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Abstract—In this paper, we demonstrate the need for multi-
metric trust assessment in Underwater Autonomous Networks
(UAN). Many UANs use MANET architectures, however the ma-
rine environment presents new challenges for trust management
frameworks that have been developed for use in conventional
(i.e. Terrestrial RF) MANETs. We investigate the operation of a
selection of traditional MANET TMFs in this environment. We
characterise these challenges and present results that demonstrate
a multi-metric approach to Trust greatly enhances the effective-
ness of TMFs in these environments.

I. INTRODUCTION

As mobile ad-hoc networks (MANETs) grow beyond the
terrestrial arena, their operation and the protocols designed
around them must be reviewed to assess their suitability to
different communications environments to ensure their contin-
ued security, reliability, and performance.

One area of application is the underwater marine environ-
ment, where extreme challenges to communications present
themselves (propagation delays, frequency dependent attenu-
ation, fast and slow fading, refractive multi-path distortion,
etc.). In addition to the communications challenges, other
considerations such as command and control isolation, as well
as power and locomotive limitations, drive towards the use of
teams of smaller and cheaper autonomous underwater vehicles
(AUVs). These increasingly decentralised applications present
unique threats against trust management [1]. In underwater
environments, communications is both sparse and noisy. There-
fore the observations about the communications processes
that are used to generate the trust metrics, occur much less
frequently, with much greater error (noise) and delay than is
experienced in terrestrial RF MANETS. As such, the use of
trust methods developed in the terrestrial MANET space must
be re-appraised for application within the underwater context
[2].

Trust Management Frameworks (TMFs) provide informa-
tion to assist the estimation of future states and actions of
nodes within networks. This information is used to optimize
the performance of a network against malicious, selfish, or
defective misbehaviour by one or more nodes. Previous re-
search has established the advantages of implementing TMFs
in 802.11 based MANETs, particularly in terms of preventing

selfish operation in collaborative systems [3], and maintaining
throughput in the presence of malicious actors [4]

Most current TMFs use a single type of observed ac-
tion to derive trust values, typically successfully delivered
or forwarded packets. These observations then inform future
decisions of individual nodes, for example, route selection [5].

Recent work has demonstrated the use of a number of
metrics to form a “vector” of trust. The Multi-parameter
Trust Framework for MANETs (MTFM) [6], uses a range
of communications metrics beyond packet delivery/loss rate
(PLR) to assess trust. This vectorized trust also allows a system
to detect and identify the tactics being used to undermine or
subvert trust. To date this work has been limited to terrestrial,
RF based networks.

The paper is laid out as follows. In Section II we discuss
Trust and TMFs, defining our terminology and reviewing
the justifications for the use and development of TMFs for
marine acoustic networks (MANs) In Section III we review
selected features of the underwater communications channel,
highlighting particular challenges against terrestrial equiva-
lents. In Section IV we establish an experimental configuration
for the marine space, and review the scenarios and results
presented in [6]. In Section V we present our findings in trust
establishment and malicious behaviour detection, comparing
with other current TMFs (Hermes and OTMF) and analyse
the use of this multi-parameter approach to detecting malicious
and selfish behaviour in autonomous marine networks.

The contributions of this paper are a study on the compar-
ative operation and performance of TMFs in marine acoustic
networks, and a review of metric suitability for TMFs in
marine environments, informing future metric selection for
experimenters and theorists. We also show that single metric
trust systems are not directly suitable for the marine context
in terms of the different threat and cost scenario in that envi-
ronment. Finally, we demonstrate a methodology to assess the
usefulness of metrics in discriminating against misbehaviours
in such constrained, delay-tolerant networks.
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II. TRUST AND TRUST MANAGEMENT FRAMEWORKS

