements on nodes. Therefore, we

present a solution by jointly tuning the transmission power and the carrier-sensing

threshold.

54



5.4. A Solution to HN Problem

Figure 5.4.1: An illustration of the HN problem when nodes use di�erent transmission
power.

5.4.1 A formal de�nition of the HN problem

Under the SINR model, a set of concurrent transmissions (or links) are said to form

an independent set if the SINRs are all above the SINR threshold β. Let F be the

set of all independent sets. Because of the random and distributed nature of the

carrier-sensing operations by individual nodes, the set of simultaneous transmissions

observing the carrier-sensing constraint, denoted by SCS, may or may not belong to

F , i.e., some transmissions observing the carrier-sensing constraints may still cause

the SINRs at some receivers to be above β. Let FCS be the set of all SCSs. Let

Ψ be the set of concurrent transmissions in a CSMA network. More formally, a

HN problem is said to occur if Ψ ∈ FCS but Ψ /∈ F . A CSMA network is said

to be hidden node free if its carrier-sensing operations and transmission powers are

carefully designed such that all Ψ ∈ FCS also meets the condition that Ψ ∈ F .

For a CSMA network in which uniform transmission power is in use, by setting

the carrier-sensing range to be a constant multiple of the transmission range, the

hidden node problem can be e�ectively eliminated [34,79]. For our routing algorithm

using two transmission ranges of lengths Θ (1) and Θ (log n) , if the carrier-sensing

range is set to be Θ (log n), although the hidden node problem can be eliminated,

the number of concurrent transmissions (hence the spatial frequency reuse) will be
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reduced compared with a carrier-sensing range of Θ (1), which in turn causes a

reduced capacity. Therefore we manage to have transmissions with di�erent lengths

to coexist concurrently instead. In this way, the capacity will be maximized while

eliminating the HN problem.

More speci�cally, let P k
i be the transmission power used for the kth transmission

by node i where the same transmitter may use di�erent power when transmitting to

di�erent receiver. The transmitter also uses di�erent carrier-sensing threshold when

di�erent transmission power is used. Denote by τ ki the carrier-sensing threshold

used for P k
i . Furthermore, let the transmission power of a transmitter be such

that the power received at its intended receiver is at least P̄ (P̄ is a constant not

depending on n and the value of P̄ will be speci�ed shortly later in this section). In

the following analysis, for the simplicity of notation, we drop o� the superscript of

P k
i . The following lemma speci�es the relation between Pi and τi required for two

transmitters to be able to sense each other's transmission.

Lemma 5.3. Let the values of Pi and τi be chosen such that the following condition

is met

Pi = P̄ /τi. (5.4.1)

For two arbitrary transmitters located at xi and xj respectively, they can sense each

other's transmission i�

‖xi − xj‖ <
(
P̄

τiτj

) 1
α

=

(
PiPj
P̄

) 1
α

. (5.4.2)

Proof. When node i located at xi transmits using power Pi, the power received

at node j at location xj is given by Pi ‖xi − xj‖−α. Let τ j be the carrier-sensing

threshold of node j. The transmission of node i can be detected i� Pi ‖xi − xj‖−α >

τ j. Using (5.4.1), node j can detect node i's transmission i� P̄
τi
‖xi − xj‖−α > τj or
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equivalently ‖xi − xj‖ <
(

P̄
τiτj

) 1
α

=
(
PiPj
P̄

) 1
α
. Using a similar argument, node i can

detect node j's transmission i� (5.4.2) is met.

Lemma 5.3 shows that by carefully choosing the carrier-sensing threshold accord-

ing to the transmission power for each transmitter, a major cause of the hidden node

problem: a node A senses another node B's transmission but node B cannot sense

node A's transmission can be eliminated. In the next several paragraphs, we shall

demonstrate how to choose P̄ , which determines the minimum power received at a

receiver, such that the SINR requirement can also be met.

In the �rst and third stages of our routing algorithm, the maximum distance

between a transmitter and a receiver is
√

2c1 log n while the the maximum distance

between a transmitter and a receiver in the second stage is
√

5c. Accordingly, for

the �rst and third stages, we let the transmission power be

P h = P̄
(√

2c1 log n
)α
, (5.4.3)

while for the second stage, the transmission power is set to be at

P l = P̄
(√

5c
)α
. (5.4.4)

The received signal power of all transmissions is at least P̄ . Furthermore, Theorem

(4.1) established in Section (4.3) helps to obtain an upper bound on the interference

experienced by any receiver in the network. Consider a CSMA network with nodes

distributed arbitrarily on a �nite area in R2 where all nodes transmit at the same

power P and use the same carrier-sensing threshold τ . Let r0 be the distance between

a receiver and its transmitter. The maximum interference experienced by the receiver
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is smaller than or equal to N1 (d, r0) +N2 (d) where

N1 (d, r0) =
4
(

5
√

3
4
d− r0

)1−α (√
3

4
(3α− 1) d− r0

)
d2 (α− 1) (α− 2)

+
3

(d− r0)α
+

3(√
3d− r0

)α +
3
(

3
2
d− r0

)1−α

(α− 1) d
(5.4.5)

and

N2 (d) =
3

dα
+

3(3
2
)1−α

(α− 1) dα
+

3(√
3d
)α

+
3
(

5
4

)1−α
(3α− 1)

(α− 1) (α− 2)
(√

3d
)α (5.4.6)

and d =
(
P
τ

) 1
α .

Noting that N1 (d, r0) is a monotonically increasing function of r0, it can be

readily established that in the CSMA network analyzed in this chapter in which two

sets of transmission power, carrier-sensing threshold and the maximum transmission

range are employed, the maximum interference (for any value of n) is bounded by

N1

((
P h

τh

) 1
α

,
√

2c1 log n

)
+N2

((
P h

τh

) 1
α

)
+N1

((
P l

τ l

) 1
α

,
√

5c

)
+N2

((
P l

τ l

) 1
α

)
(5.4.7)

where τ l and τh are the carrier-sensing threshold chosen for P l and P h respectively

according to (5.4.1).

Remark 5.1. At the expense of more analytical e�orts, a tighter bound on inter-

ference can be established that the maximum interference in the CSMA network

considered in this chapter is bounded by N1

((
P l

τ l

) 1
α
,
√

5c

)
+N2

((
P l

τ l

) 1
α

)
for any

value of n. Because for a su�ciently large network, which is the focus of this chapter,
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the di�erence between this bound and the upper bound in (5.4.7) is negligibly small.

It is easy to conclude that using (5.4.5) and (5.4.6) when α > 2, the contribution of

the �rst two terms N1

((
Ph

τh

) 1
α
,
√

2c1 log n

)
+N2

((
Ph

τh

) 1
α

)
, attributable to trans-

missions using a larger transmission power, become vanishingly small compared with

the last two terms as n → ∞. The following theorem provides guidance on how to

choose P̄ to meet the SINR requirements for all concurrent transmissions in a large

CSMA network.

Theorem 5.2. For an arbitrarily high SINR requirement β, there exists a value

of P̄ for su�ciently large n such that the SINR of all transmissions in a CSMA

network, in which each transmitter sets its transmission power and carrier sensing

threshold according to the relationship in Lemma 5.3, is greater than or equal to β.

