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The formalization of similarity in spatial information systems can unleash their 

functionality and contribute technology not only useful, but also desirable by broad 

groups of users. As a paradigm for information retrieval, similarity supersedes tedious 

querying techniques and unveils novel ways for user-system interaction by naturally 

supporting modalities such as speech and sketching. As a tool within the scope of a 

broader objective, it can facilitate such diverse tasks as data integration, landmark 

determination, and prediction making.  

This potential motivated the development of several similarity models within the 

geospatial and computer science communities. Despite the merit of these studies, their 

cognitive plausibility can be limited due to neglect of well-established psychological 

principles about properties and behaviors of similarity. Moreover, such approaches are 

typically guided by experience, intuition, and observation, thereby often relying on more 

narrow perspectives or restrictive assumptions that produce inflexible and incompatible 

measures.



This thesis consolidates such fragmentary efforts and integrates them along with 

novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework 

for similarity queries in spatial information systems. Three conceptually different 

similarity queries at the levels of attributes, objects, and scenes are distinguished. An 

analysis of the relationship between similarity and change provides a unifying basis for 

the approach and a theoretical foundation for measures satisfying important similarity 

properties such as asymmetry and context dependence. The classification of attributes 

into categories with common structural and cognitive characteristics drives the 

implementation of a small core of generic functions, able to perform any type of attribute 

value assessment. Appropriate techniques combine such atomic assessments to compute 

similarities at the object level and to handle more complex inquiries with multiple 

constraints. These techniques, along with a solid graph-theoretical methodology adapted 

to the particularities of the geospatial domain, provide the foundation for reasoning about 

scene similarity queries. 

Provisions are made so that all methods comply with major psychological findings 

about people’s perceptions of similarity. An experimental evaluation supplies the main 

result of this thesis, which separates psychological findings with a major impact on the 

results from those that can be safely incorporated into the framework through 

computationally simpler alternatives. 
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CHAPTER 1 

INTRODUCTION 

Similarity assessment implies a conceptual process of judgment about the semantic 

proximity of two entities. In a rudimentary form, this process consists of a decomposition 

of the entities under comparison into elements in which they are the same, and elements 

in which they differ (James 1890). People are able to perform this task based on intuition 

and knowledge. Their judgments are usually subjective and display no strict 

mathematical models (Tversky 1977). Machines, however, must rely on mathematical 

formalisms if they are to reason accordingly. The challenge is to translate the cognitive 

process of a qualitative similarity assessment into the quantitative realm. Since human 

perceptions of similarity are also strongly influenced by situation as well as each 

individual’s unique mental model (Goldstone et al. 1997), powerful yet flexible tools 

must be selected to guarantee a consistency between user-expected and system-generated 

results. This thesis explores such tools in the context of spatial database systems. 

1.1 Terminology 

Terminological confusion is often the culprit behind poor communication of ideas and 

lack of understanding, especially in scientific areas of multidisciplinary interest, such as 

those examined in this work. To avoid such problems, this section clarifies the meaning 

of several important terms that are used throughout the remainder of the thesis. 

A database is a logically coherent collection of raw observations, called data. It is 

designed, built, and populated with data for a specific purpose and models some part of 

the real world, which is often called the universe of discourse or miniworld. A database is 

created and maintained with the help of a database management system (DBMS), that is, 

a system comprising a collection of software programs. A DBMS allows such tasks as 

constructing, manipulating, and querying databases for various applications (Elmasri and 
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Navathe 2000). An information system is a combination of one or more databases, 

managed by one or more DBMSs. In this thesis, the term centralized database denotes a 

single database managed by a single DBMS on the same computer system. A 

multidatabase system, in contrast, refers to a collection of multiple cooperating database 

systems (Sheth and Larson 1990). A spatial information system is an information system 

that contains, processes, analyzes, and displays spatially referenced data. When such data 

are limited to environmental-scale spaces (i.e., neighborhoods, street networks, cities) or 

to geographic-scale spaces (i.e., states, countries) (Freundschuh and Egenhofer 1997), a 

spatial information system is also called a geographic information system (GIS) (Laurini 

and Thompson 1992; Chrisman 2001; Worboys and Duckham 2004). 

Spatial information systems store data about entity instances or simply, entities. 

These are real world objects or concepts that belong to entity types or entity classes. The 

latter are cognitive representations that people use to recognize and categorize entities or 

events in the real world (Dahlgren 1988). For example, Rhodes and Greece are entity 

instances of the entity types island and country, respectively. The database equivalents to 

entity types and instances are classes and objects, respectively. A class prescribes an 

intensional set of objects that are similarly structured and exhibit the same behavior 

(Dittrich and Geppert 1997). An object is the formal representation of a real-world entity 

in a miniworld. Objects of the same class in a database can be manipulated by common 

operators (Egenhofer and Frank 1992) and are described through a common set of 

properties. They are differentiated, however, by the different values they take for each 

property. In this sense, the properties may be viewed as functions that map specific 

qualities or quantities onto each object (Chen 1976). In the context of relational 

databases, classes, objects, and properties are also called tables (or relations), tuples, and 

attributes, respectively. Relational databases are based on the relational model for 

structuring data (Codd 1970) and account for the overwhelming majority of current 
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database implementations. In psychological terminology, sensory-identifiable entities are 

often referred to as stimuli and their perceived properties as features or dimensions. 

People assess similarity among entity types and entity instances, whereas information 

systems perform the same task among classes and objects. 

1.2 Information Retrieval in Geographic Information Systems 

Information is meaning extracted from the interpretation of data. The process of 

information retrieval from a database system typically comprises four steps. The first is 

the query formulation, when users employ the modalities of the system to specify a set of 

constraints (i.e., restrictions) on an ideal or reference object, which describes the entity 

they are looking for. Such an object may only incidentally exist in the database. During 

the second step, the DBMS searches through its database for objects that match the user’s 

request. If matches are found, then the next task is their presentation to the user. The 

user’s inspection and interpretation of the retrieved data, which results in the extraction of 

useful information, completes the process. 

Traditional querying assumes that a user specifies exactly the constraints of valid 

results, and that the result set contains only those items that fulfill exactly the query 

constraints. These assumptions make it difficult for a user to always guess correctly the 

values stored, while exhaustive enumerations of acceptable alternatives to the ideal target 

would become a tedious process. Likewise, items that deviate somewhat from the query 

constraints should be part of a ranked result set as well, where items are ordered in 

ascending order based on a quantitative estimate of their deviation from the ideal object. 

A different paradigm, emphasizing similarity over equality, is of pivotal importance for 

information systems, and for geographic information systems in particular, for the 

following reasons: 

• The data provider-data user gap is wide due to the differences between the nature of 

stored spatial data and the user’s knowledge of these spatial data while querying. 



 4

People may know only approximately what they are looking for, so that they need to 

adopt an exploratory way of accessing spatial data (Schenkelaars and Egenhofer 

1997). For example, in order to serve diverse user needs, GISs often employ a multi-

resolution scheme (Buttenfield 1989; Bruegger and Kuhn 1991) that allows retrieval 

at varying levels of detail. Ideally, multiple representation databases should be 

derived from a single detailed representation by applying generalization algorithms 

(Beard 1989). Such algorithms, however, often encompass changes in the geometry 

of objects and the topological structure of their relations (Paiva 1998). Consequently, 

a query’s geometric and topological specifications for a particular region of interest 

may differ from those that exist in the database for the same region. 

• The spatial-intuition gulf between people who request spatial information and the 

models in spatial information systems becomes more apparent as spatial information 

systems are growing beyond the state of being tools of experts, and a wider and more 

diversified audience uses them on a daily basis. It is inconceivable that all GIS users 

share a common context and views about reality. 

• The lack of standard, cognitively-plausible formalizations of spatial properties of 

geographic phenomena makes it even harder to support comprehensive, yet flexible 

methods for spatial information retrieval. Currently, only a few isolated efforts exist 

that capture how people interpret spatial properties and perceive spatial concepts 

(Lynch 1960; Mark and Egenhofer 1994; Worboys 2001; Worboys et al. 2004). 

• The diversity of background and expertise, combined with the ill-defined spatial 

standards, are largely responsible for the semantic, structural, and schematic 

heterogeneities of cooperating database systems that model the same part of reality. 