A. Trust in Conventional MANETs

The distributed and dynamic nature of MANETs mean that
it is difficult to maintain a trusted third party (TTP) or evidence
based trust system such as Certificate Authorities (CA) or
Public Key Infrastructure (PKI). Distributed trust management
frameworks aim to detect, identify, and mitigate the impacts
of malicious actors by distributing per-node assessments and
opinions to collectively police behaviour. Various models and
algorithms for describing trust and developing trust manage-
ment in distributed systems, P2P communities or wireless
networks have been considered. Hermes Trust Establishment
Framework takes a Bayesian Beta function to model per-link
Packet Loss Rate (PLR) over time, combining “Trust” and
“Confidence of Assessment” into a single value [7]. Objective
Trust Management Framework (OTMF) builds upon Hermes
and distributes node observations across the network [5],
however does not appropriately combat multi-node-collusion
in the network [8]. Trust-based Secure Routing demonstrated
an extension to Dynamic Source Routing (DSR), incorporating
a Hidden Markov Model of sub-networks, reducing the efficacy
of Byzantine attacks such as black-hole routing [9]. CONFI-
DANT presented an approach using a probabilistic estimation
of PLR, similar to OTMF, also introducing a topology aware
weighting scheme and also weighting trust assessments based
on historical experience of the reporter [4]. Fuzzy Trust-Based
Filtering uses Fuzzy Inference to adapt to malicious recom-
menders using conditional similarity to classify performance
with overlapping fuzzy set membership, filtering assessments
across a network [10].

These TMFs can be generalised as single-value estimation
based on a binary input state (success or failure of packet
delivery) and generating a probabilistic estimation of the future
states of that input.

These single metric TMFs provide malicious actors with
a significant advantage if their activity does not impact that
metric. In the case where the attacker can subvert the TMF, the
metric under assessment by that TMF does not cover the threat
mounted by the attacker. This causes a significant negative
effect on the efficiency of the network, as the TMF is assumed
to have reduced the possible set of attacks when it has actually
made it more advantageous to attack a different part of the
networks operation. An example of such a situation would be
in a TMF focused on PLR where an attacker selectively delays
packets going through it, reducing overall throughput but not
dropping any packets. Such behaviour would not be detected
by the TMF.

For the purposes of this work, we select Hermes trust
establishment and OTMF as indicative single-metric TMFs to
compare against MTFM, as Hermes captures the core operation
of a pure single metric assessment methodology and OTMF
provides a comparison that combines assessments from across
nodes to develop trust opinions.

B. Trust in Marine Networks

With demand for smaller, more decentralised marine survey
and monitoring systems, and a drive towards lower per-
unit cost, pressures on battery capacity, locomotive power

efficiency, data processing and storage are increasing. These
pressures simultaneously present opportunities and incentives
for malicious or selfish actors to appear to cooperate while not
reciprocating, in order to conserve power for instance.

Within UANs observable metrics include significant noise
and may occur at irregular and sparse intervals. Conventional
approaches such as probabilistic estimation do not produce
trust values that reflect the underlying reality and context of the
metrics available, as they require a-priori assumption that the
trust value under exploration has an expected distribution, that
distribution is mono-modal, and the input metrics are binary.
In scenarios with variable, sparse, noisy metrics, estimating
the distribution is difficult to accomplish a-priori.

C. Single Metric Trust Frameworks

The Hermes trust establishment framework [7] uses
Bayesian reasoning to generate a posterior distribution function
of “belief”, or trust, given a sequence of observations of that
behaviour, p(B|O)(1).

p(B|O) =
p(O|B)× p(B)

ρ
(1)

Where p(B) is the prior probability density function for
the expected normal behaviour, and ρ is a normalising factor.
Due to it’s flexibility and simplicity, Hermes assumes that
p(B) is a Beta function, and therefore the evaluation of
this trust assessment is based around the expectation value
of the distribution (2) where α and β represent the number
of successful and unsuccessful interactions respectively for a
particular node i.

A secondary measurement of the confidence factor of the
trust assessment t is generated as (3) and these measurements
are combined to form a “trustworthiness” value T (4).

ti → E[beta(p|α,β)] = αi

αi + βi
(2)

ci = 1−

√
12αiβi

(αi + βi)2(αi + βi + 1)
(3)

Ti = 1−

√
(ti−1)2

x2 + (ci−1)2

y2

√
1
x2 + 1

y2

(4)

In (4), x and y are constants, used weight the two-
dimensional polar mapping of trust and confidence assessments
(ti, ci), and from [7], are taken as x =

√
2, y =

√
9.

