135 research outputs found

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    Prognostic Algorithms for Condition Monitoring and Remaining Useful Life Estimation

    Get PDF
    To enable the benets of a truly condition-based maintenance philosophy to be realised, robust, accurate and reliable algorithms, which provide maintenance personnel with the necessary information to make informed maintenance decisions, will be key. This thesis focuses on the development of such algorithms, with a focus on semiconductor manufacturing and wind turbines. An introduction to condition-based maintenance is presented which reviews dierent types of maintenance philosophies and describes the potential benets which a condition- based maintenance philosophy will deliver to operators of critical plant and machinery. The issues and challenges involved in developing condition-based maintenance solutions are discussed and a review of previous approaches and techniques in fault diagnostics and prognostics is presented. The development of a condition monitoring system for dry vacuum pumps used in semi- conductor manufacturing is presented. A notable feature is that upstream process mea- surements from the wafer processing chamber were incorporated in the development of a solution. In general, semiconductor manufacturers do not make such information avail- able and this study identies the benets of information sharing in the development of condition monitoring solutions, within the semiconductor manufacturing domain. The developed solution provides maintenance personnel with the ability to identify, quantify, track and predict the remaining useful life of pumps suering from degradation caused by pumping large volumes of corrosive uorine gas. A comprehensive condition monitoring solution for thermal abatement systems is also presented. As part of this work, a multiple model particle ltering algorithm for prog- nostics is developed and tested. The capabilities of the proposed prognostic solution for addressing the uncertainty challenges in predicting the remaining useful life of abatement systems, subject to uncertain future operating loads and conditions, is demonstrated. Finally, a condition monitoring algorithm for the main bearing on large utility scale wind turbines is developed. The developed solution exploits data collected by onboard supervisory control and data acquisition (SCADA) systems in wind turbines. As a result, the developed solution can be integrated into existing monitoring systems, at no additional cost. The potential for the application of multiple model particle ltering algorithm to wind turbine prognostics is also demonstrated

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    On the use of context information for an improved application of data-based algorithms in condition monitoring

    Get PDF
    xi, 124 p.En el campo de la monitorización de la condición, los algoritmos basados en datos cuentan con un amplio recorrido. Desde el uso de los gráficos de control de calidad que se llevan empleando durante casi un siglo a técnicas de mayor complejidad como las redes neuronales o máquinas de soporte vectorial que se emplean para detección, diagnóstico y estimación de vida remanente de los equipos. Sin embargo, la puesta en producción de los algoritmos de monitorización requiere de un estudio exhaustivo de un factor que es a menudo obviado por otros trabajos de la literatura: el contexto. El contexto, que en este trabajo es considerado como el conjunto de factores que influencian la monitorización de un bien, tiene un gran impacto en la algoritmia de monitorización y su aplicación final. Por este motivo, es el objeto de estudio de esta tesis en la que se han analizado tres casos de uso. Se ha profundizado en sus respectivos contextos, tratando de generalizar a la problemática habitual en la monitorización de maquinaria industrial, y se ha abordado dicha problemática de monitorización de forma que solucionen el contexto en lugar de cada caso de uso. Así, el conocimiento adquirido durante el desarrollo de las soluciones puede ser transferido a otros casos de uso que cuenten con contextos similares

    On the use of context information for an improved application of data-based algorithms in condition monitoring

    Get PDF
    xi, 124 p.En el campo de la monitorización de la condición, los algoritmos basados en datos cuentan con un amplio recorrido. Desde el uso de los gráficos de control de calidad que se llevan empleando durante casi un siglo a técnicas de mayor complejidad como las redes neuronales o máquinas de soporte vectorial que se emplean para detección, diagnóstico y estimación de vida remanente de los equipos. Sin embargo, la puesta en producción de los algoritmos de monitorización requiere de un estudio exhaustivo de un factor que es a menudo obviado por otros trabajos de la literatura: el contexto. El contexto, que en este trabajo es considerado como el conjunto de factores que influencian la monitorización de un bien, tiene un gran impacto en la algoritmia de monitorización y su aplicación final. Por este motivo, es el objeto de estudio de esta tesis en la que se han analizado tres casos de uso. Se ha profundizado en sus respectivos contextos, tratando de generalizar a la problemática habitual en la monitorización de maquinaria industrial, y se ha abordado dicha problemática de monitorización de forma que solucionen el contexto en lugar de cada caso de uso. Así, el conocimiento adquirido durante el desarrollo de las soluciones puede ser transferido a otros casos de uso que cuenten con contextos similares

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements

    Fault diagnosis and health management of bearings in rotating equipment based on vibration analysis – a review

    Get PDF
    There is an ever-increasing need to optimise bearing lifetime and maintenance cost through detecting faults at earlier stages. This can be achieved through improving diagnosis and prognosis of bearing faults to better determine bearing remaining useful life (RUL). Until now there has been limited research into the prognosis of bearing life in rotating machines. Towards the development of improved approaches to prognosis of bearing faults a review of fault diagnosis and health management systems research is presented. Traditional time and frequency domain extraction techniques together with machine learning algorithms, both traditional and deep learning, are considered as novel approaches for the development of new prognosis techniques. Different approaches make use of the advantages of each technique while overcoming the disadvantages towards the development of intelligent systems to determine the RUL of bearings. The review shows that while there are numerous approaches to diagnosis and prognosis, they are suitable for certain cases or are domain specific and cannot be generalised
    corecore