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Abstract

Background

MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many

patients continue to have pain despite treatment, and MRI of a static unloaded shoulder

seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI

provides novel kinematic data that can be used to improve the understanding, diagnosis

and best treatment of rotator cuff diseases.

Methods

Dynamic MRI provided real-time 3D image series and was used to measure changes in the

width of subacromial space, superior-inferior translation and anterior-posterior translation of

the humeral head relative to the glenoid during active abduction. These measures were

investigated for consistency with the rotator cuff diseases classifications from standard

MRI.

Results

The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated

full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A

change in the width of subacromial space greater than 4mm differentiated between rotator

cuff diseases with tendon tears (massive cuff tears and supraspinatus tear) and without

tears (tendinopathy) (p = 0.012). The range of the superior-inferior translation was higher in

the massive cuff tears group (6.4mm) than in normals (3.4mm) (p = 0.02). The range of the

anterior-posterior translation was higher in the massive cuff tears (9.2 mm) and
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supraspinatus tear (9.3 mm) shoulders compared to normals (3.5mm) and tendinopathy

(4.8mm) shoulders (p = 0.05).

Conclusion

The Dynamic MRI enabled a novel measure; ‘Looseness’, i.e. the translation of the humeral

head on the glenoid during an abduction cycle. Looseness was better able at differentiating

different forms of rotator cuff disease than a simple static measure of relative glenohumeral

position.

Introduction
Musculoskeletal diseases of the shoulder are frequent, rotator cuff diseases alone [1] affecting
up to 30% of the population. Currently, MRI with its ability to evaluate the soft tissues of the
rotator cuff is the standard imaging technique to aid the detection and best treatment of rotator
cuff diseases. Still, half of all rotator cuff diseases patients have persistent pain despite 12 to 18
months of treatment [2] and it seems rotator cuff diseases are still poorly understood.

Shoulder motion is the result of the synergy and combined movement of the scapula-
humeral and the scapula-thoracic joints. The rotator cuff muscles are key activators for the
control of this motion and rotator cuff diseases are associated with alteration of this motion
[3]. The suggestion of this work is that a technique which could assess the changed kinematics
due to rotator cuff diseases, as well as a simultaneous assessment of the loaded soft tissues of
the rotator cuff would provide an improved ability to detect rotator cuff diseases as well as an
aid to decide on the best treatment.

Cadaver studies of shoulder kinematics inherently provide limited information about the
complex muscle activation pattern of the shoulder during active arm elevation [4]. In vivo
methods based on external markers are questionable because of the movement between the
skin and the bone structures during shoulder motion and the difficulty of interpreting EMG
signals from deep muscles [5,6]. Conventional X-rays [7–9], low dose Stereography System™-
and EOS [10] as well as bi-planar fluoroscopy [11–13] have all been used to analyze the
humeral head translation relative to the glenoid. However, these methods are all limited by the
involved radiation exposure as well as the inability to assess the status of the soft tissues of the
rotator cuff.

Ultrasound scanning [14] has the ability to assess both the kinematics of joint movement
and the status of the soft tissues but has the disadvantage of being operator dependent. In-vivo
three-dimensional (3D) MRI techniques [3, 15–22] have investigated shoulder kinematics by
simulating the physiological movement as a series of static positions and performing an MRI
scan at each position. The shoulder muscles were loaded in an attempt to produce physiological
kinematics but the loading was isometric due to the static position. The authors recognized
that isotonic muscle loading and continuous dynamic movement of the arm may produce
more realistic results. The scan time at each position was 4 min and it may also have been diffi-
cult for the patient to maintain a consistent level of muscle activity for this length of time. In
vivo two-dimensional (2D) MRI techniques have allowed investigations during active and con-
tinuous arm abduction [22]. However, these techniques rely on a predefined abduction plane
and can only analyze movement within this 2D plane. The difficulty for the patient to adhere
to the predefined abduction plane is an additional limitation of this method.

