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 Recommendation Based Trust Model with an 
Effective Defence Scheme for MANETs  

Antesar M. Shabut, Keshav P. Dahal, Sanat K. Bista, Irfan U. Awan  

Abstract—The reliability of delivering packets through multi-hop intermediate nodes is a significant issue in the mobile ad hoc 

networks (MANETs). The distributed mobile nodes establish connections to form the MANET, which may include selfish and 

misbehaving nodes. Recommendation based trust management has been proposed in the literature as a mechanism to filter out 

the misbehaving nodes while searching for a packet delivery route. However, building a trust model that relies on the 

recommendations from other nodes in the network is vulnerable to the possible dishonest behaviour, such as bad-mouthing, 

ballot-stuffing, and collusion, of the recommending nodes. . This paper investigates the problems of attacks posed by 

misbehaving nodes while propagating recommendations in the existing trust models. We propose a recommendation based 

trust model with a defence scheme that utilises clustering technique to dynamically filter attacks related to dishonest 

recommendations within certain time based on number of interactions, compatibility of information and node closeness. The 

model is empirically tested in several mobile and disconnected topologies in which nodes experience changes in their 

neighbourhoods and consequently face frequent route changes.  The empirical analysis demonstrates robustness and accuracy 

of the trust model in a dynamic MANET environment. 

Index Terms— Dishonest recommendation, filtering algorithm, mobile ad hoc networks, recommendation attacks, 

recommendation management, Trust management models  

——————————      —————————— 

1 INTRODUCTION

OBILE ad hoc networks (MANETs) are character-
ised by the lack of infrastructure (i.e. pre-existing 

communication backbone) and central authority (such as 
base stations or mobile switching centres) to establish and 
facilitate communication in the network [1]. It is com-
posed of a set of autonomous devices that work as net-
work nodes agreeing to relay packets for each other and 
have dynamic topologies, with resource constraints, and 
limited physical security [2]. MANETs’ applications are 
increasing in future network paradigms including vehicu-
lar and mesh networks.  Many civilian and military ser-
vices are demanding MANET applications, ranging from 
emergency rescue services such as hurricane and earth-
quake disasters to exchanging critical information on the 
battlefield or even home and personal area networking 
[3]. The formation and sustained existence of MANET 
services are mainly based on an individual node’s coop-
eration in packet forwarding. Due to the unique charac-
teristics and demanding use, MANETs are vulnerable to 
attacks launched by misbehaving nodes [2]. One of the 
approved mechanisms to improve security in MANETs is 
to use trust management techniques to deal with the mis-
behaving nodes and stimulate them to cooperate [4].  

Trust as a social concept can be defined as the degree 
of subjective belief about the behaviour of a particular 
entity [5]. Trust is being increasingly adopted as an im-

portant concept to design and analyse security problems 
in distributed systems to guide decision making [6]. Trust 
in MANETs is the opinion held by one node (known as 
evaluating node) about another node (known as evaluat-
ed node), based upon the node’s past behaviour and rec-
ommendations from other nodes (known as recommend-
ing nodes) in the network.  

Existing trust management frameworks for MANETs 
can be categorised into two types. The first establishes 
trust relationships between nodes based on direct interac-
tions only [7, 8]. The second type is based on direct obser-
vations of the node itself and recommendations provided 
by other nodes in the network [9, 10]. The use of recom-
mendation based trust technique can be advantageous to 
nodes in discovering misbehaving nodes prior to interac-
tion, thus avoiding a potential bad experience. Using rec-
ommendations, nodes in MANETs can make more in-
formed decision on the selection of routing path even if 
they did not have any direct interactions in the past [9]. 
Being acquainted with several distant nodes (not neigh-
bours) can be done sending a single packet to them, and it 
could help in saving energy [11].  

Together with the advantages comes the challenge of 
handling dishonest recommendations in MANETs. In 
absence of past interactions, a particular node might not 
be well informed to make an assessment of trustworthi-
ness of another node. In such cases, the evaluating node 
solicits recommendations from the evaluated node's 
neighbours (acquaintances) with whom it has a history of 
interaction. However, to maximise the gain of individual 
and their acquaintances, nodes could resort to dishonest 
behaviours through attacks such as ballot stuffing, bad-
mouthing  or colluding (refer Section 3 for details on at-
tacks). Such attacks could eventually lead to trust frame-
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work malfunction [12].  
Solutions proposed to tackle these problems are lim-

ited and not adequately effective [11-16]. For instance, one 
of the approaches [11] judges the honesty of the recom-
mending node by referring to their trust values. A rec-
ommending node with a high trust value is preferred and 
seen as a trustworthy one. However, a node can be trust-
worthy in terms of packet forwarding but could be a bad 
node as a recommending node. Filtering out dishonest 
recommending nodes becomes a serious problem when 
recommending nodes collude with each other to accom-
plish a malicious goal [17]. This may result in confusing 
and misleading the trust model in judging a nodes’ 
trustworthiness.   

To overcome some of these limitations, this paper pro-
poses a recommendation based trust model with a de-
fence scheme to filter out attacks related to dishonest rec-
ommendations like bad-mouthing, ballot-stuffing, and 
collusion for mobile ad hoc networks.  The recommend-
ing node is chosen based on three factors to check its hon-
esty: number of interactions with the evaluated node, 
unity of view with the evaluating node for solving the 
problem of the scarcity of knowledge, and closeness to 
the evaluating node. Recommendations are accumulated 
over a period of time to ensure the consistency of recom-
mendations provided by a recommending node regard-
ing the evaluated node. Clustering technique is adopted 
to dynamically filter out recommendations between cer-
tain timeframe based on: a). number of interactions (using 
confidence value), b). compatibility of information with 
the evaluated node (through deviation test) and c). close-
ness between the nodes. Different nodes are chosen in the 
evaluation procedure to test the performance of the filter-
ing algorithm against various mobile topologies and 
neighbourhoods. 

2 RELATED WORK 

In recent years, different trust and reputation models 
have been proposed to enhance security in MANETs to 
enable nodes to evaluate their neighbours directly or 
through recommendations from other nodes in the net-
work. Though the proposed models have paid some at-
tention to the problem of dishonest recommendations, 
finding out effective mechanisms to eliminate or mitigate 
the influence is still a challenging problem for MANETs. 