In a recursive manner, the wide accessibility of these systems from a massive Internet 

audience—made possible by recent technological developments, such as the 

proliferation of web-scripting languages and web-enabled DBMSs—stresses further 

these problems and raises the requirements for effective information retrieval to a 
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whole new level. A recent study (Chang et al. 2004) estimated 450,000 online 

databases, a number that is likely to grow exponentially in the coming years. 

• The verbal-visual competition of requesting spatial information verbally while 

presenting spatial query results graphically puts an undue cognitive load on users. 

Traditional spatial queries do not have a spatial expression per se as they are 

substituted by lexical or semantic equivalents. Thinking spatially is supported only in 

a very limited way at the query-formulation stage (Egenhofer 1994a), but alternative 

visual query modalities, such as sketching (Smith and Chang 1996; Egenhofer 1997; 

Haarslev and Wessel 1997a; Tversky et al. 2000), often help reveal a user’s mental 

model of a spatial arrangement better than a verbal expression. By their very nature, 

however, such visual requests for spatial information retrieval are imprecise. 

This sample is representative of the most significant problems affecting traditional 

methods for spatial information retrieval. It demonstrates why user-expressed queries 

may fail to coincide with—and consequently retrieve—any stored data. 

1.3 A Framework for Similarity-Enhanced Retrieval in Spatial Information Systems 

Similarity-enhanced information retrieval goes beyond the determination of an exact 

match between queries and stored data. It provides the users with a range of possible 

answers, which are the most similar conceptually to the initial requests and, hence, the 

most likely to satisfy their queries. It also relieves users from the burden of reformulating 

their queries repeatedly until they find useful information. The results are ranked 

according to a similarity score associated with them, and the user has the possibility to 

choose any of the available answers. Thus, similarity becomes a tool for exploratory 

access to data. It resembles browsing, since users usually know only approximately what 

they are looking for. The advantage of browsing is that it is a highly interactive and 

familiar (i.e., web-browsing) procedure and leaves the final choice of what result to select 

to the user. 
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1.3.1 Concept 

In terms of their dependency on one another, similarity assessments in a geographic 

information system can take place at three conceptually distinct levels so that any 

similarity assessment at a higher level of this framework implies prior similarity 

assessments within the lower levels. The building blocks of this schema are: (1) the 

spatial scene level, (2) the object (or relation) level, and (3) the attribute level (Figure 

1.1). 

Figure 1.1:  The three conceptual levels of a geographic information system: scenes, 

objects, and attributes. 

A spatial scene is a collection of objects with spatial and potentially thematic 

relations among them. Images, sketches, maps, and even molecular structures of cells are 

types of scenes. In its most trivial form, a scene consists of a single object, whereas in an 

extreme setting it could be an entire large-scale geographic database with millions of 

objects. 
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Object characteristics consist of class information, as well as geometric and thematic 

attributes. Geometric attributes are associated with the geometry, shape, and size of the 

objects. Thematic attributes, on the other hand, capture non-spatial information. For 

example, the class of Rhodes is island, its name and population are thematic attributes, 

while a shape description or the ratio of the major and minor axes of its minimum 

bounding rectangle provide values for its geometric attributes. The class specification of 

an object determines its entity type in the real world. Sometimes, this information can be 

perceived as another thematic quality. Its special importance, however, is often reflected 

in the prominent position that it assumes within many DBMSs (e.g., object-oriented 

DMBSs (Atkinson et al. 1989)). 

The same dichotomy of spatial and thematic characteristics carries on to relations, 

where the spatial component is typically subdivided into topological (i.e., pertaining to 

the connectivity relations of interiors, exteriors, and boundaries of spatial objects), 

metric, and directional parts. For example, Rhodes, which is disjoint from the Greek 

mainland and located 650km southeast of Thessaloniki, has a smaller population than 

Athens. Conceptually, one can either talk about the existence of multiple relations 

between a pair of objects, or about a singular relation with topological, metric, 

directional, and thematic properties (Figure1.1). This work adopts the latter view, which 

allows relations to be treated as objects and represented by a tuple; for example, 

RelationRhodes,Thessaloniki = ("SE", "650km"). 

Oftentimes, properties of objects and relations are distinguished as semantic and 

geometric, respectively (Blaser 2000; Rodríguez and Egenhofer 2004). This work refutes 

this segregation, because—as the previous examples demonstrated—objects may possess 

both geometric and thematic attributes and, reciprocally, relations are not exclusively 

spatial in nature. A query asking to retrieve two islands such that one has a larger 

population than the other still requires the retrieval of two objects with a definitive 

relation holding between them; this relation, however, is not spatial, but instead formed 
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by the difference in the value of a common thematic attribute of the objects. Semantics, 

on the other hand, is concerned with meaning on the large; it is an all-pervasive term 

relating to all kinds of measurements—whether of a geometric or a thematic nature—as 

well as people’s interpretation of such measurements (Wood 1975; Sheth 1995). 

Therefore, we abstain from such terminology and maintain the assertion that the main 

components of a scene are objects and relations and either of their attributes has thematic 

or geometric character. At times, temporal attributes are treated as a third type, which are 

then subject to typical temporal operations. We do not make this explicit distinction here, 

but rather include temporal as one special type of thematic attributes. 

Within such a framework, the core of a similarity mechanism’s inferential ability is at 

the attribute level. By exploiting the differences among attribute values of objects and 

relations, a similarity algorithm can reason about the degree of difference or resemblance 

of a result to a query. When the query consists of a constraint on an atomic value of a 

single attribute, the process of similarity assessment takes place at the attribute level. 

When the query consists of multiple such constraints, a similarity assessment takes place 

at the object level. In both cases, the results are objects; the difference, however, is that in 

the latter case the individual similarity scores that were produced separately for each 

attribute must somehow be combined to a meaningful composite. In the same manner, a 

similarity assessment between two scenes requires an appropriate synthesis of the 

individual similarity measures derived separately for each pair of associated objects and 

relations. 

1.3.2 Motivation 

The establishment of methods for determining semantic similarity at the various levels of 

the framework has attracted an interdisciplinary interest. An important body of work 

originated within the field of natural language processing. These efforts established 

techniques that derive semantic similarity among concepts as a function of their distance 
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within a hierarchical structure and of their frequency of occurrence within large text 

corpora (Rada et al. 1989; Resnik 1995; Jiang and Conrath 1997; Leacock and Chodorow 

1998). Psychology is another domain where the process of cognitive similarity 

assessments has been studied extensively and resulted in several proposals and models. 

Goldstone and Yun Son (2005) classify psychological models as geometric, featural, 

transformational, and alignment-based. The first three types are concerned with 

similarity assessments at the attribute and object levels, whereas the fourth category is 

interested in configuration similarity. 

Scientists from the computer science and geographic information systems 

communities also yielded significant contributions. Dey et al. (2002) developed simple 

similarity measures for attribute values in order to identify double entries for the same 

entity in databases. Rodríguez and Egenhofer (2004) combined distinguishing features of 

entities with their semantic relations in a hierarchical network and created a model that 

evaluates similarity among spatial concepts (i.e., entity classes). Based on theories that 

were developed for representing and reasoning with topological, metric, and directional, 

relations (Egenhofer and Herring 1990; Randell et al. 1992; Egenhofer 1994c; Frank 

1996; Shariff 1996), Egenhofer (1997), Egenhofer and Shariff (1998) and Goyal and 

Egenhofer (2001) developed, respectively, computational models that determine the 

similarity among values of such relations. Further studies integrated the results of these 

efforts and extended their scope to provide formalisms that incorporate all aspects of 

spatial relations during the comparison of spatial scenes. Some of these studies proposed 

qualitative similarity measures (Bruns and Egenhofer 1996; Li and Fonseca 2006), 

whereas others offered quantitative estimates (Gudivada and Raghavan 1995; Nabil et al. 

