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Abstract

The presented thesis focuses on enhancing scene segmentation and target
recognition methodologies via the mobilisation of contextual informa-
tion. The algorithms developed to achieve this goal utilise multi-modal
sensor information collected across varying scenarios, from controlled in-
door sequences to challenging rural locations. Sensors are chiefly colour
band and long wave infrared (LWIR), enabling persistent surveillance
capabilities across all environments. In the drive to develop effectual
algorithms towards the outlined goals, key obstacles are identified and
examined: the recovery of background scene structure from foreground
object ’clutter’, employing contextual foreground knowledge to circum-
vent training a classifier when labeled data is not readily available, cre-
ating a labeled LWIR dataset to train a convolutional neural network
(CNN) based object classifier and the viability of spatial context to ad-
dress long range target classification when big data solutions are not

enough.

For an environment displaying frequent foreground clutter, such as a
busy train station, we propose an algorithm exploiting foreground ob-
ject presence to segment underlying scene structure that is not often
visible. If such a location is outdoors and surveyed by an infra-red (IR)
and visible band camera set-up, scene context and contextual knowledge
transfer allows reasonable class predictions for thermal signatures within

the scene to be determined.

Furthermore, a labeled LWIR image corpus is created to train an infrared
object classifier, using a CNN approach. The trained network demon-
strates effective classification accuracy of 95% over 6 object classes.
However, performance is not sustainable for IR targets acquired at long
range due to low signal quality and classification accuracy drops. This
is addressed by mobilising spatial context to affect network class scores,

restoring robust classification capability.
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Chapter 1

Introduction

Humans use the eye as a sensor to collect visual data from which our brain extracts
useful information. This allows us to effectively understand the surrounding world
environment whilst generating a conscious perceptual experience. These experiences
form part of our visual system and help the brain understand future scenes, mean-
ing humans are very efficient at quickly comprehending complex visual events with
relative ease. The ultimate goal of computer vision is to develop methods that allow
computers or machines to intelligently sense and understand surroundings akin to
the human visual system, learning from prior information and experiences in the
process. If this goal is fully realised the potential applications are vast across a wide
range of industries. From the impending wave of autonomous driverless vehicles to
robotic care assistants for the elderly, advanced and reliable computer vision systems

will be integral to such systems.

The security and defence industry is becoming increasingly reliant on intelli-
gent signal processing methods to achieve persistent surveillance capabilities, where
systems must be able to perform 24-hours a day. Often the aim is to maximise sit-
uational awareness in military or surveillance based tasks. Put simply, situational
awareness relates to understanding critical information about surrounding events
and how it can affect future decision making in dynamic scenarios [19]. Given
the limitations of human processing capabilities, employing human operators on
massive-scale surveillance systems is infeasible. By researching and developing tools
to flag potential threats in a scene, the burden placed on humans in normal to
dangerous environments can be alleviated. Computer vision processes are utilised
to achieve such improvements providing solutions that a person could simply not
replicate in terms of execution speed or performance, regardless of operator skill or

training. An illustrative example of this concept is provided in Figure 1.1.

In Figure 1.1 a typical urban night scene is presented, captured using a visible
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Figure 1.1: The left hand image shows a colour image capturing an urban street
scene in Glasgow. Given the poor illumination and sensor band it is hard to discern
scene content. The right hand image captures the same view but using a low quality
thermal imager, revealing a person in the centre of the scene.

and thermal camera. Regardless of how many analysts observe the colour image, it
cannot possibly be ascertained if there is a credible threat. When the extra thermal
band information is presented, however, only then is the presence of a pedestrian
revealed. Exploiting the persistent surveillance capability offered by thermal sensors
is a key focus of this research project. The real world consequence from deploying
robust signal processing systems, in a typical defence environment, is an enhanced

situational awareness leading to more informed decision making overall.

In terms of signal acquisition the human eye is limited to sensing light only in the
visible band of the Electromagnetic (EM) spectrum. Light waves enter the eye acti-
vating specialised rod and cone cells within the retinal structure, creating electrical
impulses transmitted to the brain for comprehension. This general process is very
similar to the collection of light information using engineered systems, where EM
signals propagate through an optical system until they reach a detector. Depending
on the material used in the detector slice the absorbed light will generate electrical
signals to be interpreted, for instance in the form of images. Thus, a signal process-
ing strategy to aid scene understanding is required. Developing such methods is the

focus of this research thesis.

Robust and intelligent image comprehension is hard to achieve using machines.
By comparison it is a simple task for humans to perform, where our visual system
benefits from millions of years of evolution. The human visual system is remark-

ably good at processing light information, quickly forming scene understanding and
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building inferences in real-time. This adaptable learning mechanism is powerful,
especially when faced with new, effectively unseen information. Conversely, such a
robust signal processing system, capable of transferable learning, is still not fully
realised using human engineered hardware and software. Through effective sensor
utilisation it is possible to build systems capable of 24-hour operation and sense
more than one waveband, such as thermal infrared (IR) , addressing the fundamen-
tal limitations of the human visual system. This thesis is concerned with replicating
the transferable inference power of the brain towards computer algorithms, deploy-
able with multimodal sensor suites. Contextual models and recent machine learning
tools are employed, providing the key mechanism to transfer implicit scene under-

standing to our algorithms.

1.1 Engineering Doctorate Program

The presented thesis examines and discusses research conducted towards attaining
an Engineering Doctorate (EngD) in Applied Photonics. The undertaken work op-
erates at the very cusp of this research remit, in the field of computer vision. The
central focus is on the development of image processing techniques to enhance target
classification and scene understanding, via the integration of contextual information.
The project was carried out primarily within a sponsor company, Thales UK, and
the Visionlab, part of the Institute for Sensors, Signals and Systems (ISSS) based
at Heriot-Watt University, Edinburgh. Project funding was provided jointly by the
Engineering and Physical Sciences Research Council (EPSRC) and an industrial
partner, Thales UK. The EngD is centrally managed by the Centre for Doctoral
Training in Applied Photonics, formally the Industrial Doctorate Centre for Op-
tics and Photonics Technologies, via a partnership of 100 academic research groups
spread across b universities. A core advantage of such a scheme is the generated
research has a high relevance towards industrial applications. This EngD project
exemplifies the industrial relevance benefit, where Thales UK provide resources in
exchange for novel solutions towards building robust detection and classification
algorithms, developed using their state-of-the-art thermal imagers. The industrial

motivation is expanded further in Section 1.2.

This introductory chapter captures the key research themes present throughout
the thesis and is laid out as follows: Section 1.2 outlines the overall problem state-
ment and underlying motivation for conducting the research. This is considered

from not only the academic viewpoint, but also from a current industrial position
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to relay the commercial value of the research. Section 1.3 presents the specific aims
of the EngD project while Section 1.4 follows with the transfer of knowledge to the
defence industry. Lastly, our research contributions are defined in Section 1.5 and

the remaining thesis is outlined in Section 1.6.

1.2 Motivation

By examining the stimulating factors underpinning the research, the scope of the
problem domain and surrounding context can be grasped. This can then be related
to current commercial interests, specifically in security and defence. Lets begin by
initially providing a hypothetical scenario to capture the true essence of the problem,
from an academic aspect. The motivational scene relates to problems faced today
in defence and surveillance operations, which industrial bodies are keen to address
for reasons later discussed. Moreover, the research driving force can be elaborated
upon from this industrial perspective and challenges faced by Thales UK can be
focused on in doing so. It is important to recall that both of these viewpoints must
be considered when evaluating an EngD. Academically the research must be novel
and relevant, but it also needs to address current gaps in industry where poten-
tial solutions are desirable. In other words the project deliverables are likely to be
applicable to industry relevant problems, leading to new products that ultimately
would not be possible without such commercially focused research. This is a holistic
view of the EngD. Let us now discuss the academic problem statement and wider

motivations.

1.2.1 Academic & Industrial Motivation

For Thales, their customers and the wider research community, the task to over-
come is concerned with scene segmentation and target recognition methodologies,
specifically in a surveillance based context. At the outset of this project such sys-
tems were demonstrated to perform poorly in complex and dynamic scenes, where
changing illumination and occlusions are frequent. While great strides have been
made to tackle this problem over recent years, there remains a gap for reliable and
robust scene perception and target recognition approaches for 24-hour surveillance.
To grasp the importance of such a capability situational awareness and how these

methods relate must be considered.

Situational awareness is the foremost concern when human decisions have to be
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made with potentially significant consequences in a specific problem domain [19].
A relatable example can be described by contemplating a tourist visiting a foreign
country. In this case a tourist, behaving in a normal manner, shall strive to re-
main out of harms way and avoid risky encounters. Due to the unfamiliar nature
of foreign surroundings, humans will instinctively be more alert and perceptive to
environmental factors that may compromise such a goal. It is only when a person
becomes at ease with the local setting that vigilance dissipates. This enhanced in-
terpretation of the environment in proximity and how it may affect future events, as
well as decisions, is the essence of situational awareness. At the local level described
in such a scenario, the surrounding environment must be observed in some fashion

to actually garner information to aid the decision making process.

If the the idea of situational awareness is extended to the realm of military
scenarios, where local environments may be hazardous and threatening, or poten-
tial threats may exist at long ranges and actively try to avoid detection, obtaining
enough useful knowledge about surroundings can be fraught with such challenges
leading to impaired threat perception. Moreover, monitoring equipment tends to
be passive where sensors only collect rather than emit physical signals, to detect
nearby objects for instance. Such sensors must be passive in a hostile environment,
typical of military scenarios, as an active sensor emission can be detected by enemy
forces which is not ideal for covert surveillance units. This is the chief benefit of
employing passive sensors in such circumstances, although it is a tradeoff between
being undetectable and gaining enhanced signals from active sensing technology.
Utilising these systems is critical for gathering information to improve local situa-
tional awareness and the capacity to make informed decisions. This is why current
and next generation land vehicles of the British Army are outfitted with such sensor

systems, as shown in Figure 1.2.

The work presented in this thesis is only concerned with image information
captured by sensors measuring light from visible and infrared portions of the EM
spectrum. The visual band is what humans naturally perceive and is an obvious
choice for this reason. However, colour cameras are limited by dynamic illumination
and cannot effectively see in the absence of adequate light sources. Infrared band
cameras address this limitation and can sense any hot bodies emitting thermal radi-
ation, making them illumination invariant. In other words IR sensors can effectively
see in the dark. Only longwave infrared (LWIR) is considered as the thermal band
of interest for any research conducted, since it is emission dominated compared to
other portions of the IR band.
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Figure 1.2: The figure presents a prototype Ajax armoured fighting vehicle, soon to
be commissioned for use by the British Army. This new breed of vehicle is equipped
with state-of-the-art sensors operating in multiple wavebands, as well as local situa-
tional awareness systems. One of the key capabilities of the new vehicle design is the
electronic architecture and on-board data capture system, as intelligent processing
and information analysis is critical to obtain enhanced situation awareness. Image
re-used courtesy of (©Crown Copyright.

Efficient night-vision greatly improves situational awareness and offers a power-
ful capability for persistent surveillance. This advantage was demonstrated in the
first Gulf War, where land vehicles designed towards the end of the Cold War were
employed to great effect. These combat vehicles were fitted with early stage thermal
imagers (TI) enabling British and American forces to fight under the cover of dark-
ness, where opposing forces could not operate as they lacked this key technology.
This asymmetric war signposted how critical persistent surveillance capabilities can
be, where enhanced situational awareness provides a distinct advantage. Thales UK
have considerable expertise manufacturing high quality TIs and one of their key
products is utilised throughout the thesis, the Catherine MP [20].

The Catherine MP is a state-of-the-art TT operating in the LWIR band and is the
primary choice TI of the British Army. It can capture very detailed imagery across
a large range of distances, making it an ideal selection for our research purposes
as well as maintaining an obvious link to industry. The camera itself and example
imagery are shown in Figure 1.3. However, the caveat to 24-hour sensing technology

in a domain where vigilance is required has not yet been discussed.

Let us consider a plausible scenario where a vehicle, similar to one as shown in

Figure 1.2, is likely to operate. A machine equipped with an array of sensors and
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Figure 1.3: Image (a) shows the Catherine MP LWIR TI. Image (b) captures a
crowd of pedestrians at close range while (c¢) is a wide-angle shot of an urban vista,
illustrating an aircraft passing across the sky in the very far distance.

intelligent processing is designed for performing surveillance of targets, from close to
far ranges, while stationery and on the move. It will most probably undertake such
tasks deployed in a hostile environment under sustained threat, requiring constant
alertness from operators within the vehicle. This is especially true in a modern
battle domain where thermal sensing technology is now commonplace, allowing all

armed forces 24-hour surveillance capabilities.

The load placed on human operators in such high pressure conditions is im-
mense. Performance on tasks requiring long periods of focus, such as reviewing
several surveillance feeds from multiple cameras, is known to deteriorate over time.
Part of this is due to the limited capacity of the human visual system for processing
information, which is further compounded by the often long and repetitive nature
of surveillance type work [21,22]. This performance degradation can result in poor
decisions even with advanced situational awareness, leading to potentially disastrous
consequences. Thus, it would be highly desirable to relieve system operators from
such a burden by replacing or augmenting some of their human visual process using
intelligent signal processing. Ultimately, robust algorithms for improving automatic
detection and recognition tasks are highly desired, where any successful approaches
will alleviate the burden from human operators. The problem is not confined to
the security and defence domain, but is also relevant for civilian applications where

autonomous scene perception is required.
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1.3 Aims

Having considered the academic and industrial drivers for this project, within the
context of a hypothetical surveillance situation, the goals of the EngD as a whole
can now be stated. Ideal solutions presented shall incorporate LWIR sensor infor-
mation and be applicable from static platforms. Operating under these overarching

criteria, this work aims to provide answers to the following questions:

1. Can the presence of foreground objects influence scene perception and provide

a route to persistent surveillance?

2. Does the mobilisation of scene specific context, gained via semantic segmen-
tation, enhance target recognition performance using multimodal sensor sys-

tems?

The first question is explored and answered in Chapters 3 and 4 respectively,
where the the presence of foreground objects relates to the underlying scene struc-
ture. This information is exploited by a knowledge transfer approach, allowing
objects in thermal imagery to be classified by reference observations in correspond-
ing colour band surveillance imagery. The second question is considered in Chapters
5 and 6 respectively, where a robust target classifier for LWIR images using recent
machine learning techniques is developed. This classifier is then applied to a chal-
lenging defence relevant problem, showing performance is considerably improved by

augmenting classification scores with contextual knowledge.

1.3.1 Scope & Assumptions

To present the body of work fairly it is reasonable to outline any key assumptions
and limitations made throughout, with regards to the stated aims. As such, any
methods presented are applicable only to static camera surveillance scenarios. In
these situations, the main goal will be to determine what is contained within the
scene, whether it be object classes or the region types. Furthermore, the thesis
focuses on colour and thermal band sensor information. Techniques to extract un-
derlying scene structure or segment semantic regions are developed only on colour
imagery. Lastly, only LWIR imagery is incorporated with any proposed methods

utilising thermal band information.
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1.4 Knowledge Transfer

1.4.1 Research Outputs

e A conference paper [23] was presented at the IEEE International Conference

on Image Processing, 2015. This work is explored in Chapter 3.

e An award winning paper presentation was delivered at the Institute of Math-
ematics & its Applications 4th Conference on Mathematics in Defence, held
in Oxford 2015. This is discussed further in Chapter 4.

e This was followed by another award winning conference paper [16] and pre-
sentation at SPIE Security & Defence, 2016.

e Lastly, another paper and presentation [24] is due to be given in 2017 at SSPD
in London. The contents of both SPIE and SSPD publications are covered in
Chapters 5 and 6.

1.4.2 Commercial Impact

Key strands of research from this project have been presented many times inter-
nally to senior members of the Thales UK technology directorate, who operate at a
strategic level guiding future areas of research and development (R&D) . In 2016,
recent work on LWIR target detection was presented at a Thales UK Innovation
Day. This is a high profile internal event where various ranks of personnel observe

current projects within Thales.

The main results of the LWIR classification scheme from [16] were shown along-
side a real-time demo. Example illustrations of this highly accurate object recog-
nition algorithm are shown in Figure 1.4. This demo and ezhibition stall won Best
Innovation Stand at the event, but more importantly the outcomes of this thesis
have had a significant impact on the future research direction within Thales Land
and Air Systems. For such a large company this is a remarkable achievement for a

single EngD student to accomplish.

1.5 Contributions

Overall, the work presented in this thesis serves as a useful indicator for the rise of

machine learning within computer vision. While it always had a significant place in
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Figure 1.4: This pair of LWIR thermal images from the Catherine MP are fed into
a trained object classifier. The user is allowed to draw a region of interest around
the target, shown as a green box in both cases. Output classifier probabilities for
prediction confidence are shown in the bottom right hand corner. The selected object
classified in image (a) is correctly recognised as a person. Image (b) illustrates the
correct classification of a false alarm, reflected in the softmax output in the bottom
right hand corner of the image.

the field, most research made incremental gains employing such methods. However,
with the advent of recent deep learning approaches the field has exploded in terms
of performance and interest. Machine learning became hugely popular for segmen-
tation and classification tasks, under the supervised learning umbrella from 2014
onwards, a mere two years or less after the seminal early works reviving interest in
this area. Overall the step-change in thought and approach towards computer vision
problems is reflected in the layout, with early data chapters trying to gain object
classification for free via scene context and later chapters fully adopting deep neural

network methods. In other words, it is a relevant snapshot of the field over time.

The essential contributions outlined in this thesis can be summarised in the

following ways:

e Developing a scene segmentation process influenced by pedestrians and the
presence of other foreground objects for colour video surveillance. This is

presented in Chapter 3.

e Target classification in LWIR video surveillance using contextual knowledge
transfer across domains. Output generated from this contextual scheme is
presented in Figure 1.5 showing accurate pixel level classifications for input

thermal imagery. This is presented in Chapter 4.

10
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Figure 1.5: Image (a) is a typical surveillance scene captured in LWIR. Image (b) is
the thermal signatures our work will classify to provide object information. Image
(c) illustrates the output classification from our contextual classification scheme,
with the key on the right hand side. The person is clearly identified as green pixels,
with background regions shown in blue.

e The design and construction of a deep convolutional neural network for target
classification, using LWIR imagery collected via a Thales Catherine MP. The
robust algorithm is applied to a variety of scenarios and a realtime demonstra-
tor is implemented to highlight the application benefits. This is described in
Chapter 5.

e Long range LWIR target classification is enhanced using scene specific context,
for representative problem data collected by a Thales sensor. An illustration
of the novel LWIR classifier is shown in Figure 1.4 and the final results are
summarised in Figure 1.6, where a significant overall improvement to system
performance is gained via exploiting context information for challenging long

range data. This is presented in Chapter 6.

1.6 Thesis Outline

The general layout of the remaining thesis follows a certain structure, with regards
to the literature review presented in Chapter 2 and the succeeding data chapters.
Given the broad range of topics this thesis covers or extends, Chapter 2 discusses
related academic and commercial publications to provide a brief overview of the
state of the field, for instance identifying deep neural networks as the state-of-the-
art method for object recognition, where only wutilised techniques are reviewed in any

great detail. Furthermore, each data chapter contains its own introduction where

11
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Figure 1.6: The multi-axis plot shows mean F; — Scores for the different variants of
classification algorithm in our final experiment. The F; — Score is a useful summary
statistic in machine learning as it provides an a weighted average of a classifiers pre-
cision and recall across classes. There is a marked improvement gained from spatial
context incorporation. This is highlighted by the red line showing the percentage
increase in F; — Score relative to the raw CNN output.

similar and relevant works are discussed in more detail to better place the research

in context. This structure was chosen for both brevity and clarity.

The data chapters constitute the bulk of the thesis and are outlined as follows.
Chapter 3 signals the first data chapter where background recovery of urban scenes
is discussed. The principle idea put forth demonstrates that the presence of fore-
ground objects implicitly tells us something about the underlying background in an

image, which the method successfully extracts.

Chapter 4 extends the notion of foreground context and background retrieval.
This chapter of work incorporates thermal band data and exploits the embedded
object information contained within the background recovery scheme, enabling the
classification of thermal hotspots without a trained classifier. This investigation was
completed just as the collective awareness of deep learning and object classification
surged dramatically within the field. Chapter 5 discusses the complete process for
constructing a target classification algorithm using convolutional neural networks,
for LWIR imagery. The source data was collected using the Catherine MP, a high

12
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quality TI manufactured by Thales. It is easy to see where the highly accurate

output classification scheme could fit into future commercial plans of the company.

In Chapter 6 research elements from the previous three chapters are incorpo-
rated into a contextual scene segmentation scheme that can influence the output
classification scores of a deep neural network. The method is demonstrated using
challenging real world trials data owned by Thales, and is shown to offer considerable
performance gains for autonomous long range target classification. Chapter 7 con-
cludes the thesis by highlighting the key points from each chapter and summarising

findings. A brief discussion of future work is also included.
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Developing algorithms to enhance scene comprehension and autonomous target recog-
nition performance is highly desirable. This goal is currently the focus of both
academia and industry, supported by large numbers of publications and heavy invest-
ment by commercial enterprise in this area. Such a capability encompasses many
important fields within the overall branch of computer vision, which we review in this
chapter to identify and address current gaps. Here, we discuss five topics critical to

achieving our objective:

1. A brief overview of the sensor space utilised for all works contained in this

thesis;

2. Machine learning and its relevance to the encompassed section topics, including

how this paradigm is shaping current computer vision research.

3. Image segmentation and recent algorithms to parse imagery into contiguous

TegIONS;

4. The principles of identifying objects of interest within an image and current

methods to detect such targets;

5. Sources of contextual information and how it can be incorporated with computer

vision systems;

The review is succeeded by a summary conclusion, where we draw together the
central themes and relate them to our stated problem of enhanced scene understand-

ing and target recognition.
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2.1 Introduction

Humans use the eye as a sensor to collect visual information and effectively under-
stand the surrounding world environment. The ultimate goal of computer vision
research is to develop methods that allow computers or machines the capability of
sensing surroundings and understanding the data akin to the human visual system.
These methods should be capable of recognising patterns within the visual data
as well as learn from prior experience to increase robustness and optimise future
performance. To give computers this ability is an arduous task for many reasons.
Most sensors only record visual data as a 2-dimensional (2D) interpretation. Al-
though alternative methods accounting for an extra dimension are now increasingly
commonplace, these practices are relatively in their infancy compared to established
sensor data collection techniques. As such this reduction in spatial dimension leads
to a corresponding decrease in usable data. Additional elements in visual scenarios
such as camera shake, object occlusion and moving cameras add extra complexities

to the computer vision problem [25].

The field of computer vision encompasses many smaller points of focus, such as
image segmentation, shape description, 3-Dimensional (3D) vision as well as object
detection and tracking. There are many more, of course, but this research field is
always growing and has recently been enjoying a vast increase in attention. This
is partly due to the high demand for computer vision solutions and applications to
real world problems. For instance, autonomous vehicle driving and aiding object
detection for robotic manufacturing lines [26] [27]. The other major reason it is
becoming intensively researched is the recent widespread proliferation of high per-
formance computing ability that allows such systems to exist and the explosion of
advanced machine learning techniques [28]. The area of initial concern in our case is
the autonomous target recognition scenario using only two sensor modalities, namely
a visible and IR waveband sensor. Before reviewing current literature and research
trends we begin by examining sensor information and solutions first, as they are an

important component to any autonomous vision system.

2.2 Sensor Information

A sensor is a device that can detect an external physical stimuli and reacts to pro-
duce a measurable output of some description. The output is very likely to be,

especially in the digital age, an electrical signal. There are of course many physical
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processes that can be detected and measured, for instance numerous biological and
chemical reactions that take place in our own body. However, the most important
measurable physical phenomena for computer vision applications is the EM spec-
trum. The bands that are of specific interest here are the visible spectrum, which
humans can perceive, and infra-red which lies mostly outside the capabilities of hu-
man vision. The range of wavelengths for these bands are approximately 390nm -
750nm and 750nm - 1mm respectively [29] [30]. As described in our motivational
introduction, Chapter 1.2, we are primarily interested in these bands due to their
potential for 24-hour surveillance, improving overall situation awareness. The ad-

vantages and limitations for each modality are discussed below.

2.2.1 Visible Band

The visible band is often referred to as RGB , from the Red-Green-Blue additive
colour model, or video. The reasoning behind the name wvisible is simply due to hu-
mans ability to perceive only this range of EM radiation. The visible sensor mode is
common in current day applications, where most smart-phones have an integrated,
relatively high-resolution video camera system of some description. Security surveil-
lance also receives significant interest [31], where RGB cameras are the commonly
used choice of observation equipment. The standard colour model used for the vis-
ible band is the 1931 CIE XYZ Color Space upon which several other colour space
models are constructed, such as the Lab colour space. This standard represents
one of the first attempts at quantitatively describing how humans perceive colour,

developed by the International Commission on Illumination (CIE) in 1931 [32,33].

Another way of describing a visible band sensor, which extends to all sensors,
can be obtained if we acknowledge the definition of remote sensing. The technique
of obtaining information via a sensor without in-situ measurement is described as
remote sensing. In other words it is data collection at a distance. Keeping this in
mind there are two terms that describe the various types of remote sensors, such as
RGB cameras or x-ray medical imaging devices. All types of remote sensors can be
divided into either Active or Passive sensors. The former requires energy to scan
and determine properties of a target object, an example of such a system would
be a Light Detection and Ranging arrangement (LiDAR) in which a laser beam is
required for scanning. A passive system on the other hand can only detect and
record energy that is either transmitted or reflected from a target object. Using
this terminology a visible band sensor, such as a Closed Circuit Television (CCTV)

camera, must be a passive sensor [30]. Additionally, many different types of visible
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band sensor exist where most are easily accessible. They will vary in specifications
as well as price. Thus when choosing a sensor for a particular task, these details

will need to be considered to ensure suitability.

One of the obvious advantages gained from employing video cameras as an RGB
sensor is the immediate comprehension offered. Given that humans view the world
in exactly the same spectrum there is little hassle understanding recorded images,
if the data is of sufficient quality. However, there is a major limitation for visible
band sensors and that is the variation in objects appearance with changing illumi-
nation. Although this fact has been made use of to characterise some objects by
their shadow [34], it is still a significant drawback of the visible modality given it
becomes almost useless at night-time. To counteract this weakness extra sensors can
be implemented to collect EM information in another wavelength range. For some
problems a multitude of different sensors are integrated into a system but here, in

this case, the discussion is limited to only incorporating an additional IR sensor.

2.2.2 Infrared Band

Where visible sensors fail, infrared can be utilised to overcome their deficiencies. IR
sensors, specifically LWIR, do not suffer from illumination issues and are widely used
for night-time sensing, hence the potential for 24-hour surveillance. The usefulness
of IR based sensing towards low light surveillance is demonstrated in Figure 1.1, but
a T1I can also offer a distinct advantage for seeing through obscurants such as fog or
smoke, as shown in Figure 2.1.

The IR spectrum is large and can be subdivided into a smaller range of bands.
While objects above absolute zero in temperature usually emit across the spectrum,
sensors are normally engineered to only collect a small portion or range of the wave-
length. Several variations and standard subdivisions exist where a governing body
sets precedence for their range values. Again the CIE has a reference benchmark
for infrared comprised of three divisions. These are simply: IR-A (0.7um - 1.4um),
IR-B (1.4um - 3um) and IR-C (3.0um - 1000um). Another scheme is in place by
the International Organisation for Standardisation, in addition to an astronomers
standard along with various others, where their values differ slightly from the CIE
benchmark. However, one of the most useful subdivision schemes in terms of en-
gineering applications splits the spectrum into five components, rather than the
common three-way split. This is presented in Table 2.1.

The IR spectrum captures a significant range of wavelengths and this leads to

the subdivision schemes discussed previously. Each division shown in Table 2.1 will
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(a) (b)

Figure 2.1: Tmage (a) captures a smoke filled scene using a colour band sensor, where
we cannot see anything behind the clutter. Image (b) is a LWIR image of the same
scene, where a pedestrian is revealed to be standing behind the column of smoke [1].

Infrared Subdivision Scheme
Division Name & Abbreviation ~ Wavelength (um)

Near Infrared (NIR) 0.75 - 1.4
Short-wave Infrared (SWIR) 14-3
Mid-wave Infrared (MWIR) 3-8
Long-wave Infrared (LWIR) 815

Far Infrared (FIR) 15 - 1000

Table 2.1: This table illustrates another common infrared subdivision scheme. Ther-
mal IR is usually accredited to either LWIR or MWIR as it is emission dominated.
Reflected infrared is referred to as either NIR or SWIR [17].

be suited to particular applications, for instance the MWIR division is used for
heat-seeking missile technology [35], which highlights why it is necessary and useful
to break up the IR spectrum.

Just like a visible band sensor, an IR sensor can also be described as passive and
there are many existing sensor types to choose from. A relevant example would be
the Catherine Megapixel (MP) camera produced by Thales. A LWIR T1I, it operates
over the 8 — 12um spectral band. Referring to Table 2.1 it falls into the LWIR cat-
egory. Additionally Thales also produce a mid-wave version in the same series and
this TT is sensitive over the range 3-bum, falling into the MWIR category in Table
2.1 [36]. Such sensors are not without their own limitations. The obvious issue is
trying to detect objects the same temperature as the background, although this is
less of a problem for cooled, high quality thermal imagers such as the Catherine

MP. Thermal infrared also suffers from a lower signal-to-noise ratio (SNR) as well
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as limited texture information to help differentiate objects [37]. It is quite apparent
now that by using a visible and IR sensor to complement each other, it should lead
to a more robust system. However, choosing a suitable sensor is only a small part
of designing a solution to a problem. Sensor observations require intelligent anal-
ysis and signal processing schemes to transform the signal into a more meaningful
representation. One such technique towards obtaining an enhanced understanding
of the image signal lies within the field of Artificial Intelligence (Al) .

