3,431 research outputs found

    Custom IMU-Based Wearable System for Robust 2.4 GHz Wireless Human Body Parts Orientation Tracking and 3D Movement Visualization on an Avatar

    Get PDF
    Recent studies confirm the applicability of Inertial Measurement Unit (IMU)-based systems for human motion analysis. Notwithstanding, high-end IMU-based commercial solutions are yet too expensive and complex to democratize their use among a wide range of potential users. Less featured entry-level commercial solutions are being introduced in the market, trying to fill this gap, but still present some limitations that need to be overcome. At the same time, there is a growing number of scientific papers using not commercial, but custom do-it-yourself IMU-based systems in medical and sports applications. Even though these solutions can help to popularize the use of this technology, they have more limited features and the description on how to design and build them from scratch is yet too scarce in the literature. The aim of this work is two-fold: (1) Proving the feasibility of building an affordable custom solution aimed at simultaneous multiple body parts orientation tracking; while providing a detailed bottom-up description of the required hardware, tools, and mathematical operations to estimate and represent 3D movement in real-time. (2) Showing how the introduction of a custom 2.4 GHz communication protocol including a channel hopping strategy can address some of the current communication limitations of entry-level commercial solutions. The proposed system can be used for wireless real-time human body parts orientation tracking with up to 10 custom sensors, at least at 50 Hz. In addition, it provides a more reliable motion data acquisition in Bluetooth and Wi-Fi crowded environments, where the use of entry-level commercial solutions might be unfeasible. This system can be used as a groundwork for developing affordable human motion analysis solutions that do not require an accurate kinematic analysis.This research has been partially funded by a research contract with IVECO Spain SL and by the Department of Employment and Industry of Castilla y LeĂłn (Spain), under research project ErgoTwyn (INVESTUN/21/VA/0003)

    Test-retest reliability of knee kinematics measurement during gait with 3D motion analysis system

    Get PDF
    Restoration of gait symmetry following anterior cruciate ligament reconstruction (ACLR) is crucial to minimize the risk of joint degeneration. To achieve this, it is essential that the chosen measurement method can accurately assess knee kinematics and detect the changes in multi-planes of motion. However to date, limited study is available on repeatability of the multi-planes knee angle measurements particularly among male patients post ACLR. The purpose of this study was to assess the test-retest reliability of knee kinematic measurements using three-dimensional (3D) motion analysis system during gait in post ACLR patients. Eight patients with mean (SD) age 28.89 (4.0) years, 5.82(4.07) months post ACLR were recruited from a tertiary hospital of Kuala Lumpur. All patients undergone two sessions of knee joint angles measurement during gait at four hours interval, for the injured and the non-injured knees. Angles in the sagittal, frontal and transverse planes during initial contact phase of gait that derived from the two measurement sessions were compared.  The results showed high test-retest reliability of the measurement in sagittal and transverse planes; the intraclass correlation coefficient (ICC) was 0.97(95% CI: 0.84-0.99) and 0.96 (95% CI: 0.83-0.99) respectively, and moderate test-retest reliability for the measurements in frontal planes, with ICC 0.44 (95% CI: -0.32-0.86). The study findings suggest that multi-planes knee angle measurements during initial contact phase of gait could reliably be measured using a 3D motion analysis system. Further research may focus on knee kinematics measurements at other phases of gait. Keywords: biomechanics, reliability, walking, knee, anterior cruciate ligament reconstructio

    A Musculoskeletal Model Driven by Dual Microsoft Kinect Sensor Data

    Get PDF

    Evaluation of mechanical load in the musculoskeletal system : development of experimental and modeling methodologies for the study of the effect of exercise in human models