Upon this per-node assessment methodology, OTMF over-
lays an observation distribution protocol so as to make the
measurements αi and βi representative of the direct and 1-hop
networks observations of the target node i, as well as expiring
old observations from assessment and eliminating observations
from “untrustworthy” nodes.
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D. Multi-Metric Trust Frameworks

Given the potential incentives to a selfish attacker and
potential threats to trust and fairness in sparse, noisy, and
constrained environments, single metric trusts discussed above
do not suitably cover the exposed threat surface. This indicates
that a multi-metric approach may be more appropriate to
capture and monitor the realities of an environment such as
those experienced by UANs.

Grey Theory performs cohort based normalization of met-
rics at runtime, providing a “grade” of trust compared to
other observed nodes in that interval, while maintaining the
ability to reduce trust values down to a stable assessment
range for decision support without requiring every environment
entered into to be characterised. This presents a stark dif-
ference between the Grey and Probabilistic approaches. Grey
assessments are relative in both fairly and unfairly operating
networks. All nodes will receive mid-range trust assessments
if there are no malicious actors as there is nothing “bad” to
compare against, and variations in assessment will be primarily
driven by topological and environmental factors. Guo et al. [6]
demonstrated the ability of grey relational analysis (GRA) [11]
to normalise and combine disparate traits of a communications
link such as instantaneous throughput, received signal strength,
etc. into a grey relational coefficient (GRC), or a “trust vector”
in this instance.

The grey relational vector is given as

θtk,j =
mink |atk,j − gtj |+ ρmaxk |atk,j − gtj |

|atk,j − gtj |+ ρmaxk |atk,j − gtj |
(5)

φt
k,j =

mink |atk,j − btj |+ ρmaxk |atk,j − btj |
|atk,j − btj |+ ρmaxk |atk,j − btj |

where atk,j is the value of an observed metric xj for a
given node k at time t, ρ is a distinguishing coefficient
set to 0.5, g and b are respectively the “good” and “bad”
reference metric sequences from {atk,jk = 1, 2 . . .K}, i.e.
gj = maxk(atk,j), bj = mink(atk,j) (where each metric is
selected to be monotonically positive for trust assessment, e.g.
higher throughput is presumed to be always better).

Weighting can be applied before generating a scalar value
(6) allowing the detection and classification of misbehaviours.

[θtk,φ
t
k] =

⎡

⎣
M∑

j=0

hjθ
t
k,j ,

M∑

j=0

hjφ
t
k,j

⎤

⎦ (6)

Where H = [h0 . . . hM ] is a metric weighting vector such that∑
hj = 1, and in unweighted case, H = [ 1

M , 1
M . . . 1

M ]. θ and
φ are then scaled to [0, 1] using the mapping y = 1.5x− 0.5.
To minimise the uncertainties of belonging to either best (g) or
worst (b) sequences in (5) the [θ,φ] values are reduced into a
scalar trust value by T t

k = (1 + (φt
k)

2/(θtk)
2)−1 [12]. MTFM

combines this GRA with a topology-aware weighting scheme
(7) and a fuzzy whitenization model (8).

There are three classes of topological trust relationship
used; Direct, Recommendation, and Indirect. Where an ob-
serving node ni assesses the trust of another target node, nj ;
the Direct relationship is ni’s own observations nj’s behaviour.
In the Recommendation case, a node nk which shares Direct

relationships with both ni and nj , gives its assessment of nj

to ni. In the Indirect case, similar to the Recommendation
case, the recommender nk does not have a direct link with the
observer ni but nk has a Direct link with the target node, nj .
These relationships give node sets, NR and NI containing the
nodes that have recommendation or indirect, relationships to
the observing node respectively.

TMTFM
i,j =

1

2
·max

s
{fs(Ti,j)}Ti,j (7)

+
1

2

2|NR|
2|NR|+ |NI |

∑

n∈NR

max
s

{fs(Ti,n)}Ti,n

+
1

2

|NI |
2|NR|+ |NI |

∑

n∈NI

max
s

{fs(Ti,n)}Ti,n

Where Ti,n is the subjective trust assessment of ni by nn,
and fs = [f1, f2, f3] given as:

f1(x) = −x+ 1

f2(x) =

{
2x if x ≤ 0.5

−2x+ 2 if x > 0.5
(8)

f3(x) = x

In the case of the terrestrial communications network used in
[6], the observed metric set X = x1, . . . , xM representing the
measurements taken by each node of its neighbours at least
interval, is defined as X = [packet loss rate, signal strength,
data rate, delay, throughput].