2.2.3 Data Overview

The most important aspect of building successful computer vision algorithms is
access to quality data representative of the problem being solved. To that end,
any data used to develop and implement algorithms is explicitly stated in the data
chapters. For clarity, however, an overview of available data sources worked on is
provided here. For standard colour video surveillance footage CAVIAR ! and Oxford
datasets [12] feature in Chapter 3. These are ground truthed, static camera urban
surveillance streams containing pedestrians. A popular colour-thermal registered
dataset, OTCBVS [38], is utilised in Chapter 4, which is also static surveillance
type footage and ground truthed for tracking pedestrians in an urban environment.
This covers all public datasets used to obtain the research results throughout the
thesis as all other data is collected and owned by Thales. Lastly, a very recent
thermal infrared dataset has been made publicly available by Berg et al. for visual

object tracking algorithm evaluation [15].

2.3 Machine Learning

The research domain of Al is vast due to widespread efforts aimed at giving ma-
chines the ability to think. The current trend to distinguish between different types
of Al is to class methods as either Strong or Weak. Under this terminology strong
AT methods relate to machines with human-levels of perception and deduction for
a variety of tasks. Conversely, weak Al refers to machines with a very narrow or
targeted application. The distinction was first coined by the American philosopher
John Searle [39]. Presently we are experiencing a strong surge in weak AI methods
that are excelling at specific tasks, from mastering the ancient game of Go to large-

scale object recognition [40,41].

Thttp://groups.inf.ed.ac.uk/vision/CAVIAR

19



Chapter 2: Related Work

Although it is highly desirable to build a true strong Al, it remains very far off
despite the significant advances made in recent times. One of the challenges related
to this is that suitably intelligent algorithms need to extract useful information from
raw data to recognise patterns. This process is known as Machine Learning and is
extremely valuable in modern algorithm design, especially for computer vision ap-
plications. The capability to determine meaningful insights from data usually falls
under two distinct branches, Supervised and Unsupervised learning. The latter of
these is concerned with drawing inferences from clusters of data that have no associ-
ated label or ground truth information. We are not concerned with any such methods

in this thesis and shall focus on purely supervised machine learning schemes instead.

An overview of this machine learning subdivision and subsequent classifier con-
struction is presented, along with the classic neural network algorithm. Both of
these tools feature prominently in this thesis as well as computer vision in general,
playing central rolls in object and scene classification, hence why they are given such

attention.

2.3.1 Supervised Learning

The goal of any supervised learning approach is to build a model that maps a number
of features to an output prediction. The form of this output can be continuous for a
regression process or discrete for classification, distributed over a number of target
classes [42]. Supervised methods only require the target label be known during the
training stage and are applicable in many circumstances. For discrete outputs, if
there are only two target classes it is known as binary classification. If there more
than two possible target classes the problem can then be described as multi-class. In
our case we are primarily interested in constructing models with multi-class output
so will only consider this option, where object and region types are the most rele-
vant kinds of classification required. We can now delve into an overview of crafting

a classification model.

Generally, classification strategies rely on a two stage process. Assuming we
have sufficient candidate targets available, the first task is concerned with feature
crafting. The aim is to extract relevant attributes from the data that best captures
discriminatory aspects of the signal, whilst reducing redundant information. Ideally,
these features should be generalisable to the task at hand and offer suitable perfor-
mance when only a subset of descriptors are available [43]. Extracted features are

usually arranged into a vector or 2—dimensional feature image which ultimately is
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Training Set

A}

Learning
Algorithm

A\ 4
X — Feature ... | h | ___________ > Y — Output
vector Prediction

Figure 2.2: Overview of supervised learning process. A functional mapping can be
determined via an optimisation process over a training set, which can then transform
future inputs to some desired output prediction.

a representation of candidate targets [44].

After successfully assembling a feature construct comes the second stage in the
process, requiring a classification scheme. If we let the described feature vector be
known as X, composed of n feature instances, then X = {xy,...,x,, }. Using this
terminology allows us to express a candidate target, for example a transformed im-
age blob, as a feature vector X, where the goal in object recognition scenarios would
be to determine what object class, C, a potential target belongs to. Furthermore, in
the context of machine learning based classifiers an additional choice must be made
with regards to the learning paradigm. For such tasks the problem tends to be well
bounded and constrained so it is usual to see a supervised learning approach, where

labelled training data is required to infer a predictive function.

Thus, a classifier during training would require input pairs of data, formed of the
feature vector X and a corresponding label Y. After training is complete a classifier
will generate a prediction of Y for any new input feature vector X. The alternative
to supervised learning is unsupervised learning, which does not offer predictions of
Y for input X but instead clusters the features accordingly. The task of assigning
an object class C' to candidates based on a feature vector X summarises a target
classification procedure [45]. Note that the process remains the same for both regres-
sion and classification type problems. As such the entire process can also be shown
pictorially in Figure 2.2 where most problems generalise to the approach shown. An
example could be to to create a suitable house price predictor, which is the tar-

get value Y, based on input features X. Some kind of mapping A(X) from X to Y
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X1

Wi,

Figure 2.3: Diagrammatic representation of the simple learning unit, the perceptron.
Input features = form a product with their corresponding weight value w. These are
aggregated and a bias weight term is added to give the perceptron response y.

is obtained via the supervised learning process, based on collected and labelled data.

Thus, if we have a training set and labelled targets we need to explore the learn-
ing algorithm chosen. Given how vast the field of Al and machine learning is, along
with the very wide scope of this project, we shall only review the classic general

learning algorithm; the neural network.

2.3.2 Neural Networks

A typical Neural Network (NN), also known as an Artificial Neural Network (ANN),
is composed of many individual processing structures. These unit elements are called
neurons, inspired by the human brain, which connect to each other forming a net-
work topology. An individual neuron represents a very simple trainable function,
also known as the perceptron, capable of performing linear regression and discrim-
inant analysis. An illustration of the unit perceptron is provided in Figure 2.3,
showing many input features being fed into the structure resulting in an output

response value.

The relationship between input values © = (z1, ...z,,) and output target y is given
by Equation 2.1. Referring to this formula and Figure 2.3, we can observe the main
structure being fed with input features, z;, as neuron or perceptron. The input
values are multiplied by corresponding weights, w;, summed and then added to an

additional bias term W, to give response value y. The weights can be tuned via a
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vast array of optimisation strategies, where the goal is to minimise an error function
that suits the problem at hand. It is in this way that a single unit can effectively

learn a decision boundary or regression line for relatively simple tasks.

Yy = wo + Zwixi (2.1)

i=1

Building on this single processing unit, an ANN structure can be assembled by
connecting each units into a system. In these interlinked systems unit responses serve
as input to more computational processing units further along a network. Input fea-
ture values effectively propagate through the NN structure, activating individual
neurons in different ways and non-linearities are introduced, which are essential for
creating decision boundaries [46,47]. A layer of units represent a computational
stage and while the signal activates each neuron individually, responses are aggre-
gated at each layer. Shallower networks have fewer layers while deeper arrangements
consist of many and theoretically are more suitable for abstracting better inferences

from large, complex datasets.

The architecture of NNs, in terms of neuron capacity, layers and direction of
information, can range from simple arrangements to complex structures. Hyper-
parameter optimisation schemes are essential to obtain desired performance from
NN regardless of network topology. The classic mechanism implemented to achieve
this is gradient descent with sufficient backpropagation of errors, which we will dis-
cuss when appropriate in a later section. Furthermore, we shall also cover different
network architectures and modern techniques in data chapters corresponding to our
ATR solution in the thermal domain. For now, this represents a fair overview of
the ANN model. It remains remarkably successful due to its generalisable learning
powers. It should be highlighted that while it is theoretically possible for NNs to
approximate any function to find a suitable problem solution, the feat remains hard
to achieve in practice. There are many factors to consider such as network archi-
tecture, initialisation strategy, optimisation scheme and data pre-processing steps
to name but a few. All of which play a key role in obtaining an effective prediction
model. Overall, neural network models and related variants have been successfully
applied to a wide range of challenging tasks, where it appears this status quo will

be maintained for the foreseeable future [48].
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2.3.3 Conclusion

The aim of this section is not to cover the truly vast subject of Machine Learning
in great detail. Instead, its intent is to review fundamental concepts underpinning
supervised learning and the key tunable model available in this subject area is dis-
cussed. A single unit perceptron is introduced and built up to an ANN. Recent
advancements in the field have heavily drawn on neural net models and they also
feature prominently in the latter stages of this thesis. Hence they are deserving of
our focus and specific architectures for image processing are evaluated in following
chapters. The ideas discussed in this section are relevant to image segmentation
and object classification. Thus, related machine learning works in these areas are
reviewed in their respective sections. We can now examine image segmentation and

related methods.

2.4 Image Segmentation

Image Segmentation is a crucial and elemental process in low-level computer vision
whereby images can be partitioned or parsed into a set of regions that do not over-
lap. These regions should be semantically meaningful with respect to a given task
and when unified form an entire image [49]. Humans can perform this operation
and find it very easy, in most cases, to separate images into contiguous blocks from
complex scenes. However, this presents a significant challenge when attempted by a
machine [50]. There is a large body of work regarding the problem and as a result,
a considerable variety of approaches exist for segmenting images. We shall mostly
focus on the key concepts underpinning the topic of image segmentation, with focus
given to prominent algorithms and selected recent methods. Machine learning has
transformed the field of late and a small discussion is given to this sub-topic towards

segmentation.

A wide range of segmentation techniques are available but a robust approach
suited to every problem does not exist. Much akin to other sub-topics within the
field of computer vision, image segmentation is very application dependent. For
instance efficient algorithms for tumour detection in medical imagery [51-53] may
not be at all useful for automatic road extraction using satellite imagery [54, 55].
Bearing this in mind we should most likely ignore objective segmentation algorithms
that are very specific to certain problem domains. Instead we should concentrate on
parsing algorithms that tackle subjective scene segmentation and are very general in

nature, similar to how a human would perform if presented with the task.
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Generalised parsing techniques will typically take few inputs to control the granu-
larity and uniformity of output image segments, where contiguous regions are formed
from primarily colour and spatial information of the pixels. For example, a user could
elect to extract hundreds of very small regions within an image or aim to retrieve
a small number of very large segments by tuning the input parameters accordingly.
Algorithms adherent to this simple scheme can be generalised to wide variety of
problems which is ideal in our case. Recall our aim is trying to improve the com-
prehension of target scenes, which in turn can be used to improve target recognition
and vice versa. Thus the ability to gear a method to whatever scene type is of inter-
est, from rural to urban environments, is very useful. Note that image segmentation
only provides the presence of similar regions in an image, additional steps have to
be invoked to provide the scene understanding we wish to exploit. This is known
as semantic segmentation where regions are provided a class label or meaningful
association. The additional steps to achieve semantic meaning for extracted regions

are discussed later in this thesis.

Given this overview of segmentation it should now be clear that the field is a
wide open problem and application dependent. Ideally an algorithm for our task will
be tunable for region extraction and generalisable as a result, despite the contents
of target scenery. We will only discuss the mechanism for generating such regions
without attached labels for now. Key segmentation techniques fit for this outlined

purpose are examined in the sections following.

2.4.1 Graph-Based Segmentation

Efficient Graph-Based (EGB) segmentation is a technique by Felzenszwalb and Hut-
tenlocher published over a decade ago and is a seminal piece of work for image seg-
mentation [2]. Despite the age of this algorithm it remains far from irrelevancy due
to its simplicity and unspecific nature, still appearing in recent publications [4,56].
This is especially impressive in such a fast moving research field. One of the stated
aims of the work itself is to provide an effective, general approach to the image seg-
mentation problem domain. The technique also benefits from being rather simple
to implement and efficient, resulting in an algorithmic runtime of O(nlogn), for n

image pixels. It is a graph-based method and region-segments an image.

The set points of an arbitrary feature space can be represented using a graph

theoretical approach. Set points can be represented as a weighted and undirected
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graph G = (V, E). Each node v; € V' corresponds to a point in the feature space,
an image pixel for instance, where the edges (v;,v;) € E connect neighbouring pixel
pairs. Pixels are related using the 8-connectivity scheme and pixel connections are
used to construct the edge set E. Furthermore, an associated weight w(i, j) is given
to each edge and is a function of the similarity between nodes ¢ and j. Weights
are then given as w(v;,v;) and can be calculated as the absolute intensity difference

between edge pixels. This is shown in Equation 2.2 below.

w(vi, v3) = [1(pi) = 1(p;)] (2.2)

Here, I(p;) is intensity for the pixel p;.

Now for a graph based approach, a segmentation S partitions the vertices V'
(recall V' is pixels) into regions/components. Each component C' € S should then
correspond to a connected region in graph G = (V, E/)7 such that ' C E. To
elaborate further, an image segmentation is a subset of edges present in E. The
desirable outcome for a segmented image is that similar portions within the image
are grouped together and separated from dissimilar portions. Using the terminol-
ogy outlined above, this relates to edges between vertices within the same portion
having low weights. The opposite is also expected, where edges between vertices
within different components exhibit high value weights. Overall, this results in an
image being partitioned into spatial regions of similar pixel intensities. Once we
examine this method in detail, it is clear some kind of mechanism must exist for de-

termining if a boundary should exist between two portions in an image segmentation.

Consequently, this is achieved via calculating the dissimilarity between elements
along the components boundary, relative to the dissimilarity of collective pixels
within each component. This can be summarised as a comparison of inter and
intra component differences. An internal difference of C' € V' as the largest weight
in the Minimum Spanning Tree (MST) of component, M ST (C, E) is then defined,
determined by Equation 2.3.

Int(C) = hax w(e) (2.3)

The underlying reasoning behind this measure is that a component C' only re-
mains connected when edges of weight at least Int(C') are considered. It follows

that the minimum internal difference, Mp,;, can be described as shown in Equation
2.4.
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My (Ch, Co) = min(Int(Cy) + 7(C1), Int(Cy) + 7(Cy)) (2.4)

Here the threshold function 7 acts as a sensitivity control for inter-component dif-
ference relative to intra-component differences, such that the inter region difference
must be greater to present evidence of a boundary between them. This thresh-
olding function is based on component dimensions and can be simply expressed as
7(C) = k/|C|. Here |C| is the size of component C' and k is an some arbitrary con-
stant parameter. In other words, smaller components essentially need more evidence
for a boundary to exist. Moreover, k sets scale size where a greater k tends to result

in larger image segments and lesser values of k£ produce smaller image components.

The algorithmic steps for EGB segmentation technique can now be summarised.
Given an input graph G = (V| E), with n vertices and m edges, the desired output
is a segmentation of V' into components S = (C},...,C,). The steps are then as

follows in Algorithm 2.1:

Algorithm 2.1 Efficient Graph based Segmentation

0 Sort E into m = (01, .. .,0m), by non-decreasing weight.

1 Start with a segmentation S°, where each vertex v; is in its own component.

2 Repeat step 3 forqg=1,...,m.

3 Construct S? given S7! as follows. Let v; and v; denote the vertices connected
by the g-th edge in the ordering, i.e., o, = (v;,v;). If v; and v; are in disjoint
components of S7! and w(o,) is small compared to the internal difference of both
those components, then merge. Otherwise do nothing. More formally, let Ciq_l be
the component of S9! containing v; and C’j‘k1 the component containing v;. If
Cit 4 C’;’fl and w(o,) < MInt(C’iq*l,C;fl) then SY is obtained from S?~! by
merging C? ' and quq' Otherwise S7 = S7°1,

4 Return S = S™

Although the EGB algorithm is outlined there are still some further points to
consider. Before edge weights are computed for an input image, a Gaussian filter
is applied to smooth out any present image artefacts. This is one of three user
controlled parameters where the degree of Gaussian smoothing is chosen by o. Note
the remaining parameters are k, the aforementioned threshold function constant,
and min, which enforces the minimum component size in post processing. Also,
for colour images the algorithm separates input structures into three monochrome
planes (RGB) and runs once for each. Final regions are determined by intersections
of these and finding common components. Example images processed via this tech-

nique are presented in Figure 2.4 and Figure 2.5.
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(a) Input Image (b) Graph Based Segmentation

Figure 2.4: Using a frame from a Thales data gathering project, Hydravision, the
effects of EGB segmentation are easily observable. The input image shows a typical
rural road scene and the overall segmentation is sensible - although some bleeding
can be seen on the right hand side as the grass banking merges into the windscreen
of oncoming traffic.

(a) Input Image (b) Graph Based Segmentation

Figure 2.5: Another example of this segmentation scheme working on typical office
scene. It appears reasonable given the input image and some contiguous regions
have formed. Image source [2]
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In general, this segmentation algorithm offers reasonable performance but suffers
from a variety of issues. For instance the segmentations are prone to bleeding, as
highlighted in Figure 2.4. This is where different image segments incorrectly merge
into neighbouring regions. Furthermore, the algorithm can be rendered useless by
choosing bad parameters, given the delicate tuning mechanism it can be easy to
observe this behaviour. Lastly, the segments can be highly irregular in shape but
this may not be a hindrance depending on the desired application. Other than
these drawbacks, which are mostly related to parameter selection, the method is
efficient and generalisable. It still holds up well to recent segmentation algorithms,
compared via benchmark evaluation metrics, while still garnering citations from
methods incorporating the basic function of EGB segmentation. One recent trend
in this general image parsing domain has been that of the superpizel. This is dis-

cussed in the following subsection.

2.4.2 Superpixels

Superpixels are simply smaller segments of an overall image region. They are con-
structed by grouping picture elements, i.e. pixels. A variety of techniques now exist
to accomplish this feat [57-59]. A general rule of thumb is that grouped pixels will
all share similar properties whether it be spatial or intensity values. The motivation
for using superpixels instead of individual pixels was first targeted by Ren and Ma-
lik [60]. They illustrate generating optimal solutions at the pixel level is demanding
because there are so many pixels at moderate image resolutions and above. By
grouping elements into larger, atomic regions capturing key image structures, it can
effectively reduce the complexity of any further image processing operations. In
essence, superpixel methods are simply restricted region segmentations, although
the regions produced from the EGB algorithm discussed previously can also be re-

garded as superpixels [61].

At the outset of this EngD project the recognised state-of-the-art superpixel
method was considered to be the Simple Linear Iterative Clustering (SLIC) algo-
rithm [3]. It still remains a hugely popular choice and we elect to examine it in
detail given it features prominently in our early research. The SLIC algorithm is
a gradient-ascent based method. An initial rough cluster of pixels is the starting
point, which is iteratively refined until a convergence condition is fulfilled. Reach-
ing this point results in the formation of superpixels. Note this differs from the
other category of superpixels, namely graph-based techniques such as that of [2].

For graph-based superpixel methods, each pixel is a node in a graph. Edge weights
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Figure 2.6: Image (a) demonstrates how regular k-means algorithms search the
entire image field. Image (b) highlights the constrained SLIC search area leading to
a more efficient algorithm [3].

are then assigned between nodes according to similarity measures and superpixel

formation is obtained via cost function minimisation over the graph.

The SLIC algorithm is an adapted k-means clustering approach for constructing
superpixels. It employs two key adaptations leading to a reduction in algorithm com-
plexity and improved superpixel properties. The modifications are limiting algorith-
mic search space and using a weighted distance measure to incorporate colour-spatial
properties, respectively. An illustration of the constrained search space process is

presented in Figure 2.6, originally described in [3].

For input colour imagery SLIC operates in the CIELAB colour-space [62]. Ini-
tial user defined parameters indicate how many superpixels are desired, given as k.
This allows k cluster centres to be sampled over the image grid, spaced S pixels
apart. This spacing is designed to produce roughly equal sized superpixels and can
be calculated by S = \/m, where N is total number of pixels. Cluster centres are
readjusted to the lowest gradient position in a 3 x 3 neighbourhood, which has the
benefit of avoiding placing a centre on an edge or noisy pixel. Pixels are assigned to
the nearest cluster centre whose search region overlaps its own location. This also
leads to an algorithmic speed-up due to reduced distance calculations. The expected
spatial extent of each superpixel is given as S x S, shown in Figure 2.6, where the
whole search region for similar pixels is given as 25 x 25. After pixel-cluster associ-
ation, the centres are adjusted to the mean colour and location vector [labry]T. A
residual error is calculated iteratively until convergence and lastly, rogue dis-joint

pixels are assigned to the nearest superpixel to enforce connectivity.

The SLIC algorithm creates superpixels corresponding to clusters in the labzy
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colour space. As such, the distance measure D has to be carefully designed. Firstly,
D computes the distance between a pixel ¢ and the cluster centre C}. Pixel colour
information is in the CIELAB colour-space [lab]”, where the range of possible val-
ues is known. However, pixel location given by [zy]T may take on a varied range
of values depending on the image dimensions. Thus, by only defining the distance
measure D in the labxy space alone will result in unpredictable clustering behaviour
for different sizes of superpixel. For instance, larger superpixels will be dominated
by spatial distances relative to colour proximity, generating superpixels that do not
adhere well to image boundaries, which is often a target evaluation metric for seg-

mentation tasks. It is obvious that the reverse is also true for small scale superpixels.

To overcome this problem a combined distance measure is introduced, the func-
tion of which is to normalise spatial and colour proximity by their respective intra-
cluster maximum distances [3]. These are given in Equation 2.5, where m is a

constant that controls relative superpixel compactness.

de =/(I; = 1) + (a; — @) + (b — b;)?

(2.5)
dy =/(x; — 2:)? + (y; — vi)?

In the original implementation of the SLIC algorithm, m can be in the range
[1,40]. For large values spatial proximity is regarded as more important leading to
compact superpixels. Conversely, low values for m lead to superpixels that adhere
well to image boundaries, but have less regular shapes. It should also be pointed
out that the algorithm can handle grayscale images by setting d. to only use the
first squared term. These are then combined and simplified into the final distance

measure provided as Equation 2.6, utilised throughout the algorithm.

D=/d+ (Céf)w (2.6)

Example images are presented in Figure 2.7 illustrating how SLIC transforms the
image representation. Performance metrics reported in the work also highlight the
algorithms position as state-of-the-art in terms of segmentation evaluation at the
time of publication. Generally, this superpixel method performs well and is flexible

when utilised.

Having covered the SLIC algorithm in detail, as well as the EGB segmentation

technique, we should now consider where the machine learning driven SOA lies.
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(a) Input image 1 (b) SLIC processed (c) Input image 2 (d) SLIC processed
version 1 version 2

Figure 2.7: Image (a) presents a dog from the PASCAL dataset [63] and serves
as input to the SLIC algorithm. An output superpixel representation is generated
using this algorithm and is shown in image (b). Images (c¢) + (d) follow this same
process, where (c) is a frame from the Thales data acquisition project. Algorithm
parameters were slightly different for each input image to illustrate a difference.
This algorithm appears to adhere very well to boundaries in an image.

2.4.3 Segmentation & Machine Learning

So far we have only surveyed the principle of parsing an image into regions, with-
out any knowledge of what the image segments could represent. One of the only
assumptions we can make about the contiguous regions is they contain similar pixel
values and are fairly homogeneous in nature. This tells us nothing about what is
contained within the parsed scene which is an important piece of information, es-
pecially in situational awareness terms. Scene structure and objects within a scene
tend to have a well-defined relationship, as we shall explore in contextual terms, so

being able to determine region classes is highly desirable.

Fortunately, machine learning provides many ample tools allowing region classi-
fication. Of course in a supervised learning setting the caveat requirement is labelled
segmentation data. We should note that machine learning methods are not just lim-
ited to providing semantic meaning to segments, they can actually improve output
boundary adherence [60]. However, we are only considering the region classification

capability offered via supervised learning methods.

There has been a recent surge in techniques utilising neural networks towards
achieving robust semantic segmentation, specifically Convolutional Neural Networks
(CNN) which are a special network architecture designed around the 2—dimensional
structure of imagery. One of the most well-known of these methods is presented by
Zheng et al. [64], using Conditional Random Fields (CRF) as Recurrent Neural
Networks (RNN) . In this prior work the authors employ a complex deep network
structure that exploits the advantages of both CNNs and CRFs, allowing accurate

fine grain pixel labelling of scenes. The model can be trained in an end-to-end
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@ (b)

(d)

Figure 2.8: The quadrant of images shows the CRF as RNN algorithm performing
semantic segmentation on wo sets of images. Image (a) is an input example of
humans riding bicycles in a country scene. Image (b) shows the result of the semantic
segmentation with bicycles and humans being mostly covered in green and pink
overlay respectively. Image (c) is a different input scene, more representative of a
surveillance type scenario, showing a sparsely populated courtyard. image (d) shows
the resulting semantic segmentation, with one person being highlighted in pink and
a van in the top right overlaid with white cover.

fashion once assembled which is especially advantageous. An example semantic seg-

mentation using this technique is illustrated in Figure 2.8.

The work of [64] is just one recent example of an accurate semantic segmentation
scheme. There are an increasing number of alternative methods aiming to achieve
pixel-wise labelled segmentation output, similar to the output shown in Figure 2.8.
While the accuracy and efficiency of competing methods is at least similar or im-
proving, they all share a common utilisation of deep neural networks to achieve
their goals as it enables much better inferences to be drawn [65-69]. However, if
we observe the scenes shown in Figure 2.8 it is immediately apparent that only ob-
jects within the scene have been extracted and labelled. This is almost the wrong
way round from our desired behaviour, where we want to segment background re-

gions and identify the semantic class of these instead. This is impossible with the
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CRF-RNN network for example, as it is trained only on what we would describe
as foreground objects such as person, bicycle, car, or horse. We propose that fore-
ground objects exist on the underlying background of scenes, such as a pedestrian
walking on road then grass. The walker would be the foreground object and the
road or grass would be deemed a background region. This idea will be revisited in

great detail later.

Despite the ever increasing performance of such semantic segmentation methods
focused on foreground objects, they will not be effective for extracting and classi-
fying background regions. Referring to the growing list of semantic segmentation
techniques, it is easy to observe the current trend for machine learning applied to
image segmentation methods. Currently the core idea in the field is to develop seg-
mentation models that adhere very closely to foreground object boundaries, followed
by extraction and classification. This is exactly what we illustrated in Figure 2.8.
Most methods are geared towards finding foreground objects to the exclusion of the
underlying scene background and they are beginning to show robust performance.
It is a perfectly understandable route to undertake as objects appearing in scenes
are very likely to be the most important thing there. This strand of research is
built on the principle that foreground objects exist on background regions, where

underlying segments need to be mostly excluded or filtered out before classification.

Now, what if we apply one of these advanced techniques to a scene typical in the
security and defence domain? In all likelihood the algorithm will return incorrect or
no extracted foreground objects, especially in long range rural environments where
targets are small and inconspicuous. This is because objects of interest in defence
scenarios will either be sparsely populated, actively trying to avoid detection or
at considerable distance from the collecting sensor. All the semantic segmentation
methods highlighted above are trained to handle much more sterile imagery usually
found on public datasets. As such it is very likely they could not handle the chal-
lenging imagery we have to address in this research project. To tackle the outlined
problem we approach semantic segmentation by acknowledging the background re-

gions that foreground objects inhabit.

There are few related works that adopt this perspective for semantic segmen-
tation, where we aim to classify the background regions themselves to aid target
classification. Two recent methods utilise EGB segmentation and a region classifier
to obtain improved scene context [4,70] and we employ key ideas from these works
in Chapter 6. Both of these techniques present general segmentation methods capa-

ble of extracting and classifying regions such as sky, water and grass. An example
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(b)

Figure 2.9: Demonstration of region segmentation and classification. Image (a) is
the input and (b) is the labelled output, where water is dark blue, grass is green,
the sky is light blue and white pixels are unclassified. ITmage source [4].

image from [4] is presented in Figure 2.9 highlighting a classic region segmentation.

Ultimately, the foundational idea for this approach acknowledges the tightly
coupled relationship between objects and backgrounds. Foreground things exist and
behave in specific, structured ways depending on the surrounding environment. This
knowledge can be exploited to tell us what kind of objects would be more likely to
appear, or not, given the underlying region information in a target scene. For in-
stance, if you extract a road region it is more likely to observe a car than a helicopter
occupying the region. While recent semantic segmentation techniques are good at
segmenting and classifying objects, it is perhaps detrimental to decouple regions
from foreground objects. This realisation is a powerful idea and one that we show
to be beneficial for target recognition in challenging environments. Any region clas-
sification still relies on supervised learning techniques as discussed previously, but

the additional scene perception it enables is significant.

2.4.4 Discussion

The methods discussed only present a snapshot of available segmentation techniques,
selected due to their generalisable approach which we leverage towards our prob-
lem. Both methods covered in detail feature prominently in early data chapters,
with EBG making a further appearance in the final research chapter. They should
highlight the different approaches to segmentation but also bring to focus that there
is no obvious answer to image segmentation. When considering a specific applica-
tion, it does indeed narrow down the field of available techniques but the remaining

methods are vast and varied, not only in methodology but also in evaluation metrics.
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We also reviewed recent advancements in semantic segmentation to gain enhanced
scene understanding. Such methods rely on machine learning in conjunction with
existing segmentation algorithms. However, the majority of these works will not
be suitable for challenging defence and security based imagery that we essentially
need to work with. As such, we find some of the few relevant works using region
based classification and frame the problem in a new way, where foreground and
background information is tightly coupled and mutually beneficial to identify. We

can now examine relevant object detection and classification techniques.

