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Abstract 

 

The increased activities in arctic water warrant modelling of ice properties and ice-structure 

interaction forces to ensure safe operations of ships and offshore platforms. Several established 

analytical and numerical ice force estimation models can be found in the literature. Recently, 

researchers have been working on Machine Learning (ML) based, data-driven force predictors 

trained on experimental data and field measurement. Application of both traditional and ML-based 

image processing for extracting information from ice floe images has also been reported in recent 

literature; because extraction of ice features from real-time videos and images can significantly 

improve ice force prediction.  

However, there exists room for improvement in those studies. For example, accurate extraction of 

ice floe information is still challenging because of their complex and varied shapes, colour 

similarities and reflection of light on them. Besides, real ice floes are often found in groups with 

overlapped and/or connected boundaries, making detecting even more challenging due to weaker 

edges in such situations. The development of an efficient coupled model, which will extract 

information from the ice floe images and train a force predictor based on the extracted dataset, is 

still an open problem. 

This research presents two Hybrid force prediction models. Instead of using analytical or 

numerical approaches, the Hybrid models directly extract floe characteristics from the images and 

later train ML-based force predictors using those extracted floe parameters. The first model 

extracted ice features from images using traditional image processing techniques and then used 

SVM and FFNN to develop two separate force predictors. The improved ice image processing 

technique used here can extract useful ice properties from a closely connected, unevenly 
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illuminated floe field with various floe sizes and shapes.  The second model extracted ice features 

from images using RCNN and then trained two separate force predictors using SVM and FFNN, 

similar to the first model.  

The dataset for training SVM and FFNN force predictors involved variables extracted from the 

image (floe number, density, sizes, etc.) and variables taken from the experimental analysis results 

(ship speed, floe thickness, force etc.). The performance of both Hybrid models in terms of image 

segmentation and force prediction, are analyzed and compared to establish their validity and 

applicability. 

Nevertheless, there exists room for further development of the proposed Hybrid models. For 

example, extend the current models to include more data and investigate other machine learning 

and deep learning-based network architectures to predict the ice force directly from the image as 

an input.   
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.                                                                                                                         Chapter 01 

1.0 Introduction 

1.1 Background and motivation 

The gradual melting of ice and exposure of the land in the Arctic region has increased the 

possibility of extensive commercial and scientific activities in that area. This subsequently boosted 

relevant research and development activities, particularly with respect to structural safety, 

including navigating technology in ice-infested areas to ensure structures are capable of 

withstanding extreme cold and ice forces. However, building proper technologies and operating 

them in the Arctic is more technically and physically challenging than any other water way due to 

low temperatures, remoteness, darkness, and the prevalence of ice. One of the major threats to the 

moving vessel and offshore installations is the interaction with multi-directional drifting sea ice 

with a wide variety of types and forms, ranging from isolated first-year floes to compacted multi-

year ridges. The ice-ship interaction process is dynamic and depends on many complex and 

interconnected parameters and characteristics related to the icefield, the ship, and the surrounding 

environment. Therefore, developing analytical, numerical, data-driven and physical models to 

understand and analyze ice floe characteristics and their subsequent force on floating structures is 

essential in ensuring safe and reliable activities in the Arctic. 

With the advancement of microwave satellite sensors, ice concentration data on a global scale has 

become available on a daily basis. The variability of sea ice extent on a global level can now be 

monitored easily due to this development. Various types of remote sensing technologies and 

corresponding image processing algorithms for analyzing sea-ice statistics and ice properties have 

been developed over the years. Satellite remote sensing has been widely used to extract ice 
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concentration [1], classify ice types [2], and analyze ice floes [3]. Digital visual image techniques 

are also applied to ice observation [4]–[6]. However, these technologies have various limitations 

in terms of applicability, area of operation, performance, and reliability concerns for real-time 

implementation [7]. It is still challenging to predict the sea ice behaviour at ship/ offshore structure 

level due to the lack of knowledge about the sub-grid scale information and the associated 

complexities of ice floe interactions at that level. To solve this, attention to understanding and 

extracting ice characteristics at ice floe levels has recently been increasing. Ships sailing or 

operating in polar regions most frequently travel/stay in Marginal Ice Zone (MIZ) or ice fields 

managed by an ice breaker (Figure 1-1). Understanding, analyzing and extracting ice floe and ice 

force characteristics at this sub-grid level are vital to ensure safe offshore operation. 

 

Figure. 1-1: Ship in a broken arctic ice field [1]. 
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Over the last few decades, understanding and modelling of ice forces on fixed, moored floating, 

dynamic positioning (DP) controlled platform/vessels; and on icebreaking or slowly maneuvering 

ships in managed or unmanaged broken ice fields are attempted on multiple frontiers – ranging 

from analytical formulation and numerical modelling to experimental and hybrid modelling. The 

analytical, empirical, and statistical methods often show high numerical efficiency and ease of 

integration; however, they do not accurately model all relevant physical processes. Hence these 

methods are not applicable to real-life applications.  Most of the computational techniques require 

high computation resources. They often take a long calculation time, which is unsuitable for real-

time simulations. To compensate for the deficiencies of a single method, often multiple methods 

are combined to obtain the desired result. Therefore, there is a recent increasing trend in using 

hybrid methods to model ice-structure interactions, for example, FEM and SPH coupling [8], 

combined FEM-DEM simulations [9], and CFD-DEM coupling numerical method [10]. However, 

regardless of the methods adopted, validations with quality measurements are paramount to the 

success of the ice-structure interaction models; and the lack of high-quality physical model tests 

and full-scale measurements for a thorough validation adversely impacts confidence in the 

modelling [11]. 

Though these methods achieve varying degrees of success in predicting ice forces for a specific 

ice condition and vessel type, almost in all cases, these techniques lack versatility and cannot be 

generalized. To address the above issue, many researchers have developed ML and deep learning 

techniques for ice force predictions in ship-ice interaction. However, all these Machine Learning 

based models involved the use of directly measured numerical data extracted from fields, model 

tests or numerical analyses, and no real-time processing of ice images is performed to extract those 

datasets. 
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Using real imagery and applying digital image processing techniques is one of the best ways to 

extract real-time ice characteristics in the oceans. With the advancement of computer visions, 

several advanced algorithms, for example, Convolutional Neural Networks (CNN), Regions with 

Convolutional Neural Networks (R-CNN), You Only Look Once (YOLO) are extensively applied 

in various fields for image analysis, the application of these advanced tools for ice image 

processing is still at its infancy. Some recent works involve Mask Region-based CNN architecture 

for detecting icebergs [12],  CNN-based black ice detection platform to prevent accidents [13], 

Python-based open-source algorithm for detecting sea ice surface features using high-resolution 

optical imagery [14], SVM-based method to detect pancake ice and compute their size distribution 

[15]. However, none of these works used the extracted ice floe information to estimate ice forces 

on structures. 

The motivation of this research work is to address these gaps in research and develop a tool that 

will extract the ice floe characteristics from experimental/field videos/images and use the 

information for predicting ice forces on the ship in real-time. 

 

1.2 Aim and Objectives 

The aim of this thesis is to develop a model for ice force estimation on moving ship/offshore 

structures in a managed ice field using supervised and unsupervised image processing and data 

analysis tools.  

The objectives of this research work are as follows: 
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❖ Develop comprehensive image processing tools using both the traditional and ML-based 

image processing approaches that can separate unevenly illuminated and highly irregular 

ice floes with close connections and overlaps.   

❖ Compare and validate the developed tools against existing methods in the literature. 

❖ Extracting ice floe properties (i.e., segmenting ice regions from water, detecting floe 

boundaries, estimating ice concentration and floe sizes) from video images using the 

developed tools. 

❖ Use the extracted features from the image processing tools to predict ice force on moving 

ships in real-time. 

 

1.3 Research Tools and Expected Outcomes 

 The core research objectives, investigation tools, and expected outcomes are listed in Table 1-1. 

These tools can be grouped into two categories: 

Image processing Related:  Tools to segment the images to extract icefield and vessel information 

to be used as input to ML modelling for ship-ice interaction loads. Both traditional image 

segmenting approaches and ML-based tools are used in this regard. Ice-field information may 

include concentration, floe size distribution, drift speed, etc. The vessel information may include 

vessel position, orientation, speed, etc. Validate the extracted data with manually collected and 

measured information. Comparison with other existing methods and justification of new 

developments are shown in the following Chapters. A combination of several modified MATLAB-

based image processing tools ([16], [17]) is used for this section. 
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Table 1-1: Research tools and expected outcomes. 

 

Core objectives Features Descriptions 

Develop a comprehensive image 

processing tool using the traditional 

image processing approach. 

Tool Used MATLAB-based advanced GVF-SNAKE 

algorithm, including wavelet transform and 

morphological filtering. 

Expected 

Outcomes 

Can separate unevenly illuminated and highly 

irregular ice floes with close connections and 

overlaps from both simulated and real ice 

images. 

Comparisons and validations of the 

developed tool using simulated and 

experimental ice field images. 

Tool Used MATLAB-based Marker Watershed and 

typical GVF-Snake method 

Expected 

Outcomes 

Improved computational efficiency based on 

the floe counting, ice concentration and time 

taken to run the algorithm. 

Develop and validate another image 

processing tools using Machine 

Learning based image processing 

approach. 

Tool Used Region-based Convolutional Neural Network 

Expected 

Outcomes 

A faster Machine Learning based ice floe 

image segmentor with reasonable accuracy. 

Develop, train, validate and test two 

Machine Learning based force 

predictors using Support Vector 

Machine and Feed Forward Neural 

Network approaches. 

Tool Used MATLAB-based SVM and FFNN platforms 

Expected 

Outcomes 

Realtime ice force prediction tools with 

reasonable accuracy. 
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Force Estimation Related: ML-based tools for ice force prediction using the extracted ice-field 

and vessel information from the previous step. Predicting the forces for certain ice conditions and 

validating with the corresponding measurements. The support vector machine and feed-forward 

neural network are used in the MATLAB environment to develop these tools [18].  

 

1.4 State of the Thesis 

The thesis is written in manuscript format. One conference manuscript has been published. One 

journal paper (an extended version of the conference paper) is at the review stage, and another in 

the preparation stage is included in the thesis. A co-authorship statement is provided at the 

beginning of the thesis. The overall state of the thesis is shown in Figure 1-2, and a brief overview 

of each chapter is described below: 

Chapter 1 of the thesis describes the motivations and objectives of the research. This chapter also 

includes a brief review of the research problem addressed in this thesis. 

Chapter 2 of the thesis represents the elaborative literature review of the research. This chapter 

also describes an extensive idea of previous works related to this thesis. 

Chapter 3 presents image-based ice field parameter extraction for predicting ship-ice interactions. 

A detailed analysis of the performance of the proposed improved ice processing tool against other 

available tools is also described. 

Chapter 4 describes another Machine Learning based image feature extraction tool. The chapter 

also includes the steps of developing, training, validating and testing two ice load prediction tools. 

These force predictors are trained using SVM and FFNN, respectively. 
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Figure 1-2: State of the thesis 

 

Chapter 1 

General Overview and 
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Literature review 
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Using an Improved (Faster and 
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Chapter 4 

Machine Learning Based Image 

Parameter Extraction tools. And 

SVM and FFNN based real-time 
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Wavelet Transformation 
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GVF Snake Algorithm  

Distance Transformation 

Faster Region Based Convolutional 

Neural Network 

Transfer Learning (Resnet50) 

Support Vector Machine 

Feed Forward Neural Network 

Chapter 5 

Conclusions and 

Recommendations 
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Chapter 5 summarizes the key features of the thesis. The chapter also provides a few 

recommendations for future research. 

Appendix A includes the conference paper which is presented in OMAE 2022. 

Appendix B contains all the source codes modified, developed and used for this study. 
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.                                                                                                                         Chapter 02 

2.0 Literature Review 
 

Advancement in image processing through the development and application of novel theories and 

algorithms has been providing researchers with sophisticated tools to extract and process various 

information from an image or a set of sequential images. Such capabilities of image processing 

open the doors for a wide range of uses, for example, in visualization and recognition (detect 

objects of interest in an image), pattern recognition (for estimating various parameters from a 

sequential set of images), retrieval (search and locate similar images from a large database of 

digital images), object tracking, object segmentation, motion prediction, object reconstructions. 

Specific applications include traffic monitoring, autonomous driving, medical imaging, remote 

sensing, face detection, feature extraction, forecasting, augmented reality, security and monitoring, 

and many other fields [19].  However, unlike other engineering fields, the nature of solutions 

applied to process images largely varies depending on the area of applications. The information 

extracted from images is further used for decision-making, prediction or similar other applications. 

Advanced image analysis techniques in the medical field have enabled more efficient and accurate 

treatment plans. For example, in medical imaging, it might be more important to identify a 

particular object (e.g., a tumour) from an image. Video image processing systems for traffic 

sensing focus on detecting other vehicles, traffic signs etc., thus, bringing tremendous 

breakthrough in autonomous and safe manual driving, as well as better traffic management. For 

security and monitoring, on the other hand, one of the objectives is reconstructing and enhancing 

an otherwise blurry image (i.e., facial impression and fingerprint) to improve the quality of data 

extraction. Thus, aiding the surveillance and biometric authentication frontier. Image processing 
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in augmented reality and virtual reality fields focus on mimicking real-life environment to improve 

gaming and other virtual platform experiences. 

This thesis focuses on sea ice image processing, where the objective is to identify and distinguish 

ice pieces of a complicated multi-domain ice field where floe sizes, concentrations, and shapes 

vary significantly (Figure 1-1). The extracted ice floe information can subsequently be used to 

predict ice forces on floating or fixed structures in the ice field. Therefore, in the context of the 

current research work, we performed a review of the literature in two areas: image processing for 

feature extraction and image-based ice force prediction. 

2.1 Image processing for feature extraction 

Extracting information from images through segmentation and other processing means is 

continually evolving, especially over the last few decades. There has been increasing interest in 

image recognition, image morphology, image data recognition and prediction through neural 

networks and knowledge-based image analysis. Processing an image means applying various 

operations to enhance its visual appearance or extract quantitative data for further technical 

applications and processing. In order to do so, the first task is digitizing the image to read it using 

the computer.  

At its core, an image is a combination of many pixels. Pixels are the smallest controllable and 

representable building block of an image. An image can be disintegrated into a two-dimensional 

matrix of pixels. The number of pixels in the matrix depends on the resolution of the image; a 

higher resolution means the image contains a higher number of pixels. Each pixel in an image 

takes on a specific shade, opacity, or colour. When the pixels are modelled from the data extraction 

point of view, they are usually represented in one of the following forms: 
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Grayscale - A pixel is an integer with a value between 0 to 255 (0 is completely black, and 255 is 

completely white). 

RGB - A pixel is made up of 3 integers between 0 to 255 (the integers represent the intensity of 

red, green, and blue). 

RGBA - It is an extension of RGB with an added alpha field, which represents the opacity of the 

image. 

Apart from acquiring and transforming an image into its digital form (the matrix form with pixel 

values), the other steps of image processing involve performing certain operations, depending on 

the field of applications, to enhance the image or extract useful information from it. Typical 

operations include: 

Image enhancement – Manipulating the acquired image to meet the needs of the particular task for 

which this image processing is undertaken. The manipulations primarily aim to emphasize the 

hidden or important features in an image, for example, brightness and contrast adjustment. 

Therefore, this step is quite critical as it is highly subjective in nature. 

Image restoration, colour, and filtering – Restoring missing features by applying certain 

probabilistic and mathematical models. Colour adjustment of RGB images for better feature 

extraction. Adjust the resolution and remove noise or blur from images using filtering techniques 

such as wavelet and Gaussian blurring. 

Morphological processing and segmentation – Morphing the image (micro level crop, union, 

subtraction etc.) for better representation of the object shapes and then partitioning the image into 
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its constituent parts or objects. It is usually the most tricky and challenging step of image 

processing.  

Representation, description, and recognition: Describing the segmented regions based on 

characteristics and regional properties, extracting quantitative information to differentiate one 

class of object from another and assigning labels to objects based on their description [20].  

The literature on image processing to perform the above steps is vast and complex. A large number 

of algorithms and techniques are reported in the literature to complete each of these stages and 

achieve different results depending on the target to be achieved. The image processing and 

segmentation algorithms usually used for ice detection can be roughly divided into twso categories: 

unsupervised methods and supervised methods. 

2.1.1 Unsupervised methods 

An unsupervised method for image segmentation is where the outcomes (groupings of pixels with 

common characteristics) are based on analyzing an image without the user providing sample 

classes. The applied algorithms determine which pixels are related and group them into classes. 

The user does not aid in the classification process, except by specifying the algorithm to be used 

and the number of expected output classes [21]. However, the user must have knowledge of the 

area being classified when the groupings of pixels with common characteristics produced by the 

computer have to be related to actual features on the ground (such as ice, water, etc.). Unsupervised 

methods are effective and widely used due to their simplicity and independency over training 

samples and labels. Over the last few decades, several unsupervised methods have been developed 

and applied for processing ice field images. 
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Some widely applied unsupervised methods are classical histogram thresholding, and clustering 

[22], [23], active contour model ([24], [25]) [26], graphcut [27], fuzzy entropy [28], watershed 

transform [29], wavelet transforms ([30],[31],[32]), gradient vector flow (GVF) and snake ([33], 

[7]), Markov random field, spectral clustering [7] and so on.  The clustering algorithm itself can 

be further categorized into three sub-groups based on the inherent principles – decomposing 

density function [34], minimizing objective function [35] and graph theory [36].  

Otsu thresholding and k-means clustering are two basic methods which are widely used for 

background and foreground separation of a grayscale image based on its histogram. Both methods 

work well for ice image segmentations when the floes are significantly brighter, well separated 

and have even illumination [37]. However, there is no room for pre- and post-processing of the 

images while using these techniques. Edge detection methods, for example, derivative and 

morphology edge detection techniques, usually perform better in this regard and can detect distinct 

boundaries with some non-uniform illumination. However, these methods fail to identify close 

boundaries and separate the ice floes that are tightly connected [38].  

Watershed-based methods can be applied to separate connected floes with blurred edges in an ice 

field image. This technique has been successfully used in other applications, for example, cell 

nuclei image segmentations and grain separation [39], [40]. However, watershed-based techniques 

produce over- and under-segmentations when ice floes are unevenly illuminated, and floe sizes 

and shapes vary significantly [41]. An improved watershed method is proposed by [42], where a 

neighbouring region merging algorithm is added for better edge detection. Nevertheless, accurate 

identification of floe boundaries and floe numbers remains a challenge as watershed 

transformation operates on binary images, and a significant amount of real boundary information 

between connected floes can be lost while using this transformation. Recently, [15] and [43] 
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applied another modified version of the watershed method named the marker-controlled watershed 

(MCW) technique for pancake ice detection and agricultural field detection from satellite imagery. 

They incorporated non-linear support vector machine (SVM) analysis with traditional watershed 

to avoid over-segmentation. However, the problem of detecting irregular floes with uneven 

illumination and blur edging still remains. 

Recently several researchers implemented a modified GVF method to tackle the issues of detecting 

complex shape floes [25], [4]. For example, the GVF snake algorithm, combined with distance 

transform-based automatic contour initialization, is adopted by [7] to separate seemingly 

connected floes. After that, ice floe shapes are enhanced using an ice shape enhancement 

algorithm, and individual ice floes are identified. This new technique is insensitive to proper 

initialization and can detect various complex floe shapes. However, connected ice floes may not 

be separated by this method because of the loss of the seeds when the ice floes are unevenly 

illuminated and closely packed without having clearly visible boundaries.   

Therefore, this research work aims at developing a comprehensive image processing tool that can 

separate unevenly illuminated and highly irregular ice floes with close connections and overlaps. 

The tool developed in this research focuses on image enhancement to improve illumination, 

brightness, and edges of ice floes; and efficiently removing small floes to improve the processing 

time.  

2.1.2 Supervised methods 

The supervised method is based on the idea that the user specifies sample pixels in an image as 

representative of specific classes and then directs the image processing software to use these 

marked images as training and validation sets for the classification of all other pixels in the image 
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[21]. The training set is selected, processed, and labelled based on the experience and expertise of 

the user. The user also sets the bounds for how similar other pixels must be to group them together. 

These bounds are often set based on the spectral characteristics of the training area, plus or minus 

a certain increment (usually based on “brightness” or strength of reflection in specific spectral 

bands). The user also designates the number of classes into which the image is classified [21]. 

Therefore, supervised methods use feature learning to achieve image segmentation, and the benefit 

of using such approaches is that they provide faster detection results after successful training is 

completed. However, they also require significant training samples and label images to learn and 

predict accurate results. 

The most common supervised methods used for image processing are Convolutional Neural 

Network (CNN) [44] and Fully Convolution Network (FCN) [45]. For example, [46] illustrates 

the CNN-based image recognition for autonomous driving, [47] describes another CNN-based 

method that identifies five different types of tissues to aid lung and colon cancer detection. [48] 

proposed a Deep CNN-based intelligent method that can automatically detect the presence of ice 

on wind turbines in regions affected by cold weather. An SVM-based platform to monitor sea ice 

using high-resolution synthetic aperture radar (SAR) images has been developed by [49]. There is 

also some dedicated machine learning (ML) based algorithms developed recently to process ice 

images, for example, river ice segmentation using deep learning [50], and segmentation of high-

resolution satellite images of sea ice using weakly supervised CNNs [51]. [50] Presented the results 

of a comparative study using four state-of-the-art deep CNNs for segmenting images and videos 

of river surface into the water and two types of ice. These platforms are UNet, SegNet,  Deeplab 

and DenseNet. While the overall detection performance is not quite impressive, the study 

demonstrated reasonable success in handling the lack of labelled images using data augmentation. 
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Then, [52] demonstrated the performance of two semantic segmentation-based SegNet and 

PSPNet101 neural network architectures for automated detection and classification of sea ice types 

using camera feeds onboard an ice breaker. However, these two nets only focused on detecting the 

ice classes as a whole, i.e., not separating the individual ice pieces. Recently, [53] developed 

another similar but more accurate novel CNN-based model for recognizing sea-ice images through 

semantic image segmentation. This approach provided better results in separating ice cluster from 

the background (i.e. water) compared to previous studies. [54] proposed a deep learning-based 

river surface ice quantification method using distant and oblique-viewed public cameras. Again, 

the focus in these analyses was detecting the overall ice extents and concentrations, rather than 

separating individual floes. Table 2-1 presents a succinct summary of the recent researches on 

image segmentations for an easy referencing. 

As can be seen, although a significant number of algorithms for image processing have been 

proposed, image segmentation still remains one of the most challenging research topics, especially 

for situations similar to complex ice floe fields. It is because no existing method provides a unified 

framework for achieving fast and effective image segmentation. This can be attributed to two 

reasons: (a) image segmentation is a multiple-solution problem. It is possible to propose several 

best segmentation processes for a single image. (b) Complex images usually contain noise, 

background issues, nonuniform intensity and low signal-to-noise ratio. As a result, it is challenging 

to propose a generalized segmentation framework that will achieve satisfactory image 

segmentation performance and fit all application areas [55]. For example, the recent machine 

learning approach developed for line defect recognition in additive manufacturing based on DCNN 

[56], and another two models proposed for automatic detection of plant diseases based on SVC,  
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Table 2-1: Summary of recent works on image segmentations 

Citation Objectives Methodology 

/Algorithms 

Key Features 

[40] Automated 

segmentation and 

tracking of cancer 

cell nuclei 

Watershed image 

segmentation 

method 

Tracked cell and identified phases fairly 

well. 

Do not work well with uneven illumination 

and rapid variation in shapes. 

