70 research outputs found

    Pricing options and computing implied volatilities using neural networks

    Full text link
    This paper proposes a data-driven approach, by means of an Artificial Neural Network (ANN), to value financial options and to calculate implied volatilities with the aim of accelerating the corresponding numerical methods. With ANNs being universal function approximators, this method trains an optimized ANN on a data set generated by a sophisticated financial model, and runs the trained ANN as an agent of the original solver in a fast and efficient way. We test this approach on three different types of solvers, including the analytic solution for the Black-Scholes equation, the COS method for the Heston stochastic volatility model and Brent's iterative root-finding method for the calculation of implied volatilities. The numerical results show that the ANN solver can reduce the computing time significantly

    G-CSC Report 2010

    Get PDF
    The present report gives a short summary of the research of the Goethe Center for Scientific Computing (G-CSC) of the Goethe University Frankfurt. G-CSC aims at developing and applying methods and tools for modelling and numerical simulation of problems from empirical science and technology. In particular, fast solvers for partial differential equations (i.e. pde) such as robust, parallel, and adaptive multigrid methods and numerical methods for stochastic differential equations are developed. These methods are highly adanvced and allow to solve complex problems.. The G-CSC is organised in departments and interdisciplinary research groups. Departments are localised directly at the G-CSC, while the task of interdisciplinary research groups is to bridge disciplines and to bring scientists form different departments together. Currently, G-CSC consists of the department Simulation and Modelling and the interdisciplinary research group Computational Finance

    Boosting the performance of remote GPU virtualization using InfiniBand Connect-IB and PCIe 3.0

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] A clear trend has emerged involving the acceleration of scientific applications by using GPUs. However, the capabilities of these devices are still generally underutilized. Remote GPU virtualization techniques can help increase GPU utilization rates, while reducing acquisition and maintenance costs. The overhead of using a remote GPU instead of a local one is introduced mainly by the difference in performance between the internode network and the intranode PCIe link. In this paper we show how using the new InfiniBand Connect-IB network adapters (attaining similar throughput to that of the most recently emerged GPUs) boosts the performance of remote GPU virtualization, reducing the overhead to a mere 0.19% in the application tested.This work was funded by the Generalitat Valenciana under Grant PROMETEOII/2013/009 of the PROMETEO program phase II. This material is based upon work supported by the U. S. Department of Energy, Office of Science, Advanced Scientific Computing Research (SC-21), under Contract No. DE-AC02-06CH11357. Authors from the Universitat Politècnica de València and Universitat Jaume I are grateful for the generous support provided by Mellanox Technologies.Reaño González, C.; Silla Jiménez, F.; Peña Monferrer, AJ.; Shainer, G.; Schultz, S.; Castelló Gimeno, A.; Quintana Orti, ES.... (2014). Boosting the performance of remote GPU virtualization using InfiniBand Connect-IB and PCIe 3.0. En 2014 IEEE International Conference on Cluster Computing (CLUSTER). IEEE. 266-267. doi:10.1109/CLUSTER.2014.6968737S26626

    Analysis and numerical methods for stochastic volatility models in valuation of financial derivatives