2.5 Object Detection & Classification

The research field concerning object detection and classification is a wide and varied
one, encapsulating several fundamental problems within computer vision. Recent
advances in this field have been notable, especially on the classification front, due to
improved machine learning methods being incorporated. Features representations
of target objects are often combined with deep learning methodologies to create ro-
bust object detectors that also provide output classification scores. The norm until
roughly five years ago was for a human to painstakingly hand-craft these feature
representations, but now we can simply give a machine lots of examples to generate
these ideal features automatically. We shall explore this concept later but before
delving into the mechanics of object detection systems, we must first ask what ex-

actly is an object?

Generally speaking an object is a well defined and independent thing. Using
computer science terminology we can describe objects as an instance of a class. For
example, a dog is an instance of the class animal etc. In computer vision it can
also be said an object should have a well defined boundary and not blend with
the incoherent background. Furthermore, it is worth noting the tight bounding of
object detection and recognition. As we shall see these two tasks are very similar
and increasingly reliant on machine learning methods for feature generation. Given
this generic overview of what an object actually is we can move on to discern the

motivation for creating detection systems.

The field of object detection remains heavily researched due to the enormity of
potential applications, such as autonomous vehicles or improved border protection.
Whilst the human vision system is what computer vision research aspires to recreate,

our processing capability is limited. Humans are also susceptible to mistakes and

36



Chapter 2: Related Work

Figure 2.10: A robotic sentry gun developed by Samsung Techwin Co. is shown
holding up a potential threat. The SGR-A1 robot uses pattern recognition and
object detection based algorithms to identify targets, effectively filtering friend from
foe. This is just one such example of object detection being applied to real world
technology. Image source [5]

under-performing in pressured environments. This can be a critical hindrance in
tasks where fast and accurate information processing is required to make correct de-
cisions. Any number of situational awareness tasks could provide one such scenario,
for instance surveillance over the de-militarised zone (DMZ) at the North/South
Korean border. Without discussing the details of why this area is of significance,
the topic does provide an example of a real-time detection system where situational
awareness is of utmost importance. The South Korean military utilise a specially
designed stationary robot to over-watch the DMZ. Samsung manufacture the SGR-

A1 system and an illustration is presented in Figure 2.10.

The SGR-A1 is a real time object detection/recognition system capable of dis-
tinguishing between non-targets and targets. Its sensors operate in the thermal and
visible bands. This example highlights the application of object detection systems in
a military and robotics domain. Other areas where object detection can be applied
is automotive safety, industrial inspection and elderly care. Overall, object detec-
tion systems usually focus on pedestrian detection initially and expand to include
other objects such as vehicles. This is in part due to the goal of getting machines
to successfully interact with humans and our environment, where potential benefits
would be enormous [71], but also because it constrains the problem and allows bet-

ter progress to be achieved.

The rest of this section will explore classifier design applied to the detection

problem. We shall then review some of the key papers in object detection over the
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last decade before finally examining the very recent state of the art in this area. We
do this as it is important to highlight the step-change that has occurred in computer
vision over the last few years with the mass adoption of machine learning techniques.
Progressing from human designed features with simple classification methods to full
autonomous feature extraction with much better performance, in the space of a
decade, is quite remarkable. The older works and related publications remained
very popular even at the outset of this project and feature in the early data chap-

ters following this. Thus, they are included for relevance and not solely for posterity.

2.5.1 Designing A Classifier

There are many algorithms and schemes designed towards object detection [6, 8,
72-77]. In essence they all aim to do the same thing; create a higher level under-
standing of a scene given the low level pixel information. This understanding could
be location or object class for instance. Furthermore, every method is subject to
overcoming the same challenges such as dynamic illumination, varying pose, object
articulations, occlusions and clutter. Algorithms built to this purpose will usually
follow a three part scheme, where the first step is to define and learn ideal features
of the target object followed by detection of these objects at test time. The final
stage relates to rejection or acceptance of object appearance. This general formula
is observed in many prior works in this area and is shown in Figure 2.11. We can

now discuss features in more detail.

Features are properties that describe a class very well, in the case of an image
object this could be things such as intensity, colour or gradient information. For the
application of object detection, features are used to build a classifier capable of indi-
cating whether a given image contains a target object or otherwise. An ideal feature
should be local and invariant, meaning it is robust to occlusions and unaltered after
a transformation. It should also be robust to noise, blurs and compression as well
as highly distinctive, in that individual features can be matched to a large database
of objects. Lastly, it would also be ideal if the feature was computationally cheap so
real time deployment remains feasible. Given these desirable feature properties it
should be immediately obvious that not all will be attainable for the vast majority

of cases.
One of the most powerful and conceptually simple detection techniques is gener-

ally known as the sliding window method. 1t involves building a dataset of labelled

images containing positive and negative instances of the target objects, where neg-
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Figure 2.11: A generalised overview of the classical process for creating an object
detection algorithm. It is summarised as a three stage process. The training stage
involves feature learning to maximise discriminative power. The detection stage
effectively deploys the algorithm and tests against input imagery, where the final
stage is an output decision on whether an object instance has been detected or not.

atives do not contain the object of interest. A classifier can then be trained in a
supervised learning fashion, allowing the determination of correct object appearance.
Once this is complete a sub-window of fixed size can be passed across the image,
where classifier application returns positive and negative results for each step. This

is a search over location and there are two subtleties to this approach.

Firstly, the target objects will be present at different scales within the image, so
a search over multiple feature scales also needs to be performed. Secondly, as a sub-
window moves closer to a target object it will return more results than necessary,
this will skew the algorithms true accuracy and has to be accounted for by Non-
Maximum Suppression (NMS) . In other words, NMS performs a local maximum
search where only one result is returned for each object instance. The output return
is also a higher response than all neighbouring results. There are several variations
of NMS that can be applied, such as 1D straightforward NMS, 1D dynamic block or
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2D stripe NMS. Each will have their own nuances and should be carefully researched

before applying [78].

The sliding window method is only one such approach for object detection and it
is not free from performance issues. For instance, sliding windows do not deal well
with occlusions of target objects. The method is also heavily reliant on the assump-
tion that target objects remain fairly rigid and non-deformable. However, even with
such drawbacks the concept is very easy to understand and apply. This is a driving
force behind its popularity and it seems to compare well with more sophisticated
detection methods like latent-SVM [77]. Given the impact of sliding window ap-
proaches in the object detection field over the past decade, related methods provide
the focus of attention in the sections to follow. Having discussed classifier creation
and the sliding window approach for detection we can now observe the key ideas

populating this subject area.

2.5.2 Classic Object Detection

The feature descriptors known as Histogram of Oriented Gradients (HOG) presented
by Dalal & Triggs and the object detection framework outlined by Viola & Jones,
probably represent the two highest impact publications in this area over the last
decade [6,74]. At the time of writing, the 2001 paper from Viola-Jones had ~14570
citations and the 2005 work from Dalal-Triggs had ~17475 citations, such is the in-
fluence of these works. Although the methods are somewhat dated it is worthwhile
discussing their main characteristics, especially as a few aspects are still exploited

in detection systems. They are briefly discussed in the following sections.

The Viola-Jones framework relies on representing images in a way that allows
for sufficiently fast feature computation, an idea coined Integral Images. 1t is an in-
termediate image representation containing the sums of neighbouring pixels at each
image pixel location. A set of rectangular features similar to Haar basis functions is
also incorporated into the object detection system. These features can be computed
rapidly at many scales thanks to the integral image construction, some example
rectangle features are illustrated in Figure 2.12 below. Objects within images are
then classified using simple feature values. Utilising features in this way, along with
additional machine learning techniques, provided Viola-Jones with (then) state-of-
the-art detection rates. Arguably, the most important point from this work is to

scale the features and not the test images when deployed.

40



Chapter 2: Related Work

—

A
N
Figure 2.12: These example rectangle features are utilised in the Viola-Jones frame-

work. Their simplicity allows fast computation which is desirable if real-time de-
ployment is a goal. Image source [6].

D

Following this Dalal and Triggs developed the now seminal work on object de-
tection, creating feature descriptors known as HOG. The rationale was to devise a
technique capable of handling the multiple poses of humans for pedestrian detection
tasks. This led to the robust HOG feature set, where the frequency of gradient ori-
entations are tallied in distinct portions of an image. Machine learning techniques,
such as Support Vector Machines (SVM) for classification purposes, are also applied

resulting in am effective method of detecting pedestrians.

Whilst these two works provided massive improvements in terms of robust fea-
tures, efficiency and applying machine learning methods they still suffer from many
issues. Things such as partial occlusions or changing illumination will degrade detec-
tion accuracy, but these problems are applicable to the majority of algorithms. The
real underlying problem with these detection techniques lies in the feature space;
they are simply not good enough. The easiest way to observe this claim is by consid-
ering the image presented in Figure 2.13. It illustrates a high confidence detection
for a car using HOG features and SVM classifier. It is clearly not a vehicle contained
within the sliding window, but a textured water region. This is inherently obvious
to a human but not so for a machine. The incorrect decision is explainable upon
a closer exploration of the features themselves, where it becomes clear the body of
water does indeed look like a vehicle in HOG feature space. This serves as a good
reminder that machines can only deal with the information passed to them. The
feature inversion highlighting this point is illustrated in Figure 2.14.

It is clear that features such as HOG are not good enough in isolation. As ro-

bust and simple as they are it still appears as the incorrect class of object when
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Figure 2.13: An example image of a swan on a body of water. A deformable parts
model vehicle detector using a HOG feature space is passed over the image. Green
bounding box indicates presence of a car at that location in the image. It is obviously
an incorrect detection for a human visual system but understandably incorrect in
terms of machine vision [7].

Figure 2.14: Image (a) is water cropped from the sliding window shown in Figure
2.14. Image (b) is the generated HOG features from the water cropped image and
image (c) is an inversion of these features. Image (c) effectively illustrates that the
water image does share similarities with a vehicle in HOG feature space. Images
from [7]
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transformed into feature space. Output responses will be high in confidence value
but incorrect, generating a false positive The over-arching view of this problem is
that machines are only as good as the information it is given, they do not possess
a higher level understanding of the world to make decisions as easily as a human
would. Recent work on detection algorithms has realised this problem with features
and seemed to have added more information to the older methodologies of HOG
and Viola-Jones. For instance, the principles of HOG-like features and scaling are
maintained in recent work by Benenenson et al., creating a detector named Very-
Fast [8]. This system was recognised as one of the benchmark pedestrian detectors

in terms of accuracy and most certainly speed, at least for a sliding window approach.

2.5.3 Multi-Scale Detections

The VeryFast detector by Benenson et al provides enhanced detection accuracies
over preceding methods, along with phenomenal speed of execution. Again, it is
first and foremost a pedestrian detector but the principles can be extended to de-
tect other target objects. The improvements of VeryFast are achieved by two key
contributions, namely the better handling of feature scales and exploiting stereo
images to create what is known as a stizel world. This stixel world essentially ex-
ploits multi-camera viewpoint to obtain depth information, which can be used to
enhance the entire system. However, it is the treatment of features over scales that

is interesting and remains relevant.

The method employed for handling the scales of image features also provides
an additional speed-up and helps avoid troublesome tuning issues. The typical ap-
proach to object detection for class specific detectors is the sliding window method,
whereby classifiers for each position and scale compete against each other. This is
not an ideal approach as it requires a high number of models N, where a represen-
tative value quoted in related literature is ~ 50. This means the model training
stage is highly time consuming. The other common approach is to create and train
a single model that should, in theory, work for multiple image scales and thus dif-

ferent sized objects. Then the image is rescaled multiple times to fit the single model.

Again, this approach is fraught with performance issues where the dominating
factor is resizing input images N times when deployed, as well as additionally recom-
puting the image features N times. VeryFast, however, treated the problem in a new
way allowing the computation time for image resizing to be transferred from test to

training time. The idea is partly inspired by the work of Piotr Dollar, suggesting to
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only scale the input images N/K times [72], K simply being a down-sampling factor
of ~ 10. VeryFast leveraged this idea and essentially reversed it, sticking with the
Viola-Jones principle that the image features should be scaled and not the image.

The concept of feature scaling is best illustrated in Figure 2.15.

(a) Naive approach for dealing with (b) N/K Scales for dealing with fea-
feature scales. ture scales. This is an approzima-
tion across scales.

Figure 2.15: The images shown in (a) and (b) above highlight the difference in
approach taken by Benenson et al. to deal with multi-scale detections. Image (a)
generates feature models for every scale and is hindered by this. Image (b) uses only
the input image at test time and approximates features across multiple scales with
negligible accuracy penalties. Image sourced from Benenson et al. work [8]

This concludes a fairly comprehensive review of the key contributions towards
object detection over the last decade, at least for sliding window approaches. With
the very recent advent and widespread adoption of deep neural networks though,
the game has simply changed. Features were no longer constrained by poor hu-
man design and suitable optimisation methods were developed to take advantage of
increasingly large labelled datasets. One of the emergent applications of this was

improved object detection methodologies, which we can now evaluate.

2.5.4 Convolutional Neural Network Detection

Machine learning has emerged to be arguably the biggest influence in computer vi-
sion over approximately the last five years. The step change was noticed after the
work of Krizhevsky [41] made huge performance gains in the ImageNet large scale
object recognition challenge, prompting leaders in the field to take notice. We will
examine his work and other related art later in the thesis, when we develop our own
recognition algorithms. For now it will suffice to describe the general nature of his

proposed solution.
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We have discussed neural networks and stated their impressive learning ability
for extracting inferences from data. That statement, while true, ignores some as-
pects about the scalability of NNs that become clear when applying to large images.
Given each pixel of an image can essentially be used as an input feature, where
colour images have 3 planes worth of pixels and serve as input to each neuron, the
parameter space can quickly explode for reasonably sized images. The standard
feed-forward ANN architecture also ignores the locality and nature of pixels in an
image structure. Thus, a special architecture specific to neural networks was de-
veloped to take advantage of the 2-dimensional nature of images. This special case
is the Convolutional Neural Network and it has become the workhorse of machine

learning tools for vision applications.

In general a CNN works by sliding or convolving a convolution kernel across an
input image to create an activation map, also known as a feature response map. At
each hidden layer of a CNN there can be many of these kernels and subsequent fea-
ture maps, which are then downsampled by a pooling operation and a non-linearity
is introduced. As images propagate through more layers of a CNN it effectively
learns higher levels of abstraction for each object class, using error minimisation
to tune the kernel weights. The final layers of a CNN tend to be standard neural
network layers, where the spatial component of the images is lost and it becomes a
straightforward classification problem using the extracted high level features. Once
a CNN has been trained and the error is sufficiently low, the static kernel weights
represent low-level object features that have been automatically discovered through
the supervised learning scheme. It is this automatic feature discovery by the machine
that makes CNNs very powerful tools for image recognition and other applications,

as it removes the human design element from the task [41].

Bearing this brief summary of how a CNN works in mind, we now have the capa-
bility to obtain excellent object classification results. But we still require methods
to locate objects of interest in an image, which is where adapted CNN methods enter
the fray. One of the most notable recent detection methods combines region propos-
als with CNNs, which is aptly named R-CNN [79]. In this landmark work Girshick
et al. acknowledge the plateauing progress of object detection research, which had
become more reliant on complex ensemble methods. They address the detection
problem using CNNs to compute features for thousands of bottom-up region pro-
posals extracted from an input image, which are then classified as the correct object
or rejected. It is incredibly simple and exploits the high capacity offered by CNNs
along with a supervised learning trick to fine tune a pre-trained network on scarce

data, which provided a significant accuracy boost. At the time of publication this
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Figure 2.16: Pipeline of YOLO model is presented. A single trained neural network
is applied to the full image above, showing a grid overlaying a park based scene. The
trained network divides boxes into regions and generates associated probabilities for
these, which are then weighted according to the probabilistic values. The end result
in this case correctly identifies and localises a dog, bicycle and car.

method improved upon the next best algorithm by roughly 30% and proved very
elegant to develop and deploy. It has since been advanced to its current state, the
Fast R-CNN [80,81]. The obvious improvement is the speed of execution compared

with the initial solution.

Lastly, the most recent advancement made in this area is the aptly named You
Only Look Once (YOLO) and succeeding YOLO9000 model [82,83]. The YOLO
model addresses the fact that traditional detection approaches usually rely on re-
purposed classifiers. This work re-frames object detection as a regression type issue
for many boxes seperated spatially with associated class probabilities, which is high-
lighted in Figure 2.16.

This allows YOLO to be a single trained neural network optimisable for detec-
tion tasks. The processing time can range from around 45 frames per second at
maximum accuracy up to 155 frames per second for less accurate output, but still
double the precision of competing real-time detectors. The YOLO9000 model offers
slight improvements and can recognise significantly more object categories, approx-
imately 9000 in total.

This short review of where the state-of-the-art lies in terms of object detection
is only a glimpse at the current research field, where we very briefly covered one of
the most notable object detection methods of late. It incorporates modern machine
learning methods and exhibits excellent performance towards detection tasks in im-
agery. Convolutional Neural Networks will be given a full examination in the later

chapters of this thesis.
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However, while increasingly accurate detections and classifications can be ob-
tained, all algorithms, including VeryFast and R-CNN, suffer from occlusions, clut-
ter and dynamic illumination. There is much progress to be made if the dream of
complete machine comprehension and interaction is to be realised. Although feature
selection and generation has been discussed above as an area for improvement, it
is not the whole story. A human visual system can track individuals in a crowd or
deal with heavy occlusions because of prior, learned experience. If this mechanism
of higher level understanding could be given to a machine, it would surely benefit
detection accuracies and enhance overall capability. This theme can be encapsulated
as the utilisation of context and is explored in the relevant section in this chapter,

following a brief discussion of occlusions and thermal detection algorithms.

2.5.5 Tracking Through Clutter & Occlusions

Occlusions can generally be defined in three separate ways. The first is localised in
space and is referred to as a partial occlusion, an example being a pedestrians lower
half being obscured by a bin or suitcase etc. The second is localised in time and is re-
ferred to as a full occlusion. A good example would be a jogger being fully obscured
as they run past a row of trees. The last type is scattered occlusion and this differs
from the previous types in that is not localised in either space or time. Snow, heavy
rain, fog and thick foliage are all examples of scattered occlusions. Occlusions are
troublesome for detection systems in that they either throw initial detections, since
features do not match half-pedestrians, or they degrade most tracking algorithms
since the object will go out of view and become unrecoverable. Whilst target objects
will still be in view for scattered occlusions they still make detection and tracking

difficult as no correlation between nearby pixels can be assumed [84].

Work related to detection and tracking in occlusions is quite broad but yet the
problem still persists in the majority of detection systems. Some example tracking
methods that are well known include the Kalman & extended Kalman filter [85] and
the particle filter or the boosted particle filter [86]. The Kalman and particle filters
work by predicting where target objects are going to be in the next frame according
to some learned model. This is useful for short lived occlusions but it fails when
occlusions last longer. The boosted particle filter combines this prediction tracking
approach with a detector to recover the original object tracking after a long occlu-
sion. Finally, the scatter tracker from [84] deals with non-localised occlusions by

using a similarity metric in conjunction with a spatial prior.

47



Chapter 2: Related Work

Clutter is harder to define than occlusions. Generally, clutter is the background
to foreground objects that make it hard to determine what the said foreground is.
In other words, it increases ambiguity within a scene. A good way to envision this
problem is to imagine a scenario of placing a post-it note on a desk for a work col-
league or friend. If this desk is clear, or uncluttered, the post-it will be easily visible
and hopefully noticed as intended. However, imagine the desk is now cluttered with
other post-it notes, papers and books. It becomes much more difficult to place the
post-it with hopes of it being successfully noticed. This problem encapsulates why
clutter is troublesome for computer vision systems, as it can be extremely difficult
to identify the foreground from the background in cluttered environments, i.e. the

correct post-it placed on a desk of post-it notes.

2.5.6 Thermal Detection Algorithms

Thermal or IR detection is usually applied in surveillance or military scenarios, es-
pecially when night-time capability is required. The thermal band is a much less
rich source of information than RGB and as such there is less literature on thermal
detection algorithms. The majority of existing methods follow the general idea of
localising hot-spots or shape matching within an image via thresholding and possi-

bly motion between frames [87, 88].

Recent work includes a shape context descriptor with and Adaboost cascade
classifier, which is shape matching with machine learning principles, while a tem-
plate based method also exists from Davis & Keck [89,90]. This template method
is carried out in two stages where the first step is to create a contour saliency map
of the target object within thermal images, which in their case the target is human
in appearance. These saliency maps are averaged and form a screen that can be
used in a multi-resolution screening step, returning potential target objects. This

method in particular exploits the invariance of edge information in thermal images.

Very recently a significant effort to advance this area has been driven by Berg et
al. from the computer vision group at Linkopings universitet, especially in the area
of object detection and tracking for thermal imagery. These advances are made in
two key areas, the first being a labelled thermal dataset and evaluation protocol is
publicly available [15,91]. Secondly, Berg et al. offer a robust short term, single
object tracker adapted for thermal infrared imagery using well known recent tem-

plate based tracking methodologies [92]. The developed object tracking method is

48



Chapter 2: Related Work

Figure 2.17: Image captured by a passive thermal sensor. This is a typical example
for the modality and clearly illustrates thermal hotspots for pedestrians and cars.
Image collected at Thales Glasgow site using a Catherine MP camera .

suited to thermal imagery where channel coded distribution fields show a distinct

advantage over spatially structured features.

Overall, the potential for using the IR modality to enhance a vision system is
clear. It can tackle the problem of dynamic illumination present in RGB systems
and is highly useful for target detection through scattered occlusions, given it can
pierce fog and foliage better than colour band sensors [1]. A representative image
is presented in Figure 2.17. Some drawbacks for this modality are the lack of tex-
ture information in images as well as the lack of contrast between the foreground
and background if the temperatures are the same. Both RGB and thermal imaging
seem to have ever-present problems. One identified area that may offer improve-

ments and solutions to some of these issues is the role of context for computer vision.

2.6 Utilising Contextual Information

Thus far, SOA methods have been explored and the relevant inadequacies identified.
This section will discuss how it is possible to achieve higher level image processing
techniques by discussing the use of contextual information and psychophysical stud-
ies to gain an insight into the human visual system. A good example to illustrate
this point is presented in work by Harding and Robertson [93], where it is confirmed
humans subconsciously search for salient regions of an image, regardless of tasks. A
similar point is made by Hanson and Essock where they demonstrate the tendency

for humans to search images horizontally for people, simply because it makes sense

49



Chapter 2: Related Work

to do so. Pedestrians are most likely not going to be traversing a sky region in an
image and this reasonable knowledge is exploited by the brain automatically when
searching an image [94]. Hence, we cannot simply treat every pixel within an im-
age as equal when it is not the case. The evidence in the literature points towards
this eventuality and in order to give machines a human-like capability for detection
tasks, extra information must be given to the machine. This extra information is
analogous to life experience gained by humans, aiding how we perceive world scenes.
This is known as contextual information. It must be acknowledged scene context is
slightly different from visual saliency, but both highlight the point that pixels are
not best treated equally.

Before exploring how context can offer improvements to scene segmentation and
recognition systems we must first identify a clear definition for context. Some-
what surprisingly the literature proves sparse for definitions that were not wholly
vague. One example definition is offered from Strat, who states context as 'any
and all information that may influence the way a scene and the objects within it are
perceived” [95],. In a sense this is correct but it does not help identify sources of
contextual information, where "any and all’ could be a huge number of things. Some
wide ranging sources of context are provided by Divvala et al [18] and presented in
Table 2.2.

From these generalised definitions it appears context is essentially extra infor-
mation that potentially improves overall understanding of a scene. Although the
list presented in Table 2.2 is not exhaustive the work contained in this thesis only
exploits a handful of these sources. The three key context based ideas utilised in the
data chapters are Temporal, Semantic and Local Pixel context. Temporal context
is loosely enforced in Chapters 3 and 4 to incorporate information from previous
video frames. Semantic context is employed in all chapters, either through region
or object presence and local pixel context is predominantly featured in Chapter 6

to aid long range target recognition.

Humans possess this underlying comprehension of real world events due to past
experience. Machines, on the other hand, do not possess this prior knowledge and
would benefit entirely if given this extra understanding. Whether this additional
context comes from new sensor information altogether, such as inputting GPS lo-
cation data as geographic context, or is produced from manipulating original pixel
level data into a different representation, the end goal is always to achieve a higher
level scene understanding. An example of how humans can use context to interpret

a scene is presented in Figure 2.18.
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Sources of Contextual Information
Context Source  Description
Local Pixel Window surround, image neighbourhoods, object bound-
ary /shape
2D Scene Gist Global image statistics.
3D Geometric 3D scene layout, support surface, surface orientations, oc-
clusions, contact points, etc.
Semantic Context Event/activity depicted, scene category, objects present in
the scene and their spatial extents, keywords.
Photogrammetric Camera height, orientation, focal length, lens distortion,
radiometric response function.

[llumination Sun direction, sky colour, cloud cover, shadow contrast,
etc.
Weather Current /recent precipitation, wind speed/direction, tem-
perature, season, etc.
Geographic GPS location, terrain type, land use category, elevation,
population density, etc.
Temporal Nearby frames (if video), temporally proximal images,
videos of similar scenes, time of capture.
Cultural Photographer bias, dataset selection bias, visual clichés etc.

Table 2.2: The table above provides a variety of sources for contextual information.
Any and all may be used to garner a better scene understanding [18].

The effective use of context is closely tied to how the human visual system
performs in detection and recognition tasks, simply because if we want to allow
machines the same ability we must first understand the mechanics behind our own
system. This notion leads us to some famous psychophysical studies providing cru-
cial insights into how we use visual information for scene understanding. The vast
work of Biederman offers many insights into how humans quickly interpret scenes

using semantic relationships between objects [96-98].

Biederman also posits five classes of relationships between objects and its set-
ting. These are essentially a set of rules generalising how objects should be organised
within a scene to make sense. These relations are 1. Interposition - objects interrupt
their background. 2. Support - objects tend to rest on surfaces. 3. Probability - ob-
jects tend to be found in some scenes and not in others. 4. Position - given an object
is probable in a scene, it is often found in some scenes but not in others. 5. Familiar
size - objects should have a limited set of size relations with other objects. These
definitions can be found in [97] from Biederman et al, where the study used these
definitions to prove humans utilise them to interpret a scene when presented with

an image snapshot lasting only ~ 150ms. Studies like these show there is a much

51



Chapter 2: Related Work

(a) Blurry snapshot of an image. Is (b) Complete blurry image of the

the object or scene identifiable with same scene. The scene and object

just this snapshot? within the viewfinder should now be
instantly recognisable.

Figure 2.18: The above images should be a clear illustration of how humans use
context to infer object classes and scene understanding. Even with extensive image
degradation, such as blurring above, it is easy to recognise the object and environ-
ment when given the whole picture. This indicates that we are quite influenced
by contextual information and giving the capability to a machine should be fully
explored. Image taken from [9].

deeper process at work behind the human visual system. One such attempt to cre-

ate a computational scene recognition model is developed by Oliva and Torralba [10].

The work by Oliva and Torralba takes the original low-level pixel data and creates
a new, global representation of a scene that can be interpreted at a glance without
the need for segmentation or region processing This representation is named the
spatial envelope and may also be thought of as similar to scene gist, which is also an
abstract scene representation proposed by Friedman [99]. The model uses spatial
and spectral information to show specific information about object shape or iden-
tity is not an absolute requirement to categorise a scene overall. Scene categories
include streets, forest, coastline, buildings etc. Some example representation images

are provided in Figure 2.19.

The holistic representation of a scene category successfully illustrates it is pos-
sible to construct a scene as a single quantity that does not require any object
detection or recognition information. This idea is used in a follow up piece of work
by Torralba, where the goal is to use a similar scheme for incorporating contex-
tual information in object representations and use it for object detection purposes.

The method is known as contextual priming for object detection and relies on using
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(a) Tall Buildings (b) Coast (c) Forest (d) Open Country

Figure 2.19: The four images above are generated using the spatial envelope from
Oliva and Torralba. The scene categories are given for each image and they represent
a holistic representation of that category. Although it can appear a vague way to
represent a category, it can inform the viewer of a semantic category with a glance,
without the need for specific shape information. Image source [10]

statistics to model low-level pixel data along with object-centric data, such as size
and location. The end result is a context aware scheme capable of selecting task
driven regions (focus of attention) in an image as well as automatically inferring im-

age scales. This is achieved via probability statistics and Bayesian mathematics [9].

Contextually priming for object detection is beneficial as it can be used to manage
detection algorithm workload, directing resources to a primed search area. Further-
more, this method also does not fail because the background produces false positives
or distractions, it exploits this information to enhance our knowledge of the scene

and object properties. This should be useful when dealing with cluttered images.

Context can also be seen to offer improvements to tracking tasks. Recent work
by Borji et al. create an adaptive tracking scheme by using a learned model for
background context [100]. It essentially adapts the object descriptors as and when
the scene background undergoes strong changes. For instance dynamic illumina-
tion could be a troublesome issue and present a rapidly changing background. The
method uses particle filters (a weighted set of points on an object that are updated
each time step and predict object movement) and certain contrasting colour based
components. The end result is a tracker capable of dealing with occlusions and it is
shown to pick up the same object after full occlusions. One of the drawbacks of this
method is that a user interaction stage is required for every new video sequence in a
learning phase. This hints at it not being deployable for real-world tasks, where hard
real-time processing is essential. Another example of a context based tracker can be
seen in the work of Maggio and Cavallaro. This method learns scene context with
a Bayesian, probabilistic approach and handles the occlusion scenario in a rather
novel way by modelling target births after occlusion events as well as modelling the

spatial layout of clutter. The end result is a multi-object tracker improved by using
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scene context [101].