[7] Sea ice image 

processing and ice 

classifications 

K-mean 

thresholding, 

Watershed 

segmentation, GVF 

SNAKE contour 

tracking 

GVF SNAKE improves ice segmentation 

compared to traditional approaches. 

Managed to separate seemingly connected 

floes to some extent. 

Problem remains when floe size varies 

significantly, and noise exists. 

[15] Pancake ice 

detection in 

images 

Marker Controlled 

Watershed and 

SVM 

Uniform shaped pancake ice floes are 

effectively detected. 

Detection of irregular floes with blur edging 

and uneven illumination remains as a 

challenge. 

[48] Ice detection on 

wind turbine 

blades 

Deep learning 

methods (Grad-

CAM, U-Net, 

Resnet-50) 

Boundaries of the icing regions are 

estimated with reasonable accuracy. 

Not applicable in separating different ice 

regions 

[49] Sea ice monitoring 

from satellites 

SVM based ML Capturing local and regional change in ice 

extents using time series image map. 

Not applicable for floe level ice detection. 

[50] River ice detection CNN based deep 

learning (UNet, 

SegNet,  Deeplab 

and DenseNet) 

Computing surface ice concentration for 

two types of ice from images. 

Unable to handle noisy images. 

Unable to separate ice pieces. 

[37] Sea ice 

segmentation for 

climate change 

modelling 

Weakly-Supervised 

CNNs 

Detection, separation and segmentation of 

sea ice at continental level from high 

resolution satellite images. 

Not applied on ice floe level detection and 

classification. 

[52] Classifying sea ice 

using semantic 

segmentation 

SegNet and 

PSPNet101 neural 

network  

Automated detection and classification of se 

ice using camera feeds onboard. 

Focused on detecting ice classes as a whole, 

not separating the ice pieces. 

[53] Precise separation 

of ice clusters 

from water. 

CNN based deep 

learning (Ice-

Deeplab) 

Aimed to segment the ice features from the 

image background. 

Not focused on separating ice floes 

[54] River surface ice 

quantification 

from oblique 

images 

CNN based deep 

learning (UNet 

Marked watershed) 

Quantify surface ice concentration and ice 

pan properties from oblique low-resolution 

images. 

Not focused on separating connected ice 

floes. 
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CNN [57]; and SVM, DT, RF [58], respectively, will not work for ice floe detection and feature 

extraction, as these models are focused on perfecting a particular aspect of the application.  

This thesis focuses on proposing a Hybrid model to support an ice management system, at first, 

by providing useful ice information including ice concentration, density, and floe size distribution 

through image processing. Then, by training a dynamic ice force estimator, using those extracted 

information from the images to provide decision support. 

 

2.2 Image based ice force prediction 

The ship and offshore platforms operating in the Arctic region should be designed to have efficient 

performance in ice. So, with the increase in commercial activities, navigation and scientific 

investigation in polar regions, more attention has been paid to the structural design and 

maneuvering performance of ships in ice-covered waters. The determination of real-time ice loads 

on a ship hull, in this regard, is essential to analyze the ice-structure interaction and design 

appropriate structures against forces from ice.  

Over the last few decades, understanding and modelling ice forces on fixed, moored floating, DP-

controlled platforms/vessels; and on icebreaking or slowly maneuvering ships in managed or 

unmanaged broken ice fields have been attempted on multiple frontiers. For example, classical 

analytical formulation of single, large ice sheet load on fixed structure [59], analytical formulation 

of ice floes interaction with floater [60], empirical-statistical modelling of vessels and managed 

ice field interactions [61]. Physical model testing of vessels in managed ice [62], or platforms in 

shallow waters [63]. Ice force modelling on conical structures based on long-term field tests data 

[64]. Numerical modelling, such as Computational cohesive element model ([65], [66]), finite 
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element model ([67], [68], [69]), Discrete element modelling ([70], [71], [5], [72]), Smoothed 

Particle Hydrodynamics [73], Collision-Energy-Based Method [74], Particle-in-cell method [11], 

GPU event mechanics method [11]. Hybrid modelling, for example, model test and subsequent 

simulations of ice impacts on ship hulls in broken ice fields [75].  

The analytical, empirical, and statistical methods often show high numerical efficiency and ease 

of integration; however, they do not accurately model the relevant physical processes. Hence these 

methods should not be considered where closeness to physical processes is the most important.  

Most of the computational methods require high computation resources. They often take a long 

calculation time, which is unsuitable for real-time simulations. To compensate for the deficiencies 

of one method by another, hybrid modelling methods are adopted to combine two or multiple 

computational methods. Therefore, there is an increasing trend in using hybrid methods to model 

ice-structure interactions. However, regardless of the methods adopted, validations with quality 

measurements are paramount to the success of the ice-structure interaction models; and the lack of 

high-quality physical model tests and full-scale measurements for a thorough validation adversely 

impacts confidence in the modelling [11]. Also, almost all these models lack versatility and are 

usually valid for certain ice conditions and certain vessels. 

The applications of machine learning and deep learning techniques for ship performance 

predictions have been pursued by many researchers to tackle the above issue. Recently, [76] 

implemented Artificial Intelligence (AI) based Machine Learning (ML) and Deep Learning (DL) 

models to predict ship performance characteristics based on time-averaged and time-dependent 

data and prediction of forces on a dynamic positioning ship operating in a broken icefield. One 

modelling case involved developing an ML algorithm to predict time-averaged ice forces on DP-

controlled ships at the given ranges of ice concentration, floe size, ice thickness, strength, density, 
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drift speeds and direction. The other modelling case involved predicting the time-dependent forces 

on a DP-controlled ship at specific operating conditions and ice-field parameters. The ML-based 

predictive models showed reasonable accuracy compared to the corresponding measurements and 

performed better than conventional regression-based models. Also, [77] reported a data-driven 

prediction model based on Artificial Neural Networks to estimate the ice resistance of ice-going 

ships in level ice, where the predictor was trained by various parameters, including ship geometries 

and test conditions. Later, [78] proposed an ML-based method to predict ice resistance for polar 

ships. Their methods include three ANN models, which are validated with full-scale and model-

scale measurements. However, all these models involved the use of numerical data extracted from 

the field, model test or numerical analysis, which are, again, situation-specific, as real-time 

processing of ice images was not done to extract those datasets. 

Using areal imagery and applying digital image processing techniques is one of the best ways to 

extract real-time ice characteristics in the oceans. Although with the advancement of computer 

visions, several advanced algorithms, for example, Convolutional Neural Networks (CNN), and 

Regions with Convolutional Neural Networks (R-CNN), You Only Look Once (YOLO) are 

developed and extensively applied in various fields for image analysis, the application of these 

advanced tools for ice image processing is still at its infancy. Some recent investigations include, 

iceberg detection using Masked-RCNN [12],  detection of black ice to prevent accident using 

CNN-based platform [13], detecting sea ice surface features in high-resolution optical imagery 

using Python based opensource algorithm [14],  detect pancake ice and compute their size 

distribution using SVM based method [15]. However, these works focused on extracting ice 

features only and did not investigate estimating ice forces. 

 



 
22 

2.3 Summary 

The primary objective of this research work, therefore, is to address these gaps, and develop a tool 

that will extract the ice floe characteristics from experimental/field videos/images and use the 

information for ML-based real-time ice force prediction platform. The tools developed in this 

research work are faster compared to existing approaches, as it effectively focuses on image-based 

ice force prediction approach, mainly on moving vessel by reducing high computational time. 
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Abstract 

Accurate modelling of ice properties and ice-structure interaction forces is becoming increasingly 

crucial to ensure safe operations of ships and offshore platforms with the increased activities in 

arctic water. Extraction of ice features from real-time videos and images can significantly improve 

ice force prediction. However, accurate extraction of ice floe information is challenging due to 

several inherent complexities in ice images. This paper, in this regard, presents an improved ice 

image processing technique which can extract useful ice properties from a closely connected, 

unevenly illuminated floe field with various floe sizes and shapes. Several image processing 

features, including histogram equalization, wavelet denoising, gradient flow vector, snake 

algorithm, and distance transformation, were applied to develop the model. The effectiveness of 

the proposed method is demonstrated through the processing of simulated and model basin 

recorded ice field images, and its performance is compared with two other existing models. The 

potentiality of the model in real-time application is also described.  

 

Keywords: Image Processing, Managed ice, Ice properties, Sea ice, Wavelet, Denoising 
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Nomenclature 

x  Distance from origin in the horizontal axis 

y  Distance from origin in the vertical axis 

G  Gaussian function 

 σ  Standard deviation 

𝑅0, 𝐺0, 𝐵0 Red, Green, Blue color matrices of the original image 

𝑅𝑛             Red color channel matrix for the normalized image 

i, j  index for color matrices 

𝑢, 𝑣             The derivatives of the vector field in x and y directions. 

𝜇             Parameters to control the balance between the integrands 

f             Edge map which is larger near the edges 

Ф                     Scaling Function 

Ѱ                     Wavelet Function 

 

3.1 Introduction 

Navigation in the Arctic is usually more challenging compared to other regions due to its 

remoteness, harsh weather and, most importantly, the presence of ice. Recently, increased 

commercial and scientific activities in ice-infested waters have driven further research on the 

accurate estimation of ice behaviors, including ice-structure interaction forces to ensure safe 

operations. Advancement in image processing has been providing researchers with sophisticated 

tools to extract and process various ice features and apply that knowledge to understand and 

forecast the behaviour of an ice field across multiple navigation scenarios. 

Image processing through the development and application of novel theories and algorithms is 

gaining interest in recent years with a wide range of applications, for example, in computer vision, 
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medical imaging, remote sensing, face detection, feature extraction, forecasting, augmented 

reality, and many other fields [19]. The nature of solutions applied to process images largely varies 

depending on the field of applications. For example, in medical imaging, it might be more 

important to identify a particular object (e.g., a tumour) from an image. Whereas, for sea ice 

images, the objective is to identify and distinguish ice pieces of a complicated multi-domain ice 

field where floe sizes, concentrations, and shapes vary significantly. It becomes challenging to 

separate ice floes due to their close contact, overlaps and uneven illumination. Figure 3-1 shows a 

typical ice floe field with the usual complexities. Efficient and accurate extraction of relevant ice 

parameters from an image to facilitate ice force calculation and to understand its dynamic nature 

is a challenging problem. 

 

Figure 3-1: Ship in complex, managed ice field [79] 

 

Over the last few decades, several key technologies have been developed and applied for 

processing ice field images. For example, the classical histogram thresholding and clustering [23], 
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watershed transform [29], wavelet transforms ([30],[31],[32]), active contour model ([24], [25]), 

gradient vector flow (GVF) and snake ([33], [7]), Markov random field, spectral clustering, neural 

network [7] and so on. Otsu thresholding and k-means clustering are two basic methods widely 

used for background and foreground separation of a grayscale image based on its histogram. 

Though there is no room for pre and post-processing of the images while using these techniques, 

both methods work well for ice image segmentations when the floes are significantly brighter, well 

separated and have even illumination [37]. Edge detection methods, for example, derivative and 

morphology edge detection techniques, usually perform better in this regard and can detect distinct 

boundaries with some nonuniform illumination. However, these methods fail to identify close 

boundaries and separate the ice floes that are tightly connected [38].  

Watershed-based methods can be applied in this regard to separate connected floes with blurred 

edges in an ice field image. This technique has been successfully used in other applications, for 

example, cell nuclei image segmentations and grain separation [39], [40]. However, watershed-

based techniques produce over- and under-segmentations when ice floes are unevenly illuminated, 

and floe sizes and shapes vary significantly [41]. An improved watershed method is proposed by 

[42], where a neighbouring region merging algorithm is added for better edge detection. 

Nevertheless, accurate identification of floe boundaries and floe numbers remains a challenge as 

watershed transformation operates on binary images, and a significant amount of real boundary 

information between connected floes can be lost while using this transformation. Recently, [15] 

and [43] applied another modified version of the watershed method named marker-controlled 

watershed (MCW) technique for pancake ice detection and agricultural field detection from 

satellite imagery. They incorporated non-linear support vector machine (SVM) analysis with 
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traditional watershed to avoid over-segmentation. However, the problem of detecting irregular 

floes with uneven illumination and blur edging still remains. 

Recently several researchers implemented a modified GVF method to tackle the issues of detecting 

complex shape floes [25], [4]. For example, the GVF snake algorithm, combined with distance 

transform-based automatic contour initialization, is adopted by [7] to separate seemingly 

connected floes. After that, ice floe shapes are enhanced using an ice shape enhancement algorithm 

and identification of individual ice floes is accomplished. This new technique is insensitive to 

proper initialization and can detect various complex floe shapes. However, connected ice floes 

may not be separated by this method because of the loss of the seeds when the ice floes are 

unevenly illuminated and closely packed without having clearly visible boundaries.   

There are also some dedicated machine learning (ML) based algorithms developed recently to 

process ice images, for example, river ice segmentation using deep learning [50], and segmentation 

of high-resolution satellite images of sea ice using weakly supervised CNNs [51]. Though ML-

based models are widely used in various fields, these techniques are known to be black-box 

approaches and do not offer physical insight. In this study, our focus is mainly on applying 

knowledge-based methods for image processing, primarily to use the knowledge to improve 

navigation performance.  

The primary objective of this work is to develop a comprehensive image processing tool that can 

separate unevenly illuminated and highly irregular ice floes with close connections and overlaps. 

Thus, advancing the capabilities of ice image processing methods. The tool developed in this 

research focuses on image enhancement to improve illumination, brightness and edges of ice floes, 

and efficiently removing small floes to improve the processing time. The methodology is 
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implemented using MATLAB. Comparisons and validations of the developed tool are 

demonstrated using simulated and real-world ice field images.   

The rest of the paper proceeds as follows: Section 3.2 describes the algorithms and techniques used 

for this study. In Section 3.3, the results obtained from the proposed method are described and 

compared with selected existing works. Finally, concluding remarks, including limitations and 

scopes for future work, is presented in Section 3.4. 

3.2 Methodology 

Extracting meaningful information from an image through image processing involved several 

tasks, namely, edge detection, noise removal, shape detection, and object count. A range of 

techniques are applied to complete these tasks that can be divided into the following four steps: 

• Image enhancement - preparing images for analysis. 

• Image segmentation - separating objects and regions of interest. 

• Morphological filtering - removing noise. 

• Region analysis - extracting statistical data. 

A flow chart summarizing the methodology is shown in Figure 3-2, and the following subsections 

provide extended descriptions of the method. 

3.2.1 Image enhancement 

The purpose of this step is to acquire and preprocess the selected image through filtering, 

adjustment of contrast and brightness, sharpening etc., to make it easier to identify key features. It 

is a crucial step for successful image processing. In this study, a multistep preprocessing 

framework is proposed for ice image enhancement through the incorporation of a few novel 

features.  
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Figure 3-2: Flowchart for the proposed ice image processing technique. 
 



 
30 

3.2.1.1 Illumination adjustment 

First, the uneven illumination is addressed through normalizing the colour image using a unique 

technique. The input colour image is separated into RGB channels, and each element of these 

colour matrices are normalized using all three corresponding colour values. Eq. 3-1 illustrates the 

method using normalization of the red colour as an example: 

 

𝑅𝑛(𝑖, 𝑗) = 𝑅0(𝑖, 𝑗)/√𝑅0
2(𝑖, 𝑗) + 𝐺0

2(𝑖, 𝑗) + 𝐵0
2(𝑖, 𝑗)             (3-1)  

 

The three normalized matrices for red, green and blue colours are then combined back to obtain 

the improved image with better illumination, which is then converted to grayscale for further 

preprocessing. 

The outcome of the image enhancement stage is demonstrated in Figure 3-3. A low-resolution 

segment of an ice field image recorded in an ice basin is shown in Figure 3-3(a) [62]. The default 

grayscale conversion of this image using the Otsu thresholding method is presented in Figure 3-

3(b). Figure 3-3(c) is the grayscale conversion resulting from the improved colour image obtained 

from the brightness adjustment phase. As noticed, the ice floes became dark in the revised 

uniformly illuminated image. Hence, the complemented image is generated to reflect the darker 

background which is shown in Figure 3-3(d).  

3.2.1.2 Histogram equalization 

It is evident that the inverted image obtained in the previous stage, Figure 3-3(d), has very poor 

contrast. Thus, contrast adjustment is required to ensure a sharp difference between the foreground 

and background. As can be seen in the histogram, Figure 3-3(e), the intensity values are limited to 

the middle portion of the range, confined within 0.5-0.65 (left). 
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(a)                               (b)         (c) 

 

    
  (d)             (e)     (f)  

Figure 3-3: Steps of image enhancement: (a) original image, (b) default grayscale 

conversion, (c) grayscale conversion after normalizing the illumination, (d) colour 

inversion of ‘c,’ (e) histogram equalization, (f) improved grayscale after wavelet denoising. 
 

 

Using Eq. 3-2, the image adjustment is made in such a way that the contrast fills the entire intensity 

range [0, 255], keeping the shape of the histogram similar, as seen on the right histogram in Figure 

3-3(e).  

 

𝐈𝑛 =  [{𝐈𝑜. (1/255)}.𝛾 ]. 255                                          (3-2)  
 

 

Here, In is the new image after equalization, Io is the original image, and γ is the histogram 

correction factor. First, the original image is scaled, and then a correction factor is applied. Next, 

the image is scaled back to fit the [0 255] range through element-wise multiplication. γ can be any 

value between 0 and infinity. The mapping is linear when γ is 1. If γ is less than 1, the mapping is 

weighted toward higher (brighter) output values, and it is weighted toward lower (darker) output 

values if γ is greater than 1. For this study, γ = 0.9 is used. 
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A drawback of this process is that 1% of the colour data from the original histogram is saturated 

at low and high intensities in the new image (the two peaks in the histogram are near zero and 

100). However, the resulting sharp differences between black and white, as compared to the default 

grayscale in Figure 3-3(b), prevent over-segmentations of the ice floes, as discussed later in section 

3. 

 

3.2.1.3 Denoising and edge sharpening 

Following the histogram equalization, further enhancement is done to remove the noise from the 

image using wavelet based denoising technique. To detect the ice floes efficiently, it is important 

that the edges are preserved and sharpened as much as possible while denoising the image. 

Traditional lowpass filtering used for removing noises often smoothen the edges and adversely 

affects the image quality. The application of such technique creates a merging of multiple ice floes. 

Wavelet, on the other hand, can remove noises while preserving the important edge features on the 

image. 

Wavelet transform concentrates signal and image features in a few large-magnitude wavelet 

coefficients. Appropriate thresholding is then used to remove those coefficients marked as noise 

without affecting the image quality. Discrete Wavelet transform (Eq. 3-3) is used in the 

transformation of image pixels to wavelets, and after thresholding, the image data is reconstructed 

using inverse wavelet transform (Eq. 3- 4). In these equations, φ and ψ are the scaling function and 

wavelet function, respectively. More details on this can be found in [80].  

 

𝑊𝜑(𝑗𝑜, 𝑘) =
1

√𝑀
∑ 𝑓(𝑥)𝜑𝑗𝑜,𝑘(𝑥)𝑥 , 𝑊𝜓(𝑗, 𝑘) =

1

√𝑀
∑ 𝑓(𝑥)𝜓𝑗,𝑘(𝑥)𝑥    (3-3) 

𝑓(𝑥) =
1

√𝑀
∑ 𝑊𝜑(𝑗𝑜, 𝑘)𝐾 𝜑𝑗𝑜,𝑘(𝑥) +

1

√𝑀
∑ ∑ 𝑊𝜓(𝑗, 𝑘)𝐾 𝜓𝑗,𝑘(𝑥)∞

𝑗=𝑗𝑜
  (3-4) 
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In this study, biorthogonal wavelet (bior4.4) is used which is found to be effective for image 

denoising in the literature [81]. Figure 3-4 shows the shape of bior4.4 wavelet and scaling 

functions. The threshold is selected based on Stein’s unbiased estimate of risk -quadratic loss 

function [30]. The estimation of noise variance in the image is done based on the highest resolution 

wavelet coefficient. Further explanation of the setup is available in [82]. The final output of image 

enhancement, after wavelet denoising, is shown in Figure 3-3(f), which is evidently better than the 

original grayscale image in Figure 3-3(b) in terms of uniform illumination and image sharpness. 

Following this appropriate enhancement comes the image segmentation step, which primarily 

involves separating the foreground from the background through edge detection and boundary 

separation.  

 

Figure 3-4: Decomposition and reconstruction functions for bio-orthogonal 4.4 wavelet. 
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3.2.2 Image segmentation 

The core of image segmentation is to convert an image into a collection of regions of pixels that 

are separated by some criteria. A common criterion used is locating abrupt discontinuities in pixel 

values to identify those regions as edges. Some other approaches are clustering, thresholding, 

region growing, etc. However, as explained earlier, applying a single technique is inadequate to 

handle the complex scenario of separating ice floes. 

Therefore, the enhanced image obtained from the previous sub-section is segmented by developing 

an improved version of the GVF snake model proposed by [7]. The model is a combination of 

thresholding, clustering and region growing where the GVF snake technique [83] is applied to 

efficiently track the boundaries of the ice floes starting from the initial contours around the seed 

element. The Gaussian blurring [33] is removed from the original approach as wavelet is now used 

to preprocess the image, resulting in better performance in terms of edge detection. Figure 3-5 

shows the images processed using Gaussian blurring and wavelet. As can be seen, the latter 

produced a comparatively better preprocessed image with less noise and slightly sharper edges. 

Also, adaptive thresholding is used for binarizing the image instead of traditional global 

thresholding. It chooses the threshold based on the local mean intensity (first-order statistics) in 

the neighbourhood of each pixel, and such an approach is better suited for images where 

foreground and background are not clearly distinguishable throughout the image, as in the case of 

ice floe images. An improvement is added in iteration counting as well to maximize the 

computational efficiency, as shown in the flowchart in Figure 3-2. Previously, the snake algorithm 

was used to run until the set number of iterations was reached. However, it was found that the 

number of floes detected by the algorithm can reach saturation (not changing from the previous 

iteration) before the total set number of iterations is performed. The revised program will exit the 
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snake algorithm once the floe numbers no longer change, rather than completing the total number 

of iterations. 

 

 
 

Figure 3-5: Image processed using Gaussian blurring (left) and wavelet (right). 

 

The traditional snake algorithm [83]defines the boundaries as an active contour modelled as 

energy-minimizing spline. A typical snake boundary curve S(l) = (x(l), Y(l)) with normalized arc 

length l ϵ [0,1] moves through the image’s spatial domain in such a way that the summation of 

external and internal energy is minimized (Eq. 3-5). 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∫ [𝐸𝑖𝑛𝑡(𝑆(𝑙)) + 𝐸𝑒𝑥𝑡(𝑆(𝑙)) ]𝑑𝑙
1

0
                                           (3-5) 

 

Here, the internal energy is defined using two parameters to control the snake’s rigidity and 

tension. External energy, on the other hand, is calculated based on the image gradient. As explored 

in [7], the traditional snake algorithm is sensitive to the initial contour, which means if the initial 

guess of the boundary of the seed element is not near to actual boundary, the snake will not 

conform to the actual boundary. The snake also progresses unpredictably near concave regions. 

Such limitations result in significant over-segmentations for typical ice floe images. The modified 

method uses a GVF field V(x,y)= [u(x,y), v(x,y)], derived from the spatial diffusion of the gradient 

of edges from the image to minimize the energy functional following this relationship: 
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∈= ∬[𝜇(𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑥
2 + 𝑣𝑦

2) + |∇𝑓|2⌈𝑣 − ∇𝑓⌉2] 𝑑𝑥𝑑𝑦         (3-6) 

 

The improved method can track and get closer to the true boundary even if the initial contour is 

not close to the true boundary. However, if the initial contour is too far away from the true 

boundary, more iterations will be required to reach it. Also, the GVF algorithm operates on the 

grayscale image; thus, unlike in the watershed method, real boundary information is preserved.  