Furthermore, the value of P̄ is given implicitly by the following equation

P̄

N1

((
P l

τ l

) 1
α
,
√

5c

)
+N2

((
P l

τ l

) 1
α

) = β. (5.4.8)

Proof. Noting that the minimum received power is P̄ , the theorem becomes an easy

consequence of the interference upper bound established earlier in the section.

As a brief summary of the results of this section, Theorem 5.2 gives guidance

on how to choose P̄ to meet the SINR requirement. When the value of P̄ is �xed,

the transmission powers are then determined using (5.4.3) and (5.4.4) respectively.

Finally, the carrier sensing threshold associated with each transmission power is

determined using Lemma 5.3, which ensures that nodes can sense each other's trans-

mission. It can be readily established that the CSMA network whose transmission

power and carrier sensing threshold are chosen following the above steps are immune

from the HN problem.
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5.5 backo� Timer Setting and Capacity Analysis

In the last section, we demonstrated how to choose the transmission power and the

carrier sensing threshold to solve the HN problem. In the CSMA network in which

nodes may use two di�erent transmission powers, a potential problem that may arise

is that nodes using the larger transmission power may potentially contend with more

nodes for transmission opportunities. Therefore nodes using the larger transmission

power may not get a fair transmission opportunity compared with nodes using the

smaller transmission power. This may potentially causes nodes using the larger

transmission power to become a bottleneck in throughput which reduces the overall

network capacity. In this section, we demonstrate how to choose another controllable

parameter in CSMA protocols, i.e., backo� timer, to conquer the di�culty.

Same as that in references [34] and [80], we consider a CSMA protocol in which

the initial backo� timer is a random variable following an exponential distribution.

Nodes using di�erent transmission power may however choose di�erent mean value to

use in the exponential distribution governing their respective random initial backo�

timer. The following theorem provides the basis for choosing these mean values.

Theorem 5.3. Let δ2 and δ3 be two small positive constants. If transmissions using

a low transmit power P l set their initial backo� time to be exponentially distributed

with mean λl = 1 and transmissions using a high transmission power P h set their

initial backo� time to be exponentially distributed with mean λh = 1
log2 n

, then

(i) a.a.s. each low power transmission can be active with a constant probability

greater than or equal to

ω3 =
1

π
(

5P̄
1
α c
)2

+ (1 + δ2) 10πc2c2
1P̄

2
α + 1

(5.5.1)
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Figure 5.5.1: A comparison between the simulation result on the medium access
probability of a node using the low power transmission with the lower bound in
Theorem 5.3 when β = 10 and α = 4.

(ii) a.a.s. each high power transmission can be active with a probability greater

than or equal to

ω4 =
1

π
(√

10c1P̄
1
α

)2

log4 n+ (1 + δ3) 4πc4
1P̄

2
α log4 n+ 1

Proof. See Appendix D.

Fig. 5.5.1 shows the transmission opportunity (or the medium access probability)

of a node using P l versus the lower bound in Theorem 5.3 for di�erent values of n.

On the basis of the results established in this section and in the earlier sections,

we present the following theorem which forms the major result of this chapter.

Theorem 5.4. The achievable per-node throughput in the CSMA network is greater

than or equal to

0.5474ω3

ω2

√
n

W ; (5.5.2)
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and is smaller than or equal to

1

0.52c
(

5πc2c2
1P̄

2
α + 1

)√
n
×W

a.a.s. as n→∞, where ω2 is given in Lemma 5.1 and ω3 is given by (5.5.1).

Proof. We �rst show that the achievable per-node throughput is lower bounded

by 0.5474ω3

ω2
√
n
W . Let λ1 (n) (λ2 (n), respectively) be the per-node throughput that

can be achieved in the �rst and the third (the second, respectively) stages of our

routing algorithm. Obviously the �nal per-node throughput λ (n) satis�es λ (n) =

min {λ1 (n) , λ2 (n)}. In the following, we analyze λ1 (n) and λ2 (n) separately.

As an easy consequence of Lemma 5.2, a.a.s. each relay node carries the tra�c of

at most ω2
√
n

0.5474
source-destination pairs. According to the �rst statement of Theorem

5.3, a.a.s. each relay node on an open path can access the channel with a probability

of at least ω3, which is a constant independent of n. The conclusion then readily

follows that limn→∞ Pr
{
λ1 (n) ≥ 0.5474ω3

ω2
√
n
W
}

= 1.

For the second stage of the routing, note that a source or a destination node not on

an open path does not need to carry tra�c for other source-destination pairs. Using

the second statement of Theorem 5.3, conclusion follows that λ2 (n) = Ω
(

1
log4 n

)
.

Combining the above two results on λ1 (n) and λ2 (n) and noting that the capacity

bottleneck lies in the �rst and the third stages, the �rst statement in this theorem

is proved.

We now further show that the achievable per-node throughput is upper bounded

by W

0.52c
(

5πc2c21P̄
2
α+1

)√
n
. The upper bound is to be established using a result proved

in [?, Corollary 6], which shows that the per-node throughput is equal to the product

of the average number of simultaneous transmissions and the link capacity divided

by the product of the average number of transmissions required to deliver a packet
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to its destination and the number of source-destination pairs. We �rst analyze the

average number of transmissions required for a packet to reach its destination. The

average distance between a randomly chosen source-destination pair is 0.52
√
n [81].

A packet moves by one cell in each hop on an open path where the contribution of

the last mile transmission between a source (a destination) and an open-path node

is vanishingly small compared with 0.52
√
n. Thus a.a.s. the average number of hops

traversed by a packet is at least 0.52
√
n

c
. Next we analyze the average number of

simultaneous transmissions. Since there is at most one node in a cell acting as an

open path node, there are at most n
c2
open path nodes in the network. Let ηli be the

event that a transmission of node i using the low transmit power is active. Following

the same procedure in obtaining (D.0.1), (D.0.2) and (D.0.3), we have that Pr
{
ηli
}
≤

1

5πc2c21P̄
2
α+1

. Therefore, the average number of simultaneous transmissions is at most

n
c2
× 1

5πc2c21P̄
2
α+1

. Note that when a non-open-path node transmits with P h, the

number of simultaneous transmissions will only reduce. As a ready consequence of

the above analysis and [?, Corollary 6], an upper bound on the per-node throughput

results.

The lower bound on the per-node throughput provided in Theorem 5.4 is order

optimal in the sense that the throughput is of the same order as the known result

on the optimum per-node throughput [32] of networks under the same settings.

Furthermore, Theorem 5.4 gives the pre-constant preceding the order of the per-

node throughput: 0.5474ω3

ω2
. A detail examination of the pre-constant reveals that the

pre-constant can be separated into the product of two terms: 0.5474
ω2

and ω3. The

�rst term 0.5474
ω2

is entirely determined by the routing algorithm, more speci�cally

determined by how the routing algorithm distribute tra�c load among relay nodes

and among source-destination pairs. The second term ω3 is entirely determined by

the scheduling algorithm and some physical layer details, i.e., the SINR requirement,
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Figure 5.5.2: A simulation of per-node throughput with α = 4 and β = 10. For
comparison, the upper and the lower bound obtained is also shown.

interference and propagation model. The above observation appears to suggest that

impact of the routing algorithm and the scheduling algorithm can be decoupled

and studied separately, and the two algorithms that determine the overall network

capacity can be optimized separately.