1996; Petrakis and Faloutsos 1997; Stefanidis et al. 2002) of similarity for simple scenes, 

consisting of a small number of objects. Based on the idea of spatial-query-by-sketch 

(Egenhofer 1996), Blaser (2000) implemented a more elaborate prototype that assesses 

the similarity between a user-drawn sketch and a collection of spatial scenes stored in a 
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geographic database. This prototype relies heavily on geometric object attributes and 

spatial relations, but underestimates the thematic component. Further work enabled 

similarity evaluations between spatial scenes in the context of large-scale geographic 

databases, focusing primarily on relational similarity and efficient query processing 

(Papadias et al. 1999b; Papadias et al. 2001; Papadias et al. 2003). 

Although all of these efforts have merit, each of them approaches the topic of 

semantic similarity from a different perspective. Some concentrate on a particular level 

within the overall framework, whereas others specialize on a specific aspect of a 

particular level. The outcome of such a fragmentary approach to similarity is a number of 

significant problems, such as: 

• Inability to generalize or specialize the measures so that they apply to different levels. 

For example, many of the models for concept similarity cannot be readily applied to 

the task of attribute-level similarity assessments and vice versa. 

• Restrictive or unrealistic assumptions justified for the sake of efficiency, or stemming 

from a narrow perception of the problem’s extent, such as considering that the 

compared scenes have an equal numbers of objects, or that they have a relatively 

small number of labeled objects. 

• Failure to accommodate different retrieval scenarios and to handle special cases, such 

as those arising when incomplete information is encountered. 

• Incompatible measures (e.g., qualitative vs. quantitative) that are difficult to integrate 

and process together. 

The large majority of the discussed proposals and prototypes share an additional 

disadvantage—with Rodríguez’s (2000) work being a notable exception—neglecting the 

human factor. The similarity measures that they advocate are typically derived in an ad-

hoc manner, guided by experience and observation, and serve practical retrieval needs. In 

this sense, they are concerned with similarity from a pragmatic rather than a cognitive 
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point of view. Findings from psychology about the way that people perceive the nature of 

similarity, its properties, and its relationship to peripheral notions, such as difference and 

dissimilarity, are largely ignored. The exclusive focus on the computational aspects and 

the dismissal of the cognitive elements render the plausibility of such approaches to 

human perception questionable. Context, which is another psychological factor with a 

profound influence on people’s similarity judgments, is at best captured through the 

provision of a set of user-adjusted parameters that help finetune the produced similarity 

scores. Delegating context-specification entirely to users in this manner makes the 

process of information retrieval slow, tedious, and even abstruse in the case of complex 

similarity assessments. 

1.3.3 Goal 

The goal of this thesis is to create a comprehensive framework for supporting similarity 

queries in spatial information systems. The focus of this framework is primarily on 

conceptual aspects of similarity assessments. Its parts should include a sound theoretical 

foundation, solid computational formalisms that reflect people’s similarity judgments, 

and a scalable architecture that allows similarity assessments at all three levels of 

attributes, objects, and scenes, in a consistent and coherent manner. 

1.3.4 Hypothesis 

A crucial component of the architecture of the framework is the interaction among its 

levels. The object level is primarily responsible for this interaction, because it provides 

the linkage between the attribute and the scene levels. In order to determine the similarity 

of two objects, a distance (i.e., dissimilarity) measure must first be defined between their 

formal representations. Since the end product comprises results that will be presented to 

people, this estimate must accord with human notions of object similarity (Gärdenfors 

2000). 
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The choice of two functions becomes critical in achieving this objective: (1) the 

aggregation function and (2) the conversion function. Aggregation functions combine 

atomic judgments to an overall composite measure. These are the functions that connect 

the first and second levels of the framework. They are used when separate attribute 

dissimilarities must be combined to an overall measure, indicative of the global 

dissimilarity between a pair of objects, or a pair of relations. Conversion functions 

translate dissimilarity to similarity and vice versa. In typical approaches, the role of 

conversion functions is simply cosmetic; they perform a routine transformation because it 

is more enticing to present users with a similarity rather than a distance score. The role of 

these functions, however, is much more vital in this work because they are responsible 

for translating aggregate dissimilarity to perceived similarity (or dissimilarity). 

A large body of intensive experimental and theoretical research in psychology during 

the last decades converged to a consensus on the desired form of such functions so that 

they reflect human similarity assessments (Attneave 1950; Torgerson 1965; Nosofsky 

1986; Shepard 1987; Ennis 1988; Nosofsky 1992; Takane and Shibayama 1992; Hahn 

and Chater 1997; Gärdenfors 2000). The first part of this consensus pertains to the 

aggregation function, which should differ depending on whether the atomic judgments 

are made on separable or integral attributes. Separable attributes are those that are 

perceptually independent, that is, they refer to properties that are obvious, compelling, 

and clearly perceived as two different qualities or quantities that an entity possesses 

(Torgerson 1965). Conversely, a set of attributes creates an integral1 group, when their 

values are conceptually correlated, and lack an obvious separability (Ashby and 

Townsend 1986; Ashby and Lee 1991). Conceptual correlation implies that the values of 

                                                 

1 The term integral does not connote statistical or causal, but perceptual correlation. It is possible that two 

separable attributes have values that are causally correlated and, conversely, that the attributes of an 

integral group have values that are statistically independent. 
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these attributes are perceived as one property, regardless if the representational 

conventions in information systems model this property through a set of concomitant 

attributes. The second part of this consensus dictates that the perceived similarity and the 

aggregate distance do not have a complementary relationship, but rather that the former 

derives from the latter through nonlinear monotonically decreasing functions (Nosofsky 

1986; Shepard 1987). 

Both findings have repercussions for formalized similarity assessments if these 

processes are to comply with human reasoning. These repercussions become especially 

relevant in the setting of spatial information systems. Due to the monotonically 

decreasing relationship between perceived similarity and aggregate distance, the choice 

of the conversion function is rather indifferent for information systems where similarity 

retrieval is confined within the attribute and object levels. The similarity scores may vary, 

but the produced rankings for similar objects will be identical regardless of the 

conversion function chosen. This choice ceases to be indifferent and becomes essential in 

spatial information systems, however, where similarity assessments may be required at 

the higher level of spatial scenes. The similarity between two scenes depends on the 

perceived similarities of the associated object and relation pairs. The decision on the 

conversion function becomes, therefore, instrumental because it affects the ranking of the 

most similar database scenes to a scene query. 

The situation is similar when it comes to segregating separable and integral attributes. 

General-purpose information systems employ primarily separable attributes. For 

example, the University of Maine’s personnel database may contain such attributes as 

age, job title, salary, and sex, which are perceived as different things. A significant 

amount of integral attributes, however, may be hidden in the representational formalisms 

that GISs employ to model the complex topological relations of spatial objects 

(Egenhofer and Franzosa 1995; Clementini and di Felice 1998) (Figure 1.2a). The set of 

possible integral attributes may grow if one also considers that such topological 
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formalisms are often complemented with equally-complex metric refinement models 

(Shariff 1996; Nedas et al. in press), which introduce a large number of additional 

attributes in order to capture the metric aspects of topological relations (Figure 1.2b). The 

recognition of the integral attributes and the form of the aggregation function affect the 

rankings at the object level, and their influence also propagates to rankings at the scene 

level. 

Figure 1.2:  A simple configuration of spatial objects and the attributes used to capture 

(a) the topological properties of spatial relations and (b) the metric 

refinements that apply to the topological properties (modified from 

Egenhofer (1997)). 

It becomes, therefore, apparent that a psychologically compliant model for similarity 

assessments within spatial information systems should (1) be aware of which attributes 

are integral and which are separable and (2) use psychologically correct aggregation and 

conversion functions to determine the similarity of a result to a query. Most of the current 

studies and prototypes in the literature typically ignore both requirements. Hence, it is 

relevant to determine whether the incorporation of these provisions into a formalized 

similarity assessment makes an essential difference or not. This observation leads to the 

following hypothesis: 
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Psychologically deviant methods produce a set of results, in the relevant 

portion of the ranking list, dissimilar to that obtained by psychologically 

compliant methods. 

A psychological deviant method is one that deviates in some way from the 

highlighted psychological findings. Therefore, this hypothesis can be dissected to three 

testable statements (HS): 

• HS1: A psychologically deviant method that fails to identify integral attributes and 

their groups produces a set of results, in the relevant portion of the ranking list, 

dissimilar to that obtained by a psychologically compliant method that recognizes 

such attributes and groups. 

