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1 Introduction

Vision is one of the core human senses and in many ways considered our
primary. Using our powerful visual system, we are able to solve complex
visual tasks intuitively and from an early age, ranging from recognition
and classification to scene understanding and decision-making, to name
a few. Throughout, we humans incorporate an immense amount of con-
textual information—visual information but also physical, historical,
psychological, sociological, and cultural. For example, we can, with little
effort, perceive and understand a complex inner-city crossing with cars,
bicycles, pedestrians, and important visual cues, such as traffic lights,
road signs, or crosswalks, even intuitively building a model to predict
the configuration in the near future. To his end, we build on our large
domain knowledge: We implicitly incorporate the corresponding physi-
cal laws, e.g. predicting the possible trajectories of the participants, even
keeping track of temporarily occluded ones; we consider the applicable
laws, fundamental ones and those communicated via traffic lights or
road signs; we take into account sociological circumstances, for example
children or cyclists may not act as expected by law; and we acknowledge
cultural cues such as a car flashing or a person nodding to give way.

Nevertheless, we also suffer from some weaknesses, limiting our po-
tential in a vision-based context. First, we cannot work arbitrarily fast,
i.e. we are limited in our processing speed and in particular suffer from
a significant delay—our reaction time. Second, we suffer from fatigue,
i.e. we cannot work with full concentration for arbitrary periods of time.
As we get tired or bored, our performance drops significantly, in partic-
ular when assigned to monotone, long-lasting, or undemanding tasks.
And third, by definition, our visual sense is limited to the visible range
of the electromagnetic spectrum. Therefore, we cannot process optical
information in other ranges and depend on good visibility. In particular,
visual perception is challenging in heavy rain, fog, snow, due to glare, or
at night.
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1 Introduction

To overcome these limitations, scientists and engineers have developed
technical solutions to visual perception. The corresponding research
fields are broadly collected under the term computer vision, including a
wide range of areas from hardware and sensor design and calibration,
understanding and modeling of the corresponding optics, to image pro-
cessing, in particular feature or object detection, pattern recognition, and
other high-level applications related to scene understanding or geometry.
In the past decades, computer vision applications have successfully been
applied to numerous problems in medicine, e.g. imaging techniques such
as computed tomography or the detection of skin cancer [125], engi-
neering, e.g. in robotics and autonomous driving [94, 146], agriculture,
e.g. remote sensing or smart farming [23, 195], surveillance, e.g. people
detection or flow analysis [6], to industry, e.g. optical quality assurance
or automated sorting [190], to name a few.

As a basis of computer vision applications, high-quality data is needed.
To this end, several optical measurement techniques and sensors exist
to capture the spatial and spectral characteristics of a scene. For exam-
ple, conventional color cameras capture a comparably low-dimensional
projection of the available information—detailed spectral and geomet-
rical information, e.g. depth, are not directly available. In the context of
computer vision, cameras, i.e. single- or multi-sensor systems providing
contact-free optical measurements of a scene, can be roughly divided
into two classes: Color or spectral cameras and imaging systems for dis-
tance measurement, which are referred to as 3D cameras in the following.
Cameras that belong to both classes are referred to as spectral 3D cameras
or spectral depth imagers. These are the focus of this thesis.

Spectral cameras

Spectral cameras capture the spatially resolved spectrum of a scene. De-
pending on the number of spectral channels, one distinguishes between
multi- and hyperspectral cameras. Multispectral cameras capture three
to about 15 color channels. Systems with a higher spectral resolution
are referred to as hyperspectral, however, the transition between the two
definitions is smooth. Since, within this thesis, the distinction between
multi- and hyperspectral cameras or images is not of importance, they are
collectively referred to as spectral. Color or RGB cameras, which mimic
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1 Introduction

the imaging of the human visual system, are widely used in everyday
life, in order to measure the true-color representation of a scene. Strictly
speaking, they differ from spectral cameras in that they capture color,
i.e. the sensory impression corresponding to human perception, and
not the physical spectrum. Even for RGB cameras, true color sensors, i.e.
sensors directly measuring the pixel-wise color value, are already the
exception. Only Foveon, Inc., manufactured a consumer-grade sensor,
measuring all three RGB values per pixel, using the different energies and
corresponding absorption depths of the incoming photons. Most RGB
cameras, however, are based on color filters in order to measure the three
color channels separately or in a coded fashion. High-resolution cameras
use beam splitters, color filters, and three separate sensors to measure
an RGB image. Compact cameras, on the other hand, use color-coding
masks integrated onto the sensor, the so-called color filter array (CFA), to
measure a different part of the spectrum of the scene at each pixel. The
Bayer pattern [16] is by far the most widely used. To obtain a complete
color image, a so-called demosaicing has to be performed.

While RGB images offer the advantage of being intuitively interpretable
by humans, some objects or materials cannot be distinguished with this
coarse spectral resolution. In order to achieve a higher spectral resolution,
various approaches exist. Spectral cameras widely used in industry and
science are either spatially or spectrally scanning cameras. Common to
these cameras is that the information to be captured is reduced by one
dimension to increase the spatial or spectral resolution. The dimension
reduced during acquisition is measured in a scanning process. For ex-
ample, spectral line scan cameras, also known as push broom scanners,
measure a 1D spatially resolved spectrum and capture the remaining
spatial dimension in a scanning fashion. Using a prism or grating, the
spectral dependence is coded onto one of the two spatial coordinates
of the sensor, leaving the other to measure the 1D spatial dependence.
On the other hand, spectrally scanning cameras capture each spectral
channel separately, e.g. using a filter wheel and different bandpass filters.
Spatio-spectrally scanning cameras also exist [74], however they are less
common. These cameras usually offer high spatial and spectral resolu-
tions. However, due to the scanning involved, they are only suitable to
capture static or low-dynamic scenes.
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For dynamic scenes, snapshot spectral cameras are required. These
include cameras that generalize the three-channel CFA approach to the
multispectral case. This leads to sensors with multispectral filter arrays
(MFAs) [65, 148] and corresponding demosaicing methods [147] which
have found their way into end-user products. Instead of using absorbing
filters, as in the case of CFAs, interference-based filters, e.g. Fabry-Perot
or dielectric stack filters, are generally used in the multispectral case to
realize narrow spectral bandpass filters. Earlier approaches are based on
large-area spectral filters, so-called tiling MFAs [64], and complex beam-
splitting optics. Other conceptual approaches are based on Fourier filter
arrays to measure the multispectral images by sampling in the Fourier
rather than the conventional spectral domain [96].

Other spectral snapshot cameras are mostly based on complex optics
to encode the spectral information on the sensor. In addition to non-
compressive methods [20], compressive hyperspectral cameras have been
the focus of research in the past decade. Here, following the principles of
compressed sensing, the spectral information is encoded using elaborate
optics prior to the acquisition. For example, the coded aperture spectral
snapshot imager (CASSI) and its derivatives [10, 66, 119, 207]) have been
thoroughly studied. These cameras exploit the compressibility of natural
images to reconstruct data sampled well below the Nyquist frequency.
This usually provides a good tradeoff between spatial and spectral resolu-
tion. What these approaches have in common, however, is the complexity
in the optical design: Prisms, gratings, coded apertures, MFAs, and digi-
tal micromirror devices are often used for encoding, which makes the
camera setup complex and non-portable, requiring elaborate calibration.

3D cameras

Early developments of 3D cameras, dating back to the 1940s, follow the
principles of stereo vision of the human visual apparatus: Two lenses
fixed at a distance of a few centimeters simultaneously take images of
a scene [168]. These images then contain depth information due to the
different viewing angles of the scene, the so-called parallax. The stereo
image pairs could then be viewed using special stereoscopes [169]. This
principle, which was initially developed for the consumer market, was
further developed for scientific and industrial applications for which
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quantitative depth measurements are required. Many 3D cameras are
based, like the stereo camera, on depth measurement via triangulation: A
plane triangle is uniquely determined by two angles and a side length [18].
By identifying a point in the image pairs and knowing the distance
between the lenses, the so-called baseline, the distance to the object point
can be calculated. Numerous further developments, from point and line
to area scanning using active illumination (e.g. structured light) in the
infrared or visible range, which are used in current cameras, are based
on triangulation.

An alternative method to capture 3D information is to measure the
time-of-flight (ToF) of an emitted electromagnetic pulse, e.g. light or radar,
which is reflected by an object and detected by the camera sensor. The
distance to the object is calculated from the ToF and the speed of light.
Due to the high demands on the time resolution of the sensors and signal
processing chain, ToF cameras are an ongoing research subject [81, 186].
In particular, ToF cameras are well suited for applications where a high
frame rate is required. Radar and lidar systems, on the other hand, which
are likewise based on the ToF principle, are widely used in fields where
high-precision depth, and possibly velocity, measurements are required.

In addition, there are techniques that enable monocular 3D depth
imaging. For example, these include cameras with coded apertures, light
field cameras, or cameras with specifically designed diffractive elements.
Following either the depth-from-focus or depth-from-defocus principle,
the depth dependence of the imaging properties of real lenses is exploited:
objects in the focal plane are sharply imaged while those imaged out of
focus are blurred. While monocular, some of the approaches require the
measurement of a focal stack, i.e. an image series using different focal
planes. However, with the help of specially designed apertures and/or
color filters or a deep learning-based reconstruction, snapshot cameras
also exist [15, 110, 144].

Light-field cameras, on the other hand, directly record the angular
dependence of the light rays reaching the sensor. Being of main interest
in this thesis, light field cameras are discussed inmore detail in Chapter 2.
The advantage of monocular 3D cameras over multi-camera systems is
their compactness and mechanical robustness. Calibration usually has to
be performed once under laboratory conditions.
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Spectral 3D cameras

Spectral 3D cameras provide a near all-encompassing measurement of
the optical and geometrical properties of a scene and are the subject of
cutting-edge research—commercial solutions are currently not available.
Yet, there are a number of approaches to spectral depth imaging.

One possibility is to use multi-camera arrays and spectrally code the
individual cameras for example using optical bandpass filters. As it is
comparably straightforward to implement, several prototypes have been
proposed [67, 68, 236]. In fact, spectrally coded multi-camera arrays can
be interpreted as measuring a spectrally coded light field, as detailed
in Section 2.3. However, multi-camera setups are costly, bulky, and dif-
ficult to calibrate. Due to their comparably large dimension, they are
usually only suited in laboratory or specific industrial environments.
Furthermore, their complexity increases as a higher spectral resolution
is needed since every spectral band is sampled by an individual camera.

Other approaches are based on hybrid camera systems, e.g. using both
RGB and spectral cameras [224] or using a separate light field camera and
a CASSI [221]. Recently, complex compressive methods, extending the
CASSI approach to spectral depth imaging, have been investigated [135].
However, for now, these methods are only feasible under laboratory
conditions and often require a complex optical setup.

Finally, multi-modal cameras such as spectral depth cameras can be
realized by directly optimizing the design of the used optics in the digital
domain, in terms of an end-to-end optimization. These approaches are
collected under the term deep optics [216]. For example, a spectral depth
camera using free-form-optimized diffractive lenses was recently pro-
posed by Baek et al. [13]. To the best of the author’s knowledge, this is the
only previously proposed compact monocular spectral depth snapshot
camera. In this thesis, an alternative approach to compact monocular
spectral depth imaging is considered.

Following a concept briefly introduced by Ye and Imai [226], spectrally
coded light fields, as captured by a camera with a spectrally coded mi-
crolens array (MLA), are investigated here. This approach is appealing
in terms of its compactness and flexibility: The MLA and sensor are
tightly integrated and embedded in an ordinary camera housing, mak-
ing it mechanically robust. Therefore, the camera only requires one-time

6



1.1 Contributions

calibration under laboratory conditions. Combining spectral and depth
measurements into a single monocular architecture offers several advan-
tages and possible applications. First, the multi-modal measurements
are aligned by design, making an additional registration or calibration
step superfluous. Second, the different imaging modalities allow for a fu-
sion of applications from depth and spectral imaging, e.g. segmentation,
classification, scene understanding, surface reconstruction, etc. Further-
more, the additional spectral channels and angular views could be used
to apply techniques from active imaging systems, such as structured
illumination used by active depth imagers or directional illumination as
used in photometric stereo—in particular in the non-visible near-infrared
(NIR) range. This way, depth estimation or surface normal estimation on
untextured or specular objects could possibly be improved.

However, this thesis is not concerned with a specific application but
the general signal reconstruction problem arising when using a spec-
trally coded light field camera. In fact, the spectral domain is usually not
taken into account in previous works on coded light fields, as elaborated
in detail shortly. Furthermore, reference data, i.e. spectral light fields,
possibly with additional depth ground truth, and baseline methods are
not available. This thesis shall fill this void, providing a reference, strong
baseline, and suitable datasets—hopefully, to spark interest to enhance
or apply this novel spectral depth imaging technique.

1.1 Contributions
The main contributions of this thesis are as follows.

Two approaches to reconstruction from spectrally coded light fields
are investigated and extensively evaluated:

– A reconstruction of the spectral light field within the com-
pressed sensing framework is presented. To this end, a new
tensor-based dictionary learning method is developed for
spectral light fields, which is shown to outperform the con-
ventional vectorized dictionary as well as the representation
using fixed bases.

7
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– Furthermore, a novel deep learning-based approach is de-
veloped, directly estimating the spectral central view and its
aligned disparitymap from the codedmeasurements, which
is shown to outperform the compressed sensing-based re-
construction and subsequent disparity estimation. High re-
construction qualities are achieved. Despite being estimated
from coded measurements, the reconstructed disparity per-
forms on-par or even better than state-of-the-art disparity
estimation methods from uncoded RGB light fields.

A novel regularization scheme based on adaptively weighted aux-
iliary losses is developed, using normalized gradient similarity,
which is shown to enhance the performance of both the single-task
and multi-task deep learning-based reconstruction in the consid-
ered case. The approach can be combined with adaptive multi-task
training strategies, which is shown to further enhance the overall
performance.

Several spectral coding masks are investigated and a novel differ-
entiable fractal coding mask generation is proposed, which can be
optimized together with the deep learning-based reconstruction
in an end-to-end fashion.

A large synthetic spectral light field dataset with disparity ground
truth is created. The dataset consists of spectral light fields from
randomly generated scenes, suitable for the training of data-driven
approaches as well as a quantitative evaluation of the investigated
reconstruction using a test dataset. Furthermore, spectral light
fields and their disparity rendered from hand-crafted scenes are
provided to assess the performance in more detail.

A real-world spectral light field dataset is created using a custom-
built spectral light field camera, for which a novel radiometric
calibration is developed. The fully sampled reference data allows
for a quantitative evaluation of the investigated reconstruction
methods.

A refinement of the geometric (pre-)calibration of MLA-based
light field cameras is developed, specifically taking into account

8



1.1 Contributions

natural and mechanical vignetting, which is shown to increase the
accuracy of well-established subsequent calibration approaches.
For its evaluation, a synthetic dataset of so-called white images is
created with available ground truth microlens center coordinates.

Parts of several sections of this thesis have been previously published
and/or presented at conferences:

The synthetic dataset, as presented in Section 4.1, and a general
deep learning framework, parts of which are presented in Sec-
tion 3.2, were published in [A6].

Contributions to the geometric calibration ofMLA-based light field
cameras, as presented in Section 4.2.3, were published in [A9].

The reconstruction via multi-task deep learning, as presented in
Section 3.2 and evaluated in Section 5.1, was published in [A1]. This
also contained supplementary material regarding the camera pro-
totype and its radiometric calibration, as presented in Section 4.2.2,
as well as parts of the compressed sensing-based reconstruction,
which are presented in Section 3.1 and evaluated in Section 5.1.

However, for the presentation in this thesis, most parts have been signifi-
cantly modified and extended. In particular, the results presented here
are more exhaustive as compared to the original publications.

Finally, it should be noted that large parts of the work presented here
were conducted within a joint research project of the Institute of Indus-
trial Information Technology and the Light Technology Institute of the
Karlsruhe Institute of Technology. While the ultimate goal of this project
is to build a working prototype of a light field camera with a spectrally
coded MLA, the corresponding research and (preliminary) results are
not presented here as they would not be the sole contribution of the
author. In particular, a fully functional hardware integration has yet to
be achieved.

9



1 Introduction

1.2 General remarks
Digital supplement

A digital supplement to this thesis is made publicly available1. The sup-
plement contains references to the developed Python frameworks, the
created datasets, as well as the source code to reproduce the investigated
experiments. Furthermore, as not all results could be visualized and
shown here, an interactive Jupyter notebook is provided. This notebook
gives full access to the obtained reconstruction results of all experiments
for further evaluation. In particular, this includes the reconstruction re-
sults for all scenes of the evaluation datasets and additional evaluation
metrics, which are not included in the results presented here for clarity.

RGB conversion

Since spectral images are difficult to visualize in general, usually their
corresponding RGB conversions are shown throughout this thesis. To this
end, RGB conversion from spectral data is performed according to the
CIE 1931 standard. Here, the color matching functions and D65 standard
illuminant provided by the Institute of Ophthalmology at University
College London [184] are used. Subsequently, XYZ-to-RGB conversion is
performed following the sRGB standard [5].

Preprints

It should be noted that, throughout this work, great care is taken to cite
only relevant, well-established, and peer-reviewed research—except in
those rare cases where it is inevitable to refer to a preprint. While it is
usually not considered best practice to cite non-peer-reviewed research
papers, in particular arXiv preprints, it cannot be avoided in some in-
stances. For example, this is the case for recent works in the context of
deep learning, which is extremely rapidly developing.

1 https://maxschambach.github.io/thesis
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1.3 Thesis outline

1.3 Thesis outline
The remainder of this thesis is organized as follows.

Chapter 2 provides an introduction to light fields and their applications
in general. Furthermore, different coding approaches, in particular the
spatio-spectral coding of spectral light fields considered in this thesis, are
discussed in detail. Finally, the camera model, using a spectrally coded
MLA, and the corresponding signal model are introduced.

The reconstruction methods are developed in Chapter 3. This includes
the reconstruction of the underlying spectral light field within the com-
pressed sensing framework as well as a deep learning-based reconstruc-
tion of the spectral central view and its aligned disparity map. Within the
compressed sensing-based framework, several approaches to sparsely
represent the underlying spectral light fields are discussed. Besides the
conventional methods using fixed bases, a vector-based dictionary learn-
ing approach is investigated and refined using a tensor-based separa-
tion of the angular, spatial, and spectral components of the light field.
Moreover, a novel deep learning-based reconstruction is motivated and
discussed in detail, in particular the challenges arising regarding the
multi-task training as well as a regularization using auxiliary losses. To
this end, a new adaptive auxiliary loss weighing is proposed. Finally, an
approach to optimize the coding mask in an end-to-end fashion, called
neural fractals, is developed.

In Chapter 4, the experimental setup is discussed. In particular, the
created reference datasets—a synthetic and a real-world spectral light
field dataset—are introduced. To capture the real-world dataset, a custom
spectral light field camera was built, whose calibration is discussed in
detail. Finally, the used evaluation metrics and hyperparameters are
elaborated.

The reconstruction results are presented in Chapter 5. This includes
the compressed sensing-based reconstruction as well as the one based on
deep learning. In the case of the deep learning-based reconstruction, the
multi-task and auxiliary loss training strategies are evaluated in detail.
Furthermore, several ablation studies, investigating the dependence on
noise, the angular resolution, and the coding mask, are performed.

In Chapter 6, the presented work is summarized and an outlook is
presented, discussing possible future research directions.
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2 Spectral Light Fields

The plenoptic function 𝑃𝜆,𝑡0(𝐱, 𝛀) ∶ ℝ5 → ℝ describes the light flow
at point 𝐱 ∈ ℝ3 in direction 𝛀 ∈ ℝ2 at a time instance 𝑡0 per unit
wavelength 𝜆. The value of the plenoptic function is the spectral radiance in
units W/(srm2 nm). Sometimes, the plenoptic function is also referred to
as the 5D light field. The propagation of these light rays is describedwithin
the theory of geometrical optics, i.e. based on Fermat’s principle, whereas
the spectral radiance is a property emerging in wave optics. In that
sense, the plenoptic function provides a heuristic extension of geometrical
optics incorporating some properties from the higher-order theory of
wave optics, namely color and light intensity. Other higher-order effects
such as diffraction or polarization cannot be described. Nevertheless,
the plenoptic function is well suited to describe macroscopic scenes, e.g.
for novel view synthesis, or the image formation of imaging systems
for which diffraction and polarization can be neglected. A schematic
overview of such higher-order effects and the corresponding physical
theories is given in Figure 2.1. In the remainder of this thesis, the explicit
time dependence is neglected since it is irrelevant in the case of snapshot
imagers that are considered here.

Most generally, the plenoptic function can be used to synthesize arbi-
trary views of a scene. However, its redundancy and high dimensionality
pose great challenges in practice. To this end, obtaining the plenoptic
function from a sparse set of measurements using efficient representa-
tions is an ongoing research endeavor. Recently, implicit representations
via artificial neural networks, such as neural radiance fields [137, 143] or
the neural lumigraph [101], have become the state-of-the art in the case
of (implicit) scene representation and novel view synthesis.

When describing imaging systems, however, the volume in which
the plenoptic function ought to be described is much smaller as only
rays reaching the camera sensor are of interest. This allows for more
specific and efficient representations. In the case of homogeneous media
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2 Spectral Light Fields

Geometrical optics↪ Rays

Wave optics↪ Scalar field

Classical electrodynamics↪ Vector field

Quantum electrodynamics↪ Quantum field
Matter interaction
Quantum phenomena

Light radiation
Polarization

Interference
Diffraction
Color and intensity

Image formation
Refraction
Reflection

µm
nm

pm

Figure 2.1 Overview of the different physical theories of optics together with their associ-
ated mathematical description and phenomena.

and non-occluding scenes, the spectral radiance along a given ray is
constant. By dividing out the equivalence class of these constant-valued
light rays, the domain of the plenoptic function can be reduced from five
to four spatio-angular dimensions. The resulting spectral 4D light field
L(𝑢, 𝑣, 𝑠, 𝑡, 𝜆) was first introduced by Moon and Spencer [149] and later
coined by Levoy and Hanrahan [111], and is also sometimes referred
to as the lumigraph [71]. As this thesis deals with spectral light fields,
the spectral dependence is now made explicit while historically only
the 4D spatio-angular coordinates were considered. The coordinates(𝑢, 𝑣, 𝑠, 𝑡) correspond to a certain parametrization of the spatio-angular
dependence of the light field of which there are numerous. In this thesis,
as is common in the context of computational cameras, the so-called
plane-plane parametrization is used: A light ray is uniquely described by
the intersection points of two parallel planes at a given distance 𝐼 using
the angular coordinate (𝑢, 𝑣) and the spatial coordinate (𝑠, 𝑡). A schematic
depiction of the plane-plane parametrization is given in Figure 2.2. Note
that rays parallel to the planes cannot be parametrized. However, as the
two planes are typically chosen to be parallel to the main lens and sensor
plane, these rays do not contribute to the image formation and can be
neglected.
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2.1 Light field acquisition

𝐼
L(𝑢, 𝑣, 𝑠, 𝑡, 𝜆)(𝑢, 𝑣) (𝑠, 𝑡)

Figure 2.2 Plane-plane parametrization of the spectral 4D light field.

2.1 Light field acquisition
There are many camera designs to sample the continuous spectral light
field L(𝑢, 𝑣, 𝑠, 𝑡, 𝜆). As opposed to conventional cameras, light field cam-
eras also capture the angular dependence of a scene. In that sense, they
can be regarded as a multi-view generalization of stereo cameras. Multi-
camera arrays [217, 223] are hence a straightforward approach to achieve
high-resolution light field imaging. However, camera arrays are bulky,
expensive, and prone to mechanical changes that require recalibration.

As conventional CCD or CMOS imaging sensors are intrinsically two-
dimensional, the five-dimensional spectral light field signal has to be
coded onto the sensor in order to obtain a single-sensor light field cam-
era. To this end, compact snapshot (RGB) light field cameras based on
MLAs have been introduced by Adelson and Wang [1] and further com-
pactified by Ng et al. [154], which were subsequently commercialized
by Lytro, Inc. In this so-called unfocused design, an MLA is placed at the
imaging distance of a regular main lens, and the imaging sensor is placed
in the focal plane of the MLA. This way, the spatial dimension of the
light field is sampled by the individual microlenses which can be inter-
preted as spatial macropixels. The angular dimension on the other hand
is sampled by the sensor pixels underneath each microlens as depicted
in Figure 2.3. Due to the small size of the microlenses, with typical diam-
eters in the range of 20 to 60 µm, and their small focal lengths, the main
lens can be viewed as being placed at optical infinity with respect to the
microlenses. Therefore, incoming rays from a specific angular coordi-
nate (𝑢, 𝑣), parametrized at the main lens plane, are effectively parallel.
These parallel rays are then focused onto the sensor pixels. For example,
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2 Spectral Light Fields

Lens

(𝑢, 𝑣) (𝑠, 𝑡)

MLA Sensor

𝐼 𝑓

(a) Side view.

Sensor

(b) Detailed view of the MLA.

Figure 2.3 Model of the unfocused light field camera.

rays from the central angular coordinate, i.e. the main lens center, are
focussed onto the central pixel underneath each microlens. Analogously,
rays with a different incident angle are imaged onto pixels at an offset
with respect to the central microlens, depending on the corresponding
angular coordinate. In order to avoid angular crosstalk between different
microlens images, the f-numbers of the main lens and the microlenses
have to be matched [154]. This also effectively determines the field of
view of the system. To be able to decode the multiplexed light field mea-
surement, the individual microlens centers have to be detected such that
the different angular views can be rearranged into a light field. Details
on the geometric calibration of the camera and the subsequent light field
decoding are presented in Section 4.2.3.

In this unfocused design, the spatial resolution is determined by the
number of microlenses that are imaged onto the sensor, while the angular
resolution is given by the number of pixels underneath each microlens.
Hence, there is a fixed tradeoff between spatial and angular resolution
for an imaging sensor of a given size and resolution.

Another MLA-based light field camera design is the so-called focused
design which was first introduced by Lumsdaine and Georgiev [127]
and later commercialized by Raytrix GmbH. In this design, the sensor
is not directly placed in the focal plane of the MLA but at some offset
that allows for a tunable tradeoff between the angular and the spatial
resolution. The resulting spatio-angular coding of the light field, however,
is very different from the unfocused design and not suited for the spectral
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2.1 Light field acquisition

coding which is considered in this thesis, as will be discussed shortly.
Therefore, the focused design is not further elaborated.

After acquisition and decoding, one obtains the discretely sampled
spectral light fieldL[𝑢, 𝑣, 𝑠, 𝑡, 𝜆]. For any fixed angular coordinate (𝑢0, 𝑣0),

I𝑢0𝑣0[𝑠, 𝑡, 𝜆] = L[𝑢0, 𝑣0, 𝑠, 𝑡, 𝜆] (2.1)

is a conventional (spectral) image called a subaperture view of the light field.
Hence, as previously noted, a light field can be viewed as a collection of
subaperture views. A 2D section of the 4D light field, when fixing one
angular and one spatial coordinate,

E𝑢0𝑠0[𝑣, 𝑡, 𝜆] = L[𝑢0, 𝑣, 𝑠0, 𝑡, 𝜆] , E𝑣0𝑡0[𝑢, 𝑠, 𝜆] = L[𝑢, 𝑣0, 𝑠, 𝑡0, 𝜆] , (2.2)

is a so-called epipolar plane image (EPI). An EPI may be horizontal or
vertical, depending on which angular coordinate is fixed. Fixing solely
the angular coordinate, one obtains a 3D section of the 4D light field,
called an EPI volume,

E𝑢0[𝑣, 𝑠, 𝑡, 𝜆] = L[𝑢0, 𝑣, 𝑠, 𝑡, 𝜆] , E𝑣0[𝑢, 𝑠, 𝑡, 𝜆] = L[𝑢, 𝑣0, 𝑠, 𝑡, 𝜆] , (2.3)

which again may be horizontal or vertical. The EPIs and EPI volumes
can for example be used to estimate the disparity from the light field as
elaborated shortly.

Finally, in the discrete case, one may equivalently use a tensor-based
notation and identify

L[𝑢, 𝑣, 𝑠, 𝑡, 𝜆] = L𝑢𝑣𝑠𝑡𝜆 , L ∈ ℝ𝑈×𝑉 ×𝑆×𝑇 ×Λ , (2.4)

where (𝑈, 𝑉 ) corresponds to the angular, (𝑆, 𝑇 ) to the spatial, and Λ to
the spectral resolution of the light field.

As an example, a synthetic RGB light field, rendered with a resolution
of (15, 15, 128, 128, 3), and two example EPIs, one horizontal and one
vertical, are depicted in Figure 2.4. Here, for clarity, only the central and
most-peripheral subaperture views of the light field are shown while the
EPIs are obtained as sections from the full-resolution light field.
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𝑢=1
𝑣 = 1 𝑣 = 8 𝑣 = 15

𝑢=8

E
8,96[𝑣,𝑡]𝑢=15

E8,96[𝑢, 𝑠]
Figure 2.4 Selected subaperture views of an example light field together with one hori-
zontal and one vertical EPI.

2.2 Light field applications
Compared to conventional images, light fields contain much more infor-
mation of a captured scene. Besides the conventional spatial information,
light field cameras also partially capture the scene geometry which al-
lows for numerous applications such as post-capture refocusing [154],
superresolution [19], segmentation [214], and saliency detection [114].
Moreover, one can extract reflectance properties such as the specular
and diffuse components of a scene [4, 188], or use light fields for robust
monocular visual odometry [46]. Recently, light fields have also been
investigated in the context of monocular deflectometry [197].

As one of its core applications, light fields allow for a robust dispar-
ity estimation, which can be converted to the corresponding depth us-
ing a calibrated camera model as elaborated in Appendix A. To this
end, a vast amount of work has been published [98], ranging from well-
established computer vision methods based on the depth-from-defocus
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2.2 Light field applications

principle [189], feature-basedmatching [78, 80], using the focal stack [117,
185], or by local slope estimation in the EPIs [212, 213], to deep learning
approaches, that have become the state of the art in recent years [176].
Intuitively, due to the dense angular sampling, diffuse features of a scene
will be imaged onto constant-valued 2D planes in the 4D light field. For
example, this results in the well-known line structures that are observed
in the EPIs as previously shown in Figure 2.4. Using the EPIs, dispar-
ity estimation is basically equivalent to local line fitting [22] which is
usually more robust than feature-based methods that are for example
well-established in stereo imaging. As is the case for other passive depth
imagers, such as stereo cameras, the scene needs to be sufficiently tex-
tured in order to allow for a dense disparity estimate. Estimating the dis-
parity from non-textured diffuse objects via passive imaging techniques
is intrinsically ill-defined and may only be achieved using higher-level
contextual information (as does the human visual system). Hence, recent
advances in deep learning show a great potential to enhance disparity
estimation from light fields in challenging situations, e.g. for sparsely
textured, specular, or reflective objects. For more details on light field
imaging and applications, the reader is referred to the literature, e.g. the
comprehensive reviews by Wu et al. [219] or Ihrke et al. [92].

Despite the versatile applications and possibilities in post-processing
that light fields offer, they also show a strong redundancy [112]. This is
particularly true for hand-held plenoptic cameras due to the inherently
small baseline (and thus a strong similarity between adjacent subaper-
ture views), which is usually in the range of millimeters, depending on
the size of the main lens, the microlens radii, and the pixel pitch. The
redundancy becomes even more severe in the case of spectral light fields
in which the community has shown an increased interest [87, 221, 222,
236]. In some instances, spectral light fields outperform conventional
RGB light fields, e.g. in depth estimation in specular regions [235] or pro-
filometry [59]. Furthermore, spectral light fields offer new possibilities,
combining methods from conventional light field imaging (e.g. disparity
estimation) with those from spectral imaging (e.g. material classification).
Therefore, in order to make use of the redundancy of light fields, one
may consider more efficient measurement techniques by coding the light
field, opening new possibilities in spectral light field imaging.
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2 Spectral Light Fields

2.3 Coded light fields
There are many different possibilities to code light fields: in the angular,
the spatial, or the combined spatio-angular domain [11]. In the realm
of compressed sensing (cf. Section 3.1), the light field is typically coded
in the spatio-angular domain by placing an attenuation mask in the
light ray’s pathway [138, 200, 206]. However, these methods usually do
not explicitly account for the color or spectral domain of the light field
and perform the reconstruction channel-wise, employing an additional
Bayer mask in front of the sensor, and require demosaicing of the raw
sensor image. This is for example the case in the fundamental works
of Merwah et al. [138] but also in recent state-of-the-art deep learning-
based frameworks [200]. A generalization to spectral light fields in these
instances is generally not straightforward.

Analogously, for color or spectral coding of light fields, two approaches
have been proposed: again, either coding the angular or the spatial com-
ponent. While coding the angular component can naturally be achieved
for camera arrays by placing a spectral filter in front of each individual
camera [236], it is challenging for MLA-based cameras. Several studies
have placed a spectral mask in the main lens plane [87, 139], however,
alignment of the mask with the camera sensor is virtually impossible
to achieve: Each spectral mask segment has to be imaged onto exactly
one pixel since the pixels underneath each microlens code the angular
component. Hence, when inevitably misaligned, the resulting coding is
in fact not purely angular. Furthermore, the misalignment of the MLA
and the sensor cannot be calibrated in a standard fashion, i.e. by raw
sensor image interpolation [45] (cf. Section 4.2.3), since each microlens
image is only sparsely sampled. On the other hand, spatial coding of
the light field using a camera array can be achieved by placing the same
spectral mask in front of each camera sensor, which however has not been
considered in the literature. For MLA-based cameras in the unfocused
design, the same can be accomplished by coding theMLA [226], resulting
in a spatio-spectral coding which is elaborated shortly.

For completeness, in a sense, the conventional Bayer sensor of an MLA-
based light field camera also captures a coded light field by applying a
spatio-angular color mask at the sensor plane. However, the coding is not
well adapted to the light field sampling in this case. The sensor image is
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usually first demosaiced and then decoded to an RGB light field. While
demosaicing methods specific to MLA-based light field cameras exist [47,
230], the geometric properties of the full light field are not specifically
taken into account. Furthermore, in the case of light field cameras, the
Bayer approach cannot well be generalized to the multispectral case.
While this is feasible in the case of conventional cameras [65], the number
of measurements per microlens would simply be too sparse for standard
sensor-based demosaicing. Hence, a more adapted spectral coding is
needed. It is the author’s opinion that, for hand-held MLA-based light
field cameras, only the spectral coding of the MLA is truly practical
as the coding naturally aligns with the discrete sampling of the light
field by the MLA. The misalignment of the MLA and the sensor can be
calibrated in complete analogy to the conventional RGB case since every
microlens image is fully sampled and can be aligned with the sensor grid
via standard procedures.

2.3.1 Spatio-spectrally coded light fields
Whereas the other coding schemes have been quite thoroughly discussed
in the literature, spectral coding of theMLA has attracted only little atten-
tion. While spectral coding of the MLA was investigated in the context of
multispectral imaging [178], in the case of light fields it was only briefly
discussed in a paper by Ye and Imai [226], employing several restrictive
constraints. While this might have been due to a challenging hardware
realization, manufacturing of spectrally coded MLAs has become feasi-
ble using modern techniques such as inkjet printing of micro-optics [3,
43]. These processes can be generalized to spectral coding, for example
using dyed inks for the individual microlenses or using printed dielectric
stacks as interference filters.

The camera model of a light field camera in the unfocused design with
a spectrally coded MLA is shown in Figure 2.5. By spectrally coding
the individual microlenses, such that each microlens acts as a spectral
bandpass filter, one obtains the spatio-spectrally coded light field

L∗[𝑢, 𝑣, 𝑠, 𝑡, 𝜆] = M[𝑠, 𝑡, 𝜆] ⋅ L[𝑢, 𝑣, 𝑠, 𝑡, 𝜆] . (2.5)

Here, M ∈ {0, 1}𝑆×𝑇 ×Λ denotes the binary coding mask. The discrete
spectral index 𝜆 denotes the index of the corresponding spectral filter.
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Lens
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(b) Detailed view of the MLA.

Figure 2.5 Model of the unfocused light field camera with a spectrally coded MLA.

Since only one filter is used in the imaging process at every spatial co-
ordinate (𝑠, 𝑡), the coding mask M fulfills the summation constraintΛ∑𝜆=1 M[𝑠, 𝑡, 𝜆] = 1 . (2.6)

That is, the coding mask is one-hot encoded in the spectral dimension.
During the measurement, the coded light field is projected along the
spectral dimension, obtaining

L∗
p[𝑢, 𝑣, 𝑠, 𝑡] = Λ∑𝜆=1 L∗[𝑢, 𝑣, 𝑠, 𝑡, 𝜆] . (2.7)

When the coding mask M is known, which can be achieved during cali-
bration, the coded light fieldL∗ can easily be obtained from its projection
L∗

p since for every pixel only one spectral channel has a non-zero value
in L∗. Therefore, L∗ and L∗

p are considered equivalent in the following.
Here, it is assumed that the spectral filters are independent of the ray’s

incident angle and that the light fields are coded purely in the spatio-
spectral domain. This is an approximation that may not hold in practice.
Using absorption filters, i.e. by using colored inks, the light intensity is
exponentially attenuated where the exponent is proportional to the thick-
ness of the absorbing medium. This is known as the Beer-Lambert law.
Therefore, rays with a larger incident angle are more strongly attenuated
than rays with a perpendicular incident angle as they travel a longer

22



2.4 Light field data

distance in the absorbing medium. However, this only affects the over-
all attenuation and not the spectral characteristics of the filters. Hence,
this effect can be compensated via whitebalancing and devignetting (cf.
Section 4.2.2). This is not the case when using interference filters, e.g. thin-
film filters. Here, the layer thickness specifies the central wavelength of
the bandpass filter. The effective central wavelength of the filter is larger
for rays with a larger incident angle as compared to perpendicular rays.
(A similar argument can be made also in the case of multi-layer interfer-
ence filters such as dielectric stack filters.) This effect cannot directly be
incorporated in the discrete signal model. In principle, the model could
be extended to include all central wavelengths of the filters associated
with the discrete angular coordinates. However, this would drastically
increase the dimensionality of the problem, requiring a different formu-
lation of the reconstruction than those investigated here. In practice, the
severity of this effect can be controlled by restricting the range of the
incident angles. Using a narrow field of view, i.e. by using a large main
lens focal length, the largest incident angle is decreased and the problem
is mitigated. Therefore, the effect is neglected in the following and it is
assumed that the filter characteristics are angle-independent.

With this coding scheme, every spectral subaperture I𝑢𝑣 is spectrally
coded using the same codingmaskM. Intuitively, the spectral information
of an object is hence spread out across the different subapertures of the
coded light field: Given a Lambertian object with non-zero disparity,
the object is imaged onto different pixels in each subaperture. Since the
different pixels are differently coded, one actually obtains up to 𝑈 × 𝑉
sparse measurements of the object’s spectrum, depending on the object’s
disparity and the coding mask. In a sense, one “simply” has to find
this pixel-wise correspondence and join the individual measurements to
obtain the original spectrum of the object. While this is trivial when the
disparity is known or even constant, it is challenging in the general case.

