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Abstract—Nodes in ad hoc networks with randomly oriented
directional antenna patterns typically have fewer short links and
more long links which can bridge together otherwise isolated
subnetworks. This network feature is known to improve overall
connectivity in 2D random networks operating at low channel
path loss. To this end, we advance recently established theoretical
results to obtain analytic expressions for the mean degree of
3D networks for simple but practical anisotropic gain profiles,
including those of patch, dipole and end-fire array antennas. Our
analysis reveals that for homogeneous systems (i.e. neglecting
boundary effects) directional radiation patterns are superior
to the isotropic case only when the path loss exponent is less
than the spatial dimension. Moreover, we establish that ad
hoc networks utilizing directional transmit and isotropic receive
antennas (or vice versa) are always sub-optimally connected
regardless of the environment path loss. We extend our analysis
to investigate inhomogeneous systems, and study the geometrical
reasons why boundary effects cause directional radiating nodes to
be at a disadvantage to isotropic ones. Finally, we discuss multi-
directional gain patterns consisting of many equally spaced lobes
which could be used to mitigate boundary effects and improve
overall network connectivity.

I. INTRODUCTION

Wireless ad hoc networks do not rely on any pre-existing
infrastructure such as routers or access points and so can
be deployed on the fly [1]. Equipped with multihop relay-
ing and signal processing capabilities, they can self-organize
and dynamically optimize network performance, traits which
are becoming increasingly useful in sensor and vehicular
network applications [2], including, inter alia, smart grid,
exploration and environmental monitoring over extended 3D
regions, disaster detection and/or search-and-rescue operations
in hazardous/disaster relief areas, swarm robotics, road safety
message dissemination, traffic management and dynamic route
planning. Commonality in these applications can be found in
that the number and distribution of nodes in the networks
is often random, as was realized and studied by Gupta and
Kumar in 1998 [3]. From a communications perspective,
understanding the connectivity properties of random networks1

has ever since been of paramount importance as it can lead to
improved network design, protocols [7], [8] and deployment
methodologies [9]–[11].

orestis.georgiou@toshiba-trel.com
1A plethora of relevant problems and solutions can be found in the

mathematical literature under random graph theory [4], and in physics under
percolation theory [5], [6].

It is often assumed, that when deployed, ad hoc networks
will be well connected. To date, many works have challenged
this assumption and have theoretically investigated a number
of network features and variants. Most however adopt one or
more of the following assumptions: the network resides in
an extended two dimensional domain2, nodes are isotropically
radiating, links between nodes are formed deterministically
according to a fixed range (i.e. hard-disk type connections),
and/or the number of nodes N →∞. In what follows we will
lift all of these assumptions.

We are interested in the effect of randomized beamforming
strategies3 which are known to improve network connectivity
at low path loss exponents. How this improvement is achieved
was first addressed in [13], and later in [14] where it was
argued that randomized beamforming cannot be said to strictly
improve/degrade connectivity. To this end, it was numerically
estimated in [15] (and similar papers by the same authors) that
the critical path loss exponent below which improvements are
observed is 3. This was analytically pushed down to 2 in [16]
for homogeneous domains where it was also shown that this
number is independent of the small-scale fading model used.
Finally, the possibility of using multi-directional antennas was
proposed and studied in [17], and although unmotivated, was
reported to enhance connectivity at low path loss. All the above
works are restricted to two dimensional networks.

It is this partial understanding that motivates the current
investigation where we consider finite and confined three di-
mensional networks with anisotropically radiating nodes, that
connect in probability space using well established statistical
fading models. To this end, we provide general analytic formu-
las for the connectivity mass4 of several simple but practical
radiation pattern approximations (including those of patch,
dipole and end-fire array antennas) and conclusively show
when and how randomized beamforming of anisotropically
radiating nodes can improve or worsen the connectivity of
ad hoc networks5. Namely, we find that in the absence of
boundary effects, directional antennas yield superior perfor-

2Some works consider bounded domains but scale volume exponentially
with the number of nodes, thus ignoring any boundary effects [12].

3In randomized beamforming, each anisotropically radiating node selects a
boresight direction randomly and independently on the unit sphere.

4The connectivity mass (defined in (5)) is a measure of the connectivity
properties of a node in the network and is related to several other network
observables.

5In all cases, the gain is properly normalized as to ensure a fair comparison.
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mance when the path loss exponent η is less than the spatial
dimension d, and inferior when η > d. Moreover, when η = d,
network connectivity is found to be invariant to the antenna
gain details. This simple and attractive picture is however
radically different in confined spaces. We show that in the
presence of boundaries, the advantages of directional antennas
are significantly undermined due to the existence of ‘blind
spots’, which effectively decrease the network mean degree
and increase the likelihood of node isolation. Therefore, we
propose and investigate multi-directional radiation patterns as
a means to mitigate boundary effects. We stress that while
hardware functionality may vary in realistic networks deployed
in for example so called smart buildings for sensing, tracking,
or control purposes, our analysis captures the underlying
network connectivity features on both local and global scales.
This enables simple design recommendations to be extracted
depending on the ratio d/η and the local network topology.
Consequently, global network connectivity and functionality
can be enhanced through many local considerations in a
distributed fashion.

The paper is structured as follows: Sec. II introduces the
system set-up and all relevant parameters and assumptions.
Sec. III discusses various network observables and identifies
the connectivity mass as a key quantity of interest. Sec. IV in-
vestigates the connectivity mass for homogeneous systems (i.e.
ignoring boundary effects) and derives analytic expressions
for simple but practical gain profiles which are then verified
through extensive computer simulations which calculate both
the mean degree and the probability of node isolation. Based
on these expressions, the analysis presented in Sec. V reveals
that the connectivity properties of ad hoc networks scale with
the solid angle over which the gain is concentrated on. Sec. VI
examines the effect of boundaries in inhomogeneous systems
and identifies the weaknesses of directional patterns. Sec. VII
proposes a multi-directional solution to mitigate boundary
effects and investigates the optimal radiation pattern for a
rectangular cuboid domain. Finally, Sec. VIII summarises and
discusses our main results and highlights some ideas and
challenges for future research.

II. NETWORK DEFINITIONS AND SYSTEM MODEL

We begin our discussion by describing the system set-up
and all relevant parameters and assumptions. We consider a
network consisting of N identical nodes with locations ri for
i = 1, . . . , N , chosen randomly inside a three dimensional
domain V ⊆ R3 of volume V . The density of nodes is assumed
uniform and is given by ρ = N/V . The antenna orientations
v̂i are also chosen at random from a uniform distribution
supported on the surface area of the unit sphere S2. Such
node distributions are often used to model vehicular and ad
hoc wireless networks [1], [2].