Recently, Pierrart et al. [23] established a real time 3DMRI technique (Dynamic-MRI) that
enabled the noninvasive monitoring of the kinematics of the shoulder complex during slow
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active arm elevation. The 3D nature of the Dynamic-MRI avoided the problems associated the
2DMRI techniques mentioned above. The acquisition process of the Dynamic-MRI technique
was fast enough to carry out multiple scans while the patient abducted the shoulder in a contin-
uous motion. The resulting kinematics was that of an isotonically and naturally loaded shoul-
der joint [23]. While the fast acquisition resulted in a quality of the images insufficient for
assessment of the loaded soft tissues it seems likely that further development will lead to better
quality images.

Pierrart et al. evaluated the Dynamic-MRI technique only in normal shoulders. The objec-
tive of this paper was to evaluate if Dynamic MRI provides novel kinematic data that can be
used to improve the understanding, diagnosis and best treatment of rotator cuff diseases.

Methods

Patient population and selection
Patients presenting with pre-existing MRI scans showing cuff tear disease were selected for the
study on a consecutive basis, from June to December 2014. In all cases but one (patient 7), the
physiopathology of rotator cuff diseases was degenerative. In patient 7, the onset was traumatic.
Patients with a past history of surgery or algodystrophia were excluded. Each participant was
given an informed consent form to read and sign and the local ethics committee (CPP Paris-
Ile-De-France 2) approved all parts of this study.

Global function was classified according to the Constant score [24] and the active forward
flexion and abduction were measured.

The quality of the Dynamic-MRI scans were not adequate for assessing the rotator cuff but
appropriate for tracking the bone. Therefore, prior to Dynamic-MRI, the status of the rotator
cuff was assessed from standard shoulder MRI scans by a radiologist with expertise in musculo-
skeletal diseases (VV) and the shoulders divided into 4 grades of cuff disease: normals (group
N), tendinopathy in the supraspinatus tendon but not involving any full-thickness tears (group
tendinopathy), isolated full-thickness supraspinatus tear (group SST) and massive rotator cuff
tear involving at least two tendons. In cases of full thickness tears, the tendon retraction on the
frontal plane was classified according to Patte et al. [25]. For all groups and all rotator cuff ten-
dons except for the teres minor, two additional parameters were assessed: muscle atrophy,
scored using the three stage classification of Thomazeau et al. [26, 27] and the muscle fatty
degeneration, scored according to the five stages classifications of Goutallier et al. [28].

3D Dynamic-MRI technique
A dynamic sequence was performed for each shoulder. The protocol was described by Pierrart
et al. [23]: the first acquisition was a Fiesta 3D dynamic sequence then a sequence at rest was
performed. Prior to imaging, the procedure was explained to the patients, specially the
requested motion (pace, orientation of the elbow, position in the scanner and different
sequences). Patients rehearsed the desired abduction motion once outside the MRI scanner,
and once inside the MRI scanner. Each patient was placed in lateral decubitus, allowing the
scapula to tilt, within a closed-bore MRI scanner (Sigma 1.5 Tesla system, General Electric Mil-
waukee,WI) including a shoulder coil. The patient’s arm was positioned unrestrained along the
body with the elbow flexed 90° and the hand placed on the abdomen. This position defined the
reference position. During the dynamic sequence, the pace of the shoulder motion was main-
tained by counting from 0 to 28, corresponding to 28 seconds; consequently it was easy for the
patient to understand when to start and how fast to move the arm. During abduction the elbow
would abut against the inner wall of the scanner limiting the range of motion. The degree of
humero-thoracic active abduction when this happened varied from shoulder to shoulder

RCD Investigation Using Kinematic-MRI during Active Motion

PLOS ONE | DOI:10.1371/journal.pone.0158563 July 19, 2016 3 / 12



depending on patient-specific factors such as weight and size but was on average 38 (20–56,
8)°, 52 (42–62,3)°, 49 (40,2–67)° and 43(30–60)°, for the massive cuff tears supraspinatus tear,
tendinopathy and control groups, respectively. The exception was patient 6 whom had limited
abduction (20°) also outside the MRI.