2.4 Light field data
Throughout this thesis, light fields with different resolutions and prop-
erties are investigated: On the one hand a synthetic spectral light field
dataset with available ground truth (GT) disparity (cf. Section 4.1), and
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Table 2.1 Overview of the created light field datasets and their properties. The denoted
sizes correspond to the size of a single light field at 32 bit resolution.

Name Type Resolution GT disparity Size #

Train Synthetic (9, 9, 32, 32, 13) Yes 4.3MB 78400
Validation Synthetic (9, 9, 32, 32, 13) Yes 4.3MB 9800
Test Synthetic (9, 9, 32, 32, 13) Yes 4.3MB 9800
Challenge Synthetic (9, 9, 512, 512, 13) Yes 1.1GB 6 + 13
Evaluation Real-world (9, 9, 400, 400, 13) No 674MB 6

on the other hand a real-world dataset captured with a custom-built
spectral light field camera (cf. Section 4.2). These datasets are introduced
in more detail in the corresponding sections, however the resolution and
properties are presented here as many difficulties arising in the context
of spectral light field reconstruction are related to their comparably large
dimensionality. Hence, having an overview of the used resolutions is
useful when discussing the reconstruction methods in the following.

In all cases, the full (un-coded) spectral light fields are available for a
quantitative evaluation of the reconstruction. For the spectral domain, all
light fields are sampled in the visible range from 400 to 700 nm in steps
of 25 nm resulting in 13 spectral bands. This sampling was chosen as
off-the-shelf optical bandpass filters with these properties are available.
Extending the sampled range is in this case not trivial due to the limited
quantum efficiency of the used camera sensor. In the angular domain, a
standard resolution of (9, 9) is chosen as it is conventionally used in the
light field community and corresponds to the angular resolution of the
camera prototype that is available with sufficient quality. For evaluation,
also lower resolutions are considered in an ablation study. In the spatial
domain, different resolutions are used depending on the dataset type.
For training, validation, and testing of the investigated reconstruction
methods, synthetic light fields with a comparably small spatial resolution
of (32, 32) are used. To also allow for a quantitative full-sized evaluation,
hand-crafted full-sized synthetic spectral light fields are used (which are
refered to as challenges) with a spatial resolution of (512, 512). Finally, the
real-world light fields captured with the spectral light field camera have
a spatial resolution of (400, 400). An overview of the different datasets
and their corresponding properties is given in Table 2.1.
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3 Reconstruction from
Coded Light Fields

3.1 Compressed sensing-based reconstruction
Traditionally, the full light field L is recovered from the coded mea-
surement L∗. For example, the Bayer-coded sensor image is demosaiced
before the light field is extracted from it. From the fully recovered light
field L, the desired information, such as the disparity, is subsequently
estimated. When high compression ratios are involved, which is the case
for coded light field cameras and in particular when considering spectral
light fields, assuming that the measurement can be formulated via a lin-
ear operator, the reconstruction can be done in the compressed sensing
framework [53, 58] by solving an optimization problem of the formmin𝐱 ‖𝐱‖0 subject to ‖𝐥∗

p − 𝐌𝚿𝐱‖2 < 𝜖 . (3.1)

Here, 𝚿𝐱 = 𝐥 ∈ ℝ𝑈𝑉 𝑆 𝑇Λ and 𝐥∗
p ∈ ℝ𝑈𝑉 𝑆 𝑇 denote the vectorized versions

of L and L∗
p, respectively, 𝚿 denotes a basis (or dictionary) in which 𝐥

has the representation 𝐱, and 𝐌 corresponds to the coding and linear
measurement. The product 𝐌𝚿 is also referred to as the sensing matrix.
In the following, let 𝑁 = 𝑈𝑉𝑆𝑇Λ and 𝑀 = 𝑈𝑉𝑆𝑇 denote the dimension
of the vectorized light field and compressed measurement, respectively.

The core idea of compressed sensing, and its most significant distinc-
tion to conventional sensing and reconstruction in accordance with the
Nyquist-Shannon sampling theorem, is that one is not interested in any
recovered signal that is consistent with the observed compressed mea-
surement (for which there would be many solutions as the system is
underdetermined) but those signals that are sparse with respect to the ba-
sis 𝚿. Therefore, the 𝑙0-“norm” ‖𝐱‖0, i.e. the number of non-zero elements
of 𝐱, is minimized while maintaining consistency with the observed mea-
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3 Reconstruction from Coded Light Fields

surement 𝐥∗
p. Note that, strictly speaking, the 𝑙0-“norm” is not a norm

as it is not homogenous, i.e. ‖𝛼𝐱‖0 ≠ |𝛼| ⋅ ‖𝐱‖0. However, the quotation
marks are neglected in the following for simplicity.

The motivation behind this approach is that natural signals, such as
audio recordings or images, have been shown empirically to be sparse in
some domain—an observation that has found countless applications in
signal and image processing, e.g. for compression, denoising, or inpaint-
ing [132]. One of the main challenges of compressed sensing, besides
solving the optimization problem (3.1), is to find a suitable basis under
which the signals of interest can be sparsely represented, and to specify
which linear measurements guarantee a signal recovery. To this end, in
the past 15 years a rigorousmathematical framework has been developed.

Assuming that the vectorized signal is 𝑘-sparse in the basis 𝚿, i.e.‖𝐱‖0 ≤ 𝑘 (3.2)

for some 𝑘 < 𝑁, one can show that the signal can be exactly recovered
from O(𝑘 lg 𝑁) measurements if the sensing matrix fulfills the so-called
restricted isometry property (RIP) [30]. The RIP is not re-stated here as it
is in fact NP-hard to compute and therefore quasi-impossible to verify in
practice. Instead, the mutual coherence𝜇(𝐀) = max1≤𝑖,𝑗≤𝑁 ∣⟨𝐚𝑖, 𝐚𝑗⟩∣ ≤ 1 (3.3)

can be used to estimate how well the sensing matrix 𝐀 = 𝐌𝚿 fulfills
the RIP. Here, 𝐚𝑖 and 𝐚𝑗 denote the 𝑖-th and 𝑗-th column of 𝐀 which are
assumed to be normalized. The recovery of the original signal is then
guaranteed with high probability fromO(𝜇(𝐀)2𝑘 lg 𝑁) measurements [30].
Hence, when designing the codingmatrix 𝐌, a low coherence of the sens-
ing matrix 𝐀 is desired. The mutual coherence of different basis matrices
using the considered coding scheme is investigated in Section 3.1.1.

There are several approaches to solve the general compressed sensing
reconstruction problem (3.1). In general, the minimization of the non-
convex 𝑙0-norm is NP-hard [58]. In the past decades, many different
optimization techniques have been proposed to overcome this difficulty.
On the one hand, greedymethods, such as matching pursuit (MP) and its
variants [133, 152, 153, 159], directly tackle the 𝑙0-norm minimization for𝑘-sparse signals. However, these methods, with the notable exemption
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3.1 Compressed sensing-based reconstruction

of the sparsity-adaptive MP [52], require that one specifies the sparsity
value 𝑘 which is unknown in practice. Due to their greedy nature, MP-
based methods, while often faster than alternatives, usually converge to
a worse minimum as compared to the following.

If the RIP of the sensing matrix is fulfilled, the optimization prob-
lem (3.1) is equivalent to the constrained convex 𝑙1-minimization [58]min𝐱 ‖𝐱‖1 subject to ‖𝐥∗

p − 𝐌𝚿𝐱‖2 < 𝜖 . (3.4)

Furthermore, this constrained problem is equivalent to the unconstrained
basis pursuit denoising [38]min𝐱 ‖𝐥∗

p − 𝐌𝚿𝐱‖22 + 𝜂‖𝐱‖1 (3.5)

for some Lagrangemultiplier 𝜂 ∈ ℝ. In statistics, this is known as the least
absolute shrinkage and selection operator (LASSO) [191]. This so-called convex
relaxation opens the problem to well-scaling optimization techniques.

In the considered case regarding spectral light fields, one faces sev-
eral challenges employing the compressed sensing framework. First, the
considered signals are comparably high-dimensional. For example, even
in the case of a small light field patch of shape (9, 9, 32, 32, 13), which
corresponds to the size of the light fields in the used test dataset, the
vectorized dimension is already 𝑁 ≈ 106 and the basis 𝚿 alone requires
more than 4.6 TB of memory at 32 bit resolution. This is unfeasible even
for large-scale computers, not even considering the case of full-sized
light fields. The same issue is generally also true for the coding matrix𝐌. However, in the considered case, due to the one-hot encoding in the
spectral dimension, the coding mask takes a simple diagonal form𝐌 = diag(𝐦) , 𝐦 ∈ {0, 1}𝑁 , (3.6)

when not performing the projection along the spectral dimension. While
this increases the memory requirements of the coded light field (be-
cause it is not spectrally projected), the memory requirements of the
coding mask is reduced drastically. Furthermore, the coding can now be
expressed as a simple element-wise multiplication instead of a matrix
multiplication reducing the computational effort:𝐌𝚿𝐱 = 𝐦 ⊙ 𝚿𝐱 . (3.7)
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3 Reconstruction from Coded Light Fields

Therefore, the optimization problem (3.5) slightly simplifies tomin𝐱 ‖𝐥∗ − 𝐦 ⊙ 𝚿𝐱‖22 + 𝜂‖𝐱‖1 , (3.8)

where 𝐥∗ ∈ ℝ𝑈𝑉 𝑆 𝑇Λ denotes the vectorized version of the coded (but not
spectrally projected) light field L∗. This can trivially be re-written asmin𝐱 𝑓(𝐱) + 𝜂‖𝐱‖1 , (3.9)

where 𝑓(𝐱) = ‖𝐥∗ − 𝐌𝚿𝐱‖22 = ‖𝐥∗ − 𝐦 ⊙ 𝚿𝐱‖22 (3.10)
is convex and differentiable. Its derivative can be explicitly calculated as∇𝑓(𝐱) = 2(𝚿T𝐌T𝐌𝚿𝐱 − 𝚿T𝐌𝐥∗ )= 2(𝚿T𝐦 ⊙ 𝚿𝐱 − 𝚿T𝐦 ⊙ 𝐥∗ ) . (3.11)

Here, it was used that 𝐌 = diag(𝐦) is an orthogonal projection, i.e.𝐌T = 𝐌 and 𝐌2 = 𝐌. This makes the problem suitable for the L-BFGS
optimization [26] in theOWL-QNvariant [7] whichwas developed specif-
ically to scale well to high-dimensional problems. Moreover, using a
non-matrix-based implementation of the basis transform 𝚿, saving of
the basis matrix can be avoided and the approach becomes feasible even
for full-sized spectral light field reconstruction.

Second, in the considered case, one is quite severely restricted in the
design of the coding matrix 𝐌 due to the constraints of the hardware
realization. Specifically, the design is constrained by the physical coding
model (2.5) and the summation constraint (2.6). However, it can be shown
that random matrices, such as random Bernoulli oder Gaussian matrices,
are largely incoherent to any orthonormal basis [58]. For this reason, in
the compressed sensing context, random binary matrices are considered
in the following. That is, for every spatial coordinate (𝑠, 𝑡) a random
wavelength channel index is drawn independently from the discrete
uniform distribution on the set {1, 2, … , Λ},𝚣𝑠,𝑡 ∼ U{1, Λ} , (3.12)

which specifies the spectral coordinate of the one-hot encoding,

M[𝑠, 𝑡, 𝜆] = {1 if 𝜆 = 𝚣𝑠,𝑡 ,0 otherwise.
(3.13)
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3.1 Compressed sensing-based reconstruction

To obtain the vectorized 𝐦, the full mask M is subsequently vectorized
and tiled 𝑈𝑉-times. While this does not directly correspond to a random
Bernoulli matrix, since the individual matrix entries are not independent
along the spectral dimension due to the summation constraint, it is the
closest mask that can actually be achieved with real hardware and the
considered camera model. Also, it is not the main focus of this thesis
to optimize the coding scheme in the context of compressed sensing.
Different coding schemes however will be discussed in the context of the
proposed principal reconstruction in Section 3.3.

And finally, third, it is in principle not known which bases are suitable
to sparsely represent spectral light fields. To this end, the following two
approaches are considered.

3.1.1 Fixed basis-based reconstruction
In the signal processing community, many methods have been discussed
to sparsely represent natural (discrete) signals. Most prominently, the dis-
crete Fourier transform and its real-valued analogue—the discrete cosine
transform (DCT)—use global periodic functions as basis functions. The
consequence of this is a fixed spatial frequency resolution. Using basis
functions with a compact support, the so-called wavelets, the frequency
decomposition structure can be altered or even made adaptive to a given
signal. The resulting discrete wavelet transform (DWT) and its generaliza-
tion—the wavelet packet transform (WPT)—have been applied to many
problems in image processing and shown to be well suited to sparsely
represent natural images [132]. Depending on the used decomposition
structure, adaptive frequency resolutions are obtained. For example, the
standard (multi-level) 2D-DWT has a high spatial resolution but low
frequency resolution at high frequencies (the detail coefficients) and a
low spatial resolution but high frequency resolution at low frequencies
(the approximation coefficients). However, the wavelet transform is not
anisotropic which is problematic at image edges and other curve-like dis-
continuities. This motivated further generalizations such as curvlets [29],
ridgelets [28], and shearlets [57]. In principle, these anisotropic trans-
forms would be well suited for sparse light field representations: Due
to the epipolar geometry, diffuse points of a scene will be mapped to
constant-valued 2D planes in the 4D light field. For example, this re-
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3 Reconstruction from Coded Light Fields

sults in the well known line-like structure of the EPIs showing a 1D
section of these 2D planes whose slope depends on the disparity of the
scene object as previously discussed in Section 2.2. Hence, light fields
show a strong correlation along these planes, and discontinuities along
directions normal to them.

Nevertheless, only little work has been published regarding sparse
light field representation using fixed bases. Recent works by Vaghar-
shakyan et al. use the shearlet transform to sparsely code each individual
EPI of the light field to synthesize intermediate views [201, 202] or use it
for compressive light field coding [2]. However, it is not clear how this
approach can be used in the context of light field compressed sensing.
Similarly, a disparity-aware generalization of the DWT has been pro-
posed [35, 69], however, the considered light fields have a much higher
angular resolution than the ones considered in this thesis. In the con-
sidered case, one faces yet another challenge when transforming light
fields into a sparse basis, namely the strong asymmetry between the
spatial and the angular as well as the spectral resolution. That is, the
angular and spectral resolution are comparably low. As previously noted,
throughout this thesis the light fields have an angular resolution of (9, 9)
and a spectral resolution of (13) while the spatial resolution varies from
(32, 32) to a full-sized resolution of (512, 512). These small resolutions
make it quite difficult to employ more complex basis functions and hence
limit the potential of the DWT and its anisotropic generalizations. For
example, the well-known db2 Daubechies wavelet already has a filter
sample length of four.

To investigate this in more detail, Figure 3.1 shows the mean mutual
coherence of 100 sensing matrix realizations where the coding matrix
is sampled according to (3.12) and (3.13). Here, the 5D-DCT, the 5D-
DWT using two different mother wavelets, and a combined approach
using the 3D-DCT in the angular and spectral and the 2D-DWT in the
spatial domain are considered. For the (flattened) 5D transforms, only
separable transforms are considered, i.e. the basis matrices are calculated
as Kronecker products from the corresponding 1D transforms,𝚿 = 𝚿𝑢 ⊗ 𝚿𝑣 ⊗ 𝚿𝑠 ⊗ 𝚿𝑡 ⊗ 𝚿𝜆 . (3.14)

Note that in particular, the resulting 5D-DWT and 2D-DWT correspond
to the so-called fully-separable DWT which has a slightly different fre-
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Figure 3.1 Mean mutual coherence of 100 measurement matrix realizations 𝐀 = 𝐌𝚿
using different samples of the coding matrices 𝐌, basis matrices 𝚿, and light field sizes.
The shown error bars indicate the 1𝜎 interval.

quency decomposition than the one typically used in the 2D case. As
previously argued, the 5D-DCT performs much better than the 5D-DWT
for both the Haar as well as the db2 wavelet, in particular for higher
resolutions. As expected, the db2 wavelet performs worse than the Haar
wavelet due to the larger filter length and the small considered light
field resolutions. The combination of a spatial 2D-DWT with the DCT
does improve the performance compared to the plain DWT but it fails to
outperform the 5D-DCT at the investigated sizes. Note that it was not
possible to measure the mutual coherence for larger light field sizes due
to the immense memory requirements of the basis matrices. Concluding,
for the considered light field sizes and binary coding, the 5D-DCT results
in the lowest coherence of the measurement matrix.

This observation is in accordance with a precursory study that was
jointly conducted with Matthias Bächle [A5]. Here, it was found that
the DWT, or even more generally the signal-adapted WPT, performs just
on-par or worse than the DCT at high compression ratios in the case of
compression and denoising of 4D (monochromatic) light fields. Similar
observations have also been made by Marwah et al. [138].

Finally, these more elaborate transforms also come with a much higher
computational complexity resulting in much slower calculation as com-
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3 Reconstruction from Coded Light Fields

pared to the DCT. This would drastically slow down the reconstruction
which is already in the order of hours for the full-sized light fields.

Lower-dimensional DCTs, such as a subaperture-wise 3D-DCT, were
considered in a precursory study [B6] but were found to be inferior
to the full 5D-DCT. Concluding, for these reasons, only the 5D-DCT is
considered in the fixed-basis approach.

Using the 5D-DCT as a basis for the spectral light field reconstruction
and a functional (non-matrix-based) implementation of the DCT 𝚿 and
its inverse 𝚿T, explicitly saving the matrix 𝚿 can be avoided and the
approach becomes feasible even for full-sized light field reconstruction.
With these modifications, in the considered case, the reconstruction of
full-sized light fields with shape (9, 9, 512, 512, 13) requires about 96GB
of RAM which is well within the capacity of high-end working stations
or mid-range cluster computing nodes.

However, this DCT-based approach does not explicitly consider the
epipolar geometry of the light field. As it will be shown in the evaluation,
this results in decreased performance in the subsequent disparity esti-
mation which of course is strongly dependent on the geometry. To make
use of the light field geometry for a sparse representation, the following
dictionary learning approaches are considered.

3.1.2 Dictionary-based reconstruction
To overcome the difficulty of explicitly choosing an appropriate basis,
one can also learn a sparse representation of the spectral light fields
using a suitable training dataset. This is referred to as dictionary learn-
ing [193]. Here, the goal is to find a dictionary 𝐃 ∈ ℝ𝑁×𝑘𝑁, where again𝑁 is the vectorized light field’s dimension and 𝑘 > 1 is the so-called
dictionary overcompleteness, such that the (possibly approximate) light
field representation 𝐱 ∈ ℝ𝑘𝑁, given by𝐥 = 𝐃𝐱 , (3.15)

is sparse. The columns 𝐝𝑖, 𝑖 = 1, … , 𝑘𝑁, of 𝐃 are called the atoms of the
dictionary. Obviously, obtaining 𝐱 from a given light field 𝐥 is an inverse
problem (and in fact very similar to the reconstruction problem (3.1))
and may only be solved approximately. To learn a dictionary 𝐃 from a
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3.1 Compressed sensing-based reconstruction

training dataset 𝐋 ∈ ℝ𝑁×𝐿 containing 𝐿 vectorized spectral light fields,
the joint optimization problemmin𝐃,𝐗 ‖𝐋 − 𝐃𝐗‖22,2 + 𝜂‖𝐗‖1,1 subject to 𝟏 ⊙ 𝐃T𝐃 = 𝟏 , (3.16)

has to be solved [131]. Here, 𝐗 ∈ ℝ𝑘𝑁×𝐿 denotes the sparse representa-
tion of all light fields in the training dataset and ‖⋅‖𝑝,𝑝 denotes the (𝑝, 𝑝)-
matrix norm, i.e. ‖⋅‖2,2 corresponds to the Frobenius norm and ‖⋅‖1,1 is
equal to the sum of the absolute matrix elements. The constraint on 𝐃
ensures that all atoms are normalized. The optimization is performed
in an alternating manner, separating the non-convex problem (3.16) into
two convex sub-problems for 𝐃 and 𝐗, respectively [109, 131]. Hence,
for each optimization iteration step, first a sparse representation 𝐗 of
the light field batch is estimated using a fixed dictionary 𝐃, which is
initialized using a truncated normal distribution and succeeding atom
normalization. Again, there are several approaches to estimate the sparse
decomposition. Here, due to its fast convergence, the fast iterative shrink-
age/thresholding algorithm (FISTA) [17] is used to solvemin𝐗 ‖𝐋 − 𝐃𝐗‖22,2 + 𝜂‖𝐗‖1,1 . (3.17)

In the second step, the sparse representation𝐗 is fixed, and the dictionary
optimizationmin𝐃 ‖𝐋 − 𝐃𝐗‖22,2 subject to 𝟏 ⊙ 𝐃T𝐃 = 𝟏 , (3.18)

is performed updating the dictionary atoms using gradient descent and
succeeding atom normalization.

Over a fixed-basis approach, the dictionary has the advantage of im-
plicitly taking the light field geometry and redundancy into account.
However, one still faces the problem of large dimensionality. Due to the
dictionary overcompleteness, the problem is even slightly more severe
than for the basis decomposition.

In the context of light fields, some dictionary learning approaches
have been investigated in the literature, however, most do not explicitly
consider the color or spectral domain, performing the sparse coding
channel-wise. For example, the dimensionality issue can be alleviated by
using a disparity-aware dictionary towarp the central view [37]. Similarly,
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Johannsen et al. [97] learn a disparity-aware dictionary by learning atoms
for the central viewwhich are subsequently lifted to the full 4D light field
using a predefined constant disparity. In this way, each atom is associated
with a known disparity and disparity estimation can be performed by
analyzing the coefficients of a light field in the dictionary representation.
However, these approaches are problematic in the case of occluding
scenes or patches. More closely related to the above problem statement,
Marwah et al. [138] discuss a general dictionary learning approach for
compressive light field imaging. In order to solve the problem of large
dimensionality, the learned atoms are chosen to be of a smaller size,
performing the full light field representation patch-wise. This approach
is adopted here.

That is, the dictionary is learned with atoms of shape (5, 5, 8, 8, 13).
To encode an input light field using the dictionary, the light field is
first patched into the corresponding shape, using a spatial overlap of
(4, 4) and an angular overlap of (1, 1). To avoid edge defects, overlapping
patches are averaged when de-patching. Patching in the spectral domain
is not performed as the characteristics of the different spectral bands
are assumed to be unique. Here, the shape of the light field atoms was
chosen as large as possiblewhile still resulting in amanageable dictionary
size. Using a dictionary overcompleteness of 𝑘 = 2, which in previous
works has been argued to be suitable for light field dictionaries [138],
the dictionary is roughly 3.5GB in size. With the additional memory
requirements of the gradient backpropagation and light field patching,
this was just small enough to perform the dictionary learning on a 32GB
Nvidia Tesla V100 GPU.

Further, since the used training dataset contains more than 200GB
of light field data (cf. Section 4.1), it is obvious that (3.16) cannot be
optimized at once. To overcome this, coresets have been discussed in
the literature [60], which can be interpreted as a form of importance
sampling. That is, using a specifically designed cost function, a suitable
subset of the training dataset is chosen to perform the optimization task.
However, due to the advances in computer hardware (in particular GPU
memory) and the success of stochastic gradient descent (SGD) in ma-
chine learning, here SGD is used to solve (3.16) (or rather the alternating
optimization of the two convex subproblems). This approach has been
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proposed already in 2009 by Mairal et al. [131]. Note that the atom shape
(5, 5, 8, 8, 13), while seeming small in the context of light fields, is actually
comparably high-dimensional. For image-based dictionary learning, this
corresponds to atoms of shape (144, 144), since 144⋅144 ≈ 5⋅5⋅8⋅8⋅13.
However, even methods specifically adapted for high-dimensional im-
age dictionary learning only reach a feasible atom size of (64, 64) [187].
To further increase the individual atom size, the following dictionary
decomposition approach is developed.

3.1.2.1 Dictionary tensor decomposition

As previously introduced, the compressed sensing framework is typi-
cally formulated in a vectorized fashion. This is useful since a common
framework and generic algorithms can be developed regardless of the
dimensionality of the specific problem, e.g. whether one deals with 1D
time signals, 2D images, or 5D spectral light fields. Mathematically, one
simply makes use of the fact that two vector spaces with the same (finite)
dimension are isomorphic [83], i.e. in particular, for any 𝑛, 𝑚 ∈ ℕ thatℝ𝑛×𝑚 ≃ ℝ𝑛𝑚. From a practical standpoint, this corresponds to the fact
that a block of computer memory associated with an 𝑛𝑚-dimensional
array can equivalently be viewed as an (𝑛, 𝑚)-shaped tensor, related via
a reshape and (possibly) a transpose.

However, in the vectorized dictionary learning approach it is not clear
how to explicitly utilize the underlying geometric structure of the signal.
To overcome this difficulty, the vectorized dictionary learning problem
is “un-flattened” to regain the tensorial light field structure, i.e. the light
field representation correspondence(𝐥)𝑖 = ∑𝑗 𝐃𝑖𝑗(𝐱)𝑗 ↼⇁ L𝑢𝑣𝑠𝑡𝜆 = ∑𝑗 D𝑗𝑢𝑣𝑠𝑡𝜆(𝐱)𝑗 (3.19)

is used, where now D ∈ ℝ𝑘𝑁×𝑈×𝑉 ×𝑆×𝑇 ×Λ denotes the tensor dictionary
(here, the atom axis is put as the first axis for simplicity) and again 𝐥
corresponds to the vectorized version of L.

In the context of spectral light fields, Marquez et al. [134] introduce a
dictionary learning approach based on the Tucker tensor decomposition.
However, their approach is tightly coupled to their specific camera de-
sign and cannot be applied in the presented case. While some general
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tensor dictionary learning approaches and algorithms have been dis-
cussed in the literature [27, 63, 170], a more straightforward approach is
proposed here. The proposed approach is based on simple matrix-tensor
correspondences, while keeping the underlying algorithms identical to
the vectorized case in order to be able to directly compare the tensor
approach with the conventional approach. Via these correspondences, all
matrix-vector operations that are used for the vector dictionary learning
can now be translated to the corresponding tensor calculations. Most im-
portantly, the already presented correspondence (3.19) of matrix-vector
multiplication is used. Furthermore, for the used FISTA sparse decom-
position algorithm, the largest eigenvalue of 𝐃T𝐃 is calculated via the
von Mises iteration [145] which is also known as the power method. To
this end, the following correspondence is needed:(�̃�)𝑖 = ∑𝑗𝑘 𝐃𝑗𝑖𝐃𝑗𝑘(𝐲)𝑘 ↼⇁ (�̃�)𝑖 = ∑𝑗𝑢𝑣𝑠𝑡𝜆D𝑖𝑢𝑣𝑠𝑡𝜆D𝑗𝑢𝑣𝑠𝑡𝜆(𝐲)𝑗 . (3.20)

With these correspondences, the standard dictionary learning can be
directly adapted to use a tensor dictionary while keeping all numerical
calculations identical. This now opens the problem to tensor decomposi-
tion techniques.

As a more parameter-efficient alternative to the standard vector dic-
tionary learning approach, here it is proposed to factorize the tensor
dictionary into three separate dictionaries for the angular, spatial, and
spectral domain. This decomposition is similar to the one proposed
by Caiafa and Cichocki [27] but does not further separate the 2D angular
and spatial domains. That is, the light field is now represented as linear
combinations of tensor products of the individual angular, spatial, and
spectral atoms,

L𝑢𝑣𝑠𝑡𝜆 = ∑𝑎𝑏𝑐 A𝑎𝑢𝑣B𝑏𝑠𝑡C𝑐𝜆X𝑎𝑏𝑐 . (3.21)

Here, A with shape (𝐴, 𝑈, 𝑉 ), B with shape (𝐵, 𝑆, 𝑇 ), and C with shape(𝐶, Λ) denote the angular, spatial, and spectral dictionary with sizes𝐴 = 𝑘𝑈𝑉, 𝐵 = 𝑘𝑆𝑇, and 𝐶 = 𝑘Λ, respectively. The coefficient tensor X
of shape (𝐴, 𝐵, 𝐶) is hence of size 𝑘3𝑈𝑉𝑆𝑇Λ which is a factor of 𝑘2 larger
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3.1 Compressed sensing-based reconstruction

Table 3.1 Overview of the used matrix-tensor and tensor factorization correspondences.

Type Vector Tensor (full) Tensor (decomposed)

Light field 𝐥, (𝑁) L, (𝑈, 𝑉, 𝑆, 𝑇, Λ) L, (𝑈, 𝑉, 𝑆, 𝑇, Λ)
Coefficients 𝐱, (𝑘𝑁) 𝐱, (𝑘𝑁) X , (𝐴, 𝐵, 𝐶)
Dictionary 𝐃, (𝑁, 𝑘𝑁) D, (𝑘𝑁, 𝑈, 𝑉, 𝑆, 𝑇, Λ) A, (𝐴, 𝑈, 𝑉 )

B, (𝐵, 𝑆, 𝑇 )
C, (𝐶, Λ)

Decomp. 𝐥=𝐃𝐱 L𝑢𝑣𝑠𝑡𝜆 =∑𝑗 D𝑗𝑢𝑣𝑠𝑡𝜆(𝐱)𝑗 L𝑢𝑣𝑠𝑡𝜆 =∑𝑎𝑏𝑐A𝑎𝑢𝑣B𝑏𝑠𝑡C𝑐𝜆X𝑎𝑏𝑐
Eigenval. �̃�=𝐃T𝐃𝐲 (�̃�)𝑖 =∑𝑗𝑢𝑣𝑠𝑡𝜆D𝑖𝑢𝑣𝑠𝑡𝜆D𝑗𝑢𝑣𝑠𝑡𝜆(𝐲)𝑗 Y ̃𝑎𝑏𝑐 = ∑𝑖𝑗𝑘𝑢𝑣𝑠𝑡𝜆A𝑎𝑢𝑣A𝑖𝑢𝑣B𝑏𝑠𝑡B𝑗𝑠𝑡⋅C𝑐𝜆C𝑘𝜆Y𝑖𝑗𝑘
than in the vectorized case. However, with this approach, the overall
dictionary size is significantly reduced from𝑘(𝑈𝑉𝑆𝑇Λ)2 (3.22)

to 𝑘((𝑈𝑉 )2 + (𝑆𝑇 )2 + (Λ)2) , (3.23)

which frees up memory to use larger individual atoms as compared to
the vectorized case. In the presented case, the atom size is increased
from (5, 5, 8, 8, 13) to a (separated) size of (7, 7, 16, 16, 13). To complete the
correspondences necessary for the FISTA decomposition,

Y ̃𝑎𝑏𝑐 = ∑𝑖𝑗𝑘𝑢𝑣𝑠𝑡𝜆A𝑎𝑢𝑣A𝑖𝑢𝑣 B𝑏𝑠𝑡B𝑗𝑠𝑡 C𝑐𝜆C𝑘𝜆 Y𝑖𝑗𝑘 (3.24)

is used to calculate the eigenvalues via the von Mises iteration. With
these analogies, the learning of the three independent dictionaries A,
B, and C is performed in complete analogy to the conventional vector
dictionary learning. In the machine learning context, this decomposition
approach can also be interpreted as a form of parameter sharing. An
overview of the used matrix-vector/tensor correspondences and tensor
decomposition is given in Table 3.1.
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3 Reconstruction from Coded Light Fields

3.2 Principal reconstruction via multi-task
deep learning

Despite the versatile applications and flexibility that light fields offer,
in the case of coded light fields, it seems superfluous to reconstruct the
high-dimensional spectral light field from the low-dimensional com-
pressed measurement, only to extract again low-dimensional (yet com-
plex) information from it. For example, a spectral light field of shape
(9, 9, 512, 512, 13), which is the resolution that is used for the full-sized
evaluation in this thesis, requires about 1.1GB of memory when saved
with 32 bit precision while its compressed measurement and spectral
central view only require roughly 85MB and 14MB, respectively. Fur-
thermore, the performance of subsequent light field applications, such
as disparity estimation, may suffer due to the errors introduced by the
reconstruction. Therefore, instead of reconstructing an intermediate full
light field from the coded measurement, it is proposed to infer the de-
sired properties from the coded light field directly. Here, this is referred
to as principal reconstruction.

In this thesis, the focus lies on the reconstruction of the multispec-
tral central view and its aligned disparity map but other reconstruction
targets are also possible. That is, given the coded measurement L∗, esti-
mating the central view I[𝑠, 𝑡, 𝜆] and the corresponding disparity map
D[𝑠, 𝑡] without the intermediate recovery of the full light field L. In this
instance, the light field camera with a spectrally coded MLA can be in-
terpreted as a monocular single-shot spectral depth camera. The central
view and disparity map are chosen as the reconstruction targets because
they represent a large amount of the full light field data and epipolar
geometry. In fact, for non-occluding Lambertian scenes, they are equiv-
alent to the full light field data. Of course, this may not be suitable for
some applications such as specular component estimation or applica-
tions including strong occlusion. However, the reconstruction targets
can in principle be adapted to those needs. That is, one could equally
consider segmentation, saliency, or reflection properties of the light field.
A schematic comparison of the conventional and the proposed principal
reconstruction, in the case of the used reconstruction targets I and D, is
shown in Figure 3.2.

38



3.2 Principal reconstruction via multi-task deep learning

L∗
p[𝑢, 𝑣, 𝑠, 𝑡]

L[𝑢, 𝑣, 𝑠, 𝑡, 𝜆]
I[𝑠, 𝑡, 𝜆], D[𝑠, 𝑡]

Figure 3.2 Schematic comparison of conventional, e.g. compressed sensing-based, (top)
and principal reconstruction (bottom) from a spatio-spectrally coded light field.

Since artificial neural networks have become the state of the art for
many computer vision tasks, the proposed principal reconstruction is per-
formed using a supervised deep learning approach. In the context of light
field deep learning, neural networks have significantly outperformed con-
ventional methods, e.g. in the case of disparity estimation [176], light field
superresolution [227, 228], intrinsics estimation [4], dense-from-sparse
light field reconstruction [218], classification [208], and more.

3.2.1 Related work
Three publications resemble the proposed principal reconstruction. To
some extent, the original work on coded MLAs by Ye and Imai [226]
follows an approach that is similar to the proposed one. The authors
reconstruct a super-resolved spectral central view from the coded light
field formulated as a compressed sensing reconstruction. However, they
heavily constrain the problem to scenes with a constant disparity (which
is reasonable in the considered case of remote sensing). Doing so, the
light field coding can actually be formulated in a linear fashion using
solely the central view. Hence, its reconstruction is suitable for the com-
pressed sensing framework. However, they do not discuss details on the
estimation of the disparity from the coded data. While it seems feasi-
ble in the case of a constant disparity, it is certainly challenging in the
general case due to the sparsity of the coded light field and therefore
sparse observation of the epipolar geometry. Furthermore, in the case
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3 Reconstruction from Coded Light Fields

of a constant disparity, the reconstruction of the spectral central view
actually becomes trivial as the individual subapertures can simply be
warped onto the central view “filling up” the missing spectral measure-
ments. Due to the constant disparity, thewarping corresponds to a simple
translation of the subaperture views. This approach was investigated
in detail in a precursory study [A12] and is not further discussed here.
The use of compressed sensing in this case therefore seems excessive. In
this thesis, the constraint is lifted and the general case of scenes with
arbitrary disparity is investigated.

Recently, Vadathya et al. [200] proposed a general framework for light
field reconstruction from coded projections. In fact, similar to the pro-
posed approach, they estimate an intermediate central view and disparity
field directly from the coded measurement. However, there are some
crucial differences to the work that is presented here: First, the estimated
central view and the disparity field are used only intermediately to re-
construct the full light field from the coded measurement. In fact, the
central view and disparity field estimation networks cannot be trained
without the full light field reconstruction as the network design and (self-
supervised) loss function are based on the full light field reconstruction.
This directly opposes the proposed approach. However, due to the self-
supervised architecture, their approach can be trained using real-world
data and does not require synthetic disparity ground truth data, which is
useful in practice. Since the full light field is obtained from the estimated
disparity field and the central view, their approach is also not suitable
to estimate different intermediate reconstruction targets from the coded
measurements. While different targets are not explicitly considered in
this thesis, the proposed approach can be adapted straightforwardly. Sec-
ond, the coding schemes considered by Vadathya et al. include angular
integration and are only valid for attenuation mask-based compressive
light field imagers. In particular, this does not include MLA-multiplexed
and coded light fields which are considered in this thesis. And most
importantly third, their approach, as many compressive light field ap-
proaches before, does not consider the color or spectral domain of the
light field. An RGB compressed light field is obtained by demosaicing the
raw coded measurements of a Bayer pattern sensor, however, this is not
explicitly discussed. An extension to multispectral light fields is likely
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3.2 Principal reconstruction via multi-task deep learning

to require significant changes in the network’s architecture. The impact
of demosaicing in compressive light field imaging remains unclear and
has yet to be discussed in the literature. Hence, the framework cannot be
applied to the spectrally coded light fields that are considered here.

Moreover, recent works by Baek et al. [13] propose a new spectral depth
snapshot camera. The optics, a free-form diffractive lens, and reconstruc-
tion algorithm are trained in an end-to-end fashion which they refer to as
deep optics. The considered reconstruction from the “compressed” mea-
surement is almost the same as in the proposed case—namely a spectral
image and its aligned depth map (instead of the disparity). In fact, the
used reconstruction network is very similar to the one proposed here. The
crucial difference between the two approaches is the angular component
of the incoming signal (coded by the MLA) which can be considered to
explicitly take into account the epipolar geometry. This is not explicitly
the case in the work by Baek et al. as the whole optical setup is learned in
an end-to-endmanner. The explicit usage of the epipolar geometry might
be beneficial for the quality of the estimated disparity map however a
direct comparison of the two approaches is difficult. Furthermore, the
approach presented in this thesis is based on a well-understood cam-
era design. In particular, it is therefore possible to use well-established
calibration schemes of the used light field camera. Hence, the proposed
trained reconstruction network is independent of the used (calibrated)
camera. On the other hand, the approach by Baek et al. is very general in
nature and also considers higher spatial and spectral resolutions than the
presented one. Furthermore, since the optics are optimized jointly with
the reconstruction, it is possible to directly estimate the depth instead of
the disparity values without the need of additional camera calibration.
Overall, the two approaches cannot be directly compared in ameaningful
quantitative way as they are conceptually quite different.

3.2.2 Network architectures
In recent years, deep learning has been tremendously successful in nu-
merous scientific and engineering disciplines, ranging from computer
vision (e.g. detection, semantic segmentation, or image synthesis [100,
166, 231]), to natural language processing (e.g. neural language modeling,
text generation, or machine translation [24, 50, 123]), robotics (e.g. con-
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3 Reconstruction from Coded Light Fields

trol [146]), chemistry (e.g. protein unfolding [99]), physics (e.g. efficient
sampling of statistical ensembles [156]), and mathematics (e.g. solving
differential equations [126]), to name a few.