Assuming negligible inter-node interference, we define the
connection probability between nodes i and j separated by a
distance rij = |ri − rj | ≥ 0 through the relation

H(rij) = P (log2(1 + SNR · |h|2) ≥ ℘), (1)

signifying that the channel between them can support a rate
of at least ℘. It is worth noting that other definitions can be

Fig. 1. Simplified gain patterns of a patch, dipole, and horn or end-fire array
antennas.

adopted for H(rij) such as the target bit-error probability or
the complement of the information outage probability. For the
sake of brevity we will henceforth write Hij instead of H(rij)
unless otherwise stated.

In equation (1), SNR denotes the long-term average received
signal-to-noise ratio and h is the channel transfer coefficient
for single input single output (SISO) antenna systems. Without
loss of generality, we assume lossless antennas with equal
transmit and receive performances. We therefore have from
the Friis transmission formula that

SNR ∝ GiGjr−ηij (2)

where η is the path loss exponent6, Gi is the gain of the
antenna at node i observed in the direction of node j and Gj
is the gain of the antenna at node j observed in the direction
of node i. The gain functions represent the ratio between the
signal intensity in a given direction, and the signal intensity
had the same power been radiated isotropically. In order to
keep the mathematics tractable, we will ignore small sidelobes
and backlobes (as done in many other studies) and mostly
restrict our analysis to rotationally symmetric gain patterns
(i.e. surfaces of revolution) about some orientation unit vector
v̂. It follows that isotropic radiation patterns have a constant
gain G = 1, while anisotropic ones are functions of the polar
angle θ about v̂, appropriately normalized by the condition∫ 2π

0

∫ π

0

G(θ) sin θdθdφ = 4π. (3)

At a later stage, we will also consider multi-directional radi-
ation patterns of the form

G(θ, φ) =

n∑
k=1

gk(θ(k)), (4)

where the gk characterize the gain function for the k-th direc-
tional lobe, and θ(k) is the angle measured from a collection
of unit vectors Θ = {v̂(k), for k = 1, . . . , n}. Note that
multi-directional radiation patterns are typically not surfaces

6Typically η = 2 corresponds to propagation in free space but for cluttered
environments it is observed to be η > 2. Values of η < 2 have been reported,
typically for indoor environments, for example in grocery stores [18].
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of revolution, but their individual components gk are. We
adjourn further development of this notation until the relevant
subsections.

Complicated radiation patterns can be achieved using a
variety of beamforming techniques [19]. In the simplest case
this would involve a number of isotropic radiating antenna
elements arranged in a linear, circular or planar array with
variable transmit and receive powers and appropriately tuned
phase shifts. If done correctly, the constructive/destructive
electromagnetic interference results in the desired radiation
pattern. Achieving perfect beamforming across large networks
however is an idealized and relatively costly system require-
ment. Therefore, we adopt here a simpler strategy by choosing
the antenna orientation vector v̂ of each node at random thus
offering a simple and practical deployment method at low
hardware complexity and minimal communication overhead.

In summary, our system model, as defined above, has
three sources of randomness: random node positions, random
antenna orientations, and random pair connection probabilities
according to the channel fading model. In what follows, we
investigate the connectivity properties at both the local vicinity
of each node and the global network topology using simple but
practical radiation patterns, characteristic of relatively cheap
and readily available antennas, e.g., patch, dipole, and horn
or end-fire arrays (see illustrations in Fig. 1). For the reader’s
convenience we include in Table I a list of the above defined
parameters for future reference.

TABLE I
NOTATION AND SYMBOLS USED IN THE PAPER

Symbol Definition / Explanation
η Path loss exponent
N Number of nodes
V Domain in which network nodes are deployed
ri Vector describing the position of node i in V
v̂i Vector describing the antenna orientation of node i
rij Euclidean distance between nodes i and j
V Domain volume
ρ Density of nodes equal to N/V
Gi Antenna gain of node i in the direction of node j
Hij Probability that the pair (i, j) is connected

III. NETWORK CONNECTIVITY AND CONNECTIVITY MASS

There exist a plethora of measures of the connectivity
properties of a complex network [6]. These include for
example clustering statistics, network modularity measures,
the number of independent paths, algebraic connectivity, etc.
Each of these measures offers different information and one
must choose wisely which ones are useful to the intended
application. Here, we restrict our attention to four closely
related observables, namely we study 1) the pair formation
probability p2, 2) the degree distribution d(k), 3) the minimum
network degree Pmd(k), and 4) the probability that a random
network with randomly oriented antennas is fully connected
Pfc. In what follows, we will argue that all four observables
can be effectively characterized through the connectivity mass
M(ri, v̂i), thus rendering it a key metric of interest, which we

will study for both homogeneous and inhomogeneous domains
in the subsequent sections. We define the connectivity mass
of a node i through the relation

M(ri, v̂i) =
1

4π

∫ ∫
V
HijdrjdΩj , (5)

where dΩ = sinϑdϑdϕ denotes the differential solid angle in
spherical coordinates and the integration is performed over the
unit sphere S2 = [0, π)× [0, 2π). Note that we will use curly
symbols (ϑ, ϕ) for orientation coordinates, and normal ones
(θ, φ) for position coordinates.

A. Pair Formation Probability

The physical significance of the connectivity mass becomes
apparent through the simple relation

Hi =
M(ri, v̂i)

V
, (6)

describing the probability that node i situated at ri connects
with a randomly chosen node j. This probability is obtained
by averaging over all possible node positions rj ∈ V and all
possible antenna orientations Ωj . Integrating (6) once more
gives the probability that two randomly selected nodes connect
to form a pair

p2 =
1

4πV

∫ ∫
V
HidridΩi. (7)

B. Degree Distribution

Since node locations and orientations are independent, the
probability that node i has degree k (i.e. connects with exactly
k other nodes) is given by the binomial distribution

di(k) =

(
N − 1

k

)
Hk
i (1−Hi)

N−1−k. (8)

If N is large and Hi is small, (8) can be well approximated
by the Poisson distribution

di(k) ≈ µki
k!
e−µi , Di(k) =

k∑
m=0

di(m), (9)

where µi = (N − 1)Hi, and Di(k) is the corresponding
cumulative distribution function. The Poisson approximation
in (9) is justified if V � 1, thus making Hi small. Finally,
to obtain the degree distribution we average over all possible
node positions and all possible antenna orientations to obtain

d(k) =
1

4πV

∫ ∫
V
di(k)dridΩi. (10)

The average number of nodes connected to a typical node in
the network is called the mean degree and is simply given by

µ =
1

4πV

∫ ∫
V
µidridΩi = (N − 1)p2. (11)
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C. Minimum network degree

From the degree distribution, it is straight forward to derive
Pmd(k) defined as the probability that the network has mini-
mum degree k. Assuming that for N � 1, the degree of node
i is almost independent of the degree of node j 6= i (this is
true if i and j are not directly connected), it follows that [20]

Pmd(k) =

N∏
i=1

P (degree(ri) ≥ k) =

N∏
i=1

(1−Di(k − 1)) .