CONFIDANT [18] uses the personal experience mech-
anism to deal with the problem of dishonest recommen-
dation. It applies the deviation test on the received rec-
ommendations and excludes the ones deviating above the 
threshold value. The reputation value of a recommending 
node is updated based on the results from the deviation 
test. The model cannot prevent the dissemination of false 
recommendation and negative recommendation is the 
only information exchanged between nodes [19]. Michi-
ardi and Molva [20] propose CORE model, which only 
accepts positive recommendation by others. Consequent-
ly, this can lead to decreased efficiency of the system be-
cause nodes cannot exchange bad experiences from the 
misbehaving ones in the network. Also, CORE cannot be 
resilient against ballot-stuffing attack as it leaves ways for 

misbehaving nodes to collude and gain unfair high rat-
ings. Wang et al. [21] propose a trust-based incentive 
model for self-policing mobile ad hoc networks to reduce 
the impact of false recommendation on the accuracy of 
trust value. However, the performance of the model is not 
tested against specific attacks such as bad-mouthing. Au-
thors in [22] propose RFSTrust, a trust model based on 
fuzzy recommendation similarity, which is presented to 
quantify and evaluate the trustworthiness of nodes. They 
use similarity theory to evaluate the recommendation 
relationships between nodes. That is, the higher the de-
gree of similarity between the evaluating node and the 
recommending node, the more consistent is the evalua-
tion between the two nodes. In this model, only one type 
of situation is considered when selfish nodes attack is 
present and the performance of the model is not tested 
against other attacks related to recommendation. Soltanali 
et al in [23], propose a model of trust to encourage the 
cooperation between nodes by using direct observation 
and recommendation. This model only accepts the last 
opinion of a node, which is passed to a reputation man-
ager system at the end of each interval. Considering only 
the last opinion is not insightful enough to recognise the 
fluctuation in node’s behaviour, like in on-off attack [12].  
In an attempt to increase the honesty of utilising recom-
mendations, Li et al in [10] include a confidence value in 
their evaluation by combining two values: trust and con-
fidence into a single value called trustworthiness. They 
utilise the trustworthiness value to put weight on recom-
mendations in which a recommending node with higher 
trustworthiness value is given more weight. Collusion 
attack in providing false recommendation is not consid-
ered by this work, and this may cause incorrect evalua-
tion of the received recommendations [5].  Hermes [13] is 
a recommendation based trust model that uses an addi-
tional parameter known as an acceptability threshold (in 
relation to the confidence level). The notion of acceptabil-
ity is used in the computation of recommendation to en-
sure that adequate observations of the behaviour of par-
ticipating node has been obtained. However, the selection 
of acceptability is a trade-off between obtaining more ac-
curate trustworthiness value and the convergence time 
required to obtain it. A recommendation exchange proto-
col (REP) is proposed by Pedro B. et al. [24] to allow 
nodes to send and receive recommendations from neigh-
bouring nodes. It introduces the concept of relationship 
maturity based on how long nodes have known each oth-
er. Recommendations forwarded by long term associates 
are weighed higher than that from short term associates. 
The maturity of relationship is evaluated on the basis of a 
single factor by considering only the duration of relation-
ship. Yu et al. in [25] propose a clustering technique to 
filter out trustworthy recommendations from untrustwor-
thy ones. They follow the majority rule by selecting the 
cluster with the largest number of recommendations as 
trustworthy one. They tested their model against some 
attacks like bad mouthing and ballot stuffing. However, 
majority rule could be ineffective as some nodes can col-
lude to perform an attack, and not provide an honest 
judgment about other nodes.  
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The aforementioned discussion highlights limitations 
of the trust models in their abilities to shield nodes from 
malicious behaviour in the network. It can be seen from 
the literature review that most of the models relied on 
single parameter to compute trustworthiness. To address 
these limitations, a defence scheme is proposed in this 
paper using multiple parameters (as specified in Section 
1) to compute the trustworthiness of recommenders. The 
model underlines the importance of social properties in 
evaluating trustworthiness and uses it in investigating the 
relation between closeness of nodes and similarity in be-
haviour.  The use of proof of time and location, missing in 
the current literature, is considered by the proposed 
model. False negative and false positive problems in 
evaluating the recommendation’s trustworthiness and 
their impact on the network performance are thoroughly 
investigated. 

3 ATTACKS RELATED TO RECOMMENDATION 

MANAGEMENT IN TRUST AND REPUTATION 

FRAMEWORKS 

It is indeed a challenge to safe guard a network against 
wide range of attacks. Recent focus of research in this area 
has been on the problems associated with misbehaving 
nodes in the context of packet forwarding, like blackhole 
or wormhole attack [26]. For quality assurance, it is im-
portant that trust management frameworks be resilient to 
attacks [10]. Although several research have put consid-
erable effort to protect the propagation and aggregation 
of recommendations in a trust model, research is still in 
its early stages [12]. The following attacks, namely, bad 
mouthing attack, ballot stuffing attack, selective misbe-
haviour attack, intelligent behaviour attack, time-
dependent attack and location-dependent attack (see Fig. 
1 for the classification of attacks), are targeted at the 
propagation and aggregation of recommendation [10, 12, 
27]. Location-dependent attack is used for the first time in 
this paper. The attack behaviours are summarised below:  
 Bad Mouthing Attack (BMA). In this type of attack, con-

spiring nodes propagate unfairly negative ratings of 
good nodes with an ill intent to tarnish their reputa-
tion in the network. Such collusive behaviour may 
lead to the blocking of valid paths in the network by 
confusing the trust and reputation management 
mechanism.  

 Ballot Stuffing Attack (BSA). Propagation of unfairly 
positive ratings for some poorly performing nodes by 
collusive nodes in the network lead to ballot stuffing 
attack. The intention of collusive nodes is to mislead 
the trust mechanism and cause it to malfunction in ac-
curately reporting the trustworthiness of assessed 
node. 

 Selective Misbehaviour Attack (SMA). This attack victim-
ises some trusted nodes by propagating false ratings 
for them, while at the same time acting normal to oth-
er nodes. This type of behaviour can be very difficult 
to detect for the trust mechanism. 

 Intelligent Behaviour Attack (IBA). This attack selective-
ly provides recommendation with high or low ratings 

according to the trust threshold. This kind of attack 
can cause malfunction to the trust framework by dy-
namically responding to trust threshold and behaving 
based on it.  

 Time-dependent Attack (TDA). This attack makes partic-
ipating nodes to change their behaviour by time. 
Nodes can behave normally for a period of time and 
can misbehave by providing unfair ratings at other 
times. This attack also has its roots in the subjective 
property of trust.   

 Location-dependent Attack (LDA). This attack exploits 
mobility property of MANETs, where a node behaves 
differently according to its location. This attack origi-
nates from the subjective property of trust where be-
haviours at one location cannot affect evaluating 
trustworthiness of nodes at another location.  

   The summarised attacks belong to two categories: false 
rating (BMA, BSA, and SMA), and inconsistent rating 
based on the trust threshold, time, or location (IBA, TDA, 
and LDA). Some of the countermeasures illustrated below 
can be used for both categories or being specifically de-
signed for one category. For example, [20] proposes the 
use of only positive recommendations, while [18]  uses 
only negative recommendations and this can counter-
measure attacks like ballot stuffing and bad mouthing. 
This kind of defence can be harmful to trust information 
because nodes cannot report their complete experiences. 
Statistical methods like Bayesian theory to accurately 
compute the correctness of recommendations can be a 
proper solution to both categories [27]. Proof of sufficient 
interactions [13], and specifying a certain threshold of 
negative and positive recommendation, besides, the ma-
jority opinion technique [25] could also be used to miti-
gate the effect of false and inconsistent rating.  Compari-
son between recommendation list and proof of time and 
location of the recommendation provider is also a promis-
ing solution to time and location-dependent attacks. , The 
method of comparing time and location is considered first 
time in the proposed algorithm. 

What follows from above discussion is that the rec-
ommending nodes' trustworthiness cannot be assessed by 
just a single scheme. It should be supported by using 
many behaviour and social properties (such as, the close-
ness between nodes, and proof of time and location) 
which are missed in the illustrated literature. In order to 
improve accuracy and robustness of the trust model, the 
influence of the untrustworthy recommendations should 
be mitigated to overcome the problem of false negative 
and false positive. 