As opposed to common image-based computer vision tasks, light field
deep learning poses additional challenges. Similar to the case in light
field compressed sensing, these are related to their comparably large
dimensionality and the underlying epipolar geometry. In image-based
deep learning, convolutional neural networks (CNNs) have been the
go-to choice neural network architecture ever since the groundbreaking
performance of AlexNet in the ImageNet Large Scale Visual Recognition
Challenge in 2012 [107]. Since then, CNNs have pushed the state of the
art in many image-based tasks, in particular with the introduction of
downsampling, pooling, and residual convolutions to make the training
of very deep architectures, such as VGG [179] and ResNet [76], feasible.
In fact, it can be shown analytically that, in the discrete case, the convo-
lution is the only linear operator that ensures translational equivariance
by design [62], which is a useful inductive bias in many image-based
computer vision tasks. In recent years, this has led to generalization of
CNNs to spheres [42] and even arbitrary Riemannian manifolds [215].

Therefore, it would be the most straightforward approach to use 4D
convolutions for light field deep learning applications. In the case of spec-
tral light fields, 5D convolutions would be the natural choice. However,
these high-dimensional convolutions aremuchmore parameter-intensive
and computationally complex than the standard 2D and 3D convolutions.
Furthermore, there is no native implementation of 4D or 5D convolutions
in CUDA which is necessary for the GPU-accelerated training of the
neural networks using Nvidia GPUs. To overcome these challenges, the
following approaches have been discussed in the literature.

By restricting the 4D convolutional kernelsK to those that are separable
in the spatio-angular domain, i.e.

K𝑢𝑣𝑠𝑡 = A𝑢𝑣 ⊗ B𝑠𝑡 (3.25)

for some 2D kernels A and B, one can achieve 4D convolutions by alter-
natingly applying 2D convolutions in the angular and spatial domain,
respectively. Moreover, the number of parameters as well as the compu-
tational complexity is reduced as compared to a native 4D convolution.
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3.2 Principal reconstruction via multi-task deep learning

The approach to separate high-dimensional filter kernels into lower-
dimensional ones is quite common in image processing and has been
around for decades. However, in the context of light field deep learning,
it was first proposed by Yeung et al. [227]. Here, the spectral domain is
not explicitly taken into account for the convolution but merely viewed
as a “channel” axis, i.e. for every spectral dimension a different kernel is
learned (as it is also common for 2D convolutions applied to RGB images).
On a practical note, this approach is not as straightforward to implement
as it seems since CUDA and common high-level GPU-accelerated tensor
frameworks such as TensorFlow and PyTorch support 2D convolutions
only on 4D inputs with one batch, channel, and two spatial axes. Hence,
to perform 2D convolutions on a 6D mini-batch of spectral light fields
directly, one has to either implement a corresponding CUDA kernel or a
TensorFlow/PyTorch layer utilizing only the 2D convolution on 4D in-
puts. Furthermore, even though the spatio-angular separation decreases
the complexity of 4D convolutions, it is still comparably expensive.

Therefore, there exist several other 2D and 3D convolution-based archi-
tectures in the context of light field deep learning. In order to employ the
conventional 2D and 3D convolution of GPU-accelerated tensor frame-
works, one has to reshape the batch of input light fields to 4D and 5D,
respectively, or use a multi-input approach. A common practice is to use
a single EPI volume or the so-called crosshair sections of the light field,
corresponding to the vertical, horizontal, and diagonal EPI volumes,
resulting in a multi-input architecture. For example, this approach is
used by the well-known EPINET disparity estimation network [176] or
the multi-task network proposed by Alperovich et al. [4]. Alternatively,
stereo-view pairs [175] or either the full or a sparse subset of the light
field are used [129, 160, 227, 228]. Furthermore, one can perform a 2D or
3D reshape of the light field, for example using a subaperture image (SAI)
or a microlens image (MLI) reshape, to feed into the network. Finally,
one can also simply stack the subaperture views channel-wise, partially
losing angular information. Depending on the reshape, spatial, angular,
or spatio-angular convolution can be performed by using a standard
(possibly dilated and/or strided) 2D or 3D convolution on the reshaped
light field. An overview of the most commonly used light field reshapes
is given in Figure 3.3.
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……
EPI volume stream SAI MLI Stacked

[(𝑆, 𝑇 , 𝑉 , Λ), (𝑆, 𝑇 , 𝑈, Λ)] (𝑈⋅𝑆, 𝑉⋅𝑇 , Λ) (𝑆⋅𝑈, 𝑇⋅𝑉 , Λ) (𝑆, 𝑇 , 𝑈⋅𝑉 , Λ)
Figure 3.3 Different reshapes of a light field of shape (𝑈, 𝑉, 𝑆, 𝑇, Λ) with corresponding
resulting shapes.

Inspired by compressed sensing and the success of autoencoder net-
works [82], a dual-streamU-net architecture [171], i.e. an encoder-decoder
network with skip connections, is proposed here using multiple decoder
streams to decode the spectral central view and disparity from the coded
light field. The main idea of the encoder-decoder architecture is to map
the coded light field to a well-adapted low-dimensional latent space.
Then, using two jointly trained decoder paths, the central view and the
disparity map are decoded from the latent representation. Ideally, this
latent representation is invariant under the actual coding of the light field
such that different codings of a light field are mapped to the same latent
representation and subsequently decoded to identical central views and
disparity maps. Additional to the standard encoder-decoder architecture,
the U-net design introduces skip connections to share features between
the encoder and decoder paths. In principle, the proposed method is not
specific to the low-dimensional reconstruction target, i.e. it is straight-
forward to extend the encoder by an additional upsampling block to
achieve superresolution in either one of the separate decoder paths, or
to add (or replace) decoder paths to estimate different light field prop-
erties. Two different encoders are investigated in this thesis, one built
upon separable 4D convolutions and one using 3D convolutions in the
(reshaped) spatio-angular domain. The network architectures are shown
in Figure 3.4 and Figure 3.5. In both cases, the full coded light field is
used as the network’s input, as it is important to use all of the available
information in the case of a sparsely sampled input.
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Coded input(𝑆, 𝑇 , 𝑈𝑉 , Λ) latent
repr.

1
D̂(𝑆, 𝑇 , 1)

Λ I ̂(𝑆, 𝑇 , Λ)
3D residual conv. Downsampling 3D/2D reshape
2D residual conv. Upsampling (1, 1) 2D conv.

Figure 3.4 Schematic overview of the used dual-task encoder-decoder network based on
3D/2D residual convolutions. The depicted shapes neglect the batch axis. Details on the
used blocks can be found in Figure 3.6.

For the proposed 3D convolution-based architecture, the subapertures
of the full light field are stacked along a single axis, resulting in a 4D
input of shape (𝑆, 𝑇 , 𝑈𝑉 , Λ). This way, 4D spatio-angular convolution
can be approximated by using a 3D convolution. However, the angular
information is lost to some extent because the flattened angular axis suf-
fers from discontinuities in the epipolar geometry. For example, consider
a light field with (9, 9) angular resolution that is flattened to a single axis
with 81 elements. The epipolar geometry is only consistent within blocks
of length nine (the individual EPI volumes) after which a discontinuity
occurs. The elements of these blocks do not need to be in consecutive
order, as the horizontal, vertical, or diagonal EPI volumes can be built
using different strides. Convolving a filter across these discontinuities
will lead to artifacts which the network will have to learn to mitigate
or circumvent, in particular using the higher-level features in deeper
layers. For this reason, usually, the EPI volumes are fed into the network
separately as previously noted. However, in this multi-input approach,
not all light field information is available to every layer which is argued
to be sub-optimal in the case of coded light fields. For example, using
the proposed reshape and 3D convolution, the epipolar geometry in all
angular directions can be utilized and not only the ones along a single
angular axis as is the case for multi-input models. In fact, the proposed
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Coded input(𝑈, 𝑉 , 𝑆, 𝑇 , Λ) latent
repr.

1
D̂(𝑆, 𝑇 , 1)

Λ I ̂(𝑆, 𝑇 , Λ)
S/A block A/S block Reshape
2D residual conv. Upsampling (1, 1) 2D conv.

Figure 3.5 Schematic overview of the used dual-task encoder-decoder network based on
separable 4D residual convolutions. The depicted shapes neglect the batch axis. Details on
the used blocks can be found in Figure 3.6.

angular flattening in combination with 3D convolution turns out to be
well-suited for the considered case as will be shown in the evaluation.

To extract the spatio-angular features, the full encoder path is then
built upon 3D residual convolution blocks [76] which consist of two con-
ventional convolution layers with intermediate batch normalization [93]
and ReLU activation. The residual connection of the block, consisting of
a convolution with a kernel size of one, allows for improved gradient
backpropagation as compared to a conventional convolution layer. The
number of used filters per layer is doubled after every downsampling
layer starting from 24 in the first residual block to 192 in the latent-space
residual block. All convolutions of the encoder are 3D convolutions with
a kernel size of (3, 3, 3), except for the residual convolutions which use
a kernel size of (1, 1, 1). Downsampling is performed via strided convo-
lutions with a kernel size of (3, 3, 3) and a (2, 2, 2) stride. Doing so, the
network remains fully convolutional, retaining the translational equivari-
ance, as opposed to downsampling via pooling such as the often-used
max-pooling [95].

The decoder is built symmetrically for both decoding paths, however
2D residual and transposed convolutions are used instead because the
estimated disparity and central view do not have any angular depen-
dence. In the last layer of each stream, a (1, 1) convolution with either
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ReLU

Output

Input(𝑈, 𝑉 , 𝑆, 𝑇 , 𝐹) Output(𝑆, 𝑇 , 𝑈′, 𝑉 ′, 𝐹 ′)
Input(𝑆, 𝑇 , 𝑈, 𝑉 , 𝐹) Output(𝑈, 𝑉 , 𝑆′, 𝑇 ′, 𝐹 ′)

Residual conv. Downsample Upsample Reshape A/S block S/A block

Figure 3.6 Schematic drawings of the used network blocks. In the case of 3D convolutions,
all 2D convolutional blocks are replaced with 3D blocks as detailed in the main text.

13 or one features is performed to obtain the final shapes (𝑆, 𝑇 , 13) and(𝑆, 𝑇 , 1) for the reconstructed central view and disparity, respectively.
The encoder features are joined with the decoder features via skip con-
nections by concatenation. Therefore, 3D to 2D reshapes are necessary
when connecting the encoder and decoders. The reshape converts a light
field tensor of shape (𝑆, 𝑇 , 𝑈𝑉 , Λ) to (𝑆, 𝑇 , 𝑈𝑉 Λ), ignoring the batch axis.
This way, the proposed architecture combines a 3D U-net encoder [41]
with dual-stream 2D U-net decoders [171]. The 3D convolution network
architecture is depicted in Figure 3.4.
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For the encoder based on separable 4D convolutions, the spatio-angular
(S/A) and angular-spatial (A/S) blocks are used as depicted in Figure 3.6.
Here, spatio-angular and angular-spatial reshapes, permuting the axes
of the input light field of shape (𝑈, 𝑉 , 𝑆, 𝑇 , Λ) to (𝑆, 𝑇 , 𝑈, 𝑉 , Λ) and vice
versa, are used. In the case of the S/A block, 2D residual convolution
is then performed in the angular domain, while for the A/S block the
convolution is performed in the spatial domain. After the residual convo-
lution, the feature maps are downsampled. For the A/S block, the spatial
downsampling is performed using (2, 2)-strided convolutions, similar
to the 3D convolution-based encoder. In the case of the angular down-
sampling that is used in the S/A block, such a strided convolution is not
suitable due to the low angular input resolution of (9, 9). Therefore, here
an implicit downsampling is performed by using 2D convolution with a
kernel size of (3, 3) in the angular domain without padding. This way, the
angular resolution is reduced by one from both sides in each dimension.
For example, the input angular resolution of (9, 9) is thus reduced to (7, 7)
after the first S/A block. The number of features in the input layer is again
24 and doubled after each spatial downsampling. The dual-stream de-
coder is identical for both architectures. The 4D convolution architecture
is shown in Figure 3.5.

As shown in Table 3.2, the number of trainable parameters of both
architectures is roughly the same, with a slightly larger number in the
case of the 4D convolutional architecture. In fact, both architectures can
be considered small- to mid-sized with respect to established CNN ar-
chitectures. For example, the smallest ResNet model, ResNet-50 with
25.5million parameters, is of similar size, while the larger ResNetmodels,
ResNet-101 and ResNet-152, already have 44.6 and 60.3 million trainable
parameters, respectively [76, 77]. Other well-established architectures
are even larger, e.g. VGG-16 already has 138.6 million trainable para-
meters [179], not even considering recent Transformer-based models
such as the Vision Transformer which has 632 million parameters in its
best-performing configuration [54]. Despite the comparably small size, in
terms of trainable parameters, the memory requirements of the proposed
architectures are considerable, in particular due to the used residual and
skip connections. For these, the intermediate feature representations
have to be saved temporarily, increasing the memory requirements as
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Table 3.2 Complexity comparison of the two proposed network architectures. The shown
GPU memory corresponds to the memory required during training using light fields of
shape (9, 9, 32, 32, 13), a mini-batch size of 64, and the adaptive Yogi [233] optimizer, which
tracks three parameters per trainable network parameter.

Model Parameters/M FLOP/M GPU memory/GB

3D Conv. 26.3 8.8 8.2
4D Conv. 29.7 12.3 17.7

compared to a similar architecture without residual and skip connections.
Again due to the high dimensionality of the light fields, these feature rep-
resentations are higher dimensional than in conventional image-based
architectures for which the memory requirements of the intermediate
representations is not as severe. Still, in precursory experiments it was
found that introducing skip connections drastically improves the test
performance and convergence, leading to shorter training times, which
is in accordance with findings in the literature [55, 158]. Furthermore,
larger models typically also need more training data to be trained to
adequate test performance whilst avoiding overfitting. Therefore, for the
considered case and the used training dataset (cf. Section 4.1), the size of
the proposed architectures is argued to be adequate.

Finally, comparing the two proposed architectures in terms of their
computational and memory complexity, as denoted in Table 3.2, the
floating point operations (FLOP) of the separable 4D convolutional ar-
chitectures as well as the necessary GPU memory during training is
much higher compared to the architecture based on 3D convolutions,
despite having a similar number of trainable parameters. The higher
memory usage is caused by the increased dimensionality of the skip
connections: Since both angular as well as spatial features are used for
each skip connection, the number of features is doubled as compared to
the 3D convolution architecture. Because these representations have to
be saved intermediately in order to be concatenated to the corresponding
features in the decoder, the memory overhead is much larger.

49



3 Reconstruction from Coded Light Fields

3.2.3 Training strategies
3.2.3.1 Multi-task training

Using the proposed network architectures, the training is inherently a
multi-task problem: the disparity estimation and central view recon-
struction are trained jointly. In the case of 𝑁 tasks, the naive multi-task
approach is to use a weighted sum of the individual task losses 𝐿𝑖 as the
overall training loss 𝐿 = 𝑁∑𝑖=1 𝑤𝑖 𝐿𝑖 + 𝐿reg . (3.26)

Here, 𝑤𝑖 > 0 are the task weights and 𝐿reg is a task-independent regular-
ization term (such as weight decay), which is neglected in the following
but is implicitly assumed to be added to the final loss. The first chal-
lenge in this straightforward approach is to find suitable task weights 𝑤𝑖,
which is time- and resource-intensive. Furthermore, it may not even be
possible to find optimal static task weights. During the training, for each
mini-batch the gradient of the loss with respect to the trainable network
parameters W , ∇W𝐿 = 𝑁∑𝑖=1 𝑤𝑖∇W𝑖𝐿𝑖 , (3.27)

is calculated and used to update the network parameters via SGD. Here,
the parameters W𝑖 contain those shared across all tasks (the encoder
parameters), as well as task-specific parameters (the individual decoder
parameters). The shared parameters are hence updated based on the
gradients from all tasks, which can be problematic: the gradients from
the different tasks may be on different scales leading to a task imbalance
during the update of the network parameters W . Finally, the tasks may
also be of different complexity, leading to different convergence speeds,
which further enhances the task imbalance.

For example, consider a dual-task toy example where the two tasks are
assumed to be similar in terms of complexity and scale. One task uses the
mean absolute error (MAE) and the other task the mean squared error
(MSE) as its loss function. While the MAE yields constant gradients, the
gradients of the MSE-trained task will be very large in the beginning,
dominating the update of the shared parameters. During training, the
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3.2 Principal reconstruction via multi-task deep learning

MSE-based gradients will decay, shifting the balance to the other task.
Therefore, manually choosing the taskweights 𝑤𝑖 such that the training is
balanced in the early stages will lead to an imbalance later in the training
and vice versa.

To overcome these difficulties, some approaches to dynamically update
the task weights 𝑤𝑖 during training have been recently discussed. Here,
the approach by Kendall et al. [102], using the multi-task uncertainty, as
well as the GradNorm method by Chen et al. [39] are considered, both of
which have shown good results in the context of computer vision.

Obtained frommaximizing the log-likelihood of themodel considering
the single-task uncertainties 𝜎𝑖, Kendall et al. propose to use the loss𝐿 = 𝑁∑𝑖=1 12𝜎2𝑖 𝐿𝑖 + ln 𝜎𝑖 (3.28)

instead of the naive loss (3.26). During training, the task weights𝑤𝑖 = 1/ (2𝜎2𝑖 ) (3.29)

are considered trainable parameters themselves and are updated in the
same fashion as the remaining network parameters via backpropaga-
tion and SGD. Intuitively, the additional terms ln 𝜎𝑖 prevent the task
weights from converging to zero, which would otherwise be a trivial
solution of the minimization of the loss 𝐿. Despite its simplicity, low over-
head, and comparably straightforward implementation, this approach
has shown good performance in segmentation and monocular depth
estimation [102].

Explicitly taking into account the tasks’ gradient norms and conver-
gence speeds, Chen et al. [39] propose the GradNorm method which
introduces the additional loss𝐿grad = ∣𝑤𝑖‖𝐆𝑖‖ − 𝐺mean ⋅ 𝑟𝛼𝑖 ∣ (3.30)

to optimize the (now trainable) weights 𝑤𝑖 of the main loss (3.26). Here,
theweights 𝑤𝑖 are used to bring the single-task gradients 𝐆𝑖 to a common
scale using the mean weighted gradient norm𝐺mean = 1𝑁 𝑁∑𝑖=1 𝑤𝑖‖𝐆𝑖‖ . (3.31)
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3 Reconstruction from Coded Light Fields

The single-task gradients 𝐆𝑖 = ∇Ws
𝐿𝑖 (3.32)

are calculated for every mini-batch during training with respect to a
set of shared network parameters Ws to make sure that the individual
gradients are elements of the samevector space and are hence comparable.
Usually, the parameters of the last shared layer are used for the gradient
calculations. The mean weighted gradient norm 𝐺mean is weighted by the
current relative inverse task learning rate 𝑟𝛼𝑖 , where 𝛼 is a hyperparameter
that can be used to manually adjust the task training speed imbalance.
The individual inverse task learning rates are calculated as�̃�𝑖 = 𝐿𝑖/𝐿init,𝑖 , (3.33)

where 𝐿𝑖 and 𝐿init,𝑖 denote the task loss of the current and the initial
mini-batch, respectively. Using the individual learning rates, the relative
inverse task learning rate is calculated as𝑟𝑖 = �̃�𝑖/ 1𝑁 𝑁∑𝑖=1 �̃�𝑖 . (3.34)

With respect to the calculation of the gradients from (3.30), 𝐆𝑖, 𝐺mean,
and 𝑟𝑖 are considered constant, i.e. neither explicitly depending on the
network’s parameters nor the task weights 𝑤𝑖. The network parameters
are updated using only the main loss (3.26).

Compared to the approach by Kendall et al., the GradNorm method
is computationally more expensive as it involves 𝑁 additional gradient
computations. Depending on the number of shared parameters Ws, with
respect to which the individual task gradients are calculated, GradNorm
may also be quite memory-intensive. For further technical details on
these two approaches, the reader is referred to the original literature.

When the multiple tasks compete, it may be necessary to adapt meth-
ods from multi-objective learning [118, 174]. In the explored case of
central view and disparity estimation, however, it was found that the
usedmulti-task approaches perform on par or better than the correspond-
ing single-task networks. Therefore, multi-objective approaches were
not considered. However, it may become necessary when using different
reconstruction targets. Also, grouping of multi-tasks in multi-objective
and multi-task subgroups has also been recently investigated [183].
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3.2 Principal reconstruction via multi-task deep learning

3.2.3.2 Auxiliary loss training

In computer vision tasks, often the MSE or MAE is used as a single-task
loss function in regression tasks. The use of the MSE as the primary opti-
mization and evaluation metric is well justified since it corresponds to
the energy of the reconstruction error (cf. Section 4.3). Furthermore, the
MSE is convex and continuously differentiable. However, both the MSE
and the MAE are only evaluated pixel-wise and subsequently averaged.
In particular, neither spatial nor spectral correlations are considered.
Often, however, secondary quality metrics, such as the structural similar-
ity index metric [210] to assess the spatial reconstruction quality or the
spectral angle and the spectral information divergence [34] to evaluate
the spectral reconstruction quality, are of key interest. To utilize these
secondary metrics during optimization, ignoring the multi-task scenario
for now, one can use the loss function𝐿 = 𝐿main + 𝑁aux∑𝑗=1 𝑤aux,𝑗 𝐿aux,𝑗 (3.35)

using 𝑁aux auxiliary loss functions 𝐿aux,𝑗 to support the main loss 𝐿main.
In image processing, the combination of the MSE and SSIM has been
shown to outperform the single-loss training [234], however, the loss
weights were fine-tuned manually. In principle, the problems with this
naive approach are similar to those in multi-task learning: namely, the
manual (static) choice of the auxiliary loss weights 𝑤aux,𝑗 and the possibly
different scales of the loss gradients. Furthermore, the additional losses
may even be adversarial to the main loss, leading to canceling gradients,
and the overall loss landscape may suffer from high curvature. This has
also been referred to as the tragic triad [229]. To mitigate this, the use of
gradient similarity (GradSim) has been proposed Du et al. [56], however,
similar approaches have also recently been discussed in the context of
reinforcement learning [120] and meta-learning [122].

In the case of the GradSim approach by Du et al., the auxiliary loss
weights are calculated as𝑤aux,𝑗 = max {0, ⟨𝐆main, 𝐆aux,𝑗⟩‖𝐆main‖ ⋅ ‖𝐆aux,𝑗‖} , (3.36)
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for each mini-batch during the training. The loss is based on the gradient
similarity between the main and the auxiliary task gradients𝐆main = ∇W𝐿main , 𝐆aux,𝑗 = ∇W𝐿aux,𝑗 , (3.37)

calculated via the scalar product. The max operation ensures that only
positive auxiliary gradient contributions are taken into account. While
this resolves the issue concerning adversarial auxiliary losses and cancel-
ing gradients, the problem of different gradient norms persists. Further-
more, since the calculation is performed for each mini-batch individually,
the updated weights 𝑤aux,𝑗 may be quite noisy. Du et al. mention the
possibility to use a moving average, however, no evaluation has been
performed for this.

To overcome these limitations, it is proposed to use a modification of
the above, named normalized gradient similarity (NormGradSim). Again,
the main loss is extended, using 𝑁aux auxiliary losses 𝐿aux,𝑗, to𝐿 = (𝐿main + 𝑁aux∑𝑗=1 𝛼𝑗𝛽𝑗 𝐿aux,𝑗)/(1 + 𝑁aux∑𝑗=1 𝛼𝑗) (3.38)

with dynamic weights 𝛼𝑗, 𝛽𝑗 > 0 which are updated via SGD using the
additional losses𝐿𝛼 = ∑𝑗 ∣𝛼𝑗 − max {0, ⟨𝐆main, 𝐆aux,𝑗⟩‖𝐆main‖ ⋅ ‖𝐆aux,𝑗‖} ∣ , (3.39)𝐿𝛽 = ∑𝑗 ∣𝛽𝑗 ⋅ ‖𝐆aux,𝑗‖ − ‖𝐆main‖∣ . (3.40)

While 𝛼𝑗 is used toweigh each auxiliary loss according to its gradient sim-
ilarity with the main loss, 𝛽𝑗 is used to bring the gradient of the auxiliary
loss to the same scale as themain loss. The normalization term (1+∑𝑗 𝛼𝑗)
keeps the resulting gradient of the total loss 𝐿 on the same scale as the
original main loss 𝐿main. This has the advantage that NormGradSim can
be used as a drop-in replacement to the single loss training (without
having to adapt hyperparameters such as the optimizer’s learning rate)
or combined with multi-task approaches such as the approach using
multi-task uncertainty or GradNorm. When calculating the gradients of
the main loss 𝐿, 𝛼𝑗 and 𝛽𝑗 are considered constant.
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Finally, combining the multi-task scenario with the proposed Norm-
GradSim method, one obtains the final overall loss function𝐿 = 𝑁∑𝑖=1 𝑤𝑖(𝐿(𝑖)

main + 𝑁(𝑖)
aux∑𝑗=1 𝛼(𝑖)𝑗 𝛽(𝑖)𝑗 𝐿(𝑖)

aux,𝑗)/(1 + 𝑁(𝑖)
aux∑𝑗=1 𝛼(𝑖)𝑗 ) , (3.41)

which is used in combination with the additional loss functions 𝐿𝛼, 𝐿𝛽.
3.3 Mask optimization via neural fractals
In the case of the proposed principal reconstruction, different (stochas-
tic and regular) coding masks are investigated, as will be discussed in
Section 4.4.2. To go one step further, one may optimize the used cod-
ing mask with respect to the considered downstream tasks, i.e. for the
reconstruction of the central view and the disparity estimation in the
case considered here. The design and optimization of coding masks
have been discussed in the literature in several instances, however, it
poses some challenges that have only been addressed partially in the
past. The main challenge is that the coding mask is binary and there-
fore does not directly allow for standard optimization techniques such
as gradient descent. Due to the immense dimensionality of the search
space, in particular in the multispectral case, a brute force approach is
also usually not suitable. In the past, coding masks were often designed
based on expert knowledge, e.g., in the case of color imaging, the well-
known Bayer pattern [16] and its derivatives, or more recent proposals
based on sparse color sampling [33]. Alternatively, heuristic optimiza-
tion approaches have been utilized, e.g., in the context of multispectral
imaging, via binary tree search [141], genetic algorithms [220], or sim-
ulated annealing [177]. However, since the overall architecture of the
proposed principal reconstruction is fully differentiable, it is desirable
to also incorporate the mask generation into the framework and learn
an optimal mask (with respect to the considered downstream tasks) in
an end-to-end fashion. Such a framework has the additional benefit to
be task-independent, i.e. different optimal masks could be obtained for
different downstream tasks such as disparity estimation, segmentation,
etc. To achieve a fully differentiable generation of binary coding masks,
two approaches have recently been discussed in the literature.
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First, the Deep Probabilistic Subsampling (DPS) approach by Huijben
et al. [90] aims at learning a probability distribution from which a coding
mask can be generated. In order to achieve a discrete distribution, the
Gumbel-max trick is used [75]. That is, to parametrize the discrete cate-
gorical distribution, randomnoise is drawn from theGumbel distribution
and added to the trainable non-normalized logits. Subsequently, the tem-
perature softmax is used as a differentiable approximation of the one-hot
encoded argmax function, continuously relaxing the binary optimization
as will be discussed shortly. To achieve a nearly discrete distribution,
an additional loss is introduced penalizing high entropy, i.e. favoring
“spiky”, nearly one-hot encoded distributions. The entropy loss weight is
linearly increased during training, which can be interpreted as a form of
annealing. The approach has the inherent drawback of being stochastic,
i.e. a mask distribution is learned instead of a static mask. However, in
the considered case one is interested in a fixed mask that can be realized
in hardware and which cannot be altered afterwards. To some extent,
this issue is addressed in a recent generalization of the approach, called
Active DPS [203], introducing inter-sample dependencies but retaining
the probabilistic nature. Furthermore, the DPS approach considers a
fixed spatial resolution that cannot be changed after training which is
unsuitable in the presented case due to the smaller light field resolution
of the training dataset. One could of course perform full-sized inference
by patching the light field into smaller patches, similar to the compressed
sensing-based approach using dictionaries, however, this would intro-
duce a lot of computational overhead. Simultaneously to DPS, a similar
formulation was published dubbed Concrete Autoencoders [14].

Second, Chakrabarti [32] proposes to learn the color filter layout of a
color camera jointly with a deep learning-based demosaicing approach.
Here, the color filter array is generated using a small patch of trainable
weights W of shape (𝐴, 𝐵, 𝐶) where (𝐴, 𝐵) corresponds to the spatial
size of the filter macropixel (e.g. (2, 2) in the case of a conventional Bayer
pattern) and 𝐶 to the number of color channels (typically three in the
case of RGB imaging, however, approaches using more color channels
have also been considered in the literature). Similar to the DPS approach,
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the one-hot encoded argmax is approximated using the temperature
softmax, i.e. the color filter is normalized along the channel axis via

M𝑎𝑏𝑐 = softmax𝜏 W𝑎𝑏𝑐 = eW𝑎𝑏𝑐/𝜏∑𝑐′ eW𝑎𝑏𝑐′/𝜏 . (3.42)

In the limit 𝜏 → 0, the temperature softmax converges to the (non-differ-
entiable) one-hot encoded argmax [130], which is one at the position of
the largest elements along the last axis and zero otherwise. Chakrabarti
anneals the temperature 𝜏 during training, instead of using the entropy
along the channel axis to obtain nearly binary coding masks. The smaller
the temperature, the smaller the bias of the gradient estimate, at the cost
of a higher variance [90]. Furthermore, analogous to the DPS approach,
the true argmax function is used in the forward pass and the temperature
softmax is used only in the backward pass, i.e. to calculate the gradients
via backpropagation. With this additional trick, the downstream task
always “sees” a physically correct binary coding mask while the gradi-
ents can be calculated via backpropagation and the mask weights can
be optimized via SGD. By spatially repeating the patch M, masks of
arbitrary size can be generated which are then applied to the input image.

Here, the approach byChakrabarti [32] is generalized. There aremainly
three properties that a coding mask and the subsequent reconstruction
should fulfill: the coding and reconstruction should ideally be transla-
tional, rotational, and scale equivariant, i.e. the reconstruction should not
depend on the position and orientation of the camera with respect to the
scene, as well as the sensor size, resolution, or pixel pitch. Furthermore,
the coding and reconstruction should generalize when applied to images
larger than those in the training dataset. Due to the periodic nature of
conventional regular coding masks and a fully convolutional layout of
the downstream task, as considered by Chakrabarti, translational and
scale equivariance are approximately fulfilled. Rotational equivariance
is typically achieved via online augmentation during training. Here, the
focus lies on generalizing the optimization of the regular coding masks
as proposed by Chakrabarti while maintaining the mentioned properties.
To this end, the coding masks are generated and optimized as fractals,
which fulfill scale invariance by design, while possibly being more ex-
pressive than regular coding masks.
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First, as an illustration, the simple case of binary fractals is considered.
Here, the fractals are formulated as a Lindenmayer- or L-system1 [121].
A binary fractal mask is generated using two binary base patterns𝑝0, 𝑝1 ∈ {0, 1}𝑀×𝑀 , (3.43)

where only square patterns of size 𝑀 × 𝑀 are considered for simplicity.
The fractals are then created recursively using the base patterns. Starting
with a root node 𝑥0 ∈ {0, 1}, the node is replaced by the corresponding
base pattern, i.e. with 𝑝0 if 𝑥0 = 0 or 𝑝1 if 𝑥1 = 1. Then, in the recursion
step, each pixel in the created mask is again replaced by the correspond-
ing base pattern, depending on the binary pixel value. To formulate this
in a more precise fashion, the base patterns are viewed as the image of
the function 𝑝 ∶ {0, 1} → {0, 1}𝑀×𝑀 (3.44)0 ↦ 𝑝0 , 1 ↦ 𝑝1 . (3.45)

For the recursive call, the function is generalized to𝑃𝑛 ∶ {0, 1}𝑀𝑛×𝑀𝑛 → {0, 1}𝑀𝑛+1×𝑀𝑛+1 (3.46)𝐱 ↦ 𝑃𝑛(𝐱) , 𝑥𝑖 ↦ 𝑝(𝑥𝑖) , (3.47)

for any 𝑛 ∈ ℕ+, where 𝑥𝑖 denotes the individual pixel value. The recur-
sive generation can then simply be formulated as:

choose root 𝑥0 ∈ {0, 1} ,
initialize 𝐱1 = 𝑃0(𝑥0) ≡ 𝑝(𝑥0) ,
apply recursion 𝐱𝑛+1 = 𝑃𝑛(𝐱𝑛) . (3.48)

The generation of an exemplary fractal is depicted in Figure 3.7. Here,
the root node 𝑥0 = 1 (3.49)

is chosen arbitrarily.

1 The idea to use fractals formulated via L-systems as coding masks and an initial imple-
mentation came up during a discussion with Jonas Köhler (Freie Universität Berlin) and
cannot be considered the sole contribution of the author.
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base patterns

𝑝(1)
𝑝(0)

𝑛 = 0 𝑛 = 1 𝑛 = 2 𝑛 = 3

Figure 3.7 Generation of an exemplary binary fractal mask in the case of 3×3 base patterns.
For visualization, the pixel size of the larger masks is decreased.

To generalize the binary approach to the multispectral case, the base
patterns are generalized to𝑝 ∶ {0, 1}Λ → {0, 1}𝑀×𝑀×Λ , (3.50)

which are continuously relaxed to𝑝 ∶ ℝΛ → ℝ𝑀×𝑀×Λ . (3.51)

In this continuous case, the base pattern function can now equivalently
be viewed as the tensor

P ∈ ℝ𝑀×𝑀×Λ×Λ . (3.52)

In order to achieve the desired one-hot encoding along the spectral axis
of the mask, the base pattern tensor is obtained from a weights tensor of
identical shape via

P𝑖𝑗𝑘𝑙 = argmax𝑙 W𝑖𝑗𝑘𝑙 . (3.53)
Here, the tensor W corresponds to the trainable parameters of the mask
generation. Again, the non-differential argmax is approximated by the
temperature softmax for the backward pass during training. The recur-
sive generation of the mask, in complete analogy to the binary case, can
now be formulated using the base pattern tensor as:

choose root X (0) ∈ ℝ1×1×Λ ,

apply recursion X ̃ (𝑛+1)𝑎𝑏𝑐𝑖𝑗 = ∑𝑘 P𝑎𝑏𝑘𝑐X (𝑛)𝑖𝑗𝑘 ,

reshape X ̃ (𝑛+1) → X (𝑛+1)(𝑀, 𝑀, Λ, 𝑀𝑛, 𝑀𝑛) → (𝑀𝑛+1, 𝑀𝑛+1, Λ) . (3.54)
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𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4

Figure 3.8 Generation of an exemplary fractal RGB mask X (𝑛) using 2×2 base patterns.

Here, for simplicity, the root tensor is always chosen to be constant,

X
(0)𝑖𝑗𝑘 = {1 if 𝑖 = 𝑗 = 𝑘 = 0 ,0 otherwise.

(3.55)

To create the full fractal coding mask, first, the recursion depth 𝑁 is
calculated from the spatial light field resolution and the predefined base
pattern size 𝑀. Then, the recursion is applied until the calculated depth
to obtain the coding mask M = X (𝑁). If the base pattern size is not a
true divider of the light field resolution, a larger mask is generated and
centrally cropped to fit the target resolution. Since the mask generation
is fully differentiable with respect to the parameters W , it can be easily
integrated into the proposed principal reconstruction and jointly trained
in an end-to-end fashion. Because the recursive mask generation can
be interpreted as a neural network with 𝑁 fully connected layers with
argmax or softmax activation, it is proposed to refer to these generated
fractal masks as neural fractals. During training, both the annealing of
the temperature softmax as well as an entropy-based regularization are
considered. To this end, the loss𝐿e = mean ( − ∑𝑙 P𝑖𝑗𝑘𝑙 lnP𝑖𝑗𝑘𝑙) (3.56)

is used whose loss weight is increased exponentially during training.
An example, using 2×2 base patterns and three color channels, is

shown in Figure 3.8. Here, the true (“hard”) forward pass, based on the
argmax, is used. The mask is depicted using the corresponding RGB
color associated with the pixel’s filter. While in the remainder masks
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𝜏 = 1 𝜏 = 1/3 𝜏 = 1/9 𝜏 = 1/81
Figure 3.9 Continuous relaxation of the generated mask for different temperatures 𝜏 of
the softmax used to generate the base patterns P from the trainable weights W .

will be shown using the channel index, the RGB case has the advantage
of being able to visualize the behavior of the softmax approximation.
The same RGB mask, using a “soft” forward pass, is shown in Figure 3.9
for different temperatures of the softmax activation. It can clearly be
observed that the mask becomes “spikier”, i.e. more bandpass-like, the
lower the temperature, as expected. This behavior is, of course, identical
in the multispectral case which, however, is hard to visualize. As a final
example, a multispectral fractal mask in the case of 4×4 base patterns
using 13 spectral channels is given in Figure 3.10(a). While it is extremely
difficult to understand the fractal nature in this high-dimensional case, it
is obvious that these masks provide more powerful and flexible patterns
as compared to conventional regular masks. However, note that conven-
tional regular masks are also fractals. Using the proposed framework,
regular masks are generated by constraining the weight tensor such that
elements along the projecting axis are identical, i.e.

W𝑖𝑗𝑘𝑙 = W𝑖𝑗𝑘′𝑙 (3.57)

for all 𝑘, 𝑘′, effectively reducing the dimensionality of the pattern by a
factor of Λ. Basically, the constraint means that, during generation, a pixel
is always replaced with the same pattern, regardless of the pixel value.
That is, the proposed fractal generation scheme is a true superset of the
approach by Chakrabarti [32] and should therefore at least achieve on-par
performance when properly optimized. An example of a regular coding
mask generated with the proposed approach is shown in Figure 3.10(b).
Concluding, despite the low dimensionality of the generating pattern,
the neural fractal approach appears to be very expressive.
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𝑛 = 1 𝑛 = 2 𝑛 = 3

(a) Unconstrained fractal mask generation.

𝑛 = 1 𝑛 = 2 𝑛 = 3

(b) Fractal mask generation constrained to regular masks.