(12)

In a homogeneous system (i.e. when there are no boundary
effects) the ith node’s position and orientation is arbitrary. This
implies that d(k) = di(k) and µ = µi ∀i such that

Pmd(k) =

[
1−

k−1∑
m=0

µk

k!
e−µ

]N
= 1−N

k−1∑
m=0

µm

m!
e−µ + . . .

(13)

Note that if the mean degree µ is large enough, correction
terms denoted in (13) as (. . .) will be exponentially smaller,
and can thus be neglected to yield a concise approximation
of Pmd. For inhomogeneous systems the above picture is
incomplete as boundary effects play an important role.

D. Full Connectivity

A network is said to be fully connected if any node can
communicate with any other node in a multihop fashion.
While a very strong measure of connectivity, Pfc is compatible
with delay and/or disruption tolerant networking. This field
was recently popularized by the Defence Advanced Research
Projects Agency (DARPA) in an attempt to increase wireless
network reliability and prevent disruptions due to: radio range,
node sparsity, energy resources, attack, noise, etc. [21], [22].

1) Isotropic Case: For isotropic radiation (G = 1), a theory
for Pfc was recently developed in [23] for arbitrary dimension
d ≥ 2 using an exact cluster expansion approach derived from
statistical physics. The authors main result expressed Pfc at
high densities as the complement of the probability of an
isolated node

Pfc = 1− ρ
∫
V
e−ρ

∫
V Hijdrjdri. (14)

Clearly, if
∫
V Hijdrj <∞ we have that Pfc = 1 in the limit

of ρ→∞. As the density of nodes is decreased from ∞, the
most likely way that a network becomes not fully connected is
through an isolated node. This is exactly what (14) describes.
As the density of nodes is decreased further, several nodes
may become isolated and may even group together and form
isolated pairs (see [23] for more details). At such densities or
lower, equation (14) becomes obsolete and thus inaccurate7.

7 Identifying at what densities (14) is valid requires further analysis beyond
the scope of the current paper.

2) Anisotropic Case: Equation (14) can be generalized for
anisotropic radiation patterns and can account for the randomly
oriented nodes in a straightforward way as follows

Pfc = 1− ρ

4π

∫ ∫
V
e−

ρ
4π

∫∫
V HijdrjdΩjdridΩi

= 1− ρ

4π

∫ ∫
V
e−ρM(ri)dridΩi.

(15)

The density regime under which (15) is valid requires a similar
analysis as that discussed for the isotropic case above. Note
that for homogeneous domains, the ith node’s position and
orientation is arbitrary such that (15) simplifies to

Pfc = 1−Ne−ρM, (16)

where M is the homogeneous connectivity mass defined
through

M =
1

4π

∫ ∫
R3

H(|rj |)drjdΩj . (17)

Significantly, in this case we have that the pair formation
probability is simply p2 = Hi = M/V , and the mean degree
is µ = ρM when N � 1. Furthermore, by comparing (16)
to (13) it is clear that our expression for Pfc becomes an
exponentially tight lower bound to Pmd(1) for large enough
N and µ. This is intuitive since any fully connected network
has minimum degree of at least 1. However, the opposite is
not necessarily true. For instance a network comprising of two
pairs of connected nodes has minimum degree 1 but is not fully
connected. We will later numerically confirm this bound for a
variety of antenna gain profiles (see Fig. 8).

In conclusion, we have presented strong evidence that the
connectivity mass is a key observable of interest as it contains
information about p2, d(k), µ, Pmd(k), and Pfc. It is
worth noting that contrary to Pfc, Pmd(k) and d(k), the pair
formation probability p2 and the mean degree µ are local
observables involving only two nodes (rather than global ones
involving N � 1 nodes8). Consequently, if the typical system
size is much larger than the typical connectivity range r0, we
expect p2 and µ to be very much insensitive to the domain
shape details leading to p2 . M/V and µ . ρM. This is
because Hi is approximately constant for the majority of node
positions (away from the domain boundary) and orientations,
and decreases (approximately linearly) when closer than ∼ r0

to the boundary. We will confirm this expectation later through
computer simulations (see Fig. 7).

In this section we have argued that the connectivity mass
is a key metric of network connectivity. We have achieved
this by establishing direct links with a number of network
observables. The physical significance of the connectivity mass
is that it characterizes the local connectivity of a node. This
local characteristic is then translated to a global one through
the exponentiation of the connectivity mass in equations (10),
(13) and (15). Our aim in what follows is to analyse and
understand the connectivity mass for different anisotropic
radiation patterns and thus offer intelligent and useful design

8Intuitively, this is why the position and orientation integrals of node j
appear in the exponents of (10), (13) and (15).
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Fig. 2. Reference frame centred at ri. Assuming that the gain functions are
rotationally symmetric, then Gj is a function of the angle between v̂j and
−rj given by ϑj , while Gi a function of the angle between v̂i and rj given
by χ = arccos(cos θj cosϑi +cos(φj −ϕi) sin θj sinϑi). Note that when
ϑi = 0, then χ = θj .

recommendations which improve the connectivity of wireless
communication networks. We begin with the case of a homo-
geneous system.

IV. HOMOGENEOUS ANISOTROPIC CONNECTIVITY MASS

Since the system is homogeneous, we can choose ri as the
origin of the reference frame such that rij = |rj | which we
write as rj for convenience. Furthermore, since the system is
isotropic we can conveniently choose v̂i = (1, 0, 0) in spheri-
cal coordinates. The position coordinates of node j are given
by rj = (rj , θj , φj), while its orientation by v̂j = (1, ϑj , ϕj)
as shown in Fig. 2. Note that since the gain functions are
rotationally symmetric, ϕj is a free parameter.