4 THE PROPOSED MODEL 

We propose a recommendation-based trust management 

model to secure the routing protocol between source and 

destination nodes based on the trust value of each node in 

the path. The model considers the problem of the attacks 

discussed earlier due to some misbehaving nodes in 

MANETs. We make use of a Bayesian statistical approach 

similar to that used in [28] for computing trust values 
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based on the assumption that they follow a beta probabil-

ity distribution. Beta distribution is estimated by using 

two parameters (𝛼, 𝛽). They can be calculated by accumu-

lating observations of forwarding and dropping packets 

where 𝛼 represents the accumulation of positive observa-

tions (forwarded packets) and 𝛽 represents the accumula-

tion of negative observations (dropped packets). The beta 

distribution can be defined by gamma function as shown 

in Eq. (1). 

 

𝑓(𝑝|𝛼, 𝛽) =  
(𝛼+𝛽)

(𝛼)(𝛽)
 𝑝𝛼−1 (1 − 𝑝)𝛽−1   (1)   

where 0 ≤  𝑝 ≤ 1;  𝛼, 𝛽 > 0 with a condition that 𝑝 ≠

 0 if 𝛼 < 1 𝑎𝑛𝑑 𝑝 ≠ 1 𝑖𝑓 𝛽 < 1.  

Nodes in the network observe each other’s behaviour 

in order to construct a trust relationship representing the 

degree of trustworthiness one node can put on another. 

These relationships are useful to help nodes decide 

whether to forward packets to a specific neighbour or not. 

In the proposed model, an initial trust relationship is es-

tablished between two nodes 𝑖 and 𝑗 as (𝛼𝑖𝑗 , 𝛽𝑖𝑗) at time 𝑡, 

where 𝛼𝑖𝑗 denotes the positive interactions observed by 

node 𝑖 about node 𝑗, and 𝛽𝑖𝑗 denotes the negative interac-

tions observed by node 𝑖 about 𝑗. At time 𝑡 = 0, we start 

with  𝛼𝑖𝑗 =  𝛽𝑖𝑗 =  1, which indicates the initial belief held 

by node 𝑖 about  𝑗. This value is translated into complete 

uncertainty about the distribution of the parameter which 

means no observation or evidence has been collected. If 

the estimated positive and negative interactions between 

two nodes 𝑖 and 𝑗 are denoted as 𝜌 and 𝑛 respective-

ly,  𝛼𝑖𝑗  and 𝛽𝑖𝑗 would be calculated as  𝛼𝑖𝑗  = 𝜌 + 1 and 𝛽𝑖𝑗  = 

𝑛+ 1 where 𝜌 and 𝑛 ≥ 0. After each observation, the trust 

metric can be computed and updated from these parame-

ters as the expectation of beta distribution given by 
𝛼𝑖𝑗

𝛼𝑖𝑗+ 𝛽𝑖𝑗
. 

The proposed trust model uses clustering technique in 

order to maximise the consistency of receiving recom-

mendations. For example, recommendations from a mis-

behaving node can have a range of multiple different rat-

ings for the evaluated node. These ratings may be incon-

sistent in which they can differ from each other in a short 

period of time, a malicious act of the misbehaving node to 

confuse the trust model. Dynamic clustering of the rec-

ommendations over a period of time can filter out deviat-

ed ratings from the list of recommendations, thus de-

creasing the influence of false estimations in computing 

trust value. The proposed model clusters recommenda-

tions based on three different criteria: (a) number of inter-

actions by the means of using confidence value, (b) com-

patibility of information with the evaluated node by the 

means of deviation test, and (c) closeness between these 

nodes. The use of multiple criteria to judge whether a 

node is dishonest can mitigate the influence of false nega-

tive and false positive ratings.  

The model has three components deployed to evaluate 

trust: (a) Trust Computation Component that uses direct as 

well as indirect (second hand) trust information. (b)  Rec-

ommendation Manager Component that requests and gathers 

recommendations for a node from a list of recommending 

nodes, and (c) Cluster Manager Component which filters 

out dishonest recommendations from the list and sends 

out a list of trustworthy recommendations to  the manag-

er component. Fig.2 shows the model’s components

 

Fig. 1. Attacks Related to Misbehaviour Problems in Recommendation Management of Trust and Reputation Frameworks
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and their interaction process. The recommendation man-

ager and cluster manager components are described in 

section 5. 

The trust computation component obtains direct trust 

value from two nodes that have already initiated a trust 

relationship. These two nodes can continue to interact 

with each other at least for a period of time they are with-

in the range. Direct trust value is considered to be accu-

rate and its computation invulnerable to dishonest rec-

ommendations. Direct trust value 𝑇𝑖𝑗
𝑑 of node 𝑖 about 𝑗 is 

calculated as in Eq. (2).  

 

𝑇𝑖𝑗
𝑑 =

𝛼𝑖𝑗

𝛼𝑖𝑗 +  𝛽𝑖𝑗

                    (2) 

Influence of past experiences change over time in a 

dynamic environment. It is thus important for a trust 

model to consider this change in influence. The proposed 

model incorporates a decay factor (µ) to gradually de-

crease the influence of past experience over time, prior to 

the aggregation with new trust values. Forgetting of past 

experiences is carried out by adjusting the time frame of 

observations while recording the positive or negative ex-

perience. However, trust decays over time even during 

inactivity periods and it is thus important to consider the 

diminishing impact of trust over the time. The first situa-

tion is when a node observes an additional new positive 

or negative interaction between time 𝑡𝑖 and 𝑡𝑖+1 denoted 

as 𝜌𝑛𝑒𝑤 and 𝑛𝑛𝑒𝑤 , then the updated 𝜌 and 𝑛 should be 

reduced by the decay factor µ before merging them with 

the new values. Therefore, at time 𝑡𝑖+1, 𝜌 and 𝑛 is updated 

respectively according to the formula in Eq. (3). 

 
𝜌 = 𝜌𝑜𝑙𝑑 ∗  µ + 𝜌𝑛𝑒𝑤   ,   𝑛 =  𝑛𝑜𝑙𝑑 ∗  µ +  𝑛𝑛𝑒𝑤       (3) 

where 0 ≤  µ ≤ 1, 𝜌𝑜𝑙𝑑 and 𝑛𝑜𝑙𝑑 are the old positive and 

negative experiences observed by the node. The second 

situation is when there is no observed new positive and 

negative interaction between time 𝑡𝑖 and 𝑡𝑖+1, then, at time 

𝑡𝑖+1, 𝜌 and 𝑛 is updated respectively as in Eq. (4). 

 

𝜌 = 𝜌𝑜𝑙𝑑 ∗  µ  ,   𝑛 =  𝑛𝑜𝑙𝑑 ∗  µ       (4) 

Indirect trust needs to be considered, when two nodes 

have not established a previous trust relationship through 

exchange of packets or any other form of communication. 

In such case, the evaluating node doesn’t have enough 

experience to judge the trustworthiness of the other node 

being evaluated. Indirect trust is also calculated using the 

beta-function, similarly as the direct trust was computed 

earlier. Indirect trust is actually the direct observations 

obtained by one node about its neighbours which can be 

used by another node as second-hand information. We 

can say that node  𝑘’s direct observations of node 𝑗 could 

be indirect or second hand information to another node  𝑖 

(given that node i and j have not interacted in the past). 

