14 research outputs found

    Slanted Stixels: A way to represent steep streets

    Get PDF
    This work presents and evaluates a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced in order to significantly reduce the computational complexity of the Stixel algorithm, and then achieve real-time computation capabilities. The idea is to first perform an over-segmentation of the image, discarding the unlikely Stixel cuts, and apply the algorithm only on the remaining Stixel cuts. This work presents a novel over-segmentation strategy based on a Fully Convolutional Network (FCN), which outperforms an approach based on using local extrema of the disparity map. We evaluate the proposed methods in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset.Comment: Journal preprint (published in IJCV 2019: https://link.springer.com/article/10.1007/s11263-019-01226-9). arXiv admin note: text overlap with arXiv:1707.0539

    Effects of Ground Manifold Modeling on the Accuracy of Stixel Calculations

    Get PDF
    This paper highlights the role of ground manifold modeling for stixel calculations; stixels are medium-level data representations used for the development of computer vision modules for self-driving cars. By using single-disparity maps and simplifying ground manifold models, calculated stixels may suffer from noise, inconsistency, and false-detection rates for obstacles, especially in challenging datasets. Stixel calculations can be improved with respect to accuracy and robustness by using more adaptive ground manifold approximations. A comparative study of stixel results, obtained for different ground-manifold models (e.g., plane-fitting, line-fitting in v-disparities or polynomial approximation, and graph cut), defines the main part of this paper. This paper also considers the use of trinocular stereo vision and shows that this provides options to enhance stixel results, compared with the binocular recording. Comprehensive experiments are performed on two publicly available challenging datasets. We also use a novel way for comparing calculated stixels with ground truth. We compare depth information, as given by extracted stixels, with ground-truth depth, provided by depth measurements using a highly accurate LiDAR range sensor (as available in one of the public datasets). We evaluate the accuracy of four different ground-manifold methods. The experimental results also include quantitative evaluations of the tradeoff between accuracy and run time. As a result, the proposed trinocular recording together with graph-cut estimation of ground manifolds appears to be a recommended way, also considering challenging weather and lighting conditions

