39 research outputs found

    GPU Parallel Implementation of Dual-Depth Sparse Probabilistic Latent Semantic Analysis for Hyperspectral Unmixing

    Get PDF
    Hyperspectral unmixing (HU) is an important task for remotely sensed hyperspectral (HS) data exploitation. It comprises the identification of pure spectral signatures (endmembers) and their corresponding fractional abundances in each pixel of the HS data cube. Several methods have been developed for (semi-) supervised and automatic identification of endmembers and abundances. Recently, the statistical dual-depth sparse probabilistic latent semantic analysis (DEpLSA) method has been developed to tackle the HU problem as a latent topic-based approach in which both endmembers and abundances can be simultaneously estimated according to the semantics encapsulated by the latent topic space. However, statistical models usually lead to computationally demanding algorithms and the computational time of the DEpLSA is often too high for practical use, in particular, when the dimensionality of the HS data cube is large. In order to mitigate this limitation, this article resorts to graphical processing units (GPUs) to provide a new parallel version of the DEpLSA, developed using the NVidia compute device unified architecture. Our experimental results, conducted using four well-known HS datasets and two different GPU architectures (GTX 1080 and Tesla P100), show that our parallel versions of the DEpLSA and the traditional pLSA approach can provide accurate HU results fast enough for practical use, accelerating the corresponding serial versions in at least 30x in the GTX 1080 and up to 147x in the Tesla P100 GPU, which are quite significant acceleration factors that increase with the image size, thus allowing for the possibility of the fast processing of massive HS data repositories

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In dieser Arbeit werden spektral kodierte multispektrale Lichtfelder untersucht, wie sie von einer Lichtfeldkamera mit einem spektral kodierten Mikrolinsenarray aufgenommen werden. Für die Rekonstruktion der kodierten Lichtfelder werden zwei Methoden entwickelt, eine basierend auf den Prinzipien des Compressed Sensing sowie eine Deep Learning Methode. Anhand neuartiger synthetischer und realer Datensätze werden die vorgeschlagenen Rekonstruktionsansätze im Detail evaluiert

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail

    A review of spatial enhancement of hyperspectral remote sensing imaging techniques

    Get PDF
    Remote sensing technology has undeniable importance in various industrial applications, such as mineral exploration, plant detection, defect detection in aerospace and shipbuilding, and optical gas imaging, to name a few. Remote sensing technology has been continuously evolving, offering a range of image modalities that can facilitate the aforementioned applications. One such modality is Hyperspectral Imaging (HSI). Unlike Multispectral Images (MSI) and natural images, HSI consist of hundreds of bands. Despite their high spectral resolution, HSI suffer from low spatial resolution in comparison to their MSI counterpart, which hinders the utilization of their full potential. Therefore, spatial enhancement, or Super Resolution (SR), of HSI is a classical problem that has been gaining rapid attention over the past two decades. The literature is rich with various SR algorithms that enhance the spatial resolution of HSI while preserving their spectral fidelity. This paper reviews and discusses the most important algorithms relevant to this area of research between 2002-2022, along with the most frequently used datasets, HSI sensors, and quality metrics. Meta-analysis are drawn based on the aforementioned information, which is used as a foundation that summarizes the state of the field in a way that bridges the past and the present, identifies the current gap in it, and recommends possible future directions