Guo et al. demonstrated that when compared against OTMF
and Hermes trust assessment, MTFM provided increased varia-
tion in trust assessment over time, providing more information
about the nodes’ behaviours than packet delivery probability
alone can.

By weighting the metrics used in MTFM it was shown
that the trust assessments could be used to identify the style
of misbehaviour being performed within the network, and by
whom. We present a corollary method to investigate and apply
this work to the Marine MANET field.

III. MARINE ACOUSTIC COMMUNICATIONS

The key challenges of underwater acoustic communications
are centred around the impact of slow and differential propaga-
tion of energy (RF, Optical, Acoustic) through water, and its in-
terfaces with the seabed / air. The resultant challenges include;
long propagation delays, significant inter-symbol interference
and Doppler spreading, fast and slow fading due to environ-
mental effects (aquatic flora/fauna, surface weather), carrier-
frequency dependent signal attenuation, multi-path caused by
reflective medium interfaces, variations in propagation speed
due to depth dependant effects (salinity, temperature, and
pressure), and subsequent refractive spreading and lensing due
to that same propagation variation [13].

The attenuation that occurs in an underwater acoustic
channel over a distance d for a signal about frequency f in
linear power is given as Aaco(d, f) = A0dka(f)d and in dB
form as;

10 logAaco(d, f)/A0 = k · 10 log d+ d · 10 log a(f) (9)
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where A0 is a normalising constant, k is a spreading factor
(commonly taken as 1.5 [14]), and a(f) is the absorption
coefficient, approximated using Thorp’s formula [15]

10 log a(f) =
0.11 · f2

1 + f2
+

44 · f2

4100 + f2
+2.75×10−4f2+0.003

(10)
Refractive lensing and the multi-path nature of the medium
result in line of sight propagation being extremely unreliable
for estimating distances to targets. The first arriving acoustic
signal has as the very least curved in the medium, and
commonly has reflected off the surface/seabed before arriving
at a receiver, creating secondary paths that are sometimes
many times longer than the first arrival path, generating symbol
spreading over orders of seconds depending on the ranges and
depths involved. Forward Error Correction coding is used on
such channels to minimise packet losses.

Comparing Aaco(d, f) with the RF Free-Space Path Loss

model (ARF(d, f) ≈
(

4πdf
c

)2
), the impact of range on signal

power is exponential underwater, rather than quadratic in
terrestrial RF (Aaco ∝ f2d vs ARF ∝ (df)2). While both
frequency dependant factors are quadratic, approximating the
factors in (10), f ∝ Aaco is at least 4 orders of magnitude
higher than f ∝ ARF

IV. SYSTEM MODEL CHARACTERIZATION

A. Mobility, Topology, and Communications

We apply two mobility patterns for investigation; all nodes
static and all nodes mobile. The reason for this is that in other
mobility combinations, the node targeted for misbehaviour
(n1) will already be behaving differently compared to the rest
of the network regardless of the misbehaviour.

The six nodes are initially arranged as per Fig. 1 with each
node on average 100m from each other as per [6]. The use of
six nodes and the particular layout enables the investigation of
the three trust relationships based on minimum path topologies,
such that the node generating the trust assessments, n0 has
Direct, Recommendation, and Indirect trust assessments of n1

available to it from itself, [n2, n3], and [n4, n5] respectively.

Collaborations with NATOs Centre for Maritime Research
and Experimentation (CMRE) in La Spezia, and DSTLs Naval
Systems Group inform that this is a practical team-size for
environmental and defence applications.

n0 n1

n2

n3

n4

n5

Fig. 1. Initial layout with nodes spaced an average of 100m apart

B. Simulation Background

Simulations were conducted using a Python based simula-
tion framework, SimPy [16], with a network stack built upon

AUVNetSim [17], with transmission parameters (Table I) taken
from and validated against [14] and [15].