Once the GVFs are calculated, ice floes are labelled after being separated from water using 

thresholding. Then, each floe is checked to ensure that the floe area is less than the given threshold, 

the ice floe has a convex shape (the ratio between the floe area and its minimum bounding polygon 

area is larger than the threshold), and the length-to-width ratio of the minimum bounding rectangle 

of the ice floe is less than the threshold [7]. 

The snake algorithm is then run for those floes which do not satisfy the criteria. Although GVF 

snake ensures that a detected boundary is a closed curve, initial contours for the seed elements are 

required for the successful implementation of this method. An automatic contour initialization 

used in [7] is applied in this regard with slight modification in iteration counting to improve the 

efficiency of the proposed ice image segmentation method. This automatic initialization is 

designed based on the distance transform [84] and the local maxima of the binary format of the 

input image. For a binary image I, the distance transform, D(x,y), is the minimum distance from 

each pixel in I (which belongs to the foreground, O) to the background B, which is: 

𝐃(𝑥, 𝑦) = {
0                                        if (𝑥, 𝑦) ∈ 𝐵

𝑚𝑖𝑛𝑏∈𝐵𝑑[(𝑥, 𝑦), 𝑏]         if (𝑥, 𝑦) ∈ 𝑂
            (3-7) 

Where 𝑑[(𝑥, 𝑦), 𝑏]  is the distance measure between pixel (x,y) and b [84]. More details related to 

these methods can be found in the referred publications. 
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The next step is morphological operation, where several techniques are used to clean the ice floes. 

 

3.2.3 Morphological filtering 

Once the ice floes are segmented, morphological closing and morphological opening are 

performed using a structuring element and through the process of erosion and dilation. It is a 

predefined shape used to probe an input image and check on how its element fits or misses the 

shapes in the image of interest [7]. The erosion operation is used to smoothen/trim an object by 

removing pixels from the boundaries, whereas the dilation operation adds pixels to the boundaries 

to fill/thickens the object.  

Thus, morphological closing is used to fill holes and join narrow breaks, while the morphological 

opening is used to remove thin protrusions and break thin connections. To illustrate, for an image 

I (Figure 2-6(a)) and a 2 by 2 structuring element S, the results of morphological closing of I by S 

((𝑰∎𝑺) will be a dilation followed by an erosion, and the resultant output is shown in Figure 3-

6(b). Similarly, the morphological opening of I by S ((𝑰𝑜𝑺) will be an erosion followed by a 

dilation, and the resultant output is shown in Figure 3-6(c). 

Another noise removing filtering is used to detect and remove ice floes smaller than a particular 

size from the grayscale image before implementing the GVF snake algorithm, thus, improving the 

computational efficiency significantly (as described later in section 3.3). The process of noise 

removal from the grayscale image is illustrated in Figure 3-7. 
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(a)                                       (b)                                         (c) 

 

Figure 3-6: Binary image I (a), morphological closing of I (b), morphological opening of I 

(c). 
 

 

        
(a)                                       (b)                                 (c) 

 

Figure 3-7: Binary image J and the structuring element (a), overlapping of structuring 

element on J to detect noises (b), removal of noises from J (c). 
 

 

As can be seen, a structuring element (denoted in blue pixels) of size 3 (3 by 3) is chosen for this 

example. The noise removal algorithm is then run by moving the structuring element across the 

image J to check if there are any clusters of pixels that are unable to hold the structuring element 

entirely without exposing any of its pixels to the boundary. For illustration, the structuring element 

is overlapped in three locations on image J (Figure 3-7(b)). As noticed, the protruding segment of 

the big floe will be kept as the structuring element is fitting inside this big floe, and only those two 

small floes will be removed as they are unable to contain the structuring element entirely (Figure 

3-7(c)). The reason for using another noise removal technique here apart from the morphological 
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opening and closing is that use of a bigger structural element for such opening, and closing will 

truncate the protruding portion of the big floes (such as in Figure 3-7). In contrast, this revised 

algorithm will only remove isolated small ice floes. As shown later in section 3.3, a noise size of 

15 is used in this study to remove smaller floes. 

3.2.4 Region analysis 

Once the morphological operations are completed, the image is now ready for extraction of 

information about the ice floes in the image, for example, the number, size and centers of the ice 

floes, and the histogram of floe distribution. Several standard algorithms, such as regionprops, 

bwlevel, bwarea, are used for data collection in this regard. Accurate extraction of this floe related 

information is one of the crucial steps for ship-ice interaction force prediction modelling. The force 

prediction modeller requires reasonably precise estimation of ice concentrations, floe counts and 

floe size distributions as input to ensure a reliable ship-ice interaction force prediction. The next 

section describes how the information extracted from this region analysis phase is arranged, 

reported and compared with other existing methods. 

 

3.3 Results and discussion 

The performance of the proposed image processing model is evaluated in two stages - using 

simulated ice images with designed complexities and using images from ice tank tests.  

3.3.1 Processing simulated ice images 

One of the main objectives of this study is to develop a robust model that can detect ice floes of 

various sizes and irregular shapes with sharp concave and convex corners. Two simulated ice floe 
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images are prepared to test the efficiency of the developed tool in detecting ice floes with such 

complexities. These two images are shown in Figure 3-8. 

 

  
     Overlap      connection 

 

Figure 3-8: Simple (left) and complex (right) simulated ice floe images. 
 

As can be seen, these images are carefully designed to include complex shapes with sharp corners, 

close contacts, and overlaps among adjacent floes. Both these images are analyzed using the model 

proposed by Zhang & Skjetne [33], MCW model by Turker et al. [43] and the improved model 

proposed in this study. The thresholding parameters mentioned in sub-section 3.2.2, and the 

iteration numbers are kept the same for both analyses. It should also be mentioned here that the 

RGB image normalization applied for image enhancement has no impact on these ideal images as 

the ice floes are evenly illuminated. As shown in Figure 3-9, for the simple ideal image, Zhang & 

Skjetne was unable to separate two closely touched floes (top left) and considered the three 

overlapped floes (bottom left) as one floe. The proposed model and MCW model detected all the 

floes with 100% accuracy (12 out of 12 floes). 

Similarly, Figure 3-10 illustrates the performance comparison of the three models for the complex 

simulated image. As noticed, Zhang & Skjetne model combined all eight floes on the top right 

corner as one and failed to isolate them. The same goes for other overlaps near the bottom region 

of the image. MCW model, on the other hand, performed exceptionally well and detected all floes, 
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including overlaps, close touch and complex curves. There is just a small over-segmentation for 

the biggest floe. 

   

Figure 3-9: Simple, simulated ice floe image segmentation: (left) Zhang & Skjetne (2018), 

(middle) Marker Watershed (Turker et al., 2021), (right) proposed model. 
 

The proposed method also detected all the overlap, and there was no under-segmentation. 

However, there appear to be a few over-segmentations, especially around the corners of the biggest 

floe. This happened because the initial contour for this big floe is too far from the true boundary, 

and the number of iterations set for this analysis is not enough to capture the actual boundary 

accurately. The results can be improved with the expense of computational efficiency by 

increasing the number of iterations for the GVF snake process. However, the level of improvement 

achieved is not justified compared to the additional computational time required. Table 3-1 

compares the floe detection performances of the three models against manual counting. 

 

   

Figure 3-10: Complex, simulated ice floe image segmentation: (left) Zhang & Skjetne 

(2018), (middle) Marker Watershed (Turker et al., 2021), (right) proposed model. 
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Table 3-1: Floe detection comparison among various models for simulated images. 

 Manual count Zhang & Skjetne Marker Watershed Proposed model 

Simple simulated 

image 

12 7 12 12 

Complex simulated 

image 

33 16 33 

(1 oversegmentation) 

33 

(6 oversegmentations) 

 

 

3.3.2 Analysis of real ice tank images 

After demonstrating the capability of the proposed model in processing ideal ice images, its 

performance in identifying closely packed ice floes with uneven illumination is tested in this 

subsection using five low-resolution images (350 by 230 pixels). These ice image segments are 

extracted from five different ice model testing reported in [62]. As can be seen in Figure 3-11, all 

these images contain noises, close contact and near overlapping situations, uneven illumination of 

floes, and a variety of floe sizes.  

Similar to subsection 3.3.1, these five images extracted from the ice model test are processed using 

Zhang & Skjetne, MCW and the proposed model. To make a fair comparison, various model 

parameters are kept constant across models, as shown in Table 3-2.  

 

     

Image 1 Image 2 Image 3 Image 4 Image 5 

 

Figure 3-11: Ice floe mages extracted from Model Basin experimental test [62]. 
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Table 3-2: Model parameters for ice floe image analysis 

 

Parameter Value 

Min ice piece area for 

segmentation 
580 

Max ice piece area for 

segmentation 
8000 

Convexity threshold 0.85 

Length to width ratio 2.0 

Streel size 1.0 

GVF iteration 800 

Snake iteration 200 

Min detected ice floe area 20 

 

Figure 3-12 compares the processed images obtained from the three methods with the original 

version. The MCW performed poorly for all five images and produced significant over-

segmentations. This is because the MCW method is unable to handle nonuniform illumination. 

The method proposed by Zhang & Skjetne did well in detecting large and medium size floes, those 

with prominent boundaries. However, it over-segmented many big floes (as highlighted using 

black circles) due to uneven illumination issues. This model also missed many small floes and part 

of bigger floes due to blurry edges, weak boundaries, and colour shading issues. 

On the other hand, the proposed improved method performed much better in detecting and 

segmenting both the small and the large floes. It does produce under-segmentations, especially in 

images 2, 3 and 4, which can be argued in favour of a conservative estimation. Also, both Zhang 

& Skjetne and the proposed method failed to detect the large floe near the lower right corner in 

image 2 and ended up over-segmenting it.  

Nevertheless, the floe counting accuracy and detection of the overall amount of ice concentrations 

improved significantly when the proposed model was used. Improved prediction of floe numbers 
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and ice concentrations is crucial to ensure a better estimation of ship-ice interaction. Table 3-3 

represents a floe count comparison chart for both methods against floe counted via manual 

observation. The proposed method is doing much better in terms of floe identification in complex 

situations with nonuniform illuminations, complex floe shapes and weak boundaries. For images 
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Figure 3-12: Segmentation results for ice floe images from model basin test – comparison 

among Zhang & Skjetne  (2018), Marker Watershed (Turker et al., 2021) and proposed 

model. 

1 and 5, the floe counting from the proposed method is nearly the same as the manual observation. 

As for images 2 to 4, both the proposed method and Zhang & Skjetne missed a significant number 
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of small floes. However, Zhang & Skjetne's model could not capture those floes, while the 

proposed method captured those small floes but combined them on many occasions, thus reducing 

the floe counts. This fact can be clearly understood from the ice coverage prediction chart in Table 

3-3. As noticed, the ice coverage prediction for the proposed method is consistently close to the 

actual percentage. Therefore, it can be said that floe information extracted from the proposed 

method will help achieve a better ship-ice interaction force prediction. In contrast, the Zhang & 

Skjetne model performs poorly in capturing the coverage with accuracy. Also, as seen in images 

2 to 4, the ice coverage percentage for the proposed model is slightly higher than the actual 

coverage, which occurred as the proposed model combined small floes on several occasions, thus 

increasing the percentage. It should be mentioned here that the boundaries of all the ice floes are 

marked manually on an image so that none of them are missed when the actual ice coverage 

percentage is calculated. 

Table 3-3: Floe count and ice coverage comparison between Zhang & Skjetne and 

proposed models 

  Image 1 Image 2 Image 3 Image 4 Image 5 

N
o
 o

f 
fl

o
es

 Manual 

Observation 

105 114 119 157 60 

Zhang & 

Skjetne 

74 (-31) 81 (-33) 90 (-29) 123 (-34) 50 (-10) 

Proposed model 108 (+3) 80 (-34) 91(-28) 127(-30) 63 (+3) 

       

%
 o

f 
Ic

e 

co
v
er

a
g
e Actual Coverage 76.56 77.59 79.90 74.91 81.50 

Zhang & 

Skjetne 

57.02 71.13 70.10 63.60 69.93 

Proposed model 75.68 78.47 81.41 75.91 80.89 
 

 

Figures 3-13 and 3-14 depict the variation in ice coverage percentage prediction and time taken by 

various methods. A laptop with a 10th generation core i7 CPU@2.30 GHz with 16 GB of ram is 

used to run the simulations for this study. As already mentioned, the proposed model predicts the 
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ice coverage more precisely compared to Zhang & Skjetne. As for processing time, MCW is the 

most efficient; however, very poor in terms of accuracy, as described earlier. Of the other two 

models, the proposed one is fairly better in terms of efficiency as compared to Zhang & Skjetne. 

It is also observed that processing time is more dependent on the complexities of the image rather 

than concentration because image 2 (which is more complex) took the longest time, although 

image 5 has the highest ice density.  

 

  

Figure 3-13: Comparison of ice coverage prediction. 
 

 

 

Figure 3-14: Processing time comparison among various models. 
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Figure 3-15 compares the histograms of floe counts for all five test images obtained from the 

Zhang & Skjetne and proposed methods with the manually marked image results. As can be seen, 

Zhang & Skjetne missed smaller floes as compared to the proposed method, especially in images 

1 and 5. The counting of larger floes also varies for Zhang & Skjetne produced a few over-

segmentations (images 1,2,3, and 5). 
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Figure 3-15: Histograms of floe count [no of floes (y) vs flow size in pixels (x). 1 mm2 =14.2 

pixels]: (left column) outputs from the manually marked image, (middle column) outputs 

from Zhang & Skjetne (2018), (right column) outputs from the proposed method. 
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Histogram comparisons also confirmed that both methods miss small floes on various occasions, 

as already described earlier, especially for images 2 to 4. Apart from that, both methods captured 

the overall floe distribution pattern reasonably well. 

 

 

3.3.3 Computational efficiency and real-time applicability  

As can be seen from the analysis results presented in subsection 3.3.2 above, the accuracy of the 

proposed method is quite acceptable; however, the processing time taken is not feasible for real-

time ship-ice interaction image processing applications. The floe information should be extracted 

from the image within a minute, and fed into the ship-ice interaction force modelling platform for 

a real-time prediction. Therefore, as described in Methodology subsection 3.2.3, a technique for 

removing small ice floes during the image enhancement step is proposed. As small ice floes are 

removed as noises before running the actual segmentation algorithm, the computational load in 

detecting the number of ice floes and floe edges reduces drastically. Thus, making the model 

significantly faster, improving the overall efficiency and feasibility of its application in real-time 

ship-ice interaction force prediction. 

Two full-size model test images are used to test the performance of the proposed model in 

extracting ice features from full-size experimental images by removing noises (small floes below 

a certain size). As shown in Figure 3-16, both images A and B are of size 4573 by 1117 pixels and 

contain a significant amount of noise. Floe sizes below 30 pixels are marked as noise and removed 

before the analysis is run. The floes in image A are more uniform in terms of size and shape as 

compared to image B. As noticed in the segmented images, the proposed method detected most of 

the floes accurately in image A, and for image B several under-segmentations occurred. However, 

from the practical point of view, those under-segmentations can be compensated under a 
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conservative estimation approach, keeping in mind the significant improvement achieved in 

computational time.  
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Figure 3-16: Evaluation of model performance after improving the computational 

efficiency by removing small floes below significant sizes (noises). 
 

 

The same noise removal technique is applied in Zhang & Skjetne (2018) and the Marker watershed 

model (2021). Both these images, A and B, are then processed to compare the improvement in 

computational performances achieved among these three methods. As can be seen in Figure 3-17, 

the processing time reduces drastically for all three methods. The marker watershed stills take the 

lowest time. However, it produces over-segmentation for more than 30% of the floes (Figure 3-
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16). Therefore, the slightly longer time taken by the proposed method can be justified considering 

the accuracy achieved compared to the Marker Watershed. The superiority of the proposed method 

over the other two approaches in detecting the number of floes and ice concentrations is already 

discussed in detail in section 3.3.2; thus, not repeated here.  

The lowest time taken by the proposed method for processing the five images in Figure 3-11 was 

for image 5, which was 1202 sec. The size of those images was 350 by 230 pixels. Now, images 

A and B in Figure 3-14 are 63 times larger than image 5 in Figure 3-11. However, the processing 

time for images A and B was 62 sec and 76 sec, respectively, which became nearly 16 times faster. 

Therefore, it can be said that the proposed method has good potential for real-time ship-ice 

interaction force prediction application, and further improvement can be made in this regard in 

future studies.  

 

 

Figure 3-17: Processing time comparison among various models after small floes removal. 
 

 

 

3.4 Conclusion 

Detection of ice floes from images is challenging because of their complex and varied shapes, 

colour similarities and reflection of light on them. Besides, real ice floes are often found in groups 

with overlapped and/or connected boundaries, making detecting even more challenging due to 
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weaker edges in such situations. This paper presents the development and implementation of an 

improved ice segmentation approach, and the key features are summarized below: 

• Wavelet filtering and histogram equalization are used to enhance the input images through 

denoising and contrast adjustment.  

• Image segmentation is carried out using an efficient model developed by combining GVF, 

snake algorithm and distance transformation. Various morphological filtering and region 

analysis techniques are then applied to extract floe features. 

• The capability of the proposed model to separate complex floes with weaker and connected 

boundaries in noisy and nonuniform illumination environments more efficiently compared to 

existing models in the literature is demonstrated.  

• Overall, the model can detect the total number of floes with more than 85% accuracy and ice 

concentration at 95% and above accuracy. 

• It is nearly 50% faster compared to the previous model. It can be used for real-time ice floe 

detection due to its faster processing time with the expense of accuracy to a certain acceptable 

limit, as described in section 2.3.  

• However, the current model manually sets some parameters related to ice properties. These 

parameters could be automatically tuned as the texture and size of ice fields varies significantly. 

Thus, there exists room for improvement, especially in terms of automation.  
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Abstract 

The navigable ice for a longer summer period, coupled with technological advancements, is 

making the Northwest passage an attractive, commercially viable shipping route. Increasing 

commercial and scientific activities in this ice-infested region are driving the research in the precise 

estimation of ice forces on the ship and other offshore structures. Two Hybrid models for force 

prediction are proposed. The first model extracts ice features from images using traditional image 

processing techniques and then uses SVM and FFNN to develop two separate force predictors. 

The second model, on the other hand, extracts ice features from images using RCNN, and then 

trains two separate force predictors using SVM and FFNN. The performance of both Hybrid 

models is demonstrated using experimental data collected from a large state-of-the-art wave tank. 

Keywords: Machine learning; Transfer learning; Region Based Convolutional Neural Networks 

(RCNN); Support Vector Machine (SVM); Feed-Forward Neural Network (FFNN)  

4.1 Introduction 

Explorers in the mid-19th century attempted to map the Northwest passage as a shortcut between 

North Pacific and North Atlantic by navigating the Arctic Ocean. At that time, in addition to the 
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lack of technology, the route was mostly blocked by impassable ice, even in the summer; thus, 

leading to the loss of many great explorers and resources. Nearly one and a half centuries later, 

today, the arctic route is increasingly accessible for a few months during summer due to the melting 

of ice in the Arctic. This navigable ice, coupled with the advancement in technology, is making 

the Northwest passage a commercially viable shipping route. However, the ship and offshore 

platforms operating in the Arctic region should be designed to have efficient performance in ice. 

So, with the increase in commercial activities, navigation and scientific investigation in polar 

regions, more attention is being paid to the structural design and maneuvering performance of 

ships in ice-covered waters. The determination of real-time ice loads on a ship hull, in this regard, 

is essential to analyze the ice-structure interaction and design appropriate structures against forces 

from ice.  

Over the last few decades, understanding and modelling of ice forces on fixed, moored floating, 

DP-controlled platforms/vessels; and on icebreaking or slowly maneuvering ships in managed or 

unmanaged broken ice fields have been attempted on multiple frontiers. For example, classical 

analytical formulation of single, large ice sheet load on fixed structure [59], analytical formulation 

of ice floes interaction with floater [60], empirical-statistical modelling of vessels and managed 

ice field interactions [61]. Physical model testing of vessels in managed ice [62], or platforms in 

shallow waters [63]. Ice force modelling on conical structures based on long-term field test data 

[64]. Numerical modelling, such as Computational cohesive element model ([65], [66]) finite 

element model ([67], [68], [69]), Discrete element modelling ([70], [71], [5], [72]), Smoothed 

Particle Hydrodynamics [73], Collision-Energy-Based Method [74], Particle-in-cell method [11], 

GPU event mechanics method [11]. Hybrid modelling, for example, model test and subsequent 

simulations of ice impacts on ship hulls in broken ice fields [75].  
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The analytical, empirical, and statistical methods often show high numerical efficiency and ease 

of integration; however, they do not accurately model the relevant physical processes. Hence these 

methods should not be considered where closeness to physical processes is the desired objective.  

Computational methods require high computation resources, and calculation time is high, which 

is unsuitable for real-time simulations. In order to compensate for the deficiencies of a single 

technique, often empirical and computational methods are combined to achieve the goal. 

Regardless of the methods adopted, validations with quality measurements are paramount to the 

success of the ice-structure interaction models and, the lack of high-quality physical model tests 

and full-scale measurements for a thorough validation adversely impacts confidence in the 

modelling [11]. Also, almost all these models lack versatility, and are usually valid for certain ice 

conditions and certain vessels. 

The applications of machine learning and deep learning techniques for ship performance 

predictions have been pursued by many researchers for ice characterization and ice-ship interaction 

analysis. Recently, [76] implemented Artificial Intelligence (AI) based Machine Learning (ML) 

and Deep Learning (DL) models to predict ship performance characteristics based on time-

averaged and time-dependent data and prediction of forces on a dynamic positioning ship operating 

in a broken ice field. One modelling case involved developing an ML algorithm to predict time-

averaged ice forces on DP-controlled ships at the given ranges of ice concentration, floe size, ice 

thickness, strength, density, drift speeds and direction. The other modelling case involved 

predicting the time-dependent forces on a DP-controlled ship at specific operating conditions and 

ice-field parameters. The ML-based predictive models showed reasonable prediction accuracy and 

performed better than conventional regression-based models. In [77] researchers reported a data-

driven prediction model based on Artificial Neural Networks to estimate the ice resistance on ships 
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in level ice fields, where the predictor was trained by various parameters, including ship 

geometries and test conditions. Later, [78] proposed an ML-based method to predict ice resistance 

on polar ships. Their methods include three ANN models, which are validated with full-scale and 

model-scale measurements. However, all these models involved the use of data extracted at a 

particular time from the field, model test or numerical analysis. They did not consider how the 

parameters will vary in that exact location with the changes of time; that is, real-time processing 

of ice images was not done to extract those datasets. 

Apart from onboard camera captured images, using areal imagery and applying digital image 

processing techniques is also an efficient way to extract real-time ice characteristics on the macro 

level in the oceans. Although with the advancement of computer visions, several advanced 

algorithms, for example, Convolutional Neural Networks (CNN), and Regions with Convolutional 

Neural Networks (R-CNN), You Only Look Once (YOLO) are developed and extensively applied 

in various fields for image analysis, the application of these advanced tools for ice image 

processing is still at its infancy. Among the existing works, [4], [85] proposed image processing 

models to identify and characterize sea ice floes. [14] introduced another open-source algorithm 

for detecting sea ice surface features using high-resolution optical imagery. SVM was used by [15] 

to detect pancake ice and compute their size distribution. However, none of these works used this 

extracted ice floe information to estimate ice forces on structures. 