• HS2: A psychologically deviant aggregation function that deviates from the 

psychologically-suggested form produces a set of results, in the relevant portion of 

the ranking list, dissimilar to that obtained by the psychologically compliant 

aggregation function. 

• HS3: A psychologically deviant conversion method that uses the linear function 

produces a set of results, in the relevant portion of the ranking list, dissimilar to that 

obtained by the non-linear psychologically compliant functions. 

Proving these hypothesis statements requires comparing psychologically compliant 

functions against common psychologically deviant methods encountered in the literature 

and evaluating, through appropriate measures, their incompatibility with respect to the 

results that they retrieve for a given query. The focus of these comparisons is on the 

relevant portion of the ranking list, that is, the first few ranks of the results, because they 

capture the most similar items to a user’s query. If the first testable statement (HS1) 

proves true, it will dictate the need for new research and human-subject testing in order to 

distinguish separable vs. integral attributes in spatial representational formalisms. 

Otherwise, research in this direction would be moot. If the second and third testable 
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statements (HS2 and HS3) prove true, they will provide a common grounding for the 

design of future prototypes and systems that are able to reason about similarity 

“intelligently.” A negative outcome, on the other hand, would imply that the criteria for 

choosing aggregation and conversion functions can be simply reduced to those that 

pertain to computational efficiency. 

1.3.5 Research Questions 

Four key questions drive the development of this thesis: 

Question 1: What are the psychological properties of similarity that a formal system 

should take into consideration? 

A successful similarity model for GISs would help eliminate the restrictions imposed by 

exact matches, thereby providing satisfactory reasoning mechanisms for semantically 

similar results. Satisfactory results imply a match of methods for spatial similarity 

retrieval with human perception and cognition. The major obstacle to this goal is the 

elusiveness and complexity of similarity, which is difficult to describe by formal logical 

theories or represent with mathematical models. Therefore, it is crucial to examine 

psychological findings on the nature of similarity, and isolate and formalize those that are 

relevant for semantic information retrieval. 

Question 2: How does one create a minimal set of generic algorithms that addresses 

similarity assessments for the majority of attributes typically encountered in 

spatial databases? 

We are interested in algorithms that yield results that are consistent with people’s 

judgments of similarity. Does each attribute require a unique algorithm or can one 

general algorithm achieve the stated objective equally-well for certain groups of 

attributes? If the latter is true, should we classify attributes into groups based on some 

structural characteristic, such as the specified data type in the database schema, or on a 

different criterion? Are there special cases of attributes that demand separate treatment, 
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and if so, what would the correct approach be for them? Finally, under what 

circumstances should one algorithm or model be preferred against another for the same 

group of attributes? Answers to these questions provide the theoretical foundation that is 

needed for formalized similarity assessments at the attribute level. 

Question 3: Which are the possible types of queries that a user may express at the object 

level? 

Queries at the object level may involve different kinds of constraints. For example the 

user may formulate a query using relational operators other than the basic equality (such 

as greater than, and less than) or logical operators (such as and and not), or a 

combination of both. It is important to examine the semantics of these queries and to 

develop methods that yield plausible similarity measures for assessments at this level. 

The combination of multiple constraints also suggests the need for an effective and 

intuitive weighting scheme that enables users to determine the relative salience of each 

constraint. 

Question 4: What are additional issues that emerge in scene similarity assessments? 

Assessing scene similarity can be a difficult problem. Its solution requires that one first 

identifies corresponding elements in the two compared scenes. This matching process can 

become increasingly complex and error-prone for large scenes as it is questionable how 

to choose one set of associations over another or how to account quantitatively when 

some of the elements remain unmatched. There are many additional requirements that 

scene similarity assessments introduce. We seek a comprehensive and theoretically sound 

methodology that simplifies the process and provides an organized approach to resolving 

such problems. 

1.4 Approach 

This thesis aims at developing a framework for semantic information retrieval from 

spatial databases. The framework is strongly influenced by studies in cognitive 
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psychology. The results of those studies are based on numerous experiments that 

investigated the process of similarity assessment in human subjects and yielded 

significant findings about the intricacies of such mental processes. We do believe, 

therefore, that a reliance on these findings is likely to give desirable and commonly 

accepted measures of similarity. 

The investigation starts with a systematic examination of the most important 

psychological insights about the nature of similarity, its properties, its relationship to 

related concepts such as distance, dissimilarity, and difference, and the different types of 

context that may influence similarity judgments. From models and studies that originated 

within the psychological discipline, we highlight and retain only those properties and 

theories that are relevant for the purposes of semantic information retrieval. A 

justification is provided for the properties that are deemed irrelevant. Part of the initial 

investigation is to assess the role and usefulness of ontologies in the framework. 

Ontologies are rich structures that capture a view of the world, provide an agreement on 

the meaning of terms used to describe this particular view, explicate the interrelationships 

between the concepts that these terms stand for, and distinguish semantics from data 

representation. Therefore, ontologies are semantic constructs that formalize meaning and 

are directly relevant to this work. 

The results of the inquiry into the psychological domain provide the foundation for 

building a model that produces conceptually plausible similarity measures. We follow a 

bottom-up approach, starting from the attribute level and progressing systematically to 

the object and scene levels. To account for the diversity of attribute types we seek a 

classification scheme that segregates attributes into types that exhibit the same behavior 

so that generic classes of algorithms can be developed for each type. 

The algorithms produced at the attribute level provide the basis for similarity 

assessments at higher levels. The developed set of methods for the object level 

contributes a consistent and comprehensive methodology for spatial similarity retrieval in 
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response to complex queries with combinations of logical operators. The focus is again 

on providing reliable similarity measures that are consistent with people’s intuition, 

rather than conveniently conforming with theories that may have appealing mathematical 

properties, but contradict human similarity reasoning. We provide an exhaustive list of 

spatial query scenarios with conjunctions, disjunctions, and negation and present justified 

solutions for each case. In this way, this part of the thesis extends the seminal work of 

Salton et al. (1983), who first considered such issues in information retrieval. Research at 

this level also addresses cases of special attributes that require a customized approach, 

such as multi-valued and composite attributes, which extend beyond atomic value 

assessments. The interaction of multiple constraints raises the issue for a weighting 

model that allows specifying the relative prominence of some constraints over others so 

that different user objectives and preferences are reflected in the produced results. In this 

sense, weights capture a dynamic aspect of context. For information retrieval, context 

provides a framework for well-defined queries and, therefore, improves the matching 

process between’s a user’s query and the data stored in the database (Hearst 1994). 

The next step of the framework develops an infrastructure for handling similarity 

assessments between spatial scenes. This type of similarity assessment relies on a prior 

process of association that identifies the correspondences between elements of the 

compared scenes. This is a hard combinatorial problem and the solution that we advocate 

is dependent not only on the adoption of a sound and fitting computational formalism but 

also on an infusion into the process of a variety of knowledge related to the spatial 

domain. 

For all three levels, a comprehensive suite of tools is provided for supporting 

similarity assessments in the scenario of incomplete information. Such information may 

be encountered at the attribute level in the case of null values, that is, values that 

introduce some degree of uncertainty in the specification of the object that they describe. 



 20

This scenario may also occur when comparing multi-valued attributes whose sets contain 

a different number of values, or spatial scenes with a different number of objects in them. 

1.5 Scope 

Although this thesis focuses explicitly on similarity in spatial information systems, its 

findings and contributions are expected to apply to information systems in general 

without requiring significant modifications. The differences between these two types of 

systems have largely disappeared in the last years, because spatial information systems 

that record spatial properties about shapes and spatial relations often include a large 

number of thematic attributes in their specification, while at the same time, traditional 

information systems are becoming increasingly spatially-aware (e.g., bank customer 

records getting joined with customer locations, or clinical records that are often geo-

coded). Furthermore, both spatial and thematic properties are eventually stored and 

represented as quantitative or qualitative values (e.g., <Rhodes, disjoint, Greece>, 

<Rhodes, 650km, Thessaloniki>) so that a single approach suffices for both types of 

information systems up to the object level (Figure 1.1). 