In the analysis that follows we will assume only small scale
scattering effects and thus adopt a Rayleigh fading model9

where |h|2 in (1) is modelled as an exponentially distributed
random variable [25]. The pair connectedness function is
therefore given by

Hij = exp

(
−

βrηj
Gi(θj)Gj(ϑj)

)
, (18)

where β depends on for example the transmission wavelength,
signal power, et cetera, and defines an effective communi-
cation range r0 = [β/(GiGj)]

−1/η between nodes i and j.
Significantly, in the limit of η →∞, the connection probability
Hij is no longer probabilistic but rather converges to the
deterministic hard-disk model with an on/off communication
range at r0. Notice that Gi is a function of the position of
j whilst Gj is a function of the orientation of antenna j as
described in the caption of Fig. 2. Performing the rj , φj and
ϕj integrals in (17) and simplifying we arrive at our first main

9More exotic fading models such as the two-wave with diffuse power
(TWDP) [24] which can approximate channels with arbitrary combinations of
specular and diffuse components, offer little additional insight to the present
discussion as our approach will be concentrated on the antenna radiation
patterns rather than the detailed fading parameters [16].

result

M =
1

4π

∫ ∫ 2π

0

∫ π

0

∫ ∞
0

r2
j sin θjHijdrjdθjdφjdΩj

=
πΓ(3/η)

ηβ3/η

(∫ π

0

sin θjGi(θj)
3/ηdθj

)(∫ π

0

sinϑjGj(ϑj)
3/ηdϑj

)
(19)

where Γ(x) is the gamma function and the separation of the
integrals is analogous to that obtained in the 2D case [16].
We notice that when η = 3, the homogeneous connectivity
mass M is invariant10 with respect to the specific radiation
pattern due to the normalization condition in (3). Therefore,
in 3D we expect the ratio 3/η to be a key system parameter
dictating the performance of M for different antenna gain
profiles. Generalizing this to arbitrary d ≥ 2 dimensional
domains is straight forward and results in angular integrals
involving Gd/η such that M becomes invariant with respect to
G when d = η.

Since the gain integrals in (19) of Gi and Gj factor out
nicely and are equivalent to each other, we define

Sη[G] =

∫ π

0

sin θG(θ)3/ηdθ, (20)

and investigate the functional’s dependence with respect to the
path exponent η, for simple but practical gain functions in or-
der to identify which ones yield better (or worse) connectivity
properties.

A. Isotropic Radiation

As a benchmark for our theoretical analysis we set G = 1
corresponding to isotropic radiation. In this case we have the
following trivial result for the functional of interest

Sη[G] =

∫ π

0

sin θdθ = 2. (21)

B. Wide-Angle Unidirectional Radiation

Fig. 3. The cardioid pattern for ε = 1/4, 1/2, 3/4, and 1, from left to right.

Wide-angle unidirectional radiation patterns are character-
istic of microstrip antennas, also called patch antennas. Patch
antennas are relatively cheap and easy to manufacture using
modern printed-circuit technology. Moreover, they are me-
chanically robust and therefore are generally used in wireless
communications where size, weigh, cost, performance, and
ease of installation are often the main constraints [26]. Their
narrow bandwidth is being somewhat mitigated by the fact
that many communications protocols are nowadays moving
towards CDMA and TDMA techniques which use a single
band.

10A similar observation was made for two dimensional domains in [16]
where the critical path loss was found to be η = 2.
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Patch antenna gains typically have a single wide-angled
major lobe with a number of small minor ones. We ignore
the minor lobes and approximate the patch antenna radiation
pattern by the cardioid function G(θ) = 1 + ε cos θ, for
θ ∈ (0, π) with ε ∈ [0, 1]. The parameter ε measures the extent
of deformation from the isotropic case as shown in Fig. 3 with
ε = 1 corresponding to the most directional case. To obtain
the 3D radiation pattern, the gain profile of Fig. 3 is rotated
about the x-axis, thus producing a surface of revolution. For
general ε we find

Sη[G] = η
(1 + ε)1+3/η − (1− ε)1+3/η

ε(η + 3)
. (22)

Notice that when ε = 0 we recover (21), whilst when ε = 1
we have Sη[G] = 21+3/η

1+3/η .

C. Omnidirectional Radiation

Fig. 4. The donought pattern for m = 1, . . . , 5, from left to right.

Omnidirectional radiation patterns are characteristic of
dipole antennas, commonly used in wideband wireless ap-
plications. Their radiation pattern is shaped like a doughnut
and is symmetric about the axis of the dipole. In the simplest
case of a half-wavelength dipole antenna we may approximate
this pattern by G(θ) =

2Γ( 3+m
2 )

√
πΓ( 2+m

2 )
sinm θ, for θ ∈ (0, π) with

m > 0 [26]. The parameter m measures the directivity of the
donought ring as shown in Fig. 4. For general m we find

Sη[G] =

(
2Γ( 3+m

2 )
√
πΓ( 2+m

2 )

)3/η √πΓ(1 + 3m
2η )

Γ( 3(m+η)
2η )

. (23)

D. Narrow-Angle Unidirectional Radiation

Fig. 5. The highly directional horn pattern for λ = 1, 2, 3, from left to right.

Highly directional patterns are characteristic of horn an-
tennas and can also be generated by end-fire arrays. Typical
applications include high powered satellite communications
and radio telescopes, although beamforming techniques have
recently attracted much attention in low-power wireless mul-
tihop networks [13], [15]. We approximate their radiation
pattern by G(θ) = (2(λ2 − 1) cosλθ)/(λ sin π

2λ − 1) in the
interval θ ∈ (0, π2λ ) with for λ ≥ 1 and G = 0 elsewhere. The
parameter λ measures the directivity of the beam as shown in
Fig. 5. For the case of λ = 2 we find

Sη[G] =
η(6 + 6

√
2)3/η

2(3 + η)
2F1(1,

3

2
+

3

η
, 2 +

3

η
,−1), (24)

Fig. 6. Comparison of the functional Sη [G] as a function of the path
loss exponent η for the various radiation patterns considered in this section.
Directional radiation patterns are superior to the isotropic case only when
η < 3.

where 2F1 is the Gauss hypergeometric function. Closed form
expressions exist for other values of λ but become increasingly
complicated and do not offer further insight.

E. Narrow-Angle Multi-directional Radiation

As a generalization to the above unidirectional radiation pat-
tern we allow for the possibility of multiple, non-overlapping,
highly directional, identical lobes (see the left panel of Fig. 9
for an example with n = 6 lobes). Although such exotic
gain patterns are not often encountered in practice11, the
following theoretical investigation presents an interesting ex-
ercise and can offer some useful design recommendations.
For a radiation pattern with n > 1, the gain function
is given by (4) with each lobe described by gk(θ(k)) =
(2(λ2 − 1) cosλθ(k))/(nλ sin π

2λ − n) for k = 1, . . . , n, with
θ(k) ∈ (0, π2λ ), and λ ≥ 1. For the case of λ = 2 and general
n we find

Sη[G] =

n∑
k=1

∫ π
2λ

0

sin(θ(k))gk(θ(k))3/ηdθ(k)

=
n1−3/ηη(6 + 6

√
2)3/η

2(3 + η)
2F1(1,

3

2
+

3

η
, 2 +

3

η
,−1),

(25)

where we have assumed no overlapping lobes and thus con-
sidered each lobe’s contribution to the integral individually.
Notice that for η < 3, increasing the number of lobes n,
ceteris paribus, has the effect of decreasing Sη[G]. This is
particularly interesting since it implies for example that at
low path loss (η = 2) and identical receive and transmit gains
(i.e. Gi = Gj), doubling the number of lobes (normalized at
constant total power (3)) would result to halving the network
mean node degree µ. Similarly, at high path loss (η = 6),
doubling the number of lobes doubles µ.