2.7 Conclusion

A system capable of utilising both thermal and visible modalities, whilst incorpo-
rating scene context to vastly improve performance is a highly desirable prospect.
Improving situational awareness in military or surveillance tasks is always benefi-
cial as human processing is limited. This is why we strive to build target detection
systems capable of flagging potential threats, with the hope it is much quicker than
our brain. This is because it is likely a wrong decision is made in a potentially
dangerous situation. Hence the need for tools to help people in these situations
make better and more informed decisions. Furthermore, it is also desirable to have
fully automated and robust surveillance because it is infeasible for humans to solely
perform this task on a massive scale. It is proposed that utilising machine learn-
ing methods and context can aid segmentation and target recognition performance,

which ultimately will be a step towards realising some of these overarching goals.

Sensors are used to collect information and each sensor will have limitations.
Visible sensors are weak in changing illumination which complicates object detec-
tion algorithms. Whilst they provide a rich source of information they will become
effectively useless at night-time. Thermal sensors essentially address this issue and
also have the benefit of identifying hot targets through scattered occlusions. To com-
bine both sensors provides an obvious advantage. These sensors can then be used to
collect pixel information and a scene can be constructed. An overview of segmenta-
tion algorithms was presented, with great detail given on SLIC and a graph based
method. Both tackle a subjective segmentation problem but fail to perform the task
as well as required. Furthermore, object detection practices were reviewed from the
classical treatment to current deep learning methods. Sources of context and scene
modelling were also discussed, highlighting the many benefits to be gained from in-
corporating contextual information. The most important aspect covered, however,
is the treatment of foreground and background region segmentation, especially in

current state-of-the-art semantic segmentation methodologies.

Presently machine learning is driving semantic segmentation, where foreground
objects are parsed from surrounding background regions and classified. This makes
sense on one level as foreground objects are typically what we are interested in and

are the defining feature of a target scene. Yet, if we extrapolate current methods
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to our problem space in the defence domain, where targets can exist at long ranges
in challenging rural environments, they will fail. This is because targets have very
small signatures and cannot be easily parsed or identified. This is especially true
in low light scenarios as we have already demonstrated. In this scenario it is the
surrounding regions and scene context that become the defining feature of a scene,
which we aim to utilise in order to achieve our goal of robust autonomous target

recognition and enhanced situational awareness.

The key ideas going forward address this gap in the literature, exploiting the
tightly coupled relationship between foreground objects and surrounding background
regions. Having adequately explored the project motivations and placed it in the
context of current literature, we can now begin to discuss efforts contained within the
thesis towards achieving our overall goal. The next chapter examines the relationship

between foreground and background regions in cluttered environments.

95



Chapter 3
Recovering Background Regions in

Cluttered Scenes

To address the gap identified in related work, with regards to foreground and back-
ground segmentation, we begin by focusing on developing a suitable mechanism to
extract underlying background regions in cluttered urban scenes from colour video

Sequences.

An existing superpizel representation is sufficiently modified to allow region merg-
ing, predicated by a defined similarity metric. We present a method that aims to not
only obtain stable regions but is capable of leveraging emerging foreground context
to recover underlying background segments. Prior temporal and spatial information

are also explored to see if they are beneficial to the segmentation process.

These are the key considerations for this chapter and they are fully discussed
within. By exploring these ideas we discover the presence of a foreground object in-
dicates something about the scene structure as a whole, which we exploit to our ad-
vantage. The findings are summarised in Section 3.5, the conclusion of this chapter.
This work was presented at the IEEE International Conference on Image Processing,
2015 [23].

3.1 Introduction

Segmentation and detection problems are often treated independently where meth-
ods that identify and address the coupling are less in evidence. We are motivated
to explore the relationship between image segmentation and object detection as it
is directly related to foreground and background regions of an image, which is a key

aspect of the overall project goals. The grand aim of the work presented in this
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Figure 3.1: Image (a) shows a crowd of people walking through a shopping mall from
a static surveillance camera viewpoint [11]. Image (b) presents a crowded Oxford
street scene [12]. Both examples typify a standard surveillance scene.

chapter is to develop enhanced scene understanding by exploiting the foreground
contexrt given by an objects presence within a scene. In order to achieve this the
background needs to be segmented into regions which may correspond to regions
of activity. A typical urban scene containing pedestrians is shown in Figure 3.1.
In such environments it is not normally possible to intervene in order to image an
uncluttered scene, where obtaining regions would be trivial. It is intuitive that, over
time, the presence of foreground objects tells us something important about the

background .

We propose observing foreground tracks throughout an urban scene is a positive
indication for closely related regions, suggesting they are likely candidates to be
merged in a segmentation process. This would result in segments more closely re-
sembling the true background regions underlying frequent foreground activity. We
therefore develop a new segmentation method enabling this influence to be com-
puted. Additional incorporation of spatial and temporal priors allow successful
integration of all available video information. We test the method on pedestrian
videos only, although our algorithm would apply equally well to other structured

activity scenarios such as vehicular traffic.

As motivation, consider an everyday scene that is generally well-populated with
people, such as a train station, airport or shopping mall. These scenes will typically
have few distinct regions which are quite similar in appearance. For instance an air-
port lounge will likely have a main concourse for people to occupy, some wall/shop

fronts and perhaps windows or pillars. The application of a stand-alone segmenta-
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tion algorithm would fail to recover key background regions for such a scene. This
is because foreground objects, i.e. people, are acting as clutter on the background
regions. They will have distinct distributions when compared with background re-
gions, regardless of what features the segmentation algorithm exploits, e.g. colour or
texture information. In essence the background and relative structure of a cluttered
scene can be potentially unrecoverable when treated independently with a standard

segmentation approach.

The work developed in this chapter provides a method for estimating true back-
ground regions in scenes exhibiting dense foreground object clutter. Algorithms
utilising the Bhattacharyya coefficient as a similarity metric towards merging re-
gions already exist [102,103]. We extend the best of these and the initial region

merging process is outlined in section 3.3.1.

The focus of this chapter the utilisation of foreground context to improve scene
understanding, especially in crowded urban imagery. In doing so we advance the
contextual framework described by Letham et al. to smooth the final segmentation
output using temporal and spatial priors [104]. This Bayesian framework is altered
to suit our problem formulation to overcome the reliance on pre-fabricated ground
truth by adopting a purely data-driven approach. An extensive evaluation using
standard segmentation metrics is provided for full label maps and dual layer out-
puts, using the CAVIAR ! and Oxford datasets [12].

3.2 Related Work

Background (BG) subtraction techniques present a similar vein of research, espe-
cially when such methods address crowded scenes in surveillance scenarios [105]. Al-
though the output from BG subtraction differs from our desired goal, the challenge
of dealing with foreground clutter remains. We address this by exploiting object
information to enhance BG segmentation. Attempts to integrate segmentation and
detection in the literature are relatively scarce. Gould relies on using segmented
regions to aid object detection and classification processes [106], while Wojek’s ap-
proach creates a single CRF to jointly model both processes [107]. Gu has also
shown segmentation to be an effective aid in object classification tasks [108]. Gener-
ally it is deemed desirable to segment out and identify foreground objects. It is also

suggested to avoid segmenting out many instances of an object class, such as a row

Thttp://groups.inf.ed.ac.uk/vision/ CAVIAR
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of cars, as a whole region [106]. However, we are purposely attempting to segment

only FGBG regions to avoid object labelling associated with semantic segmentation.

For semantic segmentation, where object classes are simultaneously detected and
segmented, using a CRF framework has proven very successful [109]. Foreground
(FG) object information is identified for incorporation with pixel labelling, via a
joint reasoning scheme. Additionally, recent work has used distinctions between
Foreground-Background (FGBG) regions in video streams to effectively segregate
each layer [110,111].

Similar Approaches: The bilayer approach explored in [110] and the contex-
tual framework of Letham et al. presented in [104] are likely the most similar works
in relation to this data chapter. Given the developed method naturally incorporates
key elements of [104] this should come as no surprise. The connection to that of
Sun et al. [110] is less explicit. Mainly it is the concept of dividing an image into
a two layer structure of interconnected Foreground and Background regions that is
similar. Sun et al. posit that previous methods treat this problem poorly and can
be solved using a bilayer approach, a notion shared in our work. However, the key
difference between [110] and ours lies in what each algorithm is trying to extract
from the image or video footage. Sun et al. are focused on using the BG layer to
inform the segmentation of FG objects, while we are trying to solve the opposite

problem.

In other words, FG knowledge can improve the extraction of BG regions and
global scene comprehension as a whole. The algorithms will aid the development
of a robust region segmentation process to enhance overall scene comprehension,

feeding into our larger goal of improved autonomous target recognition, whereas

3.3 Background Segmentation Method

The basic outline of the algorithm is presented in Figure 3.2. In summary we take an
initial segmentation of an image and then use FG knowledge to influence future seg-
mentation refinements. The region merging process follows directly from an initial
segmentation stage which is obtained from a superpixel method - the Simple Linear
Iterative Clustering (SLIC) algorithm [3]. A very brief overview of SLIC is provided
in section 3.3.1, given we have explored the technical details in full in Chapter 2.

The proposed region merging technique and subsequent processes are introduced in
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Stage 1 Stage 2 Stage 3 Stage 4
. Compute
Segrl:(;:?alxtion Simil_arity and
Adjacency
Influence
Segmentation Temporal /
Using Spatial
Foreground Smoothing
Context
Cluster
Initial Track Tracks, Fit
Detection Ellipse /
Kernel

Figure 3.2: Schematic of our method showing main steps. Initial tracking and seg-
mentation processes happen simultaneously and are shown as parallel flows at Stage
1. Stage 2 involves the collation of observed foreground tracks, while superpixel sim-
ilarity is computed. stages 3 and 4 combine this information to extract underlying
background regions.

following sections.

3.3.1 Region Merging

Superpixels are groups of pixels deemed to be similar in nature, usually through
colour or proximity information [60]. Such methods essentially present a form of
curtailed region segmentation by avoiding over and under-segmentation, yet adher-
ing very well to image boundaries [112]. Thus we propose superpixels to capture
an underlying image structure and if merged appropriately, form whole contiguous
regions corresponding to this image. The input for our region merging process is
a superpixel label map via SLIC. SLIC works by designating each image pixel a
5-dimensional feature vector allowing a normalised distance between pixels to be
calculated. Then k-means clustering is performed to group pixels and a clean-up
step is implemented to enforce connectivity of superpixels whilst ensuring there are
no stray pixels. The output of this SLIC algorithm serves as our initial input seg-

mentation.

To appropriately merge superpixels we compute a similarity metric to determine
how close each superpixel is relative to other superpixels. The Bhattacharyya dis-
tance, By, effectively provides a probability of superpixels being dissimilar given
colour channel information [113,114]. The By;s operates on normalised histograms

for each colour channel, which is possible as normalised histograms are discrete es-
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timates of probability density functions (PDFs). For each superpixel (SP) we can
then compute a normalised histogram H using all pixels contained within each su-
perpixel, for each information channel ¢, corresponding to the colourspace used.
This normalised histogram for each colour channel is represented as Ho. In our ex-
periments we use the conventional RGB-space, so the dissimilarity or distance Dy

between two superpixel distributions SP; and SP; is given by Equation 3.1.

DH(SR,SE,CRGB) :dest(HC<SP’L)7HC<SPJ)) (31)

The distance Dy is computed for each colour channel and multiplied through.
We can then create a dissimilarity matrix, BD, populated by Dy for each SP com-
pared with all other SP distributions. This array will have a zero entry diagonal and
be symmetric. Once BD is obtained, a global threshold T}, to control the merging
process can be determined. If we let J denote the indexes of the columns of matrix
BD, W, as a weighting factor and ij are the usual matrix elements, then the global

threshold 7T, can be computed as shown in Equation 3.2.

T, = mean(min(BD;;)) x W, (3.2)

j€J
Essentially we are taking the average of the minimum for each matrix row and
the weighting factor allows a certain degree of regulation, to either relax or limit
the threshold if desired. An adjacency matrix can then be computed using 8-
neighbourhood connectivity to determine how SP label regions are related spatially.
In other words we determine which regions are located next to each other. Com-
bining this information with BD allows merging between SPs to occur according to

the conditions outlined in Equation 3.3.

1, if BD;; < T, and SP;; adjacent

M(SP;, SP;) = (3.3)
0 otherwise

The merging function M referred to in Equation 3.3 only allows merging be-
tween adjacent superpixels if they are lower than 7j. If merging is desired a list
of all candidate superpixels fulfilling the joining conditions, then it is performed in
one cut with the output label map renumbered from 1 to n regions. However, if
we wish to influence the segmentation process via FG context we do not want to
merge superpixels immediately. Instead we only require the dissimilarity array BD

for Stage 3, as shown in Figure 3.2.
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Track Cluster Layer

(a) (b)

Figure 3.3: Image (a) shows a 3D view of track clusters sampled from the CAVIAR
ground truth pedestrian tracks, highlighting distinct clusters of activity. Image (b)
presents a top-down view of ellipses fitted to Caviar track cluster samples, track
points are shown in black. Three ellipses are generated, corresponding to one per
layer of track clusters shown in the left hand image.

3.3.2 Exploiting Foreground Context

Before we utilise any FG context it has to be observed. This is shown to be happen-
ing in parallel with initial segmentation processing prior to Stage 3 in Figure 3.2.
Given the problem posed of segmenting background reliably in cluttered scenes,
there is a clear assumption that the imagery in question is well populated by FG
objects. To collect FG track data it should simply be a matter of implementing an
object tracker. That is not the primary focus of this work and the benchmarked
datasets already have pedestrian ground truth, which we use in our experiments for
the Caviar datasets. Real tracking information, obtained from Baxter et al. is then

utilised for our experiments on the Oxford datasets [115].

Individual tracks are processed using a recent trajectory clustering technique,
based on mean-shift, in order to determine an underlying structure in the FG data
and remove spurious information [116]. An example of the track clustering is pre-
sented in Figure 3.3. An ellipse fitting method can be applied to each layer of track
information, also illustrated in Figure 3.3 [117]. Masks directly used to influence
segmentation, via altering the dissimilarity scores in array B D, are derived from FG
data. We assume any ellipses fitted to track clusters will have the least associated
error nearer the centre of the ellipse than towards the edges. To reflect this we fit a

kernel to each ellipse mask, weighting the FG influence accordingly using the kernel
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Figure 3.4: The image is a simple colourmap showing the relative weights of the
Epanechnikov kernel after convolution with a track cluster ellipsoid shape, gener-
ated via the earlier FG observations. The goal of this kernel is to positively affect
the similarity scores for merging superpixels, based on the FG evidence. In the
image, blue relates to no change while red corresponds with a large alteration to the
underlying BD scores.

weights K.

To actually alter the scores in array BD we overlay each mask onto the image
plane of the initial segmentation label map. The kernel value corresponding to each
SP centre pixel location is then retrieved, which is carried forward and multiplied
by the SPs dissimilarity score relative to adjacent SPs using the relationship 1 — K.
The Epanechnikov kernel [118] is employed to achieve this and is given by the kernel
function described in Equation 3.4, where |u| < 1. This now influences the region
merging process using FG information and a visualisation of the Epanechnikov ker-
nel weights, after convolving with one of the fitted ellipses shown in Figure 3.3, is
provided in Figure 3.4. We can then calculate a threshold and merge in the same
manner as described in section 3.3.1.

K, — iu _?) (3.4)

The desired output is a segmentation with large, contiguous regions due to the
effect of FG context. By combining the elliptical masks into one large mask, we
overlay it on the output segmentation and determine the largest region or regions
within the ellipses. These are deemed to be Background-Foreground (BGFG) re-
gions given they lie in ellipses fitted from FG data, effectively being the backdrop to
FG objects. Having identified regions as BGFG, it is then possible to binarise the
output by considering every other region as one which FG objects do not occupy.

This can be denoted as the Total Background layer (TBG) . The binary segmenta-
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tion is used to help smoothing as explored in section 3.3.3. Once this step has been
completed, a final refinement stage can be implemented and is shown as Stage 4 in

Figure 3.2.

3.3.3 Temporal & Spatial Smoothing

We adapt a Bayesian smoothing framework defined in prior work to introduce tem-
poral and spatial information for each segmentation of a scene frame [104]. The
original method is developed for binary classification of multiple region types, using
prefabricated ground truth information to provide the spatial priors for each region
type. In this chapter we only want to perform smoothing by considering a binary
region approach, namely the BGFG and TBG layers produced from the method
outlined in Sub-section 3.3.2. Bayes theorem is used to compute the probability for

either of the binary regions to exist, provided in Equation 3.5.

P(D|R)P(R)
P(D)

The terms in Equation 3.5 can be described in the following ways. The proba-

P(R|D) = (3.5)

bility of a region R to exist, given the detection D of said region is the posterior and
can be shown as P(R|D). The true positive rate when comparing the BGFG region
to the combinatory ellipse mask is P(D|R). Finally, the temporal and spatial prior
is given by P(R) and P (D) is simply a normalising constant.

The prior can be explained as a weighted summation of the prior probability de-
pendent on the current FG track knowledge, P(R|T), and the posterior probability
of the previous frame P,_;(R|D). Essentially the term P(R|T) is a spatial prior
based on the ellipse masks derived from FG track fitting. thus, the term P(R) can
be calculated using Equation 3.6. Referring to this equation, w lies in the range [01]
and controls the smoothing contribution from the temporal or spatial term. Once
P(R|D) is computed, we again alter the scores in the dissimilarity array BD, cor-
responding to which binary layer (BGFG or TBG) the remaining SPs lie in, using
the obtained P(R|D) value.

P(R) = (1 — w)Po1(R|D) + wP(R|T) (3.6)
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3.4 Experiments

We evaluate this method on the benchmarked data using standard segmentation
metrics. A random subset of ground truth tracks is sampled from the CAVIAR
data and clustered using mean-shift based multi-feature trajectory clustering [116].
This initial experiment allows us to vary key parameters to discover their effect and
guide future use. We then proceed to test on the Oxford set using empirically opti-
mal parameters and on-line track information collected over the first 20 seconds of
video footage. The region extraction process was then implemented on 300 subse-
quent frames using 50 superpixels and a strict threshold. We finally compare our
results to the EGB segmentation method [2], Normalized Cuts (NCut) [119] and
variations of our own algorithm. For completeness, a naive median filtering prepro-
cessing step is also utilised with EGB and NCut in an attempt to remove foreground
objects from the scene using the simplest conceivable method. However this method

degrades significantly for more cluttered scenes.

Let us now discuss the parameters used in the experiments. For the initial seg-
mentation and proof of concept we use SLIC with input 50, 100 and 150 superpixels,
with the compactness factor m fixed at 20. The global threshold weighting factor
Wr was set at 0.5 and 1, strict and relaxed respectively. Five weights of smoothing
were chosen, where w ranged from 0 to 1 in 0.25 increments. These were used to
find the best performing setting for the proposed method. All results presented are
generated using 50-SPs with a strict merging threshold, where we take a median
average of metric output from the different context weightings. Two of the most
crowded scenes, i.e. highest incidence of FG objects, are chosen to test with each
sequence equating to roughly 300 frames. This equates to over 18000 segmentation

label maps to evaluate.

3.4.1 Evaluation Metrics.

Three metrics are employed to assess the segmentation methods outlined in this
chapter. The firsty of these is known as the Variation of Information (VOI) [120]
which is an information theory based metric to describe the distance between two
clusters. Consider two partitions X and Y of a set Z, split into disjoint subsets
given as X = {X1, X5.. X} and Y = {¥1,Y5..Y;}. If we then let n = 3 |X;| =
Yl = |A], pi = |Xil/n, ¢; = |Yj|/n, riy = [Xi N Yj[/n. Finally then, the VOI
j

between two partitions can be mathematically defined as given in Equation 3.7.
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VI(X;Y) ZTU [log(rij/pi) + log(rij/q;)] (3.7)

7.]
The Covering Rate (CR) [121] is an image segmentation metric to determine
how well regions correctly overlap or cover target segments. It naturally extends

the method of determining the overlap between two region R and R given as

O(R,R) = :ggg,}. The Covering Rate of a segmentation S by another segmen-
tation S” can then be given as Equation 3.8. Both VOI and CR evaluation functions

are applied to the standard label output segmentation maps.

C(S —8)=— Z |R] - max O(R, R) (3.8)
NReS R'e

The Jaccard distance, conversely, is applied over the binarised layer output for
BGFG and TBG extraction, where the Jaccard distance (JaccD) provides another
measure of dissimilarity between two sets and evaluates the extracted BGFG region.
This isolated background region is unrecoverable without FG context. To calculate
the Jaccard Distance between two sets A and B, determining the Jaccard Index or
intersection over union is the first step required. Thus, the Jaccard Index is given
as J(A,B) = ﬁgg and JaccD can be simply computed as shown in Equation 3.4.1.
Human ground truth label maps are utilised and the evaluation results are presented

as multiple graphs in Section 3.4.2.

JaceD =1— J(A, B) (3.9)

3.4.2 Results

An illustrative example of the challenge faced when recovering underlying back-
ground regions of FG objects, using segmentation methods sans context, is provided
in Figure 3.5. This example utilises an indoor surveillance scene as it is a controlled
environment showing people walking through a concourse. The colour video footage
is recorded using static surveillance cameras, capturing data ideal for the develop-
ment of an initial working solution. The image shows the region based EGB method
failing to recover the background due to the presence of FG pedestrians, where it
instead extracts them as individual regions. The SLIC segmentation method also,
predictably, follows this path. An example ground truth label map of what we
would like to recover is given too. We can now highlight our proposed background

recovery algorithm performance on the same test image, which is provided in Figure
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(a) (b) (©) (d)

Figure 3.5: Image (a) shows a crowded scene from a static surveillance camera in a
shopping centre as our input case [11]. Image (b) is an optimal EGB segmentation of
the input image. Image (c) is a typical SLIC output label map, for an approximately
desired size of 50 superpixels. Image (d) is a human ground truth example for the
input shopping centre view.

3.6. The recovered background is clearly more contiguous in nature and closer to
the desired label map when contextual knowledge is included. The most prominent
BG region where FG objects are likely to appear is overlaid onto the original input
image, further demonstrating the application of the method for background recov-
ery. The binary layer can only be extracted due to the knowledge of FG objects
and provides an enhanced scene understanding. The same type of BG extraction
effect for a crowded urban scene is additionally shown in Figure 3.7, for experiments
undertaken using the Oxford dataset. We can now quantitatively examine overall

performance for the method proposed.

Figure 3.8 shows each segmentation methods VOI score over the selected datasets.
Figure 3.9 and Figure 3.10 present the CR and JaccD scores respectively, for each
segmentation method variation over the chosen crowded sequences. It is clear that
the inclusion of FG context has a beneficial impact towards our goal of background
extraction from cluttered scenes. In all cases presented this is shown by the pro-
posed method scoring better than competing methods when contextual information
is incorporated. Furthermore, the additional smoothing term has a positive gain in
all occasion, as shown in Figure 3.10 for the Caviar dataset. Overall, these results
can be summarised into a concise illustration, highlighting the performance gain of-
fered by exploiting FG context. The percentage improvement for our best proposed
method versus best competing segmentation algorithm score, for each dataset, is

shown in Figure 3.11.
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Figure 3.6: Image (a) shows the output SLIC label map from Figure 3.5, which
serves as the input to our algorithm. Image (b) is the output of our proposed
method incorporating contextual information. Image (c) is a binarised BGFG layer,
overlaid onto the original RGB test image. Image (d) the original RGB input image
overlaid with the contextual region segmentation boundaries, showing a large central
BG region where FG objects tend to exist.

(a) (b) (c)

Figure 3.7: Image (a) is a static surveillance image from the Oxford dataset. Image
(b) is a segmentation via the Efficient Graph Based algorithm, where pedestrians
are clearly extracted as FG objects. Image (c) is the output from the contextual
segmentation algorithm described in this chapter. It mostly extracts the underlying
region while avoiding explicitly isolating people as separate regions.
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Figure 3.8: Evaluation on Caviar and Oxford dataset using VOI metric showing
median averaged values. The arrows indicate where each metric should ideally be
converging, e.g. downward arrow suggests minimising VOI is preferable.
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Figure 3.9: Evaluation on Caviar and Oxford dataset using CR metric showing me-
dian averaged values. The goal is to maximise the Covering Rate via segmentation.
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across the evaluation metrics employed for each dataset used. The values are gen-
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3.5 Conclusion

This chapter demonstrates through comprehensive experiments that using available
foreground context improves the segmentation process in crowded scenes, where the
goal is to recover underlying background regions. The inclusion of FG context and
smoothing improves the measures of VOI and CR cf. all competing methods. There
is a negligible difference between using only FG context and incorporating smooth-
ing for JaccD. The main benefit of our approach is that the algorithm is purely
data-driven and only uses information available in the scene. Further, it delivers an
underlying scene-structure that is unrecoverable without the inclusion of foreground

context.

Given the overall EngD project aim is to enhance ATR performance with colour
and thermal band sensors, there is a notable absence of infrared imagery in this
chapter. The main reasoning behind this is the majority of related works on image
segmentation and scene understanding are developed using colour imagery, which
this chapter naturally extends. If the extracted scene structure or embedded fore-
ground knowledge is present in the colour imagery, it will surely be present in corre-
sponding modalities from the same static surveillance viewpoint. Thus, additional
scene understanding gained from colour video can be applied to the 24 hour surveil-

lance problem if used in conjunction with an additional thermal sensor.

This chapter lays the foundation for such an idea to be explored, which the
following chapter addresses by incorporating key elements of the outlined segmen-
tation process with an additional sensor modality. We aim to exploit the embedded
foreground knowledge from colour band segmentation using our algorithm, followed

by contextual knowledge transfer to obtain thermal target classification.
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Chapter 4
Multimodal Object Classification
via Contextual Foreground

Regions

Chapter 3 discussed a scheme to recover background regions in cluttered urban scenes
by exploiting the presence of foreground objects. The extracted segments are embed-
ded with elements of foreground knowledge from this process. We explore ways to
utilise the information gain for classification purposes in surveillance based applica-
tions. This brings us to the present chapter where we apply contextual segmentation

principles to a multi-modal surveillance environment.

We present a movel method for classifying objects in a static-cam surveillance
scenario using colour-thermal imagery. The solution is applicable to the 24-hour
surveillance problem and relies on exploiting scene-specific foreground context to de-
termine regions of interest, leading to robust object detection. Moreover, a unified
Bayesian framework is employed allowing the graceful exchange of contextual infor-
mation across modes. This overcomes the dependence on individual sensor man-
agement as illumination conditions vary with time, a frequently occurring issue in
outdoor surveillance when day transitions to night etc. In other words, we can use
the knowledge transfer across modalities to classify thermal signals as specific types

of target, without a trained infrared object classifier.

An additional aim of employing the closely bounded segmentation and contez-
tually gquided system is to potentially circumwvent the need to construct a trained
infrared target classifier. The work contained within this chapter was presented at
the 4th IMA Mathematics in Defence Conference, 2015.
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4.1 Introduction

Utilising video camera technology for surveillance and monitoring applications is
commonplace and evident across a spectrum of sectors. This includes government
agencies in a defence capacity to civilian usage, such as bolstering security around
the home etc [122,123]. Traditionally, surveillance systems would be reliant upon
a human operator to perform effective object recognition and scene comprehension
tasks. An operator would have to perform this task across a multi-camera system,
requiring alertness in order to be efficacious. Whilst the capability of human vision
is yet to be surpassed by computers, a potential weakness in the described system

is the human-element.

Recent advances in computer vision have addressed this issue by creating detec-
tion algorithms that relieve some of the burden from operators [124]. The research
field of computer vision produces algorithms that, ultimately, aim to replicate or
improve upon the human-visual system. These algorithms should be capable of
exhibiting human-like performance but at computer-like speeds. This is the main
ambition computer vision, as a whole, hopes to realise and while a great deal of
work has been directed towards creating such algorithms, it remains a long way off
due to the inherently difficult nature of the problem [125].

The task of effective object detection and classification in computer vision is com-
plex due to a variety of factors. Such challenges include the wide range of object
appearances under differing poses, positions and scales exhibited in the real world.
Another difficulty is dynamic illumination which affects how objects appear under
varying light conditions [126]. Suppose traditional surveillance events are likely to
occur during both day and night-time, in these cases it is imperative that corre-
sponding detection algorithms can operate in these circumstances. Of course, it is
dependent on what constitutes a traditional surveillance event. One such definition
of a surveillance event is an observed action that is out of the ordinary, or a cause

for concern, in the context of the scene [127].

For the purposes of this research work we consider the context of such an event
to be an outdoor environment where objects within have no direct or limited control
over illumination. Furthermore, image data would be collected from appropriate day
and night sensors in a static-cam set-up. Possible surveillance scenarios include a
covert reconnaissance mission or a border control environment [123]. A day sensor is

essentially any modern colour camera. In contrast, a night sensor has to be capable
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Figure 4.1: Two pairs of colour-thermal imagery illustrating the benefit of IR sensing.
Image (a) presents a night-time surveillance scene where a colour camera cannot
effectively perform. A thermal sensor, however, shows the presence of a person very
clearly [13]. Image (b) illustrates an LWIR sensor piercing through a foggy scene
clearly showing the presence of a hot body in the far-ground that cannot be seen in
the corresponding colour imagery [1].
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of seeing in the dark and be unaffected by varying light conditions. An example
highlighting the benefit of thermal imagery in low light level conditions is presented
in Figure 4.1.