Fig. 5.5.2 shows a comparison of the per-node throughput obtained from simula-

tions, the upper and lower bounds obtained in Theorem 5.4 for di�erent values of n.

To facilitate comparison, Fig. 5.5.3 further shows the ratio of the per-node through-

put obtained from simulations to the throughput lower bound and the ratio of the

throughput upper bound to the throughput lower bound. As shown in the �gures,

the lower bound is fairly tight and the upper bound is also within a factor of 10

of the simulation result. The simulation results demonstrate that the pre-constant

obtained in our study provides a pretty accurate characterization of the per-node

throughput.
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Figure 5.5.3: A simulation of per-node throughput with α = 4 and β = 10. For
comparison, the upper and the lower bound obtained are also shown. To facilitate
comparison, both the per-node throughput obtained from simulations and the per-
node throughput upper bound are normalized by the per-node throughput lower
bound.

5.6 Summary

In this chapter, we studied the transport capacity of large wireless multi-hop CSMA

networks. We showed that by carefully choosing the controllable parameters in the

CSMA protocol and designing the routing algorithm, a network running distributed

CSMA scheduling algorithm and each node making routing decisions based on local

information only can also achieve an order-optimal throughput of Θ
(

1√
n

)
, which

is the same as that of large networks employing centralized routing and scheduling

algorithms. Furthermore, we not only gave the order of the throughput but also

derived the pre-constant preceding the order by giving an upper and a lower bound of

the transport capacity. The tightness of the bounds was validated using simulations.

Theoretical analysis was presented on tuning the carrier-sensing threshold and the

transmission power to avoid HN problem and on tuning the backo� timer distribution

to ensure each node gain a fair access to the channel in CSMA networks using non-
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uniform transmission powers. The principle developed through the analysis was

expected to be also helpful to set the corresponding parameters of CSMA networks

in a more realistic setting.
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Chapter 6

Conclusions

In this thesis, we considered wireless multi-hop networks operating with distributed

MAC protocols: the CSMA protocols. The two fundamental properties, connectivity

and capacity of wireless CSMA multi-hop networks were investigated. We conclude

the thesis by summarizing our contributions in this chapter.

6.1 Critical Transmission Power for Connectivity

In chapter 4 we studied the connectivity of wireless CSMA networks under the SINR

model. That is, we investigated the connectivity with the consideration of interfer-

ence due to concurrent transmissions.

Firstly, we established an upper bound on the aggregated interference experienced

by any receiver in CSMA networks even when the coe�cient γ in (3.1.1) equals to 1.

The obtained upper bound (Theorem 4.1) is valid for any node distribution in R2.

Secondly, we showed that for an arbitrarily chosen SINR threshold, there exists a

transmission range such that a pair of nodes are directly connected if their Euclidean

distance is smaller than or equal to this transmission range. On that basis, we derived

an upper bound on the critical transmission power required for the CSMA network
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to be a.a.s. connected under the SINR model as n→∞.

Thirdly, we derived a lower bound on the critical transmission power by heuris-

tically constructing a scheduling algorithm who observes the carrier-sensing con-

straints. The two bounds are tight and di�er by a constant factor only. The results

suggested that the network can be connected for an arbitrarily high SINR require-

ment so long as the carrier-sensing capability is available. Compared with that

considering UDM without interference, the transmission power only needs to be in-

creased by a constant factor to combat interference and maintain connectivity. This

result is optimistic compared with previous results on the connectivity of ALOHA

networks under the SINR model [18, 19].

In summary, we studied the connectivity of wireless CSMA networks by pursuing

bounds of the critical transmission power. Di�erent from other work [57,72,73], which

resorted to approximations of the spatial distribution of concurrent transmitters in

CSMA networks and empirical validation of the accuracy of such approximations,

the results generated by our method are analytically rigorous.

6.2 Transport Capacity

In Chapter 5 we investigated the transport capacity of large wireless CSMA multi-

hop networks.

Firstly, we developed a distributed routing and scheduling algorithm that is com-

patible with large wireless multi-hop networks. The routing decision relies on the use

of local neighborhood knowledge only and each node competes for channel access in

a distributed and randomized manner using CSMA protocols.

Secondly, we demonstrated that by jointly tuning the carrier-sensing threshold

and the transmission power, the HN problem can be eliminated even for nodes us-
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ing di�erent carrier-sensing thresholds, di�erent transmission powers and a common

frequency band. This is di�erent from the techniques used in the previous work [34]

where nodes using di�erent carrier-sensing ranges have to transmit in di�erent fre-

quency band. The developed technique provided guidance on setting the carrier-

sensing threshold and the transmission power to avoid the HN problem in CSMA

networks in a general setting.

The pre-constant preceding the scaling law is important to fully understand the

impact of various parameters on network capacity. Therefore, we not only showed

that wireless CSMA networks can achieve the optimal capacity scaling law, but also

analyzed the pre-constant preceding the order of the transport capacity by giving an

upper and a lower bound of the transport capacity. The principle developed through

the analysis is expected to be also helpful to set the corresponding parameters of

CSMA networks in a more realistic setting.

69



Bibliography

[1] M. Conti and S. Giordano, �Multihop ad hoc networking: The theory,� IEEE

Communications Magazine, vol. 45, no. 4, pp. 78�86, 2007.

[2] P. Gupta and P. R. Kumar, �Critical power for asymptotic connectivity,� in

IEEE Conference on Decision and Control, 1998, vol. 1, 1998, pp. 1106�1110

vol.1.

[3] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti,

�Stochastic geometry and random graphs for the analysis and design of wireless

networks,� IEEE Journal on Selected Areas in Communications, vol. 27, no. 7,

pp. 1029�1046, 2009.

[4] C. Bettstetter and C. Hartmann, �Connectivity of wireless multihop networks in

a shadow fading environment,� Wireless Networks, vol. 11, no. 5, pp. 571�579,

2005.

[5] G. Mao, �Wireless multi-hop networks: Current research and future challenges,�

Journal of Communications, Special Issue on Future Directions in Computing

and Networking, vol. 7, no. 5, pp. 357�364, 2012.

[6] E. N. Gilbert, �Random plane networks,� Journal of the Society for Industrial

and Applied Mathematics, vol. 9, no. 4, pp. 533�543, 1961.

70



Bibliography

[7] R. Meester and R. Roy, Continuum Percolation, ser. Cambridge Tracts in Math-

ematics. Cambridge University Press, 1996.

[8] M. Franceschetti and R. Meester, Random Networks for Communication from

Statistical Physics to Information Systems. Cambridge University Press, 2007.

[9] M. Penrose, Random Geometric Graphs, 1st ed. New York: Oxford University

Press, 2003.

[10] T. K. Philips, S. S. Panwar, and A. N. Tantawi, �Connectivity properties of

a packet radio network model,� IEEE Transactions on Information Theory,

vol. 35, no. 5, pp. 1044�1047, 1989.