    Vehicle Tracking and Motion Estimation Based on Stereo Vision Sequences

    Get PDF
    In this dissertation, a novel approach for estimating trajectories of road vehicles such as cars, vans, or motorbikes, based on stereo image sequences is presented. Moving objects are detected and reliably tracked in real-time from within a moving car. The resulting information on the pose and motion state of other moving objects with respect to the own vehicle is an essential basis for future driver assistance and safety systems, e.g., for collision prediction. The focus of this contribution is on oncoming traffic, while most existing work in the literature addresses tracking the lead vehicle. The overall approach is generic and scalable to a variety of traffic scenes including inner city, country road, and highway scenarios. A considerable part of this thesis addresses oncoming traffic at urban intersections. The parameters to be estimated include the 3D position and orientation of an object relative to the ego-vehicle, as well as the object's shape, dimension, velocity, acceleration and the rotational velocity (yaw rate). The key idea is to derive these parameters from a set of tracked 3D points on the object's surface, which are registered to a time-consistent object coordinate system, by means of an extended Kalman filter. Combining the rigid 3D point cloud model with the dynamic model of a vehicle is one main contribution of this thesis. Vehicle tracking at intersections requires covering a wide range of different object dynamics, since vehicles can turn quickly. Three different approaches for tracking objects during highly dynamic turn maneuvers up to extreme maneuvers such as skidding are presented and compared. These approaches allow for an online adaptation of the filter parameter values, overcoming manual parameter tuning depending on the dynamics of the tracked object in the scene. This is the second main contribution. Further issues include the introduction of two initialization methods, a robust outlier handling, a probabilistic approach for assigning new points to a tracked object, as well as mid-level fusion of the vision-based approach with a radar sensor. The overall system is systematically evaluated both on simulated and real-world data. The experimental results show the proposed system is able to accurately estimate the object pose and motion parameters in a variety of challenging situations, including night scenes, quick turn maneuvers, and partial occlusions. The limits of the system are also carefully investigated.In dieser Dissertation wird ein Ansatz zur Trajektorienschätzung von Straßenfahrzeugen (PKW, Lieferwagen, Motorräder,...) anhand von Stereo-Bildfolgen vorgestellt. Bewegte Objekte werden in Echtzeit aus einem fahrenden Auto heraus automatisch detektiert, vermessen und deren Bewegungszustand relativ zum eigenen Fahrzeug zuverlässig bestimmt. Die gewonnenen Informationen liefern einen entscheidenden Grundstein für zukünftige Fahrerassistenz- und Sicherheitssysteme im Automobilbereich, beispielsweise zur Kollisionsprädiktion. Während der Großteil der existierenden Literatur das Detektieren und Verfolgen vorausfahrender Fahrzeuge in Autobahnszenarien adressiert, setzt diese Arbeit einen Schwerpunkt auf den Gegenverkehr, speziell an städtischen Kreuzungen. Der Ansatz ist jedoch grundsätzlich generisch und skalierbar für eine Vielzahl an Verkehrssituationen (Innenstadt, Landstraße, Autobahn). Die zu schätzenden Parameter beinhalten die räumliche Lage des anderen Fahrzeugs relativ zum eigenen Fahrzeug, die Objekt-Geschwindigkeit und -Längsbeschleunigung, sowie die Rotationsgeschwindigkeit (Gierrate) des beobachteten Objektes. Zusätzlich werden die Objektabmaße sowie die Objektform rekonstruiert. Die Grundidee ist es, diese Parameter anhand der Transformation von beobachteten 3D Punkten, welche eine ortsfeste Position auf der Objektoberfläche besitzen, mittels eines rekursiven Schätzers (Kalman Filter) zu bestimmen. Ein wesentlicher Beitrag dieser Arbeit liegt in der Kombination des Starrkörpermodells der Punktewolke mit einem Fahrzeugbewegungsmodell. An Kreuzungen können sehr unterschiedliche Dynamiken auftreten, von einer Geradeausfahrt mit konstanter Geschwindigkeit bis hin zum raschen Abbiegen. Um eine manuelle Parameteradaption abhängig von der jeweiligen Szene zu vermeiden, werden drei verschiedene Ansätze zur automatisierten Anpassung der Filterparameter an die vorliegende Situation vorgestellt und verglichen. Dies stellt den zweiten Hauptbeitrag der Arbeit dar. Weitere wichtige Beiträge sind zwei alternative Initialisierungsmethoden, eine robuste Ausreißerbehandlung, ein probabilistischer Ansatz zur Zuordnung neuer Objektpunkte, sowie die Fusion des bildbasierten Verfahrens mit einem Radar-Sensor. Das Gesamtsystem wird im Rahmen dieser Arbeit systematisch anhand von simulierten und realen Straßenverkehrsszenen evaluiert. Die Ergebnisse zeigen, dass das vorgestellte Verfahren in der Lage ist, die unbekannten Objektparameter auch unter schwierigen Umgebungsbedingungen, beispielsweise bei Nacht, schnellen Abbiegemanövern oder unter Teilverdeckungen, sehr präzise zu schätzen. Die Grenzen des Systems werden ebenfalls sorgfältig untersucht

    Unifying terrain awareness for the visually impaired through real-time semantic segmentation.

    Get PDF
    Navigational assistance aims to help visually-impaired people to ambulate the environment safely and independently. This topic becomes challenging as it requires detecting a wide variety of scenes to provide higher level assistive awareness. Vision-based technologies with monocular detectors or depth sensors have sprung up within several years of research. These separate approaches have achieved remarkable results with relatively low processing time and have improved the mobility of impaired people to a large extent. However, running all detectors jointly increases the latency and burdens the computational resources. In this paper, we put forward seizing pixel-wise semantic segmentation to cover navigation-related perception needs in a unified way. This is critical not only for the terrain awareness regarding traversable areas, sidewalks, stairs and water hazards, but also for the avoidance of short-range obstacles, fast-approaching pedestrians and vehicles. The core of our unification proposal is a deep architecture, aimed at attaining efficient semantic understanding. We have integrated the approach in a wearable navigation system by incorporating robust depth segmentation. A comprehensive set of experiments prove the qualified accuracy over state-of-the-art methods while maintaining real-time speed. We also present a closed-loop field test involving real visually-impaired users, demonstrating the effectivity and versatility of the assistive framework

    Speeding up Deep Neural Networks on the Jetson TX1

    Get PDF
    In recent years, Deep Learning (DL) showed new top performances in almost all computer vision tasks that are important for automotive and robotic applications. In these applications both space and power are limited resources. Therefore, there is a need to apply DL approaches on a small and power ecient device, like the NVIDIA Jetson TX1 with a powerful GPU onboard. In this paper, we analyze the Jetson's suitability by benchmarking the run-time of DL operations in comparison to a high performance GPU. Exemplary, we port a topperforming DL-based person detector to this platform. We explain the steps necessary to signicantly speed up this approach on the device