Through the MRI scanner window, the following parameters of the patient motion were
monitored and readjusted if needed: direction (abduction in the plane of the scapula), pace
(maximal abduction in 28 seconds) and uninterrupted motion. The sequence of 28 seconds
was repeated two or three times to obtain an optimal fiesta sequence. Subsequently, a standard
shoulder MRI including 4 sequences (T1 coronal, T1 sagittal, T1 axial, and T2 sagittal FAT-
SAT) was performed at rest. For each patient, the overall examination time, including the time
to explain, read and sign the consent form and time to get in and out the MRI, lasted 20 to 25
minutes.

3D reconstruction and registration
The following steps were performed blinded to the rotator cuff diseases groups. Commercial
medical imaging software (AVIZO, Visualisation Science Group,VSG; Burlington,MA) was
used to reconstruct 3D shoulder models from coronal T1 sequences as previously described
[23]. Using the Fiesta sequence, 8 shoulders reconstructions, corresponding to 8 successive
positions during abduction, were obtained. Using best-fit alignment another software package
(Geomagic, Morrisville, NC) semi-automatically registered these models to the reference
model (0° abduction). From the reconstructed models, the position of anatomical areas (the
humeral head, shaft and greater tuberosity of the humerus, acromion process, and the glenoid
of the scapula) were determined.

MathLab (MathWorksVR, software) was used to compute, animate, and analyze the kine-
matics of the gleno-humeral joint as follows: A mean least squares ellipse was fitted onto the
contour of the glenoid region and subsequently the glenoid coordinate system was character-
ized: minor axis as the anterior-posterior axis (X), major axis as the superior-inferior axis (Y)
and orthogonal to the X-axis, and the Z-axis as the cross product of the X- and Y-axes. The
center of the ellipse was used as the center of the glenoid coordinate system and X- and Y- axes
defined the glenoid plane. For determining the central point of the humeral head, a sphere was
fitted to the humeral surface of the humeral head. This central point was projected perpendicu-
larly onto the glenoid plane and its location was defined in the glenoid coordinate system. Gle-
nohumeral abduction was defined as the angle formed by the longitudinal axis of the humerus
and the glenoid plane.

The width of the subacromial space was defined as the shortest distance between the supe-
rior aspect of the proximal humerus contour (humeral head or greater tuberosity) and the infe-
rior aspect of the acromion. The translation of the humeral head on the glenoid was defined as
the movements in the X- and Y-directions (roughly anterior-posterior and superior-inferior
directions, respectively) on the glenoid plane of the projected of center of the humeral head.

The intra-observer reproducibility was tested for one intermediate position of one normal
shoulder. The 3D reconstruction of the same intermediate position was repeated 6 times, each
reconstruction followed by the registration step. The difference between the largest values was
calculated for three parameters: coordinates on the X and Y-axes, width of the subacromial
space and measure of the gleno-humeral abduction.

Statistical analysis
Statistical analysis software GraphPad Prism 5.00 (GraphPad software, San Diego, California)
was used to determine relationships between variables. Significance was set at p< 0.05. In
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order to compare quantitative variables of two groups (independent variables), a Student
parametric test was used when the variables had a normal distribution, and a Mann-Withney
test was used if the distribution was not normal. To compare quantitative variables of more
than two groups, a Kruskal-Wallis test was used. The post-hoc analysis, which compares a
group with another, was performed with the Dunn Test.

Results
This prospective study involved 14 shoulders from 11 patients with rotator cuff diseases (mean
age 67, range: 53–79) years, 10 females, 4 right shoulders) and a control group of 6 normal
shoulders from 4 volunteers (mean age 34.2 (30–45) years, 3 females, 4 right shoulders).
Table 1 depicts the clinical evaluation of patients. No patient had a past history of shoulder
instability. Patients Body mass index remained between 20 and 25 kg/m2 (Table 1).

Muscle atrophy, scored using the three stage classification of Thomazeau et al. [26, 27] and
the muscle fatty degeneration, scored according to the five stages classifications of Goutallier
et al. [28]. The result of this assessment for the massive cuff tears, supraspinatus tear and tendi-
nopathy groups is shown in Table 2. The teres minor in all specimens of the massive cuff tears
group was hypertrophic, but showed normal trophicity in the supraspinatus tear and tendino-
pathy groups. In the control group of normal shoulders, no tears or muscle atrophy or degener-
ation was observed.