F. Single Sector Radiation

To simplify matters, we also consider a sectorized radiation
model [19], [28] where G(θ) = f(ν) = const > 0 for the

11Experimental realizations of multi-directional radiation patterns have
reported substantial benefits and point towards successful application to large-
scale wireless sensor networks [27].



7

Fig. 7. Comparison of the computer simulated mean degree µ (showing using
solid markers) and the theoretical prediction (curved line) for different antenna
gains and for a range of path loss values η ∈ [2, 6]. The simulation was run
in a cube domain of side L = 10, at a density ρ = 0.1 and β = 10.

interval θ ∈ (0, νπ) for some ν ≤ 1 and G = 0 elsewhere.
This would result in a conical radiation pattern ending in a
spherical cap. In complete analogy to the 2D case [16], by
employing Lagrange multipliers in the calculus of variations
we find that the constant gain function G(θ) = csc2(νπ2 ) yields
the stationary path of Sη[G]. For general ν we find

Sη[G] = 2
[
sin
(νπ

2

)]2− 6
η

, (26)

implying that the path defined by the isotropic radiation gain
(i.e. when ν = 1) is a maximum of Sη[G] for η > 3, and
a minimum for η < 3. Therefore, we may conclude that
isotropic radiation offers optimal connectivity properties when
η > 3 but the worst possible when η < 3.

G. Numerical Verification and Discussion

Fig. 6 provides a qualitative comparison of Sη[G], and thus
M, for the various gain functions considered above. It is clear
that directional radiation patterns can significantly improve
network connectivity in 3D homogeneous domains at low path
loss η < 3. This observation is in good agreement with the
numerical results in two dimensional networks of [15], [29],
yet further highlights the importance of the ratio d/η as well as
its generality to any directional antenna gain profile or small-
scale fading model. Significantly, equation (19) suggests that
homogeneous networks with antennas which have different
receive and transmit gains, for example directional transmit
but isotropic receive gains (often adopted to avoid antenna
misalignments) are in fact in great disadvantage to directional-
directional for η < 3 and isotropic-isotropic for η > 3. This is
an important and generic observation which is independent of
i) the gain pattern details (e.g. minor lobes or sectorized ap-
proximation), ii) the fading model used, and should therefore
be contrasted against the multitude of related research works
(see [30]–[32] and references therein).

In order to validate our results thus far, we compare the-
oretical predictions with numerical results obtained through
computer simulations. In the simulations, spatial and orien-
tation coordinates for N nodes are chosen independently at
random inside a particular domain defined by V . The nodes
are then paired up whenever a randomly generated number

ζ ∈ [0, 1] ≤ Hij . This guarantees that the links between pairs
of nodes are statistically independent. We store the resulting
graph connections in a symmetric adjacency matrix from
which we can extract various observable of interest e.g. the
mean degree or whether the graph is fully connected. In order
to improve our statistics, the above process is then repeated
in a Monte Carlo fashion.

Figure 7 shows a comparison between theory and computer
simulations. The observable of choice is the mean degree
µ of a random network with randomly oriented antennas at
different path loss values within the range of η ∈ (2, 6).
Note that in Fig. 7 we divide µ by ρ since for V � 1,
the mean degree increases linearly with the number of nodes
in the network. This allows for a direct comparison with the
theoretical prediction of the homogeneous connectivity mass
M. The simulation confirms that at η = 3 all curves meet and
the mean degree is independent of the gain pattern details.
A good agreement is observed between theory and simula-
tion, although the theoretical curve appears to systematically
overestimate that of the simulation data. The reason for this
is that the numerical simulation was performed in a finite
cube domain (of side length L = 10) therefore inducing
boundary effects, which have thus far been ignored in the
theoretical model under the assumption of a homogeneous
system. Therefore, in the numerical simulations, nodes near
the boundary may occasionally steer their main beam outside
of the domain and are typically of lower degree. While this
phenomenon applies to all directional patterns, it is most
significant when the gain is concentrated over a narrow solid
angle. Indeed, the curve for the highly directional end-fire
radiation pattern is noticeably above that of the data at low
path loss η < 3. We elaborate on this further in Sec. VI.

Figure 8 also shows a comparison between theory and
computer simulations. Unlike in Fig. 7, here the simulations
intentionally ignore boundary effects by not using statistics
drawn from nodes near the borders of the domain. Similar
numerical methods have been used in the literature (see for
example [13]). The observable of choice in Fig. 8 is Pmd(1)
i.e. the probability that all nodes have degree greater or equal
to 1. We perform the simulations for three types of antenna
gain patterns and for η = 2 and η = 4. Notice that the
more directional the antennas are the better connected the
network is for η < 3, and vice versa fro η > 3. We also plot
the analytical predictions from (13) using solid curves, and
those of (15) using dashed curves. An excellent agreement is
observed between theory and computer simulations. It is also
clear that the expression for Pfc (dashed curves) diverges from
Pmd(1) at lower densities but is a tight lower bound in at high
enough densities.

V. DIRECTIVITY SCALING

Expressions (23), (24) and (26) have highly directional
limits, for m → ∞, λ → ∞, and ν → 0 respectively, in
which the gain pattern and derived quantities scale. Physically
we see that if the gain G is concentrated on a small solid
angle ω, hence (due to normalisation) having values of order
ω−1, the integral Sη[G] will scale as ω1−3/η . We can see this
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Fig. 8. Top: Comparison of numerical simulations of Pmd(1) (markers) with
the analytical prediction of (13) (solid curves). The numerical simulations are
performed in a homogeneous domain (i.e. ignoring boundary effects) using
β = 1 for three different antenna radiation patterns and for η = 2 and η = 4.
The dashed curves correspond to the analytical prediction of Pfc as defined
in (15). Bottom: Same as above but 1 − Pmd(1) is plotted on a log-linear
scale thus highlighting the excellent agreement between simulation and theory
at high node densities.

in more detail for each of the two models. Define ω to be
the solid angle over which G takes at least half its maximum
value. Then for the dipole case of G(θ) =

2Γ( 3+m
2 )

√
πΓ( 2+m

2 )
sinm θ,

we require that sinm θ ≥ 1/2, which gives a small interval (to
leading order in m−1): |θ − π/2| ≤

√
2 ln 2/m. Multiplying

the width of this interval 2
√

2 ln 2/m by the length of the
equator 2π gives

ω =

√
32π2 ln 2

m
, (27)

for m→∞. Applying the asymptotic formula for the ratio of
gamma functions in (23) Γ(z+a)

Γ(z+b) ∼ za−b, (see [33] 5.11.12)
for z →∞ and comparing with (27) we find that

Sη[G] ∼ C1(η)ω1−3/η, (28)

for an explicit (but rather unilluminating) function C1(η).
For the highly directional radiation pattern G(θ) = (2(λ2−

1) cosλθ)/(λ sin π
2λ − 1) for θ ∈ (0, π2λ ), we use the same

definition of ω, this time finding θ ≤ π/(3λ) and hence

ω = 4π sin2
( π

2λ

)
∼ π3

9λ2
. (29)

Making a change of variable t = λθ in the integral of interest,
we find

Sη[G] =

(
2(λ2 − 1)

λ sin(π/2λ)− 1

)3/η ∫ π/2

0

sin(t/λ) cos3/η t

λ
dt.