The primary objective of this research work, therefore, is to develop a tool which will extract the 

ice floe characteristics from experimental/field videos/images and use the information for real-

time ice force prediction. Two Hybrid approaches are developed in this study: (1) extraction of ice 

floe characteristics using traditional edge detection-based image processing tool (as presented in 

chapter 2) and feed the extracted information to develop a Feed-Forward Neural Network (FFNN) 
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and a Support vector machine (SVM) based predictors, which will be able to estimate ice force on 

ships in ice-covered water;  (2) use of ML based RCNN to train an image processing detector 

which will extract the ice floe information directly from the videos from ice tank test and field 

images; then, feed the extracted information to FFNN and SVM, as described in approach 1. Ice 

tank test images from NRC [62] were used to develop these Hybrid tools. The models are 

developed on the MATLAB platform.  

This paper is structured as follows: after the introduction in Section 4.1, Section 4.2 presents the 

methodology and techniques used for ice load prediction models, including an introduction to the 

RCNN, SVM and FFNN models. Section 4.3 reports the results obtained from the RCNN model 

for image feature extraction. Following that, force prediction results were obtained from the SVM 

and FFNN models and comparisons of the models’ performances. Finally, Section 4.4 gives some 

concluding remarks, limitations of the model and scopes for future work. 

 

4.2 Methodology 

A flowchart outlining the key steps of the Hybrid models developed in this study is shown in 

Figure 4-1. The key tasks can be grouped under two main categories – feature extraction from 

images, and development of subsequent force prediction based on the extracted features. The 

Analytical Image Processing (AIP) Based first Hybrid model extracts the image features using 

traditional image processing tools as described in Chapter 03. The Computer Vision Based Image 

Processing (CVIP), 2nd Hybrid model uses ML based R-CNN approach to extract ice floe 

information from the images. After that, both models use SVM and FFNN based force predictors 

for ice load estimation.  
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Figure 4-1: Flow chart for the Hybrid ice force prediction models development 
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The ship-ice interaction is a complex phenomenon. Therefore, similar to the traditional analytical 

and numerical approaches, the accuracy and reliability of the image-based modelling method 

depends on how accurately the most relevant ice-structure interaction information are extracted, 

and then formulated through the prediction model. The following subsections describe the 

methodology applied to achieve force estimation from the input images. Methodology for 

extracting image features using traditional image segmentation techniques is excluded, as those 

are described in Chapter 03. 

4.2.1 Image extraction from the input videos 

This study uses a set of videos captured during the experimental analysis performed at NRC-OCRE 

to evaluate the effects of various managed ice-field characteristics on the thruster forces [62]. 

Various video sensors are used to acquire a dataset of ice-field and vessel interactions in various 

managed ice conditions. Ice-1A classed anchor handling tug supply (AHTS) vessel called the 

Magne Viking, equipped with full-scale representative propulsion arrangement, was used for the 

model testing programs which is shown in figure 4-2 [61]. 

 
Figure 4-2: NRC-OCRE ice basin images [61] 
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Table 4-1: Test matrix for the Magne Viking model test in the ice basin  

 

Label for the video Thickness 

(m) 

Floe 

Size 

(m) 

Concentration 

(ice/water 

ratio) 

Drift 

Speed 
(knots) 

Drift 

angle 

(deg) 

12p5m_7ths_0p5kts_0p6m_0deg_001 0.6 12.5 7/10th 0.5 0⁰ 

12p5m_9ths_0p5kts_0p6m_0deg_001 0.6 12.5 9/10th 0.5 0⁰ 

12p5m_9ths_1p2kts_0p6m_0deg_001 0.6 12.5 9/10th 1.2 0⁰ 

12p5m_9ths_1p2kts_1m_0deg_001 1 12.5 9/10th 1.2 0⁰ 

25m_7ths_0p5kts_0p6m_0deg_001 0.6 25.0 7/10th 0.5 0⁰ 

25m_7ths_0p5kts_0p6m_10deg_001 0.6 25.0 7/10th 0.5 10⁰ 

25m_7ths_1p2kts_0p6m_0deg_001 0.6 25.0 7/10th 1.2 0⁰ 

25m_7ths_1p2kts_0p6m_25deg_001 0.6 25.0 7/10th 1.2 25⁰ 

25m_8ths_1p2kts_0p6m_0deg_001 0.6 25.0 8/10th 1.2 0⁰ 

25m_9ths_0p2kts_0p6m_0deg_001 0.6 25.0 9/10th 0.2 0⁰ 

25m_9ths_0p2kts_1m_0deg_001 1 25.0 9/10th 0.2 0⁰ 

25m_9ths_0p5kts_0p6m_0deg_001 0.6 25.0 9/10th 0.5 0⁰ 

25m_9ths_0p5kts_0p6m_0deg_002 0.6 25.0 9/10th 0.5 0⁰ 

25m_9ths_0p5kts_1m_0deg_001 1 25.0 9/10th 0.5 0⁰ 

25m_9ths_0p5kts_1m_10deg_001 1 25.0 9/10th 0.5 10⁰ 

25m_9ths_1p2kts_0p6m_0deg_001 0.6 25.0 9/10th 1.2 0⁰ 

50m_7ths_0p5kts_0p6m_0deg_001 0.6 50.0 7/10th 0.5 0⁰ 

50m_7ths_1p2kts_0p6m_0deg_001 0.6 50.0 7/10th 1.2 0⁰ 

50m_8ths_0p5kts_0p8m_10deg_001 0.8 50.0 8/10th 0.5 10⁰ 

50m_9ths_0p2kts_0p4m_0deg_001 0.4 50.0 9/10th 0.2 0⁰ 

50m_9ths_0p2kts_1m_10deg_001 1 50.0 9/10th 0.2 10⁰ 

50m_9ths_0p5kts_0p4m_30deg_002 0.4 50.0 9/10th 0.5 30⁰ 

50m_9ths_0p5kts_0p8m_0deg_002 0.8 50.0 9/10th 0.5 0⁰ 

50m_9ths_0p5kts_1m_0deg_001 1 50.0 9/10th 0.5 0⁰ 

50m_9ths_1p2kts_0p6m_0deg_001 0.6 50.0 9/10th 1.2 0⁰ 

50m_9ths_1p2kts_1m_10deg_001 1 50.0 9/10th 1.2 10⁰ 

50m_100m_9ths_1p2kts_0p4m_0deg001 0.4 50/100 9/10th 1.2 0⁰ 

100m_9ths_1p0kts_0p4m_0deg_002 0.4 100.0 9/10th 1.0 0⁰ 

100m_dist_9ths_1p2kts_0p4m_0deg_001 0.4 100.0 9/10th 1.2 0⁰ 

 

Tests were performed for various parametric ranges, including variables such as, ice thickness, 

floe size, ice concentration, model ship drift speed and angle. Among the videos for all the test 
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cases, 29 videos were used for this study. Videos are labelled in a ‘floe size_concentration_drift 

speed_thickness_drift angle_test run number’ format, as can be seen in Table 4-1.  

A multimedia reader object is then created in MATLAB to read and extract frames from these 

videos. Frames are extracted at an interval of 1 second. Figure 4-3 shows three random frames 

extracted from three experimental videos with 25, 50 and 100 floe sizes.  

 

 

 

Figure 4-3: Extracted frame from three different videos (25m, 50m and 100m floe size) 

 

The next steps are detecting and masking the ship, followed by ice floe detection and feature 

extraction. 

 

4.2.2 Image processing tools  

Faster R-CNN, or Region-based Convolutional Neural Network, is a deep learning object detection 

framework that uses a convolutional neural network (CNN) for detection. The key concept behind 
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the R-CNN series is region proposals, which are used to localize objects within an image. Then, 

the information is passed through a deep neural network which is trained for image classification 

using annotated training images. Essentially, RCNN combines rectangular region proposals with 

convolutional neural network features. R-CNN is a two-stage detection algorithm. The first stage 

identifies a subset of regions in an image that might contain an object. The second stage classifies 

the object in each region. As can be seen in Figure 4-4, given an input image ( Step 1), all possible 

region proposals or regions of interest (ROI) are extracted using an algorithm like Edge Boxes 

(Step 2). Then, the algorithm resizes (wrap) all the extracted crops and pass them through the 

trained network for detection (Step 3). The classifier portion of the network then takes all those 

ROIs as input and gives a label and confidence to each ROI as an output (Step 4).  

 
 

Figure 4-4: Region based Convolutional Neural Network concept [86] 
 

 

RCNN provides quite reasonable results, but it is a computationally expensive process as the 

Neural Network has to be evaluated for each ROI.  The faster RCNN [87], tackles this problem by 

adding a region proposal network (RPN) to generate ROIs directly in the network instead of using 

an external algorithm like the Edge Boxes. The RPN uses Anchor Boxes (as described later) for 

object detection, and generating ROI inside the network makes it faster compared to the usual 

RCNN. Faster RCNN has achieved great success for generic object detection and has been 
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successfully used in various applications, including car detection, facial recognition, animal 

identification ([88], [89], [90], [91]). Another benefit is that the faster RCNN is composed of a 

feature extraction network followed by two subnetworks. The feature extraction network is usually 

a pre-trained network, as shown in Figure 4-5. For this study, the ‘Resnet50’ is used as the feature 

extraction network. ResNet-50 is a deep residual neural network that has been trained on a large 

dataset called ImageNet for image classification tasks. This pretrained model is used as a starting 

point to train a new model for a different image classification task by "transferring" the knowledge 

it has learned from the ImageNet dataset to the new task. This is done by modifying the last layer 

of the pre-trained model to fit the new task, and then training this layer using the new dataset. The 

rest of the network weights are kept fixed, since they have already learned meaningful features 

from the large dataset. This is much faster and requires much less data compared to training the 

entire network from scratch. Transfer learning in the present study is applied by configuring only 

the last four layers to train this ‘Resnet50’ network to perform the new recognition task of detecting 

the ship and ice floes, using the ice floe images acquired from the experimental videos.   

 

Figure 4-5: Faster RCNN object detection network 

 

The equation for the residual block in ResNet-50 is: 

y = F(x, {W_i}) + x     (4-1) 
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where x is the input to the residual block, F is the non-linear mapping learned by the block, and 

{W_i} are the parameters of the block. y is the output of the block, and x is added back to the 

output to ensure that the residual block learns a residual mapping. 

A loss function is used to train the final layer is the cross-entropy loss between the predicted 

probabilities and the true labels. The equation for the loss function in transfer learning is: 

L = -\sum_{i=1}^{N} y_i \log(\hat{y_i})   (4-2) 

where N is the number of samples in the dataset, y_i is the true label for the i-th sample, and 

\hat{y_i} is the predicted probability for the i-th sample. The loss function is used to update the 

parameters of the final layer in order to minimize the error between the predicted and true labels. 

The first subnetwork following this feature extraction network is a region proposal network (RPN), 

which is trained to generate object proposals or ROI, that means areas in the image where objects 

are likely to exist. The second subnetwork is trained to predict the actual class of each object 

proposal, which are ship and ice floes in this study.  

The following three parameters are defined at first to initialize the network: 

The network input size: To train this network, it is essential to standardize the sizes of all the input 

images to avoid scaling issues in the detection results. The minimum size required for this network 

is [224 224 3], where 224 by 224 is the image pixel size in y and x, and 3 refers to the three-colour 

channels, RGB. The computational cost incurred by processing data increases as the size increases. 

Nevertheless, for this study, the actual resolution of the images from the video output is used to 

achieve a better result for ship and ice piece detection. [1134 6096 3] is used when the network is 

trained for ship detection, and [1134 1024 3] is used for ice floe detection training (as the input 

images for ice floe detection are cropped along the x direction to reduce the size). Although full-

size images took longer for training, the detection accuracy improved significantly.  
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Anchor boxes: Anchor boxes are a set of predefined bounding boxes of a certain height and width. 

These boxes are defined to capture the scale and aspect ratio of specific object classes which wants 

to detect and are typically chosen based on object sizes in the training datasets. During detection, 

the predefined anchor boxes are tiled across the image. The network predicts the probability and 

other attributes, such as background, intersection over union (IoU) and offsets for every tiled 

anchor box. The predictions are used to refine each individual anchor box. Several anchor boxes 

can be defined, each for a different object size. The network does not directly predict bounding 

boxes, but rather predicts the probabilities and refinements that correspond to the tiled anchor 

boxes. The use of anchor boxes enables a network to detect multiple objects, objects of different 

scales, and overlapping objects. The embedded region proposal network generates the size of the 

anchor boxes based on the input training images. This study used three anchor boxes with the 

following sizes: 140   498, 140   458, and 159   496. The position of an anchor box is determined 

by mapping the location of the network output back to the input image. The process is replicated 

for every network output. The result produces a set of tiled anchor boxes across the entire image. 

Each anchor box represents a specific prediction of a class. For example, there are two anchor 

boxes to make two predictions per location in the image, as shown in Figure 4-6 [18].  

Feature extraction network: As described earlier in this section, a pre-trained CNN, ‘Resnet50,’ is 

used as the feature extraction network. The 'activation_40_relu' is used as the feature extraction 

layer for configuring and re-training through the transfer learning process. This feature extraction 

layer outputs feature maps that are down-sampled by a factor of 16. This amount of downsampling 

offers a good trade-off between spatial resolution and the strength of the extracted features, as 

features extracted further down the network encode stronger image features at the cost of spatial 

resolution.  
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Figure 4-6: How the anchor box works in the faster RCNN object detector  

 

4.2.3 Preparing data (images) for training, validation, and testing  

Full-size images are used for the ship detection network. Once ships are detected and masked, the 

images are cropped using the midship as the center point and keeping 2 ship lengths at the front 

and 0.5 ship lengths at the back of the ship. Experimental analysis [62] showed that ice floes 

beyond this limit have no significant effect on the ice force exerted on the ship. The same image 

sizes are also used in Chapter 03, thus, ensuring a valid comparison of force prediction between 

traditionally processed images and images processed through ML. 

Data for ship detection network: The video frames extracted as images in section 4.2.1 are 

prepared for training through labelling the ship in all the images using the MATLAB image labeller 

function. The ship data is then stored in a two-column table, where the first column contains the 

image file paths and the second column contains the ship bounding boxes, as shown in Figure 4-

7(a).  It will be an input for training the detector network. The bounding boxes are also shown in 

one of the randomly selected images in Figure 4-7(b). A total of 107 images were used. 60% of 

the images were used for training, 10% for validation, and the rest for testing the trained detector. 
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(a) 

 

 
(b) 

 

Figure 4-7: Data preparation for ship detector training (a) Input table for the network, (b) 

Ship labelled in one training image 

 

While training, the network will use data augmentation to improve the accuracy by generating 

more variety in the training data through randomly transforming the original data without having 

to increase the number of labeled training samples. Transformation is used to augment the training 
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data by randomly flipping the image and associated box labels horizontally. The equation for 

horizontal flipping is:  

x'_i,j = x_{n-i,j}   (4-3) 

where x is the original image, x' is the flipped image, n is the number of rows in the image, and i,j 

are the indices of the pixel in the image. 

However, data augmentation is not applied to test and validation data. Ideally, test and validation 

data are representative of the original data and are left unmodified for unbiased evaluation. One 

data augmentation sample is illustrated in Figure 4-8, where three augmented images are generated 

from one training sample. 

 

Figure 4-8: Data augmentation outcome 
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Data for ice floe detection network: After the detection of the ship in the images, it is now cropped 

manually (using the midship as the center point and keeping 2 ship length at the front and 0.5 ship 

length at the back of the ship) to ensure the proper input size for the ice floe detector training. The 

dimensions of the cropped images ranged from 1020-1100 pixels for width, and 1120-1140 pixels 

for height. However, as mentioned earlier, the network will resize the images to default [1134 

1024] size to ensure uniform measurement of the floe sizes while extracting the features. Followed 

by this, a polygonal mask, with a fill colour similar to the deep blue water background colour in 

the training images, is applied to absorb the ship in the background. It will ensure better efficiency 

of the ice floe detector. Figure 4-9 illustrates three cropped images with different floe sizes, and 

another three images after the ships are masked. 

 

      
(a)                               (b)         (c) 

          
                           (d)                                                   (e)                                                     (f) 
 

   Figure 4-9: Cropped images for floe size (a) 25, (b) 50, (c) 100. Final input images after 

ship masking for floe size (d) 25, (e) 50, (f) 100 
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Once the ships are masked, the images are imported to the image labeller for labelling the ice floes, 

similar to the step performed for image preparation for ship detection.  Next, the data are stored in 

a two columns table, which is later used for training, validation and testing of the detector. The 

detection of ice floes in the image is challenging as floe size, shapes, and illuminations vary 

significantly. There is no fixed/ nearly the same aspect ratio for the ice floe shapes, compared to 

other objects, for example, human shape, faces, cars etc. In addition to this, faster RCNN uses 

rectangular bounding boxes, as shown in Figure 4-10. Due to this, it was difficult to label 

individual ice floes as completely separated objects without overlapping with adjacent floes or 

missing some portion of them. This becomes more difficult when floe sizes are smaller, as seen in 

Figure 4-10.  

 

 

    

(a) (b) 

 

Figure 4-10: Ice floe pattern in the image: (a) ice floe labelling in small floe regions (b) 

labelling large floes 
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In this study, 520 images were used to train the ice floe detector. Among these, 60% of images 

were used for training, 20% for validation and 20% for testing. The validated and tested network 

is then used for ice floe detection in new images, i.e., images which were not used for training, 

validation, or testing. 

 

4.2.4 ML-based ice load prediction model 

Support Vector Machine (SVM) and Feed-Forward Neural Network (FFNN) were used to develop 

the ice load prediction models.  

4.2.4.1 Support Vector Machine (SVM) regression model 

 

Support Vector Machine (SVM) is a supervised machine learning algorithm. Depending on the 

objective, it can be used as a classification (discrete target variable) or a regression (continuous 

target variable) model. Prediction is made with a mapping function which maps independent 

variables to the dependent variable. The mapping function for SVM is a decision boundary which 

makes the distinction between two or more classes [92]. The SVM algorithm performs a 

classification by constructing a multidimensional hyperplane that optimally discriminates between 

two classes by maximizing the margin between two data clusters. This algorithm achieves high 

discriminative power by using special nonlinear functions called kernels to transform the input 

space into a multidimensional space [93]. 

The basic idea behind the SVM technique is to construct an n-1 dimensional separating hyperplane 

to discriminate two classes in an n-dimensional space. A data point is viewed as an n-dimensional 

vector. For example, two variables in a dataset will create a two-dimensional space; the separating 

hyperplane would be a straight line (one-dimensional) dividing the space in half. When more 
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dimensions are involved, SVM searches for an optimal separating hyperplane called the 

maximum-margin separating hyperplane. Kernel functions help separate the classes by adding 

more dimensions to the low-dimensional space so classes can be separable in the high-dimensional 

space.  

The governing equation for an SVM classifier is: 

f(x) = sign(w^T x + b)   (4-4) 

where w is the weight vector that defines the normal direction of the hyperplane, x is the feature 

vector of a sample, b is the bias term, and sign is the sign function that returns 1 for positive values 

and -1 for negative values. The feature vector x is replaced by the output of the kernel function, 

when it is used for non-linear SVM. 

The Radial Basis Function (RBF) kernel, as shown in Eq. 4-1 is used for the SVM model used in 

this study. It maps the original feature space into a higher-dimensional feature space where a linear 

hyperplane can separate the classes. The RBF kernel is defined as:  

K(x, x') = 𝑒(−𝛾 ∗ ||𝑥 − 𝑥′||^2)    ( 4-5) 

where K(x, x') is the kernel function that calculates the similarity between two samples x and x', 

||x - x'||^2 is the squared Euclidean distance between the samples, and 𝛾 is a parameter that controls 

the shape of the RBF. With the RBF, the quadratic objective functions with linear constraints 

solver from the MATLAB optimization toolbox is used as the optimization routine [18]. 

 

4.2.4.2 Feed Forward Neural Network (FFNN) model 

 

Feedforward Neural Network consists of a series of layers. The first layer has a connection from 

the network input. Each subsequent layer has a connection from the previous layer. The final layer 
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produces the network’s output. The purpose of feedforward neural networks is to approximate 

function and can be used for any kind of input to output mapping [94].  It has been successfully 

applied to pattern classification, clustering, regression, association, optimization, control, and 

forecasting problems. 

Figure 4-11 shows an example of a multilayer feedforward Neural Network with 8 input variables. 

As mentioned above, it is a directed acyclic graph which means that there are no feedback 

connections or loops in the network. It has an input layer, an output layer, and one or more hidden 

layers. Each node in the layer is a Neuron, which can be thought of as the basic processing unit of 

a Neural Network. Neurons in the input layer receive input signals to the network. Neurons in each 

hidden layer may have connections to and hence receive signals from some or all neurons from 

the immediately preceding layer. A feedforward network applies a series of functions to the input. 

By having multiple hidden layers, it can compute complex functions by cascading simpler 

functions. Neurons in the output layer provide output signals computed by the network to the 

environment external to the network. This is the layer which gives out the predictions.  

 
 

Figure 4-11: Example of a Feedforward Neural Network with two hidden layers 
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While initiating the training, an activation function is used in the output layer as a decision-making 

body at the output of a neuron. The activation function used in this layer is different for different 

problems. The neuron learns Linear or Non-linear decision boundaries based on the activation 

function. It also has a normalizing effect on the neuron output, which prevents the output of 

neurons after several layers once become very large, due to the cascading effect. There are three 

most widely used activation functions: Sigmoid, Tanh, and Rectified Linear Unit (ReLU). The 

latter is used for this study as it is found to be effective for similar regression analysis [94]. The 

equation for a ReLU activation function is: 

f(x) = max(0, x)  (4-6) 

 

where f(x) is the output of the activation function and x is the input to the activation function. The 

ReLU activation function returns the input x if it is positive, and 0 if it is negative. ReLU is used 

for this feedforward neural networks for several reasons:  

Simplicity: The ReLU activation function is simple to implement and computationally efficient, 

making it a popular choice for deep learning architectures. 

Introducing non-linearity: ReLU activation functions introduce non-linearity into the network, 

allowing the network to learn complex relationships between inputs and outputs. This is important 

for many real-world applications, as the underlying relationship between inputs and outputs is 

often non-linear. 

Solving the vanishing gradient problem: ReLU activation functions do not suffer from the 

vanishing gradient problem that can occur in other activation functions, such as sigmoid, where 

the gradient becomes very small for large input values. This allows the network to converge faster 

and learn more effectively. 
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4.3 Results and discussion 

The training performance of the RCNN for ship and ice floe detection is discussed first in this 

section. Followed by that, the outcome of the SVM and FFNN based force predictors will be 

analyzed and compared for the proposed Hybrid models.  

 

4.3.1 Faster RCNN training for Ship and ice floe detection 

Ship detector training performance: The dataset of 107 images prepared in section 4.2 for ship 

detector training was provided as an input to the RCNN based detector. The training is run using 

10 Epochs with a mini-batch size of 2. The negative and positive overlap ranges for detection were 

set to [0 0.3] and [0.6 1.0], respectively. A 10th generation core i7 CPU@2.30 GHz with 16 GB 

of ram  was used for the training. 

Figure 4-12(a) summarizes the training information.  As can be seen, 10 Epochs took 320 iterations 

and nearly 28 hours to complete the training. The main reasons for high training time are the use 

of high-resolution training images and the use of PC with limited computational power. 

Nevertheless, 100% validation accuracy is achieved. Figure 4-12(b) shows the detection results 

for one test image with a detection score of 99.98%.  The precision/recall (PR) curve for the 

training is also depicted in Figure 4-13. The ideal precision is 1 at all recall levels. The average 

precision provides a single number that incorporates the ability of the detector to make correct 

classifications, which is known as ‘precision.’  And the ability of the detector to find all relevant 

objects is known as ‘recall. As can be seen, a perfect precision score is achieved for all recalls in 

this training.  
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(a) 

 
 

 

 

 

 

 

 

 

 

(b) 

Figure 4-12: Training and validation summary (a), Test image with accuracy bounding 

box (b). 
 