    Get PDF
    Doutoramento em Motricidade Humana, na especialidade de BiomecĂąnicaA major concern of Biomechanics research is the evaluation of the mechanical load and power that the human body develops and endorses when performing high to moderate sport activities. With the purpose of increasing performance and reducing the risk of injury, substantial advances were accomplished to pursuit this goal, either on the laboratory techniques as well as modelling and simulation. Traditionally, the main focus was the assessment of kinematics, kinetics and electromyography data to describe the main mechanics and neuromuscular behaviour, when performing a certain movement. The use of methodologies that enable the quantification of the effect of a particular joint moment of force in the entire body or the contribution of an individual muscle force to accelerate the centre of mass of the body is quite relevant in biomechanical analysis. This is particularly important when dealing with explosive movements such as those that occur in sports activities, or in the clinical field when dealing with abnormal movement. At the same time, the advances in imaging technology allows us the use of some of those techniques to gather subject-specific information, particularly the muscle architectural parameters that are crucial to the production of force, such as muscle volume, muscle physiological cross-section area and muscle pennation angle. In the course of this dissertation, we investigated the use and/or combination of different methodologies to study the effect of mechanical load in the lower limb musculoskeletal system during a cyclic stretch-shortening exercise. We aimed at using an integrated approach to better characterize the behaviour of the musculoskeletal system when subjected to this type of mechanical load.RESUMO: Uma das principais preocupaçÔes da investigação em BiomecĂąnica Ă© a avaliação da carga mecĂąnica que o corpo desenvolve e que consegue suportar quando realiza açÔes desportivas com nĂ­vel de desempenho de moderado a elevado. Com o objetivo de melhorar a performance mas reduzindo o risco de lesĂŁo, tĂȘm sido realizados avanços significativos quer nas tĂ©cnicas laboratoriais e equipamentos, quer nas tĂ©cnicas de modelação e simulação. A investigação tradicional em biomecĂąnica tem o seu foco na avaliação da cinemĂĄtica, cinĂ©tica e função neuromuscular para descrever a mecĂąnica do corpo e o comportamento neuromuscular, durante a execução de um determinado movimento. No entanto, a utilização de metodologias que permitam a quantificação do efeito de um determinado momento de força articular em todos os segmentos corporais ou a contribuição de um momento de força muscular individual na aceleração do centro de massa do corpo Ă© bastante relevante na anĂĄlise biomecĂąnica. Isto Ă© particularmente importante quando se lida com movimentos explosivos, tais como os que ocorrem em actividades desportivas, ou no Ăąmbito clĂ­nico quando se tratam de condiçÔes nĂŁo normais ou patolĂłgicas. Ao mesmo tempo, os avanços na tecnologia de imagem permitem a utilização de algumas destas tĂ©cnicas para recolher informaçÔes especĂ­ficas do sujeito, nomeadamente no que diz respeito aos parĂąmetros arquitectĂłnicos do mĂșsculo, que sĂŁo cruciais para a produção da força, tal como o volume muscular, a ĂĄrea de secção transversal fisiolĂłgica ou o Ăąngulo de penação. No decurso deste trabalho, foi investigada a utilização e/ou combinação de diferentes metodologias para estudar o efeito da carga mecĂąnica no sistema musculo-esquelĂ©tico do membro inferior durante um exercĂ­cio de alongamento-encurtamento realizado de forma cĂ­clica. O principal objetivo foi utilizar uma abordagem integrada para melhor caracterizar o comportamento do sistema mĂșsculo-esquelĂ©tico, quando submetido a este tipo de carga mecĂąnica.FCT - Fundação para a CiĂȘncia e a Tecnologi

    Dynamic three-dimensional shoulder MRI during active motion for investigation of rotator cuff diseases

    Get PDF
    Background MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases. Methods Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI. Results The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear) and without tears (tendinopathy) (p = 0.012). The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm) than in normals (3.4mm) (p = 0.02). The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm) and supraspinatus tear (9.3 mm) shoulders compared to normals (3.5mm) and tendinopathy (4.8mm) shoulders (p = 0.05). Conclusion The Dynamic MRI enabled a novel measure; ‘Looseness’, i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position