[11] F. Xue and P. Kumar, �The number of neighbors needed for connectivity of

wireless networks,� Wireless Networks, vol. 10, no. 2, pp. 169�181, 2004.

[12] P. Balister, B. Bollobas, A. Sarkar, and M. Walters, �Connectivity of random

k-nearest-neighbour graphs,� Advances in Applied Probability, vol. 37, no. 1, pp.

1�24, 2005.

[13] ��, �A critical constant for the k nearest neighbour model,� Advances in Ap-

plied Probability, vol. 41, no. 1, pp. 1�12, 2009.

[14] R. Hekmat and P. Van Mieghem, �Connectivity in wireless ad-hoc networks with

a log-normal radio model,� Mobile Networks & Applications, vol. 11, no. 3, pp.

351�360, 2006.

[15] D. Miorandi and E. Altman, �Coverage and connectivity of ad hoc networks

presence of channel randomness,� in Proceedings of IEEE INFOCOM, vol. 1,

2005, pp. 491�502 vol. 1.

71



Bibliography

[16] D. Miorandi, �The impact of channel randomness on coverage and connectivity

of ad hoc and sensor networks,� IEEE Transactions on Wireless Communica-

tions, vol. 7, no. 3, pp. 1062�1072, 2008.

[17] X. Ta, G. Mao, and B. D. O. Anderson, �On the giant component of wire-

less multihop networks in the presence of shadowing,� IEEE Transactions on

Vehicular Technology, vol. 58, no. 9, pp. 5152�5163, 2009.

[18] O. Dousse, F. Baccelli, and P. Thiran, �Impact of interferences on connectivity

in ad hoc networks,� IEEE/ACM Transactions on Networking, vol. 13, no. 2,

pp. 425�436, 2005.

[19] O. Dousse, M. Franceschetti, N. Macris, R. Meester, and P. Thiran, �Percolation

in the signal to interference ratio graph,� Journal of Applied Probability, vol. 43,

no. 2, pp. 552�562, 2006.

[20] C. Avin, Z. Lotker, F. Pasquale, and Y. A. Pignolet, �A note on uniform power

connectivity in the sinr model,� Algorithmic Aspects of Wireless Sensor Net-

works, vol. 5804, pp. 116�127, 2009.

[21] G. Mao and B. D. O. Anderson, �Connectivity of large wireless networks under a

general connection model,� IEEE Transactions on Information Theory, vol. 59,

no. 3, pp. 1761�1772, 2013.

[22] ��, �Towards a better understanding of large-scale network models,�

IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp. 408�421, 2012.

[23] S. C. Ng, G. Mao, and A. B. D. O., �Critical density for connectivity in 2d and 3d

wireless multi-hop networks,� IEEE Transactions on Wireless Communications,

vol. 12, no. 4, pp. 1512�1523, 2013.

72



Bibliography

[24] P. Gupta and P. R. Kumar, �The capacity of wireless networks,� IEEE Trans-

actions on Information Theory, vol. 46, no. 2, pp. 388�404, 2000.

[25] S. P. Weber, Y. Xiangying, J. G. Andrews, and G. de Veciana, �Transmission ca-

pacity of wireless ad hoc networks with outage constraints,� IEEE Transactions

on Information Theory, vol. 51, no. 12, pp. 4091�4102, 2005.

[26] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah, �Optimal throughput-

delay scaling in wireless networks - part i: the �uid model,� IEEE Transactions

on Information Theory, vol. 52, no. 6, pp. 2568�2592, 2006.

[27] S. R. Kulkarni and P. Viswanath, �A deterministic approach to throughput scal-

ing in wireless networks,� IEEE Transactions on Information Theory, vol. 50,

no. 6, pp. 1041�1049, 2004.

[28] L. Xie and P. R. Kumar, �A network information theory for wireless communi-

cation: scaling laws and optimal operation,� IEEE Transactions on Information

Theory, vol. 50, no. 5, pp. 748�767, 2004.

[29] A. Jovicic, P. Viswanath, and S. R. Kulkarni, �Upper bounds to transport ca-

pacity of wireless networks,� IEEE Transactions on Information Theory, vol. 50,

no. 11, pp. 2555�2565, 2004.

[30] O. Leveque and I. E. Telatar, �Information-theoretic upper bounds on the ca-

pacity of large extended ad hoc wireless networks,� IEEE Transactions on In-

formation Theory, vol. 51, no. 3, pp. 858�865, 2005.

[31] A. Ozgur, O. Leveque, and D. N. C. Tse, �Hierarchical cooperation achieves op-

timal capacity scaling in ad hoc networks,� IEEE Transactions on Information

Theory, vol. 53, no. 10, pp. 3549�3572, 2007.

73



Bibliography

[32] M. Franceschetti, O. Dousse, D. N. C. Tse, and P. Thiran, �Closing the gap in

the capacity of wireless networks via percolation theory,� IEEE Transactions on

Information Theory, vol. 53, no. 3, pp. 1009�1018, 2007.

[33] G. Alfano, M. Garetto, and E. Leonardi, �Capacity scaling of wireless networks

with inhomogeneous node density: upper bounds,� IEEE Journal on Selected

Areas in Communications, vol. 27, no. 7, pp. 1147�1157, 2009.

[34] C.-K. Chau, M. Chen, and S. C. Liew, �Capacity of large-scale csma wireless

networks,� IEEE/ACM Transactions on Networking, vol. 19, no. 3, pp. 893�906,

2011.

[35] J.-w. Cho, S.-L. Kim, and S. Chong, �Capacity of interference-limited ad hoc

networks with infrastructure support,� IEEE Communications Letters, vol. 10,

no. 1, pp. 16�18, 2006.

[36] O. Dousse, M. Franceschetti, and P. Thiran, �On the throughput scaling of

wireless relay networks,� IEEE Transactions on Information Theory, vol. 52,

no. 6, pp. 2756�2761, 2006.

[37] M. Grossglauser and D. N. C. Tse, �Mobility increases the capacity of ad hoc

wireless networks,� IEEE/ACM Transactions on Networking, vol. 10, no. 4, pp.

477�486, 2002.

[38] C. Hu, X. Wang, Z. Yang, J. Zhang, Y. Xu, and X. Gao, �A geometry study

on the capacity of wireless networks via percolation,� IEEE Transactions on

Communications, vol. 58, no. 10, pp. 2916�2925, 2010.

[39] P. Li and Y. Fang, �Impacts of topology and tra�c pattern on capacity of hybrid

wireless networks,� IEEE Transactions on Information Theory, vol. 8, no. 12,

pp. 1585�1595, 2009.

74



Bibliography

[40] P. Li, M. Pan, and Y. Fang, �The capacity of three-dimensional wireless ad hoc

networks,� in Proceedings of IEEE INFOCOM, 2011.

[41] T. Yang, G. Mao, and W. Zhang, �Capacity of interference-limited three dimen-

sional csma networks,� in Proceedings of IEEE ICC, 2012.

[42] P. Jacquet, S. Malik, B. Mans, and A. Silva, �On the throughput-delay trade-o�

in georouting networks,� in Proceedings of IEEE INFOCOM, 2012, pp. 765�773.

