165 research outputs found

    Single and Multi-Metric Trust Management Frameworks for use in Underwater Autonomous Networks

    Get PDF

    Investigating Open Issues in Swarm Intelligence for Mitigating Security Threats in MANET

    Get PDF
    The area of Mobile Adhoc Network (MANET) has being a demanded topic of research for more than a decade because of its attractive communication features associated with various issues. This paper primarily discusses on the security issues, which has been still unsolved after abundant research work. The paper basically stresses on the potential features of Swarm Intelligence (SI) and its associated techniques to mitigate the security issues. Majority of the previous researches based on SI has used Ant Colony Optimization (ACO) or Particle Swarm Optimization (PSO) extensively. Elaborated discussion on SI with respect to trust management, authentication, and attack models are made with support of some of the recent studies done in same area. The paper finally concludes by discussing the open issues and problem identification of the review

    Cooperative Self-Scheduling Secure Routing Protocol for Efficient Communication in MANET

    Get PDF
    In wireless transmission, a Mobile Ad-hoc Network (MANET) contains many mobile nodes that can communicate without needing base stations. Due to the highly dynamic nature of wireless, MANETs face several issues, like malicious nodes making packet loss, high energy consumption, and security. Key challenges include efficient clustering and routing with optimal energy efficiency for Quality of Service (QoS) performance. To combat these issues, this novel presents Cooperative Self-Scheduling Secure Routing Protocol (CoS3RP) for efficient scheduling for proficient packet transmission in MANET. Initially, we used Elite Sparrow Search Algorithm (ESSA) for identifies the Cluster Head (CH) and form clusters. The Multipath Optimal Distance Selection (MODS) technique is used to find the multiple routes for data transmission. Afterward, the proposed CoS3RP transmits the packets based on each node authentication. The proposed method for evaluating and selecting efficient routing and data transfer paths is implemented using the Network simulator (NS2) tool, and the results are compared with other methods. Furthermore, the proposed well performs in routing performance, security, latency and throughput

    Performance Analysis of Routing Protocol Using Trust-Based Hybrid FCRO-AEPO Optimization Techniques

    Get PDF
    Mobile Ad hoc Networks (MANETs) offer numerous benefits and have been used in different applications. MANETs are dynamic peer-to-peer networks that use multi-hop data transfer without the need for-existing infrastructure. Due to their nature, for secure communication of mobile nodes, they need unique security requirements in MANET. In this work, a Hybrid Firefly Cyclic Rider Optimization (FCRO) algorithm is proposed for Cluster Head (CH) selection, it efficiently selects the CH and improves the network efficiency. The Ridge Regression Classification algorithm is presented in this work to sense the malicious nodes in the network and the data is transmitted using trusted Mobile nodes for the QoS enactment metric improvement. A trust-based routing protocol (TBRP) is introduced utilizing the Atom Emperor Penguin Optimization (AEPO) algorithm, it identifies the best-forwarded path to moderate the routing overhead problem in MANET. The planned method is implemented using Matlab software and the presentation metrics are packet delivers ratio, packet loss ratio (PLR), routing overhead, throughput, end-to-end delay (E2ED), transmission delay, energy consumption and network lifetime. The suggested AEPO algorithm is compared with the prevailing PSO-GA, TID-CMGR, and MFFA. The AEPO algorithm’s performance is approximately 1.5%, 3.2%, 2%, 3%, and 4% higher than the existing methods for PLR, packet delivers ratio, throughput, and E2ED and network lifetime. The sender nodes can increase their information transmission rates and reduce delays in appreciation of this evaluation. Additionally, the suggested technique has a perfect benefit in terms of demonstrating the genuine contribution of distinct nodes to trust evaluation (TE)

    RTDSR protocol for channel attacks prevention in mobile ad hoc ambient intelligence home networks

    Get PDF
    In ambient intelligence home networks, attacks can be on the home devices or the communication channel. This paper focuses on the channel attacks prevention by proposing Real Time Dynamic Source Routing (RTDSR) protocol. The protocol adopted the observation based cooperation enforcement in ad hoc networks (oceans) and collaborative reputation mechanism built on Dynamic Source Routing (DSR) protocol. The RTDSR introduced lookup table on the source, destination and intermediate nodes. It also ensures that data path with high reputation are used for data routing and a monitoring watchdog was introduced to ensure that the next node forward the packet properly. The RTDSR protocol was simulated and benchmarked with DSR protocol considering network throughput, average delay, routing overhead and response time as performance metrics. Simulation result revealed a better performance of RTDSR protocol over existing DSR protocol.Keywords: RTDSR, Ambient, Home network, Channel attacks, Protocol, Packet, OPNE

    CRM: a new dynamic cross-layer reputation computation model in wireless networks

    Get PDF
    This is the author accepted manuscript. The final version is available from University Press (OUP) via the DOI in this record.Multi-hop wireless networks (MWNs) have been widely accepted as an indispensable component of next-generation communication systems due to their broad applications and easy deployment without relying on any infrastructure. Although showing huge benefits, MWNs face many security problems, especially the internal multi-layer security threats being one of the most challenging issues. Since most security mechanisms require the cooperation of nodes, characterizing and learning actions of neighboring nodes and the evolution of these actions over time is vital to construct an efficient and robust solution for security-sensitive applications such as social networking, mobile banking, and teleconferencing. In this paper, we propose a new dynamic cross-layer reputation computation model named CRM to dynamically characterize and quantify actions of nodes. CRM couples uncertainty based conventional layered reputation computation model with cross-layer design and multi-level security technology to identify malicious nodes and preserve security against internal multi-layer threats. Simulation results and performance analyses demonstrate that CRM can provide rapid and accurate malicious node identification and management, and implement the security preservation against the internal multi-layer and bad mouthing attacks more effectively and efficiently than existing models.The authors would like to thank anonymous reviewers and editors for their constructive comments. This work is supported by: 1. Changjiang Scholars and Innovative Research Team in University (IRT1078), 2. the Key Program of NSFC-Guangdong Union Foundation (U1135002), 3. National Natural Science Foundation of China (61202390), 4. Fujian Natural Science Foundation:2013J01222, 5. the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications, Ministry of Education)

    Recommendation based trust model with an effective defence scheme for MANETs

    Get PDF
    YesThe reliability of delivering packets through multi-hop intermediate nodes is a significant issue in the mobile ad hoc networks (MANETs). The distributed mobile nodes establish connections to form the MANET, which may include selfish and misbehaving nodes. Recommendation based trust management has been proposed in the literature as a mechanism to filter out the misbehaving nodes while searching for a packet delivery route. However, building a trust model that relies on the recommendations from other nodes in the network is vulnerable to the possible dishonest behaviour, such as bad-mouthing, ballot-stuffing, and collusion, of the recommending nodes. . This paper investigates the problems of attacks posed by misbehaving nodes while propagating recommendations in the existing trust models. We propose a recommendation based trust model with a defence scheme that utilises clustering technique to dynamically filter attacks related to dishonest recommendations within certain time based on number of interactions, compatibility of information and node closeness. The model is empirically tested in several mobile and disconnected topologies in which nodes experience changes in their neighbourhoods and consequently face frequent route changes. The empirical analysis demonstrates robustness and accuracy of the trust model in a dynamic MANET environment
    • …
    corecore