Given the differences in delay and propagation between RF
and marine networks, it would not be expected that the same
application rates (e.g. packet emission rates or throughput)
and node separations are equally stable in this environment.
Therefore, we first characterise a zone of performance within
which the network have stable operation.

TABLE I. COMPARISON OF SYSTEM MODEL CONSTRAINTS AS
APPLIED BETWEEN TERRESTRIAL AND MARINE COMMUNICATIONS

Parameter Unit Terrestrial Marine

Simulated Duration s 300 18000
Trust Sampling Period s 1 600
Simulated Area km2 0.7 0.7-4
Transmission Range km 0.25 1.5
Physical Layer RF(802.11) Acoustic
Propagation Speed m/s 3× 108 1490
Center Frequency Hz 2.6× 109 2× 104

Bandwidth Hz 22× 106 1× 104

MAC Type CSMA/DCF CSMA/CA
Routing Protocol DSDV FBR
Max Speed ms−1 5 1.5
Max Data Rate bps 5× 106 ≈ 240
Packet Size bits 4096 9600
Single Transmission Duration s 10 32
Single Transmission Size bits 107 9600

C. Scaling Considerations between Terrestrial and Underwa-
ter Environments

We establish an appropriate safe operating zone for marine
communications by looking at the communications rate and
physical distribution factors across the two selected mobility
scenarios. From Table I, the operating transmission range
of this model of acoustic communications is ≈ 6 times
further than that of 802.11, indicating that a suitable operating
environment will have an area ≈

√
6 times the area of the

802.11 case. However, it was recognised in Section III that
underwater, the relationship between attenuation and distance
is exponential, so this would represent an upper bound of
performance, where nodes are approximately 400m apart.

Exploratory simulations were run to further constrain this
bound. As the separation is increased, the emission rate at
which the network becomes saturated decreases, reducing over-
all throughput. This throughput degradation is tightly coupled
with the mobility, as increasing mobility leads to increasing
delays as routes are constantly broken, re-advertised and re-
established. For instance, where all nodes are static, we do not
see significant drops in saturation rates until node separation
approaches 800m, nearly double the initial estimate. When all
nodes are randomly walking the saturation point collapses from
0.025pps at 300m to 0.015pps at 400m. Our results indicate
that the best area to continue operating in for a range of
node separations is at 0.015pps, and that a reasonable position
scaling is from 100m to 300m, beyond which communication
becomes increasingly unstable, especially in terms of end-to-
end delay. These results are similar to work performed in
[17], and are expected in such a sparse, noisy, and contentious
environment.
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D. Selected Misbehaviours

We are primarily concerned with the direct trust rela-
tionship between n0 and n1, i.e. n0’s assessment of the
trustworthiness of n1, or T1,0.

Guo et al. introduce a range of misbehaviours, including
modification of the packet loss rate of routing nodes and
limiting throughput on a per-link basis as well as a selection
of combined misbehaviours. Given that the established links
are already heavily constrained, such attacks would severely
impact the general performance of the network beyond the
scope of simple selfishness. These direct malicious behaviours
effectively trigger saturation collapses in operating regions of
the network that should be stable.

Therefore, we apply two more subtle misbehaviours to
investigate;

1) Malicious Power Control (MPC), where n1 increases
its transmit and forwarding power by 20% for all
nodes except communications from n0 in order to
make n0 appear to be selfishly conserving energy to
the rest of the team, while n1 itself appears to be
performing very well.

2) Selfish Target Selection (STS), where n1 preferen-
tially communicates, forwards and advertises to nodes
that are physically close to it in effort to reduce its
own power consumption.

V. SIMULATION RESULTS AND DISCUSSION

Having established a safe operating range for comparison
at 300m average separation and an emission rate of 0.015pps,
we perform each of the three selected behaviours (Fair, MPC,
STS) in both the static and mobile scenarios. We select a trust
assessment period of 10 mins for a 5 hour mission to scale
in comparison to relative bitrates experienced (1Mbps vs ≈
15bps).

The six metrics used for grey assessment are; transmitted
and received throughput and power, delay, and packet loss
rate (PLR) as calculated by aborted and unacknowledged,
transmissions. Compared to [6], this metric set lacks a data
rate quantity as the network is not dynamically adjusting band-
width. In context of GRC generation (5), the best sequence g
was selected using the lowest PLR, delay, and powers, and the
highest throughputs, and the worst sequence, b the inverse of
these metrics, reflecting the observations made in Section II-B.