As we have previously discussed, TTs are sensitive to EM Radiation in the IR do-
main and meet these requirements. However, IR sensors are under utilised compared
to optical-band sensors. This is determined by several factors. Although there has
been a notable reduction in cost for producing a quality TI, prices remain significant
and present a barrier to wider use, where the price of a reasonable commercial TI
system has dropped from roughly € 50000 to € 3000 today over the last 6 years [128].
Moreover, a price barrier coupled with night-time imaging capability places ther-
mal sensing as a pursuit of mainly military and governmental organisations [13].
State-of-the-art TIs supply rich and textured imagery of target scenes, providing
effective surveillance capability at night or through fog and smoke. The focus of
this work will explore methods to address target acquisition and classification in
24-hour surveillance type imagery, using information gathered from a colour-band
and LWIR camera.

4.1.1 Motivation

If we consider the knowledge that TIs are relatively uncommon there is a clear
knock-on effect within computer vision research. Namely there is a corresponding
lack of research available focusing on automatic target recognition methods in the
thermal domain, relative to the colour-band domain. As we reviewed in Chapter 2,
detection and classification methods rely on access to hand labelled training data
for building a system with reasonable performance. Given the relative obscurity
of the subject area, such curated sets of thermal data are not easy to obtain and
usually involve significant upfront costs to generate. This leads to the specific prob-
lem of classifying objects in thermal imagery, without a trained classifier, which is
addressed in this chapter. We hypothesize that inexpensive object classifications
can be obtained in thermal imagery, via contextual knowledge transfer from colour
domain detection information. Trained colour-based detectors are used to build FG
context along with a recent segmentation method to create FG regions, correspond-
ing to FG object activity. Foreground region knowledge acts as scene context and

is exploited in the thermal domain.

Our goal is to show this approach is suited to a 24-hour surveillance problem

within certain constraints, where we can employ and exploit the vast research avail-
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able for object detection in colour imagery. This allows a T1 to be employed effec-
tively without the burden of training additional classifiers for IR images etc. We
will demonstrate this using a publicly available dataset and a self-collected, colour-
thermal dataset for the purposes of the experiment. The methods used to build FG
context are explored in Section 4.2 and how this is transferred across modalities is
discussed in Section 4.3. Following this are details of all experiments carried out
in Section 4.4, including data acquisition and reported significant results in corre-

sponding subsections. Lastly a summary of findings is presented in Section 4.5.

4.2 Utilising Foreground Context

Generally the methodology presented contains three central elements to complete
the stated aims. The first task is to create FG regions for a scene given detection
information, using both thermal and colour data. Following this is the extraction
of features or blobs in IR imagery. Lastly a domain knowledge transfer for the de-
termined FG regions allows the extracted thermal features to be classified, without
a trained classifier. In essence this is a short summary of the entire process. This

section will only focus on the underlying mechanics of building FG regions.

To approach the framed problem, foreground regions must first be constructed
from observations. Two superpixel-based segmentation methods are considered to
achieve this. The more complex of these, explored fully in Section 4.2.1, originates
from a recent algorithm utilising FG context to segment improved background re-
gions in scenes showing dense object clutter [23]. This algorithm is modified to
incorporate additional thermal image information used in the experiment. The
second method employed presents a simpler approach towards the creation of FG
regions corresponding to areas of activity within a scene, which is described fully in

Section 4.2.2. Let us explore each method respectively.

4.2.1 Modified Background Recovery

The algorithm presented by Rodger et al. was discussed fully in Chapter 3 [23].
It extracts the underlying area for FG objects in an image, where said objects are
namely people. Given the recent exploration of this algorithm we shall only discuss

how it is modified towards the current problem at hand.
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To achieve our goal we adapt the background recovery algorithm in the following
ways to suit our multi-modal surveillance problem. Firstly, the computation of a
dissimilarity matrix using By;s needs to incorporate pixel information from thermal
imagery. This is easily achieved by simply including the additional IR channel infor-
mation. We can determine a normalised histogram H using all pixels bound within
each superpixel, for information channels, ¢. The normalised histogram for each
channel is given by Hs . Considering we are dealing with colour-thermal data, ¢
will be of the form RGBT. Obviously RGB relates to colour and is interchangeable
regarding chosen colour space, whereby 7' is thermal infrared data. Thus, the dis-
tance between two superpixel distributions, SP, and SP,, can be given as Equation
4.1:

Dy (SP,,SP,,Crapr) = Baist(Ho(SPy), Ho(SPy)) (4.1)

where Dy is the dissimilarity (or distance) between each superpixel, calculated
for each information channel and multiplied through. As previously mentioned, the
resulting distances between superpixels is used to populate a dissimilarity matrix BD
for each SP relative to every other SP, as described by the pairing (z,y) € A(SF;).
The creation of BD matrix forms the basis for region merging and is a key process,

hence the need to incorporate an additional channel for IR.

We are interested in more than one object class while using this adapted seg-
mentation scheme, namely cars and people. A capable detector should, therefore,
be utilised to this end. We choose Aggregate Channel Features to detect pedestrians
and SubCat to provide vehicle detections [129,130]. These detectors are needed to
create corresponding object trajectories, achieved by implementing a simple tracker
that links detection points between frames. The subsequent tracks are then used
to influence the region merging process giving mapped FG areas. Lastly, the fi-
nal modification from the prior art involved focuses on the background-foreground
layer computation. This binary array is adapted to provide probabilities over the
FG region, so that pixel (x,y) is not solely binary but instead exists in the range
0,1] ={z,y e R|0 < z,y < 1}.

We deem the adaptation as an Aggregate Foreground-Background (AFGBG)
map. Originally the binary map is determined every frame with only some informa-
tion being carried forward to future segmentations. However, the adapted method
accumulates each layer over the whole process so that each pixel location in the
map is added throughout the sequence. If we let I be the binarised FGBG image
array, then the complete output Z, from adding each binary layer for a sequence of

n frames, is given by Equation 4.2:
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Figure 4.2: This diagram outlines the major steps of the algorithm. At Stage 1
the foreground context is generated, via superpixel variance and trained detectors.
Stage 2 identifies thermal targets in the scene using a feature extraction algorithm.
Finally, Stage 3 employs a Bayesian framework to transfer context from colour to
thermal domain, allowing thermal signatures to be classified.

n

Z =norm(>_1,) (4.2)

1

where the usual rules of matrix addition apply. To elaborate, each element in
I is added to the corresponding element in [,,, while output Z must share matrix
dimensions with those added. Array Z is normalised so array elements exist over
[0, 1]. This approach differs in that previously, only a small amount of information
from subsequent frames was carried over for the final segmentation smoothing stage.
Instead we retain the whole layer and effectively stack them over time, allowing a
more complete picture of the AFGBG layer to be garnered from accumulating each
array. Ultimately this region map corresponds to an objects likely area of activity,
or conversely an objects inactivity, which will be our basis of classifying thermal

signatures via contextual foreground regions.

4.2.2 Observing Superpixel Variance

By contrast the following algorithm description is relatively simpler from that ex-
plored in Section 4.2.1. It relies on observing the variance of image pixels, within
superpixel patches, over a video sequence for both colour and thermal imagery. The
key underlying assumption is that high variance corresponds with foreground object
activity, for a stationary surveillance scene. The key processes in the method are

presented in a flow diagram in Figure 4.2.

The most active superpixels are determined for each modality by segmenting a
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Figure 4.3: The framework takes initial Superpixel Representation in colour domain
and observes the underlying pixel content in both modalities. For each superpixel
the pixel variance in IR and colour images is then calculated for every frame.

frame of the colour image source, then effectively tracking the variance of pixels
underlying each SP in both modalities. This concept is shown graphically in Figure

4.3 where a scene is observed through a superpixel representation.

Once the most active superpixels, in terms of pixel variance, are obtained these
can be merged to form a SP variance layer indicating the presence of FG objects.
The SP variance layer obtained from the scene shown in Figure 4.3 is presented in
Figure 4.4.

Referring to Figure 4.2, the remaining step to complete Stage 1 is to accumulate
detections over the sequence and create confidence maps for each object class de-
tected. The detection bounding boxes are mapped to the SP variance layer and if it
lies with a region of activity (high variance), it is convolved with a Gaussian kernel
to give a spread of confidence scores in range [0, 1] for each bounding box region.
If the detection lies in a low variance region, the kernel confidence score is halved
for the mapped bounding box. This process leads to a AFGBG region map after
normalisation. Again, this AFGBG layer has areas corresponding to object class
activity, akin to the AFGBG layer given in Section 4.2.1.

To describe the method mathematically we must again consider the initial su-

perpixel set. The first colour image in a sequence of length t is superpixellated

using the SLIC algorithm, returning set n; regions SP;, = {SP,1,...,SP,,,}. Given
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(a) (b)

Figure 4.4: Merge highest varying superpixels across both modalities to form a
variance layer. Image (a) shows the most active superpixels being merged. Image
(b) is the binarised version of this to obtain the variance layer. The key underlying
underlying assumption is high variance corresponds to FG activity.

we only need one superpixel representation to proceed, ¢ = 1 in this case. The
resulting label map can be used to observe pixel variance for both colour and ther-
mal imagery, given both modes of imagery should share dimensions. Pixels (x,y);
underlying each superpixel will then have an associated label, allowing pixels be-
longing to each superpixel to be read and stored in vector form. Let this be shown

s (z,y); € SP, = Al where each vector of pixels A is determined by the set label
n and image sequence length t. For example, if the number of superpixels desired
was 50 for an image sequence of length 100, then we would have 50 vectors of image
pixels for each of the 100 images per modality or channel. Thus we can calculate

the variance occurring for each superpixel per image by Equation 4.3:

G! = var(AL) (4.3)

where G, is the array of n superpixel variances through a sequence of images of

length ¢ and the variance function var is defined as Equation 4.4:

R )
N_1 > B — p (4.4)
=1

where B is a variable vector of N scalar observations and p is the mean of B.

From this it is easy to determine the superpixels exhibiting the most variance
across the whole scene, by simply employing Equation 4.4 again but this time to
array G for each channel. This produces a vector of length n for each channel

¢, indicating variance observed within each superpixel over the entire sequence.
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Let the vector of SP variances per channel be deemed SPV.. The next step is
to perform a simple mean threshold to eliminate any SPs that are showing low
to no signs of change over time. The final process combines information from the
vector SPV, to form a predicate for merging superpixels. If we let X, be a set of
integers corresponding to the most varying superpixels for each channel ¢, then we
can obtain a set of integers M that indicate which superpixels should be merged
to form the FGBG region map. For instance, if only 2 channels are used for this
method, equivalent to IR and the blue colour channel for example, then the set of
superpixels to merge can be obtained by performing a union of sets, presented as

Equation 4.5:

M=XU X2, Xip € nyg (45)

where ny is set of integers for number of superpixels used. By merging superpix-
els in set M we create a SP variance layer from simply observing pixel value variance
through time, this layer is shown in Figure 4.4. However, no object class information
is incorporated with the SP variance map unlike the method explained in Section
4.2.1. To achieve this a trained object classifier in the colour domain must again be

utilised.

The basic principle is to store and accumulate any object class detections to
incorporate with the FGBG layer. For each detection made per colour image, a
corresponding bounding box will exist. These detection bounding boxes are then
mapped to the SP variance layer, illustrated in Figure 4.5 where active regions are
shown as white and low variance regions are black. The bounding box area can be
convolved with a Gaussian kernel to provide it with a confidence score. For each con-
volved detection box, if it lies within an active region the scores remain unchanged.
However, if the detection lies out-with the active regions then the scores are simply
halved. This process remains the same regardless of class and is to reflect the un-
certainty of making a detection in a region that has not exhibited much variance.
The aggregation of these mapped and convolved detections, for each object class,
leads to the creation of a FGBG map after a defined length of observation. Again,
the score aggregated map must be normalised so array elements exist in the range

0,1].

Both methods explored generate a confidence region map for object classes, based
upon observations over time. The problem is posed as a static surveillance scenario
where classifications in the thermal domain can be achieved without having a ther-

mal classifier. This is achieved by utilising a trained detector in the colour domain
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Figure 4.5: Person detection bounding box is mapped to SP variance layer and
convolved with Gaussian kernel to aggregate and build confidence map, which is the
Foreground-Background layer. The resulting FGBG layer will be utilised to classify
thermal signatures without a classifier at a later stage.

and transferring the observed knowledge to be fully exploited. The methods outlined
above provide the mechanism to effectively build up prior information that can be
carried forward to help detect thermal blobs, the details of which are discussed more

fully in Section 4.3.

4.3 Transferring Knowledge Between Sensor Modal-
ities

The classification process for thermal features is a two stage process, operating un-
der the assumption that the previously available colour signal is now unavailable.
Thus, all objects have to be identified in the thermal domain without a trained
classifier. The first step is the extraction of thermal features from target imagery,
which are then classified via a Bayesian framework using the obtained FGBG maps.
The algorithm of choice to achieve thermal feature extraction is Maximally Stable
Extremal Regions (MSER) [131], specifically the VLFeat implementation.

4.3.1 Thermal Feature Extraction

Referring to Figure 4.2, acquiring thermal signatures is Stage 2 of this algorithm.
The core idea of using MSER to obtain features in LWIR imagery towards the task
of pedestrian classification is not a new one, as evidenced by previous works [132].
However, we present a completely different approach to prior art in a similar context.
The MSER algorithm is ultimately a feature / blob detector that aims to extract

stable connected components for level sets of a given image. The stability of regions
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is determined by how much variation exists within each binarised component. The
algorithm is often chosen due to its simplicity, robustness, while it works for low

resolution imagery and has small computational cost.

One drawback is that it can often be hard to fine-tune. The MSER algorithm
is utilised to extract numerous thermal blobs for each thermal image frame in a
sequence. Each blob is classified as belonging to one object class, or not, by utilising

previously obtained AFGBG maps for each object class in a Bayesian scheme.

4.3.2 Bayesian Framework

Referring to Figure 4.2, developing a contextual classification scheme is Stage 3 of
the process. Bayes theorem is employed to compute the probability of a detected
object to exist given the condition of its surrounding region probability [133]. Using
the commonly given Bayes proportionality P(A|B) o< P(B|A)P(A), we can express
our posterior probability as P(Obj|R). The object is the extracted MSER blobs and
the region R is determined by the earlier obtained AFGBG map, relating to each

object class. This is shown in Equation 4.6.
P(R|Obj)P(Obj)
P(R)
where P(Obj) is the prior information for objects, P(R|Obj) is the likelihood

which usually expresses a prediction model for given data and the denominator P(R)

P(Obj|R) =

(4.6)

is simply a normalising constant.

The prior information is the output AFGBG layers from the methods outlined in
Section 4.2, as it is an aggregation of detection observations shown as a confidence
map. In other words it is the state of knowledge before the experiment to classify
thermal features. Thus, to calculate the posterior P(Obj|R) for an MSER blob be-
longing to an object class, or vice versa, it is a simple case of choosing a likelihood
probability for each object class and summing probability values from the relevant
prior AFGBG maps.

Every classification task is treated as a binary problem where an MSER blob
can either be an object such as a person, or not a person and two probability values
must then be computed to reflect this. The correct FGBG map created from spe-
cific object class detections must be used to determine the corresponding posterior

accurately, where the FGBG prior is then inverted to calculate the probability of
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a thermal blob not being an object. Given it is always a binary problem a flat or
uninformative likelihood of P(R|Obj) = [0.5,0.5] can be chosen, at least initially,
to produce results that are free from bias. An uninformative likelihood essentially

tells us that a thermal blob belonging to an object class or vice versa is equally likely.

Lastly, the probability of prior P(Obj) for each MSER blob is simply an average
of corresponding FGBG pixel values at locations where extracted thermal features
appear. Once probabilities for every MSER have been obtained and normalised,
the highest value indicates if the blob is a specific object class or not. Posterior
values for every frame are stored along with corresponding MSER bounding boxes

for future evaluation using human ground truth data.

4.4 Evaluation

The described methods for classifying thermal signals in a surveillance scenario,
without a trained classifier, are tested using two datasets. For each dataset the
FGBG confidence maps are constructed using three differing lengths of observation,
for every defined object class. The output probabilities for each object class and
associated blob bounding boxes are then used to calculate classification accuracy

via human ground truth information.

4.4.1 Data Acquisition

For the experiments undertaken two datasets are employed. Firstly, a publicly
available colour-thermal dataset is obtained from the OSU Color-Thermal Database
- the OTCBVS dataset [38]. This set of LWIR and colour imagery is already regis-
tered spatially and temporally, whilst also being a static-cam surveillance scenario
containing a sparse number of people as foreground objects. This provides an ex-
cellent platform to initially test our proposed methods. Example imagery from the
OTCBVS set is illustrated in Figure 4.6. The second dataset was collected using
a low-cost colour camera embedded in a mobile device and a state-of-the-art TI
produced by Thales, the Catherine MP [20]. This set contains lots of clutter and
an additional foreground object of interest, the car. It represents more of a real-
world urban surveillance scenario in contrast with the relatively sanitised OTCBVS
dataset.
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Figure 4.6: Registered colour-thermal image pair from OTCVBS dataset showing
two people in a sparsely populated urban environment [14].

The Catherine MP LWIR uses an integrated detector cooler assembly which com-
prises a 640 x 512, 20pm pitch QWIP array, sensitive to long wave infrared radiation
at wavelengths of 8um to 12um at a frame rate of 100-Hz. Given the accompanying
colour camera has a frame rate of approximately 30-Hz with a larger spatial reso-
lution, any image data collected using these two sensors has to be processed before
being useful for experiments. To elaborate the colour and thermal imagery must
be registered spatially so they show the same image plane, as well as temporally

registered where objects within both images exist at the same point in time.

To enforce spatial coherence between Catherine MP imagery and colour imagery,
a straightforward image alignment technique is employed. Manually selected con-
trol points identifying common features in both images are chosen, which allows a
transform matrix to be computed via a geometric mapping process. This matrix is
then utilised to perform the spatial transformation of imagery. It is acknowledged
that much more sophisticated and automatic options exist to do this between multi-
modal image sets, but for the purposes of this experiment they are not deemed
absolutely necessary given a reasonable level of accuracy can be obtained to effec-
tively map FGBG layers from one modality to the other. Temporal registration is a
much simpler issue that only requires the difference in frame rates as a ratio. For the
Catherine MP to colour camera situation this ratio is &~ 3.334, so for every 3 frames
traversed in the colour sequence, 10 frames have elapsed in the LWIR sequence. This
is enforced to create a real world colour-thermal dataset with high-quality, LWIR

thermal imagery. An example of this image set is provided in Figure 4.7.

4.4.2 Test Conditions

For both datasets the image sequences are split into two sets. The first set is used

to build FGBG / prior maps for each object class, using 3 different lengths of ob-
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Figure 4.7: Registered colour-thermal image pair from self-collected dataset showing
people, cars and clutter in a populated urban environment.

servation in terms of number of images. The second set of images is used to test
the algorithmic framework for classification, under the assumption that the colour
information is useless (i.e. night-time), where only thermal imagery is utilised. The
test sets are manually ground truthed for both datasets. The OTCBVS contains
only people as foreground objects while the collected dataset contains both people

and cars. Bounding boxes are generated for these object classes.

The algorithm parameters, such as MSER variations, are kept constant through-
out. The only change is the number of superpixels double from 50 SPs for the
OTCBVS data to 100 SPs, accounting for the larger resolution present in the col-
lected dataset. A flat likelihood of [0.5,0.5] is used for all experiments, where prob-
abilities and FGBG maps are generated for each object class via both methods.
The length of observation for the OTCBVS set is presented as multiples of 1000
images, with a test set of roughly 1000 images. The rationale behind the size of the
test set is purely down to the number of images in the chosen sequence from the
OTCBVS dataset. The intention is to keep a test sequence completely isolated from
any observations used to generate the prior knowledge. The higher quality imagery;,
in terms of thermal information, self-collected dataset uses multiples of 250 images
and a test set of approximately 350 images for presentation. In both experiments,
data points are generated at 0.5 increments of the observation set size. For example,
the first point on Figure 4.8 occurs at 0.5 multiplied by 1000 images, meaning the

observation set was 500 images in size.

4.4.3 Classification Performance

The bounding boxes generated from MSER classification are used to evaluate the

overall system accuracy by calculating overlap with ground-truth object bounding
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boxes. The metric used is Accuracy which is calculated using Equation 4.7:

TP+ YTN
ACCURACY = TP+ YXTN+YXFP+XFN (47)

where T'P is a true positive, T'N is a true negative, F'P is a false positive and
F'N is a false negative. For this experiment, a T'P is where an extracted MSER
has a greater probability of being an object (car/person) and also has a greater
than 50% overlap with the correct object class bounding box. A T'N is where the
dominant probability deems the thermal blob as not an object and there is less than
50% overlap with ground-truth bounding box. A F'P is obtained when the highest
MSER probability classes the blob as an object but there is not sufficient overlap
with ground-truth boxes. Lastly, a F'N is when an ample overlap exists between
MSER and ground truth boxes, but the dominant probability deems the blob as
not an object. This overlap convention is defined in Equation 4.8 and is a common

evaluation approach for detection problems [63].

area(B, N By,)
an =
0 area(B, U By)

(4.8)

In Equation 4.8 B, N By is the intersection of MSER bounding boxes B, and
object ground truth bounding box B, while B, U By, is their union. All variations
of accuracy results, for each algorithm, over the OTCBVS and self-collected dataset
are presented in Figures 4.8 to 4.11 .

The obtained accuracy results show clearly that the simpler method of super-
pixel variance, combined with ordinary detection information in the colour domain,
is an effective method to classify thermal features. Or to a greater extent, it is a
more robust and accurate method for building the AFGBG prior maps used in the
MSER classification process, when compared to the complex Modified Background
Recovery approach. This is true regardless of the object classes examined. It also
appears that in most cases the length of observation does not appear to have an
overwhelmingly positive effect. Initially this seems counter-intuitive as increasing
FG object evidence should provide a more accurate platform to classify thermal

signatures.

However, there may be several non-obvious factors that mean this is not the
case. For instance, the adapted background recovery will tend to propagate errors
through a sequence if the scene is not densely populated. Thus the longer obser-
vation length will only compound this problem. Furthermore, longer sequences to

compute superpixel variance through a scene can lead to key areas falling out of
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Classification Accuracy vs Observation length.
Person Class: OTCBVS thermal imagery
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Figure 4.8: This graph shows accuracy results for person classification over OTCBVS
dataset for two competing methods. Prior maps were generated over varying image

sequence durations, as indicated on the X — Axis.

Classification Accuracy (%)
o o 1N I o I o o
N w B (5] o ~ © ©

°
=

Classification Accuracy vs Observation length.

Person Class, Self-Collected Dataset

—©& - MBR
— % - SPV

0.5

1

15

2

25

Observation length, multiples of 250 images

Figure 4.9: This graph shows accuracy results for person classification over a self-
collected multi-modal image dataset.
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Classification Accuracy vs Observation length.
Car Class, Self-Collected Data
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Figure 4.10: This graph presents the accuracy results for car classification over a
self-collected multi-modal image dataset.

Average Class Accuracy vs Observation length.
Car & Person Class Average, Self-Collected Dataset
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Figure 4.11: This graph gives an averaged class accuracy for both methods described,
with results generated over the self-collected dataset.
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mTP

Figure 4.12: Image (a) is a typical surveillance scene captured in LWIR. Image (b) is
the thermal signatures our work will classify to provide object information. Image
(c) illustrates the output classification from our contextual classification scheme,
with the key on the right hand side. The person is clearly identified as green pixels,
with background regions shown in blue.

the SP variance map later on as the scene changes. In any case it is clear that
while improvements can be made the SP Variance method provides a more accurate
AFGBG map, feeding directly into the Bayesian classification scheme for extracted
thermal features. An illustrative example of thermal feature classification using the

proposed superpixel variance algorithm is presented in Figure 4.12.

4.5 Conclusion

The main hypothesis put forward in this chapter examines the transfer of contex-
tual knowledge across modes enables object classifications, without using a trained
classifier. Ultimately the experiments carried out have shown this to be true. Two
methods for generating foreground contextual knowledge are presented and the out-
put of these serve as input to a Bayesian classification scheme, which mediates the
knowledge transfer between modes. Initially, a complex background segmentation
algorithm is adapted to suit the problem posed, which in turn leads to a simpler

solution utilising superpixel variance to determine regions of activity.

From experiments carried out over two colour-thermal datasets it is readily ap-
parent that the simpler of these methods, combined with the Bayesian classification
framework, is better suited to generate contextual foreground regions to aid multi-

modal detection. Despite identifying a potential solution for classifying objects in
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LWIR imagery, the approach is quite limited in many ways. For instance, either
method discussed requires prior observation periods from a static surveillance view-
point using thermal and colour band sensors. Furthermore, the methods themselves
are fairly convoluted and lack a certain simplicity that is favourable in deployment
of real world applications. Lastly, the methods gain class specific information for
targets using trained classifiers for colour imagery, meaning they are likely only as
good as the classifiers overall accuracy. Thus, it seems very unlikely the algorithms

outlined in this chapter will mature into a tractable solution.

At the time this work was conducted we partially responded to the growing
advance of machine learning methods by circumventing the large effort required to
create a labelled object dataset in LWIR. Such a dataset would allow the application
of effective machine learning techniques to build a bespoke LWIR target classifier. If
this could be achieved it would propose a much simpler solution for thermal object
recognition which is a critical aim of the project. The successes of such machine
learning methods has been well documented but mostly for colour imagery, so we
can now explore the application of CNNs towards LWIR imagery and build a state

of the art thermal object classification scheme.
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CNNs for LWIR Object

Classification

In this chapter we present an end to end process to create an object classifier using
CNNs for LWIR thermal imagery. After the reasonably complex solution proposed
for thermal object recognition discussed in the previous chapter, we arrive at the
conclusion that building a CNN recognition model will offer more advantages despite

the significant upfront effort involved.

The subject matter and underlying theory is laid out before describing the ther-
mal dataset creation in full. We report the collection of LWIR image sequences using
the Thales Catherine MP and how this is transformed into a labelled, multi-object
dataset. Preprocessing and data augmentation steps are also discussed at this stage
in order to create an image corpus suitable for training a robust CNN classifier.
Then we move onto CNN architecture design considerations and methods for hyper-
parameter optimisation. Finally, we can assess and evaluate the CNN recognition
performance using our labelled dataset, observing accuracy across our defined object
classes. Furthermore, we also utilise recent network visualisation techniques to en-
sure CNN behaviour is as expected. Lastly we re-implement the trained CNN in a
different deep learning framework and deploy a realtime solution, feeding in LWIR

video sequences recorded using the Catherine MP for target recognition purposes.

To the best of our knowledge this research presents one of the first successful
applications of CNNs to LWIR imagery for object recognition across several classes.
Elements of this chapter were presented at SPIE Security & Defence, Electro-Optical
and Infrared Systems; Technology and Applications, 2016 [16]
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5.1 Introduction

Accurate and robust recognition capabilities have long been sought after in computer
vision, where the ultimate goal is to develop algorithms approaching human level
performance [134,135]. Recent machine learning methods have solved challenging
image problems across a number of applications, such as object classification and
image segmentation. Convolutional Neural Networks are one such method offering
a potential route to achieve intelligent processing systems, comparable to human
vision for tasks such as object recognition [136]. In this chapter we utilise a deep
learning framework with CNNs to create an object classifier for longwave infrared

thermal imagery.

Infrared sensing technology is widely adopted in the security and defence do-
main due to its night vision capability [137-141]. This is possible due to the nature
of thermal radiation, where the LWIR portion of the Electromagnetic Spectrum
is dominated by heat emissions. Passive sensors designed to be sensitive to this
waveband, from 8 — 12um, can thus offer persistent surveillance capabilities [20].
Enhanced situational awareness for end users can also be gained if the data stream
is intelligently processed in some fashion, offering decision assistance. Intelligent
processing methods offer the additional benefit of limitless attention span compared
to human operators, who would typically suffer performance degradation at repeti-
tive or stressful tasks [19,142,143]. Modern machine learning methods for computer
vision applications are one route to achieving this, which is explored and advanced

in this chapter.

Deep convolutional networks have demonstrated an excellent ability to learn
representations of data, allowing the generation of highly descriptive features. Cru-
cially, these features are generated automatically via the machine learning process,
moving away from traditional human crafted features that often under perform by
comparison. In principal, improved and increasingly generalised features can be ob-

tained through careful network design and training schemes to avoid overfitting [144].

The convolutional network has shot to fame in recent years despite existing for
decades [145]. There are several factors contributing to this rise in prominence.
Firstly, computing infrastructure and hardware has greatly improved over approx-
imately the last twenty years. This has enabled the collection and distribution
of sufficiently large image training sets necessary for scaling deep learning models.

Furthermore, the proliferation of advanced accelerated processing hardware allows
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training schemes to operate on much shorter timescales. However, the largest in-
fluence illuminating the power of CNNs was the well-known results for the 2012
ImageNet challenge [146]. In the words of Andrej Karpethy, this competition is
effectively the "world cup of computer vision" [147]. Thus, when a CNN entry dom-
inated other algorithms by a large margin, in terms of accuracy, the field quickly
took notice. Convolutional networks have since become widely adopted in academia

and industry across many applications [48].

While this revolutionising approach is extensively utilised for colour band im-
agery, i.e. visible light, there is surprisingly few examples of CNN applications for
thermal band data by comparison. Several aspects may contribute to this situation.
For instance, high quality thermal imagers are mostly found in the security and
military domain due to the high price barrier, meaning the necessary imagery for
training a CNN is restricted from the outset. Nevertheless, we take full advantage
of the advanced machine learning capability offered by deep networks to train our
own architecture. The tuned CNN is designed to classify objects of interest in LWIR

imagery.