    An inertial motion capture framework for constructing body sensor networks

    Get PDF
    Motion capture is the process of measuring and subsequently reconstructing the movement of an animated object or being in virtual space. Virtual reconstructions of human motion play an important role in numerous application areas such as animation, medical science, ergonomics, etc. While optical motion capture systems are the industry standard, inertial body sensor networks are becoming viable alternatives due to portability, practicality and cost. This thesis presents an innovative inertial motion capture framework for constructing body sensor networks through software environments, smartphones and web technologies. The first component of the framework is a unique inertial motion capture software environment aimed at providing an improved experimentation environment, accompanied by programming scaffolding and a driver development kit, for users interested in studying or engineering body sensor networks. The software environment provides a bespoke 3D engine for kinematic motion visualisations and a set of tools for hardware integration. The software environment is used to develop the hardware behind a prototype motion capture suit focused on low-power consumption and hardware-centricity. Additional inertial measurement units, which are available commercially, are also integrated to demonstrate the functionality the software environment while providing the framework with additional sources for motion data. The smartphone is the most ubiquitous computing technology and its worldwide uptake has prompted many advances in wearable inertial sensing technologies. Smartphones contain gyroscopes, accelerometers and magnetometers, a combination of sensors that is commonly found in inertial measurement units. This thesis presents a mobile application that investigates whether the smartphone is capable of inertial motion capture by constructing a novel omnidirectional body sensor network. This thesis proposes a novel use for web technologies through the development of the Motion Cloud, a repository and gateway for inertial data. Web technologies have the potential to replace motion capture file formats with online repositories and to set a new standard for how motion data is stored. From a single inertial measurement unit to a more complex body sensor network, the proposed architecture is extendable and facilitates the integration of any inertial hardware configuration. The Motion Cloud’s data can be accessed through an application-programming interface or through a web portal that provides users with the functionality for visualising and exporting the motion data

    A Direct Comparison of Biplanar Videoradiography and Optical Motion Capture for Foot and Ankle Kinematics

    Get PDF
    Measuring motion of the human foot presents a unique challenge due to the large number of closely packed bones with congruent articulating surfaces. Optical motion capture (OMC) and multi-segment models can be used to infer foot motion, but might be affected by soft tissue artifact (STA). Biplanar videoradiography (BVR) is a relatively new tool that allows direct, non-invasive measurement of bone motion using high-speed, dynamic x-ray images to track individual bones. It is unknown whether OMC and BVR can be used interchangeably to analyse multi-segment foot motion. Therefore, the aim of this study was to determine the agreement in kinematic measures of dynamic activities. Nine healthy participants performed three walking and three running trials while BVR was recorded with synchronous OMC. Bone position and orientation was determined through manual scientific-rotoscoping. The OMC and BVR kinematics were co-registered to the same coordinate system, and BVR tracking was used to create virtual markers for comparison to OMC during dynamic trials. Root mean square (RMS) differences in marker positions and joint angles as well as a linear fit method (LFM) was used to compare the outputs of both methods. When comparing BVR and OMC, sagittal plane angles were in good agreement (ankle: R2 = 0.947, 0.939; Medial Longitudinal Arch (MLA) Angle: R2 = 0.713, 0.703, walking and running, respectively). When examining the ankle, there was a moderate agreement between the systems in the frontal plane (R2 = 0.322, 0.452, walking and running, respectively), with a weak to moderate correlation for the transverse plane (R2 = 0.178, 0.326, walking and running, respectively). However, root mean squared error (RMSE) showed angular errors ranging from 1.06 to 8.31° across the planes (frontal: 3.57°, 3.67°, transverse: 4.28°, 4.70°, sagittal: 2.45°, 2.67°, walking and running, respectively). Root mean square (RMS) differences between OMC and BVR marker trajectories were task dependent with the largest differences in the shank (6.0 ± 2.01 mm) for running, and metatarsals (3.97 ± 0.81 mm) for walking. Based on the results, we suggest BVR and OMC provide comparable solutions to foot motion in the sagittal plane, however, interpretations of out-of-plane movement should be made carefully

    Wearables for Movement Analysis in Healthcare

    Get PDF
    Quantitative movement analysis is widely used in clinical practice and research to investigate movement disorders objectively and in a complete way. Conventionally, body segment kinematic and kinetic parameters are measured in gait laboratories using marker-based optoelectronic systems, force plates, and electromyographic systems. Although movement analyses are considered accurate, the availability of specific laboratories, high costs, and dependency on trained users sometimes limit its use in clinical practice. A variety of compact wearable sensors are available today and have allowed researchers and clinicians to pursue applications in which individuals are monitored in their homes and in community settings within different fields of study, such movement analysis. Wearable sensors may thus contribute to the implementation of quantitative movement analyses even during out-patient use to reduce evaluation times and to provide objective, quantifiable data on the patients’ capabilities, unobtrusively and continuously, for clinical purposes
    • 

    corecore