Therefore, indirect trust value is calculated using (𝛼𝑖𝑗
′ , 𝛽𝑖𝑗

′ ) 

and updated by two variables: 𝜌’, describing the number 

of positive interactions, and 𝑛’, describing the number of 

negative interactions. Further, 𝛼𝑖𝑗
′  and  𝛽𝑖𝑗

′  are calculated 

as 𝛼𝑖𝑗
′  =  𝛼𝑖𝑗

′  +  𝜌′ and 𝛽𝑖𝑗
′  =  𝛽𝑖𝑗

′  +  𝑛′ . If the evaluating 

node 𝑖 receives 𝛮 recommendations for the evaluated 

node 𝑗 denoted by 𝑘 =  1, 2, … , 𝛮, indirect trust 𝑇𝑖𝑗
𝑖  of 

node 𝑖 about 𝑗 is calculated according to the Eq. (5).  

 

 
Fig. 2. Recommendation-based trust model components 
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𝑇𝑖𝑗
𝑖 =  ∑

𝛼𝑘𝑗
′

𝛼𝑘𝑗
′ +  𝛽𝑘𝑗

′

𝑁

𝑘=1

            (5) 

While indirect trust information is important to incor-

porate in a trust model for MANETs, involving this kind 

of information can be vulnerable to intentionally generat-

ed dishonest recommendations. 

For each node in the network, trust value 𝑇𝑖𝑗 is calcu-

lated by combining both direct and indirect trust values 

with different weights denoted by 𝑤𝑑  and  𝑤𝑖  respectively.  

𝑇𝑖𝑗 is computed according to Eq. (6). 

 

 𝑇𝑖𝑗 =  𝑤𝑑 ∗  𝑇𝑖𝑗
𝑑 +  𝑤𝑖 ∗  𝑇𝑖𝑗

𝑖        (6) 

where 𝑤𝑑 +  𝑤𝑖 = 1. The weights are used because of their 

significant impact on diminishing the possibility of wrong 

trustworthiness evaluation of direct and indirect trust 

information by nodes.  In most of existing models, higher 

weight is usually given to the direct information as it is 

less prone to dishonest recommendation. However, MA-

NETs’ characteristics such as mobility and frequent 

change in topology make it difficult to completely trust 

the source of information even if it is the nodes self-

assessment. The weight in this model is dynamically cal-

culated based on the quantity and quality of interactions 

observed by evaluating nodes. If the evaluating node has 

enough experience about the evaluated node and the 

evaluated node is not compromised or prone to any envi-

ronmental conditions (e.g. node failure, or low energy 

level), it is given equal or more weight than indirect in-

formation. While, if the evaluating node is not able to 

judge the trustworthiness of the evaluated node, more 

weight is given to the indirect trust.      

5 CLUSTER-BASED RECOMMENDATION FILTERING  

This section analyses the functionalities of recommenda-

tion and cluster manager components and shows how 

they work together to filter out untrustworthy recom-

mendations. The proposed filtering technique takes into 

consideration the dynamic characteristics of MANETs 

that change over time. The honesty of recommending 

nodes is evaluated over a period of time to mitigate the 

influence of bad behaviour of the same node over time. 

Fig. 3 shows the dynamic topology of MANETs. Consider 

that, a node 𝑖 wants to evaluate another node 𝑗 by re-

questing recommendations from its neighbours. The 

evaluating node 𝑖 receives a list of recommending nodes 

referred as {𝑘1, 𝑘2, 𝑘3, … , 𝑘𝛮). At time 𝑡𝑖 (refer Fig. 3(a)), the 

location and number of recommending nodes differ from 

the recommending nodes at time 𝑡𝑖+1 as shown in Fig. 

3(b).  

Recommendation manager in the proposed model 

works as an intermediate component between indirect 

trust computation and cluster manager components.  It 

helps in detecting and eliminating false recommenda-

tions. Recommendation manager has three important 

roles: (1) send recommendation request to the evaluating 

node’s neighbours; (2) collect received recommendation 

and send it to the cluster manger which runs the filtering 

procedure; (3) receive the filtered recommendation and 

send it back to the trust computation component. Rec-

ommendation manager requests and gathers recommen-

dation list for an evaluating node 𝑖 about node 𝑗 from a 

list of recommending nodes {𝑘1, 𝑘2, 𝑘3, … . , 𝑘𝑁} between 

time 𝑡𝑖 and 𝑡𝑖+1and send it to the cluster manager to run 

the filtering algorithm. After filtering, it receives the 

trustworthy clusters as a list of honest recommendations 

denoted as {𝑘1
𝑇𝑟 , 𝑘2

𝑇𝑟 , 𝑘3
𝑇𝑟 , … , 𝑘𝛮

𝑇𝑟}. The final task is to send 

the trustworthy cluster 𝐶𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 to the requesting 

node. Algorithm 1 illustrates the recommendation man-

ager algorithm. 

 

 

Fig. 3. Recommendation by time 
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Algorithm 1: Recommendation Manager Algorithm 

1. For each recommendation request Do 

2.   Send request to neighbours 

3.   Collect received recommendations 

4.   Construct 𝐿 = {𝑘1, 𝑘2, 𝑘3, … , 𝑘𝛮} 

5.   Send 𝐿 to the cluster manager for processing 

6.   Receive trustworthy cluster 𝐶𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 = {𝑘1
𝑇𝑟, 𝑘2

𝑇𝑟 , 𝑘3
𝑇𝑟 , … , 𝑘𝛮

𝑇𝑟} 

7.   Send 𝐶𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 to the requesting node 

8. End For 

 

Nodes are clustered based on three values, namely: 

confidence value, deviation value, and closeness value. The 

following subsections will explain these values and give 

an overview of the clustering process and its algorithm. 

 

A. Confidence Value 𝑉𝑖𝑘
𝑐𝑜𝑛𝑓

 

The notion of confidence was introduced in [29] where 

confidence value and trust value are  combined together 

to derive a single trustworthiness value of a node. Follow-

ing that, trust models in [10, 13, 30] have also considered 

the confidence value as a desired parameter to achieve a 

single trust value to represent the trustworthiness of 

nodes. Confidence value can be used to solve the problem 

of short-term and long-term observations. That is, nodes 

may have the same level of trust with different number of 

observations. For example, the trust value of a node at the 

initial time with 𝛼 =  𝛽 = 1 is 0.5, and after a sequence of 

positive and negative interactions in which 𝛼 =  𝛽 = 50, 

the node has the same trust value of 0.5 about the evalu-

ated node (see Table 1 for more information). Confidence 

value starts from 0 in case of no observations between 

nodes and increases gradually with the number of rec-

orded observations. Relying only on the trust value can 

raise the problem of short-term and long-term observa-

tions. Nodes in the network can have nearly the same 

level of trust though they may have different levels of 

observations. Consequently, this can lead to wrong esti-

mation in judging the ability of nodes to be honest rec-

ommending node.  

The proposed filtering algorithm clusters recommend-

ing nodes based on the level of confidence for two rea-

sons. Firstly, the nodes with higher confidence value 

(those having sufficient interactions with evaluated node) 

are desirable because the higher number of interactions 

will offer rich information that would help in choosing 

better recommending nodes. Secondly, the recommend-

ing nodes with very high confidence value in the early 

rounds in the network (when there are no enough interac-

tions) are more likely to be attackers. Consequently, it 

may lead to exclusion of dishonest nodes from the rec-

ommendations list in early stages. The confidence value is 

computed as the variance of the beta distribution with 

some modifications as in [10] and [13]. Nodes use the con-

fidence value to make a correct decision about the trust-

worthiness of recommending nodes taking into account 

the number of observations accumulated by each node. 