 

Ice floe detector training performance: Similar to the ship detector training process, the ice floe 

dataset of 520 images was used as the RCNN input for the ice floe detector training. The network 

parameters are kept the same as ship detection training, except that the negative and positive 

overlap ranges are changed to [0 0.3] and [0.4 1.0], respectively. The training took around 32 hours 

to complete. As discussed in section 4.2.3, for ice floe labelling, the use of rectangular bounding 

boxes creates difficulty in processing, as it is challenging to isolate every ice floe without losing 

some part of it overlapping with neighbouring ice floes. 
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Figure 4-13: Precision-Recall curve (Average Precision 1.0) for ship detector training 

 

As a result, the trained network managed to detect nearly all the ice pieces in ice regions where 

the floes are comparatively larger and uniform in size, or floes are reasonably apart from each 

other, as illustrated in Figure 4-14. As can be seen, nearly all floes are detected with an average 

detection score of 66%, except a few small floes are missed in images 01 and 03 (highlighted using 

blue circles). The reason for the lower detection score compared to ship detection is the presence 

of granular ice pieces, which are not considered for detection (the similar approach used in Chapter 

03). 

However, for small ice floe sizes with more random shapes and orientations, the trained detector 

performed rather poorly, as shown in Figure 4-15. In this case, using rectangular bounding boxes, 

it is difficult to label individual ice floes in complete isolation without overlying on the 

neighbouring floes. Also, the shapes, illumination and brightness varied quite significantly in these 

images. As a result, the detector missed a significant number of floes. Therefore, while extracting 

the floe information from the images for the force predictor training for Hybrid model 02, 75 
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images with comparatively better illumination and less variation in sizes are used. Images with 

comparatively bigger floes are used to ensure a more accurate force prediction model. 

  

 

Figure 4-14: Ice floe detection accuracy in larger ice floe images 

 

It should be noted here that the trained network for ship and ice floe detection works quite fast. It 

takes around 2 seconds to detect the ship using the trained detector. As for ice floe images, it takes 

only around 1 second to detect the floes and extract the information on number of floes and floe 

sizes. 
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Figure 4-15: Ice floe detection accuracy in smaller ice floe images (2X the size of images in 

Figure 4-14) 

 

4.3.2 Performance of the SVM and FFNN force predictors 

The SVM and FFNN force predictors are developed for the Hybrid models. For Hybrid model 01, 

the input data related to ice floe characteristics for force predictors come from the traditional image 

processing, where unsupervised image pre-processing (including wavelet denoising), image 

segmentation using GVF and SNAKE are used instead of supervised machine learning approach. 

As for Hybrid model 02, force predictors input data related to ice floe characteristics are extracted 

from the ML-based RCNN predictor for ice floe images (as described in the previous section 

4.3.1). More details on the development, analysis and performance comparisons of the force 

predictors are discussed below: 
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4.3.2.1 Force predictors for Hybrid model 01 

The inputs for the Hybrid model 01 force predictor are extracted from images captured from the 

test videos at an interval of 20 seconds. A total of 627 images are used from 29 experimental 

videos. Figure 4-16 shows a snapshot of the input variables extracted from different frames of a 

video. Initially, 14 variables are proposed. The thickness, ship velocity and force are taken from 

the experimental records (highlighted in blue). The remaining data comes from image processing. 

N is the number of nonzero pixels in the image. R and C are the numbers of pixels in the x and y 

direction. Using N, R and C, the ice concentration is calculated as follows: 

Ice concentration = 
𝑁

(RxC)
𝑥100                                                                      (4-2) 

 

 

The number of ice floes is extracted based on 10 size categories, as can be seen in Figure 4-16. 

Type 1, contains the number of floes between 0 to 500 pixel sizes, Type 5, for floe sizes between 

30,000 to 40,000 pixels, and so on. The size categories are defined based on the maximum and 

minimum floe size in the images. 

 

 

Figure 4-16: Initial input data for force predictor training 
 

 

Once the data extraction is completed, inspection, refinement and cleaning are carried out to ensure 

no errors, missing values, or irrational data.  

Floe size 0-5000 5000-10000 10000-20000 20000-30000 30000-40000 40000-50000 50000-60000 60000-70000 70000-80000 80000-90000

Frame N R C ConcentrationThickness Ship Velocity Type1 Type2 Type3 Type4 Type5 Type6 Type7 Type8 Type9 Type10 Force Log transform

101 1002164 1126 1223 72.774 0.6 0.000 5 12 2 0 0 0 0 0 0 0 0.368 -0.43388

121 1070009 1129 1285 73.755 0.6 0.056 6 9 2 1 0 0 0 0 0 0 31.092 1.492648

141 1205442 1129 1414 75.510 0.6 0.059 7 15 1 1 0 0 0 0 0 0 4.647 0.667135

161 1213286 1129 1418 75.787 0.6 0.059 6 15 2 0 0 0 0 0 0 0 1.313 0.118334

181 1226951 1129 1429 76.050 0.6 0.059 9 14 1 1 0 0 0 0 0 0 1.752 0.243572

201 1294483 1133 1491 76.628 0.6 0.058 9 15 2 1 0 0 0 0 0 0 1.756 0.244582

221 1248520 1124 1437 77.299 0.6 0.058 8 15 2 1 0 0 0 0 0 0 2.242 0.350711

241 1299958 1134 1448 79.168 0.6 0.058 8 15 1 2 0 0 0 0 0 0 1.730 0.238131

261 1269560 1134 1381 81.067 0.6 0.059 10 15 2 0 0 1 0 0 0 0 2.101 0.322374

281 1314715 1134 1404 82.576 0.6 0.059 10 18 1 2 0 0 0 0 0 0 0.966 -0.01506

301 1332787 1134 1381 85.105 0.6 0.059 8 19 2 0 0 0 1 0 0 0 3.176 0.501948

321 1311369 1134 1384 83.556 0.6 0.059 8 18 0 0 0 0 1 0 0 0 4.281 0.631533

341 1277812 1133 1310 86.093 0.6 0.059 7 17 2 0 0 0 0 1 0 0 9.495 0.977482

361 1342971 1134 1369 86.507 0.6 0.058 9 19 2 0 0 0 0 0 1 1 5.136 0.71061

381 1446706 1129 1489 86.05807811 0.6 0.05870357 10 17 5 0 0 0 0 0 1 1 14.13401 1.150265
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After some trial and error, ice floe size categories were reduced to 3 by combining type 1 to 3 as 

the first category, type 4 to 7 as the second category, and type 8 to 10 as the third category. The 

process is illustrated in Figure 4-17 for a better understanding.  

 

 

Figure 4-17: Reducing ice floe categories for better results (Scenario 1 test set) 

 

In order to accommodate the large range for the force variables, a logarithmic transformation was 

done on the force values. The training data provided a better force predictor when the logarithmic 

force was used as a prediction variable rather than actual force values. This transformed output 

with the 7  input variables is marked as the ‘scenario 1’ test set. 

 

    

 
 

Figure 4-18: Addition of ‘collision’ variable (Scenario 2 test set) 
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As explained later in this section, it was observed that the prediction results could be further 

improved by incorporating another new variable to quantify the status of collision between the 

ship and ice floes. As demonstrated in Figure 4-18, the new ‘collision’ variable is defined as such 

it is ‘1’ when the ship hits the ice and ‘0’ when no ship-ice collision occurs. This revised dataset 

of 8 variables (including the new collision variable) is named the ‘scenario 2’ test set. 

While analyzing the training performance using the scenario 2 test data set, it was noticed that the 

results become even better if some irrational data points are removed from the test set. For 

example, when the vessel just started to move and the ship velocity suddenly increased from zero, 

the force sensor picked up a large value compared to the previous and next values after this point. 

as can be seen in the force in the second row of Table 4-2 (a). This might be happening due to the 

initial momentum of the experimental system. Similarly, when the ship stopped at the end of the 

experiment, it produced another impact and, consequently, a sudden rise in the force value (Table 

4-2(b), the force in the third row). As a result, those initial and ending data points for each video 

are omitted, and the total samples are reduced to 583 after performing this data cleaning operation. 

This cleaned dataset is named the ‘scenario 3’ test set. 

Table 4-2: Irrational data point removal. (a) Beginning of the test situation, (b) End of the 

test situation. 

(a) 

 
(b) 

 
 



 
82 

Table 4-3 summarizes how these three test datasets are prepared. 

Table 4-3: Definition of test dataset scenarios 

Scenario 1  

(Original Scenario, 7 

variables)  

 

Scenario 2  

(8 variables, addition of collision 

variable with scenario 1) 

Scenario 3  

(Irrational data points 

removed from scenario 2) 

 

• 627 dataset form images 

extracted from 29 videos. 

• 7 variables: 

concentration, thickness, 

velocity, 3 types of ice 

floe and force. 

• 627 dataset form images extracted 

from 29 videos. 

• 8 variables, additional collision 

variable to scenario 1. 

• Collision variable definition: 0 - no 

collision, 1 - ship hit the ice. 

• 583 dataset form 29 

videos after deleting 

irrational data points. 

• 8 variables, same as 

Scenario 2 

 

The SVM regression model is trained for each of these three scenarios. The training takes around 

a minute to complete, with 10 iterations for all scenarios. 80% data is used to train the model, 10% 

for validation and 10% for testing. In addition to comparing the originally-observed and model-

predicted values of forces for the test dataset, the RMSE values (Eq. 4-3) are compared for the 

different dataset scenarios.  

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑖−𝑥�̂�)2𝑁
𝑖=1

𝑁
  (4-3)  

Overall, the prediction performance improved from scenario 1 towards scenario 3 (Figure 4-19). 

However, the RMES value is quite large, even for scenario 3. There are some prominent outliers 

which are contributing towards these higher values of RMES. Most of these noticeable mismatches 

occur when the force values are larger, especially more than 150. A possible reason behind this is 

that the dataset has a very limited number of force values higher than 150 (only 3% of the total 

data sample). Thus, making it difficult for the predictor to have a reasonable estimation. Moreover, 

some of these higher force values occurred during the start and end of the experiment (due to 
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momentum), as explained earlier. Those values were removed in scenario 3. Therefore, only one 

force value higher than 150 is observed in that case. 
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Figure 4-19:  SVM force prediction performance for various input scenarios (Hybrid 

model 1) 
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Figure 4-20:  SVM force prediction performance for various input scenarios, outliers 

removed (Hybrid model 1) 

 

Nevertheless, the top 4 outlier points, in terms of the difference between observed and predicted 

values, are removed from the test to better assess the force predictor’s performance. The outliers 

are circled in Figure 4-19, and the revised results are presented in Figure 4-20. As noticed, the 

RMSE now reduced significantly, and for scenario 3, the reduction is more than 50%.  
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At this point, the FFNN force predictor is trained using the same datasets as reported above for the 

SVM. Three hidden layers are used with 15, 10 and 5 neurons, respectively, to define the FFNN.  

However, unlike the SVM training, only two scenarios for the datasets are used to train the 

network. 

Scenario 1: The same as SVM Scenario 3 (583 datasets from 29 videos after deleting irrational 

data points. 8 variables, including collision variable). 

Scenario 2: The same as SVM Scenario 3, except that no collision variable is used (583 datasets 

from 29 videos after deleting irrational data points. 7 variables). 

 

FFNN Scenario 1 FFNN Scenario 2 

 
RMSE 5.59 (with outliers) 

 
RMSE 4.56 (with outliers) 

 
RMSE 3.38 (outliers removed) RMSE 3.50 (outliers removed) 

Figure 4-21:  FFNN force prediction performance for various input scenarios (Hybrid 

model 1) 

 

Figure 4-21 shows the observed and predicted force value comparisons for the two FFNN 

predictors.  As can be seen, the FFNN results appeared to be much better compared to the SVM, 
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especially since FFNN prediction for higher force values is quite accurate. The RMSE values also 

reduced significantly. Most importantly, the results with the collision variable (Scenario 1) and 

without it (Scenario 2) don’t differ too much, thus, eliminating the need for this extra variable 

while using FFNN. There were no significant outliers as well in FFNN prediction, as compared to 

the SVM analysis. Therefore, after removing 5 points based on the highest differences between 

the observed and predicted forces, the RMSE values only improved slightly. 

 

4.3.2.2 Force predictors for Hybrid model 02 

 

Unlike Hybrid model 01, the ice floe information for Hybrid model 02 is extracted through ML-

based image processing using RCNN, as described earlier. A total of 520 images were used for 

training the ice floe detector. However, as described in section 4.2.1, not all the ice floe images 

produced reasonable prediction results. Therefore, only images with comparatively larger and 

uniform ice floes (Figure 4-13) are identified to be used for force prediction. As a result, the 

number of samples reduced significantly to 74. Nevertheless, a total of 148 samples are prepared 

using the data augmentation process described earlier. Also, compared to the number of variables 

for Hybrid model 01, only 6 variables are used here. Instead of using three categories for separating 

the floes, here, the total number of floes is counted under one heading. Also, the average floe area 

is added as a new variable. Table 4-4 shows the variable names and a few sample values. 

The training process for SVM and FFNN for Hybrid model 02 is the same as for Hybrid model 

01, as described earlier. The only difference is that the number of datasets has now reduced to 148. 

Therefore only 14 data are used for testing the force predictor models.  
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Table 4-4: Variable definitions and sample values for force predictor input. 

Concentration Thickness Velocity Floe No Floe Area Force (log) 

81.278 0.8 0.0004 15 63147.3 1.5138 

80.873 0.8 0.0005 15 61106.7 1.4673 

82.029 0.8 0.0004 16 60619.4 1.2440 

83.990 0.8 0.0487 15 57164.5 1.5112 

84.842 0.8 0.5880 15 63614.0 2.3861 

85.125 0.8 0.5880 15 62991.2 2.4409 

84.839 0.8 0.4940 12 67579.0 2.4406 

79.736 0.8 0.0589 13 65071.9 1.9353 

 

SVM FFNN 

RMSE 6.46 (with outliers) RMSE 16.42 (with outliers) 

 
RMSE 4.46 (2 outliers removed) 

 
RMSE 5.49 (1 outlier removed) 

  

Figure 4-22:  SVM and FFNN force prediction performance comparison for Hybrid model 

02. 
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As depicted in Figure 4-22, the results from both the SVM and FFNN predictor for Hybrid model 

02 are superior compared to Hybrid model 01, keeping in mind that the number of samples for 

Hybrid model 02 is nearly 5 times lower than that for Hybrid model 01. Nevertheless, as can be 

seen, the prediction for most of the force values is quite reasonable, except for higher values, due 

to the limited number of high force value data samples. Also, the detection of ice floes and 

subsequent force prediction using the trained model only takes a few seconds (5 to 10 secs) in 

Hybrid model 02, whereas it takes around 80 seconds (70 to 90 secs) in Hybrid model 01. 

Therefore, considering the computational efficiency, it can be said that Hybrid model 02 has a 

higher potential for being developed as a real-time force prediction model as compared to Hybrid 

model 01, which relies on traditional image processing for data extraction. 

 

4.4 Conclusion 

 

This study proposed two Hybrid models for ice force prediction using ice floe images. Instead of 

using analytical or numerical approaches, the Hybrid models directly extract floe characteristics 

from the images and later train ML-based force predictors using those extracted floe parameters. 

Hybrid model 01 used the traditional image processing technique for information extraction, 

whereas Hybrid model 02 applied the RCNN approach for the same task.   

Compared to the existing analytical and numerical tools for ice force estimation on floating 

platforms, the prediction of forces from ice floe images around a ship has a greater potential for 

application as a real-time prediction. However, estimating ice forces from images is challenging 

because it requires accurate extraction of ice floe information. Various factors, for example, the 

complex and varied shapes and sizes of the ice floes, ice thickness, ice strength, the concentration 
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of the floe field, colour similarities and light reflection on images, make that extraction task 

challenging.  

Both the SVM and FFNN also performed well across the board while detecting the force in the 

lower range. However, the SVM predictor for Hybrid model 01 failed to predict higher force values 

accurately. In comparison, FFNN predictor performance is much more reasonable as it managed 

to predict force values in the upper range with some degree of accuracy. As for Hybrid model 02, 

both the SVM and FFNN performed nearly at the same levels. They estimated the higher range 

force values reasonably, compared to Hybrid model 01, despite the number of datasets with higher 

range force values for Hybrid model 02 being quite limited (just 2% of all data points).   

More importantly, the tools developed in this research work are faster than existing approaches. It 

effectively focuses on an image-based ice force prediction approach, mainly on moving vessels, 

by reducing high computational time.  Nevertheless, more extensive validation and testing are 

required to confirm the effectiveness and significance of these tools before considering them for 

real-time application. Future modification of the algorithms and use of a wider range of data will 

improve confidence in these models and their applicability as force prediction tools with 

reasonable accuracy in the near future.  
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.                                                                                                                         Chapter 05 

5.0 Conclusions and Recommendations 

 

5.1 Conclusions 

This thesis deals with developing image-based ice force prediction models for ship / offshore 

structures in managed ice fields. The first step towards creating the model is extracting useful 

features from the images. These images are complex in nature and characterized by indistinct 

boundaries, overlapping ice floe, and unevenly illuminated ice floe fields with various floe sizes 

and shapes. Two different tools were developed to achieve the goal:  

(a) An improved version of an existing traditional image segmentation platform was developed by 

combining several image processing features, including histogram equalization, wavelet 

denoising, gradient flow vector, snake algorithm, and distance transformation.  

(b) A Machine Learning based image processing platform was developed using ‘Region Based 

Convolutional Neural Network.’  

Ice floe characteristics were extracted through both these tools, and a few additional parameters 

from model tank experimental analysis were used to train SVM and FFNN based force predictors. 

Thus, two Hybrid models are developed. The first Hybrid model, called AIP, combines image 

processing tool (a) and the corresponding SVM and FFNN force predictors; the second Hybrid 

model, called CVIP,  combines image processing tool (b) with the corresponding SVM and FFNN 

force predictors. 

The main contributions and outcomes of the thesis are summarized below: 
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i. The traditional image processing method was improved by incorporating wavelet denoising, 

histogram equalization, and illumination normalization with the GVF SNAKE segmentation 

technique to develop the high-accuracy ice image segmentation tool (a). The updated method was 

able to separate floes from images with complex and varied shapes ice floes with overlapped and/or 

connected boundaries and weaker edges in an unevenly illuminated environment. The capability 

of the proposed model in separating complex floes with weaker and connected boundaries in noisy 

and nonuniform illumination environments is compared with existing models in the literature. On 

average, the new model is 40% faster and provides a 10% better prediction of ice concentrations.  

ii. Wavelet filtering and histogram equalization are used to enhance the input images through 

denoising and contrast adjustment in this improved model, which improved the floe separation 

accuracy.  

iii. Various morphological filtering and region analysis techniques are then applied to extract floe 

features. Overall, the model can detect the total number of floes with more than 85% accuracy and 

ice concentration accuracy of 95% and above. It can also be used for real-time ice floe detection 

due to its faster processing time with the expense of accuracy to a certain acceptable limit, as 

described in section 3.3.3. 

v.  The other image segmentation tool developed using the faster RCNN (b) is more efficient than 

the traditional alternative. The trained model only takes a few seconds to detect floes in an image, 

compared to more than 1 minute taken by the traditional approach. However, its accuracy is 

considerably lower, especially for images where the floe sizes vary more prominently and floes 

are in close proximity. 
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vi. The SVM based force predictors trained for both the image segmentation tools demonstrated 

reasonable estimation accuracy with acceptable RMSE values after removing the outliers. The 

SVM predictor for the tool (a) achieved an RMSE of 3.21. However, it could not predict the higher 

force value with expected accuracy. This can be attributed to the limited number of data samples 

with high force values. SVM models’ performance also varied between the ‘with’ and ‘without’ 

collision variable scenarios (RMSE decreased by 0.7 with the collision variable).  

vii. The FFNN based force predictors, on the other hand, demonstrated noticeable estimation 

performance for higher force values, along with reasonable estimation for regular force values. 

The three-layered (FFNN) predictors attained RMSE values of 3.5 and 5.49 for the tool (a) and 

tool (b), respectively. Also, the models’ performed nearly similarly for both ‘with’ and ‘without’ 

collision variable scenarios (RMSE differs by 0.12 only). Therefore, it can be concluded that 

FFNN prediction performances are much better (able to detect high force values with limited 

training samples and one less variable) as compared to the SVM counterpart. 

viii. Both the Hybrid model, 1 and 2, demonstrated promising performances in terms of accuracy 

and efficiency, offering potential as a real-time ice force prediction platform. 

 

5.2 Recommendations 

The proposed Hybrid models for ice force estimation offer reasonable performance. However, they 

should be further improved to increase the possibility of real-time applications. A few areas that 

can be considered for further research are: 
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i. The current image processing model manually sets some parameters related to ice properties, 

which need to be tuned as ice field texture, illumination and size vary significantly. Thus, there 

exists room for improvement, especially in terms of automation. 

ii. Due to the shortage of training data, further study should be carried out to extend the current 

models to include diverse range of experimental and augmented training data. Also, 

performance of other machine learning and deep learning-based network architectures in 

predicting the ice force directly from the input images should be explored. 

iii. The proposed models are developed for images taking from bird’s eye view. The model can 

be extended to consider images taken using front/rear, onboard cameras. 

iv. The difficulty of developing a simple global ice force model is emphasized by many variables 

and the fact that they are often interconnected and not accurately measurable. For instance, 

Ship performance such as ship in straight running, zigzag maneuver and turning motion also 

affects the global ice forces which cannot be measured accurately in some cases. The proposed 

model does not account for these factors, which can be explored in future research. 
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OMAE2022-79255 

IMAGE PROCESSING TO EXTRACT ICE FEATURES TO AID MODELLING OF ICE FORCE 

 

ABSTRACT 
Sea-ice observation and estimation of ice forces are 

becoming increasingly important with the increased activities in 

arctic water. Proper modelling of ice properties and forces is 

crucial in such cases to ensure safe operations, for example, 

Dynamic Positioning (DP). This work, therefore, aims at 

developing algorithms for image processing to extract useful ice 

properties and subsequently aid the modelling of ice load exerted 

on a floating platform or a ship. A robust algorithm capable of 

detecting closely connected and overlapped ice floes with 

various sizes and shapes is presented, which is the first step for 

accurate modelling of ice forces. To demonstrate the 

effectiveness of this approach, image frames processed from 

videos produced during an experiment using a model ship 

performed at the National Research Council’s Ocean Coastal 

and River Engineering Research Centre (NRC-OCRE) in 

Canada are used. Simulated ice floe images are also used to 

show the efficiency of the proposed model and compare it with 

other published work. The model will be extended further to 

extract and correlate other ice properties with the ice forces and 

develop a machine learning based ice force prediction model.  

The predicted force from that model will then be used as a 

feedforward to Dynamic Positioning (DP) controller with an aim 

to improve the performance of the controller. 

 

Keywords: Image Processing, Managed ice, Ice properties, 

Sea ice, Gaussian blurring, Image sharpening 

 

 

NOMENCLATURE 
x  Distance from origin in the horizontal axis 

y  Distance from origin in the vertical axis 

G  Gaussian function 

 𝜎  Standard deviation 

𝑅0, 𝐺0, 𝐵0 Red, Green, Blue colour matrices of the 

original image 

𝑅𝑛 Red colour channel matrix for the normalized 

image 

i, j  index for colour matrices 

𝑢, 𝑣 The derivatives of the vector field in x and y 

directions. 