The particular factors under discussion are the relative
performance of MTFM against OTMF and Beta with respect
to statistical stability across mobilities and in responsiveness
to changing network behaviour. We establish a similar result
set by initially tracking the resultant trust values established by
MTFM in the pair of mobility scenarios, shown in Fig. 2. We
are also concerned with the opinions of n1 provided to n0 by
other nodes, where [T1,2, T1,3] and [T1,4, T1,5] denote the sets
of recommendation and indirect trust assessment respectively.

We also include aggregate assessments; T1,Avg, the un-
weighted mean of direct trust assessments of n1 from all nodes
and T1,MTFM, the final MTFM trust assessment value based on
both network topology and whitenization from (8).

The variability in assessment is coupled to mobility; in the
static case (Fig. 2a), we see that the nodes exhibit relatively
consistent distributions. In the full mobility case, shown in
Fig. 2b, this subjective variability is greatly increased. As
the topology is highly dynamic, delays due to re-establishing
routes can be very large, perturbing the trust value. The
T1,MTFM displays a significantly reduced variation than those of
the individual subjective observations in all cases, even when
compared to the unweighted average, T1,Avg. This demonstrates
TMTFM ’s value as an aggregating trust assessment in such
sparse and noisy environments. Further, in Fig. 2d we observe
a much higher variability in assessment in T0, correctly in-
dicating that there is something wrong with the relationship
between n0 and n1.
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(d) Malicious Mobile
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(f) Selfish Mobile

Fig. 2. MTFM Trust assessments of n1 (T1,X ), showing Direct, Recom-
mender and Indirect relationships, as well as the Aggregate trust assessments
from combining these

A. Comparison between MTFM, Hermes and OTFM

As per [6], “fair” scenarios were also performed with no
malicious behaviour, applying OTMF and Hermes assessment
as well as MTFM, providing like-for-like comparison of as-
sessment. For simplicity of presentation, we only consider the
fully-mobile scenario, as we are concerned with the establish-
ment of trust in mobile networks

The use of Forward Beam Routing and a CSMA/CA MAC
scheme from AUVNetSim [17] in our simulation mitigates a
significant number of packet losses through collision avoidance
and contention handling, leading to the situation that the only
genuinely lost packets occur when a node moves completely
out of range of any other node and time out occurs in route
discovery rather than transmission. As such, confirmed packet
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(b) Malicious Power Control Scenario
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(c) Selfish Target Selection Scenario

Fig. 3. T1,0 for Hermes, OTMF and MTFM assessment values for fair and malicious behaviours in the fully mobile scenario (mean of MTFM also shown)

losses are relatively rare and in a delaying network like this, it
is difficult to set a differentiating time out between packets that
are in the network but queued, and packets that are actually
“lost”.

The single metric TMFs used in conventional MANETs
require regular and constant input to shape and adjust their
evaluations, which for a network with significant and irregular
delays such as this, is not practical. This renders OTMF and
Hermes assessment at best uninformative and at worst mis-
leading; consistently providing nodes a high trust assessment
as they have very little information to extract trust from.

Fig. 3 shows a comparison between the unweighted re-
sponse of MTFM compared to OTMF and Hermes assessment
functions on the same data for the fair, malicious and selfish
behaviours respectively. It is important to note a distinction
between the expectations of MTFM compared to other TMFs;
MTFM is primarily concerned with the identification of dif-
ferences in the behaviours of nodes in a network, and is
relative rather than absolute. That is to say that under MTFM,
nodes are compared against the worst current performances
across metrics of other observed nodes and graded against
them, rather than the absolute (objective) approach taken by
many TMFs. In these cases, particularly since the methods of
attack were not directly related to PLR, OTMF and Hermes
have not registered significant activity in either misbehaviour
when compared to the fair scenario. The difference between
the MTFM trust assessments under “fair” and “malicious”
behaviour is lowered by ≈ 10% in both cases, in terms of the
mean values returned. At run time, similar results could be
attained by an exponentially weighted moving average filter
(EWMA).