(30)

Fig. 9. An example of a narrow-angled multi-directional radiation pattern
with n = 6 evenly spaced non-overlapping lobes is shown on the left with
its corresponding multi-sectorized approximation on the right.

Taking the limit λ→∞, the sines take their forms for small
argument, and so

Sη[G] ∼
(

2

π/2− 1

)3/η

λ6/η−2

∫ π/2

0

t cos3/η tdt

∼ C2(η)ω1−3/η,

(31)

where now C2(η) involves a non-elementary integral for most
values of η.

Finally, for the single sector radiation pattern we have that
in the directional limit of ν → 0, equation (26) becomes

Sη[G] ∼ 2
(νπ

2

)2− 6
η

∼ 2
3
η

( ω
2π

)1− 3
η

,

(32)

since ω = 2π(1− cos νπ) = π3ν2 +O(ν4).
Significantly, we find that when Gi = Gj , in either of

the above three cases cases the connectivity mass scales as
M ∼ C3(η)ω2−6/η . Thus when η < 3, scaling the density
as ρ ∼ ω6/η−2 will keep the exponent ρM in (16) constant
but result in a decrease in N , and hence lead to an increase
in the probability of full connectivity. For example, when
η = 2, this suggests that by making a directional beam of
half the solid angle, we may reduce the number of nodes by
a significant factor of 2 without affecting M or any of the
associated network connectivity properties described in Sec.
III. We conclude this section by noting that it is reasonable to
expect our results to generalize to any dimension d ≥ 2 such
that M ∼ ω2−2d/η .

VI. INHOMOGENEOUS ANISOTROPIC CONNECTIVITY
MASS AND BOUNDARY EFFECTS

Random networks confined within a bounded domain V ⊂
R3 are no longer homogeneous nor isotropic. As a result,
boundary effects can have a significant impact on the connec-
tivity properties of such networks [23], [34]–[37]. The main
reason behind this is that nodes situated near the boundary
have a higher probability of being isolated (i.e. of degree
0) than nodes in the bulk component of V . This feature is
quantified by (14) in the isotropic case, and further intensified
in the case of anisotropic radiation patterns where nodes near
the boundary may steer their connectivity beam(s) outside the
network domain and hence increase their isolation likelihood.
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Therefore, unlike in homogeneous systems where directivity
significantly improves network connectivity at low path loss, in
inhomogeneous systems, directional radiation patterns present
us with some serious drawbacks.

In order to understand the negative effects of directional
radiation patterns, we restrict the current investigation to
rotationally symmetric gain patterns (i.e. we exclude multi-
directional antennas) and also consider boundary effects due
to a right angled corner12 (i.e. where three planes meet and
are normal to each other.). We naturally choose the corner
as the origin of the reference frame, with the corner edges
aligned with the positive coordinate axes. Note that the system
is not isotropic and so Gi is a function of the angle between
v̂i and rj given by χ = arccos(cos θj cosϑi + cos(φj −
ϕi) sin θj sinϑi) as illustrated in Fig. 2. We therefore have
that the connectivity mass of a node situated at the corner
denoted here by MC = M(0, v̂i) is given by

MC =
1

4π

∫ ∫ π
2

0

∫ π
2

0

∫ ∞
0

r2
j sin θje

−
βr
η
j

Gi(χ)Gj(ϑj) drjdθjdφjdΩj

=
Γ(3/η)

4πηβ3/η

∫ ∫ π
2

0

∫ π
2

0

sin θj(Gi(χ)Gj(ϑj))
3/ηdθjdφjdΩj

=
Γ(3/η)

2ηβ3/η

(∫ π
2

0

∫ π
2

0

sin θjGi(χ)3/ηdθjdφj

)
Sη[Gj ],

(33)

where we have extended the radial integral in the first line of
(33) to infinity (even though V is finite) since Hij is decaying
exponentially - a reasonable approximation if the effective
communication range r0 is much smaller than the size of the
system.

It is important to note that unlike the homogeneous case
where the connectivity mass was invariant to the gain details
at η = 3, in (33), MC depends strongly on Gi through the
antenna orientation v̂i of the cornered node i for all values of
η. Therefore, we define the functional

IGi(ϑi, ϕi) =

∫ π
2

0

∫ π
2

0

sin θjGi(χ)3/ηdθjdφj (34)

and seek it’s minimum value with respect to the orientation
vector v̂i resulting in the minimum connectivity mass orien-
tation at a right angled corner which we define here as

M = min
v̂i

MC . (35)

When MC is at it’s minimum, node i is likely to have low
(or zero) degree thus affecting both local and global network
properties such as µ and Pfc respectively.

A. Isotropic Radiation

In this case G = 1 and we obtain the trivial result that IGi =

π/2 and soM = MC = Γ(3/η)π
2ηβ3/η . More generally, for a corner

of solid angle ωC we would have M = MC = Γ(3/η)
ηβ3/η ωC .

12Without this assumption all the results generalize but exposition and
notations become a little more cumbersome.

B. Wide-Angle Unidirectional Radiation

In this case, G(θ) = 1 + ε cos θ, which leads to a global
minimum in (34) at (ϑi, ϕi) = (π − θj , φj + π), i.e. when
ri = −cv̂i for any c > 0 which can only occur if v̂i is
pointing outside of V . Such a configuration amounts to

IGi(π − θj , φj + π) =
π

2
(1− ε)3/η. (36)

Note that when ε = 1, we have that IGi = 0 which is indicative
of a blind spot, meaning that any node directly behind node
i finds it impossible to connect with it. However such a
configuration is highly unlikely as it is of zero probability
measure.

C. Omnidirectional Radiation

In this case, G(θ) =
2Γ( 3+m

2 )
√
πΓ( 2+m

2 )
sinm θ, which leads to two

global minima in (34) at (ϑi, ϕi) = (π − θj , φj + π) and
(ϑi, ϕi) = (θj , φj), giving IGi = 0 in both cases. This is
expected due to the zero gain in both ±v̂i directions, however
as with the previous case, such a configuration is highly
unlikely.