    3D Motion Analysis via Energy Minimization

    Get PDF
    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to computing the apparent image motion vector field. Furthermore this results currently in the most accurate motion estimation techniques in literature. Much as this is an engineering approach of fine-tuning precision to the last detail, it helps to get a better insight into the problem of motion estimation. This profoundly contributes to state-of-the-art research in motion analysis, in particular facilitating the use of motion estimation in a wide range of applications. In Chapter 5, scene flow is rethought. Scene flow stands for the three-dimensional motion vector field for every image pixel, computed from a stereo image sequence. Again, decoupling of the commonly coupled approach of estimating three-dimensional position and three dimensional motion yields an approach to scene ow estimation with more accurate results and a considerably lower computational load. It results in a dense scene flow field and enables additional applications based on the dense three-dimensional motion vector field, which are to be investigated in the future. One such application is the segmentation of moving objects in an image sequence. Detecting moving objects within the scene is one of the most important features to extract in image sequences from a dynamic environment. This is presented in Chapter 6. Scene flow and the segmentation of independently moving objects are only first steps towards machine visual kinesthesia. Throughout this work, I present possible future work to improve the estimation of optical flow and scene flow. Chapter 7 additionally presents an outlook on future research for driver assistance applications. But there is much more to the full understanding of the three-dimensional dynamic scene. This work is meant to inspire the reader to think outside the box and contribute to the vision of building perceiving machines.</em

    9. Workshop Fahrerassistenzsysteme : FAS 2014

    Get PDF
    Fahrerassistenzsysteme mit maschineller Wahrnehmung sind inzwischen im Automobil bis in die Mittelklasse hinein etabliert. Dadurch rücken Fragen der Leistungs- und Kostenoptimierung immer stärker in den Vordergrund. Ferner werden neue Mobilitätskonzepte wie auch die Elektromobilität weitere Chancen aber auch neue Herausforderungen für die Fahrer-assistenzsysteme, insbesondere für das HMI, schaffen. Zukünftige funktionale Heraus-forderungen liegen im innerstädtischen Bereich, bei der Realisierung hoch automatisierter Assistenzfunktionen sowie bei Funktionen für spezielle Zielgruppen mit erhöhtem Assistenzbedarf. Der steigende Grad der Autonomie erfordert allerdings neben funktionalen Herausforderungen die sorgfältige Diskussion von Fragen der Systemsicherheit, Systemtransparenz aber auch der möglichen Überautomatisierung. Wie in den vergangenen Jahren bietet der Workshop in Walting ein Diskussionsforum für ausgewiesene Experten im deutschsprachigen Raum, auf dem technische, gesellschaftliche aber auch ethische Frage-stellungen der Fahrerassistenz interdisziplinär diskutiert werden

    Target classification in multimodal video

    Get PDF
    The presented thesis focuses on enhancing scene segmentation and target recognition methodologies via the mobilisation of contextual information. The algorithms developed to achieve this goal utilise multi-modal sensor information collected across varying scenarios, from controlled indoor sequences to challenging rural locations. Sensors are chiefly colour band and long wave infrared (LWIR), enabling persistent surveillance capabilities across all environments. In the drive to develop effectual algorithms towards the outlined goals, key obstacles are identified and examined: the recovery of background scene structure from foreground object ’clutter’, employing contextual foreground knowledge to circumvent training a classifier when labeled data is not readily available, creating a labeled LWIR dataset to train a convolutional neural network (CNN) based object classifier and the viability of spatial context to address long range target classification when big data solutions are not enough. For an environment displaying frequent foreground clutter, such as a busy train station, we propose an algorithm exploiting foreground object presence to segment underlying scene structure that is not often visible. If such a location is outdoors and surveyed by an infra-red (IR) and visible band camera set-up, scene context and contextual knowledge transfer allows reasonable class predictions for thermal signatures within the scene to be determined. Furthermore, a labeled LWIR image corpus is created to train an infrared object classifier, using a CNN approach. The trained network demonstrates effective classification accuracy of 95% over 6 object classes. However, performance is not sustainable for IR targets acquired at long range due to low signal quality and classification accuracy drops. This is addressed by mobilising spatial context to affect network class scores, restoring robust classification capability
    corecore