The width of the subacromial space was recorded at 4 sec intervals throughout the 28 sec
abduction cycle, thus producing 7 measurements for each shoulder. The average, WSSavg, and
range, WSSrange, of these 7 measurements for each specimen are shown in Fig 1. The mean of

Table 1. Description of clinical evaluation of patients and healthy volunteers.

Patient Shoulder
specimen

Sex Age (years) Shoulder Height (cm) Weight (kg) flexion/abduction/external rotation
(°)

Constant score
(/100)

1* N1 Male 30 right 175 60 180/120/80 92

1* N2 Male 30 left 175 60 180/130/80 95

2* N3 Female 35 right 160 45 180/120/70 97

2* N4 Female 45 right 162 52 180/130/80 93

3* N5 Female 33 right 161 54 180/110/80 92

4* N6 Female 33 left 161 54 180/120/80 95

5 MCT1 Male 81 right 170 81 180/90/90 65

5 MCT2 Male 81 left 170 81 100/60/40 63

6 MCT3 Female 59 right 170 88 150/70/70 65

7 MCT4 Female 76 right 168 62 180/80/90 64

8 SST1 Female 63 right 157 64 180/80/90 75

9 SST2 Female 65 left 153 55 160/90/80 73

10 SST3 Female 68 right 150 65 180/85/70 76

7 SST4 Female 76 left 168 67 180/75/80 76

11 SST5 Female 71 right 155 60 180/50/70 77

12 TA1 Female 73 right 160 70 180/90/90 82

13 TA2 Female 53 right 158 68 160/90/80 74

14 TA3 Female 66 right 158 54 140/90/70 83

6 TA4 Female 59 left 170 88 100/40/30 75

15 TA5 Female 65 right 165 70 180/90/90 84

*: healthy subjects

Abbreviations: N, normal; MCT, massive rotator cuff tear; SST, supraspinatus tear; TA, tendinopathy.

doi:10.1371/journal.pone.0158563.t001
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WSSavg and WSSrange of each of the rotator cuff diseases groups are presented in Table 3.
WSSavg was lower in the massive cuff tears group than in any other group (p = 0.012) while a
WSSrange of more than 4 mm differentiated control and tendinopathy shoulders from supraspi-
natus tear and massive cuff tears shoulder, i.e. between rotator cuff disease with and without
tendon tears (p = 0.012).

Corresponding to the above description, the average and range of translation of the humeral
head in the approximately superior-inferior direction (Y-direction) and anterior-posterior
direction (X-direction) for each shoulder were termed Yavg and Yrange, and Xavg and Xrange,
respectively. The Yavg and Yrange for each specimen are shown in Fig 2 while Xavg and Xrange are
shown in Fig 3. Essentially, Yavg and Xavg describes where the humeral head is located for most
of the time during the abduction movement while Yrange and and Xrange describes how much
the humeral head ‘wobbles’ around during the abduction movement. The mean of Yavg, Yrange,
Xavg, Xrange of each of the specimen groups are presented in Table 3.

Yrange was higher in massive cuff tears shoulders compared to the control group (6.4 vs. 3.4
mm, p = 0.02), but not when compared to the tendinopathy (p = 0.11) and supraspinatus tear
groups (p = 0.28). Finally, Xrange was higher in massive cuff tears and supraspinatus tear shoul-
ders when compared to the control and tendinopathy groups (9.2 and 9.3 vs. 4.8 and 3.5 mm,
p = 0.05) (Table 3).

With respect intra-observer reproducibility test, the difference between extreme values was
2 mm in the X-direction, 1.9 mm in Y-direction, 1.3 mm for the width of the subacromial
space, and 1.3° for the measure of the gleno-humeral abduction.

Fig 4 summarize the monitoring of the humeral head center projection on to the glenoid for
each of the 14 shoulders during abduction, for respectively massive rotator cuff tear (Fig 4A),
supraspinatus tear (Fig 4B), tendinopathy alone (Fig 4C) and normal shoulders (Fig 4D).