Suppose that 𝑖 is an evaluating node that received rec-

ommendations from a recommending node 𝑘, confidence 

value 𝑉𝑖𝑘
𝑐𝑜𝑛𝑓

 is calculated as in Eq. (7).  

 

𝑉𝑖𝑘
𝑐𝑜𝑛𝑓

=  1 −  √12𝜎𝑖𝑘 

 

𝑉𝑖𝑘
𝑐𝑜𝑛𝑓

= 1 − √
12 𝛼𝑖𝑘𝛽𝑖𝑘

(𝛼𝑖𝑘 +  𝛽𝑖𝑘)2(𝛼𝑖𝑘 + 𝛽𝑖𝑘 + 1)
       (7) 

 

where  𝜎𝑖𝑘 is the beta distribuation varience between 𝑖 and 

𝑘, 𝛼𝑖𝑘 and 𝛽𝑖𝑘 is the accumulated positive and negative 

interactions between 𝑖 and 𝑘. 

   Using this formula the value of confidence falls be-

tween the interval of [0, 1], where 0 means that no pre-

vious interactions are recorded between the evaluating 

and evaluated node while 1 means complete confi-

dence in the evaluated node. The rational of using and 

computing the confidence value is shown in Fig. 4. We 

compare the confidence value computed using the 

 

TABLE 1. LEVELS OF CONFIDENCE FOR THE PROPOSED MODEL AND TMUC MODEL WITH THE SAME TRUST LEVELS 

 

 

 

 

 

 

 

 

 

 

 

 

α β s f Trust value 
Confidence value 
(proposed model) 

Confidence value 
(TMUC model) 

1 1 0 0 0.5 0 0.916666667 

5 2 4 1 0.714285714 0.446716665 0.974489796 

10 4 9 3 0.714285714 0.595938982 0.986394558 

15 6 14 5 0.714285714 0.666357595 0.990723562 

20 8 19 7 0.714285714 0.709401356 0.992962702 

25 10 24 9 0.714285714 0.739179735 0.994331066 

30 12 29 11 0.714285714 0.761351694 0.995253916 

35 14 34 13 0.714285714 0.778686666 0.995918367 

40 16 39 15 0.714285714 0.792721071 0.996419620 

45 18 44 17 0.714285714 0.804384801 0.996811224 

50 20 49 19 0.714285714 0.814277976 0.997125611 
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proposed method with that in [31] (we call it TMUC for 

short), which computes the confidence value using only 

the standard deviation.  The proposed computation 

method of confidence value can effectively reflect the 

knowledge held by nodes based on the number of interac-

tions better than the calculation in TMUC. For example, 

when 𝛼 =  𝛽 = 1 which means there is no previous inter-

action between two nodes, the proposed method of com-

puting confidence value is 0 while in TMUC, it is nearly 

0.91 which is a high value close to 1. Starting with high 

confidence value in case of no interactions can confuse the 

trust mechanism and prevent it from making good 

judgement about behaviour of the evaluated node. Table 1 

shows the values of positive and negative interactions 

and the confidence value for each level of interaction for 

both the proposed model and the work in TMUC. Fig. 4 

explains the relationship between interactions and the 

level of confidence when the trust levels are the same.   

From Fig. 4, it can be seen that the proposed method of 

computing confidence offers a better range for the confi-

dence value as compared to that by TMUC. This variation 

reflects better accumulated interactions when the trust 

values (refer Table 1) are same. When there are no interac-

tions, confidence value from the proposed model is 0 and 

it progresses with the increasing number of interactions. 

Whereas with TMUC, the confidence value is already at 

0.91 in case of no interactions and thus is nearly at satura-

tion level when number of interactions more than 19.  

 

B.  Deviation Value 𝑉𝑖𝑗
𝑑𝑒𝑣 

Deviation value represents to what extent the received 

recommendation is compatible with the personal experi-

 

Fig. 4. Relationships between Interactions and Confidence for the 
proposed model and TMUC model 

ence of evaluating node. This value has been used by the 

means of the deviation test in [18] to ensure the unity of 

view with the receiving node. Each node compares re-

ceived recommendation with its own first-hand infor-

mation and accepts only those not deviating too much 

from self-observations. In the proposed model the devia-

tion value is used as an additional parameter in the clus-

tering algorithm to filter out any recommendations devi-

ating beyond a predefined deviation threshold. A prob-

lem that could arise here is when the evaluating node 

lacks historical information for interactions with the eval-

uated node, thus not providing a base value for compari-

son. In order to overcome this problem, the proposed 

method compares the confidence level of the evaluating 

node with that of the recommending node. The confi-

dence value is calculated using Eq.(7). The deviation test 

is only applied if both nodes have similar level of confi-

dence.  Assume that there are three nodes (𝑖, 𝑗 and 𝑘), and 

node 𝑖 attempts to calculate the trust value of its neigh-

bour node 𝑗 using recommendation provided by node 𝑘. 

In this scenario, node 𝑖 first compares its confidence level 

which denoted as 𝐶𝑜𝑛𝑓_𝐿𝑒𝑣𝑒𝑙 with the recommending 

node as in Eq. (8). If the confidence difference is less than 

a threshold value denoted as 𝐶𝑜𝑛𝑓𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then node 𝑖 

calculates the deviation value as a difference between the 

receiving recommendation and direct observations of the 

evaluated node as held by the evaluating node as in 

Eq.(9). The resulting value is compared to a predefined 

deviation threshold 𝑑 and we exclude any recommenda-

tions that differ widely from the evaluating node’s own 

information.  

 

𝐶𝑜𝑛𝑓_𝐿𝑒𝑣𝑒𝑙 =  |𝐶𝑉𝑖𝑗 −  𝐶𝑉𝑘𝑗| ≤ 𝐶𝑜𝑛𝑓_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑      (8) 

 

where  𝐶𝑉𝑖𝑗  is the confidence value of 𝑖 about 𝑗, and 𝐶𝑉𝑘𝑗  

is the confidence value of 𝑘 about 𝑗. If the Eq. (8) is suc-

cessful, deviation value 𝑉𝑖𝑗
𝑑𝑒𝑣 is calculated as follows. 

 

𝑉𝑖𝑗
𝑑𝑒𝑣 =  |𝑇𝑖𝑗

𝑑 −  𝑇𝑘𝑗
𝑟 | ≤ 𝑑𝑑𝑒𝑣      (9) 

 

where 𝑇𝑖𝑗
𝑑 is the direct trust value of 𝑖 about 𝑗, and 𝑇𝑘𝑗

𝑟  is 

the received trust value of 𝑘 about 𝑗. 

 

C.  Closeness Centrality Value 𝑉𝑖𝑗
𝑐𝑙𝑜𝑠𝑒  

Trust is a social concept and it is thus possible to apply 

the perceptions of social life in trust computation and 

recommendation propagation. An interesting direction 

of trust research in MANETs is to utilise social relation-

ships in evaluating trust among nodes in a group set-

ting by employing the concept of social structures [5]. 