Figure 3.10 Generation of two exemplarymultispectral fractalmasksX (𝑛) with 13 spectral
channels in the case of 4×4 base patterns using the hard forward pass. Here, the false-color
corresponds to the index of the transmitting spectral channel. Dark values correspond to
small and bright values to large channel indices.
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A schematic comparison of training using static, predefinedmasks and
end-to-end optimized masks via neural fractals is depicted in Figure 3.11.
Here, 𝐸 denotes the encoder whereas 𝐷cv and 𝐷disp denote the decoder
for the central view and disparity, respectively. The trainable parameters
of the encoder and decoders are not explicitly depicted for clarity. Fur-
thermore, the shown loss 𝐿 only corresponds to the reconstruction loss,
i.e. regularization losses such as the entropy-based mask loss, are not de-
picted. In the case of using predefined masks (Figure 3.11(a)), the masks
are randomly drawn from a predefined distribution (cf. Section 4.4.2) and
multiplied element-wise with the input light field to simulate the coding.
To optimize the neural fractal jointly with the downstream network, the
gradients of the network and the parameters of the generating pattern P

are calculated via backpropagation. In this case, an element-wise mul-
tiplication with the input light field is not sufficient: the optimal mask
would likely be purely constant, i.e. a tensor of all-ones. The gradients
of the entropy-minimizing regularization loss and the main loss would
likely cancel. Hence, the light field needs to be compressed after coding,
i.e. projected along the spectral dimension analogously to the physical
sampling by the camera according to (2.5). The element-wise multiplica-
tion and spectral projection correspond to a scalar product in the spectral
domain. However, as argued previously, in this case, the network would
have no information of the used masks, i.e. which pixels are associated
with which spectral channel. In particular, this is problematic as the abso-
lute position of the mask should not be learned by the network in order
to generalize to larger spatial input sizes. To overcome this, compression,
i.e. projection via the scalar product, is employed only in the backward
path, while the element-wise multiplication is used for the forward path.
This way, the network is always exposed to the full, non-projected, coded
light field (and hence the associated spectral channel of each pixel), while
the gradients are calculated using the projected measurement to avoid
trivial solutions of constant-valued masks opposing the constraint of
spectral one-hot encoding. This is symbolically denoted by the mixed
scalar and element-wise multiplication in Figure 3.11(b). Intuitively, this
approach is equivalent to passing the coded and projected light field
L∗ to the network together with a static, non-differentiable binary mask
indicating the indices of the used spectral channels in the coding mask.
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(a) Training using a mask sampled from predefined distribution.
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(b) Training using a differentiable mask generation via neural fractals.

Figure 3.11 Training with and without end-to-end optimization of the coding mask.
Dashed lines indicate edges of backpropagation. The parametrizations of the encoder and
decoders are neglected for clarity.
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4.1 Synthetic dataset
With the advent of deep learning, the demand for training and test data,
both labeled and unlabeled, has increased dramatically. In the case of
RGB light fields, several synthetic datasets of varying scope with ground
truth disparity labels have been published, including the well-known
HCI benchmark dataset [85], the HCI specular light field dataset [4], the
INRIA dataset [175], and the Graz University dataset [79]. However, a
spectral light field dataset with disparity ground truth is yet missing. The
newly created dataset fills this gap. To the best of the author’s knowledge,
this is the first spectral light field dataset with ground truth depth and
disparity labels.

To create light fields that can be used for supervised data-driven dis-
parity estimation methods, the data is usually synthesized as there is
no suitable reference method to measure depth with sufficient accuracy.
Furthermore, the ground truth labels of a test dataset can be used to quan-
titatively evaluate the disparity estimation. Usually, ray tracers are used
to obtain a physically correct light field rendering and disparity maps of
a scene. Most of the available synthetic RGB light field datasets were ren-
dered using Blender with a light field plugin provided by Honauer et al.
[85]. Whereas Blender provides high photorealism, there does not (yet1)
exist a multispectral extension of the used ray tracing engine Cycles. The
same also holds for other ray tracers that are often used in the computer
vision community, such as POV-Ray2 or the Mitsuba ray tracer [155].
For this reason, the IIIT-RayTracer is used since it is capable of spectral
rendering. The IIIT-RayTracer, which is in large parts based on the PBRT

1 An unofficial fork of Blender has been working on a spectral extension of Cycles since
mid-2020. However, there is no stable release yet.

2 http://povray.org
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ray tracer [161], was initially developed by Thomas Nürnberg at IIIT
and further extended in the context of this thesis to be able to directly
render light fields. The used virtual light field reference camera, which
was implemented in joint works with David Uhlig [A11], samples the
light field in a fashion geometrically equivalent to a plenoptic camera in
the unfocused design. Furthermore, the ray tracer can directly render the
ground truth depth, surface normals, or segmentation labels of each light
field subaperture. Using the specified camera parameters, the disparity
can be calculated from the rendered depth as elaborated in Appendix A.

4.1.1 Dataset properties
The created dataset consists of multispectral light fields rendered from
500 randomly generated scenes as well as seven hand-crafted scenes,
which pose specific challenges for the reconstruction task. In this regard,
these hand-crafted scenes will be referred to as challenges in the following.
The light fields are rendered with 16 bit unsigned integer precision and
a resolution of (11, 11, 512, 512, 13). The spectrum is sampled from 400 to
700 nm in steps of 25 nm, resulting in 13 spectral channels. This way, the
synthetic dataset is sampled in full accordancewith the real-world dataset
as detailed in Section 4.2. For each light field, the ground truth depth is
rendered with 32 bit floating point precision and subsequently converted
to the corresponding disparity using the known camera parameters.

To accommodate different camera designs, such as multi-camera ar-
rays or monocular systems, all light fields were rendered in two different
camera settings: one corresponding to a plenoptic camera in the so-called
unfocused design [154], such as the Lytro camera. Here, the main lens
focal plane corresponds to a disparity value of zero. The other correspond-
ing to a plenoptic camera in the unfocused design whose main lens is
focused at infinity, which is effectively equivalent to a multi-camera array
with parallel optical axes. In this case, a disparity of zero corresponds to
optical infinity. Therefore, in total 1000multispectral light fields including
depth and disparity labels were synthesized (not including the dataset
challenges). However, for the evaluation presented in this thesis, solely
the dataset corresponding to the camera with a focusedmain lens is used.
The camera parameters of the virtual camera were chosen in (rough)
accordance with the Lytro Illum camera. This way, disparity ranges that
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4.1 Synthetic dataset

are compatible with the newly created real-world dataset are achieved.
Therefore, however, the dataset is not directly suited for large-baseline
setups. (However, an adaption to those cases via interpolation and a
corresponding disparity scaling should in principle be straightforward.)

The dataset of each camera configuration is split 400 : 50 : 50 into a train-
ing, validation, and test dataset. Since the deep learning applications
are not trained using the full-sized light fields but smaller patches, the
dataset is patched into small light fields with shape (9, 9, 36, 36, 13), which
are cropped to (9, 9, 32, 32, 13) during training, validation, and testing.
Prior to the development of the proposed methods, it was unclear what
angular resolution of the coded light fields would be necessary. There-
fore, the light fields are rendered with the comparably large angular
resolution of (11, 11). However, in the remainder of this thesis, only the
smaller resolution of (9, 9) is used as it turned out to be sufficient for the
investigated task. An angular resolution of (9, 9) is commonly used in the
light field community and the resulting full-sized light fields are already
1.1GB in size, since the data is converted to 32 bit for the GPU-based
methods, as compared to 13.2GB necessary for the full angular resolu-
tion. This is challenging even for recent GPUs when accounting for the
additional need of the network parameters, gradients, and intermediate
representations.

In total, the patched dataset consists of roughly 80 000 training, 10 000
validation, and 10 000 test light field patches. The detailed properties
are shown in Table 2.1. This is comparable in size to popular deep learn-
ing image datasets such as CIFAR-10 and CIFAR-100 [106], containing
50 000 training and 10 000 test images, or MNIST [108], containing 60 000
training and 10 000 test images.

Finally, an RGB conversion of the created dataset and its patched vari-
ants are calculated in order to enable a comparison with state-of-the-art
reference disparity estimation methods. For each light field, an abstract
scene description file is provided that can be used to access the used cam-
era parameters or to render additional ground truth data, such as surface
normals, if needed. However, solely the disparity maps are utilized in
this thesis. The dataset is made publicly available [A7].
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4.1.2 Random scene generation
To obtain a dataset large and diverse enough for data-driven applications,
a vast amount of light fields has to be rendered. Hand-crafting such a
large amount of scenes is arguably impossible. Therefore, the scenes
were created automatically, employing certain geometric constraints. This
approach is not new, as the RGB light field datasets by Alperovich et al.
[4] as well as Heber and Pock [79] also use an automated random scene
generation. However, the presented approach differs in some details from
both the aforementioned ones.

To achieve diverse geometric properties of the scene, a random number𝚗 = max {0, ⌊𝙽⌋} , 𝙽 ∼ N (𝜇 = 28, 𝜎 = 5) , (4.1)

of objects are placed in the field of view of the virtual light field reference
camera. For these objects, both ideal geometric objects (such as spheres,
cones, and planes), as well as 3D mesh models from multiple open-
source databases are used, chosen by chance. Depending on the mesh
resolution, the models are grouped into three categories: low-, mid-, and
high-resolution, assigning lower probabilities to the higher-resolution
groups. Furthermore, the maximum number of high-resolution mesh
objects per scene is limited to two as they are much more resource-
intensive during tracing, leading to significantly longer rendering times.

Unlike the work by Heber and Pock, here the objects are not placed
in the scene at three distinct distances (foreground, midground, back-
ground). Instead, a disparity range is specified in which the objects are
placed uniformly. Note that, due to the inverse relationship between
depth and disparity (cf. Appendix A), this does not correspond to a uni-
form distribution of the object depth. To this end, a uniformly distributed
disparity 𝚍 ∼ U(−2.5 px, 3.0 px) is drawn independently for each object.
The corresponding distance from the camera (in the focused configu-
ration) is calculated from the disparity, at which the object’s center is
then placed. A background object, either a large-diameter sphere or a
possibly tilted plane, is placed at 𝑑 = −2.5 px. Doing so, the background
does not possess a constant but slightly varying disparity and possibly a
non-trivial curvature, unlike the scenes generated by Alperovich et al.

In order to obtain diverse spectral properties of the scene, real multi-
spectral images from two datasets [9, 151], freely licensed RGB images
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Central view Disparity Central view Disparity

Figure 4.1 Central views of two randomly generated spectral light fields (top: converted
to RGB, bottom: colored individual spectral channels) and corresponding central disparity
maps. Note that not all details are visible in the disparity maps due to the large range of
the colormap and a limited resolution of 8 bit used for this visualization.

(which are spectrally converted by the ray tracer), as well as noise textures
with constant random spectra 𝐬 ∈ [0, 1]13 were used. For the randomnoise
textures, each spectral value 𝚜𝑖 ∼ U(0, 1) is independently drawn from a
uniform distribution. This results in a mixture of realistic spectra (from
the multispectral images), smooth spectra (from the RGB images), as well
as uncorrelated, random spectra, which is argued to be a reasonable mix
for machine learning and geometric light field applications.

In all cases, objects are rendered as purely diffuse and highly textured.
As almost no reference work regarding (coded) spectral light fields is
available, this choice is made in order to not introduce unnecessary addi-
tional difficulties. However, in principle it is straightforward to render
specular, reflective, and/or untextured objects. The dataset was rendered
on a large-scale computing cluster. Each light field was rendered using
10 cores and 32GB of a shared computing node. The rendering took 4 to
30 h per light field, depending on the scene complexity and in particular
the resolution of the used 3D models.

The central views and disparities of two randomly generated light
fields are shown in Figure 4.1. In the remainder of this thesis, the col-
orbar of all disparity plots is not explicitly denoted to not clutter the
presentation. In all cases, the colorbar shown in Figure 4.6 is used, scaled
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to the minimum and maximum disparity value of the corresponding
ground truth data as denoted in Table 4.1 for all considered datasets.

It should be noted that these randomly generated scenes are not seman-
tically meaningful or natural. That is, objects can be arbitrarily oriented,
scaled, or even overlapping. Therefore, the dataset statistics are in general
assumed to be quite different from a real-world light field dataset. In
particular, the dataset is not useful for applications in which a natural
context is of interest, e.g. semantic segmentation or object detection. How-
ever, in the considered case, the most important feature of the dataset is
its correct light field geometry, which the subsequentmethods are relying
on, as well as the spectral properties, and not the semantic context.

To visualize the properties of the training dataset, its disparity and
spectral distributions are compared to two reference datasets. As there
is no spectral light field dataset available, the spectral distribution is
compared to reference multispectral image datasets and the disparity
distribution is compared to reference RGB light field datasets.

First, to compare the spectral distribution, several datasets of multi-
spectral images [9, 151, 225], which were re- and downsampled to the 13
considered spectral channels, are used, which are collectively referred to
as the “reference” dataset. Note that images of two of these datasets have
also been used as multispectral textures in the rendering of the created
dataset. Both the new and the reference dataset have been normalized
to a value range of (0, 1) with 32 bit floating point precision. The result-
ing 2D histograms of the spectral distributions of the two datasets are
shown in Figure 4.2. The created dataset shows a more balanced spectral
distribution than the reference dataset, especially at lower spectral in-
dices (corresponding to smaller wavelengths). While there is no point in
arguing which distribution is better suited for data-driven applications,
it does reflect the design choices made upon the random scene genera-
tion. However, a peak at intensity values of one can be observed, likely
stemming from overexposed regions of the used RGB image textures. Sec-
ond, to compare the dataset’s disparity distribution, a dataset composed
of previously published RGB light field datasets containing disparity
ground truth [4, 79, 85], which are combined into a single dataset, is
considered. Again, this composed RGB light field dataset is referred to
as the “reference” dataset. The corresponding histograms are shown in
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Figure 4.2 Spectral distribution (top) and disparity distribution (bottom) of the reference
datasets (left) and the created synthetic training dataset (right). The spectral 2D histogram
is interpolated for visualization.

Figure 4.2. While the created dataset shows a stronger background peak
at disparities around −2.5 px, the disparity distribution is overall more
balanced and less biased towards a disparity of 0 px, corresponding to the
focal plane. Again, this reflects the choices made in the scene generation,
where object centers were placed uniformly in disparity. Overall, the
newly created synthetic training dataset shows the desired properties.

4.1.3 Challenges
To assess the performance of a specific light field application in detail,
further data is needed. While a quantitative performance score can be
calculated on the test dataset (with respect to one or multiple evaluation
metrics as discussed in Section 4.3) these values may only be used to
quantitatively compare different architectures—their absolute values
however are hard to interpret, in particular when the light fields are
patched into smaller sizes for training and testing. Therefore, seven hand-

71



4 Experimental Setup

Ctr. view Disparity Ctr. view Disparity Ctr. view Disparity

Cabin Elephant Bust

Backgammon Circles Dots
Figure 4.3 Spectral central views (converted to RGB) and corresponding central disparity
maps of the dataset challenges. The disparity is shown with ranges as given in Table 4.1(a).

crafted scenes, so-called challenges, were created and rendered together
with their respective ground truth disparities. These scenes are used to
further quantitatively and visually compare the obtained results, using
the full resolution of (9, 9, 512, 512, 13). Moreover, the challenges may be
used to assess the performance with respect to a specific challenging
aspect such as occlusion, shadow, detail, or noise. The created challenges
consist of the following scenes: Cabin, Elephant, Bust, Backgammon, Circles,
Dots, and Wall, the first six of which are shown in Figure 4.3. The reader
familiarwith theHCI benchmarkdataset [85]will notice some similarities.
In fact, the idea to pose additional challenges is heavily inspired by the
so-called stratified scenes of the HCI benchmark dataset. Furthermore, the
scenes Bust, Backgammon, and Dots are re-modeled according to scenes
contained in the HCI benchmark dataset.

While the first three challenges use high-resolution 3D mesh models
and show a realistic scene geometry, the latter ones are purely synthetic,
utilizing ideal geometric shapes. The three natural scenes Cabin, Elephant,
and Bust roughly emphasize occlusion, shadow, and detail, respectively.
On the other hand, the purely synthetic ones are designed to each assess
a very specific aspect. The Backgammon scene consists of two flat surfaces
at disparity −1px and 0px, as well as an occluding foreground at a dis-
parity of 1 px with varying local width. The Circles scene consists of three
groups of three circles—one red, one green, one blue—at disparities
−1px, 0 px, and 1px, respectively. This allows for a visual assessment of
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Figure 4.4 The three scenes from the spectral light field dataset by Xiong et al. [221].
White-balancing was performed using the white square of the color calibration chart. The
disparity estimation from the RGB-converted light fields using the structure tensor (ST)
with TV-L1 fusion and median filtering (MF) [213], as well as using EPINET [176] are
shown using the disparity ranges given in Table 4.1(c).

the reconstruction quality with respect to a spectral as well as a depth
dependence. The scene Dots is superposed with independent Gaussian
noise whose variances differ across the eight identical patches of the
scene, resulting in a block-wise PSNR of 45 dB (top left patch) and de-
creasing by 5dB to 10dB (bottom right patch). For each subaperture view,
the noise is independent, overall distorting the light field geometry and
posing difficult challenges on the reconstruction and disparity estimation.
The last scene, Wall (which is not shown), consists of a flat surface of
constant disparity with a multispectral image texture. This scene was
then rendered at different disparities, ranging from −1.5 to 1.5 px in steps
of 0.25 px which is used to quantitatively compare multispectral-related
performance versus disparity. Hence, strictly speaking, theWall challenge
consists of 13 individually rendered light fields and their corresponding
disparity.
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4.2 Real-world dataset
To investigate the proposed reconstruction approaches also for real-
world spectral light fields, a suitable dataset is needed. To the author’s
knowledge, the only public spectral light field dataset was created by
Xiong et al. [221]. This dataset consists of three spectral light fields, Boards,
Toys, and Fruits, with a resolution of (11, 11, 270, 360, 25), captured using
a gantry-mounted 2D spectrometer. These light fields are sampled from
450 to 690 nm in steps of 10 nm. While the imaging setup allows for a
high spatial resolution and quality, the objects and background used in
the dataset are not all textured, which is not ideal for the evaluation of
the disparity estimation. Furthermore, the dataset is not properly white-
balanced and shows some brightness flickering across the individually
captured subapertures, indicating poor calibration. Overall, the dataset
by Xiong et al., as shown in Figure 4.4, is not well suited for the evaluation
performed in this thesis. However, the results from all evaluations pre-
sented in this thesis are also available for this dataset within the digital
supplement. For this, the dataset is downsampled to 13 spectral channels
and centrally cropped to a resolution of (9, 9, 256, 360, 13) to be compatible
with all investigated methods.

To overcome the limitations of the dataset by Xiong et al., a new spectral
light field dataset was recorded using a custom-built spectral light field
camera. The developed camera, based on a Lytro Illum light field camera
and a spectral filter wheel holding 13 spectral bandpass filters, and its
calibration are elaborated in detail in Sections 4.2.1 to 4.2.3. In total,
three different scenes were captured—each using two different main lens
focal lengths. To reduce the influence of the angular dependence of the
interference filters, and to increase the disparity range, the scenes were
captured using the comparably large 150mm and 250mm main lens
focal length equivalents of the Lytro Illum camera. Since the disparity is
proportional to the inverse of the depth, the disparity sensitivity is much
higher for objects that are close to the camera. For the region beyond the
focal plane, the sensitivity is comparably low (cf. Appendix A). Therefore,
the main lens focal plane was placed roughly in the last third of the range
between the first object and the background such that most of the imaged
objects were contained within the high-sensitivity region.
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Diavolo Floral Wagons

Figure 4.5 Front and top view of the captured scenes. Here, the images were taken using
a conventional RGB DSLR camera.

The captured scenes were created with spectral variance and disparity
estimation in mind. Therefore, highly textured, colorful backgrounds
and scene objects were used, and the objects were placed as spread out
as possible to obtain a diverse disparity distribution. In fact, for the
shorter focal length equivalent of 150mm, the objects were even further
spread out, as compared to the setup used with the 250mm focal length
equivalent, resulting in slightly different arrangements than those used
for the larger focal length. A front and top view of the captured scenes
are given in Figure 4.5.

In the large-focal length setting used here, the f-number matching
of the Lytro Illum camera is suboptimal, leading to a smaller angular
resolution than with shorter focal lengths. Hence, the angular resolu-
tion of the captured light fields is centrally cropped to (9, 9) which was
found to still give reliable results. Spatially, the light fields are cropped
to (400, 400) to be compatible with all investigated methods—in partic-
ular the downsampling-based deep learning approach, and the used
atom size in the case of the dictionary-based methods. Hence, the fi-
nal resolution of the captured decoded light fields is (9, 9, 400, 400, 13).
These spectral light fields are reference light fields, i.e. they are not spec-
trally coded and can therefore be used to quantitatively evaluate the
investigated reconstruction methods. To this end, the spectral coding is
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Table 4.1 Disparity ranges (in px) of the created synthetic dataset challenges, the new
real-world dataset captured at two different focal length equivalents 𝐹 (in mm), and the
dataset published by Xiong et al. [221].

(a) Disparity ranges of the
created dataset challenges.

Scene
Disparity𝑑min 𝑑max

Backgammon −1.0 1.0
Bust −2.2 1.4
Cabin −2.4 2.8
Circles −2.5 1.0
Dots −0.5 0.5
Elephant −0.9 0.6
Wall −1.5 1.5

(b) Disparity ranges of the
created real-world dataset.𝐹 Scene

Disparity𝑑min 𝑑max

150 Diavolo −0.2 1.8
Floral −0.2 1.5
Wagons −0.2 1.9

250 Diavolo −0.3 2.3
Floral −0.3 2.0
Wagons −0.3 2.3

(c) Disparity ranges of the
dataset by Xiong et al.

Scene
Disparity𝑑min 𝑑max

Boards −3.0 1.2
Fruits −3.0 1.2
Toys −3.0 1.2

𝑑min (𝑑min + 𝑑max)/2 𝑑max

Figure 4.6 The disparity colormap used throughout with ranges given in Table 4.1.

performed in the digital instead of the optical domain, as discussed in
Section 4.4.2. However, due to the used coding scheme, which allows for
standard decoding of the raw sensor measurements as discussed in Sec-
tion 2.3.1, the coding in the digital domain can be considered equivalent
to the optical coding using a coded MLA. The dataset is made publicly
available [A2].

As is commonwith real-world light field datasets, the captured dataset
does not contain any depth or disparity reference. Hence, it cannot be
used to quantitatively evaluate disparity estimation performance, however
a qualitative comparison can of course be performed.Moreover, using the
uncoded light fields, conventional state-of-the-art disparity estimation
methods can be used as a reference, e.g. by converting the light fields
to RGB. A comparison of the properties of the created synthetic and
real-world datasets is given in Table 2.1.
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4.2.1 Spectral light field camera
The spectral light field camera, developed and manufactured in joint
works with the IIIT Mechanical Workshop, consists of a conventional
Lytro Illum light field camera and a custom-built housing, enclosing a
spectral filter wheel. Hence, the spectral light field is not captured at
once but in a spectrally scanning fashion. The wheel holds 13 spectral
bandpass filters with central wavelengths ranging from 400 to 700 nm
in 25 nm steps, which also corresponds to the filter width. In this con-
figuration, the light fields are spectrally sampled in complete analogy
to the created synthetic dataset. The used filter transmissivities are de-
picted in Figure 4.8. To step the filter wheel automatically, the wheel
is flange-mounted onto a stepper motor. The camera and stepper mo-
tor are synchronously controlled by a Raspberry Pi. For interaction, a
Python-based backend as well as a web application GUI was developed.
Further technical details of the camera are presented in Appendix C. An
overview of the camera is given in Figure 4.7.

Since the Lytro Illum camera uses a Bayer pattern-based RGB sensor,
the radiometric calibration of the camera is rather challenging and is
presented in detail in Section 4.2.2. For the illumination of the scenes,
two standard photo studio lights were used as shown in Figure 4.9. Each
light consists of seven 50W daylight lamps with a color temperature
of 5500K. These lights offer the advantage of providing a comparably
strong, even, and diffuse illumination while being relatively inexpensive.
However, in the case of spectral imaging, the black body-like emitted
spectral flux of the lamps is not optimal because of a relatively low flux
at low wavelengths (the blue and UV range) as well as large wavelengths
(the red and NIR range). Therefore, the spectral channels of the green
range will saturate much quicker than those of the blue and red range,
assuming a constant exposure time. This effect is further amplified by the
quantum efficiency of conventional CCD sensors, which usually follow
the same trend, i.e. a relatively lower quantum efficiency at the blue
and red as compared to the green wavelength range. Unfortunately, the
quantum efficiency of the Lytro Illum camera is not known precisely.
Approaches to overcome these challenges are discussed in the following.

Arguably, despite its high sensor resolution of 41Mpx, the Lytro Illum
camera is not the ideal camera for spectral light field imaging. First,
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Figure 4.7 Custom-built spectral light field camera, using a Lytro Illum camera and a
spectral filter wheel, jointly controlled by a Raspberry Pi.
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Figure 4.8 Filter transmissivities of the 13
used spectral bandpass filters according to
manufacturer measurements.

Figure 4.9 The studio lights used for illu-
mination while capturing the created real-
world dataset.

the Lytro Illum camera was developed as a consumer camera. Hence,
low-level interfacing (e.g. for remote triggering or camera control) is not
as straightforward to achieve as with an industry-grade camera. All
control of the camera is done via the Android Debug Bridge, which
offers limited feedback and error handling. Also, it is not possible to
extract a full light field from the measurements using the proprietary
software provided by Lytro, only the super-resolved or the refocused
images are available. Hence, the camera calibration, as well as the light
field decoding, have to be implemented from scratch. Second, more
severely, the Lytro Illum is a color camera, i.e. it employs additional
RGB filters on the sensor, requiring extensive radiometric calibration
which is further hampered by the non-detachable main lens, preventing
direct access to the sensor. However, no off-the-shelf alternatives are
available. While Raytrix offers monochromatic light field cameras, the
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optical design (and hence the light field coding) differs significantly from
the Lytro’s (cf. Section 2.1). Hence, Raytrix cameras are not suitable for
the considered case. Alternatively, using a 2D spectrometer mounted on
a gantry or robotic arm would be a good choice to capture high-quality
spectral light fields, similar to the approach by Xiong et al. [221]. However,
building such a reference camera is arguably much more expensive.
Therefore, the Lytro Illum camera is chosen, shifting the challenges from
the hardware to the software domain—in particular the radiometric
calibration. Considering the hardware used, it is fair to argue that the
used spectral light field imaging setup is among the least expensive ones
possible.

4.2.2 Radiometric calibration
The spectral light field ismeasured in a spectrally scanning fashionwhere
for each spectral channel a monochromatic light field is captured by the
Lytro Illum camera, employing the corresponding spectral bandpass
filter. Usually, the individual channels of a spectrally scanning camera
are obtained using identical exposure times. However, this results in
a strongly channel-dependent SNR due to the different spectral sensi-
tivities, which are determined by the filter characteristics, the quantum
efficiency of the sensor, as well as the light source. As previously noted,
this effect is quite severe in the considered case due to the used photo stu-
dio illuminants, as well as the quantum efficiency and the additional RGB
filters of the Lytro Illum camera. To overcome this problem, it is proposed
to capture the spectral channels with their individually optimal exposure
time. That is, for every imaged scene, first a channel-wise exposure time
is determined to be as large as possible while avoiding oversaturation (i.e.
clipping). In the presented case, this results in comparably short expo-
sures (about 1ms) in the highly sensitive green channels and comparably
long exposures (up to 6 s) in the blue and red channels. This approach
has the drawback that the camera needs to be radiometrically calibrated
in order to scale the individual measurements to a common reference in-
tensity, which is more cumbersome than the regular white balancing and
de-vignetting. However, the radiometric calibration has the advantage
that the additional Bayer pattern RGB filters that are present in the Lytro
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𝚗p ∼ P(𝜇p) 𝜂quantum eff. 𝚍 ∼ N (𝜇𝚍, 𝜎𝚍)dark noise

𝚗e ∼ P(𝜂𝜇p) 𝐾gain 𝚗 ∼ U(0, 𝑞)quant. noise

𝚐
Figure 4.10 Linear camera model according to the EMVA 1288 standard.

Illum camera, as well as the vignetting of the (non-detachable) main lens
and the microlenses can be calibrated at once.

The radiometric calibration is performedusing the linear cameramodel
as specified by the European Machine Vision Association (EMVA) 1288
standard, which is depicted in Figure 4.10. Note that, since the main
lens of the Lytro Illum camera is non-detachable, an absolute calibration
of the sensor according to the standard is not possible here (nor is it
necessary).

First, the camera’s dark signal properties are estimated. Following the
EMVA 1288 standard, the mean value of the dark signal 𝚍 is given by𝜇𝚍(𝑡) = 𝜇𝚍,0 + 𝜇𝙸 𝑡 . (4.2)

The mean dark signal 𝜇𝚍 is linear in the exposure time 𝑡 with offset 𝜇𝚍,0
and slope 𝜇𝙸 which is called the (mean) dark current. Since it is caused by
thermally induced electrons, the dark current is temperature-dependent.
Therefore, the calibration is only valid at a given temperature. For this
reason, the calibration measurements and the dataset were captured
on consecutive days of similar temperatures in the winter where the
temperature was assumed to be approximately constant due to the con-
stant heating of the laboratory. The offset and slope are estimated by
measuring an exposure series of dark images, i.e. images without any
illumination and varying exposure time. Here, an exposure series of five
exposures, ranging from 4 to 10 s, was acquired. The mean values 𝜇𝚍(𝑡)
are approximated using the sample mean with a sample size of 10, i.e.
10 dark images were measured and averaged for each exposure time.
The mean offset and dark current are estimated via a simple linear least-
squares regression of the averaged exposure series using (4.2). Note that
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this calibration would have to be performed individually for every used
camera gain. For this reason, the camera gain is set to ISO 80 throughout
all measurements in the following. As only static scenes are imaged (and
hence long exposure times are unproblematic), the value was chosen to
be as small as possible in order to keep the sensor noise at the lowest
possible value. Additionally, this minimizes the overall impact of the
temperature dependence of the dark signal.

In order to radiometrically calibrate the camera, an exposure series
of spectral bright images was collected. Here, a bright image refers to a
spectral image of the used light source taken by the spectral light field
camera through an optical diffuser, achieving an almost ideal diffuse
white scene. The diffuser is positioned directly in front of the spectral
filters. For a total of 30 different exposure times, ranging from 0.25 to
200ms, five spectral bright images were measured and averaged. Hence,
a total of 1950 greyscale images were captured for the bright image series.
Note that, since the main lens is non-detachable, the following depends
on the actual camera configuration, i.e. the camera gain and in particular
the zoom and focus settings. Changing the zoom or the focus of the
main lens changes the local intensity distribution of the imaged radiation
and hence the effective spectral responsivity of the individual pixels.
For this reason, the measurements of the spectral bright images and the
radiometric calibration were repeated for the different camera settings
that were used to capture the dataset.

Following the EMVA 1288 standard, each pixel is assumed to obey the
linear camera model 𝜇𝚐 = 𝜇𝚍 + 𝐾𝜂𝜆𝐴ℎ𝑐 𝐸𝑡= 𝜇𝚍,0 + (𝛼(𝜆) + 𝜇𝙸) 𝑡 . (4.3)

Here, 𝚐 corresponds to the stochastic pixel grayscale value. The sensor’s
quantum efficiency is denoted by 𝜂 and the system gain by 𝐾. The term𝜆𝐴ℎ𝑐 𝐸 corresponds to the mean number of photons reaching the pixel
(depending on the light source and the used lenses) and is unified in the
scalar 𝛼(𝜆), which incorporates all spectral characteristics of the light
source. Overall, the mean pixel grayscale value is linear in the exposure
time. Now, in the considered case, the camera employs additional spectral
filters as well as a Bayer-pattern RGB sensor. Since the filters have the
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same effect on the incoming photons as the sensor quantum efficiency,
i.e. a photon is either transmitted with a certain probability or not, the
filters can be multiplicatively3 incorporated into (4.3) via𝜇𝚐 = 𝜇𝚍,0 + (𝑏𝑛 𝜑𝜆 𝛼𝜆 + 𝜇𝙸) 𝑡 , (4.4)𝑛 = 1, 2, 3 , (RGB filter)𝜆 = 1, 2, … , 13 , (spectral filter)

where 𝑏𝑛 denotes the effective RGB filter and 𝜑𝜆 the spectral filter trans-
missivity. Therefore, for an arbitrary spectral pixel (𝑥, 𝑦, 𝜆), denoting the
two spatial and one spectral coordinate of the raw measurement, the
linear model can be written in a tensor-like fashion,𝜇𝚐,𝑥𝑦𝜆𝑖 = 𝜇𝚍,0 + (𝑏𝑛(𝑥,𝑦) 𝜑𝜆 𝛼𝜆 + 𝜇𝙸) 𝑡𝑖 , or (4.5)̃𝜇𝚐,𝑥𝑦𝜆𝑖 ≔ 𝜇𝚐,𝑥𝑦𝜆𝑖 − 𝜇𝚍,0 − 𝜇𝙸 𝑡𝑖 = 𝑏𝑛(𝑥,𝑦) 𝜑𝜆 𝛼𝜆 𝑡𝑖 , (4.6)

where 𝑖 = 1, … , 30 denotes the index of the exposure time series. The
index 𝑛(𝑥, 𝑦) of each RGB filter 𝑏𝑛(𝑥,𝑦) is uniquely determined by the
pixel (𝑥, 𝑦) and is neglected in the following. In principle, (4.6) can be
used to calibrate each pixel individually, viewing 𝑐𝑥𝑦𝜆 = 𝑏𝑛 𝜑𝜆 𝛼𝜆 as the
single model parameter. In fact, this simple linear least-squares approach
can be analytically solved for 𝑐𝑥𝑦𝜆. However, this resulted in highly noisy
light fields in precursory experiments. This is not too surprising, as in
some cases only a few (below five) measurements are available per pixel,
depending on its sensitivity, due to overexposure as discussed shortly.
For a more parameter-efficient and smooth estimate, it is proposed to
factorize the linear dependence into its spatial and spectral components,̃𝜇𝚐,𝑥𝑦𝜆𝑖 = 𝑣𝑥𝑦𝑟(𝑛)𝜆 𝑡𝑖 . (4.7)

Here, 𝑣𝑥𝑦 denotes all spatial dependencies such as the natural and me-
chanical main lens and microlens vignetting, and 𝑟𝜆 denotes the spectral
responsivity, which depends on the pixel’s color filter type 𝑛 ∈ {R,G,B}
and the used bandpass filter 𝜆. The goal is now to estimate 𝑣𝑥𝑦 and 𝑟(𝑛)𝜆
3 This is a direct result of the so-called thinning property of the Poisson process when

composed with a Bernoulli experiment.
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Figure 4.11 Greyscale values of a 2×2px crop from a spectral bright image exposure
series. The individual measurements are colored corresponding to their respective RGB
filter type. Top row: unfiltered exposure series with a linear fit of the first 10 values for
reference. Bottom row: filtered with neighbor overexposure compensation and linear fit of
the full data.

from the measured spectral bright image exposures series. Doing so, the
model parameters 𝑣𝑥𝑦 and 𝑟𝜆 are jointly estimated from all available mea-
surements and not just a single pixel. Since the relative constant scaling
between 𝑣𝑥𝑦 and 𝑟(𝑛)𝜆 is arbitrary, it is fixed here by assuming 𝑣𝑥𝑦 ∈ [0, 1]
which interprets the vignetting as a form of attenuation.

In order to be able to process the full spectral exposure series ten-
sor ̃𝜇𝚐,𝑥𝑦𝜆𝑖 at once, which makes GPU acceleration (e.g. via PyTorch or
TensorFlow) straightforward, certain care has to be taken to mask out
overexposed pixels. Since the full exposure series is measured for all
spectral channels 𝜆, overexposure is unavoidable. For example, the green
channels are much more sensitive than the red or blue channels and will
therefore saturate much more quickly, while longer exposure times are
necessary to achieve a reliable estimate of the less sensitive channels.
However, overexposure is easy to handle by masking out all pixels with
pixel values larger than 0.985, which corresponds to the threshold given
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(a) Estimated spectral responsivity ̂𝑟(𝑛)𝜆 . (b) Estimated vignetting ̂𝑣𝑥𝑦 (bottom) and a
raw bright image for reference (top).

Figure 4.12 Spectral responsivity and vignetting (top left and central crop) estimated
from a spectral bright image exposure series in the case of the 250mm main lens focal
length equivalent (and a fixed focus setting).

by the four least significant bits of the 10 bit sensor4 of the Lytro Illum
camera. However, this simple masking is not sufficient. As shown in
Figure 4.11, overexposed pixels influence neighboring pixels. In CCD
sensors, the charges from saturated pixels overflow to neighboring pixels,
in particular along the line at which the CCD sensor is readout. In the
top left of Figure 4.11 one can observe that the blue pixels saturate first,
leading to a change of the green pixels’ sensitivity, since they are now also
registering the overflown charges from the blue pixel. This is referred to
as blooming in CCD sensors [18]. However, the red pixels’ sensitivity only
changes slightly. This is likely because in a standard Bayer pattern the red
and blue pixels are only neighbored diagonally, whereas the green pixels
are direct neighbors to both blue and red pixels. So when also the green
pixels saturate, the red pixels’ sensitivity changes abruptly. To obtain
a reliable estimate of the true sensitivity, it is clear that these measure-
ments also have to be masked out. This is achieved by using the available

4 (1111110000)2/(1111111111)2 = 1008/1023 ≈ 0.985.
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saturation mask and extending it to direct neighbors as well as neigh-
bors in the 5 px neighborhood along the line along at which the CCD
sensor is readout. The filtered results are shown in Figure 4.11 (bottom).
Furthermore, since the exposure times of the camera are logarithmically
more densely sampled at short exposure times, it is proposed to weigh
the measurements logarithmically. Finally, an estimate of the vignetting
and responsivity is obtained using the model (4.6) and a weighted least-
square fit. Since the model parameters are coupled, an analytic solution
is not available. Instead, the weighted mean squared error is minimized
using PyTorch and the Adam optimizer [103]. An example result of the
fitted vignetting and responsivity is given in Figure 4.12. Since the full
spectral exposure series cannot be loaded onto the GPU at once (a single
spectral bright image exposure series is about 65GB in size), the mea-
surements are spatially patched using 64 windows with 50% overlap. In
overlapping regions, the obtained estimates are averaged.

Now, using the estimated dark offset, dark current, vignetting, and
spectral responsivity, a raw spectral light fieldmeasurement R̃𝑥𝑦𝜆, where
each spectral channel 𝜆 is measured using its optimal exposure time 𝑡𝜆,
is calibrated, in accordance with (4.6), via

R𝑥𝑦𝜆 = R̃𝑥𝑦𝜆 − ̂𝜇𝚍,0( ̂𝑣𝑥𝑦 ̂𝑟(𝑛)𝜆 + ̂𝜇𝙸) 𝑡𝜆 . (4.8)

From the spectrally calibrated raw measurement, the spectral light field
is decoded as follows.