D. Narrow-Angled Unidirectional Radiation

In this case, G(θ) = (2(λ2 − 1) cosλθ)/(λ sin π
2λ − 1),

which leads to I = 0 for a range of orientations independent
of (θj , φj), i.e. whenever the entire lobe is oriented outside of
the domain V . Therefore, the blind-spot phenomenon is much
more likely. For this reason, we conclude that while highly
directional antennas improve connectivity in homogeneous
domains at low path loss, they are in some disadvantage
to wide-angle unidirectional or omnidirectional antennas in
inhomogeneous domains.

VII. INHOMOGENEOUS CONNECTIVITY MASS FOR
MULTI-DIRECTIONAL RADIATION

Networks operating in homogeneous environments at low
path loss can improve their connectivity by using highly
directional antennas. Networks operating in inhomogeneous
domains however suffer from boundary effects (especially
near sharp corners) where nodes with unidirectional radiation
patterns (and especially narrow-angle ones) may steer their
main beam outside the domain thus suffering from blind-
spots. In the absence of any a posteriori knowledge or control
over antenna orientations (e.g. beamstearing capabilities) it is
therefore desirable to identify ways of mitigating blind-spots
in order to achieve high connectivity mass both near and away
from the domain boundary.

One possible approach to the above stated problem is to con-
sider multi-directional patterns where the gain is concentrated
on n ≥ 2 evenly spaced lobes. Similar radiation patterns have
been experimentally realized in [27] using a number of patch
antennas. Since we are interested in the performance of G in
low path loss we now lift the assumption that the connectivity
range is much smaller than the size of the system13.

13Recall that this assumption was used to extend the radial integral of (33)
to infinity.
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Fig. 10. Schematic of a multi-directional gain pattern (n = 4) of a node
situated at one of the corners of a square domain.

A. Two Dimensional Case

In order to aid in the discussion of the impact of boundaries
in 3D multi-directional radiation patterns, we first discuss the
2D case. In two dimensions, distributing n ≥ 2 points evenly
on the unit circle is a trivial problem with Θ = {v̂(k) =
(1, 2πk/n + x), for k = 1, . . . , n and x ∈ [0, 2π/n)}. Each
lobe has gk(θ(k)) = λπ cosλθ for θ ∈ (− π

2λ ,
π
2λ ) and λ ≥ 1,

and the total gain profile G is defined by (4). Following the
discussion in Sec. V, we may simplify the multi-directional
gain function for λ� 1 by considering a multi-sectorized ra-
diation model where each 2D lobe is approximated by a sector
of angular width ω = 2π/(3λ) and gain gk(θ(k)) = 3λ/n for
θ(k) ∈ (− π

3λ ,
π
3λ ) measured from v̂(k) and 0 otherwise, such

that the total power is normalized by∫ 2π

0

G(θ)dθ =

n∑
k=1

∫ π
3λ

− π
3λ

gk(θ(k))dθ = 2π. (37)

Also, to avoid overlap between lobes we require that λ ≥ 3n.
Having defined G, we now examine the two dimen-

sional multi-directional analogue of (35) given by M(n) =
minxMC(n), for a right angled corner of a square domain
V ⊂ R2. The contribution to MC(n) from a single sector of
antenna i is given by

n

2π

∫ π
3λ

− π
3λ

∫ π
3λ

− π
3λ

∫ Lk

0

rj exp

(
−βrηj

gk(θ(k))2

)
drjdθ

(k)
j dϑj , (38)

where the factor of n in the front is due to the n lobes of
antenna j, and Lk is the radial distance from the corner to the
adjacent boundary of V in the direction θ

(k)
j measured from

v̂
(k)
i , as illustrated for n = 4 in Fig. 10. Performing the drj

integral and summing over k we obtain

MC(n) =
ng4/η

2πηβ2/η

n∑
k=1

∫ π
3λ

− π
3λ

∫ π
3λ

− π
3λ

γ

(
2

η
,
βLηk
g2

)
dθ(k)
j dϑj ,

(39)

where γ(s, x) is the lower incomplete gamma function. Note
that we have dropped the subscript k from g as all lobes are
identical. For highly directional sectors (λ � 1), we may

approximate Lk by L̂k given by the length of the vector v̂(k)
i

projected onto the adjacent boundary of V . Notice that L̂k is
zero if the lobe is pointing outside the domain. After some
simplifications we finally arrive at

M(n) ≈ min
x

[
2πg4/η−2

nηβ2/η

n∑
k=1

γ

(
2

η
,
βL̂ηk
g2

)]
, (40)

indicating that the finite size effect of truncating radial in-
tegration at L̂k is of variable importance at different path
loss. Equation (40) is difficult to calculate analytically, but
straightforward numerically using a fine grid of values for
x ∈ [0, 2π/n). We now turn to the full problem in three
dimensions.

B. Three Dimensional Case

In three dimensions, there are a number of ways of arranging
n > 2 points evenly on the unit sphere. One way is through
the Thomson problem (proposed in 1904 by J.J. Thomson, see
[38] and references therein) concerning the minimum energy
configuration of n electrons confined on the surface of a sphere
which repel each other with a Coulomb force. Other ways
involve packing and covering problems called the Tammes
and Fejes Tóth type problems respectively. We will adopt
the Thomson interpretation for its connection with spherical
molecule symmetries.

An analytic description of the n-point coordinate con-
figuration is impossible. However, computer programs have
generated them to very good accuracy and have also identified
their symmetry types for very large values of n. One can try
to imagine such configurations as the vertices of a polyhedron
whose 2(n − 2) faces are almost equilateral triangles14. An
extensive table with the minimal energy, group symmetry, dual
polyhedron and Cartesian coordinates of the n vertices can be
found online at [39].

We consider a multi-sectorized radiation model where each
lobe is approximated by a cone ending in a spherical cap of
radius gk = 1

n csc2( π6λ ), each of solid angle ω = 4π sin2( π2λ )
as in (29), thus satisfying the normalization condition (3).
Fig. 9 shows an example multi-sectorized radiation model
with n = 6. Notice that the resulting multi-directional gain
pattern is not rotationally symmetric and so in general we
have Θ = {v̂(k) = (1, ϑ(k), ϕ(k)), for k = 1, . . . , n}. Finally,
using

√
4π/n as a rough estimate of the typical angular

distance between neighbouring lobes we require λ ≥
√
nπ/3

to keep lobes from overlapping.
Having defined G, we now examine the connectivity mass

MC(n) associated with a right angled corner of a cube domain
V ⊂ R3. Taking the same approach as in the two dimensional

14For n = 4, 6, and 12, the triangles are perfect equilaterals and so the
polyhedrons formed are the regular tetrahedron, octahedron, and icosahedron
respectively.
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Fig. 11. Numerical calculation of the minimum connectivity mass (43) due
to a multi-directional antenna situated at right angled corner for η = 2, 3,
and 6. The n evenly spaced vertex coordinates were taken from [39], and the
minimum is taken over all possible orientations Θi using rotation matrices
and a finite grid of Euler angles. The top panel keeps the lobe widths constant
while the lower one shrinks them for increasing n by scaling λ by

√
nπ/3.