The proposed model uses the concept of closeness cen-

trality between the evaluating nodes and the recom-

mending node from the social trust.  Closeness centrali-

ty [32] measures the distance between the evaluated 

node and the recommending node in terms of  physical 

distance, number of hops, or delays. In the proposed  

model closeness centrality is a measure of the distance 

between the evaluating node and the recommending 

node. The use of the closeness centrality enhances the 

filtering algorithm as close nodes are likely to possess 

0

0.2

0.4

0.6

0.8

1

1.2

0 5 12 19 26 33 40 47 54 61 68

C
o
n

fi
d

en
ce

 V
al

u
e 

 

Number of Interactions 

The Proposed Model

TMUC Model



SHABUT ET AL.:  A RECOMMENDATION BASED TRUST MODEL IN MANETS WITH AN EFFECTIVE DEFENCE SCHEME FOR FILTERING OUT DISHON-

EST NODES 9 

 

same nature and counter nearly same environmental and 

operational conditions over a period of time in the net-

work. Furthermore, close friends may have more interac-

tions in the time of friendship. Consequently, trust values 

for the close neighbours converge to nearly same level. 

This may help in recognising the untrustworthy recom-

mending node whose recommendation is much different 

from the close recommending nodes. Closeness value 

𝑉𝑖𝑗
𝑐𝑙𝑜𝑠𝑒 refers to the degree of node 𝑖’s closeness to a rec-

ommending node 𝑘 at time 𝑡 and is calculated by Eq. (10). 

 

 𝑉𝑖𝑘
𝑐𝑙𝑜𝑠𝑒 =  √(𝑥𝑖

𝑙𝑜𝑐 − 𝑥𝑘
𝑙𝑜𝑐)2 + (𝑦𝑖

𝑙𝑜𝑐 − 𝑦𝑘
𝑙𝑜𝑐)2   ≤  𝑑𝑑𝑖𝑠       (10) 

 
where (𝑥𝑖

𝑙𝑜𝑐, 𝑦𝑖
𝑙𝑜𝑐), (𝑥𝑘

𝑙𝑜𝑐, 𝑦𝑘
𝑙𝑜𝑐) are the positions of node 𝑖 

and node 𝑘 at time 𝑡 and 𝑑𝑑𝑖𝑠 is a predefined distance 
threshold between node 𝑖 and node 𝑘 which should be 
less than the transmission range. 

  

D.  Cluster procedure 

The cluster manager in the proposed model receives a list 

of recommendations from the recommendation manager 

and processes it using a clustering technique. The cluster-

ing algorithm is run by the evaluating node on all the rec-

ommendations in the list 𝐿 = {𝑘1, 𝑘2, 𝑘3, … , 𝑘𝑛}. A vector of 

three values (𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

, 𝑉𝑖𝑗
𝑑𝑒𝑣 , 𝑉𝑖𝑗

𝑐𝑙𝑜𝑠𝑒) is provided by a recom-

mending node for the clustering operation. The clustering 

algorithm divides the vectors from the recommending 

nodes into a predefined number of clusters denoted as K. 

Initially each vector is considered as a cluster, and then 

two clusters with the shortest Euclidean distance are 

merged together to produce a new cluster. The clustering 

process is repeated by merging two clusters from the pre-

vious iteration until the predefined number of clusters K 

is reached. The first step of the clustering process aims to 

merge vectors with the closest similarity. In the second 

step, it selects the trustworthy clusters if all the recom-

mending nodes in a specified cluster satisfy the following 

rules: 

𝐶𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 = {

   𝑅𝑖𝑗

𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑡ℎ𝑦
 𝑖𝑓 (𝑉

𝑖𝑗
𝑐𝑜𝑛𝑓 ≥  𝑑𝑚𝑖𝑛

𝑐𝑜𝑛𝑓
) and (𝑉𝑖𝑗

𝑐𝑜𝑛𝑓
≤  𝑑𝑚𝑎𝑥

𝑐𝑜𝑛𝑓)

                        𝑖𝑓   (𝑉
𝑖𝑗
𝑑𝑒𝑣  ≤   𝑑𝑑𝑒𝑣) and (𝑉𝑖𝑗

𝑐𝑙𝑜𝑠𝑒 ≤  𝑑𝑑𝑖𝑠) 

𝑅𝑖𝑗

𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦
                                                  𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 

 

where  Rij
Trustwothy

 is the trustworthy recommendation,  

Rij
Untrustworthy

 is the untrustworthy recommendation,  dmin
conf 

is the minmum confidence threshold,  dmax
conf is the maxi-

mum confidence threshold. 

The next step is to apply majority rule to select the 

cluster with largest number of members. In the final step, 

trustworthy clusters are returned to the recommendation 

manager and to the evaluating node to update its indirect 

trust of the evaluated node. The proposed cluster process 

works as shown in Algorithm 2. 

 

Algorithm 2: Cluster Manager Algorithm 

1.   For each recommendation list 𝐿 Do 

2.      For each rating vector in the list (𝛼𝑟 , 𝛽𝑟) Do   

3.         Calculate confidence value 𝑉𝑖𝑗
𝑐𝑜𝑛𝑓 as in Equ. 7 

4.         Calculate deviation value 𝑉𝑖𝑗
𝑑𝑒𝑣 as in Equ. 8, 9 

5.         Calculate closeness value 𝑉𝑖𝑗
𝑐𝑙𝑜𝑠𝑒 as in Equ. 10 

6.         Construct data vector as (𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

, 𝑉𝑖𝑗
𝑑𝑒𝑣, 𝑉𝑖𝑗

𝑐𝑙𝑜𝑠𝑒)   

7.      End For 

8.      Initialize each vector as a unique cluster 

9.      Repeat  

10.        For each vector Do 

11.           Merge two clusters with the shortest Euclidean distance 

12.        End For 

13.    Until number of clusters = 𝐾  

14.    For each cluster that appeared in the previous iteration Do 

15.       If (𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

≥  𝑑𝑚𝑖𝑛
𝑐𝑜𝑛𝑓

) and (𝑉𝑖𝑗
𝑐𝑜𝑛𝑓

≤  𝑑𝑚𝑎𝑥
𝑐𝑜𝑛𝑓

) Then 

16.          If (𝑉𝑖𝑗
𝑑𝑒𝑣  ≤   𝑑𝑑𝑒𝑣) and (𝑉𝑖𝑗

𝑐𝑙𝑜𝑠𝑒 ≤  𝑑𝑑𝑖𝑠) Then 

17.             Select trustworthy cluster 

18.          End If 

19.       End If      

20.    End For 

21.    For each chosen trustworthy cluster Do 

22.       Apply the majority rule 

23.       Return trustworthy cluster 𝐶𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 

24.    End For  

25.  End For 

 
6 SIMULATION AND RESULTS 
The simulation is conducted using NS2 simulator[33], an 

open-source discrete event simulator designed to support 

research in computer networking. It involves various 

modules to help test several network components such as 

packet, node, routing, application and transport layer 

protocol. NS2 features permit us to extend the DSR rout-

ing protocol that supports MANETs architecture. The 

proposed trust model components are added to the simu-

lator to test the validity of the proposed model. A net-

work with 50 mobile nodes is simulated randomly mov-

ing in an area of 700×700 square metre. Several nodes are 

randomly selected to provide false rating information in 

the form of bad-mouthing and ballot-stuffing attacks. 

