311 research outputs found

    Salient Object Detection Techniques in Computer Vision-A Survey.

    Full text link
    Detection and localization of regions of images that attract immediate human visual attention is currently an intensive area of research in computer vision. The capability of automatic identification and segmentation of such salient image regions has immediate consequences for applications in the field of computer vision, computer graphics, and multimedia. A large number of salient object detection (SOD) methods have been devised to effectively mimic the capability of the human visual system to detect the salient regions in images. These methods can be broadly categorized into two categories based on their feature engineering mechanism: conventional or deep learning-based. In this survey, most of the influential advances in image-based SOD from both conventional as well as deep learning-based categories have been reviewed in detail. Relevant saliency modeling trends with key issues, core techniques, and the scope for future research work have been discussed in the context of difficulties often faced in salient object detection. Results are presented for various challenging cases for some large-scale public datasets. Different metrics considered for assessment of the performance of state-of-the-art salient object detection models are also covered. Some future directions for SOD are presented towards end

    Investigating the role of machine learning and deep learning techniques in medical image segmentation

    Get PDF
    openThis work originates from the growing interest of the medical imaging community in the application of machine learning techniques and, from deep learning to improve the accuracy of cancerscreening. The thesis is structured into two different tasks. In the first part, magnetic resonance images were analysed in order to support clinical experts in the treatment of patients with brain tumour metastases (BM). The main topic related to this study was to investigate whether BM segmentation may be approached successfully by two supervised ML classifiers belonging to feature-based and deep learning approaches, respectively. SVM and V-Net Convolutional Neural Network model are selected from the literature as representative of the two approaches. The second task related to this thesisis illustrated the development of a deep learning study aimed to process and classify lesions in mammograms with the use of slender neural networks. Mammography has a central role in screening and diagnosis of breast lesions. Deep Convolutional Neural Networks have shown a great potentiality to address the issue of early detection of breast cancer with an acceptable level of accuracy and reproducibility. A traditional convolution network was compared with a novel one obtained making use of much more efficient depth wise separable convolution layers. As a final goal to integrate the system developed in clinical practice, for both fields studied, all the Medical Imaging and Pattern Recognition algorithmic solutions have been integrated into a MATLAB® software packageopenInformatica e matematica del calcologonella gloriaGonella, Glori

    Image based real-time ice load prediction tool for ship and offshore platform in managed ice field

    Get PDF
    The increased activities in arctic water warrant modelling of ice properties and ice-structure interaction forces to ensure safe operations of ships and offshore platforms. Several established analytical and numerical ice force estimation models can be found in the literature. Recently, researchers have been working on Machine Learning (ML) based, data-driven force predictors trained on experimental data and field measurement. Application of both traditional and ML-based image processing for extracting information from ice floe images has also been reported in recent literature; because extraction of ice features from real-time videos and images can significantly improve ice force prediction. However, there exists room for improvement in those studies. For example, accurate extraction of ice floe information is still challenging because of their complex and varied shapes, colour similarities and reflection of light on them. Besides, real ice floes are often found in groups with overlapped and/or connected boundaries, making detecting even more challenging due to weaker edges in such situations. The development of an efficient coupled model, which will extract information from the ice floe images and train a force predictor based on the extracted dataset, is still an open problem. This research presents two Hybrid force prediction models. Instead of using analytical or numerical approaches, the Hybrid models directly extract floe characteristics from the images and later train ML-based force predictors using those extracted floe parameters. The first model extracted ice features from images using traditional image processing techniques and then used SVM and FFNN to develop two separate force predictors. The improved ice image processing technique used here can extract useful ice properties from a closely connected, unevenly illuminated floe field with various floe sizes and shapes. The second model extracted ice features from images using RCNN and then trained two separate force predictors using SVM and FFNN, similar to the first model. The dataset for training SVM and FFNN force predictors involved variables extracted from the image (floe number, density, sizes, etc.) and variables taken from the experimental analysis results (ship speed, floe thickness, force etc.). The performance of both Hybrid models in terms of image segmentation and force prediction, are analyzed and compared to establish their validity and applicability. Nevertheless, there exists room for further development of the proposed Hybrid models. For example, extend the current models to include more data and investigate other machine learning and deep learning-based network architectures to predict the ice force directly from the image as an input

    Study of segmentation and identification techniques applied to environments with natural illumination and moving objects