On their own, neither OTMF, Hermes, or unbiased MTFM
appear to be effective in detecting or identifying malicious
behaviour in this environment, in fact OTMF and Hermes don’t
appear to differentiate between fair and selfish scenarios at all.

B. Metric Weighting

We apply a sequence of vectors that preferentially weight
each metric in Eq. (6) to each of the three simulation runs. For
a metric weight vector H , where the metric mj is emphasised
as being twice as important as the other metrics, we form
an initial weighting vector H ′ = [hi...hM ] such that hi =
1∀i ̸= j;hj = 2. We then scale that vector H ′ such that∑

H = 1 by H = H′∑
H′ . Using this process we can extract

and highlight the primary aspects of an attack by comparing
against the deviation from the “fair” result set.
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(a) Delay Emphasised
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(b) PLR Emphasised
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(c) RX Power Emphasised
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(d) TX Power Emphasised
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(e) RX Throughput Emphasised
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(f) TX Throughput Emphasised

Fig. 4. T1,MTFM in the All Mobile case for the Malicious Power Control
behaviour, including dashed ±σ envelope about the fair scenario

From Fig. 4 we can see that the malicious node is con-
sistently outside the ±σ (one standard deviation above and
below the mean) envelope of the fair scenario it’s being
compared to. This is particularly true for PLR, with smaller
impacts on delay, received power and transmitted throughput.
This weighted delta in received throughput is minimal to
insignificant compared to the width of the detection envelope,
occasionally breaching the envelope for a short period.

In the selfish case (Fig. 5) we observe much lower weighted
delta in PLR and delay, with greatly increased impact on
transmission power. In comparison to [6], these results are
qualitatively similar, however here the differences between the
fair case and the misbehaviours are less clear than in the
comparable terrestrial space. Guo et al. show similar types
of behaviour but report a weighted delta from ≈ 0.4 to ≈ 0.9
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(a) Delay Emphasised
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(b) PLR Emphasised
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(c) RX Power Emphasised

0 5 10 15 20 25 30

Observation

0.0

0.2

0.4

0.6

0.8

1.0

G
re

y
Tr

us
tV

al
ue

Fair Selfish

(d) TX Power Emphasised
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(e) RX Throughput Emphasised
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(f) TX Throughput Emphasised

Fig. 5. T1,MTFM in the All Mobile case for the Selfish Target Selection
behaviour, including dashed ±σ envelope about the fair scenario

across the simulation period, compared to our maximum delta
in TX Power of ≈ 0.3 for an inconsistent interval (Fig. 5d.)

C. Weight Significance Analysis for Behaviour Classification

For a more quantitative assessment of the viability of
multi-metric trust assessment methods, we take the qualitative
analysis above and apply a Random Forest regression [18]
to assess the relative importance of the selected metrics on
relative detectability of malicious behaviour. Random Forest
accomplishes this by generating a large number of random
regression trees and prune these trees to fit incoming data.
The target function for this regression was the area between
the target behaviours weighted TMTFM curve and the ±σ
envelope of the base behaviour as shaded in Figs. 4 and
5. From this training process we can extract the relative
importance of each input feature (metric) in terms of how
good it is to differentiate between the fair case and a given
misbehaviour. Additionally we perform a cross correlation
analysis to establish the correlations between given metric
weighting emphasis and the output of the target function. Our
intention is to establish the metrics that not only differentiate
both misbehaviours from the fair case, but also what metrics
differentiate the two misbehaviours from each other.

Applying this target regression to 729 different metric
weight vector emphasis combinations reveals that each of
the three combinations (i.e. comparing fair to misbehaviours,
and comparing the misbehaviours) present distinct patterns
of significance in three primary metrics; received throughput,
transmitted power, and PLR, with delay, received power and
transmitted throughput playing a lesser role. Practically this
means that in order to accurately distinguish between these

Fig. 6. Random Forest Factor Analysis of Malicious (MPC), Selfish (STS)
and Fair behaviours compared against eachother

scenarios, these primary metrics should be higher-weighted in
the generation of T1,MTFM in (7).