There are 15 source-destination pairs and each source 

transmits 2 packets per second with a Constant Bit Rate 

(CBR), and pause time 60s, which is the time nodes need 

to pause to begin travelling to the next destination with a 

speed of 10 m/s, the packet size is 512 bytes and the simu-

lation time is 500s. The mobility model utilised in this 

paper is the random way point which is the most com-

monly used model in ad hoc networking research [34] It 

is easy to use and movement could be considered as real-

istic which is very similar to the real world movement 

[35]. However, the proposed model can fit any other type 

of mobility models like RPGM model [36]. The maximum 

bad-mouthing and ballot-stuffing attacks percentage used 

in the simulation scenario is 80% misbehaving nodes, 
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which is enough percentage to test these attacks. An op-

timistic scheme is used in choosing trust threshold value 

at 0.2 in which all nodes are initially expected to be trust-

ed and normally behaving [10]. Table 2 shows the param-

eters used in configuring the network for the experiment. 

Bad-mouthing and ballot-stuffing attacks with additional 

permission to collude in both attacks are used in order to 

evaluate the defence scheme against dishonest recom-

mendation. Number of dishonest nodes range from 0% to 

80% and the dishonest recommendations provided devi-

ate 50% from the honest recommendations. Badly behav-

ing nodes (selfish nodes) counting to 20% always existed 

in the network and were responsible for collusion and 

jamming. Results from the experiment are based on mul-

tiple runs and a negligible variation is noticed. 

 
TABLE 2. NETWORK CONFIGURATION PARAMETERS 

Parameter Value 

Nodes 50 

Area 700 m X 700 m 

Speed 10 m/s 

Radio Range 250 m 

Movement Random waypoint model 

Routing Protocol DSR 

MAC 802.11 

Source-destination pairs 15 

Transmitting capacity 2 Kbps 

Application CBR 

Packet size 512 B 

Simulation time 500 s 

Trust threshold 0.4 

Publication timer 30 s 

Fading timer µ 10 s 

Deviation threshold ddev 0.5 

Conf_Threshold 0.4 

𝑑𝑚𝑖𝑛
𝑐𝑜𝑛𝑓 0.5 

𝑑𝑚𝑎𝑥
𝑐𝑜𝑛𝑓 0.9 

𝑑𝑑𝑖𝑠 200 m 

 

A. Performance Evolution  

The flow of the simulation is as follows. The performance 

of the entire network is represented by two parameters: 

Network throughput and Packet loss in the presence of 

bad-mouthing, ballot-stuffing and selfish nodes. The trust 

value of a good node (not misbehaving) is evaluated 

against bad-mouthing attack to see the influence of such 

attack with and without incorporating the proposed de-

fence scheme. The trust value of a bad node (misbehav-

ing) is also evaluated against ballot-stuffing attack to see 

how such attackers can distort the trust value of this 

node.  The performance of the proposed model in terms 

of recognised dishonest recommendations, false negative 

and false positive in the presence of bad-mouthing attacks 

with and without the defence scheme is examined. Simi-

lar experiment is conducted for ballot-stuffing attack. Fi-

nally, a comparative study is conducted with the maturity  

model [24] proposed in the literature.      

    Fig. 5 demonstrates the effect of dishonest recommen-

dation on two performance metrics; throughput and 

packet loss for the whole network. The y-axis in Fig. 5(a) 

shows the percentage of throughput, both with and with-

out the defence scheme, in the presence of dishonest 

nodes varying from 0% to 80% of the total population of 

nodes. It is observed that the network throughput with-

out a defence falls from nearly 80% when the dishonest 

nodes are not present to nearly 30% when their popula-

tion increases to 80%. Slight decrease and then increase is 

noticed in the throughput (Fig. 5a) for the network with 

defence when the percentage of dishonest recommenda-

tion nodes increases from 40% to 80%. This may be due to 

the fact that the throughput not only depends on the 

number of misbehaving nodes but is also affected by the 

degree of connectivity (number of neighbours),ability of 

the nodes to classify their neighbours and the time re-

quired to achieve the classification (which are different in 

each simulation due to network topology and mobility). 

However, the proposed defence mechanism was able to 

keep the value of throughput at nearly 80% even in case 

of higher population of the dishonest nodes. This can be 

translated as the defence scheme’s ability in mitigating 

the negative effect of dishonest recommendations on the 

throughput performance. The impact of dishonest nodes 

on packet loss is shown in the Fig. 5(b). The percentage of 

packet loss rises with increasing the percentage of dis-

honest nodes from 20% to over 60% when no defence in-

corporated in the network. While only 20% packet loss 

can be maintained using the proposed defence scheme in 

the presence of dishonest recommending nodes that vary 

from 0% to 80% of the nodes in the network. Similarly, 

the percentage of packet loss decreases slightly when the 

percentage of dishonest recommendation nodes increases 

from 70% to 80% for the same reasons as discussed in the 

analysis of Fig. 5(a). It can be seen from the above analysis 

that dishonest recommendations can significantly impact 

the throughput and packet loss metrics by confusing the 

trust model. The proposed technique can keep those met-

rics at an acceptable level even when the population of 

dishonest nodes is high. 

Fig. 6 demonstrates the average of the indirect trust 

held by other nodes in the network for a good node (node 

12 in this case) and a bad node (node 4 in this case). The 

x-axis in Fig. 6(a) displays the range for the population of 

bad-mouthing nodes from 0% to 80%.The y-axis shows 

the average of the indirect trust value for a good node 

(node 12 in this case) as held by all the nodes that have 

interacted with it in the past. A comparison has been 

made between three different parameters as follows. First, 

the indirect trust value when there are no dishonest 

nodes, called expected value. Second, the indirect trust  
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Fig. 5. Network performance in the Presence of Dishonest Recommending nodes for a) Network Throughput; b) Network Packet Loss  

 

value when dishonest nodes are present and the defence 

scheme is working, with defence. Third, the indirect trust 

value when the dishonest nodes are present and the de-

fence technique is not working, no defence. It can be seen 

that with increasing population of badmouthing attack-

ers, the average trust value of node 12 declines in case of 

no defence, whereas, the trust value remains the same as 

the expected value in case of with defence. 

The effects of ballot-stuffing attack are shown in Fig. 

6(b). In the x-axis is the percentage of ballot-stuffing at-

tack that varies between 0% to 80% and y-axis shows the 

values for the indirect trust compared against the same 

three parameter i.e. expected value, with defence and no 

defence cases. From the figure, it can be seen that the at-

tacking nodes have propagated unfairly positive rating 

for the dishonest node (node 4) thereby raising its trust 

value to above 0.9 while the attacker population was 80%.  

The results here show that the defence algorithm is capa-

ble of mitigating the influence of dishonest nodes by fil-

tering out unfair ratings. 

To test the proposed defence scheme further, we de-

fine three additional metrics: (a) recognised proportion, rep-

resenting the number of dishonest recommendations 

identified by node 𝑖, (b) false negative proportion, indicating 

the number of dishonest recommendations identified as 

honest by node 𝑖,(c) false positive proportion, indicating the 

number of honest recommendations identified as dishon-

est by node 𝑖. Fig.7 and 8 show the results for these three 

metrics in the presence of bad-mouthing and ballot-

stuffing attack. The x-axis in Fig.7(a) shows the percent-

age of bad-mouthing attack while y-axis shows the pro-

portion of the recognised dishonest recommendation, 

false negative and false positive with the defence scheme 

in action. It can be observed that the defence algorithm 

can effectively mitigate the dishonest recommendation 

propagated by the bad-mouthing attackers regarding the 

recognition and false negative metrics. While it keeps the 

false positive proportion at a very low level (about 2%) 

when the attack percentage is more than 50%. Fig. 7 (b) 

shows the case when the defence scheme is not in action. 