[43] Z. Kong and Y. E. M., �Connectivity and latency in large-scale wireless networks

with unreliable links,� in Proceedings of IEEE INFOCOM, 2008.

[44] P. Li, C. Zhang, and Y. Fang, �Capacity and delay of hybrid wireless broadband

access networks,� IEEE Journal on Selected Areas in Communications, vol. 27,

no. 2, pp. 117�125, 2009.

[45] M. J. Neely and E. Modiano, �Capacity and delay tradeo�s for ad hoc mobile

networks,� IEEE Transactions on Information Theory, vol. 51, no. 6, pp. 1917�

1937, 2005.

[46] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah, �Optimal throughput-

delay scaling in wireless networks - part ii: Constant-size packets,� IEEE Trans-

actions on Information Theory, vol. 52, no. 11, pp. 5111�5116, 2006.

[47] S. Chen, Y. Wang, M. Li, and X. Shi, �Order-optimal data collection in wireless

sensor networks: Delay and capacity,� in Proceedings of IEEE SECON, 2009,

pp. 1�9.

[48] A. Zemlianov and G. de Veciana, �Capacity of ad hoc wireless networks with

infrastructure support,� IEEE Journal on Selected Areas in Communications,

vol. 23, no. 3, pp. 657�667, 2005.

75



Bibliography

[49] M. Durvy, O. Dousse, and P. Thiran, �On the fairness of large csma networks,�

IEEE Journal on Selected Areas in Communications, vol. 27, no. 7, pp. 1093�

1104, 2009.

[50] G. Alfano, M. Garetto, and E. Leonardi, �New insights into the stochastic ge-

ometry analysis of dense csma networks,� in Proceedings of IEEE INFOCOM,

2011, pp. 2642�2650.

[51] X. Y. Li, �Multicast capacity of wireless ad hoc networks,� IEEE/ACM Trans-

actions on Networking, vol. 17, no. 3, pp. 950�961, 2009.

[52] S. Weber, J. G. Andrews, and N. Jindal, �The e�ect of fading, channel inversion,

and threshold scheduling on ad hoc networks,� IEEE Transactions on Informa-

tion Theory, vol. 53, no. 11, pp. 4127�4149, 2007.

[53] S. Govindasamy, D. W. Bliss, and D. H. Staelin, �Spectral e�ciency in single-

hop ad-hoc wireless networks with interference using adaptive antenna arrays,�

IEEE Journal on Selected Areas in Communications, vol. 25, no. 7, pp. 1358�

1369, 2007.

[54] A. Hasan and J. G. Andrews, �The guard zone in wireless ad hoc networks,�

IEEE Transactions on Wireless Communications, vol. 6, no. 3, pp. 897�906,

2007.

[55] S. P. Weber, J. G. Andrews, Y. Xiangying, and G. de Veciana, �Transmission

capacity of wireless ad hoc networks with successive interference cancellation,�

IEEE Transactions on Information Theory, vol. 53, no. 8, pp. 2799�2814, 2007.

[56] J. Andrews, S. Weber, M. Kountouris, and M. Haenggi, �Random access trans-

port capacity,� IEEE Transactions on Wireless Communications, vol. 9, no. 6,

pp. 2101�2111, 2010.

76



Bibliography

[57] R. K. Ganti, J. G. Andrews, and M. Haenggi, �High-sir transmission capacity

of wireless networks with general fading and node distribution,� IEEE Transac-

tions on Information Theory, vol. 57, no. 5, pp. 3100�3116, 2011.

[58] M. Haenggi and R. K. Ganti, �Interference in large wireless networks,� Founda-

tions and Trends in Networking, vol. 3, no. 2, pp. 127�248, 2009.

[59] M. Penrose, �The longest edge of the random minimal spanning tree,� Annals

of Applied Probability, vol. 7, pp. 340�361, 1997.

[60] C. Bettstetter, �On the connectivity of ad noc networks,� The computer journal,

vol. 47, pp. 169�181, 2004.

[61] ��, �On the minimum node degree and connectivity of a wireless multihop

network,� in Proceedings of ACM MobiHoc, 2002, pp. 80�91.

[62] T. S. Rappaport, Wireless Communications Principles and Practice, 2nd ed.

Prentice Hall, 2002.

[63] E. Lebhar and Z. Lotker, �Unit disk graph and physical interference model:

Putting pieces together,� in Proceedings of IEEE IPDPS. IEEE Computer

Society, 2009, pp. 1�8.

[64] I. Byun, A. J. G., and K. Kwang Soon, �Delay-constrained random access trans-

port capacity,� IEEE Transactions on Wireless Communications, vol. 12, no. 4,

pp. 1628�1639, 2013.

[65] S. Kumar, V. S. Raghavan, and J. Deng, �Medium access control protocols for ad

hoc wireless networks: A survey,� Ad Hoc Networks, vol. 4, no. 3, pp. 326�358,

2006.

77



Bibliography

[66] S. W. Ko and S. L. Kim, �Optimization of transport capacity in wireless multi-

hop networks,� Eurasip Journal on Wireless Communications and Networking,

2013, 110.

[67] B. Alawieh, Z. Yongning, C. Assi, and H. Mouftah, �Improving spatial reuse in

multihop wireless networks - a survey,� IEEE Communications Surveys, Tuto-

rials, vol. 11, no. 3, pp. 71�91, 2009.

[68] T.-S. Kim, H. Lim, and J. C. Hou, �Understanding and improving the spatial

reuse in multihop wireless networks,� IEEE Transactions on Mobile Computing,

vol. 7, no. 10, pp. 1200�1212, 2008.

[69] T.-Y. Lin and J. C. Hou, �Interplay of spatial reuse and sinr-determined data

rates in csma/ca-based, multi-hop, multi-rate wireless networks,� in Proceedings

of IEEE INFOCOM, 2007.

[70] A. Busson, G. Chelius, and Acm, �Point processes for interference modeling in

csma/ca ad-hoc networks,� in Proceedings of ACM Pe-Wasun, 2009, pp. 33�40.

[71] M. Haenggi, �Mean interference in hard-core wireless networks,� IEEE Commu-

nications Letters, vol. 15, no. 8, pp. 792�794, 2011.

[72] H. Q. Nguyen, F. Baccelli, and D. Kofman, �A stochastic geometry analysis

of dense ieee 802.11 networks,� in Proceedings of IEEE INFOCOM, 2007, pp.

1199�1207.

[73] R. K. Ganti and J. G. Andrews, �A new method for computing the transmission

capacity of non-poisson wireless networks,� in Proceedings of IEEE ISIT, 2010,

pp. 1693�1697.

78



Bibliography

[74] T. V. Nguyen and F. Baccelli, �On the spatial modeling of wireless networks by

random packing models,� in Proceedings of IEEE INFOCOM, 2012, pp. 28�36.

[75] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry And Its Applica-

tions, 2nd ed. Wiley, 1995.

[76] F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless Networks

Volume II : APPLICATION. Paris: Now Publishers, 2009.