This work does not make the assumption that classes of objects or relations in the 

database should necessarily contain an identical set of features but assumes homogeneity 

under all other circumstances. A homogeneous environment is granted when objects are 

structured identically and represented through the same set of semantic and data 

specifications (e.g., same semantics, units, domains of values). In multidatabase systems, 

however, a similarity assessment must take place within a heterogeneous environment. 

Heterogeneity is the outcome of differences in the structure, schema, and semantics of the 

component database systems. Data integration studies have already reduced such 

conflicts to a large extent (Bishr 1998; Bernstein et al. 2004; Park and Ram 2004; 

Uschold and Gruninger 2004; Doan and Halevy 2005), albeit from the perspective of 

traditional information retrieval. It is possible that new requirements may need to be 
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imposed on data integration if similarity retrieval is to extend its scope beyond a 

homogeneous environment. Such issues are not investigated in this thesis. Furthermore, 

we assume that the homogeneous environment is structured. Structured data sources are 

those that adhere to a well-defined schema and their values are instances composed of 

simple atomic data types, like integer, real or character (Domenig and Dittrich 1999). 

Relational and object-oriented database systems are structured data sources. 

Another special case occurs with similarity comparisons that involve binary large 

objects (BLOBs), such as images (Flickner et al. 1995; Carswell 2000), video clips 

(Sistla et al. 1997; Wu et al. 2000), or audio files (Kosugi et al. 2000; Liu and Huang 

2000; Berenzweig et al. 2003), and character large objects (CLOBs), such as large text 

corpora and documents (Salton et al. 1975; Wong et al. 1987; Korfhage 1997). Unlike 

traditional databases dominated by retrieval with exact matches, the notion of similarity 

is inherent in retrieval of multimedia objects (Grosky 1997). The goal is to be able to 

direct queries against the actual objects themselves (i.e., querying-by-content), rather than 

querying their textual descriptions in the form of metadata. Users should be able to 

provide surrogates of the objects as inputs, against which the similarity of the stored 

objects would be compared. For example, a user may draw a sketch and retrieve digital 

images similar to the sketch (Blaser 2000). Due to the usually huge size, complex 

structure, and unique characteristics of each of these types of objects, the models to 

assess multi-media similarity expose a great variability. Deriving similarity among such 

objects is a separate field of research, with unique requirements and characteristics, and 

does not constitute part of this effort. Our work, however, is complementary to such 

efforts. For example, the methods in this thesis may be used to query the metadata 

associated with multimedia objects. They can also directly apply to the tasks of deriving 

and aggregating similarities for the attributes used to represent complex objects. 

This work is concerned with similarity mostly from a conceptual rather than 

implementation point of view. Topics that pertain to computational optimization of the 
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algorithms and details of lower-level access to the data (e.g., similarity indexing 

techniques) are excluded. 

The goal of this thesis is not to come up with a unique and single computational 

model that is capable of evaluating similarity under any situation or context. The choice 

of specific algorithms for a particular database and its attributes is at the discretion of the 

database administrator/designer or the users. Our task is to investigate the alternatives, 

provide the theory and methods, and pinpoint which of them should be preferred under 

different circumstances or contexts so that appropriate choices can be made. 

1.6 Intended Audience 

This thesis is intended primarily for researchers and developers from the community of 

spatial databases. It may be of interest, however, to any person concerned with semantic 

information retrieval, similarity assessments, and the design of future geographic 

information systems. The audience also includes experts from the fields of computer 

science, cognitive science, human-computer interaction, linguistics, and artificial 

intelligence as it relates to the intelligent retrieval of semantic information and the design 

of intelligent search engines on the semantic web. 

1.7 Organization of the Thesis 

The three conceptual levels in Figure 1.1 prescribe the organizational structure of this 

thesis. A chapter is devoted to each level of the framework. Each chapter builds on 

observations and findings of previous chapters. The assessment of previous research, the 

evaluation of the hypothesis, and the conclusions are each compiled in separate chapters. 

This leads to the following structure of the remainder of the thesis: 

The second chapter embeds this thesis into the context of previous research efforts. It 

provides the necessary background in related fields of study and argues about the 

relevance and applicability of previous results to this work. This thesis uses terminology, 
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ideas, and findings from those fields. Therefore, a basic understanding of their main 

concepts is required from the reader, in order to understand our work. 

The third chapter investigates similarity assessments at the attribute level. Its 

objective is to identify a functional classification of the most common attribute types 

such that generic algorithms that capture the similarity among the values of each type can 

be developed. An important set of categories is based on the four scales of measurement, 

referring to cognitive and structural commonalities that are typically found in captured 

data. The chapter includes in its beginning an argument for a unifying perspective of 

similarity, which aids in establishing reliable similarity measures, determining the 

suitability of previous similarity models and theories for each of the proposed attributes 

types, and capturing implicit aspects of context that may not be immediately obvious. A 

comprehensive rationale is also formulated for handling attributes that include null 

values. 

The fourth chapter creates the transition from the attribute to the object level by 

extending similarity assessments beyond simple equality queries on atomic values. It is 

concerned instead with addressing the similarity requirements of more complex requests 

that involve a number of attributes, and where constraints may interact through alternate 

combinations of conditional and logical operators. Particular emphasis is put on the 

process of conjunction, and on developing a set of aggregation functions that best express 

its semantics. 

The fifth chapter advances similarity assessments to the most difficult and complex 

level of spatial scenes, where all the findings of chapters 3 and 4 are integrated. The 

notion of an association graph is introduced, which consists of nodes and edges that 

represent matched objects and matched relations in the compared scenes. The approach is 

centered on the extraction of the maximal cliques from this graph, which are 

substructures corresponding to the most similar scenes specified in the query. This 

methodology is based on a graph-theoretic algorithm, originally introduced in the field of 
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computer vision, which is adapted to accommodate scene comparisons in a geographic-

context. Parts of this adaptation include (1) an examination of the different types of 

databases and query modalities in spatial information systems and their effect on 

similarity retrieval for spatial scenes, (2) an analysis of different methods for relaxing the 

constraints of the original query so that similar matches can be found, (3) a set of 

considerations for evaluating the relative significance of object constraints, (4) a 

comprehensive investigation on the suitability and the role of different types of spatial 

relations in scene similarity assessments, and (5) a detailed and flexible model for 

handling incompleteness when the query and database scenes have a different number of 

objects. Issues relevant to result presentation and to computational efficiency are also 

addressed. 

The sixth chapter evaluates the three testable hypothesis statements. The chapter 

starts with an overview of the experimental design and introduces the measures used to 

provide evidence for the support or the rejection of the hypothesis. Each hypothesis 

statement is evaluated through one or more experiments. Each experiment comprises a 

description of its setup, a graphical illustration of the obtained results, a comprehensive 

interpretation of the outcome, and the conclusion on the validity of the hypothesis 

statement that it tests. 

The seventh chapter concludes this thesis. It offers a summary of the thesis, discusses 

the major results, and highlights the most important contributions of this study. It also 

speculates on future research activities that complement this research or were enabled 

through it. 
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CHAPTER 2 

SEMANTIC SIMILARITY IN INFORMATION SYSTEMS 

Addressing the problem of semantic similarity in information systems requires a 

combination of knowledge from fields as diverse as computer science, psychology, 

linguistics, and philosophy. The interdisciplinary efforts in some of the problems that we 

address suggest an issue-based rather than a discipline-based approach. Our overview is 

arranged in three sections. The first introduces ontologies, which are rapidly evolving as 

a central component of current information systems. The second section describes the 

most important properties of similarity as well as its relationship with context and the 

notion of difference. It also reviews models that were developed to assess similarity 

among objects, concepts, and spatial configurations. The third section presents 

definitions, formalisms, and concepts from fuzzy set theory and graph theory, which are 

prerequisites for developing and justifying the similarity framework of this work. 