Table 2. Assessment of rotator cuff.

Shoulder
specimen

Extent of tendon retraction(Patte24) Level of muscle atrophy(Thomazeau26, 27) Level of fatty degeneration(Goutallier
et al28)

Subscapularis Supra-
spinatus

Infra-
spinatus

Subscapularis Supra-
spinatus

Infra-
spinatus

Subscapularis Supra-
spinatus

Infra-
spinatus

MCT1 I III III II III III II III IV

MCT2 I III III III III III IV III IV

MCT3 - III III - III III - IV IV

MCT4 I III III III III III IV IV IV

SST1 - I PT - - - - - -

SST2 - I - - - - - - -

SST3 - I PT - - - - - -

SST4 - I PT - II II - II II

SST5 - I - - II II - II II

TA1 - - - - - - - - -

TA2 - PT - - - - - - -

TA3 - PT - - - - - - -

TA4 - - - - - - - - -

TA5 - - - - - - - - -

Abbreviations : N, normal; MCT, massive rotator cuff tear; SST, supraspinatus tear; TA, tendinopathy; PT: partial tear; ‘-‘, normal.

doi:10.1371/journal.pone.0158563.t002
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Discussion
The objective of this paper was to evaluate if Dynamic MRI provides novel kinematic data that
can be used to improve the understanding, diagnosis and best treatment of rotator cuff dis-
eases. The long-term aim of this work is to develop the Dynamic-MRI technique as a tool that
can provide kinematic data and simultaneous MRI assessment of the loaded soft tissues of the
rotator cuff during arm movement.

The most important finding of this work was that the Dynamic-MRI technique enabled a
novel measure; ‘Looseness’, i.e. the translation of the humeral head on the glenoid during an
abduction cycle (Xrange and Yrange). Looseness was better able at differentiating rotator cuff dis-
ease than a simple static measure of relative gleno-humeral position.

This study found that the subacromial space narrowed with rotator cuff disease (Fig 1 and
Table 3) which is consistent with other studies [17, 29]. The reported width of the subacromial
space varies between studies (5 to 9 mm for healthy shoulders [11, 17, 29]) and are not incon-
sistent with the values found here (Table 3).

Fig 1. The width of the subacromial space during abductionmotion.

doi:10.1371/journal.pone.0158563.g001

Table 3. Mean of kinematic measures for each rotator cuff disease group

Group WSSavg(mm) WSSrange(mm) Yavg(mm) Yrange(mm) Xavg(mm) Xrange(mm)

MCT 4.3 4.0 3.8 6.4 -0.8 9.2

SST 7.3 5.3 2.0 5.0 0.9 9.3

TA 10.4 2.1 0.3 4.4 -1.6 4.8

N 7.7 1.9 1.0 3.4 1.1 3.5

Abbreviations : N, normal; MCT, massive rotator cuff tear; SST, supraspinatus tear; TA, tendinopathy.

doi:10.1371/journal.pone.0158563.t003
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The finding that superior-inferior excursion in torn shoulders is larger than in normals
(Yrange, Table 3) is related to the narrowing of the subacromial space and seems sensible consider-
ing the superiorly directed deltoid force and the reduced ability of the rotator cuff to compress
and stabilise the joint. While this finding was not surprising it does provide some confidence in
the Dynamic-MRI kinematic measurements. In contrast, the notable anterior-posterior excur-
sion (Fig 3 and Table 3) was not expected. Most studies investigating the effect of rotator cuff dis-
ease have not considered the anterior-posterior gleno-humeral translation. However Bey et al.
[11] did report that the anterior-posterior excursion was not restored (was larger than normal)
by rotator cuff repair. To our knowledge, this study is the first to report that the range of anterior
posterior motion (Xrange) increases significantly with rotator cuff diseases.