𝜇 Parameters to control the balance between the 

integrands 

f Edge map which is larger near the edges 

 

1. INTRODUCTION 

Recent increase in scientific and commercial activities in Arctic 

has led to more research on improving sea ice property extraction 

and dynamic analysis of ice forces. Compared to other sea 

regions, exploration in the Arctic is more challenging due to its 

harsh weather, remoteness, and most importantly, the presence 

of ice. Advancement in image capturing technologies is 

providing researchers with additional tools to capture important 

information about the ice infested waters. Efficient image 

processing can help to extract and process various ice parameters 
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of interest and apply that knowledge to understand and 

predict the behavior of an ice field. 

 

Development and application of novel theories and 

algorithms in image processing is gaining interests in recent 

years with wide range of applications, for example, in computer 

vision, remote sensing, feature extraction, face detection, 

forecasting, augmented reality, medical imaging and many other 

fields [19]. However, sea ice is a complicated multi-domain 

system; floe sizes, shapes, concentrations vary significantly on a 

relatively small scale. Moreover, the ice floes typically touch 

each other as well as overlap, making it difficult to detect the 

junctions from their images. Therefore, developing an automated 

computer algorithm for understanding of the dynamical 

properties of sea ice through accurate extraction of relevant ice 

parameters from the images is still quite challenging. 

 

Over the last two decades, some key technologies used for 

image segmentation involve thresholding and clustering [23], 

wavelet transform ([30],[31],[32]), watershed transform [29], 

active contour model ([24], [25]), Gradient Vector Flow (GVF) 

and snake ([7], [33]), spectral clustering, Markov random field, 

neural network [51]. Otsu thresholding and k-means clustering 

are two basic methods which are widely used to separate 

background and foreground of a grayscale image based on its 

histogram. Both methods work well for ice image segmentations 

when the floes are well separated, significantly brighter and have 

even illumination [38]. A better approach is using an edge 

detection methods, for example, derivative and morphology 

edge detection technique, which can detect distinct boundaries. 

However, these methods fail to identify closed boundaries and 

separate the ice floes that are tightly connected [38]. Application 

of watershed-based method can help in this regard to separate 

connected floes for which the junctions are blurred in the image. 

This method has been successfully applied in various fields, 

including grain and cell nuclei image segmentations [39], [40]. 

However, it can produce over- and under-segmentations of an ice 

image, as ice floe sizes and shapes vary significantly [41]. An 

improved watershed method, through inclusion of neighboring 

region merging algorithm is proposed by [42]. Yet, the problem 

with accurate identification of floe boundaries and floe numbers 

remains as watershed transformation operates on binary images 

and significant amount of real boundary information between 

connected floes can be lost while using the watershed 

transformation. 

 

The Gradient Flow Vector (GVF) method and several of its 

improved variations have been implemented recently by some 

researchers to tackle the detection of irregular shapes, as it is 

comparatively faster and less sensitive to initialization [4], [25]. 

The GVF snake algorithm, combined with automatic contour 

initialization based on the distance transform is adopted by [7] to 

separate seemingly connected floes. After that, an ice shape 

enhancement algorithm is applied to enhance ice floe shapes and 

accomplish the identification of individual ice floes. However, 

still some connected ice floes may not be separated by this 

method because of the loss of the seeds when the ice floes are 

unevenly illuminated and closely packed without having clearly 

visible boundaries.  

 

In summary, edge detection of real field ice images is still 

challenging, even though numerous approaches of image 

segmentation have been proposed. None of them are sufficiently 

robust and efficient, especially with the presence of overlapped 

and closely connected ice floes and uneven brightness. The 

primary objective of this work, therefore, is to propose an image 

processing algorithm that can separate unevenly illuminated and 

highly irregular ice floes with close connections and overlaps; 

thus, improving the capabilities of the existing ice image 

processing methods. 

 

The rest of paper proceeds as follows: Section 2 describes 

the algorithms and techniques used for this study. In Section 3, 

the results obtained from the proposed method are described and 

compared with selected existing works. Finally, concluding 

remarks including limitations and scopes for future work are 

presented in Section 4. 

 

 
2. METHODOLOGY 

A typical image processing technique can be broadly 

subdivided into three major steps. The first step is image 

acquisition and enhancement, where the digital image is acquired 

and preprocessed through filtering, adjustment of contrast and 

brightness, sharpening etc. to improve the image quality. It is a 

crucial step for successful image processing. The selection of 

proper preprocessing tools and methodologies also varies greatly 

based on applications. Preprocessing techniques applied for ice 

image might not necessarily be applicable for other fields. 

Following appropriate preprocessing, comes the image analysis 

which involves edge detection, boundary separation, 

segmentations etc. The final step is morphological 

representation, where the relevant important details are extracted 

from the analyzed image, such as, number and types of separated 

objects, their sizes and other geometrical features. 

 

In this study, significant effort is given on preprocessing in 

order to overcome the problem with uneven illumination as well 

as to ensure better visualization of the connected and overlapped 

edges during image analysis.  

 

 

2.1 Image Preprocessing 
A multistep preprocessing is used to improve the image for 

this study.  

2.1.1 Brightness adjustment 

The first step is improving the illumination of the image. In 

order to do so, the input colour image is first separated into RGB 

channels, and each element of these colour matrices are then 

normalized using all the three corresponding colour values as 

shown in Eq. 1 as an example for red channel normalization: 
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𝑅𝑛(𝑖, 𝑗) = 𝑅0(𝑖, 𝑗)/√𝑅0
2(𝑖, 𝑗) + 𝐺0

2(𝑖, 𝑗) + 𝐵0
2(𝑖, 𝑗)             (1)  

The three normalized matrices are then combined back to 

get the colour image with improved illumination, which is then 

converted to grayscale for further preprocessing.  

 

Images of ice floes at different preprocessing steps are 

depicted in Figure 1. Figure 1(a) represents a low-resolution 

segment of ice tank image extracted from one of the 

experimental analyses performed in [62]. Figure 1(b) shows the 

default grayscale conversion using the Otsu thresholding 

method. Figure 1(c) is the grayscale conversion resulting from 

the improved colour image obtained from normalization. As can 

be seen, the ice floes are darker here compared to the 

background. Therefore, the complemented image is generated as 

shown in Figure 1(d) for further processing. 

 

2.1.2 Contrast Mapping 

The contrast of the inverted image is quite poor. Thus, 

further preprocessing is done to improve the contrast through 

mapping the histogram. The histogram for Figure 1(d) is 

confined within 0.3-0.65. The image adjustment is done in such 

a way so that the shape of the histogram remains similar, 

however, 1% of the colour data from the original histogram is 

saturated at low and high intensities in the new image. Figure 

1(e) represents the improved version of the resulting grayscale 

image. This new image is evidently more uniformly illuminated 

as compared to the default grayscale in Figure 1(b), which 

prevents over-segmentations of the ice floes as discussed in 

section 3. 

 

2.1.3 Edge Sharpening 

In the final step of preprocessing, the improved grayscale 

image is processed further to increase the sharpness of the edges. 

An unsharp masking method is used in this regard, where a 

seven-by-seven Matrix is used for Gaussian lowpass filter with 

‘3’ standard deviation (Equation 2) is used at first to reduce the 

image's high-frequency components (noises). 

 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2              (2) 

 

Following that image gradient is calculated using a 

threshold of 0.1. Threshold specifies the minimum contrast for a 

pixel to be considered as edge pixel and be sharpened by the 

unsharp masking. Values closer to 1 allow sharpening only at 

high-contract regions, and lower values near to zero helps 

sharpening relatively smoother regions of the images, thus 

avoiding sharpening noise in the output image. The final version 

of the preprocessed image thus obtained, is shown in Figure 1(f). 

 

2.2 Image Analysis 
Once the preprocessing is complete, the image is then 

analyzed by developing an improved version of the model 

proposed by [7].  GVF snake [83] is applied to efficiently track 

the boundaries of the ice floes starting from the initial contours 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
FIGURE 1: Preprocessing of the input ice image: (a) original image, 

(b) default grayscale conversion, (c) grayscale conversion after 

normalizing the illumination, (d) colour inversion of ‘c’, (e) contrast 

improvement through histogram adjustment, (f) improved grayscale 

after sharpening of ‘e’. 
 

 

around the seed element. Also, an improvement is added in 

iteration counting to maximize the computational efficiency. In 

this method the vector field for image pixels are computed in 

such a way that minimizes the energy functional: 

 

∈= ∬[𝜇(𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑥
2 + 𝑣𝑦

2) + |∇𝑓|2⌈𝑣 − ∇𝑓⌉2] 𝑑𝑥𝑑𝑦         (3) 

 

One significant advantage of this method is that it can track 

and get closer to the true boundary even if the initial contour is 

not close to the true boundary. However, more iterations will be 

required to reach the true floe boundary if initial contour is too 

far away. Another benefit of GVF is that this algorithm operates 

on grayscale image, thus real boundary information is preserved, 

unlike in the watershed method.  

 

Once the GVF are calculated, ice floes are labelled after 

being separated from water using thresholding. Then, each floe 

is checked whether - the floe area is less than the given threshold, 

the ice floe has a convex shape (the ratio between the floe area 

and its minimum bounding polygon area is larger than the 



 

 
105 

threshold), and the length-to-width ratio of the minimum 

bounding rectangle of the ice floe is less than the threshold [7]. 

 

 

 
 
FIGURE 2: Algorithm for the proposed ice image processing 

technique. 
 

 

The snake algorithm is then run for those floes which do not 

satisfy the criteria. Although, GVF snake ensures that a detected 

boundary is a closed curve, initial contours for the seed elements 

are required for successful implementation of this method. An 

automatic contour initialization used in [7] is applied in this 

regard with slight modification in iteration counting to improve 

the efficiency of the proposed ice image segmentation method.  

This automatic initialization is designed based on distance 

transform [84] and local maxima of the binary format of the input 

image. For a binary image I, the distance transform, D(x,y), is 

the minimum distance from each pixel in I to the background B, 

which is: 

 

𝐃(𝑥, 𝑦) = {
0                                        if (𝑥, 𝑦) ∈ 𝐵

𝑚𝑖𝑛𝑏∈𝐵𝑑[(𝑥, 𝑦), 𝑏]         if (𝑥, 𝑦) ∈ 𝑂
            (4) 

 

Where 𝑑[(𝑥, 𝑦), 𝑏]  is the distance measure between pixel 

(x,y) and b [84]. More details related to these methods can be 

found in the referred publications. 

 

 

2.3 Feature Extractions 
 Once the analysis is completed, the necessary features, 

for examples, number, size and centers of the ice floes are 

extracted using histogram and other standard postprocessing 

tools (bwlabel, regionprops, imopen, imclose) available in 

MATLAB. A flow chart summarizing the methodologies 

described in sub-sections 2.1 to 2.3 is shown in Figure 2. 

 

 

 

3. RESULTS AND DISCUSSION 
The proposed image processing model is tested using two 

types of images, ideal images with desired complexities and real 

images from ice tank experimental tests. 

3.1 Analysis of ideal images 

 One of the main objectives of this study is to develop a 

technique which can detect ice floes with various sizes and 

irregular shapes with sharp concave and convex corners. Two 

ideal ice floe images are prepared (Figure 3) in this regard to test 

the efficiency of the developed model. 

 

 

  
 
FIGURE 3: Simple (left) and complex (right) ideal ice floe images. 
 

These images are carefully designed to include complex 

shapes with sharp corners (highlighted using ‘*’), overlaps and 

close contacts (highlighted using ‘#’) among adjacent floes. Both 

these images are processed using the original model proposed by 

[10] and the improved model presented in this study. The 

thresholding parameters mentioned in sub-section 2.2, and the 

iteration numbers are kept the same for both analyses. It should 
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also be mentioned here that the RGB image normalization has 

no impact for these ideal images as ice floes are evenly 

illuminated. As can be seen in Figure 4, for the simple ideal 

image, the original model was unable to predict one of the 

closely touched floe sets (top left) and considered the three 

overlapped floes (bottom left) as one floe. The proposed model 

on the other hand, detected all the floes with 100% accuracy (12 

out of 12 floes). 

 

 

  

 
FIGURE 4: Simple ice floe image segmentation: (left) original method 

[7], (right) proposed model. [identified floes are marked with ‘*’] 
 

Similarly, Figure 5 shows the performance comparison of 

both methods for the complex ideal image. As noticed, the 

original method failed to isolate the overlapped floes and 

combined all the eight floes on the top right corner as one. The 

same goes for other overlaps near the bottom region of the 

image. As for the proposed method, there is no under-

segmentation, and all the overlaps are detected. However, there 

appears a few over-segmentations, especially around the big 

floes at the center. This happened because, the initial contour for 

this big floe is too far from the true boundary and the set number 

of iterations are not enough to capture it accurately. The results 

can be improved with the expense of computational efficiency 

by increasing number of Snake iteration. However, the level of 

improvement achieved is not justified compared to the required 

additional computational time.  

 

  
 
FIGURE 5: Complex ice floe image segmentation: (left) original 

method [7], (right) proposed model. [identified floes are marked with 

‘*’] 
 

3.2 Analysis of real ice tank images 

Next, the capability of the proposed model in identifying 

closely packed ice floes with uneven illumination is tested using 

two ice image segments extracted from two different ice model 

testing reported in [62]. These images are shown in Figure 6. 

Both images contain noises, uneven illumination of floes, close 

contact and near overlapping situations, and a variety of floe 

sizes. 

 

  

 
FIGURE 6: Ice floe images from ice tank model tests: (left) image from 

test 1, (right) image from test 2. 
 

 

Similar to the analysis for the simple ice floe images, these 

two images extracted from ice model test are processed using 

both the original method [10] and the proposed improved model. 

To make a fair comparison, various model parameters are set as 

shown in Table 1 for both models. 

 

 
Table 1: Model parameters for ice floe image analysis 
 

Parameter Value 

Min ice piece area for 

Snake segmentation 

580 

Max ice piece area for 

Snake segmentation 

8000 

Convexity threshold 0.85 

Length to width ratio 2.0 

Streel size 1.0 

GVF iteration 800 

Snake iteration 200 

Min detected ice floe area 20 

 

 

Figure 7 shows the comparison of the segmented images 

obtained from the original and the proposed methods. As 

noticed, especially the bottom right area of the images 

(highlighted by a rectangle), the original method did well in 

detecting larger floes with much prominent boundaries. 

However, it missed many small floes due to colour shading 

issues. It also contains several over- and under-segmentations 

due to the presence of noises and weak/connected boundaries. 

On the other hand, the proposed improved method performed 

much better in detecting and segmenting both the small and the 

large floes.  

 

However, it creates an under-segmentation region (in 

yellow) near the bottom where the resolution and illumination 

are extremely poor, also over-segmentation of one big floe due 

to uneven illumination. Nevertheless, the floe counting accuracy 
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and detection of overall amount of ice concentrations improved 

significantly when the proposed model is used. 

 

Test image 1 Test image 2 

 
 

  

  

 
FIGURE 7: Ice floe images segmentation: (top row) images from ice 

tank test, (middle row) outputs from original method, (bottom row) 

outputs from proposed method. 

 

Figure 8 compare the histograms of floe counts for both the 

test images obtained from the original and the proposed method, 

with the manually marked image results. As can be seen, the 

original method missed nearly 40 smaller floes (0-500 pixels) as 

compared to proposed improved method for test image 1. 

Though, the counting for larger floes is fairly similar for both 

methods. 

 

For test image 2, on the other hand, the original method was 

unable to detect many smaller ice floes as compared to the 

proposed method. This is because, test image 2 is much noisier 

and contains weaker boundaries as compared to test image 1. The 

improvement obtained using the proposed method, therefore, is 

more prominent in this case. For example, a closer look near the 

lower left corner (highlighted by the rectangle) reveals that 

density of ice floes detected by the proposed method is higher 

compared to the original approach. Though, a few under 

segmentation still exists. 

As for histogram comparison for test image 2, it is evident 

in Figure 8 that the proposed method performed much better in 

detecting small floes, and in overall floe distribution counting, 

as compared to the original method. However, as mentioned 

earlier, presence of over-segmentations for the proposed method 

is clearly visible in the histogram as well. 

 

 

Test image 1 Test image 2 

 

 

 

 

 

 

 

 
 

 

 

 

  

  
 
FIGURE 8: Histograms of floe count [no of floes (y axis) vs flow size 

in pixels (x axis)]: (top row) outputs from the actual image (manually 

marked edges), (middle row) outputs from original method, (bottom 

row) outputs from proposed method. 
 

 
Table 2: Floe count and ice coverage comparison between original and 

improved models 
 

 Manual 

observation 

Original 

method 

Proposed 

method 

Test image 1 

No of floes 160 111 158 

Variation - -30.60% -1.25% 

Ice coverage 80.54% 60.21% 76.08% 

Test image 2 

No of floes 180 99 201 

Variation - -45.00% 11.60% 

Ice coverage 86.75% 55.63% 78.67% 
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Table 2 represents a floe count comparison chart for both 

the methods against floe counted via manual observation. It 

evidently shows that the new method is performing much better 

as compared to original method in terms of floe identification in 

complex situations with non-uniform illuminations, complex 

floe shapes and weak boundaries. Besides, as can be seen, the ice 

coverage prediction by the proposed method is also much closer 

to the actual coverage percentage as compared to the original 

method. 

 
 
 

4. CONCLUSION 
Ice detection and segmentation is a complex image 

processing problem as real ice are most often found in groups 

with connected and overlapped boundaries. Ice edge detection 

from images is quite challenging because of their colour 

similarities, complex and varied shapes, and light reflection on 

them. Separating every single connected/overlapped ice floe is 

even more difficult as the edges become weaker in such 

situations. In this paper, an improved approach for ice 

segmentation is proposed which can separate connected and 

overlapped floes in noisy and non-uniform illumination 

environment more efficiently compared to existing models in the 

literature. However, there exists significant room for 

improvements, especially in terms of automation, as some 

parameters related to ice properties are manually set for the 

analysis reported here. These parameters need to be 

automatically tuned as the size and texture of ice fileds varies 

significantly.  
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Appendix B -    Source Code 

B.1 Ice floe parameter extraction using image preprocessing and GVF 

SNAKE (Chapter 03) 

MAIN CODE 
%% Extracting Ice Floe Information Through Traditioanl Image Processing %%  
% This code is an improved version of the work of Zhang, Q. and R. Skjetne,  
% "Image processing for identification of  
% sea-ice floes and the floe size distributions.” IEEE Transactions 
% on Geoscience and Remote Sensing, Vol. 53, No. 5, pp. 2913-2924, 2015. 
 
clc; 
clear all; 
%% parameter setting. The following should be tuned as needed based on the  
% properties of the image set under consideration 
 
Iin= imread('I.jpg');   % input image 
 
kms0 = 2;    % kmeans 
 
Ra_min =5000;  % minimum ice piece area 
Ra = 400000;   % maximum ice piece area 
Rc = 0.8;   % convexity threshlod 
Rl = 1.5;    % threshold ratio between length and width 
 
noise=30; % ice piece size in bw image considered as noise 
se = strel('disk', 30);  % morphology structure element 
 
 
% parameters for GVF Snake 
Num = 150;      % number of GVF iterations 
iter = 50;   % number of Snake iterations  
% N = 50;    % iter of deformation 
 
 
% parameters for shape enhancement 
se_th = 200;    % threshold for adaptive morphology structure element 
min_floe = 5000;   % minimum floe area 
min_brash = 200;   % minimum brash area 
 
 
% other parameters for GVF Snake, Tune with care (after reading the details 
% from the thesis). 
sigma = 0;   % gaussianBlur, not used and CODE REMOVED 
GradientOn = 1;  % 1 : Gradient on  0 : Gradient off 
 
GVFOn = 1;   % 1 : GVF  0 : SVF 
mu = 0.5;    % parameter for GVF (more noise, increase mu) 
 
alpha = 0.05;   % internal weight that control snake's tension 
beta = 0;     % internal weight that control snake's rigidity 
gamma = 1;    % step size in one iteration 
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kappa = 0.5;   % external force weight 
Dmin = 0;   % min raster of the snake 
Dmax = 1;   % max raster of the snake 
 
timer = 1; 
 
% Time record parameter 
SegTime=[]; 
SegName=[]; 
 
%% End Parameter Setting Section 
 
%% Preprocessing  
tic;  % START Timer 
[I] = normillum(Iin); 
toc;  %END Timer 
SegTime=[SegTime,toc]; 
SegName=[SegName,"Pre-Processing"]; 
 
%% End Preprocessing 
 
%% Image Segmentation Using GVF and SNAKE 
[seg, bk,tt,nn] = seaice_kmean_GVF_forenhancement( I, kms0, sigma, GradientOn, GVFOn, 
Num, mu,... 
    iter, alpha, beta, gamma, kappa, Dmin, Dmax,  Ra_min, Ra, Rc, Rl, se, 
timer,noise,SegName,SegTime); 
SegTime=[SegTime,tt]; 
SegName=[SegName,nn]; 
%% End Segmentation 
 
%% Post-processing - Extracting Floe information 
tic; 
[out, index_floe, ice_floe, index_brash, brash_ice, index_slush, index_water, 
index_residue, coverage] = ... 
    ice_shape_enhancement(bk, seg, min_floe, min_brash, se_th); 
 
toc;  %END Timer 
SegTime=[SegTime,toc]; 
SegName=[SegName,"Post-Processing"]; 
%% End Post-processing 
 
ComNamenTimme=[SegName;SegTime]; %% Saving code running time 

 

---------- 
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ASSOCIATED FUNCTIONS 
 
# normillum 
 
%%% Pre-processing of the input image %%%%%% 
function [I] = normillum(Iin) 
 
Image=Iin;   
Image=imresize(Image,2,"bicubic"); 
 
  Image_rgb =Image; 
  Image_rgb = double(Image_rgb); 
    Image_red = Image_rgb(:,:,1); 
    Image_green = Image_rgb(:,:,2); 
    Image_blue = Image_rgb(:,:,3); 
    [row,col] = size(Image_rgb(:,:,1)); 
    for y = 1:row %-->numberof rows in image 
       for x = 1:col %-->number of columns in the image 
          Red = Image_red(y,x); 
          Green = Image_green(y,x); 
          Blue = Image_blue(y,x); 
        NormalizedRed = Red/sqrt(Red^2 + Green^2 + Blue^2); 
        NormalizedGreen = Green/sqrt(Red^2 + Green^2 + Blue^2); 
        NormalizedBlue = Blue/sqrt(Red^2 + Green^2 + Blue^2); 
        Image_red(y,x) = NormalizedRed; 
        Image_green(y,x) = NormalizedGreen; 
        Image_blue(y,x) = NormalizedBlue; 
       end 
    end 
    Image_rgb(:,:,1) = Image_red; 
    Image_rgb(:,:,2) = Image_green; 
    Image_rgb(:,:,3) = Image_blue; 
 
    Image_rgb = Image_rgb .* Image_rgb; 
 
Ig=rgb2gray(Image_rgb); 
% figure;imshow(Ig); 
 
Ig = imcomplement(Ig); 
Ig=imadjust(Ig);  
 
%% Wavelet for Denoising  
%%Ref: https://www.mathworks.com/help/wavelet/ref/wdenoise2.html   
  
Ig = 
wdenoise2(double(Ig),'Wavelet','bior4.4','DenoisingMethod','SURE','NoiseEstimate','Le
velDependent','NoiseDirection',["h", 
"v","D"],'ThresholdRule','hard');%,'CycleSpinning',4); 
 
% figure 
% imshow(I2); 
 
I=Ig; 
 
figure 
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imshow(Ig); 
---------- 
 