    A Deep Learning Framework in Selected Remote Sensing Applications

    Get PDF
    The main research topic is designing and implementing a deep learning framework applied to remote sensing. Remote sensing techniques and applications play a crucial role in observing the Earth evolution, especially nowadays, where the effects of climate change on our life is more and more evident. A considerable amount of data are daily acquired all over the Earth. Effective exploitation of this information requires the robustness, velocity and accuracy of deep learning. This emerging need inspired the choice of this topic. The conducted studies mainly focus on two European Space Agency (ESA) missions: Sentinel 1 and Sentinel 2. Images provided by the ESA Sentinel-2 mission are rapidly becoming the main source of information for the entire remote sensing community, thanks to their unprecedented combination of spatial, spectral and temporal resolution, as well as their open access policy. The increasing interest gained by these satellites in the research laboratory and applicative scenarios pushed us to utilize them in the considered framework. The combined use of Sentinel 1 and Sentinel 2 is crucial and very prominent in different contexts and different kinds of monitoring when the growing (or changing) dynamics are very rapid. Starting from this general framework, two specific research activities were identified and investigated, leading to the results presented in this dissertation. Both these studies can be placed in the context of data fusion. The first activity deals with a super-resolution framework to improve Sentinel 2 bands supplied at 20 meters up to 10 meters. Increasing the spatial resolution of these bands is of great interest in many remote sensing applications, particularly in monitoring vegetation, rivers, forests, and so on. The second topic of the deep learning framework has been applied to the multispectral Normalized Difference Vegetation Index (NDVI) extraction, and the semantic segmentation obtained fusing Sentinel 1 and S2 data. The S1 SAR data is of great importance for the quantity of information extracted in the context of monitoring wetlands, rivers and forests, and many other contexts. In both cases, the problem was addressed with deep learning techniques, and in both cases, very lean architectures were used, demonstrating that even without the availability of computing power, it is possible to obtain high-level results. The core of this framework is a Convolutional Neural Network (CNN). {CNNs have been successfully applied to many image processing problems, like super-resolution, pansharpening, classification, and others, because of several advantages such as (i) the capability to approximate complex non-linear functions, (ii) the ease of training that allows to avoid time-consuming handcraft filter design, (iii) the parallel computational architecture. Even if a large amount of "labelled" data is required for training, the CNN performances pushed me to this architectural choice.} In our S1 and S2 integration task, we have faced and overcome the problem of manually labelled data with an approach based on integrating these two different sensors. Therefore, apart from the investigation in Sentinel-1 and Sentinel-2 integration, the main contribution in both cases of these works is, in particular, the possibility of designing a CNN-based solution that can be distinguished by its lightness from a computational point of view and consequent substantial saving of time compared to more complex deep learning state-of-the-art solutions

    Large Area Land Cover Mapping Using Deep Neural Networks and Landsat Time-Series Observations

    Get PDF
    This dissertation focuses on analysis and implementation of deep learning methodologies in the field of remote sensing to enhance land cover classification accuracy, which has important applications in many areas of environmental planning and natural resources management. The first manuscript conducted a land cover analysis on 26 Landsat scenes in the United States by considering six classifier variants. An extensive grid search was conducted to optimize classifier parameters using only the spectral components of each pixel. Results showed no gain in using deep networks by using only spectral components over conventional classifiers, possibly due to the small reference sample size and richness of features. The effect of changing training data size, class distribution, or scene heterogeneity were also studied and we found all of them having significant effect on classifier accuracy. The second manuscript reviewed 103 research papers on the application of deep learning methodologies in remote sensing, with emphasis on per-pixel classification of mono-temporal data and utilizing spectral and spatial data dimensions. A meta-analysis quantified deep network architecture improvement over selected convolutional classifiers. The effect of network size, learning methodology, input data dimensionality and training data size were also studied, with deep models providing enhanced performance over conventional one using spectral and spatial data. The analysis found that input dataset was a major limitation and available datasets have already been utilized to their maximum capacity. The third manuscript described the steps to build the full environment for dataset generation based on Landsat time-series data using spectral, spatial, and temporal information available for each pixel. A large dataset containing one sample block from each of 84 ecoregions in the conterminous United States (CONUS) was created and then processed by a hybrid convolutional+recurrent deep network, and the network structure was optimized with thousands of simulations. The developed model achieved an overall accuracy of 98% on the test dataset. Also, the model was evaluated for its overall and per-class performance under different conditions, including individual blocks, individual or combined Landsat sensors, and different sequence lengths. The analysis found that although the deep model performance per each block is superior to other candidates, the per block performance still varies considerably from block to block. This suggests extending the work by model fine-tuning for local areas. The analysis also found that including more time stamps or combining different Landsat sensor observations in the model input significantly enhances the model performance
    corecore