In fact, the superior-inferior motion (Yrange) was less affected than anterior-posterior trans-
lation (Table 3) which may seem surprising. However, Bey et al. [11] showed that the superior-
inferior excursion was restored by rotator cuff repair whereas anterio-posterior translation was
not, which also indicate that anterior-posterior motion may be more affected by rotator cuff
diseases. Previous studies [30, 31] have demonstrated that the glenoid is “flatter” in the ante-
rior-posterior direction than in the superior-inferior direction and joint excursion in the ante-
rior-posterior direction may depend more on the stability provided by the rotator cuff and,
consequently, may be more affected by rotator cuff disease. Therefore analysis and improved
understanding of excursion in the anterior-posterior direction may be critical to diagnosis and
treatment of different conditions of rotator cuff diseases.

The dynamic MRI technique also allowed us to measure the ranges of the variables
(WSSrange, Yrange, Xrange) during the motion; effectively how loose or unstable the joint was.

Fig 2. Translation of the humeral head along the Y-axis (superior-inferior direction) of glenoid coordinate system

doi:10.1371/journal.pone.0158563.g002
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This looseness was shown to be a better measure for identifying and specifying cuff tear disease
than the average measures used in static techniques.

Although an analysis of the subacromial space combined with an analysis of the translations
of the humeral head allowed identification of cuff tears and the degree of cuff tear pathology,
statistical significance was not consistently found between tendinopathy shoulders and healthy
shoulders. This may be due to the relatively few specimens in the study, which may have pre-
vented statistically significant differences to be found for both analyses.

The abduction cycle was prescribed to take 28 seconds, which clearly does not represent
physiological arm motion. However, image noise is inversely proportional to the acquisition
speed and an acquisition phase lasting for 4 seconds, resulting in 7 acquisitions during the
abduction motion, was chosen as a balance between image quality and realistic abduction
times. Consequently, the MRI dynamic technique enabled kinematics analysis of the bone
structures but not simultaneous visualization of the tendons. Visualization of the soft structures
is a priority for future work.

Another limitation was the use of a closed-bore scanner. This scanner was chosen because
of its common availability but resulted in the elbow abutting against the wall of the scanner
during the motion, thus restricting humero-thoracic abduction to approximately 45°. However,
the protocol could be easily transferred to an open-bore MRI scanner that would provide, in
upright position, the full range of shoulder abduction.

Fig 3. Translation of the humeral head along the X-axis (anterior-posterior direction) of glenoid coordinate system

doi:10.1371/journal.pone.0158563.g003
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This study did assess the intra-observer reproducibility of the technique. Considering all cri-
teria (data on X-axis and Y-axis of the humeral head projection and width of the subacromial
space), the difference between the extreme values were less than 2 mm, i.e., showing a good
consistency. The inter-observer reproducibility was not investigated because the segmentation
of the images, in step two of the protocol, is very time-consuming. Consequently, this protocol
needs to be enhanced including improved computer-based segmentation of the images.

Thus, before being used in routine practice, this protocol needs to be transferred to an
open-bore MRI scanner and needs to be improved by shortening the acquisition times, by visu-
alizing the tendons and by developing a the computer-based segmentation of the images.

Conclusion
The Dynamic-MRI technique identified kinematic differences between groups of patients with
various degrees of cuff tears.

Fig 4. Monitoring of the humeral head center projection on to the glenoid for each of the 14 shoulders during abduction. The size of the glenoids was
standardized so that each fit with a circle of 200% diameter (-100% to +100%). The locations of the humeral head center projections on to the glenoid are
expressed in percentile. Fig 4A, massive rotator cuff tear; Fig 4B, Supraspinatus tear; Fig 4C, Tendinopathy alone; Fig 4D, normal shoulders.

doi:10.1371/journal.pone.0158563.g004
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Relative to standard MRI, the Dynamic-MRI has the advantage of providing kinematic data
to improve the understanding, diagnosis and best treatment of rotator cuff diseases.

The technique enabled a novel measure; ‘Looseness’, i.e. the translation of the humeral head
on the glenoid during an abduction cycle (Xrange and Yrange). Looseness was better able at dif-
ferentiating rotator cuff disease than a simple static measure of relative gleno-humeral
position.

The study showed that anterior-posterior gleno-humeral motion increases with rotator cuff
disease and it is suggested that a better understanding of this relationship may help improve
treatment for rotator cuff diseases.
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