# seaice_kmean_GVF_forenhancement 
 
%% Snake GVF with automatic initial contour based on local minima derive from 
distance transform to detect the floes %% 
 
function [out, bk,tt,nn] = seaice_kmean_GVF_forenhancement(I, kms0, sigma, 
GradientOn, GVFOn, Num, mu,... 
    iter, alpha, beta, gamma, kappa, Dmin, Dmax, Ra_min, Ra, Rc, Rl, se, 
timer,noise,SegTime,SegName) 
 
 
% Input data: 
% I:               input colour image 
% kms0:            k-means clutster number 
% sigma = 0:       gaussianBlur is removed from the original code 
% GradientOn = 1:  1 : Gradient on  0 : Gradient off 
 
% GVFOn = 1:       1 : GVF  0 : SVF 
% Num:             number of GVF iterations 
% mu = 0.1:        parameter for GVF (more noise, increase mu) 
 
% iter:            number of Snake iterations  
% alpha = 0.05:    internal weight that control snake's tension 
% beta = 0:        internal weight that control snake's rigidity 
% gamma = 1:       step size in one iteration 
% kappa = 0.6:     external force weight 
% Dmin = 0:        min raster of the snake 
% Dmax = 1:        max raster of the snake 
 
% Ra_min = 20;     minmum area 
% Ra:              maximum area 
% Rc:              convexity threshlod, <= 1 
% Rl:              threshold ratio between length and width, >= 1 
 
% se:              morphology structure element 
% timer:           iteration time 
 
% Output data: 
% out:             sea ice segmentation image  
% bk:              binary ice image by kmeans method 
 
tt=[]; 
nn=[]; 
 
 
tic; 
bw = imbinarize(I,graythresh(I)); 
 
figure; subplot(1,1,1); imshow(bw); title('Binarized using Autothresholding'); 
 
f=I; 
[s1, s2] = size(bw); 
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s_1 = [0, s1, s1, 0]; 
s_2 = [0, 0, s2, s2];  % vertex of image boundary 
 
 
%% GVF 
[ss1, ss2] = size(bw); 
out = zeros(ss1, ss2); 
[s1, s2] = size(bw); 
s_1 = [0, s1, s1, 0]; 
s_2 = [0, 0, s2, s2];  % vertex of image boundary 
 
 
% graient on the image in order to get edges 
if GradientOn  
f2 = abs(gradient2(double(f))); 
else  
    f2 = f; 
end 
figure; subplot(1,1,1); imshow(f2,[]); title('Gradient of Pre-processed image'); 
 
% vector field 
if GVFOn                           
    % GVF field 
    [u, v] = GVF(f2, mu, Num);   % gradient vector force 
else 
    % standard vector field 
    [u, v] = gradient2(f2);   % calculates standard external force vector 
                              % field using gradient 
end 
 
% normalize vectors in vector field 
mag = sqrt(u.*u + v.*v); 
px = u ./ (mag + 1e-10); 
py = v ./ (mag + 1e-10); 
 
toc;  %END Timer 
tt=[tt,toc]; 
nn=[nn,"GVF"]; 
 
%% Snake 
tic; 
 
bw1 = bw; 
bw1=imopen(bw1,strel('disk',noise)); 
figure; subplot(1,1,1); imshow(bw1); title('After removing small floes'); 
 
for time = 1 : timer 
    [label, num] = bwlabel(bw1, 4); 
    a = zeros(num, 1); 
    rc = zeros(num, 1); 
    l = zeros(num, 1); 
    w = zeros(num, 1); 
    for n = 1 : num 
        aa = regionprops(label == n, 'Area');   % area 
        a(n) = cat(1, aa.Area); 
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        rcc = regionprops(label == n, 'Solidity');  % convex area 
        rc(n) = cat(1, rcc.Solidity); 
        ll = regionprops(label == n, 'MajorAxisLength');  % length 
        l(n) = cat(1, ll.MajorAxisLength); 
        ww = regionprops(label == n, 'MinorAxisLength');  % width 
        w(n) = cat(1, ww.MinorAxisLength); 
    end 
    rl = l ./ w;    % ratio between length and width  
     
    % find the component which need to be segmented 
    k1 = find(a > Ra); 
 
    k2 = find(rc < Rc);   
    k3 = find(rl > Rl); 
    k = [k1;k2;k3]; 
    k = unique(k); 
     
    if length(k) ~= 0 
         
    % initial contour 
    bw2 = zeros(s1, s2); 
    for m = 1 : length(k) 
        pp = find(label == k(m)); 
        bw2(pp) = 1; 
    end 
    bw2 = bwareaopen(bw2, Ra_min); 
    figure; imshow(bw2,[]); 
        img_Dist = bwdist(~bw2,'cityblock');   % distance transform 
    figure; imshow(img_Dist,[]);     
        imgDist = -img_Dist; 
        imgDist(~bw2)=-inf; 
        Dis_img = imregionalmin(imgDist); 
        dis = Dis_img.*bw2;      % local minuma 
        dis = imdilate(dis, se); 
        figure; imshow(dis,[]);   
 
 
        [label1, num1] = bwlabel(dis, 8); 
        t = 0:0.05:6.28; 
        for n1 = 1 : num1 
            cen = regionprops(label1 == n1, 'centroid');   % center 
            cen = cat(1, cen.Centroid);   % cen(:,1): horizontal, cen(:,2): vertical 
            r = abs(img_Dist(round(cen(2)), round(cen(1))) / sqrt(2)); 
            if r == 0 
                r = 2; 
            end 
            x = double(cen(1) + r * cos(t)); 
            y = double(cen(2) + r * sin(t)); 
            [x, y] = snakeinterp(x, y, Dmax, Dmin); 
           [x, y] = polybool('intersection', s_2, s_1, x, y); 
 
%             PolyA = polyshape(s_2, s_1,'Simplify',false);  
%             PolyB = polyshape(x, y,'Simplify',false);  
%            CPoly = intersect(PolyA,PolyB); 
%            [x,y] = boundary(CPoly); 
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                             % in case polygon vertex is outside of image 
                             % x: horizontal, y: vertical 
 
            x = x'; 
            y = y'; 
             
            % snake deformation 
            for i=1 : ceil(iter/5) 
                if i <= floor(iter/5)  
                    [x, y] = snakedeform(x, y, alpha, beta, gamma, kappa, px, py, 5); 
                else 
                    [x, y] = snakedeform(x, y, alpha, beta, gamma, kappa, px, py, 
iter-floor(iter/5)*5); 
                end 
                [x, y] = snakeinterp(x, y, Dmax, Dmin); 
            end    
            xx = ceil(x); yy = ceil(y); 
            len = length(xx); 
            for i = 1:len 
                if xx(i) <= s2 & yy(i) <= s1 
                    bw1(yy(i),xx(i)) = 0; 
                end 
            end 
            
             
        end 
                
    else 
        break; 
    end 
 
end 
 
toc;  %END Timer 
tt=[tt,toc]; 
nn=[nn,"Snake"]; 
 
%% kmeans + GVF 
% kmeans  
si = size(I); 
ima = double(I(:)); 
map0 = kmeans(ima, kms0, 'EmptyAction', 'singleton'); 
 
for i = 1 : kms0 
     pp = zeros(size(map0)); 
     pp(map0 == i) = 1; 
     s0(i) = sum(ima.*pp)/sum(pp); 
end 
[A0, ind0] = sort(s0); 
 
bw_kmeans = ones(size(map0)); 
p = find(map0 == ind0(1)); 
bw_kmeans(p) = 0; 
bw_kmeans = double(reshape(bw_kmeans, si(1), si(2))); 
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bk = bw_kmeans; 
 
bk=imopen(bk,strel('disk',noise)); 
 
out = bw1; 
 
figure 
subplot(1,2,1), imshow(out); 
title('Segmented ice floes'); 
subplot(1,2,2), imshow(bk); 
title('Binary ice image by kmeans'); 
 
end 
 
---------- 

 

# grad 

%% GRADIENT Approximate gradient %% 
function [xx,yy] = grad(a,xax,yax) 
% [PX,PY] = GRADIENT(Z,DX,DY) returns the numerical partial derivatives 
% of matrix Z in matrices PX = dZ/dx and PY = dZ/dy.   DX and DY 
% may be scalars containing the sample spacing in the X and Y 
% directions, or they may be vectors containing all the explicit 
% locations. 
% 
% [PX,PY] = GRADIENT(Z) assumes DX = DY = 1. 
% 
% If Y is a vector, GRADIENT(Y) and GRADIENT(Y,DX) return the one 
% dimensional numerical derivative dY/dX. 
% 
% For example, try 
%    [x,y] = meshgrid(-2:.2:2, -2:.2:2); 
%    z = x .* exp(-x.^2 - y.^2); 
%    [px,py] = gradient(z,.2,.2); 
%    contour(z),hold on, quiver(px,py), hold off 
% 
% See also DIFF, DEL2, QUIVER, CONTOUR. 
 
% Charles R. Denham, MathWorks 3-20-89 
% Copyright (c) 1984-94 by The MathWorks, Inc. 
 
[m,n] = size(a); 
if nargin == 1, xax = 1; yax = 1; end 
if nargin == 2, yax = xax; end 
if length(xax) == 1, xax = xax .* (0:n-1); end 
if length(yax) == 1, yax = yax .* (0:m-1); end 
 
y = []; 
ax = xax(:).'; 
for i = 1:2 
   x = y; 
   [m,n] = size(a); 
   y = zeros(m, n); 
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   j = 1:m; 
   if n > 1 
      d = ax(2) - ax(1); 
      y(j, 1) = (a(j, 2) - a(j, 1)) ./ d;     % Left edge. 
      d = ax(n) - ax(n-1); 
      y(j, n) = (a(j, n) - a(j, n-1)) ./ d;   % Right edge. 
   end 
   if n > 2 
      k = 1:n-2; 
      d = ones(m, 1) * (ax(k+2) - ax(k)); 
      y(j, k+1) = (a(j, k+2) - a(j, k)) ./ d;   % Middle. 
   end 
   a = a.'; 
   ax = yax(:).'; 
end 
z = (x + sqrt(-1) .* y.'); 
if nargout < 2 
   xx = z; 
 else 
   xx = real(z); yy = imag(z); 
end 
 
---------- 

 

#GVF 

%% GVF Compute gradient vector flow %% 
function [u,v] = GVF(f, mu, ITER) 
%   [u,v] = GVF(f, mu, ITER) computes the 
%   GVF of an edge map f.  mu is the GVF regularization coefficient 
%   and ITER is the number of iterations that will be computed.   
 
[m,n] = size(f); 
fmin  = min(f(:)); 
fmax  = max(f(:)); 
f = (f-fmin)/(fmax-fmin);  % Normalize f to the range [0,1] 
 
f = BoundMirrorExpand(f);  % Take care of boundary condition 
[fx,fy] = gradient(f);     % Calculate the gradient of the edge map 
u = fx; v = fy;            % Initialize GVF to the gradient 
SqrMagf = fx.*fx + fy.*fy; % Squared magnitude of the gradient field 
 
% Iteratively solve for the GVF u,v 
for i=1:ITER, 
  u = BoundMirrorEnsure(u); 
  v = BoundMirrorEnsure(v); 
  u = u + mu*4*del2(u) - SqrMagf.*(u-fx); 
  v = v + mu*4*del2(v) - SqrMagf.*(v-fy); 
end 
 
u = BoundMirrorShrink(u); 
v = BoundMirrorShrink(v); 
 
end 
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#snakedeform 
 
% SNAKEDEFORM  Deform snake in the given external force field 
function [x,y] = snakedeform(x,y,alpha,beta,gamma,kappa,fx,fy,ITER) 
 
%     [x,y] = snakedeform(x,y,alpha,beta,gamma,kappa,fx,fy,ITER) 
% 
%     alpha:   elasticity parameter 
%     beta:    rigidity parameter 
%     gamma:   viscosity parameter 
%     kappa:   external force weight 
%     fx,fy:   external force field 
 
 
% generates the parameters for snake 
 
N = length(x); 
 
alpha = alpha* ones(1,N);  
beta = beta*ones(1,N); 
 
% produce the five diagnal vectors 
alpham1 = [alpha(2:N) alpha(1)]; 
alphap1 = [alpha(N) alpha(1:N-1)]; 
betam1 = [beta(2:N) beta(1)]; 
betap1 = [beta(N) beta(1:N-1)]; 
 
a = betam1; 
b = -alpha - 2*beta - 2*betam1; 
c = alpha + alphap1 +betam1 + 4*beta + betap1; 
d = -alphap1 - 2*beta - 2*betap1; 
e = betap1; 
 
% generate the parameters matrix 
A = diag(a(1:N-2),-2) + diag(a(N-1:N),N-2); 
A = A + diag(b(1:N-1),-1) + diag(b(N), N-1); 
A = A + diag(c); 
A = A + diag(d(1:N-1),1) + diag(d(N),-(N-1)); 
A = A + diag(e(1:N-2),2) + diag(e(N-1:N),-(N-2)); 
 
invAI = inv(A + gamma * diag(ones(1,N))); 
 
for count = 1:ITER 
   vfx = interp2(fx,x,y,'*linear',0); 
   vfy = interp2(fy,x,y,'*linear',0); 
    
   % deform snake 
   x = invAI * (gamma* x + kappa*vfx); 
   y = invAI * (gamma* y + kappa*vfy); 
end 
 
---------- 
 
 
 



 

 
120 

# snakedisp 
 
%% SNAKEDISP  Initialize the snake %% 
function snakedisp(x,y,style) 
 
%      snakedisp(x,y,line)   
%      style is same as the string for plot 
 
hold on 
 
% convert to column data 
x = x(:); y = y(:); 
 
if nargin == 3 
   plot([x;x(1,1)],[y;y(1,1)],style); 
   hold off 
else 
   disp('snakedisp.m: The input parameter is not correct!');  
end 
 
---------- 
 
# snakeindex 
 
%% SNAKEINDEX  Create index for adpative interpolating the snake %% 
function y = snakeindex(IDX) 
%     y = snakeindex(IDX) 
 
N = length(IDX); 
y=1:0.5:N+0.5; 
x=1:N; 
y(2*x(IDX==0))=[]; 
 
---------- 
 
# snakeinterp 
 
%% SNAKEINTERP  Interpolate the snake adaptively %% 
function [xi,yi] = snakeinterp(x,y,dmax,dmin) 
 
%   [xi,yi] = snakeinterp(x,y,dmax,dmin) 
% 
%   dmax: the maximum distance between two snake points 
%   dmin: the maximum distance between two snake points 
%   d(i,i+1)>dmax, then a new point is added between i and i+1 
%   d(i,i+1)<dmin, then either i or i+1 is removed  
%   
%   NOTE: the spacing of original curve must be close to the  
%         range defined by dmax and dmin. For arbitrary spacing, 
%         try snakeinterp1. 
%  
%   See also SNAKEINTERP1 
 
% convert to column vector 
x = x(:); y = y(:); 
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N = length(x); 
 
d = abs(x([2:N 1])- x(:)) + abs(y([2:N 1])- y(:)); 
 
% remove the points which distance to neighbor points is shorter than dmin 
IDX = (d<dmin); 
 
idx = find(IDX==0); 
x = x(idx); 
y = y(idx); 
 
N = length(x); 
d = abs(x([2:N 1])- x(:)) + abs(y([2:N 1])- y(:)); 
 
IDX = (d>dmax); 
 
z = snakeindex(IDX); 
 
p = 1:N+1; 
 
xi = interp1(p,[x;x(1)],z'); 
yi = interp1(p,[y;y(1)],z'); 
 
N = length(xi); 
d = abs(xi([2:N 1])- xi(:)) + abs(yi([2:N 1])- yi(:)); 
 
while (max(d)>dmax), 
 
    IDX = (d>dmax); 
    z = snakeindex(IDX); 
 
    p = 1:N+1; 
 
    xi = interp1(p,[xi;xi(1)],z'); 
    yi = interp1(p,[yi;yi(1)],z'); 
 
    N = length(xi); 
    d = abs(xi([2:N 1])- xi(:)) + abs(yi([2:N 1])- yi(:)); 
end 
 
---------- 
 
# xconv2 
 
function Y = xconv2(I,G) 
% function Y = xconv2(I,G) 
%   I: the original image 
%   G: the mask to be convoluted 
%   Y: the convoluted result (by taking fft2, multiply and ifft2) 
%  
%   a similar version of the MATLAB conv2(I,G,'same'),  7/10/95 
%   implemented by fft instead of doing direct convolution as in conv2 
%   the result is almost same , differences are under 1e-10. 
%   However, the speed of xconv2 is much faster than conv2 when 
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%   gaussian kernel has large standard variation. 
 
%   Chenyang Xu and Jerry L. Prince, 7/10/95, 6/17/97 
%   Copyright (c) 1995-97 by Chenyang Xu and Jerry L. Prince 
%   Image Analysis and Communications Lab, Johns Hopkins University 
% 
 
[n,m] = size(I); 
[n1,m1] = size(G); 
FI = fft2(I,n+n1-1,m+m1-1);  % avoid aliasing 
FG = fft2(G,n+n1-1,m+m1-1); 
FY = FI.*FG; 
YT = real(ifft2(FY)); 
nl = floor(n1/2); 
ml = floor(m1/2); 
Y = YT(1+nl:n+nl,1+ml:m+ml); 
 
 
----------- 
 
# ice_shape_enhancement 

%% Post processing and Extract Floe Information %% 
 
function [out, index_floe, ice_floe, index_brash, brash_ice, index_slush, ... 
    index_water, index_residue, coverage] = ice_shape_enhancement(bk, seg, min_floe, 
min_brash, se_th) 
 
% Input data: 
% bk:              binary ice image by kmeans method 
% seg:             sea ice segmentation image, the output of function 
%                  seaice_kmean_GVF 
% min_floe:        threshold of minimum size of ice floe 
% min_brash:       threshold of minimum size of brash ice 
% se_th:           threshold of element structure for morphology operator 
 
% Output data: 
% out:             morphology cleaned ice pieces (ice floe & brash ice) 
% index_floe:      layer of ice floe  
% ice_floe:        ice floe information (areas, centers, perimeter, and 
%                                        pixel positions) 
% index_brash:     layer of brash ice  
% brash_ice:       brash ice information (areas, centers, perimeter, and 
%                                         pixel positions) 
% index_slush:     layer of slush ice  
% index_water:     layer of water  
% index_residue:   layer of residue 
% coverage:        percentage of floe, brash, slush and water 
 
 
 
bw = seg == 1;      %  ice segmentation 
bw = double(bw); 
% k = seg == 0.5;      % dark ice segmenation 
% k = double(k); 
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l = zeros(size(bw));   % labeled sea ice image 
ice_area = []; 
[label_bw, nn_bw] = bwlabel(bw, 4); 
for i = 1 : nn_bw 
    p = find(label_bw == i); 
    l(p) = i; 
    area0 = length(p); 
    ice_area = [ice_area, area0]; 
end 
 
% k = k - k.*bw; 
% [label_k, nn_k] = bwlabel(k, 4); 
% for i = 1 : nn_k 
%     p = find(label_k == i); 
%     l(p) = i + nn_bw; 
%     area0 = length(p); 
%     ice_area = [ice_area, area0]; 
% end 
 
[A, ind] = sort(ice_area); 
 
out =  zeros(size(bw));    % filled hole, morphology, labeled sea ice image 
fill = zeros(size(bw));    % filled hole, labeled sea ice image 
t = 0; 
for i = 1 : max(max(l)) 
    p = find(l == ind(i)); 
    b = zeros(size(out)); 
    b(p) = 1; 
     
    b = imfill(b,  'hole');   % fill hole 
     
    [ll, kk] = bwlabel(b, 4); 
    for j = 1 : kk 
        pp = find(ll == j); 
        if length(pp) > 0 
            fill(pp) = 1; 
        end 
    end 
     
    r = length(p); 
    if r < se_th 
        r = 1; 
    else 
        r = 2; 
    end 
    se = strel('disk', r); 
     
    b = imclose(b, se);   % morphology 
    b = imopen(b, se); 
    b = imfill(b,  'hole');   % fill hole 
         
    [ll, kk] = bwlabel(b, 4); 
    for j = 1 : kk 
        pp = find(ll == j); 
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        if length(pp) > 0 
            t = t + 1; 
            out(pp) = t; 
        end 
    end 
end 
 
 
%% floe + brash 
ice_area = [];       % ice area 
floe_area = [];           % floe area 
floe_cen = [];        % floe center 
colour_floe = [];      
brash_area = [];          % brash area 
brash_cen = [];      % brash center 
colour_brash = []; 
index_floe = zeros(size(out));      % floe map 
index_brash = zeros(size(out));     % brash map 
ice_floe = [];          % structure of ice floe information 
brash_ice = [];         % sturcture of brash ice information 
 
for i = 1: max(max(out)) 
    p = find(out == i); 
    area0 = length(p);   % area 
    [r, c] = find(out == i);   % pixel position 
    pixels = [c, r]; 
     
    if area0 ~= 0 
        ice_area = [ice_area, area0]; 
        colour_label = fix( (1 - exp(-area0/1000)) * 10000 ); 
         
        cen = regionprops(out == i, 'centroid');   % center 
        cen = cat(1, cen.Centroid); 
         
        per = regionprops(out == i, 'perimeter');   % perimeter 
        per = cat(1, per.Perimeter); 
         
        s0 = struct('Center', cen, 'Area', area0, 'Perimeter', per,... 
            'PixelsPosition', pixels); 
         
        if area0 > min_floe                % ice floe 
            index_floe(p) = colour_label; 
            floe_area = [floe_area, area0]; 
            colour_floe = [colour_floe, colour_label]; 
            floe_cen = [floe_cen; cen]; 
            ice_floe = [ice_floe; s0]; 
             
        elseif area0 > min_brash             % brash ice 
            index_brash(p) = colour_label; 
            brash_area = [brash_area, area0]; 
            colour_brash = [colour_brash, colour_label]; 
            brash_cen = [brash_cen; cen]; 
            brash_ice = [brash_ice; s0]; 
        end 
    end 
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end 
 
index = index_floe + index_brash;   % floe + brash 
p = find(index ~= 0); 
 
%% slush + water 
bk0 = bk; 
bk0(p) = 1; 
 
index_slush = bk0; 
index_slush(p) = 0;      % slush map 
 
index_water = 1 - bk0;    % water map 
 
index_residue =  ones(size(fill)); 
index_residue(find(fill ~= 0)) = 0; 
index_residue = index_residue.*index_slush;    % residue map 
 
%% percentage 
floe = sum(floe_area) / (size(out, 1)*size(out, 2)); 
brash = sum(brash_area) / (size(out, 1)*size(out, 2)); 
 
sp = find(index_slush == 1); 
slush = length(sp) / (size(out, 1)*size(out, 2)); 
 
wp = find(index_water == 1); 
water = length(wp) / (size(out, 1)*size(out, 2)); 
 
coverage = struct('IceFloe', floe, 'BrashIce', brash, 'Slush', slush, 'Water', 
water); 
%% rgb 
rgb = label2rgb(index, @jet, [1,1,1]); 
figure; subplot(1,1,1); imshow(rgb); title('Segmented image (Center highlighted for 
bigger floes)'); 
hold on 
for i = 1 : length(floe_cen) 
    plot(floe_cen(i, 1), floe_cen(i, 2), 'k*') 
end 
for i = 1 : length(brash_cen) 
plot(brash_cen(i, 1), brash_cen(i, 2), 'k*') 
end 
axis off 
 
area_ice = [colour_floe, colour_brash]; 
colourmap(jet); 
n = 6; 
d = fix((max(area_ice)-min(area_ice))/n); 
ysh = min(area_ice) : d : max(area_ice); 
hcb = colourbar; 
ytic = get(colourbar, 'Ytick');  
set(colourbar, 'YTick', linspace(min(ytic), max(ytic), length(ysh))); 
YT = []; 
for i = 1 : length(ysh) 
    YT{1, i} = -round(1000 * log(1 - ysh(i)/10000)); 
end 
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set(colourbar, 'YTickLabel', YT) 
 
 
%% histogram   
figure, 
nbins = 25; 
[z, n] = hist(floe_area, nbins); 
h = bar(n(1 : nbins), z(1 : nbins)); 
ch = get(h,'Children'); 
fvd = get(ch,'Faces'); 
fvcd = get(ch,'FaceVertexCData'); 
[zs, izs] = sortrows(z', 1); 
k = 255; 
colourmap(jet(k)); 
% for i = 1 : nbins 
%     colour(i) = fix( (1 - exp(-n(i)/1000)) * 10000 ); 
%     fvcd(fvd(i,:)) = colour(i); 
% end 
% set(ch,'FaceVertexCData',fvcd) 
% colourmap(jet); 
% nn = 8; 
% d = fix((max(colour_floe)-min(colour_floe))/nn); 
% ysh = min(colour_floe) : d : max(colour_floe); 
% hcb = colourbar; 
% ytic = get(colourbar, 'Ytick');  
% set(colourbar, 'YTick', linspace(min(ytic), max(ytic), length(ysh))); 
% YT = []; 
% for i = 1 : length(ysh) 
%     YT{1, i} = -round(1000 * log(1 - ysh(i)/10000)); 
% end 
% set(colourbar, 'YTickLabel', YT) 
 
end 
 
 
---------- 
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B.2 Frame extraction from videos (Chapter 04) 

 
%% Extracting Frame from Videos %% 
 
clc;    % Clear the command window. 
close all;  % Close all figures (except those of imtool.) 
imtool close all;  % Close all imtool figures. 
clear;  % Erase all existing variables. 
workspace;  % Make sure the workspace panel is showing. 
fontSize = 22; 
 
% The name of the video to be manually changed below. 
ReadObj = VideoReader('25m_9ths_1p2kts_0p6m_0deg_001_c_overhead.mkv'); 
get(ReadObj); %Video properties 
numberOfFrames = ReadObj.NumFrames; 
 
Frm = []; 
   for frame = 1 :20:numberOfFrames % extracting frames at an interval of 20 seconds. 
       Frm=[Frm,frame]; 
   end 
GetFrame=Frm; 
 
% Reading and saving the frames as jpg images. 
CurFrame=0; 
while hasFrame(ReadObj) 
    CurImage = readFrame(ReadObj); 
    CurFrame = CurFrame+1; 
    if ismember(CurFrame, GetFrame) 
        imwrite(CurImage, sprintf('Image%.4d.jpg', CurFrame)); 
    end 
end 
 
---------- 
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B.3 Faster RCNN code for ship and ice floe detection (Chapter 04) 

 
%% Ship and Ice detection Using Faster R-CNN (regions with convolutional neural 
networks) Deep Learning %% 
 
% The detector is developed and trained based on "trainFasterRCNNObjectDetector" 
function of Matlab. 
% These input parameters should be tuned depending on image properties to 
% control the preformance of the detector: inputSize, numAnchors, 
% 'NegativeOverlapRange','PositiveOverlapRange', trainingOptions. 
 