We collect and ground truth a sufficiently large LWIR object database to enable
successful training of the CNN. The imagery is effectively preprocessed and balanced
by using suitable data augmentation techniques. Experimental results indicate ex-
cellent performance across all object classes after training. Further examination of
the internal network structure also demonstrates the training scheme is appropriate

and we explore the feature space to illustrate network behaviour accordingly.

Ultimately, we show that deep networks can be employed in a very similar fash-
ion for high level computer vision tasks using thermal band data, as already shown
for colour band data. This realisation could lead to future developments of intel-
ligent automated systems in security and defence, which typically rely on efficient

processing of thermal imagery.

5.2 Related Work - Analysing Thermal Data

The application of machine learning using CNNs for Automatic Target Recognition
(ATR) tasks is an active and well documented topic of research. Despite the high
performance offered by deep networks and the importance of ATR in defence scenar-
ios, the field is relatively unpopulated by CNNs for thermal based data. We shall
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examine methods for ATR processes that utilise convnets, as well as alternative
techniques, specifically in the infrared domain. For the purposes of exploring clas-
sification strategies, it is assumed the target acquisition process is complete and we
are dealing with a set of potential candidate blobs extracted from a thermal image.
The image blob is usually pre-processed via a simple set of operations, which we
will describe for our method in Section 5.3. Following this procedure, relevant and
descriptive features can be extracted allowing machine learning based classification

methodologies to be examined.

5.2.1 Constructing A Classifier

Generally, object classification strategies prior to the widespread adoption of deep
convnets rely on a two stage process. Assuming we have sufficient candidate targets
available, the first task is concerned with feature crafting. The aim is to extract
relevant attributes from the data that best captures discriminatory aspects of the
signal, whilst reducing redundant information. Ideally, these features should be
generalisable to the task at hand and offer suitable performance when only a subset
of descriptors are available [43]. For instance, in an ATR scenario we may only
have access to half an image of a land vehicle due to clutter obscuration, meaning
an incomplete set of features will be generated for classification purposes. In cases
such as these it is hoped a subset of features will still offer sufficient levels of per-
formance. Lastly, is it usual practice to organise extracted features into a vector
or 2—dimensional feature image which ultimately is a representation of candidate
targets [44].

After successfully assembling a feature construct comes the second stage in the
process, requiring a classification scheme. If we let the described feature vector be
known as X, composed of n feature instances, then X = {xy,...,x,, }. Using this
terminology allows us to express a candidate target, i.e. a transformed image blob,
as a feature vector X, where the goal in ATR is to determine what object class, C, a
potential target belongs to. Furthermore, in the context of machine learning based
classifiers an additional choice must be made with regards to the learning paradigm.
For ATR tasks the problem tends to be well bounded and constrained so it is usual
to see a supervised learning approach, where labelled training data is required to
infer a predictive function. Thus, a classifier during training would require input
pairs of data, formed of the feature vector X and a corresponding label Y. After
training is complete a classifier will generate a prediction of Y for any new input

feature vector X. The alternative to supervised learning is unsupervised learning,
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Figure 5.1: An LWIR thermal image with a UAV against a sky background is shown
alongside its binarised counterpart, extracted using the MSER algorithm. The UAV
is highlighted by a red target box.

which does not offer predictions of Y for input X but instead clusters the features
accordingly. Unsupervised approaches shall not be considered here. The task of
assigning an object class C' to candidates based on a feature vector X summarises

a target classification procedure [45].

5.2.2 Alternative ATR Schemes

Due to the 24-hour sensing capability offered by thermal imagers they enable valu-
able detection and classification processes in the security and defence domain. There
are many possible options for performing object recognition tasks using thermal im-
agery, without invoking a CNN approach. For instance, a wide area search and
surveillance system presented by Breckon et al. employs cascaded Haar classifiers
to generate potential target candidates from an input thermal image [148-150]. The
search windows returned via the cascaded Haar classifier are then confirmed or re-
jected as a target type using a secondary trained classifier. Note that the initial
target generation uses Haar basis functions and derivatives to obtain features and
the classifier is trained using AdaBoost. The secondary target confirmation classi-
fier generates a feature vector using Laplacian filter responses over input candidate
patches, which are then used to train an SVM classifier [151]. Both of these exam-
ples adhere to the two stage process for classifier construction outlined in Section
5.2.1.

Another popular method for feature generation in LWIR imagery is to first obtain
blobs using a technique known as MSER [131] and extract discriminatory attributes
from them. An example of a UAV in thermal imagery being highlighted by MSER

is shown in Figure 5.1 to illustrate the usefulness of this feature extractor.
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These features are then used to train an SVM classifier or similar algorithm.
For instance, a low resolution pedestrian detector and classifier is shown in [152],
while a person identification system for assisting special weapons and tactics teams
is illustrated in [153]. Both example methods follow this general approach of hand-
crafting features for classifier training. In these cases features are generated by
applying various methods to MSER blobs to obtain descriptors, such as Discrete
Cosine Transformation [154], Histogram of Oriented Gradients [74] and Integral
Channel Features [155]. The object descriptors serve as input to a modified Ran-

dom Naive Bayes [156] or SVM classifier for training and deployment.

Obscured target recognition systems also utilise LWIR sensors and classification
schemes to identify potentially hazardous buried targets. The works of [157,158] for
instance employ a forward-looking longwave infrared sensor and create object de-
scriptors via ocal binary patterns [159], among others. Again, hand crafted features
are used to train an SVM classifier for predictive purposes towards explosive hazard

detection.

It should now be clear that machine learning based recognition methods adhere
to the outlined two stage process, consisting of feature crafting and providing input
pairs {X,Y'} to a classifier of choice for training. The end result is effectively an
optimised inference function capable of assigning a target class for new input feature
vectors X. The small selection of example methods report reasonable performance
for their respective tasks, some even present incredible performance of ~ 99% area
under the curve [152]. However, despite the successful appearance of such methods

there exists a significant underlying drawback.

Ultimately this general approach of hand-crafting discriminative features for spe-
cific tasks suffers from the human element involved, as we are always making a deci-
sion at some level of what we think makes a good feature for object classes. This is
a time consuming process that actually limits the generalisable and scalable nature
of ATR methods, which stems from the fact that humans cannot really know what
makes a good feature at the machine level. By designing descriptors and passing
them to a chosen classifier it is explicitly based on our knowledge and partial as-
sumptions of how the human visual system performs ATR, but this may not always
translate to corresponding levels of computer performance. Under the supervised
learning paradigm we can now explore options where the manual feature generation

process is removed, allowing the machine to craft them automatically.
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(d)

Figure 5.2: Different object examples in LWIR are illustrated in the public, labelled
dataset provided by Berg et al. While it is likely a useful resource to develop
algorithms the dataset contains only a handful of object classes relevant for defence
applications, the human and quadcopter. Humans can be observed in images (a) -
(d), while image (b) shows a quadcopter. Even so it is encouraging to see such a
dataset in the public domain. Image source [15].

5.2.3 CNN Based ATR

We have touched upon several prior methods for ATR in the thermal domain that
utilise manually generated features and typically an SVM classifier. Such methods
are numerous as the approach proved reasonably successful over time. Given the
prominent rise of CNNs and increased visibility over recent years, it would be easy
to assume there is now a significant body of work employing CNNs for ATR tasks
in infrared imagery. However, publications and research in this area is surprisingly
sparse despite the intelligent recognition capability offered by CNNs. The underly-
ing reason for this may be attributed to the lack of available, large scale labelled
datasets for infrared imagery. A corresponding and well known dataset in the colour
band by comparison would be Imagenet [146], containing over 1000 object classes
over approximately 1.2 million images and is easily accessible to those with an in-
ternet connection. Ground truthed datasets of this magnitude are very rare in the
infrared domain. One of the only comparable public datasets, produced by Berg et
al. [15], contains humans and quadcopters which is useful for security applications,
but it also contains horses and dogs which is less desirable from a defense standpoint.

Example imagery from this dataset is presented in Figure 5.2.

Lastly, the lack of prior art may be down to the notion that CNNs must be
trained over large scale datasets such as Imagenet. This assertion is refuted by the
training of a CNN from scratch using a modest image corpus later on. For now, let

us explore the handful of available CNN based ATR systems.

One of the earliest prior works employing CNNs for ATR with infrared imagery
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conducts an empirical evaluation of several methods towards this task, where they
observe neural network based approaches generally perform better and are easier
to implement due to the lack of manual feature engineering required [160]. They
also note that while CNNs perform better than competing methods, they are rou-
tinely confused by examples that are simple for humans. This is to be expected
given the small amount of training data available and lack of advanced techniques
implemented in modern convnets, which would have limited how well their CNN

generalised to the task.

The detection and recognition of buried targets in FL-LWIR has also been tack-
led by CNNs as shown in [161]. Curiously, although the authors try a multitude
of CNN variations they discover the convnets cannot match performance levels of
their baseline algorithm, composed of hand-crafted features, for the ATR task. It
is left unanswered as to why this is the case but it appears to be a combination of
network architecture and what CNNs actually learn. The variety of features used in
the baseline algorithm appear to be very closely linked to physical characteristics of
buried targets, whereas CNNs are ultimately relying on image appearance to extract
features. This a rare case where a CNN fails to outperform a manually engineered

classifier.

Another application of convnets can be seen in recognition of low resolution tar-
gets from near-infrared aerial imagery, which has proven feasible using a CNN model
approach [162]. This example highlights a novel network architecture designed to
classify challenging low resolution targets and it outperforms pre-trained networks
as well as hand designed feature methods. Moreover, the classic computer vision
task of pedestrian recognition is solvable using CNNs for ATR [16, 163, 164]. As
assisted driver systems become more advanced they will require robust object de-
tection and recognition systems able to work in varying illumination conditions, so it
is unsurprising to see a CNN approach utilising far-infrared sensors [163]. The CNN
developed for driver assistance is a lightweight CNN, as real-time computation is nec-
essary in deployment, where the goal is to not only recognise pedestrians but to also
identify potentially unsafe behaviour. They report encouraging results using a novel
architecture consisting of a lightweight CNN connected to a boosted random forest
classifier. Furthermore, the low-resolution pedestrian recognition system proposed
in [164] is a natural extension of prior art by [152], where features are generated
via CNN training instead of manually. The end-to-end model operates in real-time

for LWIR video using a trained CNN for ATR, demonstrating excellent performance.

Lastly, the LWIR object detection and classification system presented in [16],

99



Chapter 5: CNNs for LWIR Object Classification

which is also explored in Chapter 6, appears to be the most extensive CNN based
work for LWIR imagery. To the best of our knowledge the CNN as demonstrated
is capable of robust recognition for more object classes at various ranges and poses
than other prior art in this field. We fully explore the details of the machine learning
process, from constructing a balanced training set to feature visualisation, in order
to train a robust, scalable CNN for ATR applications using LWIR input data.

All of the methods outlined in this section follow the supervised learning process,
requiring labelled datasets for training purposes. Crucially though, the methods also
benefit from automatic feature discovery during training. Removing the need for
manual feature extraction not only saves time, but allows a network to best deter-
mine how classes should be differentiated. As we shall see, this is achieved by loss

function optimisation over many iterations during the training phase.

5.3 CNN Creation

Supervised learning with convolutional neural networks for image recognition tasks
is analogous to learning a new language, where the primary method of inference
is examination of labelled images for different object types. The human brain will
form connections to explain the new information by learning how to associate the
visual data to the label. The new-found knowledge is reinforced and improved via
testing to highlight areas of weakness. The end result is an accurate and generalis-

able knowledge within the brain, applicable to future recognition tasks.

Recent machine learning methods have captured the essence of this problem and
provided a solution. In the case of object recognition for imagery, the state-of-the-
art solution has been to employ convolutional neural networks with access to enough
training data and sophisticated optimisation techniques. Accelerated hardware also
helps but is purely optional to speed up the learning process. A neural network is
essentially the recursive application of weighted functions succeeded by non-linear
functions. A CNN is a special case designed to exploit image structure and a deep,
feed-forward CNN is simply a stack of CNN layers incorporating downsampling and
activation functions. The stack of layers gives rise to the term deep and the convolu-
tional operations transform image inputs into feature response maps, or activation

maps, whilst preserving the spatial structure of the image.

Once a convolutional network has propagated an input image through the CNN
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blocks and sufficiently downsampled the resulting feature maps, it will eventually
reach a fully-connected layer (i.e. a traditional neural network). This final layer
takes the output from the previous layer and is connected to all its neurons. Whilst
the spatial information is finally lost at this stage the linear combination of weights
provides very powerful and abstract responses, ultimately inferred from the training
data. It is these generalisable inferences that we aim to extract from our thermal
images. However, unlike colour imagery which is ubiquitous and accessible, the
thermal domain is much more restrictive. Given deep neural networks require an
appreciable amount of training data, the lack of labelled and accessible imagery is

the first hurdle to overcome.

5.3.1 Dataset Generation

The first step to generating a successful CNN model requires access to a training
set that is sufficiently representative of the problem domain. As mentioned previ-
ously this is particularly challenging to obtain for imagery collected using thermal
imagers. It is even more difficult to gain access to human labelled thermal imagery
suitable for supervised machine learning using CNNs. That is not to say no pub-
licly available and ground-truthed thermal datasets exist, for instance the OTCBVS
repository offers labelled LWIR scenes, enabling the undertaking of closely related
research [14,164].

While such provisions are sparsely offered for thermal data they share a common
theme, the thermal data is of low quality. The major contributing factor for this
is attributed to price. High quality TIs are very expensive as they are designed to
capture as much of a designated portion of the infrared spectrum as possible, to
a high degree of sensitivity, which is a non-trivial task to achieve. This challenge
becomes even more formidable when we consider the LWIR band, where the opti-
cal efficiency of capture systems in this wavelength tend to be very poor. In other
words, to obtain high quality thermal imagery we must use a high quality T1I, which

are scarcely accessible to the public or academic community.

Rich thermal imagery captured by such a TT would allow a robust CNN model
to be trained for the more challenging problem of extensible object recognition, at
various distances and poses. This problem is more akin to real world scenarios and
such a recognition capability would be valuable. Thus, in the absence of such a
labelled dataset we set out to obtain one. It requires a sufficient volume of video

data to be collected using a high performance TI. Following this, important object
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classes for land defence and the image preprocessing stage is defined.

5.3.2 LWIR Dataset Generation

To recap, the Catherine MP LWIR is a state-of-the-art TI produced by Thales and
is employed to collect data towards creating a suitable training set for our chosen

target classes, which are explained further on in this chapter [20].

Acquisition: The first step to overcome is simply one of data gathering. The
state of the art Catherine MP is employed to collect sufficient data in order to
build a robust CNN. An integrated detector cooler assembly is housed within the
Catherine MP and is comprised of a 640 x 512, 20um pitch Quantum Well In-
frared Photodetector (QWIP) array. The photodetector is sensitive to long wave
infrared radiation at wavelengths of 8um to 12um at a frame rate of 100H z. This
TT is presented in Figure 5.3 deployed in a sensor platform. Crucially, the longwave
thermal imagery acquired using this system will be of sufficiently high quality to
enable the application of deep convolutional networks with thermal band data, for

more challenging and real-world type images. This outlines the TT collection system.

Multiple terabytes of video footage were recorded using this TI, capturing a
range of object classes from multiple poses, ranges and in different weather condi-
tions. Targets were imaged at a range of a few metres to a few kilometres. The
crucial aspect to address when building a dataset for machine learning is that the
data must accurately reflect the real-world problem. This gives the chosen machine
learning paradigm the best possible chance of determining an accurate worldview of
the problem domain. Having gathered a large amount of video footage, a harness
was written in MATLAB to traverse through each video sequence and crop out suit-
able target candidates from the frame. These image crops were stored as raw pixel
values and labelled as the appropriate target class. The objects of interest for the

experiment are defined as follows.

Desired Target Class: Surveillance and land defence is the driving force behind
the objects deemed to be of interest, where we identify objects frequently observed
in rural and urban environments. Thus, the target class is composed of five real
objects and one null case, which we designate as the false alarm class. The real
target classes are people, land-vehicle, helicopter, aeroplane and Unmanned Aerial
Vehicle (UAV) . An illustrative example of each real target class is presented in

Figure 5.4, demonstrating the LWIR thermal imagery contained within the training
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Figure 5.3: The Catherine MP LWIR variant presented as a single unit (a) and
deployed on a multi-modal sensor platform (b). Two example LWIR images are
provided in (c) and (d) to illustrate the appearance of the modality as well as
highlight the quality of the sensor itself.

and test sets. The land vehicle class includes an assortment of many different types
of ground based vehicles, such as a personal car, vans and construction vehicles.
The false alarm class is comprised from an assortment of background clutter present
in everyday scenes. This includes clutter items such as edges of buildings, clouds,
foliage and patches of ground etc. Null cases such as these are typically problematic
for object detection algorithms, especially in thermal imagery, where they tend to

generate false alarms.

Examples of images labelled as null or false alarm are presented in Figure 5.5
to highlight the difference between real targets and false alarms. The most impor-
tant aspect behind the inclusion of such a class, despite the possible conflict and
confusion it may introduce to the CNN during the learning process, is the potential
rejection power it enables. Target recognition algorithms akin to trained CNNs are
ultimately designed for deployment in an overall vision system and our case is no dif-

ferent. We briefly explore a real-time deployment of such a system in a later section.

The ability to reject false alarms by building such cases into a network is a
valid strategy and one that has seldom been explored. An alternative to this ap-
proach would be to recover real probabilistic values from the network, unlike the
pseudo-probabilities offered by softmax output, to generate confidence scores from
predictions [165]. Low confidence scores could then be thresholded in a similar man-
ner. Now we have collected suitable data and defined the objects of interest we need

to process it for successful training and validation.

Preprocessing & Data Augmentation: Following the designation of target

classes the next stage requires the creation of a balanced training and test set, com-
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Figure 5.4: Training examples for each object class, cropped from Catherine MP
LWIR imagery. Instances shown in column (a) highlight people from various poses.
Land vehicles are observed in column (b), showing not only different pose/viewpoints
but also intra-class variation. Instances of helicopters can be found in column (c),
with aeroplanes present in (d). Lastly, column (e) illustrates UAV examples with
column (f) highlights various false alarm instances. Image source [16]

posed of the outlined objects present in LWIR images. The Catherine MP outputs
14bit video data and relevant target classes can be extracted from the sequences as
an individual image crop. For each object crop then, the image dimensions will vary
per example. This is due to not only the dynamic nature of object appearance and
pose, but also the distance said objects appear at. The box sizes of each crop vary
accordingly. The employed CNN model requires input images to be of a fixed size
and 32pt floating precision.

We elect the image dimensions to be fixed as 256 x 256 based on the following
reasoning. Influential prior works that created CNNs for object recognition also
resized images to 256 x 256, as the dimension allows a large number of downsam-
pling operations to be performed if required. Given that building a successful CNN
for thermal imagery is an unknown at this stage, we posit that such a large image

dimension allows more opportunity to downsample or perform other preprocessing

104



Chapter 5: CNNs for LWIR Object Classification
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Figure 5.5: Typical false alarms are presented along with their sources. Beginning
with (a) we can see the edge of a tree top, (b) shows the centre portion of a bush,
(c) is a patch of muddy ground and (d) captures top corner of a building. These are
illustrations of scenarios that tend to be detected and misclassified in ATR systems,
especially in the LWIR band.

methods that we may require. In other words it has been shown to be a suitable
dimension in previous works and offers breathing room for experimenting with net-
work depth.

It follows that after enough data has been gathered to form a train/test set,
each crop must undergo a resizing operation, as well as be mapped to 32pt precision
where pixels exist in the range [01]. Lastly, a median filter with 3 x 3 kernel is
convolved with each image crop. The intended effect is to remove trace spectral
noise, as well as dead pixels, present in LWIR imagery. It should be noted that
a consequence of spatial resolution adaption is slightly askew objects, such as the
car shown in Figure 5.4 (b). This is due to the resizing of more rectangular images
to square images. The data preprocessing step can be summarised and employed
in the following order. The first step is to map the pixels from 14bit integers to
single-precision. This is succeeded by applying a median filter. The last step is to
resize the crop to 256 x 256. Once this preprocessing block is certain we have to

evaluate the composition of the object imageset.

We can determine how many of each class contribute to the overall dataset struc-
ture by simply summing the total number of labels associated with each target. A
balanced datset is one where instances are evenly distributed between classes and is
preferred for training neural networks [166], purely because they have been shown to
outperform networks trained on imbalanced sets. As shown in Figure 5.6 the initial
dataset generated from collected Catherine MP sequences is very imbalanced, where

half of the target classes have an overwhelming majority. If a network was trained
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Figure 5.6: Bar graph showing the number of images present in the dataset.

using such a dataset, it would be biased towards the majority class and effectively
learn that more images tend to be from these classes than others. This would lead to
ineffective performance when deployed in real-world scenarios. Thus, it is beneficial

in the long run to balance the dataset before embarking on a training scheme.

To address and re-balance the dataset two common approaches exist. The first is
to randomly undersample from the majority classes, dropping selected images from
the dataset. The second is to oversample from the minority classes by augmenting
the existing data in some way to create new image instances, boosting examples
per object class. To achieve these a desired number of examples per class has to
be chosen, which we set at ~ 2000 for each target class. The majority classes are
undersampled accordingly via random exclusion until the set limit is reached. To
augment data using existing imagery is slightly less non-trivial by contrast. For
the minority classes, that is helicopter, UAV and aeroplane, random flips about the
vertical image axis and whitened images are introduced. The image flips is simple
to implement and whilst the overall pixel information is the same in flipped images,

it appears at different locations from the source.
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Figure 5.7: Image (a) is the original object instance of an aeroplane, cropped from
a Catherine MP sequence. Image (b) is flipped around the vertical axis and (c) is
augmented via whitening. The variations are added to the dataset.

Given most if not all objects in our dataset can exist at many different rotations
or poses this seems a sensible option for data augmentation. The whitening of an
image is a useful preprocessing step related to independent component analysis.
The intended result is to transform an image matrix X into another image matrix
Y, where Y has variance equal to unity and uncorrelated components [167]. The
summary of image whitening is provided in Equation 5.1, showing the covariance

matrix of Y equal to the identity matrix I.

E{yy"} =1 (5.1)

Image whitening accentuates higher frequencies present in the image. In the
case of LWIR source imagery it preserves hot-spots which may be crucial during
the training phase. The effects of flipping images about the vertical axis and image
whitening are illustrated in Figure 5.7. The minority classes are then randomly over-
sampled and augmented using these two processes until the chosen instance limit
is reached. After obtaining a balanced dataset as illustrated in Figure 5.6, we can

design a CNN architecture and begin the optimisation process.

5.3.3 CNN Architecture

Supervised learning is the machine learning paradigm to which convolutional neural
networks belong. As discussed in Section 5.2 CNNs have recently demonstrated to
be very successful across a range of tasks. Their success can be attributed to feature
extraction over multiple layers of increasing abstraction, leading to a better power
of generalisation. Furthermore, non-linearities in the form of activation functions

are introduced throughout the network. The combination of non-linear weights and
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Figure 5.8: A typical CNN structure is presented, showing an example input image
propagating through the network and generating feature maps. Each convolutional
block is composed of a convolution, non-linearity and pooling layer. A deep network
can be composed of many of these layers. Finally, the high level bstract features are
fed into dense, fully connected layers which perform the classification task.

inputs determine a decision boundary capable of solving complex problems. The
form of this boundary is discovered using a gradient-descent based method to min-

imise an objective function over the labelled dataset.

The general structure for a deep convnet is an architecture similar to those re-
ported by Krizhevsky [41] and an overview of such an architecture is presented in
Figure 5.8. The key component is the convolutional block composed of a tunable
kernel (weights) for convolving input image arrays, producing feature or activation
maps, a non-linear activation function in the form of a Rectified Linear Unit [168]
(ReLU) ¢(z) = max(0,z) and a downsampling pooling operation to reduce the spa-

tial resolution.

Max pooling has been shown to be effective here. After an input image has
propagated through such a network, with feature maps sufficiently extracted and
downsampled, it will pass to a fully connected layer where the image structure is
not preserved. A fully connected layer is akin to a traditional artificial neural net-
work and is responsible for the classification aspect. It is common to see multiple
fully connected layers at the end of a CNN structure, where the final output layer
will be composed of units equal to the number of classes present in the dataset.

Thus, in our case the final fully connected layer will contain 6 neurons.

The network structures as described in Krizhevsky [41] are designed to learn

108



Chapter 5: CNNs for LWIR Object Classification

large-scale recognition tasks, such as the 1000 object class ImageNet dataset. Suf-
ficient depth and width is required by a deep network to handle the complexity
of such a task, where the number of parameters present in the network can grow
remarkably large with increasing convolutional layers. For our problem domain we
are only dealing with a 6 object class problem, using a dataset with only 12000 ex-
amples. Given the smaller nature of this recognition task we will not need to design
a network with such a large structure. It should also be noted that the convolutional
layers not only preserve the image structure and help generate invariant features,
but they also keep the parameter space from growing exponentially. This is due
to the smaller number of parameters needed in a convolutional block compared to
a fully connected layer, which traditionally would have been used to tackle image

recognition tasks where a huge parameter space becomes a limiting factor.

Although we do not require as deep a network as those used by Krizhevsky we
still employ a symmetric network architecture with ReLLUs and max pooling. Input
images are of size 256 x 256 and small convolution kernels of 5 x 5 are also employed.
We elect for a max pooling operation of size 2 x 2. Convolutions and pooling are
implemented with stride lengths of 1 and 2 respectively. Two fully connected layers
are always present at the end of the CNN. Although we shall explore the effect of
depth and network width, the size and stride length of convolutional and pooling

kernels remain constant.

5.3.4 Training Strategy

The assembled dataset, discussed in Section 5.3.1 contains 12000 LWIR object in-
stances sampled over the 6 object classes, containing 5 real targets and a false alarm
class. Training and test sets are created by splitting the dataset using a 90 : 10
ratio, where the test set is composed of 200 examples from each object class. Thus
the training and test set total 10800 and 1200 examples respectively. The tunable
network parameters are not affected by examples in the test set, remaining effec-
tively unseen during the training phase. Network architectures are defined before
each training run we and perform the training phase using opensource deep learning
frameworks. We further test the ATR capabilities of CNNs by deploying a trained

network in realtime on accelerated hardware.
Layer weights are initialised using the Glorot scheme [169] and every convolu-

tional layer is composed of a number of filters, where we alter this value across layers

as an experiment to explore network width. Convolutional blocks are followed by
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non-linear activation functions and pooling as discussed previously. The last con-
volutional stage feeds into a dense, fully-connected layer with a varying number of
units, where we apply 50% dropout [144] to layer inputs. The random dropout of
connections has been shown to improve network performance by stopping the CNN
becoming reliant on certain neurons during training, increasing the generalisation
power. Again, the ReLLU operation is applied here. The final network output layer
feeds into a softmax function [170], also known as a normalised exponential op-
eration, with a fixed value of 6 units. The softmax outputs a pseudo-probability
distribution over all classes which sum to one, where the probabilistic interpretation

of this classifier function is: ;
elvi

Zj efj

This indicates the a normalised probability value assigned to each label y for an

P(yilr;) = (5.2)

input image z, where f is an output score vector.

Training a neural network is a non-convex optimisation problem to minimise an
objective function, where internal network weights are incrementally altered until a
chosen error measure is diminished. We employ categorical cross-entropy loss as the
objective function which is the common choice for multi-class problems and soft-
max outputs. Furthermore, backpropagation is employed in conjunction with the
gradient-descent optimiser Adagrad [171]. Backpropagation allows the calculation of
gradients for the cross-entropy loss function, with respect to global network weights.
The computed gradient is then used by the gradient-descent algorithm Adagrad to
allow network weight updates, where the goal is to minimise the overall error or loss
function. The use of backpropagation is a standard training strategy for deep net-
works as it allows the network to see how changes to weights will affect the overall

internal error.

Let us suppose that our objective function is F'(€), where 0 is the model pa-
rameters. Gradient descent minimises F'() by updating parameters in the opposite
direction to the gradient, given by Vo F' (). There is also an associated learning rate
n responsible for the step size when descending the gradient slope. The learning
rate is responsible for how effective the network learns. Too big a value for n and
a network may never find a minima, whereas too small a value can exponentially

increase the training time required.
To avert the tricky business of manually tuning and updating this hyperparam-
eter 7, we elect to use Adagrad. This gradient descent optimisation scheme updates

the learning rate adaptively with respect to the parameters . The adaptive ability
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allows a large initial learning rate to be set, which can then be reduced accord-
ingly to find minima, speeding up the training process considerably. If we observe
dii = VoF(6;) as the gradient of the objective function for parameter 6; at time step
t, the update rule for each parameter at time ¢ can be given by 0;11,; = 0:; — 1 - d;;.

Finally, the Adagrad update rule is computed using Equation 5.3 :

Oreri = O — ——— - d (5.3)

which effectively shows us how the algorithm modifies the learning rate 7, for 6;
at time ¢, using previous gradient calculations. The term D, ;; is a diagonal matrix
where the main diagonal elements 7,7 are the sum of squares of the gradients and
€ is a small smoothing variable introduced to avoid division by zero. It should also
be noted that while we use gradient descent optimisation it is not true stochastic

gradient descent, which computes the gradient using a single sample.