The insets show the vertex positions for n = 14 and n = 30.

case, we calculate

MC(n)=
n

4π

n∑
k=1

∫∫ 2π

0

∫ π
3λ

0

∫ Lk

0

r2
j sin θje

−β
r
η
j

g2 drjdθjdφjdΩj

=
ng6/η

4πηβ3/η

n∑
k=1

∫∫ 2π

0

∫ π
3λ

0

γ

(
3

η
,
βLηk
g2

)
sin θjdθjdφjdΩj

=
g6/η−1

ηβ3/η

n∑
k=1

∫ 2π

0

∫ π
3λ

0

γ

(
3

η
,
βLηk
g2

)
sin θjdθjdφj ,

(41)

where we have restricted the dΩj integral over ϑj ∈ (0, π3λ )
and ϕj ∈ (0, 2π) where the gain is non-zero. Approximating
Lk by L̂k as in the 2D case, we finally arrive at

MC(n) ≈ 4πg6/η−2

nηβ3/η

n∑
k=1

γ

(
3

η
,
βL̂ηk
g2

)
, (42)

and thus obtainM(n) by finding the minimum of MC(n) over
all possible antenna orientations

M(n) = min
Θi

MC(n). (43)

This is difficult to calculate analytically, but straightforward
numerically, using rotation matrices and a fine grid of Euler
angles. The result is shown in Fig. 11 for the range n ∈ [2, 30]
using a cube domain of side L = 1, β = 1, λ =

√
30π/3

in the top panel and λ =
√
nπ/3 in the lower one. For

comparison, all simulations were preformed for path loss

values of η = 2, 3, and 6. We observe that for n ≤ 13, there
always exist at least one orientation Θi such that the pattern
does not cover the cubic corner and therefore M(n) = 0,
i.e., the multi-directional gain has blind spots. Interestingly,
the case of n = 14 (corresponding to a polyhedron called a
“gyroelongated hexagonal bipyramid” also shown in the inset
of the top panel of Fig. 11) covers such corners whilst that of
n = 15 does not. For larger values of n ≥ 16, blind spots are
always covered, i.e., M(n) > 0. For constant lobe widths
characterised by λ =

√
30π/3, the minimum connectivity

mass M(n) increases with n modulo small fluctuations with
better performance at lower path loss. When the lobe widths
are scaled by λ =

√
nπ/3, the minimum connectivity mass

is approximately constant at M(n) ≈ 0.15 for n ≥ 16 (and
n = 14) when η = 2, but decreases steadily for η = 3, and 6.
For comparison, we point out that isotropic radiation would
give MC ≈ 0.416, 0.427, and 0.446 for η = 2, 3, and 6 re-
spectively, which is significantly higher than that observed for
the multi-directional radiation patterns investigated in Fig. 11.
We stress however that Fig. 11 shows only the minimum of
MC(n) over all possible orientations Θi and not the average
MC(n) which would be a fairer comparison.

Although Fig. 11 is very much domain specific, the above
results hint towards an interesting generalization for arbitrarily
shaped three dimensional domains. Since at low path loss,
increasing the number of lobes and scaling their widths by
λ =

√
nπ/3 improves M while also covering any corner,

we propose as an optimal (yet unrealistic) limit a radiation
pattern consisting of an infinite number of infinitesimally
thin lobes which we call (with a bit of imagination) ‘the
hedge-hog’ pattern; an extreme deformation of the isotropic
radiation pattern with G = 1 which we showed was optimal
for η > d. Interestingly, the hedge-hog anisotropic pattern is
by definition uniform in all orientations and therefore in some
sense isotropic.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we have investigated the connectivity proper-
ties of 3D ad hoc networks with randomly oriented anisotrop-
ically radiating nodes. We have shown that for homogeneous
systems (i.e. in the absence of boundary effects) the con-
nectivity mass M is a key observable which characterises
many important network properties: i) the probability that
two randomly selected nodes connect to form a pair, p2, ii)
the network mean degree, µ, iii) the probability of mini-
mum network degree of at least one, Pmd(1), and finally
iv) the probability of obtaining a fully connected network
at high node densities, Pfc. We therefore focused on the
explicit calculation of M for simple but practical antenna
gain profiles (e.g. patch, dipole, and end-fire array antennas).
Using the analytic expressions obtained, we have identified
the ratio of spatial dimension d to path loss η, as a key
system parameter. Moreover, we have shown that when the
antenna gain is concentrated on a small solid angle ω, the
connectivity mass M will scale as ∼ ω2−2d/η . Significantly,
this implies that for η < d, any directional deformation of the
isotropic gain profile will increase M and therefore improve
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overall network connectivity. In fact, we find that the more
directional the gain, the better connected the network will
be. For η > d however, all these observations are reversed
and isotropic radiation leads to optimal network connectivity.
We have validated our results through Monte Carlo computer
simulations of the network mean degree and have seen that
border effects typically reduce the network mean degree - a
feature particularly noticeable for highly directional radiation
gains. Extensive numerical simulations have also validated our
analytic predictions for Pmd(1) and the high density expansion
of Pfc in homogeneous domains. This conclusively confirming
our general statement regarding the superiority of directional
antennas at low path loss.

Random networks confined within a bounded domain are
inhomogeneous systems and therefore boundary effects can
have a significant impact on the network connectivity prop-
erties. This is because nodes situated near the confinement
boundary are likely to be of lower degree than those situated
further away. Therefore, the mean network degree is less than
expected, particularly for highly directional gains which a)
may steer their main beam outside of the domain leading to
so called blind spots, and b) at low path loss exponents may
have an effective communication range r0 in their boresight di-
rection which is greater than the typical domain size. We have
argued that these two effects have a greater impact for highly
directional radiation patterns such as those of an end-fire
array. Thus, in contrast to homogeneous systems, directionality
in radiation gains is undesirable for networks operating in
confined spaces, unless the network can be configured to
eliminate the possibility of these eventualities. To this end
we have investigated multi-directional radiation patterns as a
means to cover both bases (homogeneous and inhomogeneous
systems). We emphasize that the results presented in this paper
are general and independent of the small-scale fading model
used and therefore provide qualitative insight for wireless
researchers and practitioners to consider in the future.
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