[77] G. Mao and B. D. O. Anderson, �On the asymptotic connectivity of random net-

works under the random connection model,� in Proceedings of IEEE INFOCOM,

2011, pp. 631�639.

[78] P. Gupta and P. R. Kumar, �Internets in the sky: capacity of 3d wireless net-

works,� in Proceedings of IEEE CDC, 2000.

[79] L. Fu, S. Liew, and J. Huang, �E�ective carrier sensing in csma networks under

cumulative interference,� IEEE Transactions on Mobile Computing, vol. PP,

no. 99, pp. 1�1, 2012.

[80] L. Jiang and J. Walrand, �A distributed csma algorithm for throughput and

utility maximization in wireless networks,� IEEE/ACM Transactions on Net-

working, vol. 18, no. 3, pp. 960�972, 2010.

[81] J. Philip, The probability distribution of the distance between two random points

in a box. KTH mathematics, Royal Institute of Technology, 2007.

[82] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed.

New York: Springer, 1999.

[83] T. M. Apostol and M. A. Mnatsakanian, �Sums of squares of distances in m-

space,� American Mathematical Monthly, vol. 110, no. 6, pp. 516�526, 2003.

79



Bibliography

[84] A. Klenke and L. Mattner, �Stochastic ordering of classical disrete distributions,�

Advances in Applied Probability, vol. 42, no. 2, pp. 392�410, 2010.

80



Appendix A

Proof of Theorem 4.1

A network on a �nite area, denoted by A ⊂ R2, can always be obtained from a net-

work on an in�nite area R2 with the same node density and distribution by removing

those nodes outside A. Such removal process will also remove all transmitters out-

side A. Therefore the interference at a receiver on A is less than or equal to the

interference experienced by its counterpart in a network on R2. It then su�ces to

show that the interference in a network on R2 is bounded.

Consider that an arbitrary receiver z is located at a Euclidean distance r0 from

its closest transmitter w, which is also the intended transmitter for z. We construct

a coordinate system such that the origin of the coordinate system is at w and z is

on the +y axis, as shown in Fig. A.0.1.

The distance between any two concurrent transmitters is at least Rc, given by

(4.2.3). Draw a circle of radius Rc/2 centered at each transmitter. Then the two

circles centered at two closest transmitters cannot overlap except at a single point.

Therefore the problem of determining the maximum interference can be transformed

into one that determining the maximum number of equal-radius non-overlapping

circles that can be packed into R2. The densest circle packing, i.e., �tting the
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Figure A.0.1: An illustration of the densest equal-circle packing.

maximum number of non-overlapping circles into R2, is obtained by placing the

circle centers at the vertices of a hexagonal lattice [82, p. 8], as shown in Fig. A.0.1.

Group the vertices of the hexagonal lattice into tiers of increasing distances

from the origin. The six vertices of the �rst tier are within a Euclidean distance

Rc to the origin. The 6m vertices in the mth tier are located at distances within

((m− 1)Rc,mRc] from the origin.

Let I1 be the interference caused by transmitters, hereinafter referred to as in-

terferers in this proof, above the x-axis at node z. Using the triangle inequalities

gives ‖xi − z‖ ≥ ‖xi‖− r0 where xi is the location of an interferer above the x-axis.

Among the 6m interferers in themth group, half of them are located above the x-axis.

Among these interferers in the mth group above the x-axis, three of them are at a

Euclidean distance of exactly mRc from the origin and the rest 3(m− 1) interferers
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are at Euclidean distances within [
√

3
2
mRc, mRc]. Hence, we have

I1 ≤
∞∑
m=1

(
3 (m− 1)P(√
3

2
mRc − r0

)α +
3P

(mRc − r0)α

)
. (A.0.1)

Look at the �rst summation in (A.0.1). Let Um, m = 3, . . . ,∞, be random vari-

ables uniformly and i.i.d. in [m− 1/2, m+ 1/2]. It follows from the convexity of

3(m−1)P(√
3

2
mRc−r0

)α and Jensen's inequality (used in the second step) that

∞∑
m=3

3 (m− 1)P(√
3

2
mRc − r0

)α
=

∞∑
m=3

3 (E [Um]− 1)P(√
3

2
E [Um]Rc − r0

)α (A.0.2)

≤
∞∑
m=3

E

[
3 (Um − 1)P(√
3

2
UmRc − r0

)α
]

=
∞∑
m=3

∫ m+1/2

m−1/2

3 (x− 1)P(√
3

2
xRc − r0

)
α

dx

= 3P

∫ ∞
5/2

(x− 1)

(√
3

2
xRc − r0

)
−αdx

=
4P
(

5
√

3
4
Rc − r0

)1−α (√
3

4
(3α− 1)Rc − r0

)
R2
c (α− 1) (α− 2)

(A.0.3)

Likewise, we also have
∑∞

m=2
3P

(mRc−r0)α
≤ 3P( 3

2
Rc−r0)

1−α

(α−1)Rc
. As a result of the last

equation and (A.0.1), (A.0.3), (4.3.1), it follows that I1 ≤ N1 (r0).

Now we consider the total interference caused by interferers below the x-axis at

node z, denoted by I2. Let xi be the location of an interferer below the x-axis, it

follows from the triangle inequality that ‖xi − z‖ ≥ ‖xi‖. Therefore

I2 ≤
∞∑
m=1

(
3P

(mRc)
α +

3 (m− 1)P(√
3

2
mRc

)α
)
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≤ 3P

Rα
c

+
3P (3

2
)1−α

(α− 1)Rα
c

+
3P(√
3Rc

)α +
3P
(

5
4

)1−α
(3α− 1)

(α− 1) (α− 2)
(√

3Rc

)α (A.0.4)

Combining I1 ≤ N1 (r0) and (A.0.4), Theorem 4.1 is proved.
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Lemma B.1

Lemma B.1 is needed in the proof of Theorem 4.3. Theorem B.1 is used to prove

Lemma B.1.

Theorem B.1. (Theorem 1 in [83]) Let v1,v2, . . . ,vj be j arbitrary points in R2.

Let w1, w2, . . . wj be j positive numbers regarded as weights attached to these points,

and de�ne a position vector c by
∑j

i=1 wivi = Wc where W =
∑j

i=1 wi. Then for

an arbitrary point z, the following holds:
∑j

i=1 wi ‖vi − z‖2 =
∑j

i=1 wi ‖vi − c‖2 +

W ‖z − c‖2

Lemma B.1. Consider a triangular lattice with unit side length and having a vertex

located at the origin o. De�ne the 1st tier of points to be the six points placed at the

vertices of the triangular lattice at a distance of 1 to the origin o. Let the mth tier

of points be the 6m points placed at the vertices of the triangular lattice located at

distances within (m− 1, m] from the origin o, as shown in Figure B.0.1. The total

number of points from the 1st tier to the mth tier then equals to j = 3m (1 +m).

Let v1,v2, . . .vj be the location vectors of these j points and the points are ordered

according to their distances to the origin o in a non-decreasing order. For an arbitrary

point z located inside the hexagon formed by the 1st tier of six points, the following
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Figure B.0.1: An illustration of a triangular lattice

holds:
∑j

i=1 ‖vi − z‖−α is minimized when z is located at the origin o.