%% Download Pretrained Detector or Train Own Detector 
% |doTraining| variable set to true, as custom detector will be trained. 
clear all; 
clc; 
doTraining = true; 
if ~doTraining && ~exist('fasterRCNNResNet50EndToEndVehicleExample.mat','file') 
    disp('Downloading pretrained detector (118 MB)...'); 
    pretrainedURL = 
'https://www.mathworks.com/supportfiles/vision/data/fasterRCNNResNet50EndToEndVehicle
Example.mat'; 
    websave('fasterRCNNResNet50EndToEndVehicleExample.mat',pretrainedURL); 
end 
%% End Section 
 
%% Load Data Set and Separate to Training, Validation and Test sets 
% Datasets are labelled using matlab image labeler app.Labelling should be 
% done using rectangular bounding box. More details on dataset is reported 
% in the thesis. 
 
data = load('vehicleDatasetGroundTruth.mat'); 
vehicleDataset = data.data.ShipLabel; 
% The vehicle data is stored in a two-column table, where the first column contains  
% the image file paths and the second column contains the bounding boxes for ship/ice 
floes. 
 
% Split the dataset into training, validation, and test sets. Select 60% of  
% the data for training, 10% for validation, and the rest for testing the trained  
% detector. 
rng(0) 
shuffledIndices = randperm(height(vehicleDataset)); 
idx = floor(0.6 * height(vehicleDataset)); 
 
trainingIdx = 1:idx; 
trainingDataTbl = vehicleDataset(shuffledIndices(trainingIdx),:); 
 
validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices) ); 
validationDataTbl = vehicleDataset(shuffledIndices(validationIdx),:); 
 
testIdx = validationIdx(end)+1 : length(shuffledIndices); 
testDataTbl = vehicleDataset(shuffledIndices(testIdx),:); 
 
% Use |imageDatastore| and |boxLabelDatastore| to create datastores for loading  
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% the image and label data during training and evaluation. 
imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'}); 
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle')); 
bldsTrain2 = boxLabelDatastore(trainingDataTbl(:,'ice')); 
 
imdsValidation = imageDatastore(validationDataTbl{:,'imageFilename'}); 
bldsValidation = boxLabelDatastore(validationDataTbl(:,'vehicle')); 
bldsValidation2 = boxLabelDatastore(validationDataTbl(:,'ice')); 
 
imdsTest = imageDatastore(testDataTbl{:,'imageFilename'}); 
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle')); 
bldsTest2 = boxLabelDatastore(testDataTbl(:,'ice')); 
 
% Combine image and box label datastores. 
trainingData = combine(imdsTrain,bldsTrain,bldsTrain2); 
validationData = combine(imdsValidation,bldsValidation,bldsValidation2); 
testData = combine(imdsTest,bldsTest,bldsTest2); 
 
% Display one of the training images and box labels. 
data = read(trainingData); 
I = data{1}; 
bbox = data{2}; 
bbox2=data{4}; 
annotatedImage = insertShape(I,'Rectangle',bbox); 
annotatedImage = insertShape(annotatedImage,'Rectangle',bbox2); 
annotatedImage = imresize(annotatedImage,2); 
figure 
imshow(annotatedImage) 
title('Preview one training image'); 
%% End Section 
 
%% Create Faster R-CNN Detection Network 
% A Faster R-CNN object detection network is composed of a feature extraction  
% network followed by two subnetworks. The feature extraction network is typically  
% a pretrained CNN, such as ResNet-50 or Inception v3. The first subnetwork following  
% the feature extraction network is a region proposal network (RPN) trained to  
% generate object proposals - areas in the image where objects are likely to exist.  
% The second subnetwork is trained to predict the actual class of each object  
% proposal. 
%  
% The feature extraction network is typically a pretrained CNN. This thesis  
% uses ResNet-50 for feature extraction. |fasterRCNNLayers| is used to create a 
Faster R-CNN network automatically given  
% a pretrained feature extraction network. |fasterRCNNLayers| requires  
% specifying several inputs that parameterize a Faster R-CNN network: 
% * Network input size 
% * Anchor boxes 
% * Feature extraction network 
% 
% When feasible, choose a network input size that is close to the  
% size of the training image and larger than the minimum input size [224 224 3] 
required for the network.  
% Larger size will increase the computational time.  
 
inputSize = [1134 6096 3]; % This is the input size for ship detection images 
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% All images must be resized to this input size in a preprocessing step prior to 
training. 
%  
% Next, use |estimateAnchorBoxes| to estimate anchor boxes based on the size  
% of objects in the training data. To account for the resizing of the images prior  
% to training, resize the training data for estimating anchor boxes. Use |transform|  
% to preprocess the training data, then define the number of anchor boxes and  
% estimate the anchor boxes. 
preprocessedTrainingData = transform(trainingData, 
@(data)preprocessData(data,inputSize)); 
numAnchors = 4; 
anchorBoxes = estimateAnchorBoxes(preprocessedTrainingData,numAnchors) 
 
% Now, use |resnet50| to load a pretrained ResNet-50 model.  
featureExtractionNetwork = resnet50; 
 
% Select |'activation_40_relu'| as the feature extraction layer. This feature  
% extraction layer outputs feature maps that are downsampled by a factor of 16.  
% This amount of downsampling is a good trade-off between spatial resolution and  
% the strength of the extracted features, as features extracted further down the  
% network encode stronger image features at the cost of spatial resolution. 
featureLayer = 'activation_40_relu'; 
 
% Define the number of classes to detect. 
numClasses = width(vehicleDataset)-1; % For this thesis work, number of class was 1, 
either icefloe or ship. 
 
% Create the Faster R-CNN object detection network. 
lgraph = 
fasterRCNNLayers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLay
er); 
 
% You can visualize the network using |analyzeNetwork| or Deep Network Designer  
% from Deep Learning Toolbox™.  
%  
% If more control is required over the Faster R-CNN network architecture, use  
% Deep Network Designer to design the Faster R-CNN detection network manually.  
 
%% End Section 
 
 
%% Data Augmentation 
% Data augmentation is used to improve network accuracy by randomly transforming  
% the original data during training. By using data augmentation, you can add more  
% variety to the training data without actually having to increase the number  
% of labeled training samples.  
%  
% Use |transform| to augment the training data by randomly flipping the image  
% and associated box labels horizontally. Data augmentation is not applied  
% to test and validation data. Ideally, test and validation data are representative  
% of the original data and are left unmodified for unbiased evaluation. 
 
augmentedTrainingData = transform(trainingData,@augmentData); 
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% Read the same image multiple times and display the augmented training data. 
augmentedData = cell(4,1); 
for k = 1:4 
    data = read(augmentedTrainingData); 
    augmentedData{k} = insertShape(data{1},'Rectangle',data{2},'Rectangle',data{4}); 
    reset(augmentedTrainingData); 
end 
figure 
montage(augmentedData,'BorderSize',10) 
 
%% End Section 
 
%% Preprocess Training Data 
% Preprocess the augmented training data, and the validation data to prepare  
% for training. 
trainingData = 
transform(augmentedTrainingData,@(data)preprocessData(data,inputSize)); 
validationData = transform(validationData,@(data)preprocessData(data,inputSize)); 
 
% Read the preprocessed data. 
data = read(trainingData); 
 
% Display the image and box bounding boxes. 
I = data{1}; 
bbox = data{2}; 
bbox2=data{3}; 
annotatedImage = insertShape(I,'Rectangle',bbox); 
annotatedImage = insertShape(annotatedImage,'Rectangle',bbox2); 
annotatedImage = imresize(annotatedImage,2); 
figure 
imshow(annotatedImage) 
title('Viewing one preprocessed training data'); 
 
%% End section 
 
%% Train Faster R-CNN 
% Use |trainingOptions| to specify network training options. Set |'ValidationData'|  
% to the preprocessed validation data. Set |'CheckpointPath'| to a temporary 
location.  
% This enables the saving of partially trained detectors during the training process.  
% If training is interrupted, such as by a power outage or system failure, you  
% can resume training from the saved checkpoint. 
 
options = trainingOptions('sgdm',... 
    'MaxEpochs',10,... 
    'MiniBatchSize',2,... 
    'InitialLearnRate',1e-3,... 
    'CheckpointPath',tempdir,... 
    'ValidationData',validationData); 
 
% Use |trainFasterRCNNObjectDetector| to train Faster R-CNN object detector  
% if |doTraining| is true. Otherwise, load the pretrained network. 
 
if doTraining 
    % Train the Faster R-CNN detector. 
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    % * Adjust NegativeOverlapRange and PositiveOverlapRange to ensure 
    %   that training samples tightly overlap with ground truth. 
    [detector, info] = trainFasterRCNNObjectDetector(trainingData,lgraph,options, ... 
        'NegativeOverlapRange',[0 0.3], ... 
        'PositiveOverlapRange',[0.6 1]); 
else 
    % Load pretrained detector for the example. 
    pretrained = load('fasterRCNNResNet50EndToEndVehicleExample.mat'); 
    detector = pretrained.detector; 
end 
 
% Detail on training time is provided in the thesis. 
% As a quick check, run the detector on one test image. Make sure you resize  
% the image to the same size as the training images.  
 
I = imread(testDataTbl.imageFilename{3}); 
I = imresize(I,inputSize(1:2)); 
[bboxes,scores] = detect(detector,I); 
 
% Display The Results. 
scores; % The confidence score for detection results. 
I = insertObjectAnnotation(I,'rectangle',bboxes,scores); 
figure 
imshow(I) 
title('Running detector on one test image to check image size and box location'); 
 
savenet = detector; % Saving the trained detector for later use. 
 
%% End Section 
 
%% Evaluate Detector Using Test Set 
% Evaluate the trained object detector on a large set of images to measure the  
% performance. Computer Vision Toolbox™ provides object detector evaluation functions  
% to measure common metrics such as average precision (|evaluateDetectionPrecision|)  
% and log-average miss rates (|evaluateDetectionMissRate|). For this example,  
% use the average precision metric to evaluate performance. The average precision  
% provides a single number that incorporates the ability of the detector to make  
% correct classifications (precision) and the ability of the detector to find  
% all relevant objects (recall). 
% Apply the same preprocessing transform to the test data as for the training  
% data. 
 
testData = transform(testData,@(data)preprocessData(data,inputSize)); 
% Run the detector on all the test images. 
detectionResults = detect(detector,testData,'MinibatchSize',4);    
 
% Evaluate the object detector using the average precision metric. 
[ap, recall, precision] = evaluateDetectionPrecision(detectionResults,testData); 
 
% The precision/recall (PR) curve highlights how precise a detector is at varying  
% levels of recall. The ideal precision is 1 at all recall levels. The use of  
% more data can help improve the average precision but might require more training  
% time. Plot the PR curve. 
 
figure 
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plot(recall,precision) 
xlabel('Recall') 
ylabel('Precision') 
grid on 
title(sprintf('Average Precision = %.2f', ap)) 
 
%% End Section 
 
%% Supporting Functions 
 
function data = augmentData(data) 
% Randomly flip images and bounding boxes horizontally. 
tform = randomAffine2d('XReflection',true); 
sz = size(data{1}); 
rout = affineOutputView(sz,tform); 
data{1} = imwarp(data{1},tform,'OutputView',rout); 
 
% Sanitize box data, if needed. 
data{2} = helperSanitizeBoxes(data{2}, sz); 
 
% Warp boxes. 
data{2} = bboxwarp(data{2},tform,rout); 
end 
 
function data = preprocessData(data,targetSize) 
% Resize image and bounding boxes to targetSize. 
sz = size(data{1},[1 2]); 
scale = targetSize(1:2)./sz; 
data{1} = imresize(data{1},targetSize(1:2)); 
 
% Sanitize box data, if needed. 
data{2} = helperSanitizeBoxes(data{2}, sz); 
 
% Resize boxes. 
data{2} = bboxresize(data{2},scale); 
end 
 
%% References 
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---------- 
 

ASSOCIATED FUNCTIONS 

%% Sanitize bounding box data. Called in FasterRCNN %% 
 
% If none of the boxes are valid, this function passes the data through to 
% enable downstream processing to issue proper errors. 
 
function boxes = helperSanitizeBoxes(boxes, imageSize) 
persistent hasInvalidBoxes 
valid = all(boxes > 0, 2); 
if any(valid) 
    if ~all(valid) && isempty(hasInvalidBoxes) 
        % Issue one-time warning about removing invalid boxes. 
        hasInvalidBoxes = true; 
        warning('Removing ground truth bouding box data with values <= 0.') 
    end 
    boxes = boxes(valid,:); 
    boxes = roundFractionalBoxes(boxes, imageSize); 
end 
 
end 
 
function boxes = roundFractionalBoxes(boxes, imageSize) 
% If fractional data is present, issue one-time warning and round data and 
% clip to image size. 
persistent hasIssuedWarning 
 
allPixelCoordinates = isequal(floor(boxes), boxes); 
if ~allPixelCoordinates 
     
    if isempty(hasIssuedWarning) 
        hasIssuedWarning = true; 
        warning('Rounding ground truth bounding box data to integer values.') 
    end 
     
    boxes = round(boxes); 
    boxes(:,1:2) = max(boxes(:,1:2), 1);  
    boxes(:,3:4) = min(boxes(:,3:4), imageSize([2 1])); 
end 
end 

 

----------- 

 
%% Code to Read the Trained Detector for Ship and Ice Detection on New images %% 
 
clc; 
clear all; 
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load savenet.mat; 
inputSize = [1430 1130 3]; % Define the average input size of the images, should be 
the same with the training data to avoid bad detection performance. 
I = imread('1.jpg'); 
I = imresize(I,inputSize(1:2)); 
[bboxes,scores] = detect(detector,I); % Applying the trained detector 
scores; % The confidence scores for the detected bounding boxes. 
 
I = insertObjectAnnotation(I,'rectangle',bboxes,scores); 
figure 
imshow(I) 
title('Visualization of detected ship/ice floes with bounding boxes and associated 
scores'); 

 

---------- 
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B.4 SVM and FFNN for force prediction (Chapter 04) 

# SVM 

%% Predict Test Sample Response for SVM Regression Model %% 
 
clear all; 
clc; 
load tbl % loading the input data 
N = size(tbl,1); 
 
% Partition the data into training and test sets. Hold out 10% of the data for  
% testing. 
 
rng(10); % For reproducibility 
cvp = cvpartition(N,'Holdout',0.1); 
idxTrn = training(cvp); % Training set indices 
idxTest = test(cvp);    % Test set indices 
 
% Train a linear SVM regression model. Standardize the data. 
Mdl = 
fitrsvm(tbl(idxTrn,:),'Force','KernelFunction','gaussian','KernelScale','auto','Stand
ardize',true,'solver','L1QP') 
conv=Mdl.ConvergenceInfo.Converged 
iter=Mdl.NumIterations 
 
% |Mdl| is a |RegressionSVM| model. 
 
% Predict responses for the test set.  
 
YFit = predict(Mdl,tbl(idxTest,:)); 
 
% Create a table containing the observed response values and the predicted response  
% values side by side. 
table(tbl.Force(idxTest),YFit,'VariableNames',... 
    {'ObservedValue','PredictedValue'}) 
 
 

---------- 

# FFNN  

%% Calling the FFNN for Training the Force Predictor %% 
 
clear all; 
clc; 
load tbl % load the training data 
load tblo % Load the testing data 
 
 
inputs = [tbl.Con'; tbl.Thick'; tbl.Vel'; tbl.FloeNo'; tbl.FloeArea'];  
targets=[tbl.Force']; % Defining the target variables from the training data. 
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net=feedforwardnet([20,15,10,5]); % Defining the net 4 layers, input, output and 2 
hidden layers. 
[net,tr] = train(net,inputs,targets); % Training the net 
  
test=[tblo.Con'; tblo.Thick'; tblo.Vel'; tblo.FloeNo'; tblo.FloeArea']; % Testing the 
net. 
output=net(test); % Saving the predicted forces for the test set. 
predct=output';  
 
savenet=net;  
save savenet  % Saving the trained net for later use. 

 

---------- 

 

ASSOCIATED FUNCTIONS 

# feedforwardnet 

% FEEDFORWARDNET Feedforward neural network %% 
 
function out1 = feedforwardnet(varargin) 
 
%  Two (or more) layer feedforward networks can implement any finite 
%  input-output function arbitrarily well given enough hidden neurons. 
%  It takes a 1xN vector of N hidden layer sizes, and a backpropagation training 
function, and returns 
%  a feed-forward neural network with N+1 layers. 
% 
%  Input, output and output layers sizes are set to 0.  These sizes will 
%  automatically be configured to match particular data Or the 
%  user can manually configure inputs and outputs with configure option. 
% 
 
 
  if nargin > 0 
      [varargin{:}] = convertStringsToChars(varargin{:}); 
  end 
   
  persistent INFO; 
  if isempty(INFO), INFO = get_info; end 
  if (nargin > 0) && ischar(varargin{1}) ... 
      && ~strcmpi(varargin{1},'hardlim') && ~strcmpi(varargin{1},'hardlims') 
    code = varargin{1}; 
    switch code 
      case 'info' 
        out1 = INFO; 
      case 'check_param' 
        err = check_param(varargin{2}); 
        if ~isempty(err), nnerr.throw('Args',err); end 
        out1 = err; 
      case 'create' 
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        if nargin < 2, error(message('nnet:Args:NotEnough')); end 
        param = varargin{2}; 
        err = nntest.param(INFO.parameters,param); 
        if ~isempty(err), nnerr.throw('Args',err); end 
        out1 = create_network(param); 
        out1.name = INFO.name; 
      otherwise 
        % Quick info field access 
        try 
          out1 = eval(['INFO.' code]); 
        catch %#ok<CTCH> 
          nnerr.throw(['Unrecognized argument: ''' code '''']) 
        end 
    end 
  else 
    [args,param] = nnparam.extract_param(varargin,INFO.defaultParam); 
    [param,err] = INFO.overrideStructure(param,args); 
    if ~isempty(err), nnerr.throw('Args',err,'Parameters'); end 
    net = create_network(param); 
    net.name = INFO.name; 
    out1 = init(net); 
  end 
end 
 
function v = fcnversion 
  v = 7; 
end 
 
 
function info = get_info 
  info = nnfcnNetwork(mfilename,'Feed-Forward Neural Network',fcnversion, ... 
    [ ... 
    nnetParamInfo('hiddenSizes','Hidden Layer 
Sizes','nntype.strict_pos_int_row',10,... 
    'Sizes of 0 or more hidden layers.'), ... 
    nnetParamInfo('trainFcn','Training Function','nntype.training_fcn','trainlm',... 
    'Function to train the network.'), ... 
    ]); 
   
  % TODO - hiddenSizes => hiddenSizes 
end 
 
function err = check_param(~) 
  err = ''; 
end 
 
function net = create_network(param) 
 
  % Layers 
  net = network; 
  Nl = length(param.hiddenSizes)+1; 
  net.numLayers = Nl; 
  net.biasConnect = true(Nl,1); 
  [j,i] = meshgrid(1:Nl,1:Nl); 
  net.layerConnect = (j == (i-1)); 
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  for i=1:Nl 
    if i == Nl 
      net.layers{i}.name = 'Output'; 
    else 
      if (Nl == 2) 
        net.layers{i}.name = 'Hidden'; 
      else 
        net.layers{i}.name = ['Hidden ' num2str(i)]; 
      end 
      net.layers{i}.size = param.hiddenSizes(i); 
      net.layers{i}.transferFcn = 'tansig'; 
    end 
    net.layers{i}.initFcn = 'initnw'; 
  end 
   
  % Inputs 
  net.numInputs = 1; 
  net.inputConnect(1,1) = true; 
  net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 
   
  % Outputs 
  net.outputConnect(Nl) = true; 
  net.outputs{Nl}.processFcns = {'removeconstantrows','mapminmax'}; 
   
  % Training 
  net.dividefcn = 'dividerand'; 
  net.trainFcn = param.trainFcn; 
  net.performFcn = 'mse'; 
 
  % Adaption 
  net.adaptFcn = 'adaptwb'; 
  net.inputWeights{1,1}.learnFcn = 'learngdm'; 
  net.layerWeights{find(net.layerConnect)'}.learnFcn = 'learngdm'; 
  net.biases{:}.learnFcn = 'learngdm'; 
 
  % Plots 
  net.plotFcns = iPlotFcns(); 
end 
 
function plotFcns = iPlotFcns() 
if isdeployed 
    plotFcns = {}; 
else 
    plotFcns = {'plotperform','plottrainstate','ploterrhist','plotregression'}; 
end 
end 
 

---------- 

--- End of Appendix B --- 