We do however use minibatch gradient descent, where the batch size is fixed at
20 examples. This is more computationally efficient and helps reduce the time to
converge on a suitable minima. Lastly, to further prevent overfitting, along with
the dropout technique, we introduce a regularisation penalty in the form of the ¢,
norm [172]. This ¢y penalty discourages large weights in the network and is given

by Equation 5.4:

L= YW (5.4

The formula indicates that ¢ is only a function of the internal weights of tensor
W, the elements of which are squared then summed to give ¢5. This value extends
the categorical cross-entropy loss L;, which is a function of the data, after being mul-
tiplied by a small value A, such that total regularised loss is given as L,cy = L; + Ms.
With access to a balanced dataset and a suitable optimisation schema, we can now
explore the suitability of CNNs for LWIR target classification.

5.4 Experiments & Results

In this section we investigate several aspects of training a CNN towards the task of
LWIR target recognition for ATR applications. The algorithm is implemented on a
machine using an NVIDIA TitanX GPU with Kepler micro-architecture. The im-
pact of CNN architecture on the overall network accuracy is explored and sufficient

evidence of a well-tuned network is presented using a variety of tools, such as confu-
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sion matrices and feature visualisation. Categorical cross-entropy loss is calculated
for training and validation sets. This is computed between targets and predictions

using Equation 5.5:

Li = — Zti,jL09<-Pi,j> (55)
J

where P, ; is the softmax output for predicting classification probability and ¢; ;
is the true target label. This loss function has a basis in information theory, but it
can be interpreted as a kind of measure of internal network error. Target predictions
on the validation set provide an insight into the networks ability to generalise and
performance over this set of imagery is reported. This is achieved by comparing
CNN predictions with actual class labels, which we construct into a confusion ma-
trix, c¢fm. Overall prediction accuracy is given as Acc = W, which the trace,
tr(), of the confusion matrix and dividing by total number of examples N in the

validation set.

Given this is one of the first attempts to construct a CNN for LWIR target clas-
sification, over a variety of different object classes, using bespoke high-quality ther-
mal imagery, there is no existing dataset or method to reliably compare our results
against. Instead, the aim of this work is to convey and convince the community that
recent deep learning methods are just as applicable to recognition applications in the
thermal domain as those presented for colour images. We begin our investigation

by training with shallow network structures and gradually increase their complexity.

5.4.1 Increasing Network Depth & Width

We first investigate the effect of varying CNN width, depth and number of units
in the fully connected layer prior to the final output layer. The input dimensions,
ReLU and pooling operations remain in place as described in Figure 5.8. We choose
6 network configurations for each layer / convolutional block, where the number of
convolutional filters can be 16 or 32. For each of these we also vary the number of
units in the first fully connected layer prior to the output, where we choose values
of 16,128 and 256. This represents 6 variations per convolutional block, where a

convolutional block is defined to be a C'onvolutional Layer — ReLu — Pool.
Each convolutional block has a depth of 1, so the stacking of convolutional blocks

increases the overall depth of the network. Regardless of network depth, each block

will have the same structure as defined by the configuration for number of convo-
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Overall CNN Prediction Accuracy %

Conv. Units |FC. Units
Depth | Config-1 | Config-2 | Config-3 | Config-4 | Config-5 | Config-6 Config-1 16 16
1 25.58 16.67 16.67 16.67 16.67 16.67 Config-2 16 128
2 27.83 24.17 16.67 20.91 24.33 3241 Config-3 16 256
3 74.83 87.25 88.00 75.17 85.08 92.00 Config-4 32 16
4 16.67 87.25 87.25 81.83 90.00 95.42 Config-5 32 128
5 72.00 84.17 90.33 79.83 91.25 93.17 Config-6 32 256

(@) (b)

Figure 5.9: Table (a) shows CNN prediction accuracy, as a percentage, using the
unseen test set for every network configuration. The best accuracy and configuration
is highlighted in bold, identifying a depth of 4 convolutional blocks, each with 32
filters and a fully connected layer containing 256 units as the best performing CNN.
Table (b) is a key to the configuration details, describing how many convolutional
filters are in each block and the total number of neurons in the fully connected layer.

lutional filters and units in the fully connected layer. The variation experiment is
summarised fully in Figure 5.9, where overall accuracy of the CNN over the test set
is presented, for increasing depth (stacking convolutional blocks) using the described

block configurations.

This experiment provides a granular insight into the effect of network structure
on prediction performance, helping to identify which configuration is best to use. As
such, we find that a CNN containing 4 convolutional blocks, each composed of 32
convolutional filters, ReLLU and pooling layers, feeding into a fully connected layer
of 256 units before the final output prediction layer, is best suited for our task at
hand. This architecture paired with the outlined training scheme gained an overall
prediction accuracy of 95.42%. A closer inspection of this networks predictions ver-

sus the true labels is given in Figure 5.10.

Furthermore, we can also plot how overall prediction accuracy increases as the
training/validation decreases over time. In other words the network improves its
ability to recognise LWIR objects as it learns from an increasing number of exam-
ples. Such a graph documenting the decreasing loss is presented in Figure 5.11 and
it is a useful tool to identify if a CNN is overfitting. By observing how training and
validation loss evolves through learning, we can see that the losses closely follow
each other. They decline and plateau at roughly the same time which is a sign of
a good fitting network. The validation accuracy, plotted against the second Y-axis,

correctly increases as the loss is reduced.
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Classifier Output Confusion Matrix - Best Configuration
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Figure 5.10: Image (a) is the confusion matrix for our best performing CNN, show-
ing the predicted output versus the true label for each example in the unseen test
set. The main diagonal is ideally where the largest numbers should occur, as this
would indicate the predictions match the true label. A graphical illustration of this
confusion matrix is presented in image (b) as a heatmap. It is the same information
but perhaps more intuitive to comprehend.

A sign of overfitting would be if the training and validation losses diverge or con-
verge. Note that the significant gap between training loss shown as the red line and
the validation shown as blue, is due to the additional /5 loss included in the training
scheme to prevent overfitting. Again, this plot is generated using the ideal network
architecture determined earlier. Having explored the performance of our CNN for
LWIR target recognition in terms of prediction accuracy, we can also investigate the

internal network structure to further clarify a deep convnets suitability to the task.

5.4.2 Network Visualisation

A common strategy when training a CNN is to visualise the inner mechanics of the
network after convergence on a minima and optimal parameters. One intriguing
area to observe is the filters in the first convolutional layer, as they can indicate a
well-tuned network. It is very common to see the first layer filters from the work of
Krizhevsky on ImageNet [41] presented in related publications. This is due to the
filters being very distinct, indicating a finely tuned network, but also because many
other works use these low-level features in their own networks as a starting point for
further training. These iconic filter weights, along with our first layer weights and
weights from a CNN trained over the MNIST dataset [173] are presented in Figure
5.12. As we can see from this image there is quite a large discrepancy between the

highly orthogonal filters of the network tuned over ImageNet and the networks that
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Training/Validation Loss & Prediction Accuracy
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Training Loss
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Figure 5.11: The graph is showing three things. As the learning process evolves,
shown as an increasing epoch number, the training and validation loss is reduced.
The validation accuracy, plotted against the right hand side Y-axis, quite correctly
increases in correspondence with the decreasing loss. Lastly, the graph suggests the
trained network has not overfitted to the data.

are not. However, this difference does not indicate that our best performing network

is not trained well.

We can also examine the effects the tuned convolution filters actually have on an
input image. Using the 32 learned filters as shown in image (b) in Figure 5.12, we
can visualise the resulting filter response of the image as it is propagated through
the first convolution layer. Each convolution kernel generates an activation map and
we present an example using our tuned first layer weights for an input image of a

pedestrian in Figure 5.13.

The main benefit to carrying out this technique is that it provides an insight
into how the network is affecting input imagery, which can tell us some interesting
things about the training. In the example provided it should be observed that each
of the 32 responses contain some information, even if it may be sparse at the first

layer. If we were to observe a few or more dead activations however, where maps
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Figure 5.12: Image (a) shows the first layer weights from Krizhevsky’s well known
work on the ImageNet dataset. Image (b) is the first layer weights from our 32, 5 x 5,
tuned convolutional kernels. Image (c) also shows 32, 5 x 5, tuned convolutional
kernels but they have been trained over the MNIST digit recognition dataset, where
the network achieves a prediction accuracy > 99%.

Figure 5.13: We illustrate the feature maps produced by each convolution kernel
during a forward pass of an input image through the network. These are generated
at the first convolutional layer and show that at this early stage the activations can
remain fairly dense.

contain no information at all, it could signal a problem with the training scheme in

place, such as high learning rates.

Lastly, we can exploit another tool to examine how well the trained CNN is at
distinguishing classes using the validation set in a different way. Borrowing a sim-
ilar idea as shown in the work of Mukherjee [174], we can use Linear Discriminant
Analysis (LDA) to calculate a linear function of the output classes and plot the re-
sulting measurements. In other words we are going to create an LDA projection of
the validation set to observe some differentiation between classes, instead of feeding
it through a softmax classifier. It is just another tool that helps verify the CNN is

behaving as required.
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LDA Projection — CNN Features @ Person

Land Vehicle
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Figure 5.14: The LDA projection using CNN features from our trained network is
shown from two different viewpoints in image (a) and (b). The visual key to identify
classes is also shown on the right hand side. The plot shows that the clusters are
mainly distinct and well separated.

The generated scatter plots are presented in Figure 5.14 and show two different
viewpoints for the linear projection. This is necessary as we can only plot in 3-
dimensions, whereas LDA produces as many linear functions as there are classes, so
the rotated and angled view helps reaffirm the classes are distinct. In our case LDA
is maximising class discrimination using 6 linear functions. This is the last method
we employ to gain some insight into internal network performance. We follow up on
this by taking the best performing network architecture identified in Section 5.4.1

and retrain a CNN using the same data, but in a different deep learning framework.

5.4.3 CNN Performance Verification

The final investigation we undertake is the retraining and deployment of our LWIR
CNN in realtime, using the Caffe framework [175]. We simply define the best per-
forming network architecture and retrain a CNN using the same dataset we created
earlier, but using the C++ based Caffe environment. Once a comparably perform-
ing CNN model is obtained further verification experiments can be approached. The
advantage of deploying a C++ based Caffe CNN is the ability to embed the network
in a realtime system of our own design. Vast quantities of unseen Catherine MP
footage can then be fed through an OpenCV framework where the video sequence
is split by a frame grabber, allowing selected Regions of Interest (ROI) to be passed
to the CNN. The network then observes and provides classification results. In other

words we don’t have to waste time carefully assembling a new LWIR object dataset
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for more testing, but instead can pass in a stream of images and simply draw boxes
round targets of interest. It presents a final test to examine whether deep convnets

truly are suitable for ATR applications in the thermal domain.

Having retrained the CNN model in Caffe using the same set-up as the best
performing framework, the overall prediction accuracies between the deep learning
frameworks are determined to be within 1% of each other, which could be down to
small differences in initialisation etc. Once this comparable model is obtained we
provide many examples to the network for classification and display the class scores.
Examples of this final validation phase are illustrated in Figure 5.15 where a target

classification for each object class is presented.

We deploy a CNN model using the best performing framework and optimal
weights, so we may provide examples to the network for classification and display
the class scores. Examples of this final validation phase are illustrated in Figure 5.15
where a target classification for each object class is presented. In this illustration,
Image (a) is an aerial scene where the target is a passenger aircraft, image (b) is the
same scene but the target this time is a passing bird, image(c) illustrates a typical
urban surveillance environment where the target is a pedestrian, image (d) is the
same scene where the target is a parked car, image (e) shows another aerial scene
but the target is a small UAV and image (f) presents a helipad with the target being

a grounded helicopter.

Thus far we have created a balanced dataset, determined the best CNN archi-
tecture to use, presented the prediction accuracy of this network configuration and
visualised its inner workings in the form of convolution weights and filter response
maps. Furthermore, we have demonstrated an LDA projection using the CNN fea-
tures, illustrating the discriminatory power of deep CNNs towards recognition tasks.
Lastly, we reimplemented an existing, high performing network in another frame-
work and provided further examples of the classification capability for LWIR targets.
This should be sufficient evidence of CNNs potential for ATR in the LWIR domain.

As such, we can now discuss the findings of the presented experiments and results.

5.5 Discussion

Developing and demonstrating a deep convolutional network capable of classifying

objects of interest in LWIR imagery, to a high degree of accuracy, was the grand
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Figure 5.15: This figure presents example classifications for each target present in
the dataset, given as images (a - f). Objects passed to the CNN are identified in
the image by the green ROI box enclosing the target. Pseudo-probability scores are
provided in the lower right hand corner of each image, showing the output class
predictions of the trained convnet.
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aim of this work. Furthermore, we intended to show such a network not purely in
terms of classification accuracy, but to delve into the training scheme and visualise
the finer details of a trained CNN. The reasoning behind this was to present over-
whelming evidence that modern deep learning methods were indeed suitable for use

with thermal band imagery.

The motivating factor to design such an algorithm can be explained by the desire
to harness the potential benefits for a robust recognition tool in ATR applications,
especially in the security and defence domain which primarily relies on thermal im-
agery. Ultimately, we believe these goals have been achieved by the determination
of our results, as well as highlighting some interesting insights along the way. The
principal implications of our experimental findings can be summarised through a

discussion of Sections 5.3 and 5.4.

Network performance and accuracy results are only presented in the form of
confusion matrices. We build on this and explore the underlying machine learning
aspect of training a CNN for LWIR target recognition, whilst also extending the

understanding of the trained CNN by visualising fundamental network behaviour.

5.5.1 Data Cleansing

One of the first steps we undertake is to address the class imbalance present in the
LWIR dataset as a network trained on an unevenly distributed set of images can lead
to biased performance. If we look at Figure 5.6, the number of instances present for
each class shows a heavy bias towards pedestrians, land vehicles and false alarms.
Thus, a network trained on this will tend to be better at predicting these examples.
Furthermore, a validation set randomly sampled from an imbalanced dataset will

also be unevenly balanced, favouring the majority classes.

So, the biased network will also appear to be display accurate performance and
it may not be easy to determine if this is a detriment without significant effort.
This imbalance and bias network / validation set is immediately resolved via aug-
mentation and undersampling. Once the dataset is balanced we can create even
distributions of class in both train and test sets, ensuring reported performance is

indicative of true network performance when deployed and faced with unseen im-

agery.
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5.5.2 CNN Optimisation

The training strategy and general network structure we employ, as shown in Figure
5.8, is typical for creating a robust CNN towards recognition tasks. Our contribu-
tion in this area is the exploration of network width and depth affecting predictive
performance. The network architectures were designed to gradually become more
complex and overall classification accuracies were recorded using the same validation

set. If we observe Figure 5.9 it summarises the different network configurations used.

Curiously, for some of the smallest architectures it appears the overall accuracy is
better than deeper networks by comparison. For instance, configuration 1 at depths
1&2, the accuracies are higher compared to the deeper nets with the same width etc.
The observed volatility is actually due to the stochastic nature of training a neural
network, where initial parameters are set by a random process. It would have been
better to repeat this experiment multiple times and average the accuracy results,
eliminating the stochasticity factor. However, the experiment still allows a general
trend to determined. Perhaps unsurprisingly we can see that a deeper network with
reasonable width achieves a greater accuracy on average, with the top performing

structure containing 4 convolutional layers and a denser fully connected layer.

This corresponds well with the current literature which suggest compact convo-
lutional kernels and deeper network structures perform better than shallower nets.
The underlying reasoning behind this observation is that deeper nets have a better
chance of recovering more abstract and generalisable features present in the imagery
than shallower nets would, which leads to better classification accuracy. The confu-
sion matrix of our best performing network structure shown in Figure 5.10 confirms
that the trained CNN performs well across all classes, resulting in the peak overall

accuracy.

5.5.3 Analysing CNN Visualisation

Once this finely tuned CNN is obtained an additional avenue is explored through
the visualisation of first layer convolution filters and activation maps, shown in Fig-
ure 5.12 and Figure 5.13 respectively. The filter response for a target pedestrian
propagating though the first layer exhibits ideal behaviour for a well trained CNN.
Each of the activations presented in Figure 5.13 contains some information, with
many being dense with pixels. This is a good sign as empty or dead filters would

indicate a poor training regime.
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The most interesting insight discovered though arises when we consider the con-
volution kernels shown in Figure 5.12. A great many related works present the
nicely tuned, orthogonal filters from a CNN tuned using the ImageNet dataset as
shown in Figure 5.12(a). However, when we visualise the filters from our finely
tuned network they appear noisy and with little structure. This is reportedly a sign
of a badly trained network which is of course worrying. Yet, we explore this issue
further by plotting the first layer filters from a network trained over the MNist char-
acter dataset, where the network practically has perfect recognition. These filters
are shown in Figure 5.12(c) and surprisingly also exhibit noisy filters, despite the

network exhibiting a near flawless accuracy.

This suggests that the low-level features obtained for a high performance CNN
do not always need to be clean and show strong orthogonality. In other words noisy
filters are not indicative of a poorly tuned or inaccurate network. We propose that
the small number of classes and subsequent little variation in the imagery contained
within our LWIR object dataset, as well as the MNist data, gives rise to noisier
filters. The reasoning is that CNNs simply do not have to learn such clean, discrim-

inative low-level features when the problem is small in scale and constrained.

By contrast the networks trained over ImageNet will eventually have to con-
verge on such nice filters as they are essential to differentiate between 1000 object
classes with any degree of accuracy. To the best of our knowledge this interesting
insight has not been communicated before, probably because most practitioners of
CNN training for recognition tasks tend to use the well-tuned, low-level features as
a starting point for their specific problem. We did not see much point in using these
low-level features as thermal imagery is quite different to colour, so we elected to

design and train CNN from scratch.

The assertion that our noisy convolution filters are no indication of poor train-
ing is further complemented by the evidence shown in Figures 5.11 & 5.14. The
plot of training and validation loss decreasing as prediction accuracy increases is
ideal behaviour when training a deepnet. The gap between loss values is due to
the additional /5 penalty added into the training loss, so it is always higher, but
they follow each other closely otherwise. A poor optimisation scheme would gener-
ate a much different looking graph. Furthermore, the LDA projection scatter plot
illustrated in Figure 5.14 also demonstrates the learned CNN features are excellent
at discriminating between target classes. This strengthens not only belief in our

networks suitability for the chosen ATR task using LWIR imagery, but it also lends
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further credence to the notion that noisy low-level features are not indicative of a

well-tuned and accurate network overall.

5.5.4 Realtime Deployment & Failure Modes

Our final investigation to verify CNN performance and potential inclusion into an
ATR system using LWIR imagery required an implementation of an executable CNN
on hardware. To this end we implement the best performing network architecture
discovered prior on a GPU. This framework offers the capability to deploy a trained
convnet in a realtime (classification is &~ 2ms per image) environment, allowing us
the opportunity to throw much more test data at the network without time inten-
sive image cropping efforts. Example target classifications using this system are
provided in Figure 5.15 showing a variety of scenes and targets, along with correct

class predictions.

Let us now examine Figures 5.15 (a), (b) and (e). Both images (a) and (b) are of
the same aerial scene but image (a) shows the passenger aircraft as the ROI/target
and corresponding, accurate classification. Image (b) then selects a passing bird
as the target to pass to our trained CNN where it is correctly classified as a False
Alarm. While we have to acknowledge the correct classifications in the described
cases, the real deductive power of a fine-tuned CNN is displayed when we observe
image (e). This example is of another aerial scene but the selected target this time
is a small UAV, which looks very similar to the passing bird shown in image (b).

Yet, in these cases the network quite confidently predicts the correct class.

One very useful feature of the realtime demo is the ability to draw ROIs to ex-
plore how the trained CNN handles different aspect ratios and object poses. This
offers a valuable insight into the failure modes of the optimised CNN. Some exam-
ples of misclassified images are provided in Figure 5.16, highlighting how important
the bounding box or aspect ratio is for a convnet. This illustration strongly suggests
that misclassifications arise from bounding boxes not being tightly coupled to the
target thermal signature. Both of the wrong predictions are a result of the ROI
being too big or wide compared to the object, so aspect ratio is very important to
the trained network. This also hints at the training set being composed of object
instances where the crop is also fairly tight to the object boundaries. This kind of
insight is much easier to observe with an interactive demonstrator and can inform
how an end to end ATDR system should be designed, with respect to target acqui-

sition.
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Figure 5.16: This Figure presents two thermal image scenes that have been processed
using the realtime demonstrator and an ROI selected to be classified using the
Caffe model CNN. Image (a) shows a pedestrian walking in a rural scene with the
correct classification. Image (b) is of the same scene but the larger ROI results in a
misclassification. Image (c) shows a wide area scene with an aircraft in the centre
distance. Again, the CNN correctly predicts the target class. Image (d) is of the
same scene but the CNN fails to classify the target from the much wider ROI.

Taking account of all the experimental results and subsequent discussions, it
should be very clear that recent machine learning methods are quite suitable for
tackling our stated goal. Namely, CNNs are an ideal tool to design a robust tar-
get recognition system in the thermal domain, specifically for LWIR imagery. The
stated prediction accuracies and network behaviour correspond well with the liter-

ature and confirm the validity of our arguments.

124



Chapter 5: CNNs for LWIR Object Classification

5.6 Conclusion

In this chapter we present a novel convolutional neural network and demonstrate its
suitability for LWIR target recognition applications. An extensive comprehension of
network performance and behaviour is gleaned via experimental validation, where
we show a wealth of evidence to confirm our findings. The only thing lacking is a
direct comparison to similar methods on a benchmark set, but this is very hard to
achieve due to the lack of competing methods and public, labelled thermal object

datasets.

Classification and visualisation results are discussed in the context of the closest
related work, of which this is a natural extension. An interesting finding illustrated
that low-level network features need not be highly orthogonal to obtain reliable per-
formance. It does suggest, however, that a finely-tuned network displaying noisy
filters is likely to be tackling a constrained, small scale problem and highlights an
area of future work in the process. Ultimately, we demonstrate that these learning
models are well suited for thermal image recognition tasks, capable of providing
intelligent signal processing within the security and defence domain. We shall now
proceed to our final data chapter where we embed this trained network in an end-

to-end model for challenging ATR scenarios using real world data.
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Chapter 6
An Enhanced ATR System

In the previous chapter we outlined a complete process to construct a high perfor-
mance target classifier using CNNs and LWIR thermal imagery. We demonstrate
accurate classification accuracies across all classes in the dataset. Now we can pull
together all the discussed research components to deploy the trained CNN to more
challenging, real world data representative of long range surveillance scenarios that

are commonplace in the defence community.

Not only do we utilise the optimised CNN model for ATR purposes but we also
draw upon key ideas discussed in the previous chapters of this thesis, thus returning
us to the grand aim of the project that we set out to solve. The challenge in this chap-
ter is to develop a more complete system capable of handling multi-modal video se-
quences and providing enhanced autonomous target classification performance. The
imagery is demanding as targets exist at very long ranges with subsequently small
thermal signatures. The model we develop deploys the trained CNN to provide initial
classification results, which are then affected using region segmentation and spatial
context information. Target classification scores for all model variations are also

presented.

The work outlined in this chapter ties together all the previous strands of research
we have explored so far, where we ultimately demonstrate an improved ATR system
and enhanced situational awareness. The applied CNN research reproduced in this
chapter was presented at SPIE Security € Defence, FElectro-Optical and Infrared
Systems; Technology and Applications, 2016 [16]. Furthermore, the spatial context
work enhancing long range ATR is due to be presented at SSPD London, 2017.

126



Chapter 6: An Enhanced ATR System

6.1 Introduction

As we have stated repeatedly throughout this thesis, intelligent signal processing ca-
pabilities are highly desirable for surveillance tasks within the security and defence
domain. Automatic Target Detection (ATD) and Automatic Target Recognition are
two critical aspects of surveillance based applications. We have already addressed
the ATR problem in isolation in Chapter 5, so we shall refrain from in-depth expla-
nation regarding the classifier construction again. We do, however, incorporate the
trained CNN LWIR classifier into a larger Automatic Target Detection & Recog-
nition (ATDR) system. This scheme utilises sensor information gathered from a

combination of visible and thermal-band sensors and is a real application of our

CNN model.

6.2 Motivation

Employing multi-modal sensor platforms for security related applications is a widespread
practice, where each imaging sensor modality is sensitive to a different waveband of
the EM spectrum [150,176]. Utilising additional spectral bands provides increased
knowledge of surrounding environments. The motivating scenario outlined in Chap-
ter 1 is the driving factor for the research explored in this chapter and the thesis as

a whole.

Recollecting the scenario, a typical realisation would be a land reconnaissance
vehicle equipped with a multi-sensory platform and a crew tasked to provide rele-
vant intelligence for a target scene. Ultimately the goal is to improve the overall
situational awareness through effective exploitation of sensor information. How-
ever, each additional information source increases the burden on a user/operator to
quickly process the incoming image data and accurately report findings. The extra
load placed on an operator in a stressful, potentially hazardous, environment could

have disastrous consequences if a crucial detail is overlooked.

Effective ATDR methods become invaluable as they address this problem sce-
nario by automating the signal processing and alleviate the bulk of the task from a
human user. The automatic system could, for example, remove extraneous details
leaving only salient regions of interest, or highlight the most important aspects in
the surrounding scene prioritised by threat level [177]. Both examples illustrate the

system presenting an operator with a vastly reduced information load, but with a
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greater perception of surroundings, requiring significant effectual automatic signal

processing methods.

There is an existing body of prior work focused on creating such techniques
which our work indirectly improves upon and advances the field [150,178,179]. We
achieve this by capitalising on recent machine learning methods to create an object
classifier for high quality thermal image data,. The output of the object classifier
can be affected by an overarching contextual framework utilising colour information
providing spatial context. Thus, we should explore prior knowledge in three key
areas: the surge in machine learning using Convolutional Neural Networks, existing
IR target classification schemes and the role of scene context. Only the role of scene
context remains to be explored for we previously reviewed the other key areas in
Chapter 5.

6.3 Scene Context

Constructing a contextual framework to harness additional scene information is
quite prevalent in the field, where contezt is understood to be any useful additional
information relating to scene perception for the task at hand [95]. For instance,
certain prior works [180, 181] model the relationship between global scene structure
and object properties contained within, where scene configuration and spatial layout

can be used to aid object localisation tasks.

A further example of using learned scene structures to enhance object localisa-
tion is presented in [182], which exploits effective scene categorisation to determine
what objects are most likely to be found. If we understand how objects relate to
regions within a scene by observing pixel level information surrounding objects, im-

proved object recognition performance can be achieved [183,184].

In our case we aim to enhance the ATR process for long range targets using se-
mantic region segmentation, which provides the context surrounding each detected
target. This idea is realised in related work, where the likelihood of surrounding
regions for each object is used to determine the overall probability of an object class
to exist within the scene [185]. We build upon and extend this contextual frame-
work, incorporating CNN class scores, to suit our task of effective ATR for long

range targets using multi-modal sensor information.
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Overall, effective ATDR performance in challenging surveillance scenarios is still
a highly sought after capability. The use of multi-modal sensors is increasing which
introduces a trade-off between increasing processing complexity and better scene
perception. As we shall explore, a semantic region segmentation process and object
priors may offer effective long range ATDR performance when incorporated with a
robust CNN classifier. The whole system relies on multi-modal sensor information
and exploits the strengths of each waveband. Now we can move onto describing the
design of our ATDR model.

6.4 Long Range ATDR

An end-to-end ATDR system using multi-modal input data can be outlined in this
section. Algorithms design will focus on real-world, noisy multi-modal data, col-
lected from a static surveillance platform in rural environments as illustrated in
Figure 6.4. The system design is reflected in the layout of this section and contains
three key elements. Given an input data stream the first stage is the generation of
candidate targets via an ATD algorithm, briefly described in Section 6.4.1. Candi-
date detections can be passed to a trained LWIR object classifier for ATR processing,

outlined in Section 6.4.2.

Output probability scores for each detection will serve as input into an overarch-
ing contextual framework, explained in Section 6.5, utilising colour band information
as well as prior scene and object knowledge to affect final class scores. The system
will initially be developed using mid to long range sequences for optimisation before
being fully evaluated over several, longer range surveillance sequences, where all se-
quences require manual ground-truthing. We aim to follow a datascience paradigm
when developing our solution, where we will employ training, validation and testing
stages. Initial algorithm training and validation stages using small representative
datasets will help to solidify network structures and improve the general approach,
where potential improvements can be incorporated into the system. The final testing
stage will thoroughly evaluate the systems effectiveness for the described problem

using a challenging, unseen dataset.

6.4.1 Autonomous Target Detection System

The central theme of this work is concerned with enhancing overall ATR perfor-

mance via CNNs and context mobilisation, meaning the choice of ATD algorithm is
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Figure 6.1: Short Range Sequence Country Road. The top row illustrates registered
colour band imagery, showing a person walking toward the sensor platform along a
rural path. The bottom row is the corresponding LWIR imagery showing the same
scene. ATDR is performed only on the thermal data stream, but bounding boxes
are shown on both modalities for clarity. [16]

of small significance as long as it can detect targets. Typically with thermal data
some form of hotspot detection is employed to generate target regions, for example
the method presented by Teutsch et al. [152].

Autonomous target detection is performed only on the thermal image feed from
the Catherine MP LWIR. We use a proprietary Thales algorithm for this task, which
is capable of localising targets from short to very long ranges. The crucial step is to
ensure that the preprocessing steps used in training, such as those described in 5.3.1,
remain the same in deployment. Target images need to be of the same dimension
and format the CNN was trained on to ensure correct behaviour. The processed
samples for each target are passed forward to the trained CNN for classification,

along with localisation information for the context framework.