2.1 Ontologies 

The word ontology has lately become very popular within the knowledge engineering 

community (Staab and Studer 2004). Its interpretation, however, is still vague, since the 

term has occasionally been used under slightly different meanings. The notion was 

originally introduced by philosophers–ontology is a branch of philosophy–and its study 

dates back to Aristotle (350 B.C.-b). It is composed of the two Greek words onto (being) 

and logos (reasoning); therefore, one may say that ontology is the science of being that 

reasons about everything that exists (in Aristotle’s words “the science of being qua 

being”). Gruber (1992) states that ontology, in the philosophical sense, is a systematic 

account of existence. Its main goal is then the discovery of truth (Zuniga 2001). Guarino 

(1998) distinguishes between the Ontology (with a capital “o”), as the philosophical 

Ontology, and ontology (with a lowercase “o”), as the term originating from the 
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computer science community. He defines Ontology as a particular system of categories 

accounting for a certain vision of the world. According to this definition, there is only 

one philosophical Ontology independent of the language used to describe it. 

Unlike this unique, global, and always true philosophical Ontology, every individual 

has a different understanding of reality and the surrounding world. This atomic view, 

which constitutes the individual’s personal ontology, is commonly known in psychology 

as the individual’s mental model. Such personal ontologies are mostly implicit and 

hidden within us (Farquhar 1997). Dissimilarities among such ontologies are a natural 

consequence of different experiences, needs, backgrounds, linguistic conventionalities, 

and cultures, which imply different viewpoints and assumptions (Goldstone 2003; 

Rosenthal et al. 2004). Although this natural divergence is valuable, it often leads to 

problems in people’s interactions and understandings. The need of people, organizations, 

and especially software programs to communicate without ambiguity led to ontologies as 

defined and implemented from the knowledge engineering community. 

2.1.1 Defining an Ontology 

The most frequently cited definition in the literature comes from Gruber (1992) who 

states that an ontology, in the context of computer science, is an explicit specification of a 

conceptualization. A conceptualization refers to an abstract model of how people think 

and organize concepts and things in the world, usually restricted to a particular area of 

interest. An explicit specification, on the other hand, means that the concepts and things 

of this abstract model are represented formally by explicit terms, relations, and 

definitions (Gruninger and Lee 2002). Guarino (1998) refined Gruber’s original 

definition by distinguishing between an ontology and a conceptualization. For him an 

ontology is a logical theory, accounting for the intended meaning of a formal vocabulary 

(i.e., its ontological commitment to a particular conceptualization of the world); 

therefore, ontology is an engineering artifact. It is language-dependent and uses a specific 
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vocabulary to describe a part of reality, plus a set of explicit assumptions regarding the 

intended meaning of the vocabulary terms. On the other hand, a conceptualization is 

language-independent and equivalent to the philosophical Ontology. The definition from 

Guarino has also undergone some criticism. For example, Zuniga (2001) argues that what 

Guarino calls a conceptualization is distinct from philosophical Ontology. Alternative 

definitions of ontologies in the context of information systems are provided by Guarino 

and Giaretta (1995). 

The multitude of the available definitions contrasts ironically with the purpose of 

ontologies in computer science, which is simply to provide an agreement on the meaning 

of the words. For this thesis, we use the definition from Mena et al. (1998), which states 

that “an ontology is a specification of a representational vocabulary for a shared domain 

of discourse, which may include definitions of classes, relations, functions, and other 

objects.” It names and describes the entities that may exist in that domain, their attributes, 

functions, as well as their relationships. Therefore, an ontology is roughly a synonym for 

an agreed-upon terminology. It provides an agreement on the meaning of a set of terms in 

order to represent a domain and to communicate knowledge about it (Farquhar et al. 

1996). 

A domain ontology stands somewhere in the middle between the philosophical 

Ontology and the mental models of individuals. It differs from Ontology, because it is 

interested only in one particular domain of knowledge and not in everything that exists; 

therefore, there is only one Ontology, but many domain ontologies (Fonseca 2001). A 

domain ontology also differs from implicit mental models by being explicitly structured 

and constructed and, most importantly, by being shared through the concept of 

ontological commitment. Multiple parties (e.g., persons, agents, software systems) agree 

to commit to a particular ontology when communicating about a common domain of 

interest, despite the fact that they do not necessarily share the same mental models 

(Holsapple and Joshi 2002). 
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2.1.2 Common Misconceptions about Ontologies 

Ontologies are often erroneously equated with other constructs. The most common 

misconception seems to be the congruence with database schemas (Spyns et al. 2002). A 

database schema can be seen as an ontology as long as it is a conceptual schema (Gruber 

1992; Guarino 1997). The main difference, however, is one of purpose. An ontology is 

developed to make clear the meaning of the terms used in a particular domain, whereas a 

database schema is developed to model some available data. The relations and attributes 

in a database schema have names carrying an implicit semantic, which is the concept they 

stand for; however, the schema carries only the names but not necessarily the concepts, 

because different people may interpret these names differently (Busse et al. 1999). A 

schema needs to be associated with an ontology in order to make the semantics of the 

data source clear (Cui et al. 2001); therefore, an ontology provides a domain theory and 

not the structure of a database. In addition, an ontology is concerned with the possibility, 

and not the actuality, of existence (Gangemi et al. 1998). It models all possible entity 

types that may exist in a domain, independently of whether information about entities 

belonging to these types exists and can be stored in a database (Fonseca 2001). Hence, an 

ontology is richer in its semantics and in its content than common database schemas. 

Ontologies are also often equated with taxonomic hierarchies of classes. Hierarchies 

that specify classes and their subsumption relationships represent one structural means of 

building ontologies. Ontologies, however, need not be limited to these forms (Gruber 

1993). They can be much more than simple taxonomies of concepts, involving 

constraints, axioms, and interrelations among concepts (Guarino 1997). 

2.1.3 Ontology Types 

One possible classification of ontologies according to their ontological depth (i.e., their 

level of explicitness and formalization) is the following synthesis from the classifications 

by Gangemi et al. (1998), Rodríguez (2000), Welty (2000), and Smith and Welty (2001): 
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• Catalog: A list of normalized terms without any axioms or glosses. A catalog can be 

the ontology of the products that a company sells. 

• Glossed catalog: A catalog with natural language descriptions of the terms (e.g., the 

dictionary of biology). 

• Simple taxonomy: A collection of concepts organized by a partial order induced by 

inclusion. 

• Thesaurus: Description of terms, plus relations to other more general or more specific 

terms within a common hierarchy. An example of such an ontology is WordNet 

(Miller et al. 1998). 

• Characterized taxonomy: A collection of concepts along with their relations and 

properties, such as the ontology for the (KA)2 community (Benjamins 1998). 

• Fully axiomatized taxonomy: A collection of concepts, semantic relations, properties, 

and axioms, such as the GALEN project (Rector et al. 1993). 

• Context library: A set of axiomatized taxonomies with relations among them, such as 

Cyc (Lenat 1995). 

Another useful classification of ontologies is according to their levels of generality 

(Figure 2.1). 

Figure 2.1:  Types of ontology according to their level of generality (Guarino 1998). 
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• Top-level ontologies describe very general concepts, such as space and time, which 

are typically independent of a particular problem or domain. They are common-sense 

ontologies that may be accessed by large communities of users as well as from other 

ontologies. An example of a top-level ontology is SUMO (Niles and Pease 2001). 

• Domain ontologies are the most commonly encountered and describe the vocabulary 

for a specific domain, such as cars or animals. In GIS such domains can be remote 

sensing or the urban environment (Fonseca et al. 2000). 

• Task ontologies are more specific than domain ontologies as they describe a generic 

task or activity that occurs inside a domain. For example, a task ontology may 

describe noise pollution, an activity that occurs inside the urban environment. 

• Application ontologies express concepts depending on both a particular domain and a 

task. They are often specializations of both of the related ontologies. 

2.1.4 WordNet 

WordNet is a large semantic (and for the most part hierarchical) network for the English 

language that contains nouns, verbs, adjectives, and adverbs organized into sets of 

synonyms (synsets) (Miller 1995). The focus of WordNet is at the concept level (Lenat et 

al. 1995). Each synset is a node in the network corresponding to one concept, that is, a 

particular sense of an English word. WordNet encompasses both lexical and ontological 

information. Its lexical information is derived from the various word senses that it offers. 