    Get PDF
    [Abstract] The main objective of this thesis concerns to the study of the SABR stochastic volatility model for the underlyings (equity or interest rates) in order to price several market derivatives. When dealing with interest rate derivatives the SABR model is joined with the LIBOR market model (LMM) which is the most popular interest rate model in our days. In order to price derivatives we take advantage not only of Monte Carlo algorithms but also of the numerical resolution of the partial di erential equations (PDEs) associated with these models. The PDEs related to SABR/LIBOR market models are high dimensional in space. In order to cope with the curse of dimensionality we will take advantage of sparse grids. Furthermore, a detailed discussion about the calibration of the parameters of these models to market prices is included. To this end the Simulated Annealing global stochastic minimization algorithm is proposed. The above mentioned algorithms involve a high computational cost. In order to price derivatives and calibrate the models as soon as possible we will make use of high performance computing (HPC) techniques (multicomputers, multiprocessors and GPUs). Finally, we design a novel algorithm based on Least-Squares Monte Carlo (LSMC) in order to approximate the solution of Backward Stochastic Di erential Equations (BSDEs).[Resumen] El objetivo principal de la tesis se centra en el estudio del modelo de volatilidad estocástica SABR para los subyacentes (activos o tipos de interés) con vista a la valoración de diferentes productos derivados. En el caso de los derivados de tipos de interés, el modelo SABR se combina con el modelo de mercado de tipos de interés más popular en estos momentos, el LIBOR market model (LMM). Los métodos numéricos de valoración son fundamentalmente de tipo Monte Carlo y la resolución numérica de los modelos de ecuaciones en derivadas parciales (EDPs) correspondientes. Las EDPs asociadas a modelos SABR/LIBOR tienen alta dimensión en espacio, por lo que se estudian técnicas de sparse grid para vencer la maldición de la dimensión. Además, se discute detalladamente cómo calibrar los parámetros de los modelos a las cotizaciones de mercado, para lo cual se propone el uso del algoritmo de optimización global estocástica Simulated Annealing. Los algoritmos citados tienen un alto coste computacional. Con el objetivo de que tanto las valoraciones como las calibraciones se hagan en el menor tiempo posible se emplean diferentes técnicas de computación de altas prestaciones (multicomputadores, multiprocesadores y GPUs.) Finalmente se dise~na un nuevo algoritmo basado en Least-Squares Monte Carlo (LSMC) para aproximar la solución de Backward Stochastic Differential Equations (BSDEs).[Resumo] O obxectivo principal da tese céntrase no estudo do modelo de volatilidade estocástica SABR para os subxacentes (activos ou tipos de xuro) con vista á valoración de diferentes produtos derivados. No caso dos derivados de tipos de xuro, o modelo SABR combínase co modelo de mercado de tipos de xuro máis popular nestos momentos, o LIBOR market model (LMM). Os métodos numéricos de valoración son fundamentalmente de tipo Monte Carlo e a resolución numérica dos modelos de ecuacións en derivadas parciais (EDPs) correspondentes. As EDPs asociadas aos modelos SABR/LIBOR te~nen alta dimensión en espazo, polo que se estudan técnicas de sparse grid para vencer a maldición da dimensión. Ademais, discútese detalladamente como calibrar os parámetros dos modelos ás cotizacións de mercado, para o cal se propón o emprego do algoritmo de optimización global estocástica Simulated Annealing. Os algoritmos citados te~nen un alto custo computacional. Co obxectivo de que tanto as valoracións como as calibracións se fagan no menor tempo posible empréganse diferentes técnicas de computación de altas prestacións (multicomputadores, multiprocesadores e GPUs.) Finalmente deséñase un novo algoritmo baseado en Least-Squares Monte Carlo (LSMC) para aproximar a solución de Backward Stochastic Differential Equations (BSDEs)

    Meshless Methods for Option Pricing and Risks Computation

    Get PDF
    In this thesis we price several financial derivatives by means of radial basis functions. Our main contribution consists in extending the usage of said numerical methods to the pricing of more complex derivatives - such as American and basket options with barriers - and in computing the associated risks. First, we derive the mathematical expressions for the prices and the Greeks of given options; next, we implement the corresponding numerical algorithm in MATLAB and calculate the results. We compare our results to the most common techniques applied in practice such as Finite Differences and Monte Carlo methods. We mostly use real data as input for our examples. We conclude radial basis functions offer a valid alternative to current pricing methods, especially because of the efficiency deriving from the free, direct calculation of risks during the pricing process. Eventually, we provide suggestions for future research by applying radial basis function for an implied volatility surface reconstruction

    Паралельні алгоритми моделювання процесу фільтраційної консолідації під дією двокомпонентного розчину

    Get PDF
    У статті розглядається задача моделювання процесу фільтраційної консолідації ґрунтів під дією двокомпонентного розчину. Математична модель таких процесів в одновимірному випадку поширюється на тривимірний та пропонується ряд паралельних алгоритмів розв’язання задач щодо неї, зокрема багатопоточний алгоритм, алгоритми для кластерних систем та графічних процесорів (GPU).Problem of modeling filtration consolidation processes in soils under the influence of bi-component solution has been considered in the paper. One-dimensional mathematical model of such processes has been extended to three-dimensional case and a set of parallel algorithms for solving problems about it have been proposed, in particular, multithreaded algorithms, algorithms for cluster systems and graphical processors (GPU)
    corecore