    Full text link
    La presente tesis está enmarcada en el área de visión por computador y en ella se realizan aportaciones encaminados a resolver el problema de segmentar automáticamente objetos en imágenes de escenas adquiridas en entornos donde se está realizando actividad, es decir, aparece movimiento de los elementos que la componen, y con iluminación variable o no controlada. Para llevar a cabo los desarrollos y poder evaluar prestaciones se ha abordado la resolución de dos problemas distintos desde el punto de vista de requerimientos y condiciones de entorno. En primer lugar se aborda el problema de segmentar e identificar, los códigos de los contenedores de camiones con imágenes tomadas en la entrada de un puerto comercial que se encuentra ubicada a la intemperie. En este caso se trata de proponer técnicas de segmentación que permitan extraer objetos concretos, en nuestro caso caracteres en contenedores, procesando imágenes individuales. No sólo supone un reto el trabajar con iluminación natural, sino además el trabajar con elementos deteriorados, con contrastes muy diferentes, etc. Dentro de este contexto, en la tesis se evalúan técnicas presentes en la literatura como LAT, Watershed, algoritmo de Otsu, variación local o umbralizado para segmentar imágenes en niveles de gris. A partir de este estudio, se propone una solución que combina varias de las técnicas anteriores, en un intento de abordar con éxito la extracción de caracteres de contenedores en todas las situaciones ambientales de movimiento e iluminación. El conocimiento a priori del tipo de objetos a segmentar nos permitió diseñar filtros con capacidad discriminante entre el ruido y los caracteres. El sistema propuesto tiene el valor añadido de que no necesita el ajuste de parámetros, por parte del usuario, para adaptarse a las variaciones de iluminación ambientales y consigue un nivel alto en la segmentación e identificación de caracteres.Rosell Ortega, JA. (2011). Study of segmentation and identification techniques applied to environments with natural illumination and moving objects [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10863Palanci

    Feature-driven Volume Visualization of Medical Imaging Data

    Get PDF
    Direct volume rendering (DVR) is a volume visualization technique that has been proved to be a very powerful tool in many scientific visualization domains. Diagnostic medical imaging is one such domain in which DVR provides new capabilities for the analysis of complex cases and improves the efficiency of image interpretation workflows. However, the full potential of DVR in the medical domain has not yet been realized. A major obstacle for a better integration of DVR in the medical domain is the time-consuming process to optimize the rendering parameters that are needed to generate diagnostically relevant visualizations in which the important features that are hidden in image volumes are clearly displayed, such as shape and spatial localization of tumors, its relationship with adjacent structures, and temporal changes in the tumors. In current workflows, clinicians must manually specify the transfer function (TF), view-point (camera), clipping planes, and other visual parameters. Another obstacle for the adoption of DVR to the medical domain is the ever increasing volume of imaging data. The advancement of imaging acquisition techniques has led to a rapid expansion in the size of the data, in the forms of higher resolutions, temporal imaging acquisition to track treatment responses over time, and an increase in the number of imaging modalities that are used for a single procedure. The manual specification of the rendering parameters under these circumstances is very challenging. This thesis proposes a set of innovative methods that visualize important features in multi-dimensional and multi-modality medical images by automatically or semi-automatically optimizing the rendering parameters. Our methods enable visualizations necessary for the diagnostic procedure in which 2D slice of interest (SOI) can be augmented with 3D anatomical contextual information to provide accurate spatial localization of 2D features in the SOI; the rendering parameters are automatically computed to guarantee the visibility of 3D features; and changes in 3D features can be tracked in temporal data under the constraint of consistent contextual information. We also present a method for the efficient computation of visibility histograms (VHs) using adaptive binning, which allows our optimal DVR to be automated and visualized in real-time. We evaluated our methods by producing visualizations for a variety of clinically relevant scenarios and imaging data sets. We also examined the computational performance of our methods for these scenarios

    Feature-driven Volume Visualization of Medical Imaging Data

    Get PDF
    Direct volume rendering (DVR) is a volume visualization technique that has been proved to be a very powerful tool in many scientific visualization domains. Diagnostic medical imaging is one such domain in which DVR provides new capabilities for the analysis of complex cases and improves the efficiency of image interpretation workflows. However, the full potential of DVR in the medical domain has not yet been realized. A major obstacle for a better integration of DVR in the medical domain is the time-consuming process to optimize the rendering parameters that are needed to generate diagnostically relevant visualizations in which the important features that are hidden in image volumes are clearly displayed, such as shape and spatial localization of tumors, its relationship with adjacent structures, and temporal changes in the tumors. In current workflows, clinicians must manually specify the transfer function (TF), view-point (camera), clipping planes, and other visual parameters. Another obstacle for the adoption of DVR to the medical domain is the ever increasing volume of imaging data. The advancement of imaging acquisition techniques has led to a rapid expansion in the size of the data, in the forms of higher resolutions, temporal imaging acquisition to track treatment responses over time, and an increase in the number of imaging modalities that are used for a single procedure. The manual specification of the rendering parameters under these circumstances is very challenging. This thesis proposes a set of innovative methods that visualize important features in multi-dimensional and multi-modality medical images by automatically or semi-automatically optimizing the rendering parameters. Our methods enable visualizations necessary for the diagnostic procedure in which 2D slice of interest (SOI) can be augmented with 3D anatomical contextual information to provide accurate spatial localization of 2D features in the SOI; the rendering parameters are automatically computed to guarantee the visibility of 3D features; and changes in 3D features can be tracked in temporal data under the constraint of consistent contextual information. We also present a method for the efficient computation of visibility histograms (VHs) using adaptive binning, which allows our optimal DVR to be automated and visualized in real-time. We evaluated our methods by producing visualizations for a variety of clinically relevant scenarios and imaging data sets. We also examined the computational performance of our methods for these scenarios

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives
    • …
    corecore