Proof. Now we use Theorem B.1 to prove Lemma B.1. Letting all attached weights

wi equal to 1 and using Theorem B.1, for an arbitrary point z located inside the

hexagon formed by the 1st tier of six points, we have

∑6
i=1 ‖vi − z‖2 =

∑6
i=1 ‖vi − c‖2 + 6 ‖z − c‖2 (B.0.1)

where c is given by
∑6

i=1 vi = 6c. It is clear that c is the centroid of the six points.

Since the hexagon has a unit side length, ‖vi − c‖ equals to 1. Let xi = ‖vi − z‖

and y = ‖z − c‖. The problem in Lemma B.1 can then be converted to the following

constrained minimization problem:

minimize f (x1, . . . , x6) =
∑6

i=1x
−α
i

subject to h (x1, . . . , x6) =
∑6

i=1x
2
i − 6− 6y2 = 0
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where the constraint is due to (B.0.1). Using the method of Lagrange multipliers,

we �rst construct the Lagrangian in the following: F (x1, . . . x6,Λ) = f (x1, . . . , x6)+

Λh (x1, . . . , x6) where the parameter Λ is known as the Lagrange multiplier. Then

�nd the gradient and set it to zero: ∇F (x1, . . . x6,Λ) =



−αx−α−1
1 + 2Λx1

...

−αx−α−1
6 + 2Λx6

h (x1, x2, . . . , x6)



T

=

0. Solving the above equation, it is obtained that Λ = α
2

(1 + y2)
−α+2

2 and x1 =

x2 . . . = x6 =
(

2Λ
α

) −1
α+2 = (1 + y2)

1
2 . Since xi = ‖vi − z‖ denotes the Euclidean

distance from vi to z, only when z = c, we can have x1 = x2 = . . . = x6 = 1. It

follows that the minimum of f (x1, x2, . . . , x6) is obtained only when z is located at

the origin o. Further, for the 6m points of the mth tier, using the same method,

it can be shown that
∑6m

i=1 ‖vi − z‖−α is minimized only when z is located at the

origin o. The result follows.
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Proof of Lemma 5.1

In the proof of Lemma 5.1, we will make use of a result established in the stochastic

ordering theory [84]. For two real valued random variables X1 and X2, we say

X1 ≤st X2 i� for all x ∈ (−∞,∞), Pr {X1 > x} ≤ Pr {X2 > x}.

Theorem C.1. [84, Theorem 1(a)]Suppose Xi follows a Binomial distribution with

parameters ni ∈ N and pi ∈ (0, 1), denote the distribution of Xi by B (ni, pi), i = 1, 2,

i.e., Xi ∼ B (ni, pi). We have X1 ≤st X2 i� (1− p1)n1 ≥ (1− p2)n2 and n1 ≤ n2.

As an easy consequence of the above theorem, for three independent Binomial

random variables X1 ∼ B (n1, p1), X2 ∼ B (n1, p2) and X3 ∼ B (n2, p2) with n1 ≤

n2 and p1 ≤ p2, it can be concluded that X1 ≤st X2 ≤st X3.

Now we are ready to prove Lemma 5.1. Let Y j
i be the indicator random variable

for the event that the SDi passes through the jth square:

Y j
i =


1 if SDipasses through the jthsquare

0 otherwise.

We shall derive an upper bound on Pr
{
Y j
i = 1

}
for any j ∈

[
1, n

log2 n

]
. Circumscribe
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Figure C.0.1: An illustration of a SD line intersecting the circumscribed circle

the jth square with a small circle of radius
√

2
2
c1 log n, as shown in Fig. C.0.1. For a

source S located outside the square and at a distance x from the center of the square,

the angle θ (x) subtended by the circle at S is θ (x) = 2 arcsin

√
2

2
c1 logn

x
. Using the

fact that arcsinx ≤ 1.6x when 0 ≤ x ≤ 1, we have

θ (x) = 1.6 arcsin

√
2

2
c1 log n

x
≤ 3.2

√
2

2
c1 log n

x
(C.0.1)

Noting that Bn is of size
√
n ×
√
n, the area of the sector formed by the two

dashed tangents Fig. C.0.1 and the boarder of Bn is at most θ(x)
2π
n. If the destination

of S, denoted by D, does not lie in this sector, then the associated SD line does not

pass through the circle. Therefore, the probability that the SD line intersecting the

circle is at most θ(x)
2π

. Considering that the circle is located in a
√
n ×
√
n box Bn,

the probability density that S is at a distance x from the circle can be shown to be

upper bounded by 2πx
n
. It follows from the above analysis and (C.0.1) that

Pr
{
Y j
i = 1

}
≤
∫ √2n

0

3.2×
√

2
2
c1 log n

2πx
× 2πx

n
dx =

3.2c1 log n√
n

(C.0.2)

Recall that Γ represents the set of indices of all nodes in the network. For a �xed

square j, the total number of SD lines passing through it is given by Y j =
∑|Γ|

i=1 Y
j
i ,
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which is the sum of i.i.d. Bernoulli random variables since the locations of nodes

are independent and Y j
i depends only on the locations of source and destination

nodes of the ith source-destination pair. Therefore Y j follows the Binomial distri-

bution, i.e., Y j ∼ B
(
|Γ| , Pr

{
Y j
i = 1

})
. As an easy consequence of the Poisson

distribution of nodes, a.a.s. the total number of nodes |Γ| ≤ (1 + ε)n, where ε is

an arbitrarily small positive constant. De�ne another Binomial random variable

Ỹ j ∼ B
(

(1 + ε)n, 4c1 logn√
n

)
. It follows from Theorem C.1 that

Y j ≤st Ỹ j

It can be further shown that for any 0 < δ1 < 1,

Pr

{
Y j > (1 + δ1) (1 + ε)n

3.2c1 log n√
n

}
≤ Pr

{
Ỹ j > (1 + δ1) (1 + ε)n

3.2c1 log n√
n

}
= Pr

{
Ỹ j > (1 + δ1)E

[
Ỹ j
]}

≤ exp

(
−δ

2
1

3
E
[
Ỹ j
])

(C.0.3)

= exp

(
−3.2 (1 + ε) δ2

1c1

√
n log n

3

)
(C.0.4)

where (C.0.3) results from the Cherno� bound. Using the union bound and the

above result, we have

Pr


n

c21 log2 n⋃
j=1

Y j > 3.2 (1 + ε) (1 + δ1) c1

√
n log n


≤ n

c2
1 log2 n

exp

(
−3.2 (1 + ε) δ2

1c1

√
n log n

3

)
(C.0.5)

Noting that n
c21 log2 n

exp
(
−3.2(1+ε)δ21c1

√
n logn

3

)
→ 0 as n → ∞, therefore a.a.s. Y j ≤
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3.2 (1 + ε) (1 + δ1) c1

√
n log n for any j ∈

[
1, n

log2 n

]
which completes the proof of

Lemma 5.1.
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Proof of Theorem 5.3