In this sense, WordNet resembles a dictionary. It provides definitions of the words and 

includes sample sentences that demonstrate their use in natural language. The ontological 

information of WordNet is derived from the semantic relations that hold among the 

various word senses. From these relations our work considers synonymy, antonymy, 

hyponymy, hypernymy, and meronymy. A synonymy relationship between two terms 

holds when the terms have the same meaning (e.g., building and edifice). A hyponymy 

relationship holds when one term is less general than the other. A hypernymy relationship 
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is the inverse of hyponymy. For example, for the two terms house and building, the 

former is the hyponym and the latter the hypernym. Antonyms are terms that have 

opposite meaning (e.g., lighted highway vs. unlighted highway). The meronymy relation 

indicates the connection between parts (components) and wholes (e.g., roof is part-of a 

building). Although WordNet may be seen as an upper-level ontology, it can also be used 

as a domain-ontology building tool, allowing to pursue generality, identifying subtle 

differences in meaning between concepts, and enforcing readability and consistency by 

introducing linguistic discipline (Guarino 1997). 

2.1.5 Problems of Ontologies 

Although ontologies are becoming increasingly popular, ontological engineering—the 

discipline concerned with their development—is relatively novel and, hence, immature. 

One of the basic problems is the construction of poor-quality ontologies, often the result 

of unrestrained and erroneous use of the subsumption relationship (Guarino and Welty 

2000). Although the representation of hierarchical knowledge is important in the design 

of formal ontology, there is little available advice on the problems that may be 

encountered during the ontology design process (Jones and Paton 1998). Ontoclean 

(Guarino and Welty 2002) is a methodology that provides guidance in validating 

taxonomies by exposing inappropriate modeling choices. 

Another problem arises when the ontology users do not share the same assumptions 

and beliefs as the original designers. These differences result in ontologies that are not 

shared by many of the members of the community for which they were implemented. The 

ontological commitment may be very narrow, which in turn defeats the ontology’s 

purpose for sharing and reusing of knowledge (Gruninger and Lee 2002). Holsapple and 

Joshi (2002) recommend a collaborative approach to ontology-design in order to 

overcome this problem. The only benchmark in evaluating the success or failure of an 

ontology with respect to its acceptance is its longetivity and the extent to which it will be 
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adopted by the members of the community for which it was developed. Ontolingua 

(Farquhar et al. 1996) is an environment that allows an online collaborative approach to 

ontology modeling, editing, and reusing. 

One last source of confusion is based on the different terms that are used to denote the 

various ontological elements. For example, people from the area of description logics use 

the terms concepts, roles, and individuals to refer to the ontological elements, whereas 

other scientists employ the frame-based terminology that uses classes, slots, facets, and 

frames. There are many other terminologies, an overview of which is presented in 

Kiryakov et al. (2001). In this thesis, we mainly use the terminology from the object-

oriented and descriptions logics paradigms. Classes correspond to concepts, and 

attributes or roles to properties of the concepts. Objects are instances of a class and 

relations are the various relationships that hold among different concepts. 

2.1.6 The Role of Ontologies in Information Systems 

Ontology usage is rapidly becoming widespread in many scientific fields, such as 

intelligent information integration (Hakimpour and Geppert 2001; Wache et al. 2001; 

Palopoli et al. 2003; Rodríguez and Egenhofer 2003; Doan and Halevy 2005), 

information retrieval (McGuinness 1998; Guarino et al. 1999; Jones et al. 2001; Biskup 

and Embley 2003), similarity assessment (Mena et al. 1998; Rodríguez and Egenhofer 

2004), electronic commerce and web retrieval (Fensel 2000; Fensel et al. 2001; Doan et 

al. 2003; Dou et al. 2003; Embley et al. 2005), conceptual analysis (Burg and Van de 

Riet 1998; Guarino and Welty 2000; Bernstein 2003), and language engineering (Lang 

1991). It has also attracted the interest of communities that bear a close relationship to 

computer science such as GIS (Coenen and Visser 1998; Fonseca et al. 2002), as well as 

from communities that are phenomenically unrelated, such as medicine (Gangemi et al. 

1998; Mork and Bernstein 2004) and law (Bench-Capon and Visser 1997). This thesis 
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focuses on the use of ontologies in GIS and information systems in general, for the 

purpose of retrieving semantically similar information. 

An ontology-based information retrieval is based on the concept of ontological 

commitment, which reveals the agreement between the user querying the database and 

the database administrator that made the information available (Kashyap and Sheth 

1998). Database administrators map objects of the databases onto ontology terms, 

whereas users formulate their queries using the terms of an ontology that better 

corresponds to their view of one specific domain. Hence, consistency is guaranteed on 

the vocabulary used from both sides. An ontology-based retrieval of semantically similar 

results exploits the structure and content of an ontology in order to derive measures of 

similarity among concepts. For example, in the absence of information for a class 

specified in the user’s query, the system may search for available information on the most 

similar classes in the ontology with respect to the original class that was specified in the 

query. 

2.2 Modeling Similarity 

Similarity is ubiquitous in psychological theory and philosophy. It has also lately become 

an important area of investigation for computer scientists. Attempts to answer the 

question of “what makes things seem alike or seem different?” (Attneave 1950) have 

resulted in several suggestions and theories about the nature of similarity, as well as in a 

number of models that try to formalize and quantify it. 

2.2.1 Properties of Similarity 

Similarity is often interpretable as proximity, which suggests a spatial structure (Shepard 

1962a). For this reason, many studies favor a geometrical approach, where the objects 

compared are assumed to be points in a conceptual space, and dissimilarity is equated to 

the distance between the points. Similarity is then derived as a monotonically decreasing 
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function of the distance. Since the distance function is a metric, it satisfies for all points 

in the space the metric axioms of identity, symmetry, and triangle inequality, which 

translate for similarity to the properties of minimality, symmetry, and transitivity, 

respectively. The validity of these properties for similarity, however, has been the subject 

of an ongoing debate in the literature. 

2.2.1.1 Minimality 

The minimality axiom captures that the self-similarity of an entity to itself is always 

larger than the similarity of the entity to other entities. It also implies that the self-

similarity between an entity and itself is the same for all entities. Tversky (1977), the 

main opponent of the spatial axioms of similarity, argued that the self-similarity measure 

is not the same for all entities and varies depending on the prototyping characteristics of 

an entity inside a domain. What matters, however, for the purpose of comparing two 

entities is that the self-similarity is always larger than the similarity between two different 

entities (Krumhansl 1978). In this thesis, we accept the property of minimality under all 

circumstances. 

2.2.1.2 Symmetry 

The symmetry axiom for similarity has been most heavily attacked in the literature. It 

was first questioned by Rosch (1975), who diagnosed, during an experiment, that 

categories are formed in terms of focal points or prototypes. According to Rosch, in 

sentences of the kind “a is essentially b” (e.g., “a robin is a bird”) the prototype appears 

in the second position and the variant in the first. This positioning in turn implies that the 

perceived distance from the prototype to the variant is greater than the distance from the 

variant to the prototype and, hence, the variant is more similar to the prototype than the 

prototype to the variant. For example, a robin is more similar to a bird than a bird to a 

robin. In other words, similarity varies depending on which stimulus is chosen as the 
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source and which as the target. The direction of asymmetry is determined by the relative 

salience of the stimuli (Tversky 1977). 

These findings did not go unchallenged. In a more recent study, Rada et al. (1989) 

argued that asymmetry stems from the existence of another asymmetric relationship 

between the stimuli, such as the class-instance relationship, rather than being an intrinsic 

property of similarity. Asymmetry, however, is still manifested in comparisons of stimuli 

that are not characterized by a class-instance relationship. For example, in an experiment 

Tversky (1977) conducted, people judged that China is less similar to North Korea than 

North Korea is to China, although both of them are instances of the class country. Other 

researchers have argued that even the asymmetry detected among two instances of the 

same class says nothing about the truth or falsity of the symmetry relation, but that it is 

only concerned with its pragmatics (Richter 1992). One suggestion is that asymmetry in 

this case is the result of people’s tendency to consider and emphasize different features 

when assessing the similarity of the prototype to the variant, rather than when assessing 

the similarity of the variant to the prototype (Gärdenfors 2000). 