4.2.3 Geometric calibration
Each raw measurement corresponds to a 2D multiplexed version of the
4D light field. In order to decode the measurements, as will be discussed
in more detail in Section 4.2.4, the camera has to be calibrated. In partic-
ular, as the basis of virtually all model-based calibration methods, the
individual microlens centers have to be detected. Usually, a regular grid
is then estimated that best approximates the detected centers. Here, these
calibration steps are referred to as pre-calibration. A full calibration of
the remaining intrinsic and extrinsic parameters is not discussed here as
there are several established and well-tested approaches [21, 40, 45, 84].
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In spite of the importance of this pre-calibration, the literature focuses
mostly on the camera models and decoding but pays little or no attention
to the necessary details emerging in the pre-calibration, most importantly
non-trivial effects such as mechanical and natural vignetting. While for
a correct pre-calibration, the detection of the perspectively projected
microlens centers is necessary, as discussed shortly, all methods pro-
posed in the literature rely on estimating the center of each microlens
image brightness distribution, approximating the orthogonally projected
centers. Due to natural and mechanical vignetting, this results in severe
deviations from the true projected centers, in particular in off-center
microlenses.

4.2.3.1 Camera model

The pre-calibration ofMLA-based cameras is usually performed using so-
called white images—images of a white scene, for example taken using
an optical diffuser. As opposed to the spectral bright image exposure
series used for the radiometric calibration, the white images are not taken
through the additional spectral filters, as the lens geometry remains
unchanged in that case. A single white image per camera configuration,
i.e. zoom and focus, is sufficient. To increase the robustness against sensor
noise, a single white image is obtained as the mean of 10 individual
measurements here.

To estimate the grid parameters of theMLA, the previously introduced
camera model is slightly generalized to the one depicted in Figures 4.13
and 4.14. In this model, the camera consists of amain lens and a collection
of microlenses, arranged in a hexagonal grid, which may be rotated (not
depicted in the figures) and tilted. All lenses are modeled as thin lenses.
As is usual in the focused design, f-number matching of the main lens
and microlenses is assumed [154]. To model irregularities of the grid,
independent uncorrelated Gaussian noise 𝝐 is added to the ideal grid
point coordinates. Finally, an object-side aperture with variable entrance
pupil is placed at a distance 𝑎 to the main lens to account for mechanical
vignetting effects.
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Figure 4.13 Schematic side view of the unfocused light field camera model with MLA tilt
and perspectively projected microlens centers.

In the case of a hexagonal microlens arrangement, the ideal unrotated,
untilted and unshifted microlens center coordinates are given by

𝐜id𝑖,𝑗 = 𝐨g + ⎛⎜⎜⎝(𝑖 + 12 𝑗 mod 2) 𝑑𝑥𝑗𝑑𝑦0 ⎞⎟⎟⎠ + 𝝐𝑖,𝑗 , (4.9)

for (𝑖, 𝑗) ∈ ℤ2. Here, 𝑑𝑥 and 𝑑𝑦 denote the horizontal and vertical ideal
grid spacing,𝐨g = (𝑜g,𝑥, 𝑜g,𝑦, 0)T the grid offset, and 𝝐 = (𝜖, 𝜖, 0)T the grid
noise with standard deviation 𝜎g. The ideal hexagonal grid is determined
by a single grid spacing 𝑑 via𝑑𝑥 = 𝑑 , and 𝑑𝑦 = 𝑑 ⋅ √3/2 . (4.10)

The microlens radius is given by 𝑟 = 𝑑/2. The ideal grid points are then
rotated in the 𝑥𝑦-plane by 𝛼, rotated around the 𝑦-axis by 𝛽, rotated
around the 𝑥-axis by 𝛾, and shifted to 𝑧 = −𝐼, where 𝐼 denotes the
imaging distance with respect to the main lens. Hence, one obtains the
final grid point coordinates𝐜𝑖,𝑗 = 𝐑𝑥,𝛾 𝐑𝑦,𝛽 𝐑𝑧,𝛼𝐜id𝑖,𝑗 + (0, 0, −𝐼)T . (4.11)
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Figure 4.14 Schematic front view of the MLA in the case of a hexagonal layout together
with the used microlens indexing scheme.

At times, the grid point coordinates will be simply referred to as 𝐜𝑘 for𝑘 ∈ ℤ, when one does not need to specify the re-indexing (𝑖, 𝑗) ↦ 𝑘. The
size (𝑤, ℎ) of the MLA is chosen such that the projection of the grid, after
rotation 𝛼 and tilt (𝛽, 𝛾), covers the full sensor of size (𝑠𝑥, 𝑠𝑦), i.e. it can
be calculated via 𝐑𝑥,𝛾 𝐑𝑦,𝛽 𝐑𝑧,𝛼 ⎛⎜⎜⎝𝑤ℎ0⎞⎟⎟⎠ = ⎛⎜⎜⎝𝑠𝑥𝑠𝑦𝑧 ⎞⎟⎟⎠ , (4.12)

where 𝑧 is arbitrary. The perspective projection of the microlens cen-
ters (4.11) from the center (0, 0, 0)T of the exit pupil onto the sensor is
given by 𝐜p𝑖,𝑗 = 𝜁𝑖,𝑗𝐜𝑖,𝑗 (4.13)

with scaling factor 𝜁𝑖,𝑗 such that(𝐜p𝑖,𝑗)𝑧 = (𝜁𝑖,𝑗𝐜𝑖,𝑗)𝑧 = −𝐼 − 𝑓 , (4.14)

where 𝑓 denotes the ideal microlens focal length. Therefore, using (4.11),
one obtains 𝜁𝑖,𝑗 = −𝐼 − 𝑓(𝐑𝑥,𝛾 𝐑𝑦,𝛽 𝐑𝑧,𝛼𝐜id𝑖,𝑗)𝑧 − 𝐼 . (4.15)
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The orthogonally projected centers 𝐜o𝑘 are simply obtained from the grid
coordinates 𝐜𝑘 by setting their 𝑧-value to (−𝐼 − 𝑓).
4.2.3.2 Microlens array accuracy estimates

To simplify some of the model parameters, the following estimates are
considered. Assuming an ideal grid, 0 = 𝛼 = 𝛽 = 𝛾, the focal length 𝑓𝑘
of a microlens has to be accurate withinΔ𝑓 < 𝑝𝑓/𝑑 (4.16)

such that the disk of confusion lies within a pixel with pixel pitch 𝑝 [154].
Deviations from this constraint will lead to blur in the decoded image
which cannot be compensated. Following the same argument, the rotation𝛼 and tilt (𝛽, 𝛾) have to be constrained such that the maximum change in
distance Δ𝑧 to the sensor fulfills the same restriction. To estimate this, the
outermost point (𝑤/2, ℎ/2, 0)T of the MLA is used and rotated and tilted
via 𝐑𝑥,𝛾 𝐑𝑦,𝛽 𝐑𝑧,𝛼. The resulting 𝑧-component then yields the maximum
change of distance of the MLA to the sensor. Using (4.12), one findsΔ𝑧 = 𝑠𝑥( tan 𝛽/ cos 𝛾) + 𝑠𝑦 tan 𝛾 < 𝑝𝑓/𝑑 . (4.17)

Note that the result does not depend on the rotation 𝛼. To obtain a
common upper bound Δ𝛿 for the accuracies of the tilt angles, a Taylor
series expansion in 𝛽, 𝛾 = 0 is performed,Δ𝑧 ≈ 𝑠𝑥 (𝛽 + 𝛽3/3 + 𝛽𝛾2/2) + 𝑠𝑦 (𝛾 + 𝛾3/3) . (4.18)

Inserting 𝛽 = 𝛾 ≡ Δ𝛿, one can solve forΔ𝑧 ≈ Δ𝛿(𝑠𝑥 + 𝑠𝑦) + Δ3𝛿(5𝑠𝑥/6 + 𝑠𝑦/3) < 𝑝𝑓/𝑑 . (4.19)

Additionally, the tilt introduces geometric distortions in the perspec-
tively projected grid. That is, the regular grid {𝐜𝑘 ∶ 𝑘 ∈ ℤ} with constant
grid spacing 𝑑 will be projected onto an irregular grid {𝐜p𝑘 ∶ 𝑘 ∈ ℤ} with
a local grid spacing 𝑑𝑥,𝑖,𝑗 = ∥𝐜p𝑖,𝑗 − 𝐜p𝑖−1,𝑗∥ , (4.20)𝑑𝑦,𝑖,𝑗 = ∥𝐜p𝑖,𝑗 − 𝐜p𝑖,𝑗−1∥ ⋅ √3/2 . (4.21)
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The maximum difference in local grid spacing is given using the largest
microlens indices 𝑖max = ⌈𝑠𝑥/2𝑑𝑥⌉ and 𝑗max = ⌈𝑠𝑦/2𝑑𝑦⌉ byΔ𝑑,𝑥,max = ∣𝑑𝑥,𝑖max,𝑗max

− 𝑑𝑥,−𝑖max,−𝑗max
∣ , (4.22)Δ𝑑,𝑦,max = ∣𝑑𝑦,𝑖max,𝑗max

− 𝑑𝑦,−𝑖max,−𝑗max
∣ . (4.23)

This formula can be used to estimate whether the tilt (if within the con-
straint (4.19)) is detectable in the microlens image.

In the case of a Lytro Illum camera,with its fixed 𝑓/2 lens, themicrolens
focal lengths have to be accurate within Δ𝑓 < 2.8 µm according to (4.16).
Furthermore, using (4.19) and assuming ideal microlens focal lengths,
the tilt has to be accurate within Δ𝛿 < 0.0088°. The accuracy will have to
be even higher in order for the combined Δ𝑓 + Δ𝑧 to fulfill the constraint.
For the maximum geometrical distortion of the projected grid within
these constraints, following (4.22), one obtainsΔ𝑑,𝑥,max ≈ Δ𝑑,𝑦,max = 0.006 px , (4.24)

assuming a 30mmmain lens focal length equivalent forwhich the scaling
factor 𝜁 and distortion effects are the largest. The geometric distortion
hence is negligibly small and undetectable in the white image. Therefore,
in the following, the model is simplified assuming zero tilt, i.e. 𝛽 = 0 = 𝛾.
4.2.3.3 Proposed pre-calibration

The main purpose of the pre-calibration is to estimate a regular grid
approximating the perspectively projected microlens centers 𝐜p𝑘, which
correspond to the coordinates of the central rays of the target light field.
In the further decoding pipeline, the estimated grid is used to align the
lenslet image with the sensor and slice it to a 4D light field.

Usually, the microlens grid is estimated by detecting the microlens
centers from the corresponding white image [21] and building a regular
grid best approximating the detected centers [45] or by directly estimating
a regular grid from the white image [40]. Challenges in the detection
are versatile: On the one hand, the sheer amount of microlenses in MLA
used in practice limits the algorithm’s complexity. On the other hand,
the geometry of the MLA is not trivial and usually slightly irregular.
Furthermore, main lens and microlens vignetting influences the (local)
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Figure 4.15 Off-center and central image crops from synthetic (left) and real Lytro Illum
(right) raw white images. The ground truth perspectively projected centers 𝐜p𝑘 ( ) and
orthogonally projected centers 𝐜o𝑘 ( ) are depicted in the case of the synthetic data. Details
on the rendering of the synthetic white images are presented in Appendix B.

shape and brightness of the microlens images, particularly of those that
are close to the sensor edge: while microlens images close to the optical
axis are circular and brightest in the center,microlens images at the sensor
edge are cat-eye-shaped and show an off-center brightest pixel, as shown
in Figure 4.15 for a synthetic and real-world example. There are mainly
two methods proposed in the literature: Cho et al. [40] first compensate
the rotation using an estimate obtained in the Fourier transform of the
white image. In the spatial domain, they perform a grayscale erosion
and clustering of the demosaiced white image. To estimate the microlens
centers, they use a parabolic least-squares regression of the clustered
microlenses. In the decoding pipeline by Dansereau et al. [45], which is
implemented in the Matlab Light Field Toolbox, the de-facto open source
standard, the raw white image is convolved with a disk kernel. The
microlens centers are then estimated by finding the local maxima in the
filtered image. This does not result in subpixel precision. However, in
the succeeding pre-calibration, the grid parameters are estimated with
subpixel precision.

None of the previous algorithms consider vignetting. Taking into ac-
count the natural and mechanical vignetting by estimating the microlens
grid parameters and coordinates in the spatial domain of the white im-
age is extremely challenging. Local circle search algorithms have been
proposed [142] which show good performance in the image’s central
regions and in cases of strong vignetting close to the sensor edge, but
mediocre performance in cases of only slightmechanical vignetting. Lytro
supposedly uses a similar local arc fitting to account for mechanical vi-
gnetting [116], but since the software is closed source this is speculative.
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(a) Grid spacing accuracy requirement.
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(b) Grid rotation accuracy requirement.

Figure 4.16 Schematic depiction of the accuracy requirements for the grid spacing es-
timate and the grid rotation estimate. Here, 𝑖0 corresponds to the 1D central microlens
index, and 𝑖max to the index of the outermost microlens.

The grid parameters (grid spacing, rotation, and offset) have to be
estimated with very high accuracy. Assuming that the maximum devia-
tion from a grid point of the estimated regular grid to a true grid point
may not exceed 0.5 px, one can estimate upper bounds of the individual
accuracy requirements, as depicted in Figure 4.16. Assuming that the
grid offset is estimated perfectly and the grid matches the real grid at the
sensor center, in order for the grid points furthest from the center to be
within 0.5 px of the true grid centers, the accuracy Δ ̂𝑑 of the estimated
grid spacing ̂𝑑 has to be accurate within|Δ ̂𝑑| < 0.5𝑙max

= 0.0018 px (4.25)

in the case of the Lytro Illum camera. Here,𝑙max = max {𝑖max, 𝑗max} = max{⌈2𝑠𝑥/𝑑𝑥⌉, ⌈2𝑠𝑦/𝑑𝑦⌉} (4.26)

is determined by the longer side of the sensor. Following a similar ar-
gument, the accuracy Δ�̂� of the estimated grid rotation ̂𝛼 has to satisfysin|Δ�̂�| < 0.5 ⋅ 𝑝𝑖max ⋅ 𝑑 ⟹ |Δ�̂�| < arcsin 0.5 ⋅ 𝑝𝑖max ⋅ 𝑑 = 0.0074° . (4.27)

Finally, the grid offset leads to a global shift of the estimated grid, and
should hence at least be accurate within|Δ�̂�| < 0.5 px . (4.28)

These accuracy estimates pose challenging requirements on the estima-
tion algorithms, in particular on the estimation of the grid spacing. Here,
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a novel algorithm is proposed, which operates in the Fourier domain
to estimate the grid spacing and rotation, and in the spatial domain to
estimate the grid offset. The estimation takes into account the natural
and mechanical vignetting present in the white images.

4.2.3.4 Grid rotation and spacing estimation

Awhite image can be interpreted as an (approximately) regular structure:
ignoring natural and mechanical vignetting, a (continuous) white image
is made up of a texture element (texel) 𝑒(𝐱), which is arranged in a grid
spanned by the vectors 𝐛1 and 𝐛2. For example,𝐛1 = (0, 2𝑟), 𝐛2 = (√3 ⋅ 𝑟, 𝑟) (4.29)

for a perfect hexagonal gridwith amicrolens radius 𝑟 = 𝑑/2. Formulating
the white image as a periodic texture via 2D convolution, denoted by ∗∗,
it can be written as𝑔ideal(𝐱) = 𝑒(𝐱) ∗∗ ∑𝑖,𝑗∈ℤ 𝛿(𝐱 − 𝑖𝐛1 − 𝑗𝐛2)) (4.30)

❝
s𝐺ideal(𝐟 ) ∝ 𝐸(𝐟) ⋅ ∑𝑖,𝑗∈ℤ 𝛿(𝐟 − 𝑖𝐟1 − 𝑗𝐟2) , (4.31)

where 𝐸(𝐟) denotes the Fourier transform of 𝑒(𝐱). The frequency basis
vectors 𝐟𝑘 = (𝑓𝑘,𝑥, 𝑓𝑘,𝑦), are given by [18](𝑏1,𝑥 𝑏2,𝑥𝑏1,𝑦 𝑏2,𝑦) = (𝑓1,𝑥 𝑓1,𝑦𝑓2,𝑥 𝑓2,𝑦)−1

, (4.32)

where 𝑏𝑘,𝑥, 𝑏𝑘,𝑦 are the components of the vectors 𝐛𝑘. Ideally, one could
estimate the grid spacing and rotation by detecting the peaks correspond-
ing to 𝐟1, 𝐟2 (and their multiples) in the absolute value of the Fourier
transform 𝐺ideal(𝐟 ).

Introducing vignetting does not change the grid vectors but instead
modulates the (now local) texel: in the image center, the texel is not
altered, but deviating from the center the brightness distribution of the
texel changes due to natural vignetting. Furthermore, due to mechanical
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Figure 4.17 Off-center and central local texels of a white image with the corresponding
(normalized) Fourier transform magnitudes.

vignetting, some pixels of the texel are blocked. Therefore, the texel 𝑒𝑖,𝑗(𝐱)
is different at every grid position (𝑖, 𝑗). As an example, two local (discrete)
texels are shown in Figure 4.17. One obtains the white image𝑔(𝐱) = ∑𝑖,𝑗∈ℤ 𝑒𝑖,𝑗(𝐱) ∗∗ 𝛿(𝐱 − 𝑖𝐛1 − 𝑗𝐛2)) (4.33)

❝
s𝐺(𝐟) ∝ ∑𝑖,𝑗∈ℤ 𝐸𝑖,𝑗(𝐟 ) ⋅ e−2𝜋i (𝑖𝐛1+𝑗𝐛2)⋅𝐟 , (4.34)

where𝐸𝑖,𝑗(𝐟 )denotes the Fourier transformof 𝑒𝑖,𝑗(𝐱). As every texel is dif-
ferent, (4.34) cannot be simplified to a Dirac comb as the ideal case (4.31).

Now, it is proposed to model the local texels as𝑒𝑖,𝑗(𝐱) = 𝑒(𝐱) ⋅ 𝑚nv𝑖,𝑗(𝐱) ⋅ 𝑚mv𝑖,𝑗 (𝐱) , (4.35)

where 𝑒(𝐱) is a binary circular mask with microlens radius 𝑟, 𝑚nv𝑖,𝑗(𝐱) is
the modulation due to natural vignetting, whose shape does not need
to be specified explicitly but could for example be modeled as a wide
Gaussian bell or an approximation of the cos4 law, and 𝑚mv𝑖,𝑗 (𝐱) describes
the modulation due to mechanical vignetting, which can be modeled
again as a binary circular mask of large radius with non-zero center. In
more detail, the natural vignetting can be written as𝑚nv𝑖,𝑗(𝐱) = 𝑚nv0,0(𝐱 − 𝐨𝑖,𝑗) , (4.36)

where 𝐨𝑖,𝑗 is the distance of the perspectively projected microlens center
to the orthogonally projected one, since natural vignetting causes the
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𝑒𝑖,𝑗(𝐱)
𝑥𝑦

Figure 4.18 Local texel model consisting of an ideal circular microlens image and modu-
lation due to natural and mechanical vignetting.

brightest pixel to be at the orthogonally projected center but the modula-
tion shape does not change otherwise. A schematic drawing of the local
texel model is shown in Figure 4.18.

The Fourier transform of the local 𝑒𝑖,𝑗(𝐱), using (4.35) and (4.36), is𝐸𝑖,𝑗(𝐟 ) = 𝐸(𝐟) ∗∗ 𝑀nv𝑖,𝑗(𝐟 ) ∗∗ 𝑀mv𝑖,𝑗 (𝐟 )= 𝐸(𝐟) ∗∗ 𝑀nv0,0(𝐟 ) ⋅ e−2𝜋i 𝐨𝑖,𝑗⋅𝐟 ∗∗ 𝑀mv𝑖,𝑗 (𝐟 ) , (4.37)

where both the Fourier transform 𝐸(𝐟) and 𝑀mv𝑖,𝑗 (𝐟 ) are Airy discs of
different widths (and phases). It was observed that natural vignetting
causes the periodic peaks in the Fourier transform of the white image to
shift. This is likely due to the underlying periodic structure of the modu-
lation which manifests itself in a phase factor: the natural vignetting of
the overall white image can be seen as a regular texture which is arranged
in the hexagonal grid of the orthogonally projected microlens centers
(instead of the perspectively projected ones). To eliminate this effect,
it is proposed to perform a strong gamma compression to effectively
eliminate the modulation 𝑚nv0,0(𝐱). That is, one defines̃𝑔𝛾(𝐱) = 𝑔𝛾(𝐱) ≈ ∑𝑖,𝑗∈ℤ 𝑒(𝐱) ⋅ 𝑚mv𝑖,𝑗 (𝐱) ∗∗ 𝛿(𝐱 − 𝑖𝐛1 − 𝑗𝐛2) (4.38)

❝
s�̃�𝛾(𝐟 ) ≈ ∑𝑖,𝑗∈ℤ 𝐸(𝐟) ∗∗ 𝑀mv𝑖,𝑗 (𝐟 ) ⋅ e−2𝜋i (𝑖𝐛1+𝑗𝐛2)⋅𝐟 , (4.39)

for 𝛾 ≪ 1 such that (𝑚nv0,0(𝐱))𝛾 ≈ 1 ❝ s 𝛿(𝐟) . (4.40)
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Note that since 𝑒(𝐱) and 𝑚mv𝑖,𝑗 (𝐱) are binary they are unchanged from the
gamma compression. The gamma compression has the additional advan-
tage that the algorithm can equivalently operate on the raw, mosaiced
white image, since the compression will push all gray values to one,
mitigating the possible effects introduced by demosaicing algorithms,
which are particularly severe in the case of microlens images [47]. Hence,
the proposed method is applied directly to the raw white images.

In practice, the texels will deviate from the texel model (4.35), in partic-
ular, 𝑒(𝐱) and 𝑚mv𝑖,𝑗 (𝐱) will not be exactly binary. The gamma compression
then would have no effect as all non-zero pixels would be mapped to
one. To make sure that the texel model (4.35) is acceptable, an adaptive
contrast stretching prior to gamma compression is performed. That is, for
some 𝑞 ∈ (0, 1), values in the range [𝑞, 0.99] are linearly mapped to [0, 1]
and subsequently clipped to the target range. The value of 𝑞 depends on
the white image and the camera parameters. The resulting white image
is denoted by ̃𝑔𝛾,𝑞. Furthermore, since the mechanical vignetting effects
off-center texels (𝑖, 𝑗) > (𝐼, 𝐽) for some 𝐼, 𝐽 ∈ ℤ, the white image is
windowed using a rotationally symmetric Gaussian window 𝑤𝜎(𝐱) prior
to calculating the Fourier transform. This suppresses off-center texels,
which are distorting the ideal spectrum due to mechanical vignetting.
The standard deviation 𝜎 of the Gaussian window is chosen such that̃𝑔𝜎,𝛾,𝑞(𝐱) = 𝑤𝜎(𝐱) ⋅ ̃𝑔𝛾,𝑞(𝐱)≈ 𝑤𝜎(𝐱) ⋅ (𝑒(𝐱) ∗∗ ∑𝑖,𝑗∈ℤ 𝛿(𝐱 − 𝑖𝐛1 − 𝑗𝐛2))) . (4.41)

Hence, its Fourier transform is approximately�̃�𝜎,𝛾,𝑞(𝐟 ) ≈ 𝑊𝜌(𝐟 ) ∗∗ (𝐸(𝐟) ⋅ ∑𝑖,𝑗∈ℤ 𝛿(𝐟 − 𝑖𝐟1 − 𝑗𝐟2))= ∑𝑖,𝑗∈ℤ 𝑊𝜌(𝐟 − 𝑖𝐟1 − 𝑗𝐟2) ⋅ 𝐸(𝑖𝐟1 + 𝑗𝐟2) , (4.42)

where the 𝐟𝑖 are given by (4.32) and the Fourier transform 𝑊𝜌(𝐟 ) of the
Gaussian window is again a Gaussian windowwith a standard deviation𝜌 = 1/(2𝜋𝜎). Therefore, the Fourier transform �̃�𝜎,𝛾,𝑞(𝐟 ) is given by a
sum of shifted Gaussians centered at linear combinations of the grid
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frequency vectors 𝐟𝑖. Since the standard deviation 𝜎 of the window in
the spatial domain is much larger than the grid spacing, the standard
deviation 𝜌 of thewindow in the Fourier domain ismuch smaller than the
grid frequency spacing. More specifically, in the case of the Lytro Illum
camera, using a standard deviation of 𝜎 = 100 px and a hexagonal grid
spacing of 15 px, one finds a standard deviation of 𝜌 = 0.0016 px−1 and a
smallest distance of frequency basis vectors of 0.0770 px−1. Therefore, the
center of each Gaussian in (4.42) lies outside the 51𝜎 neighborhood of
the closest neighboring Gaussian. The local maximum of each Gaussian
is accordingly virtually undisturbed by neighboring ones. Hence, the
peaks in �̂�𝜎,𝛾,𝑞(𝐟 ) approximate well the linear combinations of the grid
frequency spacing vectors 𝐟𝑖. In the discrete case, a rotationally symmetric
Hann window whose width is determined by the length of the smaller
dimension of the white image is applied to reduce spectral leakage.

By estimating the peaks in the spectrum �̂�𝜎,𝛾,𝑞(𝐟 ) of the contrast-
stretched, gamma-compressed and windowed white image, the grid
spacing of the underlying perspectively projected microlens centers can
be estimated via (4.32). The basis vectors 𝐟𝑖 are estimated in the Fourier
domain by finding the local maxima in the magnitude of the Fourier-
transformed white image that correspond to the first 𝑛 multiples of the
frequency basis vectors 𝑛𝐟𝑖. The number 𝑛 of detected maxima depends
on the camera used. In the case of the Lytro Illum camera, one finds up
to 𝑛 = 5 values per frequency basis vector. Zero padding and a centroid
calculation are used to estimate the sub-pixel coordinates of these fre-
quency vectors, i.e. for every cluster C𝑖,𝑛 around a peak corresponding to𝑛𝐟𝑖 one calculates ̂𝐟𝑖,𝑛 = ∑𝑗∈C𝑖,𝑛 𝐟𝑗 �̃�𝜎,𝛾,𝑞(𝐟𝑗)∑𝑗∈C𝑖,𝑛 �̃�𝜎,𝛾,𝑞(𝐟𝑗) . (4.43)

In total, the proposed method depends on three hyperparameters,𝜎, 𝛾, and 𝑞. In order to determine these parameters appropriately (i.e.,
such that the made approximations hold), a certain measure that does
not depend on any prior knowledge (e.g. the microlens centers or the
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underlying grid spacing) is needed. To this end, the pair-wise distances
of the estimated frequencies ̂𝐟𝑖,𝑛̂𝑑𝑖,𝑛 = ‖ ̂𝐟𝑖,𝑛+1 − ̂𝐟𝑖,𝑛‖ (4.44)

is calculated, which should ideally be constant in the case of a regular
grid for 𝑖 = 1, 2, respectively. Hence, the estimated standard deviation̂𝑠𝑖 of the samples ̂𝑑𝑖,𝑛 should ideally be zero. Therefore, the hyperpa-
rameters 𝛾, 𝑞, and 𝜎 are optimized by minimizing the sample standard
deviation ̂𝑠𝑖. For a specific task, e.g. given a light field camera with a fixed
focal length lens, this could be done manually. But for the Lytro camera,
the white images corresponding to the different focal lengths show dif-
ferent characteristics in terms of vignetting, grid spacing, and brightness
distribution. Therefore, and to obtain an automated calibration process,
optimization via differential evolution on a predefined search space of the
hyperparameters is used to minimize the estimated standard deviation̂𝑠𝑖 of the Fourier grid spacing. Using the final estimated grid frequency
vectors ̂𝐟𝑘 with the corresponding estimated grid spacing vectors �̂�𝑘, one
obtains the estimates of the grid spacing and rotation of the perspectively
projected microlens grid. An overview of the proposed grid estimation
is shown in Figure 4.19(a).

4.2.3.5 Grid offset estimation

Having estimated the grid rotation and spacing, the overall grid offset
remains to be estimated. This is done in the spatial domain. Dansereau
et al. [45] estimate the offset by building an initial regular grid, using
the previously estimated grid spacing and rotation, and measuring the
median distance of the regular grid points to the previously detected
microlens centers. Here, this approach is refined. First, the microlens
centers are estimated only in the central region of the image where the
expected difference of perspectively to orthogonally projected centers
is less than 0.5 px. This increases the accuracy of the detection since the
orthogonally projected centers are easier to detect due to the natural
vignetting. That is, the detection region Ζ is restricted such that∥𝐜p𝑖max0 − 𝐜o𝑖max0∥ = 𝑑 ⋅ 𝑖max(𝜁max0 − 1) < 0.5 . (4.45)
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Since 𝑑𝑥 > 𝑑𝑦, this suffices to fulfill the analogous constraint in the 𝑦-
direction as well. A rough estimate of the factor 𝜁 ≈ (𝐼 + 𝑓)/𝐼 obtained
from (4.15) is used, given a rough estimate of the image distance 𝐼, the
microlens focal length 𝑓, and the previously estimatedMLA grid spacinĝ𝑑. The restricted region Ζ will be comparatively small, depending on
the factor 𝜁 and hence on the main lens focal length, consisting of as
few as 50×50 microlenses in the case of a 30mm main lens. While this
small region is not suited to estimate the grid spacing with high accuracy,
estimating the overall offset can be done with much fewer measurements,
i.e. fewer available microlens centers. Having restricted the detection
region, low pass filtering is performed using a Gaussian kernel to reduce
noise. In a second step, the image is clustered using local thresholding
(by local Gaussian weighted mean with a block size of 17 px), to find
areas around local peaks, and a standard cluster labeling algorithm. Each
cluster represents exactly one microlens. Finally, the microlens centers
are estimated from the detected clusters. That is, for each detected cluster
C𝑘, the center of mass, analogously to the calculation (4.43) in the Fourier
domain, is calculated as𝐜det𝑘 = ∑𝑛∈C𝑘 𝐱𝑛 𝑔conv(𝐱𝑛)∑𝑛∈C𝑘 𝑔conv(𝐱𝑛) , (4.46)

where 𝑔conv denotes the region-restricted, Gauss-filtered white image. To
estimate the grid offset, analogously to Dansereau et al. [45], the median
distance of the initialized regular grid points ̂𝐜p𝑘 to the detected microlens
centers 𝐜det𝑘 is calculated. In addition, as a refinement step, a weighted me-
dian distance of the updated regular grid point to the detected microlens
centers is calculated, assigning a higher weight to thosemicrolens centers
that are more central. The weights are chosen as a symmetric Gaussian
distribution. Since the detection inaccuracies due to natural vignetting
will be smaller in the image center, this should yield a more reliable final
result of the estimated grid offset. Using the estimated grid spacing, rota-
tion, and offset, the final estimated regular hexagonal grid { ̂𝐜p𝑘 ∶ 𝑘 ∈ ℤ}
approximating the perspectively projected microlens centers 𝐜p𝑘 can be
constructed. An overview of the proposed offset estimation method is
depicted in Figure 4.19(b). The proposed pre-calibration is evaluated in
Appendix B as it is not within the main focus of this thesis.
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Figure 4.19 Flowcharts of the proposed grid estimation algorithms based on grid spacing
and rotation estimate in the Fourier domain and full grid estimate in the spatial domain.
Detailed steps for the optimization via differential evolution are omitted.
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4.2.4 Light field decoding
To decode a light fieldL from the raw measurements R̃, the well-known
decoding pipeline by Dansereau et al. [45] is used. Other schemes follow
a similar approach and differ only in detail [21, 40, 47]. In the considered
multispectral case, the conventional decoding scheme is applied to the
individually captured channels.

First, white balancing and devignetting are applied to the raw mea-
surement. In the conventional RGB case, this is performed using a single
bright image and subsequent demosaicing. However, in the presented
case, as discussed, this is achieved using the radiometric calibration
via (4.8). Using the estimated regularmicrolens center grid, the calibrated
raw measurement is aligned with the grid. That is, the raw measurement
is translated by the estimated grid offset 𝐨, rotated to compensate the
estimated grid rotation ̂𝛼, and upscaled such that the upscaled grid spac-
ing is integer-valued. This way, the aligned microlens centers fall exactly
onto pixel centers. The decoding can now be achieved by a simple slicing
of the aligned, calibrated raw measurement. For example, the central
subaperture view is obtained by collecting all pixels that correspond
to the microlens centers. Adjacent subapertures are decoded using the
neighboring pixels. This way, the light field is decoded subaperture-wise.
For light field cameras with a hexagonal MLA, such as the considered
Lytro Illum camera, the obtained light field is spatially sampled on a
hexagonal grid. In this case, the light field has to be resampled to a rect-
angular grid as a final step. After decoding, the light field can be rectified
using a calibrated camera model [45]. As the decoding of raw measure-
ments from an MLA-based light field camera is a standard procedure,
the reader is referred to the literature for details.

However, it should be noted that, in the case of a light field camera
with a spectrally coded MLA, the final resampling to a rectangular grid
cannot be performed at this point as the sparse measurement does not
allow for the necessary interpolation. For this reason, in this thesis, the
coding is simulated in the light field domain according to (2.5) and not
at the level of the raw measurements, which would ideally be preferable.
In principle, it would be possible to code the raw measurements and
perform the resampling together with the reconstruction, with additional
challenges. For example, to adapt the proposed principle reconstruction
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Figure 4.20 Central views of the captured real-world dataset consisting of three scenes at
two different focal length equivalents. The disparity estimation from the RGB-converted
light fields using the structure tensor (ST)with TV-L1 fusion andmedian filtering (MF) [213],
as well as using EPINET [176] are shown using the disparity ranges given in Table 4.1(b).

to hexagonally sampled light fields, one needs to replace the used spatial
convolutions with hexagonal convolutions [86, 128]. In the case of 3D
convolutions, it is probably necessary to separate the convolution into a
2D hexagonal convolution and a 1D spectral convolution. This way, the
network could perform the reconstruction anddisparity estimation as well
as the resampling. Of course, this would require both hexagonally and
the corresponding rectangularly sampled light fields as training data. It
is therefore reasonable to first consider the case using a rectangular MLA
and exclude these additional challenges. Once the challenges regarding
a full hardware prototype and the reconstruction of the correspondingly
coded light fields have been resolved, one can investigate the case of
hexagonally sampled coded raw measurements.

The calibrated and decoded real-world dataset is shown in Figure 4.20.
Visually, the quality of the captured spectral light fields is adequate.
Judging by the qualitative performance of the shown disparity estimates,
the epipolar geometry of the decoded light field seems to be consistent,
indicating a good geometric calibration of the camera. It should be noted
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that recent model-free geometric calibration methods (e.g. the so-called
generalized camera model [73, 198]) outperform the model-based ones
used here. Using a generalized camera calibration, each individual pixel
is assigned a ray corresponding to its line of sight with very high accu-
racy, for example using elaborate phase shift coding strategies. While
in many applications it is sufficient to describe the camera using a set
of rays (also called raxels), these generic models are usually not suited
to obtain an image or light field in the conventional sense, i.e. sampled
on a regular grid. Recently, however, a method to resample the raxels of
an MLA-based light field camera to a regularly sampled light field was
developed by Uhlig and Heizmann [199], which likely further improves
the quality of the reconstructed light fields, in particular with respect to
the epipolar geometry most notably in peripheral subapertures. How-
ever, in the considered case, the reconstruction quality is assumed to be
limited also by the spatial noise introduced by the RGB filters and the
radiometric calibration and not solely by the geometric calibration of the
camera. This becomes evident when investigating the spectral channels
of the decoded light fields in more detail. For example, Figure 4.21 shows
five out of the 13 spectral channels of the central view of the Floral scene.
Due to the very low sensitivity in the case of very small and very long
wavelengths (i.e. channels one and 13), the exposure times are chosen
to be very long in those instances, as previously elaborated. Here, one
observes increased impulse-like sensor noise, likely due to defective pix-
els. Furthermore, some texture noise can be observed which likely stems
from the least sensitive pixels, i.e. the red color filter pixels in the case
of channel one (400 nm) and the blue color filter pixels in the case of
channel 13 (700 nm). This visible noise is reduced in the RGB converted
case due to the involved integration. In principle, impulse noise can be
reduced using a median filter. However, median filtering is also likely
to reduce the available details in the light field in noise-free regions.
Therefore, the decoded light fields are used as-is without any additional
smoothing. Concluding, the overall quality of the decoded spectral light
fields is adequate and well suited for the evaluation of the considered
reconstruction methods while incorporating a non-negligible amount of
noise which limits the performance of the reconstruction and disparity
estimation.
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RGB Channel 1 Channel 4 Channel 7 Channel 10 Channel 13

𝑡exp/s 1/2 1/20 1/160 1/80 6.4

Figure 4.21 False-color representation of five out of the 13 spectral channels from the
central view of the calibrated, decoded light field of the Floral scene imaged using the
250mm focal length equivalent. The listed exposure times correspond to the individual
exposure times that were used to capture the raw measurement of the corresponding
channel. For visualization, the individual channels are normalized tomaximize the contrast.

4.3 Evaluation metrics
Both the reconstructed central view and the estimated disparity are
evaluated using the ground truth data and several quality metrics. For
the spectral central view, the peak signal-to-noise ratio (PSNR) in dB,PSNR(I,I ̂ ) = 10 lg 1MSE(I,I ̂ ) , (4.47)

is used to assess the overall quality of the reconstruction. In all cases, the
ground truth central view is normalized to the range [0, 1]. Here,MSE(I,I ̂ ) = 1𝑆𝑇Λ ∑𝑠𝑡𝜆 (I𝑠𝑡𝜆 − I�̂�𝑡𝜆)2 (4.48)

denotes the mean squared error (MSE) of the spectral reconstruction,
which corresponds to the energy of reconstruction error. For a perfect
reconstruction, the MSE is zero and the PSNR diverges. Despite its sim-
plicity, the PSNR has been shown to correlate comparably well with the
perceived visual quality in many cases [163]. However, the PSNR only
takes into account pixel-wise differences and is not well suited to assess
the spatial and spectral reconstruction in more detail.
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To evaluate the spatial reconstruction, the structural similarity in-
dex metric (SSIM), as introduced by Wang et al. [210], is used. For two
monochromatic image patches 𝐚 and 𝐛, the structural similarity is de-
fined as SSIM(𝐚, 𝐛) = (2𝜇𝐚𝜇𝐛 + 𝑐1)(2𝜎𝐚𝐛 + 𝑐2)(𝜇2𝐚 + 𝜇2𝐛 + 𝑐1)(𝜎2𝐚 + 𝜎2𝐛 + 𝑐2) . (4.49)

Here, 𝜇𝐚 and 𝜎2𝐚 denote the sample mean and variance of 𝐚, respectively
(with an analogous definition for 𝐛). The sample covariance of 𝐚 and 𝐛
is denoted by 𝜎𝐚𝐛. For numerical stability, the small constants 𝑐1 and 𝑐2
are introduced, which are set to𝑐1 = 1 × 10−4 , 𝑐2 = 9 × 10−4 (4.50)

as in the original paper. For a perfect reconstruction, the SSIM is one.
To calculate the structural similarity for two full-sized images, a small
window is slid across the images to extract the patches on which the
local SSIM values are calculated. In practice, a Gaussian filter is used to
estimate the local averages, variances, and covariance via convolution.
The obtained local SSIM map is then averaged to obtain a single quality
metric. As in the original paper, a kernel size of (11, 11) is used here in
the case of the full-sized light fields. For the light fields in the training,
validation, and test dataset, with the smaller spatial resolution of (32, 32),
a kernel size of (5, 5) is used instead. To calculate the SSIM for color or
spectral images, there are mainly two possibilities. Ideally, color images
are converted to a luminance-based color space such as YUV or YCbCr.
Then, the SSIM is calculated either using only the luma values or using
both the luma and chrominance with subsequent averaging. In the case
of spectral images, this approach is computationally quite expensive
and would drastically slow down the training of the investigated deep
learning models. Therefore, the SSIM is calculated channel-wise and
averaged, which is common not only for spectral but also for color images.