Consider a node i on an open path located at xi transmitting with power P l =

P̄
(√

5c
)α
. Since the highest transmission power used in the network is P h =

P̄
(√

2c1 log n
)α
, by (5.4.2), the furtherest transmitter that node i can sense is within

a distance of
√

10cc1P̄
1
α log n. Denote by D (x, r) a disk centered at x and with a ra-

dius of r. All nodes that are possibly competing with node i for transmission opportu-

nities are located within D
(
xi,
√

10cc1P̄
1
α log n

)
. Denote by A (x, r1, r2) an annu-

lus area centered at x with an inner radius r1 and an outer radius r2. A little re�ection

shows that all nodes using the low transmission power P l and competing with node i

must be located in D
(
xi, 5P̄

1
α c2
)
, and the nodes in A

(
xi, 5P̄

1
α c2,
√

10cc1P̄
1
α log n

)
that compete with node xi must use the high transmit power P h. Note that in each

open site that forms the open path, only one node serves as the relay node. Hence,

there are at most
π
(

5P̄
1
α c2

)2
c2

= π
(

5P̄
1
α c
)2

open path nodes inD
(
xi, 5P̄

1
α c2
)
that use

P l. Let N (x, r) be the random number of nodes located in D (x, r). Next we pro-

vide an asymptotic upper bound on the number of nodes in D
(
xi,
√

10cc1P̄
1
α log n

)
for any node i on an open path. Denoting by H the set of indices of nodes on open

paths, clearly |H| < n
c2
. By Cherno� bound and the union bound, we have for an
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arbitrarily small positive constant δ2,

Pr

{⋃
i∈H

N
(
xi,
√

10cc1P̄
1
α log n

)
≥ (1 + δ2) 10πc2c2

1P̄
2
α log2 n

}

= Pr

{⋃
i∈H

N
(
xi,
√

10cc1P̄
1
α log n

)
≥ (1 + δ2)E

[
N
(
xi,
√

10cc1P̄
1
α log n

)]}

≤ n

c2
e
− δ

2
2
3
E

[
N
(
xi,
√

10cc1P̄
1
α logn

)]
(D.0.1)

where E denotes the expectation operator.

It can be readily shown that n
c2

exp
{
− δ22

3
E
[
N
(
xi,
√

10cc1P̄
1
α log n

)]}
approaches

0 as n→∞. Therefore a.a.s. the number of nodes within a distance
√

10cc1P̄
1
α log n

of an open path node is bounded above by (1 + δ2) 10πc2c2
1P̄

2
α log2 n.

Next we analyze the transmission opportunity of an open path node. Denote

by ti the back o� timer of node i at a particular time instant when the channel

is idle. Denote by Ci the set of indices of nodes that compete with node i for

transmission. Following the CSMA protocol, node i can become an active transmitter

in the competition if

ti < min
j∈Ci\{i}

tj.

Let ηli be the event that a transmission of node i using the low transmit power is

active. Using the �memoryless� property of an exponential distribution that for a

timer following an exponential distribution, the amount of lapsed time does not alter

the distribution of the remaining value of the timer, it can be shown that for any

i ∈ H,

Pr
{
ηli
}

= Pr

{
ti < min

j∈Ci\{i}
tj

}
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≥
∫ ∞

0

(
e−λlt

)π(5P̄
1
α c
)2 (

e−λht
)(1+δ2)10πc2c21P̄

2
α log2 n

×λle−λltdt (D.0.2)

where in the above equation the term
(
e−λlt

)π(5P̄
1
α c
)2

represents the probability that

at a randomly chosen time instant when the channel is idle, all π
(

5P̄
1
α c
)2

open

path nodes in D
(
xi, 5P̄

1
α c2
)
, which are competing for transmission opportunities

with node i, have their respective back o� timer larger than a particular value t; the

term
(
e−λht

)(1+δ2)10πc2c21P̄
2
α log2 n

represents the probability that all nodes using P h in

D
(
xi,
√

10cc1P̄
1
α log n

)
, which are competing for transmission opportunities with

node i, have their respective back o� timer larger than t; the term λle
−λlt is the pdf

of the back o� timer of node i. It can be further shown from (D.0.2) that for any

i ∈ H,

Pr
{
ηli
}

≥ λl

∫ ∞
0

e
−
(
π
(

5P̄
1
α c
)2
λl+λh(1+δ2)10πc2c21P̄

2
α log2 n+λl

)
t
dt

=
λl

π
(

5P̄
1
α c
)2

λl + λh (1 + δ2) 10πc2c2
1P̄

2
α log2 n+ λl

=
1

π
(

5P̄
1
α c
)2

+ λh
λl

(1 + δ2) 10πc2c2
1P̄

2
α log2 n+ 1

=
1

π
(

5P̄
1
α c
)2

+ (1 + δ2) 10πc2c2
1P̄

2
α + 1

. (D.0.3)

Now we continue to prove the second part of Theorem 5.3. Consider that a

node j transmits using the high power P h = P̄
(√

2c1 log n
)α
. By (5.4.2), all nodes

that are possibly competing with node j are located within D
(
xj, 2c2

1P̄
1
α log2 n

)
.

Furthermore, among the nodes competing with node j, those open path nodes using

the lower transmission power P l must be located in D
(
xj,
√

10cc1P̄
1
α log n

)
, and the
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number of these open path nodes is at most
π
(√

10cc1P̄
1
α logn

)2
c2

= π
(√

10c1P̄
1
α log n

)2

.

Next we derive an upper bound on the number of nodes in D
(
xj, 2c2

1P̄
1
α log2 n

)
competing with node j for any j ∈ O where O is the set of indices of nodes using

the high power. It can be easily shown that limn→∞ Pr (|O| < 2n) = 1. Using the

union bound and the Cherno� bound, we have for any small positive constant δ3,

Pr

{⋃
j∈O

N
(
xj, 2c

2
1P̄

1
α log2 n

)
≥ (1 + δ3) 4πc4

1P̄
2
α log4 n

}

= Pr

{⋃
j∈O

N
(
xj, 2c

2
1P̄

1
α log2 n

)
≥ (1 + δ3)E

[
N
(
xj, 2c

2
1P̄

1
α log2 n

)]}

≤ 2ne
− δ

2
3
3
E

[
N
(
xj , 2c

2
1P̄

1
α log2 n

)]

Obviously 2n exp
{
− δ23

3
E
[
N
(
xj, 2c2

1P̄
1
α log2 n

)]}
approaches 0 as n → ∞. There-

fore a.a.s. the number of nodes competing with node j where j ∈ O is smaller than

or equal to (1 + δ3) 4πc4
1P̄

2
α log4 n. Let ηhj be the event that node j, j ∈ O, is active.

It can be shown that for any j ∈ O,

Pr
{
ηhj
}

≥
∫ ∞

0

(
e−λlt

)π(√10c1P̄
1
α logn

)2 (
e−λht

)(1+δ3)4πc41P̄
2
α log4 n

× λhe−λhtdt

=
1

π
(√

10c1P̄
1
α log n

)2
λl
λh

+ 1 (1 + δ3) 4πc4
1P̄

2
α log4 n+ 1

=
1

π
(√

10c1P̄
1
α

)2

log4 n+ (1 + δ3) 4πc4
1P̄

2
α log4 n+ 1

(D.0.4)
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