6.4.2 Initial Long Range Target Classification

Employing Thales” ATD algorithm on LWIR video sequences we can generate can-
didate targets to be classified with the trained CNN, giving an early-stage ATDR
scheme. The first step for developing an effective end-to-end system is to explore
ATDR process performance on some initial sequences, captured using the multi-

sensor set-up shown in Figure 5.3 in chapter 5. The first scenario is a short to mid
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Figure 6.2: Exploratory classification results for two sequences. Subfigure (a) is
output classification results for the country road sequence. The only classes present
are C1 & C6 which are person and false alarm respectively. Subfigure (b) is output
classification results for the Braes sequence. The only classes present are C2 & C6
which are land vehicle and false alarm respectively [16]

range clip in a rural environment, where a person walks towards the sensor platform

as illustrated in Figure 6.1.

The overall evaluation results for the Country road sequence are presented in
Figure 6.2, confirming the effectiveness of our CNN for LWIR target classification.
This is perhaps unsurprising given the training imagery is of similar quality to the
targets from the Country road sequence. The second scenario is a much longer range
sequence, The Braes, which we again use to assess the early-stage ATDR scheme.

The imagery from this sequence is illustrated in Figure 6.4.

As we can see in Figure 6.4, ATDR for this scenario is very challenging. The
target is very small in resolution and low quality. We specuatively apply the initial
ATDR scheme to this long range scenario and examine the classification results.
Somewhat unsurprisingly the CNN is not capable of assigning correct class labels
to targets of such low image quality, highlighted by the low accuracy and confusion
matrix results presented in Figure 6.2. However, upon closer examination it appears
the network can actually differentiate between false alarms and real targets with re-

sounding accuracy, it just gets the object class consistently incorrect.

Given the network has not seen images of such low quality in the training process,
we capitalise on this capability by gathering long range training example, similar to
subfigure (c¢) in Figure 6.4, to allow retraining of the CNN model. The network is

optimised with additional long range target imagery, where the final fully-connected
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Figure 6.3: Validation results generated by trained CNN over 1000 unseen LWIR
examples for 6 & 7 target classes. The overall CNN accuracy is 97.7% for 6 classes,
which drops slightly to 95.7% with the presence of an additional 7th class. Ground
truth classes are rows, classifier outputs are columns. The main diagonal reveals
classifier performance. C1 is the person class, C2 is land vehicle, C3 is helicopter,
C4 is aeroplane, C5 is UAV and C6 is the false alarm class. The additional Tth
object CT is the long range target class [16] .

layer outputs over 7 units instead of 6 to account for the additional class. Output
validation results from retraining the LWIR CNN are presented in Figure 6.3, sub-
figure (b).

The successful discrimination of real targets and false alarms is achievable via
the introduction of a long range target class, determined by the exploratory training
and validation stages. However, we still do not know the actual object class of real
targets but only that it is an object of interest. The key benefit of introducing a long
range object class is that it enables the mobilisation of spatial context, the details
of which are explained in the following section. Ultimately, we aim to exploit colour
band information and use spatial context to determine the real object class of long

range targets.

6.5 Utilising Spatial Context

There is a wealth of evidence indicating the environment surrounding an object
plays a very important part in human recognition systems [186,187]. We aim to
create a contextual framework to replicate this capability and provide accurate class
information for long range targets, given their immediate scene context. We build
on the previous work of Robertson et al. and extend their presented contextual

framework [185]. The key components required for spatial context generation are:
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Figure 6.4: Long range sequence The Braes. Image (a) is a colour band image
registered with central LWIR image (b). Both illustrate a candidate detection in
the top, central portion of the image. The target is bounded by a red box. Image (c)
is the target upsampled from the LWIR image information. Note that the detection
algorithm only operates on the thermal image, but is shown on both colour and
thermal for clarity [16].

a semantic segmentation algorithm, a spatial context sampling feature, prior scene
knowledge for each object class and the probability for each object to exist given its

surrounding context.

6.5.1 Semantic segmentation

A robust scene segmentation algorithm, capable of providing regions with semantic
labels, provides a scene overview. We employ EGB segmentation to perform general
region segmentation [2]. While this is a relatively old method it is still employed
due to its simplicity at generating contiguous image regions, as discussed in Chapter
2. Semantic labeling is provided via a reimplementation of a recent method that
also employs variations of EGB segmentation, but provides class labels via a trained
SVM [4].

The SVM is trained using feature vectors composed of colour, texture and ver-
tical position information from the segmented image regions. The colour features
are computed as the mean and standard deviation for HSV colour planes, for each
region. Texture features are generated by applying gabor filters at 1 scale and 8
orientations, to greyscale image regions. Assuming the (z,y) image coordinate sys-
tem is used, the vertical position feature is simply the average value of y-pizels per
region. We obtain image and ground truth data from the Stanford Background

Dataset [188] to compute an array of these feature vectors to train our SVM, al-
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Figure 6.5: A highway scene presented in image (a) is segmented and labeled with
region class information, shown in image (b) with text overlay of the underlying se-
mantic label. Image (c) is an illustration of the spatial context feature, for sampling
the context surrounding an object using labeled images as shown in (b).

lowing segmented regions to be classified.

The image set contains 715 images, which we split into train/test using a 90 : 10
ratio. The SVM can identify 5 distinct region classes: sky, bush/tree/grass (BTG)
, road, water and building. This is a summary of the entire semantic segmentation
method where output labeled regions provide spatial context for a scene. An exam-

ple labeled segmentation is illustrated in Figure 6.5.

6.5.2 Context feature

In order to benefit from the semantic segmentation we require a sampling function to
understand what regions surround candidate targets. We adopt the spatial context
feature from the work of Robertson et al. to achieve this [185]. Given a detection
with localisation information, we sample in four directions at five pixel locations.
The directions are above, below, right and left of the detection centre. The pixels are
sampled along each of these directions at increasing distances, [1, 20,40, 100, 200],
starting from the edge of the detection bounding box.

It is clear that under this scheme there is a risk of sampling off the image, i.e. we
are trying to sample the context at a pixel location that does not exist, especially if
targets are observed at the edge of the image plane. To address this we pad the label
image by replicating the boundary pixels for a fixed length in each direction, using
the assumption that the regions continue indefinitely. For example, the sky region

will continue above the image boundary. This circumvents any issues with context
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sampling and allows the computation of prior knowledge. The context sampling

feature can be observed in subfigure (c) of Figure 6.5.

6.5.3 Prior knowledge

For each object detected in an image sequence we utilise the spatial context feature
to sample surrounding context from labeled regions, which are output from the se-
mantic segmentation algorithm. The region class at each sample point location can
be observed and stored, building up a history of prior knowledge for each object
class. This can be formulated in a probabilistic fashion, where we compute the prior
knowledge of expected regions at sample locations per object class as P,(R.|lx). In
this case P, is the probability P per object class o, R, is expected region R for region

class ¢ and [, is sample [ at location k.

The prior probabilities P,(R.|l;) for each object class, at each sample location,
are learned normalised histograms from observed examples. To build this knowl-
edge we obtain &~ 20 random image examples from ImageNet [146] and DAGS [188]
for each object class, which is 100 examples across the 5 real object classes. For
each object class we semantically segment and sample the context around a target

in the scene, using the results to compute the prior probability knowledge we require.

6.5.4 Probability of existence

We can use the prior information for expected regions in the following way. Given a
colour and thermal band image sequence, we can obtain a candidate detection with
corresponding localisation information in the thermal domain. Using the associated
colour imagery, we can semantically segment and sample the context around the
target. As mentioned earlier, each object class will have a learned probability for

expected region at each sample location.

For example, the sample 100 pixels to the right of the target will have 5 expected
region probabilities, for each object class. So if the sample 100 pixels to the right of
the target returns a sky region, the learned probability for sky is taken. This value
will be strongly linked to the object class, indicating where objects are most likely
observed. Again we extend the work of Robertson’s [185] contextual framework and
formulate this as the probability of an object to exist given the surrounding spatial

context is presented in Equation 6.1.
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P(O|C) = ZP (R.|ly) (6.1)

where P(O|C) is the probability P for each object O to exist given the sur-
rounding context C' and n is number of sample points, which is 20 in our case. Put
simply, the likelihood that an object would be found in a particular environment is
computed as the average of all prior probabilities. Thus, for each target detection
we will use Equation 6.1 to generate a 5 element array populated by the probability
for each object to exist given the context. It is this array we will eventually use to
affect the CNN output scores.

6.5.5 Temporal Aggregation

Although CNNs are generalisable and robust at classification tasks, incorrect clas-
sifications are still present. One possible method to address this is to informally
track targets through a sequence and aggregate the output CNN scores over time,
effectively squashing any erroneous probabilities. Considering the aim is to classify
targets at long range, we can achieve temporal aggregation without implementing a

tracking algorithm as far away targets move very little on the image plane.

This simple heuristic complements the long range target class which implicitly
implies the observed object exists at a range that is unresolvable. Moreover, tradi-
tional tracking algorithms tend to perform data association via kinematics of targets,
without considering any aspects of object recognition which our method incorpo-
rates. To implement this we formulate the problem using Bayes theorem to exploit
the spatial and temporal relationship of targets in a video sequence. This can be
summarised as trying to determine the probability of each object class Obj given

previous classifications and detection locations through time 7.

We create a circular buffer of detections with corresponding output CNN scores,
where each output is a 1-dimensional vector or array of probability class scores X.p,.
When a new detection and subsequent CNN score is acquired we can treat it is as an
initial confidence of class values for that detection, which is prior knowledge P(Obj).
Using this we determine the posterior P(Obj|T") by finding the closest spatial match
in the circular buffer of detections, which serves as our likelihood function P(7'|0bj)

to aggregate CNN class scores.

To compute the likelihood we search the previous detection locations in the

buffer, finding the closest detection on the image plane in terms of Euclidean distance
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Figure 6.6: General overview of the ATDR algorithm. Given multi-modal input
data, candidate detections can be generated via an ATD process. These candidates
are fed to the trained CNN, where the output class and score vector decides the next
step. If the maximum class score is a false alarm, do nothing. If target is a long
range class, remove FA and long range scores from CNN vector. Re-weight using
spatial context. If real object class returned, re-weight CNN scores using spatial
context.

detp,. If the nearest match is less than or equal to a defined distance threshold
Threshg,, i.e. spatially close, P(T|Obj) becomes the corresponding CNN output
vector containing all class scores. If the detection has no match below Threshg,,

current CNN output is unaffected. This condition is summarised in Equation 6.2:

Xenn, if detg, < Threshg,

P(T|Obj) = (6.2)

1, otherwise
This gives us Bayes theorem as P(Obj|T’) o< (T|Obj)P(Oby), which effectively
describes how to update current target classes based on previous classifications, as
well as spatial and temporal observations. The process then moves onto the next
acquired detection and corresponding CNN scores, updating the circular buffer as
required. By propagating through the detection sequence in this manner, the CNN

scores are temporally aggregated and any spurious classifications diminished.

6.5.6 Final ATDR System

We can piece these components together for an effective end-to-end system and eval-
uate using real world, long range data. A graphical summary of how the key stages
are linked is shown in Figure 6.6. For an input multi-modal data stream (RGB and

LWIR) we generate candidate targets using Thales’ proprietary ATD algorithm.
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The corresponding image data for each target is upsampled, using the same process
steps as employed for generating the CNN training data. The target crops can then
be fed into the trained CNN and output classes reported.

Upon obtaining the CNN output we have three possible options. If the top class
returned is a false alarm, we simply leave the CNN score and record the label for this
class. If it is a long range target, then we utilise localisation information from ATD
and colour band imagery which is handed over to the contextual framework. This
allows the probability for the target to be any of the object classes to be computed,
returning a 5 element vector of probability scores PoC'. Recall that our CNN is

trained over 7 classes and consequently will output a 7 element score vector.

We have to remove the false alarm and long range target scores from the CNN
vector, allowing CNN output and PoC' probabilities to be merged. The resulting
class scores are normalised so all entries sum to 1, the max of which provides the
top class result used to evaluate the system. Lastly, if the maximum CNN score
returns a real object class the system hands over target CNN scores to be affected

by context in the same fashion.

6.6 Long Range Performance Evaluation

The final ATDR system is comprehensively evaluated using challenging, long range
multi-modal data sequences collected in a rural location, illustrated in Figure 5.3.
These scenes contained two main object classes, land vehicles and helicopter, as
well as false alarms to classify. All detections generated via the ATD algorithm are
human ground-truthed to provide target classes. Four combinations of the ATDR
system are possible and we evaluate each of them, obtaining overall accuracy results

and corresponding confusion matrices shown in Figure 6.7.

The simplest variation is CNN, where we apply only the trained CNN to tar-
gets output from ATD. CNN+Temporal applies the trained CNN and the temporal
aggregation scheme outlined in Section 6.5.5. CNN+CX utilises spatial context
to affect CNN scores and CNN+CX+Temporal applies every variation. The overall
classifier accuracy for each combination is provided by Equation 6.3, where Tr(cfm)
is the trace of the confusion matrix and n.,, is the total number of elements in the
confusion matrix. We classify a total of 8750 long range target candidates for the

final experiment

138



Chapter 6: An Enhanced ATR System

Classifier Output Classifier Output
Class | C1 C2 C3 C4 C5 C6 C7| Al Class | CL C2 C3 C4 C5 C6 C7| Al
c cc{o o0 0 0 0 0 0 0 c cc (0 0 0 0 0 0 0 0
sC2 (0 0 5 0 23 163 4701 5146 502 |0 0 50 0 222 137 4737 514
EC3 |0 % M 0 5 5 0| T3 30 1B om0 o2 1 0| T3
gee o 00 0 0 0 0 0 gcsfo 00 0 0 0 0 0
3 |0 0 0 0 0 0 0 0 3L 0 0 0 0 0 0 0 0
6 c6 |0 0 0 8 269 50 | 2831 (‘5 c6 |0 3 0 0 84 2700 43| 2831
cC (o 0 0 0 0 0 0 0 T 1o 0 0 0 0 0 0 0
Al | 0 17 88 0 310 2864 4751 8750 A | 0 16 801 0 308 2845 4780 | 8750
CNN Accuracy = 39.4% CNN+Temporal Accuracy = 39.5%
(@ (b)
Classifier Output Classifier Qutput
Class | C1 C2 C3 C4 C5 C6 C7| Al Class | C1 C2 C3 C4 C5 C6 C7| Al
c cc{o o0 0 0 0 0 0 0 c cc (0 0 0 0 0 0 0 0
502 | 2 4625 124 0 232 163 0 | 5146 B C2 |2 456 124 0 22 165 47 | 5149
EC3 [0 4 T8 0 5 0| T3 s [0 4 0 2 5 0| 3
gee o 0 0 0 0 0 0 0 g0 0 0 0 0 0 0 0
ac (o 0 0 0 0 0 0 0 3L o 0 0 0 0 0 0 0
ofce [0 B 0 0 & 26 0 |28L ofc [0 58 0 0 s w2 0|8
cc (o 0 0 0 0 0 0 0 cC o 0 0 0 0 0 0 0
Al | 2 4682 886 0 316 2864 0 | 8750 Al | 2 4631 886 0 202 2802 47 | 8750
CNN+CX Accuracy = 92.4% CNN+CX+Temporal Accuracy = 92.1%
) )

Figure 6.7: Confusion matrices and overall accuracy results are presented for long
range classification experiments on the unseen test sets. Cl= person, C2 = land
vehicle, C3 = helicopter, C4 = aeroplane, C5 = UAV, C6 = false alarm and
C7 = long range target class . Matrix (a) is simply the trained CNN applied to
ATD output target candidates, which does not perform well. This result is almost
identical when the temporal aggregation is introduced in matrix (b), with only a
negligible gain on offer. However, context has an overwhelmingly positive affect on
the ATDR results as shown in matrices (c¢) & (d).

Tr(cfm)

Nefm

Acc =

6.7 Discussion

The confusion matrices presented in Figure 6.3 highlight accurate classifier perfor-
mance obtained via our CNN training scheme. Both overall accuracies exceed 95%
, which suggests the additional seemingly uninformative 7th class for long range

targets has no depreciable effect on recognition ability. The CNN structure of the
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classifier is highly symmetrical and deep, which also appears to be a suitable ap-
proach for our training dataset. Although we based our convnet architecture around
Krizhevsky’s successful ImageNet design, it is intriguing it translated so well given

the network is designed for much larger scale learning.

ImageNet is > 1 Million images over 1000 classes whereas our training set is
approximately 10000 images distributed over 7 target classes. The ratio of 1000
images per class is roughly preserved and may be one reason why the network struc-
ture works well in both scenarios. In any case, the results obtained for LWIR target
classification are significant and to our knowledge have never been shown before at

this accuracy, or for the range of object classes we test over.

6.7.1 System Pros

Despite the effectiveness of the trained classifier, initial experiments presented in Sec-
tion 6.4.2 highlight the ill-suited nature of CNN-only based classification of objects.
Simply throwing a large scale machine learning approach at the long range prob-
lem is not viable for producing reliable target classes. However, these exploratory
experiments identified the capability to differentiate false alarms from real targets,
which is extremely useful and we capitalise on it by retraining our CNN with an

additional class. This enables a Bayesian context framework to be employed.

By mobilising a very small amount of contextual information to affect CNN out-
put scores, we gain reliable target class scores and demonstrate the benefit of such a
system through extensive evaluation. The results of our final ATDR system, guided
by context and temporal aggregation, are presented in Figure 6.7. We elect to keep
all the confusion matrices in one figure for clarity as they show the whole picture.
The experiments evaluate the end-to-end ATDR system over challenging long range
sequences, generating 8750 target classes to examine. It is immediately clear from
CNN and CNN+Temporal total accuracy results that the CNN is not able to discern
the correct land vehicle classes. This will simply be due to the low signal quality at

such long ranges.

Furthermore, the temporal aggregation function appears to have a negligible
positive affect, only raising the overall classifier accuracy by a meager 0.1%. This
may be explained by the fact that CNN output scores are very rarely on the fence.
In other words they are very strong, consistently approaching > 90% even when

incorrect. Thus, even with temporal aggregation it makes it very hard to squash
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out the odd, erroneous classification. Out of thousands we only manage a handful,

which is reflected in the negligible performance gain.

However, the performance improvement granted by the context framework is
significant. Both algorithm variants including context achieve classification scores
~ 92%, with the temporal function having a very slightly worse performance than
just employing the CNN with context, although it is negligible again in terms of
numbers. The improvement mostly comes from the correct switch from long range
target to land vehicle, with slight gains in the helicopter class as well. The temporal
function appears to be better at determining false alarms than the other variants,
but it loses the accuracy gain elsewhere, mainly from preventing more long range
target classes to switch to land vehicles. The entire experiment evaluation can be
summarised by collating the CNN class scores into an F} — Score, which is given in

Equation 6.4.

5 precision - recall

o= —
precision + recall
TP
precision = TP+ FP (6.4)
1l TP
recall = —_—
TP+ FN

This metric is a weighted average of precision and recall for binary classification,
where T'P is a true positive, F'P is a false positive and T'N is a true negative. Al-
though ours is a multi-class problem we can still employ the F} — Score per class
and average over the results, giving a final quantitative summary of overall system
performance. This summary can be visualised graphically and is shown in Figure
6.8. The illustration shows the average mean values for | — Scores and the corre-

sponding percentage improvements, relative to the raw CNN output.

6.7.2 System Cons

A potential drawback of the system as a whole is the inability to affect incorrect
false alarm cases, where the initial CNN output is misclassified as a false alarm, but
they are relatively few so have little effect to overall accuracy. Furthermore, spa-
tial context cannot resolve cases that are initially classed as objects but should be
false alarms. This scenario is observed in Figure 6.7 (a)+(c), where the additional
context has switched 50 long range class instances incorrectly to the land vehicle

class. This is because there is no mechanism to enable target cases to become false
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Figure 6.8: The multi-axis plot shows mean F; — Scores for the different variants of
classification algorithm in our final experiment. The F; — Score is a useful summary
statistic in machine learning as it provides an a weighted average of a classifiers
precision and recall across classes. As we can see, there is a marked improvement
gained from spatial context incorporation. This is highlighted by the red line showing
the percentage increase in F; — Score relative to the raw CNN output.

alarms via context, as it is not intuitive to create prior knowledge for a false alarm
class where they could theoretically come from any region of an image. The system

design enforces this rule.

Overall, by employing a very small amount of information, from semantic seg-
mentation and object priors as context, we have successfully classified challenging
long range targets in multi-modal surveillance data. Suffice to say, a little context

goes a long way.

6.8 Conclusion

This chapter presents a complete ATDR system for enhancing target recognition
capabilities in long range surveillance scenarios using challenging, real-world multi-
modal data. This was achieved by initially adopting state-of-the-art machine learn-
ing methods to create a highly accurate LWIR target classifier via CNNs, demon-
strating robust recognition across a range of objects in LWIR imagery. However,

when this big data solution was shown to be inadequate for challenging long range
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scenarios, we mobilised a comparatively small amount of spatial context to infer
accurate object classes. The approach is entirely data driven which will allow addi-
tional sensor information to be incorporated easily, either to classify a new target
or improve the current system. We also demonstrated the ability to discriminate
between real targets and false alarms to a high degree of accuracy. Building on this
capability, the described ATDR system could potentially be deployed in a recon-
naissance scenario and alleviate the burden on human operators via effective target

reporting.

We illustrate how semantic region knowledge and the mobilisation of context,
used in conjunction with the the presence of foreground objects, can be exploited to
massively improve overall ATR performance for very challenging long range, multi-
modal surveillance data. Overall, the outlined approach should generalise very well

to ATDR tasks in the security and defense domain, as well as outside this realm.
Overall, this chapter draws the experimental research portion of the thesis to

a close. In the following final chapter we conclude the EngD by discussing the

outcomes from the work and suggest future research directions.
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Chapter 7

Conclusion

The grand aim of this thesis was to provide answers to the following interlinked

questions:

1. Can the presence of foreground objects influence scene perception and provide

a route to persistent surveillance?

2. Does the mobilisation of scene specific context, gained via semantic segmenta-

tion, enhance target recognition performance using multimodal sensor systems?

We have sufficiently addressed these questions and have determined the answer
to both of them to be a resounding yes. We showed in Chapters 3 and 4 that the
presence of foreground objects can be used to recover scene structure and classify
thermal hotspots. However, the more useful and interesting discovery was discussed
in Chapter 6, where we showed that the detection and discrimination of targets,
which are foreground objects, from non-targets provides enhanced scene perception.

It also enables the solution to the second question to be deployed.

The motivating factors driving the research are clearly outlined in Chapter 1,
warrant asking such questions. The problem is considered from an academic and
industrial viewpoint given the nature of the EngD itself, where we aspire to incorpo-
rate Thales manufactured sensors in proposed methods. In light of the engineering
and industrial influence of the project, the overall solution had to be of relevance
to the company and within the defence & security community. Moreover it must
explicitly address the application we set out to improve, where we aim to provide
improved situational awareness via enhancing scene segmentation and target recog-

nition methodologies by mobilising contextual information.

Following the introductory motivational chapter we place the project in context

by reviewing related literature across a wide range of fields within computer vision.
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While the surveyed literature is broad, with only a few focus points in each section,
we had to cover many different topics given the grand aim of the work undertaken.
It encompasses object detection, segmentation and context methodologies, with an
additional discussion on the growing relevance of machine learning within computer
vision. We describe the key supervised learning tools used in our work and present
recent SOA examples for object detection and segmentation that leverage this pow-
erful technique. We conclude Chapter 2 by initiating a discussion on the tightly

coupled relationship between foreground and background regions.

Chapter 3 begins our experimental research work by examining this relationship.
We use a typical surveillance scenario and corresponding colour dataset. The im-
agery contains crowded urban scenes from a static camera viewpoint. We develop
a method that exploits emergent foreground context, in the form of people tracks
through the scene, to recover underlying scene structure that is otherwise unob-
tainable. While the presented solution is based on the assumption that the target
scenes are always crowded with foreground objects, it was a useful exercise to prove
the core idea underpinning the method. We effectively wanted to show that the
real world and interactions within are quite structured, behaving in a certain way.
The presence of foreground object inherently tells us something important about the
scene itself and the surrounding environment without directly measuring it. This
idea is carried forward to Chapter 4 where we introduce thermal sensor data to

begin examining the 24-hour surveillance problem.

In Chapter 4 we discuss two region segmentation methods for characterising scene
structure, using colour and thermal band imagery. The work develops a technique
to identify and classify thermal signatures in the multi-modal footage, providing the
means to offer true round the clock surveillance capabilities. The first of these seg-
mentation methods was an adaption of the algorithm presented in chapter 3, where
the thermal channel data was incorporated into the existing region merging frame-
work The alternative method was a simple, novel design tracking variance through
superpixels. This method enabled the presence of foreground objects to be accu-
rately observed. A knowledge transfer scheme based on Bayesian mathematics was
enforced and it enabled thermal signatures to be classified without a bespoke trained
classifier. We showed this for an open source benchmark dataset as well as using our
own real world multi-modal data. However, despite the reasonable performance of
the system it is obviously a cumbersome solution. We address this by investigating
the rapidly ascending world of machine learning and CNNs towards LWIR object

classification.
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Chapters 5 and 6 are closely linked and help to answer our stated goals. We
began by collecting vast amounts of LWIR imagery using the high quality TT man-
ufactured by Thales, the Catherine MP. This bounty of data was transformed into
a fully labelled dataset after many man hours spent cropping out defined targets,
labelling them and applying a preprocessing step. Once we obtained this valuable
dataset we could finally apply CNNs and efficient optimisation schemes to create a
high performance target classifier. The research geared towards machine learning
and network behaviour is explored in Chapter 5. We then take this trained CNN
and embed it within an end-to-end model, applying it to challenging real world
surveillance data relevant to Thales. The application of the CNN and spatial con-

text towards enhancing ATR performance is fully explored in Chapter 6.

Finally, in Chapter 6, we arrive at the major problem embodied within this the-
sis. The multi-modal data contains real world surveillance footage containing long
range targets in rural environments, a typical scenario in battlespace environments
where improved situational awareness is vital. We develop an effective solution by
adapting the CNN from Chapter 5 to include a false alarm class, which is incred-
ibly accurate at target discrimination. We also encode object priors and a region
segmentation method to guide CNN class output. By combining all these elements
we demonstrated our ATDR system was very effective at discerning target class for
long range signatures, that would certainly be impossible to otherwise. In doing so
we can confidently state that yes - the presence of foreground objects does influence
scene perception, providing a route to persistent surveillance and yes - mobilising
scene specific context does enhance target recognition performance utilising multi-

modal sensor systems.

7.1 Research Contributions

We can summarise the novel contributions of our work in the following ways. A
scene segmentation algorithm influenced by the presence of pedestrians, as well as
other foreground objects, is proposed. It is applicable to colour band surveillance
imagery. How the algorithm affects the underlying background structure of a scene is
ascertained through extensive evaluation. Furthermore, the segmentation process is
adapted to incorporate thermal band data providing a route to 24-hour surveillance.
This algorithm and a similar superpixel based effort are employed to effectively gain
target classification from thermal imagery via domain knowledge transfer. The work

was presented at the IEEE conference, International Conference on Image Process-
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ing in 2015 [23].

We create an extensive labelled object dataset for LWIR imagery, collected using
the Thales Catherine MP sensor. This enabled a high performance convolutional
neural network to be developed for target classification purposes, where we are one
of the first to achieve this feat. The robust algorithm is applied to a variety of
scenarios that Thales operate in, with the most challenging being long range detec-
tion and recognition. We develop a sufficient model for enhancing long range LWIR
target classification using scene specific context, for the representative problem data
collected by a Thales sensor. Performance is verified through extensive evaluation.
Some of this work has been presented at the SPIE conference on Security & Defense
in 2016 [16]. The remainder of the work is due to be presented at SSPD London in
2017.

7.2 Commercial Contributions and Impact

The EngD must not only produce novel research in academic terms, it has to have
an impact within industry as well. Towards this we produced an outcome with sig-
nificant impact during the project, implementing a real-time CNN demo for target
classification as described in Chapter 5, specifically Figure 5.15. The demo was
showcased at a high profile internal research event where the stall won best innova-

tion and is directly relevant to many Thales products.

Furthermore, this project has changed the direction of research strategy and
development within Thales Land and Air Systems based on the results described
throughout the thesis. This is a concise summation of what an EngD project should

achieve in terms of commercial impact.

7.3 Future Work

As always there are many areas of interest that could be investigated further. How-
ever, we shall only cover the most interesting of these and address what we see as a

possible gap.
The most obvious next step would be to advance the work presented in Chap-

ter 6 to include anomaly detection experiments. The algorithm is effective for long

range target classification as it exploits the defined relationships between spatial
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context and object prior information. In other words it uses the evidence of what
regions are objects likely to appear in to guide CNN output. Without much more
alteration to the model the question can effectively be asked in reverse - can we
exploit the knowledge of where objects are likely to appear, to identify when targets
are out of context?. All that would be required is a suitable dataset with anomalous
behaviour to observe, then strong CNN classification output can be flagged if the

object appears in an unlikely area etc.

Lastly, a natural advancement of the work would be to incorporate colour band
data into our thermal CNN classifier. The general idea would require a registered set
of multi-modal imagery, with objects appearing in both sensors concurrently. This
would enable a new labelled dataset to be created showing how the same object
appears in multiple sensor spaces. If network architecture could be successfully
navigated to allow optimisation, then we would gain a very robust target classifier
for persistent surveillance. It would also simply algorithm design as both sensor
streams could be routed through the single trained CNN, which can run day or

night, providing accurate target recognition capability.
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