There also exists amulti-scale generalization of the structural similarity
(MS-SSIM) which was introduced by Wang et al. [209]. Here, the SSIM
is calculated on different layers of an image pyramid containing the
original and downsampled images. The MS-SSIM is then defined as the
weighted mean of the individual SSIM values on the different scales.
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Wang et al. show that the MS-SSIM is slightly more in accordance with
the perceived visual quality as compared to the SSIM. Typically, the
MS-SSIM is calculated on five layers using the weights 0.0448, 0.2856,
0.3001, 0.2363, and 0.1333, which are proposed in the original paper.
This approach is adopted here in the case of the full-sized light fields.
For the smaller resolution of the light fields in the training, validation,
and test dataset this approach is not feasible. In this case, the MS-SSIM
is calculated on three layers using the weights 0.5, 0.3, and 0.2 and a
reduced filter size of (3, 3). In the context of this thesis, it was observed
that the SSIM and MS-SSIM did not yield significantly different results.
Hence, throughout this thesis, only the SSIM is presented. However, the
MS-SSIM is also evaluated for all experiments and available within the
digital supplement.

Finally, to evaluate the quality of the reconstructed spectra, twometrics
are used. The spectral angle (SA), which is sometimes also referred to as
the spectral angle mapper, is defined via the mean cosine similarity of
the individual ground truth and reconstructed spectra,CS(I,I ̂ ) = 1𝑆𝑇 ∑𝑠𝑡 ⟨𝐢𝑠,𝑡, ̂𝐢𝑠,𝑡⟩‖𝐢𝑠,𝑡‖⋅‖ ̂𝐢𝑠,𝑡‖ . (4.51)

Here, 𝐢𝑠,𝑡 denotes the ground truth spectrum at (𝑠, 𝑡), i.e.(𝐢𝑠,𝑡)𝜆 = I[𝑠, 𝑡, 𝜆] , (4.52)

with the analogous definition for the reconstructed spectra ̂𝐢𝑠,𝑡. To obtain
the SA, the cosine similarity is then converted to the corresponding angle,SA(I,I ̂ ) = cos−1 CS(I,I ̂ ) . (4.53)

For a perfect spectral reconstruction (modulo scaling), the CS is one and
the SA is zero. Note that, due to the nonlinearity of the cosine, the above
definition is slightly different from first calculating the spectral angle of
the individual spectra and averaging subsequently, which is sometimes
also used in the literature.
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As an alternative to the SA, interpreting the spectral pixels as ran-
dom variables, the spectral information divergence (SID) was proposed
by Chang [34]. The SID is defined asSID(I,I ̂ ) = 1𝑆𝑇 ∑𝑠𝑡𝜆 (P𝑠𝑡𝜆 ln P𝑠𝑡𝜆

Q𝑠𝑡𝜆 + Q𝑠𝑡𝜆 ln Q𝑠𝑡𝜆
P𝑠𝑡𝜆 ) , (4.54)

where P and Q correspond to the spectrally normalized ground truth
and reconstructed central view, respectively, i.e.

P𝑠𝑡𝜆 = I𝑠𝑡𝜆/ ∑𝜆′ I𝑠𝑡𝜆′ , Q𝑠𝑡𝜆 = I�̂�𝑡𝜆/ ∑𝜆′ I ̂𝑠𝑡𝜆′ . (4.55)

For each pixel (𝑠, 𝑡), P𝑠𝑡𝜆 and Q𝑠𝑡𝜆 can be viewed as a discrete probabil-
ity distribution. Therefore, the SID basically corresponds to the mean
Jensen–Shannon divergence, a symmetric generalization of the Kullback-
Leibler divergence, of the normalized ground truth and the estimated
spectra. For a perfect reconstruction, the SID is zero. Note that, for a
simpler implementation, the natural logarithm is used for the calculation
of the Kullback-Leibler divergence. Hence, throughout this thesis the
SID is evaluated in units of nat rather than bit. However, it is in principle
straightforward to convert to bit through division by a factor of ln 2.

In the case of the estimated disparity, three quality metrics are evalu-
ated if the corresponding ground truth data is available. As is common
in the light field community, the MSE,MSE(D, D̂) = 1𝑆𝑇 ∑𝑠𝑡 (D𝑠𝑡 − D̂𝑠𝑡)2 , (4.56)

as well as the mean absolute error (MAE),MAE(D, D̂) = 1𝑆𝑇 ∑𝑠𝑡 ∣D𝑠𝑡 − D̂𝑠𝑡∣ , (4.57)

are used to assess the overall quality of the estimated disparity. For both
the MSE and the MAE, a perfect estimate results in a value of zero,
however the MSE is more sensitive to outliers.

Furthermore, the BadPix metric, as proposed by Honauer et al. [85],
is used for the evaluation. The BadPix corresponds to the percentage of
pixels for which the estimated disparity deviates from the ground truth
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by more than a specified value. More precisely, for any 𝑞 > 0, the BadPix
is defined asBadPix𝑞(D, D̂) = 100 ⋅ ∣{(𝑠, 𝑡) ∈ M ∶ |D𝑠𝑡 − D̂𝑠𝑡| > 𝑞}∣|M| , (4.58)

where M = {1, 2, … , 𝑆} × {1, 2, … , 𝑇}, |M| = 𝑆𝑇, denotes the set of all
pixels. As is common in the community, the BadPix metric is evaluated
for 𝑞 values 0.01 px, 0.03 px, and 0.07 px which are abbreviated as BP01,
BP03, and BP07 in the remainder. Again, no crucial qualitative difference
between the different BadPix metrics was found during the evaluation.
Hence, only the values of BP07 are presented in this thesis while the
remaining ones are available within the digital supplement.

It should be noted that the evaluation metrics in the case of the dispar-
ity estimation are hard to compare among different scenes. Unlike for the
central views, which are always normalized to values within the range[0, 1], the disparity range is basically unconstrained. A deviation of, e.g.,
0.01 px of the estimated disparity from the ground truth is relatively less
severe for larger disparity values than for smaller ones. Due to the nonlin-
ear character of the disparity with respect to the depth (cf. Appendix A),
small deviations for positive disparity values (i.e. for objects close to the
camera) may be more severe than for negative disparity values, for which
the disparity is less sensitive. However, these details are lost when aver-
aging over the disparity map or even a whole dataset for the calculation
of the MAE and the MSE, which do not take the disparity range into
account. For similar reasons, the BadPix metric suffers from the same
problems when compared among different scenes. The mean absolute
percentage error (MAPE) is often used to explicitly take into account the
scale of the ground truth value. However, the MAPE cannot be applied
in the case of disparity estimation due to the common occurrence of
small and zero values. To overcome the limitations of the MAPE, the
mean absolute scaled error (MASE) was introduced by Hyndman and
Koehler [91] in the context of time series forecasting. While it may also be
suitable in the context of disparity estimation, it is not within the scope
of this thesis to investigate its applicability in general. Therefore, while
opening an interesting future investigation, the MASE is not considered
here. Hence, the standard metrics mentioned above are used also when
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evaluating the performance on the validation and test dataset since no
quality metric overcoming these limitations has been discussed in the
literature. While the evaluation of these metrics may not be particularly
nuanced in this case, an absolute comparison is possible without the
limitations mentioned above when comparing these metrics for a fixed
scene, e.g. a dataset challenge. Therefore, the performance of a given
reconstruction method should not alone be judged by the performance
on the test dataset but also on the individual dataset challenges.

4.4 Training and implementation details

4.4.1 Loss functions and weights
In the case of the proposed principal reconstruction, for both the central
view and the disparity, the Huber loss [89] is used as the main loss
function. For any 𝛿 > 0, the single-element Huber loss is defined as𝐻𝛿(𝑒) = {𝑒2 if 𝑒 < 𝛿,2𝛿⋅(|𝑒| − 12 𝛿) otherwise.

(4.59)

Here, 𝑒 denotes the pixel-wise prediction error with respect to the ground
truth data. The overall loss is then calculated as the mean of the element-
wise Huber losses, i.e.𝐿H,𝛿(I,I ̂ ) = 1𝑆𝑇Λ ∑𝑠𝑡𝜆 𝐻𝛿(I𝑠𝑡𝜆 − I�̂�𝑡𝜆) , (4.60)𝐿H,𝛿(D, D̂) = 1𝑆𝑇 ∑𝑠𝑡 𝐻𝛿(D𝑠𝑡 − D̂𝑠𝑡) . (4.61)

The Huber loss is equivalent to the MSE for errors smaller than 𝛿 and
proportional to the MAE for larger errors. Therefore, during training,
the Huber loss is equivalent to the MSE with element-wise gradient
clipping. This helps to reduce the influence of outliers when estimating
the gradient during training, which is sometimes problematic in the case
of the MSE, in particular for the multi-task optimization. As opposed to
a pure MAE, which is often used in the case of deep disparity estimation,
the MSE is convex and yields gradients that are proportional to the
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estimation error whereas the MAE always gives constant gradients. In
the remainder, 𝛿 = 1 is chosen for both the central view as well as the
disparity loss. While this is well-motivated in the case of the central view,
as the ground truth values are constrained to the range [0, 1], the choice
is somewhat arbitrary for the disparity.

For training strategies that use additional auxiliary loss terms (cf. Sec-
tion 3.2.3), two auxiliary loss functions are considered for both the central
view and the disparity estimation. To enhance the spatial reconstruction
quality of the central view, the SSIM-based loss𝐿SSIM(I,I ̂ ) = 12(1 − SSIM(I,I ̂ )) (4.62)

is used. To enhance the spectral reconstruction quality, the loss𝐿CS(I,I ̂ ) = 12(1 − CS(I,I ̂ )) (4.63)

is considered, maximizing the mean cosine similarity of the spectra.
Hence, the loss minimizes the spectral angle of the reconstruction.

For the disparity task, a total variation-based smoothness-enhancing
auxiliary loss is developed. Using the total variationTV(D̂) = ∑𝑠𝑡 (|𝜕𝑠D̂𝑠𝑡| + |𝜕𝑡D̂𝑠𝑡|) (4.64)

to regularize the estimated disparity is common within the light field
community.Here, the (informal) notation of the discrete partial derivative
corresponds to 𝜕𝑠D̂𝑠𝑡 = D̂𝑠+1 𝑡 − D̂𝑠𝑡 (4.65)

with an analogous definition for 𝜕𝑡D̂𝑠𝑡. However, minimizing the stan-
dard total variation often results in overly smooth estimates, in particular
at disparity edges, i.e. occlusion boundaries. To overcome this drawback,
in the case of self-supervised disparity estimation from stereo view pairs,
Repala and Dubey [167] propose to weigh the total variation using the
gradients of the corresponding images. This way, the total variation is
weighted less in regions with large image gradients, assuming that these
correlate with large gradients in the disparity, i.e. edges, that should be

110



4.4 Training and implementation details

conserved. However, this approach is problematic in textured regions
with constant disparity. Since passive stereo or light field disparity es-
timation heavily relies on texture, one can argue that this approach is
not optimal probably everywhere. While no alternative exists in the self-
supervised case, which Repala and Dubey consider, the ground truth
disparity is available in the supervised case. Therefore, it is proposed
to use the gradients of the ground truth disparity to weigh the total
variation of the estimated disparity,𝐿TV(D, D̂) = 1𝑆𝑇 ∑𝑠𝑡 ( ∣𝜕𝑠D̂𝑠𝑡 ⋅ e−|𝜕𝑠D𝑠𝑡|∣ + ∣𝜕𝑡D̂𝑠𝑡 ⋅ e−|𝜕𝑡D𝑠𝑡|∣ ) , (4.66)

such that noise is reduced while edges in the disparity are preserved.
Furthermore, the mean disparity normal similarity, which was intro-

duced by Hu et al. [88],NS(D, D̂) = 1𝑆𝑇 ∑𝑠𝑡 ⟨𝐧𝑠,𝑡, �̂�𝑠,𝑡⟩‖𝐧𝑠,𝑡‖⋅‖�̂�𝑠,𝑡‖ , (4.67)

is used by minimizing the corresponding loss𝐿NS(D, D̂) = 12(1 − NS(D, D̂)) . (4.68)

The disparity surface normals are calculated as𝐧𝑠,𝑡 = [−𝜕𝑠D𝑠𝑡, −𝜕𝑠D𝑠𝑡, 1]T , (4.69)

and analogously for the estimated disparity.
Finally, as a global regularization term, layers that are preceded by

batch normalization are regularized during training using the 𝑙2-norm of
the corresponding weights, coupled with a factor of 1 × 10−5. This 𝑙2-reg-
ularization is also known as weight decay in the deep learning community
or as ridge regression and Tikhonov regularization in the statistics com-
munity. While weight decay has been common among practitioners for
some time, it has only recently been shown empirically to be related to
improved generalization in the deep learning regime [150, 164]. However,
weight decay is yet not understood to full extent and is still the subject of
current research [70, 124].
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As detailed in Section 3.2.3, different training strategies employing
different loss functions and weights are investigated for the proposed
principal reconstruction. In the case of the naive multi-task approach,
each task is weighted equally, i.e. 𝑤𝑖 = 0.5, 𝑖 = 1, 2, whereas the single-
task networks are obtained by setting 𝑤𝑖 = 𝛿𝑖𝑗. For the remaining strate-
gies, the weights are adaptively updated during training. An overview
of the used loss weights for the different investigated training strategies
is given in Table 4.2.

Concluding, as an elaborate example, the full loss function in the
case of the proposed NormGradSim auxiliary loss training strategy in
combination with the adaptive multi-task approach with uncertainty
by Kendall et al. [102] is𝐿 = 12𝜎20 𝐿cv + 12𝜎21 𝐿disp + ln 𝜎0 + ln 𝜎1 + 𝐿𝛼 + 𝐿𝛽 + 𝐿reg , (4.70)

where𝐿disp = (𝐿H + 𝛼(2)1 𝛽(2)1 𝐿TV + 𝛼(2)2 𝛽(2)2 𝐿NS)/( ∑𝑖 𝛼(2)𝑖 𝛽(2)𝑖 ) , (4.71)𝐿cv = (𝐿H + 𝛼(1)1 𝛽(1)1 𝐿SSIM + 𝛼(1)2 𝛽(1)2 𝐿CS)/( ∑𝑖 𝛼(1)𝑖 𝛽(1)𝑖 ) (4.72)

denote the individual task losses (the dependence on the prediction and
ground truth has been omitted for clarity). Here, the task weights 𝜎𝑖 as
well as the auxiliary loss weights 𝛼(𝑗)𝑖 and 𝛽(𝑗)𝑖 are considered trainable
parameters. However, 𝛼(𝑗)𝑖 and 𝛽(𝑗)𝑖 are considered constant with respect
to the individual task losses and are trained solely using the losses 𝐿𝛼
and 𝐿𝛽 as defined in (3.39) and (3.40). The 𝑙2-norm weight regularization
is denoted as 𝐿reg.

4.4.2 Mask generation, augmentation, and seeding
4.4.2.1 Mask generation

As previously discussed, in the case of the compressed sensing-based
reconstruction, random coding masks are used. For each pixel, a spectral
channel index is drawn from a uniform distribution, which specifies the
coordinate of the one-hot encoding of the mask, cf. (3.12) and (3.13).
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Table 4.2 Comparison of the used multi-task weights 𝑤cv, 𝑤disp, and the auxiliary loss
weights 𝑤aux,𝑗 for the investigated single task (ST), multi-task (MT), and auxiliary loss (AL)
training strategies.

Method 𝑤cv 𝑤disp 𝑤aux,𝑗
ST central view 1.0 0.0 –
ST disparity 0.0 1.0 –
MT naive 0.5 0.5 –
MT Uncertrainty adapt. adapt. –
MT GradNorm adapt. adapt. –
AL (Norm)GradSim, ST central view 1.0 0.0 adapt.
AL (Norm)GradSim, ST disparity 0.0 1.0 adapt.
AL (Norm)GradSim, MT naive 0.5 0.5 adapt.
AL (Norm)GradSim, MT Uncertrainty adapt. adapt. adapt.

In the case of the proposed principal reconstruction, several masks
are investigated. First, to be directly comparable with the compressed
sensing approach, the same random masks are considered. However,
despite the fully convolutional architecture, some care has to be taken to
be able to generalize from the small spatial resolution of (32, 32) of the
training dataset to the full resolution of the dataset challenges as well as
the real-world data. To this end, during training as well as for validation
and testing, a different realization of the random coding is used for every
light field in a mini-batch. This way, ideally, the latent representation
only depends on the mask statistics and not a particular realization.

Second, constrained random masks are considered. For every 4×4
macropixel, a random mask is created by shuffling all available color
channels. Since only 13 channels are available for the 16 possible pixels,
three randomly chosen channels are repeated. This way, as opposed to
the fully random mask, the maximum distance between two identical
channels is seven because every channel is guaranteed to appear at least
once within each macropixel.

Third, regular masks are considered, i.e. masks for which a fixed 4×4
macropixel is repeated. A naive regular mask, placing the channels in the
macropixel consecutively, aswell as amaskwith an optimizedmacropixel
layout are used. Again, because only 13 spectral channels are considered,
three channels have to be repeated. Here, similar to the Bayer pattern in
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Figure 4.22 Schematic false-color crops of the investigatedmasks. Dark values correspond
to small and bright values to large channel indices.

the RGB case, the “green” spectral channels are repeated because both
the human visual system as well as the custom-built camera are most
sensitive to those. The optimized macropixel layout as proposed by Shin-
oda et al. [177] is adopted here with a small modification to account for
the double occurrences of the green channels. Intuitively, this optimized
layout has a higher total variation than the conventional regular mask,
ensuring that neighboring pixels are coded with central wavelengths
that are spread out as much as possible. In the case of the regular (non-
stochastic) masks, the translational equivariance is enhanced by shifting
the mask by a random amount. This is done for every light field in a
mini-batch. An overview of the used masks is given in Figure 4.22.

4.4.2.2 Data augmentation

In order to increase the variance of the training data and to enhance cer-
tain invariances during the training, data augmentation techniques are
commonly used in deep learning. In the context of computer vision, com-
mon augmentations are scaling, cropping, rotation, gamma compression
or stretching, color channel weighting, and color channel permutation.
As opposed to conventional augmentations used in the case of 2D images,
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the epipolar geometry of the light field has to be retained when applying
augmentation to light fields. For example, when the input light field is
rescaled, the corresponding disparity has to be scaled accordingly—both
spatially and in its range because the scaling effectively changes the base-
line between the subapertures. That is, when spatially upsampling the
light field by a factor of two, the disparity values have to be doubled.
While many investigations have been conducted in the case of conven-
tional image augmentation, leading to popular elaborate techniques such
as AutoAugment [44], no such approaches exist in the case of light field
deep learning. Furthermore, an adequate choice of augmentation may
also depend on the investigated task, i.e. whether one considers classifi-
cation, encoding, or disparity estimation. In fact, in a precursory study,
it was found that in some instances applying augmentation may lead
to decreased generalization performance [A6]. To exclude non-essential
techniques with unknown outcomes, augmentations are not used in this
thesis, except shuffling of the training dataset in each training epoch and
a random crop to the target spatial resolution of (32, 32),

4.4.2.3 Random seeds

To ensure reproducibility and comparability within the evaluation, care
has to be taken in the case of random operations such as data shuffling,
cropping, and light field coding. Furthermore, since the preparation of
the mini-batches is typically a bottleneck during training, they are par-
allelized via multi-processing. To synchronize random seeds across the
different data generation processes during training, the current training
epoch number is used as a random seed to shuffle the dataset before
each epoch. As for the random coding mask generation and cropping,
the unique index of each light field in the corresponding dataset is used
as the corresponding random seed during validation and testing. In
particular, this guarantees that the effective test dataset, despite using a
random crop and coding, is identical in all instances during the evalua-
tion. This holds, regardless of whether the multispectral dataset or the
RGB-converted dataset is used, e.g. when training and evaluating with
state-of-the-art disparity estimation from RGB light fields. That is, the
effective multispectral and RGB test datasets are geometrically identical.
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4.4.3 Training and implementation
The proposed deep learning architectures, based on 3D or 4D convolu-
tions, were trained for 170 epochs. In the case of the 3D convolution-based
architecture, a mini-batch size of 128 was used, while the mini-batch
size was decreased to 64 for the 4D convolutional network due to the
increased memory requirements. In both cases the Yogi optimizer [233]
was used, which has shown to outperform the commonly used Adam
optimizer and its derivatives [103, 165] in many deep learning tasks. The
learning rate was decayed from 5 × 10−3 to 1 × 10−4 using a sigmoid decay.
In precursory experiments, which are not presented, the sigmoid decay
has shown to be superior to linear, exponential, and step decay as well
as the cyclical learning rate scheduling proposed by Smith [181], for the
considered architectures.

The dictionary learning approach, which is investigated in the context
of the compressed sensing-based reconstruction, was trained using the
standard stochastic gradient descent optimizer with a learning rate of
one, a momentum of 0.95, and a mini-batch size of 32. For all compressed
sensing-based methods, the coupling constant (cf. (3.8)) was set to 𝜂 =
0.01, which has shown to yield good results in preliminary experiments.
Of course, the quality of the reconstruction depends to some extent on
this sparsity regularisation andmay not be optimal in all cases considered.
However, finetuning this hyperparameter for every evaluation separately
is arguably unfeasible.

For the training of EPINET, the experimental setup in the original
paper [176] was followed as closely as possible. That is, the training was
performed using the RMSProp optimizer with a learning rate of 1 × 10−4

for 400 epochs. The MAE was used as the loss function. However, deviat-
ing from the original, no augmentation other than random cropping was
performed in accordance with the proposed methods, as previously dis-
cussed. Naturally, EPINET was trained using the RGB-converted dataset
instead of the multispectral one. Otherwise, however, the training, vali-
dation, and test data were fully equivalent to the multispectral case.

All learning-based methods, i.e. the proposed principal reconstruction,
the disparity estimation using EPINET, and the dictionary learning-based
reconstruction via compressed sensing, were trained using a single 32GB
Nvidia Tesla V100 GPU and 10 cores with 96GB RAM of a shared GPU
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computing node. Inference with the deep learning methods was carried
out using the same hardware. The full-size inference of the synthetic
dataset challenges, as well as the real-world data in the case of the com-
pressed sensing-based methods, could not be carried out on the GPU
due to the large memory requirements. Instead, they were performed on
a 40-core/80-thread computing node with 192GB of RAM. Training took
between four and seven days in the case of the 3D convolution-based
architecture, depending on the used training strategy, and up to 12 days
for the 4D convolutional architecture. The training of EPINET took about
one day. Finally, the dictionary training converged after one epoch in
about two days for both the vectorized as well as the tensor-decomposed
dictionary.

All methods presented within this thesis were implemented from
scratch in Python and made publicly available. This includes a gen-
eral Python framework for light fields5, for both conventional mono or
RGB light fields as well as spectral light fields. The framework provides
standard light field operations and conventional disparity estimation
algorithms, spectral-to-color conversion, as well as calibration and de-
coding methods for several light field cameras including the Lytro Illum
camera and the custom-built spectral light field camera. Furthermore,
a TensorFlow-based framework for general light field deep learning is
made available6, containing all investigated deep learning architectures,
multi-task and auxiliary loss training strategies, as well as the dictionary
learning approaches. The source files of all conducted experiments can
be found in the digital supplement.

5 https://gitlab.com/iiit-public/plenpy
6 https://gitlab.com/iiit-public/lfcnn
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5 Results

As previously noted, the evaluation of all considered methods is per-
formed on the synthetic test dataset, with a spatial resolution of (32, 32).
Furthermore, results are visualized for the full-sized dataset challenges
with a spatial resolution of (512, 512) as well as the real-world dataset
with a spatial resolution of (400, 400). If not specified otherwise, the angu-
lar resolution is (9, 9) and the spectral resolution is (13) in all considered
cases. For the sake of clarity, only a single challenge and a single scene
from the real-world dataset are evaluated and shown here while the
evaluation of the remaining ones can be found in the digital supplement.
Here, the Elephant scene is chosen, as it shows an average complexity
across the different challenges. For the real-world example, the Floral
scene is used, imaged using the 250mm focal length equivalent. For the
visualization, the evaluation metrics are the PSNR in dB, the SA in °, the
MSE in px2, and the BP07 in %. The units are omitted in the plots for clar-
ity. Moreover, the spectra of the two marked points are depicted in blue
and orange together with the ground truth in grey. Note that the ground
truth spectra are individually normalized for visualization. Throughout,
disparity maps will be visualized using the ranges given in Table 4.1
and the colormap as shown in Figure 4.6. In particular, all disparities
are shown using the same reference range and colormap within a single
plot. Since no disparity ground truth data is available for the real-world
dataset, the prediction of EPINET using the uncoded and RGB-converted
reference light field is shown for comparison. Note that EPINET does not
use zero-padding for its convolutions and the predictions are therefore
cropped by 11px from all sides. The corresponding plots hence show a
grey 11 px wide margin. Furthermore, this means that for the test dataset,
which only has a spatial resolution of (32, 32), only the central 10×10 px
patch is evaluated in the case of all EPINET-based disparity estimations,
while for the proposed principal reconstruction methods the patch is
estimated and evaluated at full resolution.
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5.1 Compressed sensing-based reconstruction
First, the three investigated compressed sensing-based methods are eval-
uated. That is, the reconstruction using a fixed 5D-DCT basis, as well as
the dictionary learning-based methods using the conventional vector-
ized as well as the proposed tensor-decomposed approach. Using the
reconstructed light fields, the disparities are subsequently estimated via
EPINET. As EPINET uses RGB light fields as its input, the reconstructed
spectral light fields are converted to RGB beforehand.

The performances of the considered methods on the test dataset are
given in Table 5.1. The overall quality of the reconstructed light fields is
respectable, with a PSNR of around 28dB for both the 5D-DCT as well
as the vector dictionary approach while the proposed tensor dictionary
approach performs slightly better, in particular also in the secondary
metrics (SSIM and SA). This is quite remarkable, considering the huge
difference in the dictionary sizes: while the conventional vector dictio-
nary has over 865 million trainable parameters, using a patch size of
(5, 5, 8, 8, 13), the tensor dictionary contains only about 136 thousand pa-
rameters, despite the increased (separated) patch size of (7, 7, 16, 16, 13).
In fact, the smaller number of parameters might actually be a reason for
the better performance, as the complexity of the optimization problem
during the training of the dictionary is reduced drastically. As previously
discussed, the two approaches are otherwise algorithmically equivalent.

However, as compared to the vanilla EPINET prediction using the
uncoded reference light fields, a significant drop in the quality of the
disparity estimation can be observed using the reconstructed light fields
for all compressed sensing-basedmethods.While this drop is particularly
severe in the case of the 5D-DCT-based reconstruction, also the dictionary-
based methods perform poorly, however, the quality of the estimated
disparities in those instances is considerably better in comparison. This is
likely due to the fact that the dictionaries implicitly learn a representation
of the spectral light fields that is in accordance with the underlying
epipolar geometry which the 5D-DCT does not consider at all.

A similar trend can be observed in the case of a dataset challenge and
a real-world scene as shown in Figure 5.1. Yet, in particular, the disparity
estimation of the dictionary-based methods is much better than what is
to be expected from the test dataset performance with an MSE of around
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5.1 Compressed sensing-based reconstruction

Table 5.1 Test dataset performance of the compressed sensing (CS)-based reconstruction
methods. The performance of EPINET using the original, uncoded data is shown for
reference but excluded from the best-value comparison.

Method
Central view Disparity

PSNR/dB SSIM SA/° MSE/px2 MAE/px BP07/%
EPINET [176] (uncoded) - - - 0.0881 0.0626 6.28
CS 5D-DCT + EPINET 27.48 0.75 7.39 1.3671 0.4875 41.65
CS Vec.-D. + EPINET 27.86 0.74 7.25 0.6050 0.2939 32.34
CS Tens.-D. + EPINET 29.39 0.78 6.81 0.5913 0.2959 35.28

0.02 px2 for both considered methods. (However, this is not the case for
all dataset challenges.) While these disparities still show some artifacts,
in particular a noticeable speckle, the results are much better as opposed
to the disparity estimated from the 5D-DCT-based reconstruction. In the
case of the real-world example, the compressed sensing-based methods
surprisingly show much higher qualities of the reconstructed central
views with a PSNR of up to 37dB. For both the dataset challenge and
the real-world scene, the 5D-DCT and the vector dictionary-based re-
construction show a noticeable blur while the reconstruction using the
tensor dictionary appears much sharper which is also reflected in the
higher SSIM value. While both considered dictionary-based methods
perform similarly in the case of the test dataset and the synthetic dataset
challenge, with respect to the subsequent disparity estimation, the pro-
posed tensor dictionary-based reconstruction results in a qualitatively
better disparity estimation in the case of the real-world example. (This
can also be observed for those scenes which are not shown here.) This
effect may be caused by the larger effective patch size which should be
able to adequately represent the epipolar geometry on a larger scale.

Overall, the proposed approach using a tensor dictionary performs
best among the compressed sensing-based methods and is therefore
used for comparison in the remainder. Finally, it should be noted that
the reconstruction of a single full-sized dataset challenge takes between
3 to 5 h, depending on the used method, despite a highly parallelized
implementation using a 40-core computing node with 192GB of RAM.
GPU-based inference times using the test dataset will be compared for
all investigated methods shortly.
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Figure 5.1 Performance comparison of the compressed sensing-based reconstructions for
a synthetic dataset challenge (top) and a real-world example (bottom).
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5.2 Principal reconstruction

5.2 Principal reconstruction
Next, the proposed principal reconstruction is evaluated and several
ablation studies are performed. First, the different training strategies are
compared using random coding masks, identical to those used for the
compressed sensing-based methods. Using the best training strategy,
further investigations, such as the dependence on noise or the angular
resolution, are presented. Second, different coding schemes are evalu-
ated using the best-performing training strategy. Throughout, results
are obtained using the 3D convolution-based network if not mentioned
otherwise. The network based on 4D convolutions is evaluated using
only the best training strategy. Due to the large number of investigated
strategies, as well as the long training time of the 4D convolution network
as compared to the one based on 3D convolutions, evaluating both net-
works for all considered methods is arguably excessive. Since the overall
difference in performance between the 4D and the 3D convolution-based
architectures is comparably small, as will be shown, the full evaluation
would be unreasonable also in terms of the used computational resources
and energy: Conservatively estimating the energy usage by only con-
sidering the consumption of the GPU, which is 300W in the case of the
used Nvidia V100, assuming a mean training time of seven days in the
case of the 4D convolutional network, training of all twenty investigated
methods would require more than 1000 kWh. This corresponds to over
one-third of the yearly power consumption of an average household
in Germany in 2018 [25]. This is also the reason why the investigated
networks are only trained and evaluated once, if not stated otherwise.
Of course, it would be good practice to perform training and evaluation
multiple times, e.g. by using k-fold cross-validation, and presenting av-
erages and possibly standard deviations. However, as outlined above,
the required computational and energy resources are out of proportion.
Moreover, besides the presented results, some networks were trained
and evaluated multiple times showing only negligible fluctuations of
the results, suggesting that the convergence does not strongly depend
on the initialization and other random operations during training in
the considered case. While the ecological and economic impact of deep
learning is a research area of its own [173] and is not further discussed
here, it is worth keeping its order of magnitude in mind.
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Table 5.2 Test dataset performance of the adaptive auxiliary loss training strategies for
both single-task and multi-task inference.

Method
Central view Disparity

PSNR/dB SSIM SA/° MSE/px2 MAE/px BP07/%
ST Naive 32.68 0.92 5.39 0.0607 0.0679 14.23
ST AL GradSim [56] 32.83 0.95 4.66 0.0866 0.0911 19.09
ST AL NormGradSim 33.47 0.94 4.52 0.0562 0.0679 14.93
MT Naive 27.70 0.85 8.85 0.0626 0.0697 14.92
MT AL GradSim [56] 29.54 0.93 6.63 0.0727 0.0847 18.67
MT AL NormGradSim 28.52 0.89 7.77 0.0569 0.0660 14.04

5.2.1 Adaptive auxiliary loss approaches
Several ablation studies are performed in the case of the proposed prin-
cipal reconstruction, investigating single-task versus multi-task perfor-
mance, adaptivemulti-task training strategies, and adaptive auxiliary loss
strategies, as introduced in Section 3.2.3. Throughout, methods names
are chosen to reflect the used training setup: ST for single-task, MT for
multi-task, and AL for auxiliary loss training strategies.

First, the auxiliary loss methods are investigated. The test performance
of the investigated auxiliary loss approaches for both the single- and the
multi-task case are shown in Table 5.2. Note that, while the single-task
performances are presented in a single column, the results are obtained
using two separately trained networks—one for estimating the central
view and one for the disparity. It can be observed that both auxiliary loss
methods, the GradSim approach by Du et al. [56] and the proposedNorm-
GradSim approach, lead to an improved quality of the reconstructed
central view both in the single-task and the multi-task case. In particular,
it is remarkable that the auxiliary losses not only lead to an improvement
of the secondary metrics, i.e. the SSIM and the SA, which the auxiliary
losses are based on, but also of the primary metric, corresponding to the
main loss, as reflected by an improvement of the PSNR as compared to
the naive baselines. That is, the introduction of suitable auxiliary losses
together with an adaptive weighting scheme does show the desired
regularizing effect.
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In the case of the estimated disparity, however, the GradSim approach
performs significantly worse than the naive single-task baseline. As this
effect is alleviated by the proposed normalized approach, the auxiliary
losses likely yield gradients with a much larger norm than the main
disparity loss which disturbs the overall gradient estimate leading to
a worse overall performance. The proposed NormGradSim approach
resolves this issue, however, in the case of the estimated disparity, the
improvements over the baseline are small to moderate. Still, using auxil-
iary losses, the main disparity loss is also improved, as reflected by the
MSE scores which are improved by about 7 to 8%. Yet, the situation is
slightly different from the central view estimate: the auxiliary losses do
not directly correspond to secondary metrics that one might be inter-
ested in, as is the case for the central view using auxiliary losses based
on the SSIM and the SA directly. More precisely, recall that the auxiliary
disparity losses are based on the total variation and the normal similarity
which are not directly reflected in the evaluation metrics. Still, while
the auxiliary losses only moderately improve the disparity estimate, the
overall results are very good, similar to the performance of the vanilla
EPINET as shown in Figure 5.1. In fact, the disparity estimate via princi-
pal reconstruction from spectrally coded light fields even outperforms
EPINET in terms of the MSE, however at the cost of a higher BP07 score.
Therefore, the proposed approach shows more but less severe outliers
than the estimate from EPINET. Again, recall that the results for EPINET
are obtained from uncoded RGB light fields and only evaluated on the
central 10×10px patch as opposed to the proposed approach.

In the case of the multi-task approaches using auxiliary losses, the
effect is slightly different. While the GradSim approach again shows a
significant improvement of the primary as well as the secondary met-
rics in the case of the estimated central view, this again comes at a cost
of a significantly worse disparity estimate. This is resolved once more
with the developed normalized approach which improves all primary
and secondary metrics as compared to the naive multi-task baseline. In
the case of the estimated disparity, the multi-task approach using auxil-
iary losses with NormGradSim even performs slightly better than the
corresponding single-task disparity method.
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Figure 5.2 Performance comparison of the single-task reconstruction with adaptive auxil-
iary loss training for a synthetic challenge (top) and a real-world example (bottom).
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Figure 5.3 Performance comparison of the multi-task reconstruction with adaptive auxil-
iary losses for a synthetic challenge (top) and a real-world example (bottom).
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The performances using a synthetic dataset challenge as well as a
real-world example are shown in Figure 5.2 for the single-task and in
Figure 5.3 for the multi-task scenario. The results are similar to those
achieved on the test dataset: Using auxiliary losses improves the cen-
tral view estimate with respect to the primary as well as the secondary
evaluation metrics, achieving a central view PSNR of up to 36dB for
the considered dataset challenge as well as the real-world light field,
and a disparity MSE of around 0.005 to 0.001 px2 which, again, is even
lower than what is expected from the results on the test dataset. In the
case of the real-world example, the improvements over the baseline are
particularly strong in the multi-task scenario. Again, the GradSim ap-
proach, while improving the central view estimate, yieldsworse disparity
estimates as compared to the baseline whereas the proposed NormGrad-
Sim approach resolves this issue and yields the overall best result, in
particular in the multi-task case.

Overall, however, the multi-task approaches show a significant drop in
performance with respect to the estimated central view as compared to
the single-task estimates, regardless of the used dataset. To this end, the
adaptive multi-task training strategies are investigated in the following.

5.2.2 Adaptive multi-task approaches
To improve the multi-task performance, two methods are considered, as
discussed in Section 3.2.3: the multi-task learning approach using uncer-
tainty by Kendall et al. [102] and the GradNorm method by Chen et al.
[39]. The results for the test dataset are given in Table 5.3 and visualized
for the dataset challenge and the real-world example in Figure 5.4. Both
approaches improve the performance of the central view as well as the
disparity estimation significantly as compared to the naive multi-task
approach. While, on the test dataset, the GradNorm method performs
slightly better with respect to the estimation of the central view, the
approach using uncertainty performs very well in the case of disparity
estimation—even outperforming the single-task network—while also
improving the central view estimate as compared to the naive multi-task
baseline. Judging by the quality of the estimates using the synthetic
dataset challenge as well as the real-world example, the situation is
slightly different. In these cases, the GradNorm approach shows very
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Table 5.3 Test dataset performance of the adaptive multi-task training strategies.

Method
Central view Disparity

PSNR/dB SSIM SA/° MSE/px2 MAE/px BP07/%
ST Naive 32.68 0.92 5.39 0.0607 0.0679 14.23
MT Naive 27.70 0.85 8.85 0.0626 0.0697 14.92
MT GradNorm [39] 31.95 0.92 5.80 0.0692 0.0815 19.07
MT Uncertainty [102] 31.18 0.91 6.27 0.0594 0.0665 13.87

good estimates, both for the central view and the disparity, while the
approach using uncertainty suffers from some artifacts in the estimated
disparity. It should be noted that this is not consistent throughout all
dataset challenges and real-world examples, as shown only in the digital
supplement. While GradNorm performs better in some, the approach
using uncertainty outperforms GradNorm in others. However, again,
both methods show significant improvements over the naive multi-task
baseline, almost achieving the single-task performance in the case of
the estimated central view and slightly outperforming the single-task
disparity estimate.