It can be seen that the proportion of recognised dishonest 

recommendation drops to less than 10% when the per-

centage of dishonest nodes increase to 80% and conse-

quently the  proportion of false negative increases with 

the increase in dishonest recommending nodes. As the

 
Fig. 6. Trust Evaluation for a) Good-Node 12's Trust Value in the Presence of Bad-mouthing Attack; b) Bad-Node 4's Trust Value in the Pres-
ence of Ballot-stuffing Attack

(a) Good-Node 12's Trust Value (b) Bad-Node 4's Trust Value 

(a) Network throughput (b) Packet Loss 
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defence scheme is not in action here, it accepts all the rec-

ommendations propagated in the network and updates 

the indirect trust value based on these recommendations. 

Therefore, the proportion of false positive remains at zero 

(Fig 7(b)).  

Fig. 8 (a) shows results for ballot-stuffing attack. The 

proposed defence scheme is seen to be identifying dis-

honest recommendations and eliminating false negative 

effectively. The proportion of false positive is maintained 

at a reasonable level. The effect of dishonest recommen-

dation in Fig. 8(b) is obvious. When there is no defence 

incorporated the proportion of recognition drops from 

about 0.9 to nearly 0.1 with variation of the ballot-stuffing 

attackers from 0.1 to 0.8. The false negative proportion 

also increases to nearly 0.9 with the increasing percentage 

of the dishonest recommending nodes.   

Finally, the performance of the proposed model is 

compared with the maturity model proposed in [24] in 

terms of two metrics: trust level error (TLE) which repre-

sents the proportion of error in evaluating the trust level 

of a node 𝑖 (node 8 in this case); and trust level evaluation 

of a good node (node 1 in this case) by another node 𝑗 in 

the network. We follow the same network configuration 

and node selection which is provided in the maturity 

model ( see [24] for details) to conduct this experiment. In 

this configuration, a high speed network is presented 

with high node mobility,  which is different from our first 

configuration. This configuration of the test network al-

lows us to show the effectiveness of the proposed scheme.  

Fig. 9 shows the results of this experiment. Fig. 9(a) dis-

plays the trust level error over the simulation time. It can 

be seen that the proposed model can keep the TLE small-

er than the error reported by the maturity model. The 

TLE in case of the proposed model is stable for the entire 

time of evaluation and converges to very small value 

nearly 0.01 towards the later phase. While for the maturi-

ty model, the TLE value is high initially (0.35) as com-

pared to that of the proposed model and this only con-

verged to 0.1 towards the end (time unit 3000). Fig. 9(b) 

shows the effectiveness of the proposed defence scheme 

in evaluating the trust value of 

 
Fig. 7. Recognised, False Negative, and False Positive Proportion in The Presence of Bad-mouthing Attack for a) With Defence; b) Without 
Defence 

 
Fig. 8. Recognised, False Negative, and False Positive Proportion in The Presence of Ballot-stuffing Attack for a) With Defence; b) Without 
Defence 

(a) With Defence (b) Without Defence 

(a) With Defence (b) Without Defence 
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Fig. 9. Comparative study with maturity model for a) Trust Level Error; and b) Good-Node 1’ Trust Level

a good node (node 1) from the network. It considers the 

following scenarios: the expected trust value when there 

is no dishonest recommendation (TLNDR), and the same 

when there is 35% dishonest recommendation (TL35DR) 

both for the proposed model and the maturity model.  

The results show that the proposed model with the de-

fence scheme can manage to avoid the dishonest recom-

mendation and keep the trust value of node 1 near to the 

expected value and slightly higher than the results of the 

maturity model. 

B. Cost of the defence scheme  
 

Mobile Ad-hoc networks are characterised by constrained 

resources in terms of communication, memory usage and 

computational complexity requirements. Any proposed 

model or defence scheme must reflect the trade-offs be-

tween accuracy of trustworthiness and network perfor-

mance. As gathering and propagating trust information 

among distributed node can consume more resources of 

energy and time, it can enhance the decision making. Dy-

namic and highly mobile networks which suffer from 

several points of failure require techniques to enhance the 

decision making on nodes trustworthiness. However, the 

proposed defence scheme is lightweight in several as-

pects. In terms of communication, the proposed model is 

suitable for MANETs because only recommendation re-

quest and reply packets are used to send and receive a list 

of recommendations.  The packets of recommendations 

are exchanged between a single source of information 

which is represented in the recommendation manager to 

and from the evaluating node and the recommending 

nodes.  The data size and length is very small as every 

recommending node provides just three parameters of 

accumulated positive and negative observations and its 

current position. The communication is also enhanced by 

on-demand scheme in which recommendation is request-

ed whenever needed. Therefore, the defence scheme is 

conducted without network flooding and acquisition de-

lay. The defence scheme is characterised with the ad-

vantage of a role-based management scheme for filtering 

dishonest recommendation in which three different com-

ponents are interoperated to accomplish the task. The use 

of clustering in distributed networks can facilitate the 

data aggregation and reduce the computational power by 

each node to evaluate the trustworthiness of other nodes. 

One of the costs put on the proposed defence is the com-

plexity that can be countered in maintaining the cluster 

and selecting the most trustworthy cluster. Another cost 

is the memory consumption in which the defence scheme 

consumes more memory to store recommendation for a 

period of time for conducting the filtering algorithm by 

the recommendation and clustering managers which is 

run by the evaluating node but no memory consumption 

on the side of the evaluated node. An additional cost is 

the time consumption which is more than the traditional 

defence which uses single recommender information to 

update the trustworthiness of the evaluated node. These 

costs can be reduced in the proposed defence scheme by 

using only the very last recommendations to be including 

in the clustering filtering computation. Dynamic selection 

of the number of recommendations based on a period of 

time can have many advantages, (1) reduce complexity 

and memory usage, (2) exclude any old recommendation 

from the calculation, (3) reduce the time that is used to 

select the trustworthy cluster.    

7 CONCLUSION 

A recommendation based trust model with a defence 
scheme is developed and analysed to filter attacks related 
to dishonest recommendation exchanged by nodes in the 
MANET.  The use of recommendation can efficiently al-
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low nodes to acquaint with each other without previous 
interactions but it exposes nodes to dishonest and unfair 
recommendation. Therefore, the proposed defence 
scheme utilises the clustering technique to filter out unfair 
recommendations exchanged by nodes in the network 
based on three values: (a) the level of confidence held by a 
node about others, (b) deviation threshold which ensures 
the unity of views between evaluating node and the eval-
uated node, and (c) closeness centrality value to ensure 
that recommending node is a close friend to the evaluat-
ing node for a period of time. The proposed model is test-
ed by extensive simulation in terms of throughput and 
packet loss, against both bad-mouthing and ballot-
stuffing attacks, and also compared with other proposal. 
The simulation results indicate that the proposed defence 
scheme can safely incorporate correct indirect trust evi-
dences received by recommendations and eliminate un-
trustworthy ones. Moreover, it reduces the effect of false 
negative and false positive problems in selecting recom-
mending nodes. The proposed model can be extended by 
weighting recommendations based on time and location 
to mitigate the influence of location and time dependent 
attacks.  
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