It may initially appear odd that the relative significance of
the received throughput is similar between all three scenario
combinations, however a correlation analysis shows that in
the MPC attack; the received throughput is positively cor-
related with successful classification against the fair case
(R = +0.71, p ≈ 10−100), while the inverse is the case for
the STS attack (R = −0.70, p ≈ 10−100). It is expected
that Transmitted power should be the defining characteristic
of STS (R = +0.72, p < 10−100) as the node is acting
fairly from a protocol perspective but is acting unfairly at
a higher (incentive) level; it is performing fairly in terms of
it’s communications with other nodes, however it is preferring
to communicate with nodes that it can expend less energy
communicating with. A summary of these correlations is
shown in Table. II.

Comparing Figs. 3, 4b, and 5b, while it is possible that
in a cleaner, less sparse, and less noisy environment, OTMF
would be able to detect the MPC behaviour, from Fig. 6 we
see that PLR plays almost no part at all in detecting the STS
behaviour, and so OTMF would not detect the attack.

TABLE II. CORRELATION COEFFICIENTS BETWEEN METRIC WEIGHTS
AND BEHAVIOUR DETECTION TARGETS

Correlation Delay PRX PTX TP
RX TP

TX PLR

Fair / MPC 0.199 0.159 -0.416 0.708 -0.238 -0.401
Fair / STS 0.179 -0.009 0.724 -0.697 -0.145 -0.052
MPC / STS 0.058 -0.134 0.146 -0.768 0.052 0.146

As such this presents the open opportunity to develop a
heuristic weight search scheme to detect malicious behaviour
without the comparison to the fair scenario. This would be
accomplished by assessing the impact of differential metric
weighting on the mean trust assessment rather than comparing
co-weighted valuations across scenarios.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated that existing MANET Trust Man-
agement Frameworks are not directly suitable to the sparse,
noisy, and dynamic underwater medium. We presented a
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comparison between trust establishment in MANETs in a
simulated underwater environment, demonstrating that in order
to have any reasonable expectation of performance, through-
put and delay responses must be characterised before im-
plementing trust in such environments. While the MTFM
value does not display any immediate difference between the
two behaviours, we have shown that by exploring the metric
space by weight variation, the existence and nature of the
malicious behaviour can be discovered. Another difference is
that MTFM is significantly more computationally intensive
than the relatively simple Hermes / OTMF algorthms. The
repeated metric re-weighting required for real time behaviour
detection is therefore an area that requires optimization. We
demonstrated initial, unfiltered Grey Trust assessment using all
available metrics (transmitted and received throughput, delay,
received signal strength, transmitted power, and packet loss
rate), as well as the application of multiple weighting vectors
to iteratively emphasise different aspects of trust operation
to expose and identify misbehaviour on the network. With
significant delays (from seconds to many minutes), in a fading,
refractive medium with varying propagation characteristics, the
environment is not as predictable or performant as classical
MANET TMF deployment environments.

We show that, without significant adaptation, single metric
probabilistic estimation based TMFs are ineffective in such
an environment. We have shown that existing frameworks
are overly optimistic about the nature and stability of the
communications channel, and can overlook characteristics that
are useful for assessing the behaviour of nodes in the network.
This indicates that there is a good case, particularly within
constrained MANETs as this, for multi-vector, and even multi-
domain trust assessment, where metrics about the communi-
cations network and topology would be brought together with
information about the physical behaviours and operations of
nodes to assess trust.

Also, a significant factor of trust assessment in such a
constrained environment, is that there may be long periods
where two edge nodes (for instance, n0 → n5) may not interact
at all. This can be due to a range of factors beyond malicious
behaviour, including simple random scheduling coincidence
and intermediate or neighbouring nodes collectively causing
long back-off or contention periods. This disconnection hinders
trust assessment in two ways; assessing nodes that do not
receive timely recommendations may make decisions based on
very old data, and malicious nodes have a long dwelling time
where they can operate under a reasonable certainty that the
TMF will not detect it (especially if the node itself is behaving
disruptively). One solution to this would be to move from a
stepping-window of trust observations to a continuous trust
log, updated on packet reception rather than waiting regular
periods for packets to be analysed. Future work will investigate
the improvement of weight-based detection algorithms, the
stability of GRA under multi-node collusion, the development
of real-time outlier detection, and the introduction of physical
behavioural metrics into the trust assessment context.
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