Finally, it should be pointed out that GradNorm introduces an addi-
tional asymmetry hyperparameter which was manually fine-tuned for
the obtained results by evaluating multiple training runs using different
choices of this parameter. The approach using uncertainty on the other
hand is hyperparameter-free which is favorable in practice, saving both
time and computational resources. Therefore, in the following, only the
approach using uncertainty by Kendall et al. [102] is used as the adaptive
multi-task training strategy.

5.2.3 Reconstruction using random coding masks
To draw a first conclusion, the best-performing reconstruction methods,
using random coding masks, are compared. In addition to the previously
discussedmethods, themulti-task training using uncertainty is combined
with the proposed NormGradSim approach utilizing auxiliary losses.
The results are given in Table 5.4 and visualized partially in Figure 5.5.
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Figure 5.4 Performance comparison of the multi-task reconstruction with naive and
adaptive weighting for a synthetic challenge (top) and a real-world example (bottom).
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Figure 5.5 Performance comparison of the best reconstruction methods using random
coding masks. The two multi-task results are obtained using the 3D convolution network.
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Generally, the proposed principal reconstruction outperforms the best
compressed sensing-based reconstruction using a tensor dictionary with
subsequent disparity estimation in all considered evaluation metrics. In
particular, the quality of the estimated disparity is far superior to those
estimated from the compressed sensing-reconstructed light fields. While
this holds not only for the test dataset, the differences in the case of the
dataset challenge and the real-world example are not as severe. In fact,
for the real-world example, the compressed sensing-based reconstruction
yields the overall best central view estimate, reaching a PSNR of nearly
38 dB, and a visually sharper but more disturbed subsequent disparity
estimate. However, this gap will be closed by using non-random coding
masks in the case of the proposed principal reconstruction, which is
evaluated in Section 5.3.

Considering the different investigated training strategies of the prin-
cipal reconstruction methods, the combined adaptive multi-task train-
ing using uncertainty together with the proposed adaptive auxiliary
loss strategy using normalized gradient similarity yields the best recon-
struction among the multi-task approaches—even outperforming the
single-task approach with respect to the estimated disparity while only
performing slightly worse in the case of the estimated central view. Us-
ing the elaborate adaptive multi-task and auxiliary loss weighting, the
multi-task performance is nearly on-par with the naive single-task per-
formance and performs only slightly worse than the single-task network
using adaptive auxiliary losses in the case of the estimated central view.
However, the multi-task approaches are much more parameter-efficient
and show shorter inferences times as compared to the two separately
trained single-task networks as discussed shortly. This result is quite
remarkable, considering that the deep learning-based approaches dif-
fer only in the used training strategy while the network architectures
are identical. While, in the applied computer vision community, deep
learning-based applications are often trained using comparably naive
loss functions and training strategies, in particular in multi-task applica-
tions, these results demonstrate the potential of more elaborate adaptive
training strategies.
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Table 5.4 Test dataset performance comparison of the best-performing methods using
random coding masks.

Method
Central view Disparity

PSNR/dB SSIM SA/° MSE/px2 MAE/px BP07/%
EPINET [176] (uncoded) - - - 0.0881 0.0626 6.28
CS Vec.-D. + EPINET 27.86 0.74 7.25 0.6050 0.2939 32.34
ST AL NormGradSim 33.47 0.94 4.52 0.0562 0.0679 14.93
MT Uncertainty [102] 31.18 0.91 6.27 0.0594 0.0665 13.87
MT U. + AL NormGradSim 31.94 0.94 5.36 0.0567 0.0656 13.58

Table 5.5 Test dataset performance comparison of the two different investigated network
architectures. In both cases, training was performed using the adaptive multi-task training
with uncertainty and the proposed NormGradSim auxiliary loss method.

Method
Central view Disparity

PSNR/dB SSIM SA/° MSE/px2 MAE/px BP07/%
3D Conv. 31.94 0.94 5.36 0.0567 0.0656 13.58
4D Conv. 32.55 0.94 5.03 0.0491 0.0636 13.69

5.2.3.1 Network architecture

Using the best-performing training strategy, the performance of the ar-
chitecture based on 3D convolution, which was exclusively considered
so far, is compared to the one based on 4D convolution, as introduced in
Section 3.2.2. Both architectures are trainedwith the same strategy, i.e. the
multi-task training using uncertainty together with the auxiliary losses
using NormGradSim. The results are depicted in Table 5.5 and in Fig-
ure 5.5. Generally, the performance of the two considered architectures
is quite similar, in particular considering the reconstructed central view.
However, the architecture based on 4D convolution performs noticeably
better with respect to the estimated disparity, improving the test dataset
MSE by more than 10%, from 0.0567 px2 to 0.0491 px2. While this can
also be observed using the dataset challenge as well as the real-world
example, the differences are not as severe in these instances. Investigating
the real-world example, the 4D convolution network seems to estimate a
visually sharper disparity map, especially for objects close to the cam-
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era. However, this is difficult to judge quantitatively due to the lack of
disparity ground truth data.

While the network based on 4D convolution can be considered su-
perior to the one based on 3D convolution, with respect to both the
reconstructed central view and especially the estimated disparity, it is
also more resource-demanding. This results in considerably longer train-
ing and inference times as discussed shortly. Therefore, in the following,
the 4D convolutional architecture is not further evaluated. However, de-
pending on the application, and its corresponding accuracy and speed
requirements, the 4D architecture may be more suitable in some cases.

5.2.3.2 Generalization gap

While the performance of the proposed principal reconstruction ap-
proaches is in general very good, all deep learning-based methods suffer
from a generalization gap when performing inference on the real-world
data. While this is not specific to the proposed approach, it seems to
be more severe as compared to, for example, the EPINET prediction.
Since this gap is likely due to noise, both in the conventional sense, i.e.
sensor noise, as well as distortions in the epipolar geometry, i.e. “calibra-
tion noise”, it is understandable that the effect is less severe in the case
of the EPINET prediction as the data is converted to RGB beforehand,
smoothing both the sensor and calibration noise. In any case, closing this
generalization gap in data-driven approaches that are trained using syn-
thetic data is non-trivial. While it is straightforward to introduce sensor
noise statistics to the training process, either via data augmentation or,
more generally, via noise injection techniques [72] such as DropOut [182]
or WhiteOut [115], taking into account calibration inaccuracies is much
more difficult. To this end, self-supervised approaches, directly using
(non-labeled) real-world data, offer a great advantage as the statistics of
the training data and the data that is used for the inference in practice
are identical by design. While self-supervised approaches to light field
disparity estimation exist, e.g. using a self-consistency loss obtained by
warping the central view onto the original subapertures using the es-
timated disparity [160], these approaches are problematic at occlusion
boundaries. Furthermore, it is not clear how a self-supervised approach
could be formulated using spectrally coded light fields. Concluding,
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closing the generalization gap between synthetic and real-world data
inference in the context of light field deep-learning remains an open
challenge. The influence of sensor and calibration noise on the used
reconstruction method is investigated in more detail in Section 5.2.4.

5.2.3.3 Inference times

Finally, the inference times for the different investigated methods are
compared. As previously hinted, the inference time for the different in-
vestigated methods cannot be fairly compared in the case of full-sized
inference since the compressed sensing-based methods cannot be evalu-
ated on a GPU due to the immense memory requirements. However, for
light fields in the test dataset, with a smaller resolution of (9, 9, 32, 32, 13),
a comparison can be made for all but the 5D-DCT-based reconstruction
for which a GPU implementation was not created. The mean inference
times for a single test dataset light field are shown in Table 5.6. The values
are collected across the full test dataset using an individually chosen
mini-batch size to maximize the GPU load. To calculate the average, the
corresponding mini-batch size and the total number of batches are taken
into account. Overall, while the proposed tensor dictionary approach
is about four times faster than the conventional vector-based method,
it can be observed that the deep learning-based methods are orders of
magnitudes faster than the reconstructions based on compressed sens-
ing. This is not particularly surprising, as the compressed sensing-based
methods reconstruct the full multispectral light field which is a higher-
dimensional problem than estimating the central view and disparity
from the coded measurement directly. Furthermore, the deep learning-
based approaches are likely to gain more from the GPU acceleration as
opposed to the compressed sensing methods, in particular due to the
involved light field patching which is time- and memory-consuming.
While the inference using the vanilla EPINET, which solely predicts the
disparity from uncoded RGB light fields, is the fastest, the proposed
principal reconstruction performs adequately, especially considering the
much higher complexity of the reconstruction. For the principal recon-
struction, minor differences between the single-task and the multi-task
models can be observed. In particular, the multi-task inference is more
than 40% faster than the combined single-task prediction of the central
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Table 5.6 Mean inference time per light field across the test dataset for the different
investigated methods using an Nvidia V100 GPU.

Method Inference time/ms

EPINET [176] (uncoded) 0.34
CS Vec.-D. 945.41
CS Tens.-D. 233.39
ST 3D Conv. (central view) 1.67
ST 3D Conv. (disparity) 1.40
MT 3D Conv. 1.75
MT 4D Conv. 7.03

view and the disparity map. Comparing the multi-task networks based
on 3D and 4D convolution, an increase of about 400% can be observed
which is more thanwhat is expected from the previous analysis as shown
in Table 3.2.

However, it should be noted that the measurements also include the
time needed for the data generation as well as copying the data from the
CPU RAM to the GPU RAM to some extent. While the data generation
is performed via multiprocessing, the CPU and PCIe transfer speed may
become the bottleneck due to the large size of the spectral light fields,
increasing the effective inference times. Due to the CPU multiprocessing
and the GPU-based inference, this effect is difficult to quantize but it is
assumed to be small considering the significant difference in the inference
between the 3D and the 4D convolution-based reconstruction which
should show a similar overhead. Moreover, this effect is likely much
smaller in the case of the vanilla EPINET whose prediction uses RGB
light fields which are more than four times smaller in size compared to
their multispectral counterparts, reducing the overhead caused by the
data generation.

Concluding, the proposed principal reconstruction using the archi-
tecture based on 3D convolution, trained with an adaptive multi-task
strategy using uncertainty combined with the proposed adaptive auxil-
iary loss strategy NormGradSim, yields the overall best result—in terms
of the considered evaluation metrics, as well as the computational effort
as reflected by the shorter inference times. Hence, it is the only approach
considered in the following.
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Figure 5.6 Test dataset performance for the proposed principal reconstruction from
spectrally coded light fields as well as EPINET, using uncoded RGB light fields, in the
case of varying input noise levels. The symbolic input PSNR of infinity corresponds to the
original (possibly coded) input without additional noise.

5.2.4 Noise, angular resolution, and depth
5.2.4.1 Dependence on sensor noise

As previously noted, the generalization gap between synthetic and real-
world data may stem from the disregard of noise during training. While
inaccuracies of the geometric calibration are difficult to simulate, investi-
gating the dependence on sensor noise is feasible. To this end, pixel-wise
independent Gaussian noise with different standard deviations is added
to the input light fields and the reconstruction performance is measured
using the test dataset. In the case of the estimated disparity, the results
are also compared to the EPINET prediction from noisy input data. Note
that the trained network instances are the same as before, i.e. the net-
works were not exposed to any additional noise during training. The
results are shown in Figure 5.6 for both the proposed approach using
spectrally coded light fields and EPINET in the case of uncoded RGB
light fields. Generally, the proposed approach is quite robust with respect
to input noise for input PSNRs of 40 dB and higher. For lower values, the
performance suffers, both for the central view and the disparity estimate.
Nevertheless, especially for very high noise levels, with corresponding
PSNRs below 30dB, the proposed network actually improves the over-
all PSNR of the central view which can be seen as a form of denoising.
This is not particularly surprising. In fact, the reconstruction from spec-
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Table 5.7 Test dataset performance of the principal reconstruction for different angular
resolutions of the input light field.

Ang. resolution
Central view Disparity

PSNR/dB SSIM SA/° MSE/px2 MAE/px BP07/%
3×3 31.76 0.93 5.44 0.0722 0.0849 21.19
5×5 32.41 0.94 5.13 0.0631 0.0798 20.23
7×7 32.49 0.94 5.13 0.0595 0.0712 15.61
9×9 32.28 0.94 5.20 0.0569 0.0675 14.14

trally coded light fields can be interpreted as a severe form of denoising,
where the input light fields are corrupted by strong impulse noise, i.e.
pepper noise. On the other hand, the quality of the estimated disparity
quite rapidly decreases for input PSNRs below 40dB. Still, the proposed
approach is much more robust against noise as compared to EPINET
whose performance rapidly declines for PSNRs below 60dB. Again, this
probably stems from the fact that the proposed network, unlike EPINET,
is in fact exposed to a form of noise during training, even though the
noise statistics are severely different from the ones explicitly modeled
here. Overall, the results suggest that some potential exists to further in-
crease the network’s robustness, potentially increasing the performance
on real-world data, e.g. by incorporating sensor noise into the training, as
discussed previously. However, the real-world performance ismore likely
limited by the inaccuracies of the calibration as shown in the following.

5.2.4.2 Dependence on angular resolution

Second, the dependence of the principal reconstruction on the input’s
angular resolution is investigated. To this end, the proposed network is
trained and evaluated using different angular resolutions of the coded
input light fields, ranging from 3×3 to 9×9, which are centrally cropped
from the higher-resolution original dataset. The results are given in
Table 5.7 and visualized in Figure 5.7.

While the disparity shows a decreasing estimation error with larger
angular resolutions, which is expected as more geometric information
is available with higher angular resolutions, the central view estimate
is mostly independent of the used angular resolution, in particular for
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Figure 5.7 Performance comparison of the reconstruction for different angular resolutions
of the coded input light field.
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those larger than 3×3, in the case of the synthetic test dataset and the
dataset challenge. Considering the sparsity of the input light fields, it is
quite remarkable that the central view and disparity can be estimated
with respectable quality even for the comparably low angular resolution
of 3×3. However, this is presumably also dependent on the number of
used spectral channels as the sparsity increases when more channels
are considered. In the case of the used 13 spectral channels, an angular
resolution of 9×9 yields good results for both the reconstructed central
view and the estimated disparity. The benefits of further increasing the
angular resolution are likely outweighed by the increased computational
and memory requirements.

In the case of the real-world example, however, the lower angular res-
olutions of 3×3 and 5×5 actually show the best performance. While the
central view estimates are mostly independent of the angular resolu-
tion, analogous to the evaluation of the synthetic data, the quality of the
disparity estimate seems superior in those cases. (Of course, since no
ground truth disparity is available, this judgment can only be made qual-
itatively.) This result supports the previous claim that the reconstruction
performance in the case of the real-world example is likely limited by
inaccuracies of the geometric calibration. Naturally, these inaccuracies
are more severe in peripheral subapertures (cf. Appendix B) leading to a
worse performance when using larger-resolution crops of the original
real-world light fields. While decreasing the angular resolution miti-
gates this issue, it is not really an option in practice as only a fraction
of the true sensor resolution would be utilized. Since the calibration
inaccuracies mostly stem from deviations of the used camera model at
microlens boundaries, decreasing the actual angular resolution of the
camera, e.g. by decreasing the microlens radius or increasing the pixel
size, is not a viable solution. Hence, to fully leverage the potential of the
proposed approach in practice, a more accurate geometric calibration
is needed. While recent model-free generalized calibration methods, as
shortly discussed in Section 4.2.3, are promising, it is not clear how the
ray resampling in the case of a spectrally coded light field camera can
be achieved. Therefore, this opens new possible directions for future
research, which are not within the scope of this thesis.
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5.2.4.3 Dependence on scene depth

Finally, the dependence on the scene’s depth—or, equivalently, its cor-
responding disparity—is investigated. To this end, two approaches are
considered. On the one hand, the Wall challenges are evaluated, which
are explicitly designed to test performance versus disparity. Recall, the
Wall challenges consist of a perfectly flat surface with a multispectral
image texture that is rendered at several constant distances correspond-
ing to disparities from −1.5 to 1.5 px in 0.25 px steps.1 Therefore, theWall
challenges consist of 13 separate light fields that are reconstructed and
evaluated independently, each corresponding to a single ground truth
disparity. On the other hand, a similar evaluation can be performed using
a single light field with available disparity ground truth. To this end,
the pixel-wise reconstruction errors, for both the central view and the
disparity, are grouped using the underlying ground truth disparities.
The mean errors are subsequently calculated on the separate groups al-
lowing for a disparity-dependent evaluation. The grouping is performed
using disparity bins with a width of 0.1 px and bin centers coinciding
with the ones used for the Wall challenges. For example, all pixels with a
ground truth disparity between −0.05 px and 0.05 px are grouped and
their corresponding (pixel-wise) reconstruction errors are collected and
averaged to yield the measurement for the bin corresponding to a dis-
parity of 0 px. While this allows for an evaluation using a scene with a
more realistic geometry, it should be noted that the resulting statistics
are disparity-dependent. In particular, there may be bins with signifi-
cantly fewer measurements than others, depending on the ground truth
disparity distribution. The results are shown in Figure 5.8 for the Wall
challenge and the Cabin challenge which has the largest disparity range
amongst the dataset challenges.

Investigating the result for the Wall challenges, a clear effect can be
observed: Both the central view and the disparity estimates are consider-
ably worse in the case of a ground truth disparity of exactly 0 px while
the performances for the remaining disparities are similar, with a small
positive trend towards larger absolute disparities in the case of the esti-

1 The challenge in the case of a disparity of 1 px is excluded from the evaluation because
the corresponding light field was corrupted during rendering.
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Figure 5.8 Dependence of the reconstruction performance on the ground truth disparity
in the case of the Wall challenges (top) and the Cabin challenge (bottom).

mated central view. In fact, this effect is expected from the camera design:
Since the used coding of themicrolenses leads to an angular-independent
coding of the light field, all subaperture views are coded using the same
spatio-spectral mask. However, in the case of a scene with a disparity of
exactly zero, all subapertures are in fact identical. Therefore, the available
information in the coded light field is reduced to a minimum and the
reconstruction problem becomes the most challenging. Strictly speaking,
this argument is valid for the reconstruction of the central view, while
the disparity estimation should still be feasible. After all, the observation
of identical subaperture views directly leads to the corresponding dis-
parity estimate—at least this would be expected in the case of uncoded
light fields. Using coded light fields, however, the disparity estimation
becomes less intuitive due to the sparse observation of the epipolar ge-
ometry. For example, one cannot directly observe lines in the epipolar
images (or planes in the epipolar volumes) as neighboring pixels in the
light field are coded using different spectral channels. Therefore, the
disparity is extracted from the latent representation in some other way.
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However, when the overall information of the coded light field is re-
duced, as is the case of exactly zero disparity, it may be that the encoder
is incapable of mapping the input to a suitable, i.e. geometrically correct,
latent space representation. That is, the latent space representation may
not be adapted to this extreme kind of sampling, especially since it is also
not only used to represent the abstract geometric but also the spatial and
spectral information in the case of the multi-task approach. This then
would lead to the observed degraded performance for both the central
view and the estimated disparity. Nevertheless, the severity of this effect
in the case of the disparity estimate is surprising.

In the case of the Cabin challenge, showing a more realistic scene
geometry with non-constant disparities, the situation is quite different.
Here, the effect occurring at zero disparity cannot be observed, or merely
slightly in the case of the estimated central view. Rather, the performance
of the reconstruction is strongly dependent on the local geometry: The
Cabin scene features trees in both the fore- and the background, resulting
in a complex local geometry with many occlusion boundaries. Hence, the
quality of the reconstruction, both of the central view and the disparity,
is relatively worse for very small and very large ground truth disparities,
while the midground shows better estimates. This result shows that, in
the realistic case of non-constant disparities, the reconstruction of zero-
disparity regions is effectively regularized by neighboring regions with
non-zero disparity, while the overall quality is limited by the scene’s
complexity.

Overall, these results suggest two conclusions in practice. First, when
considering scenes with nearly constant disparity, as may be the case in
industrial applications, e.g. investigating flat objects such as circuit boards
or wavers on lab tables or conveyor belts, the quality degrades severely
for objects with zero disparity, i.e. for objects that are in focus. However,
the solution is straightforward: By focussing the camera’s main lens to
optical infinity, the zero-disparity plane is moved to optical infinity as
well. Therefore, objects are always imaged out-of-focus, avoiding the dis-
cussed problem. (One could also move the focal plane to the foreground,
however, the resulting disparity sensitivity is worse for objects beyond
the focal plane, which is unfavorable in most cases.) However, due to the
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trivial disparity distribution, the advantage of a (spectral) depth camera
over a conventional (spectral) camera is questionable.

Second, in the case of geometrically non-trivial scenes with a diverse
disparity distribution, the reconstruction quality is limited by the scene
complexity and mostly disparity-independent. Hence, the camera focus
should be set such that the depth range of interest is imaged with suffi-
cient sensitivity which depends on the actual camera configuration, as
detailed in Appendix A.

5.3 Mask optimization
Up to now, solely random coding masks have been investigated. While
the use of random masks is well-motivated in the compressed sensing
approach (cf. Section 3.1), the influence of the coding mask in the case
of the deep learning-based reconstruction is less obvious. This is espe-
cially true since the reconstruction targets, in this case, are different from
those considered in the compressed sensing-based reconstruction. In
particular, the reconstruction of the multispectral central view and its
aligned disparity map cannot be formulated in a linear fashionwithin the
compressed sensing framework. Therefore, similar analytic arguments
regarding the properties of the coding mask, based on the mutual co-
herence of the sensing matrix, cannot be made and transferred to the
deep learning-based approaches. However, to empirically investigate the
influence of the coding mask on the proposed principal reconstruction,
two approaches are evaluated in the following.

5.3.1 Predefined coding masks
First, different predefined coding masks, as introduced in Section 4.4.2,
are investigated, including fully random masks, masks with random
macropixels, as well as regular masks. The results using the test dataset
are shown in Table 5.8. To this end, 10 different inference runs, using dif-
ferent initial random seeds, are evaluated and averaged. Investigating the
case of using fully random masks during training but different masks at
inference, it can be observed that the performance is quite robust with re-
spect to the usedmask. In particular, themask using randommacropixels,
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Table 5.8 Test dataset performance of the principal reconstruction using different coding
masks during training and at inference. The results are obtained as averages from 10
inference runs using different initial random seeds.

Mask Central view Disparity

Training Inference PSNR/dB SSIM SA/° MSE/px2 MAE/px BP07/%
Random Random 31.94 0.94 5.36 0.0564 0.0655 13.56

Rand. macropx 32.44 0.94 5.11 0.0560 0.0652 13.50
Regular 29.67 0.93 6.37 0.0570 0.0658 13.63
Regular opt. 27.07 0.91 8.25 0.0579 0.0669 14.12

Rand. macropx Rand. macropx 33.00 0.94 4.85 0.0573 0.0681 14.03
Regular Regular 35.88 0.96 4.13 0.0533 0.0652 13.06
Regular opt. Regular opt. 36.20 0.96 4.10 0.0563 0.0649 13.50

despite its different statistics, performs on-par (or even slightly better)
with the original fully random mask used during training. Similarly,
using regular coding masks during inference, the performance is only
slightly worse in the case of the reconstructed central view while the
disparity estimate is mostly mask-independent. This is quite remarkable,
considering the severely different statistics of the masks in the regular
case. Overall, the approach to use a different mask for each light field
in a mini-batch during training in order to obtain a mask-independent
central view reconstruction and disparity estimate seems to perform as
intended. However, also using the corresponding mask during training
yields significantly better performance as compared to training using a
random mask, in particular in the case of the considered regular masks.
Here, the regular mask with the optimized layout by Shinoda et al. [177]
yields the overall best performance, reaching a PSNR of over 36 dB of the
reconstructed central view and similar quality of the estimated disparity
as compared to the other used masks. Furthermore, also the secondary
central view metrics, i.e. the SSIM and the SA, are significantly improved
over the random mask. However, the differences between the naive and
the optimized regular mask layout can be considered negligible here.

Similar trends can also be observed using the synthetic dataset chal-
lenge and the real-world example, as shown in Figure 5.9. Here, the run
closest to the average performance across the 10 different inferences is
chosen for visualization. For the dataset challenge, a central view PSNR
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of over 40 dB and an SSIM of 0.99 is achieved in the case of the regular
mask with the optimized layout—by far exceeding all previous methods.
Similar to the test dataset performance, the estimated disparity shows
only minor differences between the different masks. Investigating the
mask dependence using the dataset challenge in more detail, Figure 5.10
shows all individually seeded inference runs for the considered masks.
Here, it can be seen that the performance does in fact not depend signifi-
cantly on the actual realization of the mask, again validating the used
training approach. Recall, the different random seeds at inference lead to
different realizations of the randommasks and different shifts of the regu-
lar masks (cf. Section 4.4.2). Overall, the regular mask using an optimized
layout outperforms the other approaches. In particular, the optimized
regular mask performs significantly better than the naive regular mask
in the case of the disparity estimation. This is likely due to the larger total
variation of the coding mask. That is, the mask has a “spikier” layout
and neighboring pixels are more spread out in the spectral domain. This
way, different spatio-spectral features may be observed with a higher
effective sampling rate, leading to a more robust disparity estimate as
compared to the naive regular mask using a consecutive filter layout.

In the case of the real-world data, however, the differences between
the naive and the optimized regular masks do not seem to be signifi-
cant. Yet, the disparities estimated by the models trained with regular
masks appear to be sharper than those using random masks. Further-
more, a particularly challenging part of the scene (the front left part of
the coconut) that leads to distortions in the estimated disparity for most
previously considered methods is estimated correctly by the approaches
using regularmasks. Analogous to the synthetic case, the quality of the re-
constructed central view in the case of regular codingmasks outperforms
all previous approaches. Concluding, the principal reconstruction using
regular coding masks in an optimized layout [177] performs best overall.
To visualize its quality inmore detail, the ground truth and reconstructed
central view are depicted in Figure 5.11. Overall, the proposed principal
reconstruction using regular coding masks with an optimized layout is
able to reconstruct the spectral central view with high quality and detail.
Even for the low-intensity and noisy channels of very short and very
long wavelengths, the reconstruction performs remarkably well, to some
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extent de-noising the noisy ground truth data. In the mid-range channels,
the reconstructed central view is visually almost indistinguishable from
the ground truth data. Hence, the overall performance, as previously
discussed, is likely limited by the quality of the ground truth data, both
with respect to the sensor noise as well the inaccuracies of the calibra-
tion. Yet, to possibly further enhance the reconstruction, the end-to-end
optimization of the coding mask is considered in the following.

It should be noted that, using regular codingmasks, the reconstruction
of the central view can actually be performed using naive subaperture-
wise multispectral demosaicing. However, this naive approach has two
drawbacks in practice. First, a subaperture-wise reconstruction does not
take into account the light field geometry. Therefore, the subsequent
disparity estimation using the reconstructed spectral light field would
likely perform poorly. Explicitly taking the geometry into account during
demosaicing is not possible in the naive approach, as the disparity, which
is unknown, would be needed. Implicitly, it could be achieved in a com-
pressed sensing-based approach, requiring random masks as previously
discussed. Furthermore second, in the multispectral case, it has been
shown by Degraux et al. [48, 49] that compressed sensing approaches
outperform conventional multispectral demosaicing using regular masks.
In the spectral light field case, it was found in precursory experiments
that a 3D subaperture-wise compressed sensing-based reconstruction
performs worse than the considered 5D reconstruction [B6]. Therefore, a
naive demosaicing approach is not evaluated here, as it is most likely to
perform poorly, and in particular worse than the considered compressed
sensing-based approaches as well as the principal reconstruction.
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Figure 5.9 Performance comparison of the reconstruction using different coding masks
during both training and inference.
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Figure 5.10 Performance for the Elephant challenge using different masks during training
and at inference. Ten runs, using different random seeds, are shown for the masks:
random ( ), random macropixel ( ), regular ( ), and regular optimized ( ).
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Figure 5.11 False-color representation of five out of the 13 spectral channels from the
ground truth and the reconstructed central view using a regular coding mask with an
optimized layout [177]. Note that the individual channels are normalized to a common
reference to maximize the contrast for visualization.
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Table 5.9 Test dataset performance of the investigated end-to-end optimized masks in
the case of optimization from pre-trained models as well as optimization from scratch. The
previously considered predefined masks are shown as a reference.

Optimization Mask
Central view Disparity

PSNR/dB SSIM SA/° MSE/px2 MAE/px BP07/%
(Predefined) Random 31.94 0.94 5.36 0.0564 0.0655 13.56

Regular opt. 36.20 0.96 4.10 0.0563 0.0649 13.50
From pre-trained Fractal 4×4 33.32 0.94 4.95 0.0566 0.0691 14.58

Fractal 5×5 32.29 0.93 5.45 0.0563 0.0673 14.03
Fractal 6×6 32.35 0.93 5.43 0.0558 0.0680 14.15
Regular 4×4 31.44 0.94 6.23 0.0554 0.0672 14.18
Regular 5×5 27.42 0.91 10.38 0.0564 0.0681 14.36
Regular 6×6 29.88 0.93 7.45 0.0558 0.0684 14.52

From scratch Fractal 4×4 33.24 0.95 4.63 0.0544 0.0643 13.32

5.3.2 End-to-end optimized coding masks
Finally, an end-to-end optimization of the coding masks using neural
fractals, as proposed in Section 3.3, is performed. To this end, two training
strategies are used. First, a pre-trainedmodel, fully trained using random
coding masks, is used to bootstrap the mask optimization. Here, the op-
timization is performed in three phases: a warmup phase of five epochs
optimizing solely the mask while fixing the parameters of the pre-trained
reconstruction network; a joint optimization phase of 20 epochs, training
both the mask and the reconstruction network; and a final finetuning
phase of 10 epochs, training solely the reconstruction network while fix-
ing the mask parameters. Throughout the three phases, the learning rate
is decayed from 5 × 10−2 to 5 × 10−5. The main idea is to make use of the
mostly mask-independent reconstruction performance of the pre-trained
model, significantly reducing the training time of the mask optimiza-
tion. However, as a comparison, also a fully joint optimization, trained
from scratch in accordance with the previous approaches, is evaluated.
As before, the adaptive multi-task training strategy and the proposed
adaptive auxiliary losses are used in both training scenarios. Both uncon-
strained fractal masks as well as masks constrained to a regular layout,
as discussed in Section 3.3, are investigated with sizes ranging from 4×4
to 6×6px. The test dataset results are given in Table 5.9.
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Overall, the results are mostly underwhelming. However, some use-
ful insights can still be gained from them. First, investigating the cases
trained from the pre-trained model, it can be observed that the proposed
fractal optimization does in fact perform better than the constrained op-
timization of regular masks, suggesting that the fractal masks are more
expressive and performant than regular ones, as desired. On the other
hand, the optimized masks only perform slightly better than the baseline
using random masks (which was used to bootstrap the optimization)
in the case of the fractal masks. However, this improvement may also
stem from the additional training, in particular the finetuning phase.
More severely, the masks constrained to regular layouts actually perform
worse than the baseline in the case of the reconstructed central view.
All methods perform similarly with regard to the estimated disparity.
Similarly, the mask optimization trained from scratch does not perform
significantly different from the one bootstrapped using the pre-trained
model. All considered end-to-end optimized approaches perform signif-
icantly worse than the predefined regular mask in the optimized layout
by [177] in terms of the reconstructed central view while showing some
minor improvements in the estimated disparity.

In particular, this is disappointing since the predefined regular mask,
considered previously, is in fact an element of the search space (or, more
precisely, the generated image of the search space) of the mask opti-
mization. Hence, in principle, a properly optimized neural fractal should
at least achieve on-par performance. Therefore, the issue is most likely
related to the actual optimization. In fact, unlike previous works inves-
tigating optimization of binary coding masks [32, 90], the downstream
task is much more complex and parameter-intensive in the considered
case. Since the gradients have to back-propagate all the way through the
reconstruction network to optimize the mask parameters, issues related
to vanishing or canceling gradients may also play a role here. Despite a
lot of effort spent investigating several annealing strategies for the soft-
max temperature or the entropy loss as well as experimenting with hard
and soft binarization, the problem could not be resolved and the perfor-
mance of the predefined coding mask could not be achieved let alone
improved. It may be advisable to investigate the fractal-based binary
mask optimization in a simpler scenario, e.g. for RGB demosaicing, as

151



5 Results

Chakrabarti [32], or importance sampling, as Huijben et al. [90]. How-
ever, this is not within the main scope of this thesis. While successful
end-to-end optimizations of binary coding masks within complex optical
systems have been recently reported [136, 204], the optimization of the
binary mask remains a challenge in the considered case, even with the
discussed tricks. Moreover, recent works by Metz et al. [140] discuss the
problem arising in optimizing (partially) chaotic systems. The authors
argue that, despite being differential, (partially) chaotic systems lead
to poor gradient estimates and flat loss landscapes that are difficult to
optimize over. In particular, the proposed recurrent fractal mask gen-
eration (3.54) fits the definition of partially chaotic recurrent systems
by Metz et al. However, while the end-to-end optimization of the coding
mask could not be achieved here, precursory experiments directly op-
timizing the neural fractal with respect to a predefined layout were in
fact successful, as shown in the digital supplement. Hence, it is unclear
to what extent the problem is practical, possibly solvable with further
engineering, or systematic in the sense as discussed by Metz et al.

Nevertheless, some interesting observations can be made. Lifting the
constraint of always using the hard argmax (cf. Section 3.3), i.e. using a
temperature softmax not only for the backpropagation but also for the
forward pass, the resulting training metrics are depicted in Figure 5.12.
Here, near-binarization is achieved by minimizing the mask entropy
whose weight is increased during training, as shown. That is, early on
in the training, the coding masks are spectrally “continuous” while the
minimization of the mask entropy (along the spectral dimension) leads
to nearly binary, spiky masks. Interestingly, it can be seen that the dis-
parity estimation is independent of the mask entropy during training,
i.e. whether the masks are spectrally continuous or nearly binary, lead-
ing to estimates on-par with previous results. This is remarkable, again
suggesting that the proposed network architecture is reasonably robust.
However, for the reconstruction of the central view, this is clearly not
the case. Here, very high training PSNRs of up to 42dB, as well as high
SSIM and low SA scores, can be achieved for high-entropy masks, while
the central view quality drastically degrades when the mask entropy
regularization strength is increased, favoring nearly binary masks. Since
the spectral dimension of the non-binary coding mask can be interpreted
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Figure 5.12 Training metrics of the end-to-end mask optimization using a soft forward
pass when trained jointly with the principal reconstruction from scratch.

as the transmittance of an optical filter, which is multiplied and spec-
trally projected with the spectral dimension of the input light field via
the scalar product, optimizing non-binary, spectrally continuous masks
can be interpreted as optimizing the spectral characteristics of the used
optical filters. Therefore, the results suggest that end-to-end optimization
of the used spectral filter characteristics and layout may be a promising
way to further enhance the quality of the reconstructed spectral central
view—possibly even in other than the considered application involv-
ing spectral light fields. While the optimization of filter characteristics
has been investigated to some extent in the case of color imaging [61],
this is not the case in multispectral imaging, to the best of the author’s
knowledge. Furthermore, continuous end-to-end optimization of the
filter characteristics and layout would allow for additional regularization,
possibly solving some issues encountered in practice. For example, using
the proposed spectral coding of the MLA, one encounters a problem re-
garding the severely different spectral sensitivities of the different spatial
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pixels (i.e. the microlenses). In particular, similar to the case regarding
the custom-built spectral light field camera, pixels associated with green
light will saturate much quicker than those in the blue and the red or
NIR range. As previously discussed in Section 4.2.2, this effect is fur-
ther enhanced by the quantum efficiency and the spectral distribution of
natural light. Since the proposed camera is a snapshot camera, this will
lead to very poor SNRs in the less sensitive channels, as each raw image
has to be captured such that the most sensitive channels do not satu-
rate. Using absorbance filters, this issue could be resolved by optimizing
the thickness of each filter, such that the overall spectral radiant energy
reaching the pixels is roughly constant, regardless of the used filter. This
way, it would even be possible to account for the non-constant spectral
radiance of the used light source (e.g. natural sunlight) and the quantum
efficiency of the used camera. However, using interference filters, this
approach is not possible and would require additional neutral density
filters for each individual microlens. With an end-to-end optimization
of the continuous filter characteristics, such constraints could easily be
included via additional loss terms. Furthermore, the filters could be
optimized for different specific downstream tasks. This way, parts of
the downstream tasks, such as classification, may already be solved in
the optical domain by the end-to-end optimized filters. To some extent,
similar approaches have for example been applied in works regarding
classification or abundance estimation [105].

Nevertheless, a practical hardware realization of freely optimized spec-
tral filter transmittance is challenging. While, for example, spectral filters
with arbitrary transmittance using acousto-optic tunable filters were
achieved by Yushkov and Molchanov [232], in the considered case, the
spectral filters would need to be integrated with an MLA at micrometer
scale. Acousto-optic tunable filters are therefore not appropriate. It is not
clear which technology may be suitable to realize spectral filters with
arbitrary transmittance at micrometer scale. Possible recent technologies
involve photonic crystal slabs [211], which have been successfully used at
sensor-level spectral imaging, or optical microcavities such as whispering
gallery mode resonators [36, 172]. Since photonic crystals are based on
the same physical principle as acousto-optic tunable filters, i.e. a spatially
periodic modulation of the refraction index, it may be possible to achieve
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arbitrary transmittance in a way analogous to the works by Yushkov
and Molchanov. Furthermore, other interference-based approaches, such
as Fabry-Pérot filters or Mach–Zehnder interferometers, have been suc-
cessfully integrated at pixel-level [49, 65, 104] and may be suitable to
achieve arbitrary transmittance, even though they are typically operated
as bandpass filters. Finally, end-to-end optimized diffractive elements
may be suitable, in line with recent advances in deep optics [216]. Of
course, these approaches require a differentiable forwardmodel of the fil-
ter optics, e.g. free-form diffractive lenses as used in the approach by Baek
et al. [13] which was previously discussed (cf. Section 3.2). Recently, this
principle has been applied successfully at nanometer scale to achieve
high-quality nano-optics which can be fabricated as a nano-post array
with existing lithographic methods and were optimized using a differ-
entiable forward model [196]. Overall, the results suggest that there is
room for improvements utilizing end-to-end optimization techniques,
jointly optimizing both the optics and the downstream reconstruction.
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6.1 Summary
In this thesis, the reconstruction from spatio-spectrally coded light fields,
as taken by a camera with a spectrally coded microlens array, was inves-
tigated. Mainly, two approaches were discussed: First, a reconstruction
of the full spectral light fields was investigated. To this end, different
approaches within the compressed sensing framework were developed,
either using fixed 5D-DCT bases or learned dictionaries to sparsely rep-
resent the spectral light fields. In this case, the conventional vector-based
dictionary learning was refined to a tensor-based approach, separating
the angular, spatial, and spectral dependence of the light field. From the
reconstructed spectral light fields, the disparities were estimated using a
state-of-the-art reference method.

Second, a direct reconstruction of the spectral central view and its
aligned disparity map from the coded light field was proposed, dubbed
principal reconstruction. Here, the desired information is directly esti-
mated from the coded measurements using a dual-task encoder-decoder
CNN architecture. In this instance, the camera is interpreted as a monoc-
ular spectral depth snapshot camera. To optimize the performance, two
multi-task training strategies were investigated. Furthermore, a new ap-
proach to use auxiliary losses was developed, called normalized gradient
similarity, based on previous works employing gradient similarity, to
adaptively weigh auxiliary losses to regularize the training. The auxiliary
loss training strategies were also combined with the adaptive multi-task
training approaches to further enhance the reconstruction.

Several kinds of coding masks were investigated. In the case of the
compressed sensing-based reconstruction, random coding masks were
used because they ensure a low mutual coherence of the sensing matrix,
which is required to enable the reconstruction from the sparse measure-
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ments. For the principal reconstruction, random coding masks were also
investigated to be able to directly compare the results with the com-
pressed sensing-based approaches. Furthermore, constrained random
masks, as well as regular masks, were considered. Finally, an approach
called neural fractals was developed to optimize the coding mask in an
end-to-end fashion. Here, the coding masks are formulated via a fractal
generation process, which was continuously relaxed to allow for a joint
optimization with the reconstruction network.

To evaluate the methods, several datasets were created. A large syn-
thetic spectral light field dataset with disparity ground truth was ren-
dered using a custom camera plugin for the IIIT ray tracer. Consisting of
randomly generated scenes, this dataset was split into a training, valida-
tion, and test dataset and used to quantitatively evaluate the investigated
methods and to train all data-driven approaches. To evaluate the per-
formance also for full-sized spectral light fields, a synthetic dataset of
seven hand-crafted scenes was created. For these so-called challenges, the
ground truth disparity is also available. Finally, a real-world spectral
light field dataset was captured using a custom-built spectral light field
camera. The radiometric and geometric calibration of the camera, consist-
ing of a Lytro Illum light field camera and a filter wheel with 13 spectral
filters, was developed and discussed in detail.

In principle, high reconstruction qualities could be achieved with all
investigated approaches. In the compressed sensing case, the proposed
tensor-based dictionary outperforms both the conventional vector dictio-
nary as well as the reconstruction using fixed 5D-DCT bases. However,
a subsequent disparity estimation, using the state-of-the-art EPINET
disparity estimation network, suffered as compared to the performance
using the original uncoded light fields. This suggests that the reconstruc-
tion suffers from artifacts, in particular with respect to the light field
geometry. Furthermore, the compressed sensing-based reconstruction is
time- and resource-consuming.

These limitations were overcome with the proposed principal recon-
struction. Here, high reconstruction and disparity estimation qualities
were achieved. In particular, it was shown that adaptive multi-task train-
ing strategies in combination with the proposed auxiliary loss regulari-
zation significantly improve the reconstruction as compared to the naive
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baselines—performing on-par or even outperforming their single-task
analogues. The performance was further increased by using regular
coding masks in an optimized layout previously proposed in the litera-
ture. Unfortunately, the end-to-end optimization of the coding mask via
neural fractals did not outperform the regular masks, despite including
them in its solution space. To overcome these difficulties, several possible
solutions and future investigations were outlined.

Since comparable works and datasets regarding (coded) spectral light
fields have previously beenmissing in the literature, it is the firm belief of
the author that this thesis provides a strong reference and a new baseline
for their reconstruction and disparity estimation, which may encourage
the community to further research.

All datasets and methods proposed within this thesis are made pub-
licly available:

The created synthetic spectral light field dataset with disparity
ground truth is available at
https://dx.doi.org/10.21227/y90t-xk47.

The created real-world dataset is available at
https://dx.doi.org/10.35097/500.

The framework implementing all considered deep learning-based
approaches, in particular the investigated training strategies and
the proposed NormGradSim method, is available at
https://gitlab.com/iiit-public/lfcnn.

The framework implementing the proposed radiometric and geo-
metric calibration as well as the light field decoding is available at
https://gitlab.com/iiit-public/plenpy.
This framework also includes conventional disparity estimation
methods as well as the used spectrum and color conversions.

The created dataset containing synthetic white images of the Lytro
Illum camera with ground truth microlens centers, which was
used to evaluate the proposed geometric calibration, is available
at https://dx.doi.org/10.21227/msck-x083.

In addition, a digital supplement to this thesis is available at
https://maxschambach.github.io/thesis.
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6.2 Limitations and outlook
Despite its good performance, some limitations of the proposed dataset
and principal reconstruction exist. Foremost, the created synthetic and
real-world datasets are highly textured and contain solely diffuse ob-
jects. While this choice was made deliberately to exclude unnecessary
challenges in this novel context, it also limits the potential of the pro-
posed reconstruction. In fact, it may be one of the strengths of spectral
light fields to provide a robust depth estimation even for untextured or
specular objects [235]. Furthermore, the spectral approach opens new
possibilities to combine passive light field imaging with active illumina-
tion. For example, the additional spectral channels could be used in the
near-infrared to use structured illumination, possibly enhancing depth
estimation in untextured regions. Also, spectrally coded positional illu-
mination could be used, allowing for surface normal estimation similar
to photometric stereo. Finally, all of these techniques could be combined
into a single architecture, possibly having a regularizing effect on each
other. Being monocular, additional registration and alignment would not
be necessary, which is usually the case for multi-modal techniques.

Second, due to the unfocused design of the light field camera, the
spatial resolution is small compared to the original sensor resolution.
While a direct tradeoff cannot be calculated, as not only a spectral image
but also its disparity map are estimated, the overall efficiency may be
improved in the future. Given the results regarding the dependence of
the reconstruction on the angular resolution, as previously discussed,
there likely exists some potential to superresolution. For example, the
proposed architecture could be extended by a superresolution compo-
nent, which could be optimized separately or even jointly. Furthermore,
as previously discussed, the overall efficiency and reconstruction quality
can likely be improved by developing a more accurate geometric cal-
ibration, utilizing the peripheral microlens image measurements, for
example using a generalized camera model. A more accurate geometric
calibration is also likely going to reduce the observed generalization
gap when applying the proposed reconstruction to real-world data, as
previously discussed. The overall efficiency could also be improved by
using a polar coordinate-based representation of the angular dimension
of the light fields, as discussed by Uhlig and Heizmann [199]. However,
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this would require adaptions of the proposed reconstruction layout, in
particular, a replacement of the standard 2D and 3D convolutions would
be necessary. (For example, 2D polar coordinate convolutions could be
realized via multiplication in the Fourier domain using the 2D polar
coordinate Fourier transform [12].) Furthermore, the decoding would
be independent of the used microlens array layout, i.e. the rectangular
or hexagonal arrangement of the microlenses. As previously noted, the
hexagonal layout requires a resampling step during decoding, which
cannot be performed in the case of coded light fields. Therefore, the
de-hexing could be included in the reconstruction network, requiring
adaptions to account for the hexagonal sampling. Nevertheless, in the
case of a generalized camera model, it is not obvious how to resample
the calibrated raxels onto a regular grid, given the sparse nature of the
coded light field.

Third, with regard to the proposed reconstruction network, it may
be interesting to use the sparsity of the coded input more efficiently.
For example, sparse convolutions, as used in the context of point cloud-
based deep learning, could be investigated. To some extent, spectrally
coded light fields are quite similar to point clouds. In this analogy, the
spectral dimension corresponds to the depth of the points. However,
unlike point clouds, this spatio-spectral space is regularly sampled,which
for point clouds is part of the preprocessing for many approaches (i.e.
the so-called voxelization). Sparse convolutions are then applied to the
sparsely sampled measurements in this voxel space. Analogously, sparse
convolutions could be applied in the sparsely sampled spatio-angular
space. However, it is not straightfoward to include the angular dimension
and further research is required. Recent works also explore the direct
usage of the disparity map in point cloud-based classification [113]. In
this analogy, the disparity map corresponds to the coding mask index
map, indicating which measurement belongs to which spectral channel.
Therefore, it might be an efficient way of incorporating the mask into the
latent representation while feeding the monochromatic projected light
fields as input. However, the analogy breaks down when moving from
classification to the reconstruction of the spectral central view, for which
the analogue in the point cloud case would be more similar to a radiance
field, i.e. densely sampled in the depth.
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Fourth, the proposed training strategy using normalized gradient sim-
ilarity is computationally and memory-intensive since the gradients for
each auxiliary loss have to be calculated. Depending on the size of the
network as well as the number of auxiliary losses, it can have a signif-
icant impact on the training time. For the considered reconstruction,
using the 3D convolutional architecture and four auxiliary losses in total,
the training time was increased by about a factor of two compared to
the naive training. In precursory experiments, gradient subsampling
was investigated, using both static and stochastic subsets of the network
weights to calculate the gradients. Despite showing improvements over
the baseline, the performance gains of the full gradient-based method
were not achieved. To reduce the computational requirements of the pro-
posed training strategy, it is an interesting future investigation to employ
dimensionality reductionmethods, such as binary randomprojections, to
the approach. However, the required (quasi)orthogonal binary random
projections have not yet been investigated in the literature. Furthermore,
by design, current graph-based auto differentiation frameworks such as
TensorFlow or PyTorch do not allow for gradient calculation with respect
to an arbitrary subset of the parameters but only with respect to a full
layer, likely limiting the performance gains in practice.

Finally, it may be interesting to employ implicit neural representations
for the reconstruction. While implicit representations have been previ-
ously discussed within the context of signal representation [180] and
novel view synthesis from sparse observations [137, 143], they have not
been applied to compressive measurement techniques. In this context,
the reconstruction could also be interpreted as a fixed-angle novel view
synthesis from sparse samples in the angular, spatial, and spectral do-
main. In this instance, superresolution would be a “free” byproduct.
While it is likely possible to reconstruct the spectral central view via
implicit representations, it is unclear how the disparity estimation could
be achieved without implicitly representing the full scene geometry. Fur-
thermore, the drawback of these implicit neural representations is that
they do not learn any domain knowledge that could be transferred to
new data, because the representation is always optimized using a single
instance of measurement data.
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As a more general note on light field deep learning, it is possible that
newer architectures outperform the well-established CNN architectures
investigated here. Despite the usefulness of the translational equivariance
of CNNs, Transformermodels were recently adapted for computer vision
tasks. Transformers are based on the core concept of multi-head atten-
tion [205] which was originally developed within the natural language
processing (NLP) community. Here, it has had a tremendous impact
and was quickly adopted by many architectures such as the well-known
BERT [50] (and its derivates) or GPT-3 [24], pushing the state of the
art of many natural language processing tasks. While Transformers are
well suited for sequence models (which is what they were designed for),
their application to images (or other higher-dimensional signals) is not
straightforward. The Vision Transformer architecture [54] was one of the
first to introduce the Transformer concept to image-based tasks. Here, the
input image is first patched into a fixed number of patches, which are sub-
sequently flattened and embedded by a linear layer. The representation
of the input patches is then simply viewed as a sequence of input tokens
analogously to the case in NLP. In the short time since their introduction,
Vision Transformers have already shown exciting results, in particular
in self-supervised scenarios [31]. However, the Transformer approach
has several drawbacks when applied to images. First, the input image
resolution is fixed (as is the patch size). Second, as a consequence of the
patching and flattening, the positional relation between pixels is, to some
extent, lost. While this is alleviated by the positional encoding, which is
a standard procedure for Transformer architectures, the full 2D spatial
relation is not encoded. Finally, Transformer models scale quite badly
with the input size. To be precise, for images of resolution 𝑁×𝑁 the time
andmemory complexity of a Vision Transformer isO(𝑁4) [157]. This has
recently led to image-specific adaptions of the Transformer model such
as the Cross-Covariance Image Transformer [157] which scales linearly
with the (flattened) input dimension, O(𝑁2).

Therefore, as of early 2022, it is likely that Vision Transformers (or other
computer vision-specific Transformer derivatives) are going to gain trac-
tion in computer vision deep learning research. But, as is the case with
all recent developments in deep learning, it is unclear if they are here to
last or simply be superseded by yet another architecture. For example,
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even fully-connected architectures, operating on image patches, have
recently celebrated a comeback to computer vision deep learning [192,
194]. In fact, recent research suggests that the success of Vision Transform-
ers may, at least partially, be attributed to the patching rather than the
multi-head attention [8]. In other vision applications, thewell-established
generative adversarial networks have been outperformed by diffusion
models [51]. Therefore, also in the context of light field deep learning,
newer approaches such as Transformer architectures are likely to fur-
ther push the state of the art, despite the fact that the aforementioned
challenges are even more severe in this high-dimensional case.

Overall, it is an exciting time to observe and contribute to the rapidly
developing field that is computer vision and deep learning.
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A Light Field Camera Depth and
Disparity

In the following, the relationship of disparity and depth in the case of the
used unfocused light field camera is derived. In particular, this applies
to the virtual light field reference camera of the IIIT ray tracer that is
used to render the synthetic light fields presented in this thesis. This
reference camera samples the light field in a fashion corresponding to an
MLA-based light field camera in the unfocused design with a perfectly
aligned MLA and using a thin main lens. In this ideal case, the MLA
corresponds to a virtual sensor sampling the spatial dependence of the
light field with an effective pixel size given by the microlens diameter.
The angular coordinate is sampled by sampling the main lens aperture
with a predefined resolution. For an MLA-based light field camera, this
angular resolution corresponds to the number of pixels underneath each
microlens. The camera parameters, such as the main lens radius 𝑅, the
microlens radius 𝑟, the main lens focal length 𝑓, the focus distance 𝑔,
and the angular resolution 𝑁ang, are predefined by the user. Using these
parameters, the goal is now to convert depth to disparity and vice-versa.

The geometrical construction of the following derivation is illustrated
in Figure A.1. Here, the object 𝐺′ is imaged out-of-focus onto the MLA
plane positioned at the imaging distance 𝑏 from the main lens. Here, 𝑔′
denotes the object distance. The true and virtual image distances are
denoted by 𝑏 and 𝑏′, respectively, and can be obtained via the thin lens
equation, 1𝑓 = 1𝑔 + 1𝑏 , and 1𝑓 = 1𝑔′ + 1𝑏′ . (A.1)

The effective baseline of the camera is denoted by 𝑥 and can be calculated
using the main lens radius and the angular resolution via𝑥 = 2𝑅𝑁ang

, (A.2)
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Figure A.1 Schematic drawing for the derivation of the disparity calculated from the
object depth in the case of an unfocused plenoptic camera.

i.e. the effective baseline corresponds to the sampling period of the main
lens aperture. Now, the disparity Δ can be derived using the intercept
theorem, i.e. one finds the relation−Δ𝑥 = 𝑏 − 𝑏′𝑏′ . (A.3)

Note that here the sign is chosen such that objects in front of the focus
plane, i.e. closer to the camera, have a positive disparity while objects
that are beyond the focal plane have a negative disparity. By inserting
the effective baseline 𝑥, the image distances 𝑏 and 𝑏′ as obtained from
the thin lens equation, and solving for the disparity, one obtainsΔ = − 2𝑅𝑓(𝑔 − 𝑔′)𝑔′(𝑓 − 𝑔)𝑁ang

. (A.4)

Here, the disparity value is still given in the used SI units, e.g. in meters.
To obtain the disparity value in pixels between two subaperture images,
one has to divide by the effective spatial pixel size. As previously noted,
the effective pixel size is given by the microlens diameter 2𝑟, as every
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Figure A.2 Disparity and depth relationship from (A.5) and (A.6) in the case of the camera
parameters that were used to create the synthetic training, validation, and test dataset.

microlens samples one spatial (𝑠, 𝑡) coordinate. Therefore, the disparity𝑑 in px is given by 𝑑 = Δ2𝑟 = − 𝑅𝑓(𝑔 − 𝑔′)𝑟𝑔′(𝑓 − 𝑔)𝑁ang
. (A.5)

In the case 𝑔′ = 𝑔, i.e. for an in-focus object, one directly finds 𝑑 = 0 px,
as expected. Solving (A.5) for the object’s depth 𝑔′, one obtains𝑔′ = 𝑅𝑓𝑔𝑅𝑓 − 𝑟𝑑(𝑓 − 𝑔)𝑁ang

. (A.6)

The depth-from-disparity and disparity-from-depth in the case of the
camera parameters that were used to create the synthetic light field train-
ing, validation, and test data are depicted in Figure A.2. As previously
noted, the disparity has a very high sensitivity (with respect to depth) for
objects that are close to the camera and low sensitivity for objects that are
far away. In fact, for any camera configuration there exists a minimum
disparity that can be achieved with it: From (A.5) one obtains𝑑 𝑔′→∞−−−−→ 𝑑min = 𝑅𝑓𝑟(𝑓 − 𝑔)𝑁ang

. (A.7)

E.g., in the case of the used camera parameters, one finds 𝑑min ≈ −2.72 px.
To validate (A.5), in particular in correspondence with the implemen-

tation of the reference light field camera of the ray tracer, a test scene is
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rendered which is designed to precisely evaluate the imaged disparities.
The scene consists solely of a white plane spanning one quadrant at a
constant distance from the camera. Hence, the central subaperture image
shows a white corner spanning a quarter of the image and is otherwise
black while the adjacent subapertures will image the corner at an offset
corresponding to its disparity. The distance at which the plane is placed
is calculated via (A.6) from a target disparity value. The scene is ren-
dered with a light field resolution of (32, 32, 32, 32, 1) at different depths
calculated from the disparity values −1px, −0.5 px, 0 px, 0.5 px, and 1px.

With this test light field, the image disparity values can be evaluated
using the horizontal and vertical EPIs

E𝑢0𝑠0[𝑣, 𝑡] , and E𝑣0𝑡0[𝑢, 𝑠] . (A.8)

This way, both the horizontal and the vertical epipolar geometry is as-
serted. Here, the angular coordinates 𝑢0 = 16 = 𝑣0 and spatial coor-
dinates 𝑠0 = 8 = 𝑡0 are fixed. As an example, the test light field for a
target disparity of 𝑑 = 1 px is shown in Figure A.3. Note that here, due
to the even number of subapertures per angular dimension, there is no
exact central view. Hence, for the chosen subaperture, the edge of the
plane is imaged onto exactly the middle of the camera pixels. Therefore,
during tracing, rays from both the background as well as the plane are
sampled and the resulting values are averaged, obtaining a value of 0.5
for the edges and 0.25 for the corner. The horizontal and vertical EPIs
for all rendered test scenes are shown in Figure A.4. The results are as
anticipated: For a target disparity of 𝑑 = 0 px, the EPIs show a perfectly
vertical line since all subapertures are identical. On the other hand, in the
case of the target disparities 𝑑 = ±1 px, the EPIs show perfect diagonals
which is expected since every subaperture is shifted by ±1pxwith respect
to its adjacent subaperture. Finally, in the case of the target disparities𝑑 = ±0.5 px, the slope of the resulting line in the EPI is exactly two, as
expected. Concluding, the derived formula (A.5) and its inverse (A.6)
are validated, in particular in combination with the reference light field
camera of the used ray tracer.
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Figure A.3 False-color images of the subapertures I𝑢𝑣 from the central and outermost
angular coordinates of the test light field in the case of a target disparity 𝑑 = 1 px. The
orange lines indicate the sections for the corresponding horizontal and vertical EPIs.
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Figure A.4 False-color images of a horizontal (top) and a vertical (bottom) EPI of the test
light field rendered at different depths with corresponding target disparities 𝑑.
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In order to quantitatively evaluate the performance of the MLA grid
estimation algorithms (cf. Section 4.2.3), appropriate reference data is
needed. Of course, real-world white images, as for example provided
by the Lytro cameras, are unsuited since the actual microlens centers
are unknown. Therefore, reference data has to be synthesized. Previ-
ously, Hog et al. [84] used a simple addition of three 2D cosine waves to
synthesize a white image with known parameters. However, the results
are too crude for a precise evaluation of the estimation algorithms. In
particular, they neither account for natural nor mechanical vignetting
of the main lens and the microlenses. To overcome these shortcomings,
the IIIT-RayTracer [A11] is used to synthesize the reference data. To this
end, the ray tracer was extended by the camera model of the unfocused
plenoptic camera (cf. Figure 4.13) to render a multitude of white im-
ages with precisely known microlens centers. Mechanical vignetting is
implemented using an aperture with variable distance while natural
vignetting is implemented by using the cos4 law and the ray’s incident
angle. Note that systematic, non-rigid deformations of the MLA, e.g. as
considered by Pitts et al. [162], are not explicitly modeled. It is argued that
these irregularities should be eradicated in the manufacturing process of
high-quality MLAs as they introduce irreducible blur in the light field.

B.1 Parameter choice
For the evaluation, all parameters are chosen according to a Lytro Illum
light field camera. That is, a sensor of size 7728×5368 px with a pixel
pitch of 1.4 µm, a resolution of 10 bit, and a gamma factor of 0.4 is used.
The microlenses have an approximate diameter 𝑑 = 20 µm and a fixed
f-number of 𝑓/2, hence an ideal focal length 𝑓 of 40 µm. The microlenses
are arranged in a hexagonal grid with an estimated grid noise standard
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deviation of 0.1% of the microlens diameter, i.e. 𝜎g = 0.0143 px. Unfortu-
nately, it was not possible to find manufacturer specifications on the grid
spacing accuracies so they had to be roughly estimated. The main lens
of the Lytro Illum camera is a zoom lens with a focal length equivalent
of 30 to 250mm. The Lytro Illum camera provides a set of 33 different
white images by default, taken at 10 different zoom settings and differ-
ent focus settings. In order to be able to compare the synthetic results
to actual white images, four main focal lengths are chosen for which
a corresponding white image is provided by the camera. In particular,
the focal lengths 𝐹 of 30mm, 47mm, 117mm, and 249mm are chosen to
fully cover the zoom range of the Lytro Illum camera. For every white
image, three different aperture settings were simulated, ranging from
no mechanical vignetting to strong vignetting, where the object-side
aperture is chosen such that the resulting vignetting effect is visually
comparable with the Lytro white image of the corresponding zoom set-
ting and a focus setting showing the strongest vignetting. The remaining
parameters, such as the grid rotation 𝛼 and offset 𝐨g, were varied to
obtain a collection of different white images in order to increase the sta-
tistical significance of the evaluation. A total of 240 white images were
ray-traced. The synthetic white images were then mosaiced using a Bayer
pattern with color response according to the Lytro Illum camera. Fur-
thermore, Gaussian noise with a standard deviation 𝜎n of four different
levels was added to the white images to investigate the robustness of the
grid estimation algorithms with respect to image noise. Hence, a total of
960 different white images are evaluated. A comparison of a synthesized
and a Lytro Illum white image was previously shown in Figure 4.15. The
synthesized image incorporates all relevant characteristics of the real
one, in particular natural vignetting, which causes off-center brightest
pixels, and mechanical vignetting resulting in the characteristic cat-eye
shape of the projected microlens images close to the sensor edges. The
dataset is made publicly available [A10].

B.2 Evaluation metrics
To quantitatively measure the performance of the grid estimation al-
gorithms, the following quality measures are used. The overall grid
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estimation accuracy 𝑄g is measured by calculating the root mean square
distance of the estimated to true grid points,𝑄g = √√√⎷ 1𝑀 𝑀∑𝑘=1‖ ̂𝐜p𝑘 − 𝐜p𝑘‖2 . (B.1)

Here, 𝑀 denotes the number of grid points in the estimated grid. When
grid noise has been added to the ideal grid points, higher values of 𝑄g
are to be expected. Ideally, one would estimate the perfect regular grid
that the grid points are derived from, i.e.𝚀g, ideal = √√√⎷ 1𝑀 𝑀∑𝑘=1 𝚎2𝑘 = 𝜎𝑔√𝑀√√√⎷ 𝑀∑𝑘=1 (𝚎𝑘𝜎g

)2 ≕ 𝜎𝑔√𝑀 ⋅ 𝚇 , (B.2)

where 𝚎𝑘 ∼ N (0, 𝜎g) and hence 𝚇 is distributed according to the chi dis-
tribution with 𝑀 degrees of freedom. Therefore, one finds the expected
value 𝑄g, ideal ≔ 𝔼[𝚀g, ideal] = 𝜎g ⋅ √ 2𝑀 ⋅ Γ((𝑀 + 1)/2)Γ(𝑀/2) , (B.3)

where Γ denotes the gamma function. Using the identitylim𝑛→∞ Γ(𝑛 + 𝛾)Γ(𝑛)𝑛𝛾 = 1 , for all 𝛾 ∈ ℂ , (B.4)

with 𝑛 = 𝑀/2 and 𝛾 = 1/2, one obtains the approximation𝑄g, ideal ≈ 𝜎g (B.5)

for a large number of detected grid points 𝑀. This is viewed as the
ideal mean grid estimation accuracy. To gain further insight into the grid
estimation performance, the mean absolute difference of estimated to
true grid rotation 𝛼 as well as the mean absolute difference of estimated
to true grid spacing 𝑑, 𝑄s = ∣ ̂𝑑 − 𝑑∣ , (B.6)𝑄r = | ̂𝛼 − 𝛼| , (B.7)

are also calculated. Furthermore, the runtime of each grid estimation
algorithm is measured. The evaluation was carried using eight cores of a
shared computing node utilizing multithreading where possible.

175



B Geometric Calibration Evaluation

101 102
Runtime in s

10−2

10−1

100

101

𝑄 ginp
x

Proposed
Dansereau et al.
Cho et al.
Bok et al.𝐹 ≤ 50mm𝐹 = 117mm𝐹 = 249mm

10−5 10−4 10−3 10−2 10−1𝑄s in px

10−7

10−5

10−3

10−1

𝑄 rin°

Figure B.1 Performance comparison of the different MLA grid estimation algorithms.
The drawn colored lines show the median values of the corresponding datasets. The solid
black lines denote the accuracy requirements as stated in Section 4.2.3.3.

B.3 Results

B.3.1 Grid estimation accuracy
For all 960 white images, a regular grid is estimated with the different
estimation algorithms and the overall grid accuracy 𝑄g as well as the
spacing and rotation accuracies 𝑄s, 𝑄r are calculated using the ground
truth microlens centers and grid parameters. A detailed comparison of
the overall grid estimation performances is shown in Figure B.1. Note
that, since the calibration by Bok et al. [21] does not utilize a regular
grid but the individually detected centers, the grid spacing and rotation
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accuracies 𝑄s, 𝑄r cannot be specified in this case. It can be observed
that only the proposed algorithm satisfies the accuracy requirements
as stated in Section 4.2.3.3. While the algorithm by Dansereau et al. [45]
performs very well in estimating the grid rotation, its spacing estimation
is robust but limited in accuracy, in particular for short main lens focal
lengths. The proposed method outperforms the others in the overall
grid estimation accuracy. The improved accuracy stems from the more
accurate grid spacing estimation while the performance regarding the
rotation accuracy is slightly worse than the algorithm by Dansereau et al.
Still, the rotation estimation is performed with high accuracy of about
0.0001°. Conversely, themethod proposed by Cho et al. [40] does not yield
a robust estimation of the grid spacing and rotation. In terms of the grid
accuracy 𝑄g, the proposed method yields results of about one order of
magnitude better than the other methods while occasionally performing
even two orders of magnitude better. The estimation proposed by Bok
et al. slightly outperforms the well-established one by Dansereau et al.

Even though the proposed method has a longer runtime, with an
average of about 160 s per white image compared to an average of about
75 s in the case of the method by Bok et al. and about 50 s in the case of the
method by Dansereau et al., this is still feasible, as the calibration usually
only has to be executed once per camera configuration. Furthermore, the
runtime will be shorter in practice using a desktop PC with a clock speed
higher than the 2.4GHz of the used server CPU.

Investigating the results in more detail, as shown in Figure B.2, it can
be observed that all methods are insusceptible to image and grid noise.
While the method proposed by Cho et al. and the method by Bok et al.
show a strong dependence on the mechanical vignetting present in the
white image, the proposed method and the method by Dansereau et al.
do not show such a correlation. On the other hand, there seems to be a
strong dependence on the used focal length for all pre-calibration meth-
ods. (To some extent, this is also observable in Figure B.1.) While the
methods by Bok et al., Cho et al., and Dansereau et al. perform increas-
ingly better with larger image distances, the accuracy of the proposed
method decreases. This is further analyzed in Table B.1. Since the scaling
factor 𝜁 of the perspective projection (cf. Section 4.2.3) converges to one
when the image distance increases, the influence of natural vignetting
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Figure B.2 Pearson correlation of the grid estimation accuracy 𝑄g with the different focal
lengths 𝐹, grid noises 𝜎g, image noises 𝜎n and (mechanical) vignetting for the different
grid estimation algorithms.

in the white image decreases. That is, with larger image distances, the
orthogonally projected centers and the perspectively projected centers
coincide. Hence, the methods relying on the local brightness distribu-
tion of every microlens, such as the method by Bok et al. or Dansereau
et al., show an increase in accuracy. On the other hand, the proposed
method shows extremely accurate estimates, close to the expected ideal
mean accuracy 𝑄g, ideal, in the case of a 30mm and 47mm main lens but
a decreasing performance in the case of the 117mm and the 249mm
lens. This is likely due to the characteristics of the mechanical vignetting:
While for shorter main lens focal lengths, the mechanical vignetting only
influences microlenses very close to the sensor edge but with a sharp cut-
off, the vignetting is more spread out in the case of a longer focal length.
Therefore, the proposed algorithm is likely to use a smaller window size
which decreases the estimation accuracy, since the effective resolution
of the Fourier-transformed image is decreased. Nevertheless, the perfor-
mance in those cases is better than the estimation accuracy reached by
Bok et al., Dansereau et al. or Cho et al. Also, using a high-quality main
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Table B.1 Mean grid estimation accuracy for the different algorithms for different image
distances 𝐹 (in mm). All other quantities in pixel.

𝐹 𝜎g = 𝑄g, ideal
𝑄g

Dansereau [45] Cho [40] Bok [21] Proposed

30 0 1.2850 2.4631 0.9724 0.0865
0.0143 1.2855 2.6117 0.9723 0.0881

47 0 1.1323 1.8162 0.7124 0.0498
0.0143 1.1075 1.6608 0.7126 0.0561

117 0 0.9418 2.8216 0.5056 0.1973
0.0143 0.9420 2.8486 0.5057 0.1990

249 0 0.8238 0.6398 0.4339 0.2949
0.0143 0.7613 0.6369 0.4340 0.2913

lens for long focal lengths should mitigate the effects of the mechanical
vignetting and lead to higher estimation accuracies.

Overall, the proposed grid estimation algorithm outperforms the ones
by Dansereau et al. [45], Cho et al. [40], and Bok et al. [21]. As the method
by Cho et al. could not provide reliable results, it is excluded from the
remaining evaluation.

B.3.2 Calibration accuracy
To quantitatively evaluate the influence of the MLA grid estimation
accuracy on the calibration, a Lytro Illum camera, set to a focal length
equivalent of 30mmand focused at infinity, is used. For the full geometric
calibration, two well-established methods that have been proposed in
the literature are used: Namely, the calibration by Dansereau et al. [45],
using corner features in the decoded light fields, and the calibration by
Bok et al. [21], which directly utilizes the raw lenslet images and line
features. Since the different methods rely on different features during
the calibration, different optimized datasets are used for each. While the
calibration by Dansereau et al. profits from many corners being present
in the calibration images (and hence from smaller grid sizes), the method
by Bok et al. performs better with larger grid sizes that show more line
features in the raw lenslet images.
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For the calibration using line features, a dataset containing 10 images
of a checker grid with a baseline of 15.57mm is created. The calibration is
performed using the Matlab code provided by Bok et al. [21], which was
slightly modified to use the individually estimated microlens centers.
Overall, the calibration is performed with the original code, as well as
with the microlens centers estimated using the method by Dansereau
et al. as well as the proposed method.

For the calibration using corner features, a dataset containing 10 images
of a checker grid is created, now with a baseline of 6.23mm. The cali-
bration is performed using the Matlab Light Field Toolbox by Dansereau.
Again, the code was slightly modified such that the different MLA grid
estimations could also be used.

The calibration results are shown in Table B.2 and in more detail in
Figure B.3 in the case of the calibration using line features by Bok et al. The
projection and re-projection RMSEs are calculated across all images and
light field subapertures. Both calibration methods, the calibration using
line features as well as the calibration using corner features, profit from
the improved accuracy of the proposed MLA grid estimation algorithm.
Depending on the used calibration, the overall ray reprojection RMSE
is improved by about 0.02mm to 0.04mm which is an improvement by
about 15 to 20% compared to previous methods. The gain in accuracy is
larger in peripheral subapertures (as shown in Figure B.3). This likely
reflects the more accurate grid spacing estimation leading to a higher
quality in the decoded peripheral subapertures.

Additionally, in the case of the calibration using line features, it is ob-
served that the methods utilizing a regular grid to estimate the microlens
centers (namely the method by Dansereau et al. as well as the proposed
method) result in a higher calibration accuracy than the method by Bok
et al. which uses individual microlens center estimates. To some extent,
this is surprising, as the previous results showed a slightly better mi-
crolens center estimation performance in the case of the algorithm used
by Bok et al. [21]. This suggests two conclusions: First, the microlens
centers are more robustly estimated when approximated by a regular
grid. Estimating a regular grid, a multitude of measurements are fused
to obtain an accurate and robust result. Second, systematic, non-rigid
deformations of the MLA are likely negligible for the Lytro Illum camera.
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Table B.2 Root mean square errors (RMSE) across all subapertures of all calibration
images for the different investigated calibration and grid estimation methods.

Method RMSE

Calibration Grid estimation Re-projection/mm Projection/px
Bok et al. [21] Bok 0.1409 0.4747

Dansereau 0.1263 0.4208
Proposed 0.1118 0.3719

Dansereau et al. [45] Dansereau 0.2583 -
Proposed 0.2196 -
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Figure B.3 Projection RMSE across all calibration images for the different subaperture
indices (𝑢, 𝑣) for the investigated MLA grid estimation algorithms using the calibration
by Bok et al. [21] in the case of a Lytro Illum camera.

These irregularities should well be detected by the algorithm by Bok et al.
which however shows a worse calibration. This reinforces the decision to
not include these deformations in the camera model.

Overall, the proposed pre-calibration method leads to a high accuracy
of the estimated MLA grid parameters, outperforming previously pro-
posed methods. The higher accuracy in turn results in a more accurate
geometric calibration of the light field camera. Nevertheless, the periph-
eral subapertures have a lower accuracy than the central ones, limiting
the performance of subsequent light field applications, such as disparity
estimation. As previously discussed (cf. Section 4.2.4), generic camera
models are therefore likely better suited to further enhance the quality
of the decoded light fields in the case of MLA-based light field cameras.
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C Spectral Light Field Camera
Technical Details

As introduced in Section 4.2.1, the custom-built spectral light field camera
consists of a housing, enclosing a filter wheel, and a Lytro Illum camera.
The camera was designed and developed in cooperation with Stefan
Ziegler and built by his team at IIIT Mechanical Workshop. The core
of the housing is a 8mm thick steel plate to which all vital parts are
directly connected. In particular, a stepper motor is directly connected
to the plate via four bolts. The plate was chosen comparably thick and
heavy, as to maximize its inertia and minimize possible abrupt shaking
when the motor is stepped. The front cover of the housing consists of a
single thin aluminum sheet, which is cut and bent into form. To reduce
stray light, the front cover is black anodized. All metal parts are CNC-
milled with 0.1mm precision. This allows for a tight fit of all components
and a close placement of the camera and the plastic exit aperture, again
minimizing possible stray light. The housing is built to be modular. That
is, the housing can be used with arbitrary cameras. To this end, the
camera’s main lens is fit tightly into a custom plastic enclosure, which
is connected with the main housing. To use a different camera, e.g. a
conventional monochromatic camera, solely a custom lens enclosure and
a small plastic plateau has to be build to level the optical axis with that
of the filter wheel. A front and back view of the computer-aided design
(CAD) model of the camera housing are shown in Figures C.2 and C.3,
respectively.

The filter wheel is flange-mounted onto the stepper motor, which is
controlled by a Raspberry Pi 4. Unlike servo motors, stepper motors do
not offer control over an absolute notion of the angular state of the rotor.
In order to calibrate the orientation of the filter wheel, an off-the-shelf
forked light barrier is positioned at the bottom of the housing. The light
barrier is then used to detect a hole in the filter wheel, which is placed
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directly opposite to the center of the first filter. To reset the position of
the filter wheel, the motor is stepped as long as no event from the light
barrier is detected. Because the used stepper motor offers 200 steps per
rotation (without microstepping), the filter centers have to be located at
integer multiples of 1.8°. Therefore, the 13 filters are each separated by
an angle of 27° resulting in a slightly larger angle of 36° between the last
and the first filter. To reduce abrupt high torque, microstepping is used,
combined with an acceleration and deceleration phase when stepping
the motor.

The spectral bandpass filters are off-the-shelf EdmundOptics Techspec
hard-coated OD 4 interference filters mounted in a 50mm diameter black
aluminum ring. The central wavelengths are spread out across the visible
range, from 400 to 700 nm in 25 nm steps, as discussed previously. The
used motor and motor driver are a NEMA 17 2-phase hybrid stepper
motor with 70N cm holding torque and its according driver. To convert
the 3.3V output level of the Raspberry Pi’s GPIO pins to the 5V input
needed by the motor driver, a level shifter is used, connected to the
3.3V and 5V power supply pins of the Raspberry Pi’s 40-pin connector.
Furthermore, to make the light barrier event detection more robust, high
frequency noise is filtered using a small-capacity capacitor, connected in
parallel to the light barrier’s phototransistor. All electrical components,
besides the light barrier, are soldered onto a small circuit board, which
is incorporated into the housing.

For the Raspberry Pi, the ArchLinux ARM Linux distribution is used.
The backend and frontend of the spectral light field camera control are
written in Python. A full list of the used hardware, the system configu-
ration of the Raspberry Pi, and the Python frontend and backend can
be found in the digital supplement. A schematic drawing of the board
circuit is shown in Figure C.1.

184



C Spectral Light Field Camera Technical Details

3.
3V

G
N
D

G
PI

O
16

G
PI

O
17

G
PI

O
22

G
PI

O
06

G
PI

O
13

G
PI

O
19

G
N
D

3.
3V 5V

40-pin GPIO connector (Raspberry Pi)

50
Ω

St
at
us

LE
D

50
Ω

10
0Ω

10
nF

Li
gh

tb
ar

rie
r

A
1

B1

A
2

B2

A
3

B3

V A
G
N
D

V
B

Le
ve

ls
hi
fte

r

EN
BL

A
+

PU
L

A
–

D
IR

B+ B–
+5

VM
ot
or

dr
iv
er

M

Figure C.1 Schematic drawing of the wiring diagram for the status LED, the light barrier,
and the motor control. The 5V USB power supply of the Raspberry Pi and the 24V power
supply of the motor driver are ommitted for clarity. The shown GPIO pins are the ones
used here, however, they are of course freely configurable.
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Figure C.2 Front view rendering from the CADmodel of the custom-built camera housing.
The CAD model was created by Stefan Ziegler at IIIT Mechanical Workshop.
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Figure C.3 Back view rendering from the CADmodel of the custom-built camera housing.
The CAD model was created by Stefan Ziegler at IIIT Mechanical Workshop.
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