On a parallel argument, Nosofsky (1991) supported the idea that asymmetric 

proximities can be characterized in terms of symmetric similarity together with response 

bias. People may have prior biases to certain responses that involve a particular entity, 

because this entity is highly salient in their perception or memory, easily recognizable, 

encoded, and attended. These properties pertain to individual entities and not to relations 

between the entities; therefore, they may be better characterized as biases rather than 

similarities. For example, one may say that an actress looks like the president, but if the 

actress would eventually become the president, she would become the prototype and the 

people compared to her would become the variants. Hence, similarity is symmetric, but 

there is a change in the response bias. 

It appears overall that similarity judgments are not always commutative and, 

therefore, the symmetry axiom can hardly be accepted as a universal principle of 
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similarity. It seems to hold when comparing entities along a few, specific, and well-

defined dimensions. It fails, however, when we perform a broad assessment of similarity 

between two entities that involves a comparison along an arbitrary number of not so 

explicitly defined dimensions and when one entity occupies a more prominent position in 

our perceptions than another. Hence, in this thesis we accept or reject symmetry 

depending on the specific task at hand. 

2.2.1.3 Transitivity 

The transitivity property relates similarities among three elements. Opponents of the 

transitivity property for similarity argue that this geometric principle does not adapt well 

to the cognitive task of similarity assessment. For example, Tversky (1977) argued that if 

Jamaica is similar to Cuba (due to their geographic proximity) and Cuba to Russia (due to 

their political affinity) then Jamaica must also be quite similar to Russia, a statement hard 

to accept. Proponents of the property countered that the phenomenal failure of the 

principle in such examples is due to an inconsistent use of similarity, emphasizing 

different features and dimensions in successive comparisons (Rada et al. 1989; Richter 

1992). Although Tversky’s argument is logically inconclusive, transitivity may not 

always hold from an implementation point of view. For example, adhering to the 

convention that a computer-produced similarity score of 0 means that two entities are not 

similar at all, then depending on the specifics of the implemented similarity algorithm, 

for three entities a, b, and c, it could be the case that ( , ), ( , ) 0S a b S b c >  but ( , ) 0S a c = . 

2.2.1.4 The Relationship of Similarity to Difference, Dissimilarity, and Distance 

Difference, dissimilarity, and distance are all often used as logical opposites to similarity. 

There are, however, subtle differences of their meanings in the psychological literature, 

as well as of the functional relationships that tie these concepts with similarity. 

Difference and similarity are, undoubtedly, closely related. Mill (1829) stated that, 

“distinguishing differences and similarities is the same thing; a similarity being nothing 
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but a slight difference.” Therefore, differences are things that people observe. 

Dissimilarity, on the other hand, is simply an estimate; a judgment made based on the 

perceived differences of two entities. This estimate is typically abstracted as the 

psychological (i.e., perceived) distance between the representations of the two compared 

entities in a conceptual space. In this sense, dissimilarity and psychological distance 

coincide. The dimensionality of the space is determined by the conceptually distinct 

features of the instances (e.g., color and size), upon which differences have been 

observed. 

Such a geometric view implies that similarity is related to dissimilarity, and, 

consequently, to distance and to differences, through an inverse function. Conventional 

wisdom suggests that the magnitudes of the two notions are complementary (Hosman and 

Kuennapas 1972); that is, the similarity S(i, j) (or for simplicity Sij) between two entity 

instances i and j is a linear function of their psychological distance Dij with a slope -1 

(Equation 2.1a) (Figure 2.2a). The prominent assumption in the psychological literature, 

however, is that similarity is related to distance via a non-linear decay function 

(Gärdenfors 2000). Some researchers (Shepard 1987; Goldstone 1999) supported the idea 

that this function has an exponential form (Equation 2.1b) (Figure 2.2b). Shepard (1987) 

baptized this exponential decay as the universal law of generalization. Nosofsky (1986) 

argued instead in favor of a Gaussian form (Equation 2.1c) (Figure 2.2c). Ennis (1988) 

showed that under certain circumstances it is difficult to discriminate which function 

yields better results with respect to human similarity judgments. Finally, Shepard (1988) 

and Takane and Shibayama (1992) concluded that the Gaussian form is most appropriate 

when the observers are highly practiced (i.e., they have familiarity with the objects being 

compared) and the exponential form otherwise. 
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Figure 2.2:  Similarity versus distance (dissimilarity) as expressed by (a) a linear, (b) 

an exponential, and (c) a Gaussian function. 

 1ij ijS D= −  (2.1a) 

 ijc D
ijS e− ⋅=  (2.1b) 

 
2
ijc D

ijS e− ⋅=  (2.1c) 

Equations 2.1b and c correspond to a family of functions, rather than a single 

function. The parameter c is used as a general sensitivity parameter to adjust the response 

of the functions. Regardless of the exact form, similarity has a value of 1 when the 

distance is zero, and decreases monotonically with the increase of distance. For the 

exponential and Gaussian family of functions, similarity between two entities decreases 

rapidly when their distance is relatively small, while it decreases more slowly when the 

distance is relatively large, such that it converges to, but never reaches zero. This 

behavior has an interesting analogy to Tobler’s fist law of geography (Tobler 1970), 

which states that “everything is related to everything else but near things are more related 

than distant things.” It also seems to be well-suited for the purposes of semantically-

similar information retrieval: objects fairly distant from a user’s query are practically of 

no interest, hence almost equally dissimilar, whereas objects closer to the query have a 

higher impact. 
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2.2.1.5 Similarity and Context 

Similarity is a very flexible notion and strongly dependent on context (Goldstone 1994b). 

It has been argued that the flexibility that similarity exhibits is enough to doom it and that 

there is no such thing as overall similarity that can be universally measured. Indeed, 

similarity relations manifest themselves only if one has a point of view. Saying that two 

entities are similar means nothing, unless we define with respect to what property or 

properties they are similar (Goodman 1972; Popper 1972). Even if we delimit the scope 

of a comparison in this manner, there could still be present implicit or personal forms of 

context that influence similarity judgments. The quality of a similarity measure, however, 

relies critically on context, therefore, it is important to discuss how the different types of 

context can be captured and modeled for the purposes of information retrieval. 

An explicit context exists when the relevant frame of reference is unambiguously 

identified. For example, one may ask the question of how similar two buildings are with 

respect to their height. The similarity between the two objects will then be evaluated only 

with respect to this attribute. Such a question is more specific than the question of how 

similar a museum is to a theater, where the two entity types compared may vary with 

respect to several properties. In a loose setting, this kind of similarity evaluation would be 

a hopelessly ambiguous task. In information systems, however, the chances for a 

cognitively accepted and coherent similarity measure increase through the use of 

ontologies. Ontologies narrow down the frame of reference by defining explicitly all the 

entities that may exist within a domain as well as the properties of these entities that are 

of interest to the domain community. In addition, ontologies eliminate cognitive 

heterogeneity through ontological commitment. 

Another type of context is the implicit context often introduced by the set of stimuli 

under consideration. This context is responsible for several effects on the perceived 

distances between the stimuli. Tversky (1977) observed that people weight more heavily 

during a comparison those features of the stimuli that have a high diagnostic value. The 
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diagnosticity of a feature refers to its classificatory significance. For example, when 

comparing a clinic to a hospital, the property of providing health services has a small 

diagnostic value, because it is shared by both objects. It does, however, have a larger 

diagnostic value when comparing a hospital to a theater. Other effects originate from the 

spread and concentration of the stimuli within the conceptual space. The extension effect 

(Torgerson 1965; Tversky 1977) states that the addition of a new entity into the set of 

entities under consideration will alter the pre-existing similarity judgments. For example, 

assume a set of values, denoted as {1,2,3,4}. If we add to it the value 10, the similarities 

among the first four values will become larger than they were judged to be before the 

addition of the new value. The similarity relations that hold among the entities are 

different in the original and the extended context, because people tend to adjust their 

conceptual spaces depending on the pair of the two most dissimilar entities in the set that 

they have to compare. Similar effects were observed by Goldstone (1994b) and 

Krumhansl (1978). The latter also found evidence that similarity is sensitive to the 

density of the stimuli within a space. Two objects in a less spatially dense region of the 

stimulus domain will be judged more similar than two objects that differ an equivalent 

amount, but lie in a spatially denser region of the domain. For instance, if we also add the 

value 9 into the set of the previous example, the similarity between 9 and 10 will be 

judged larger than the similarity between 2 and 3. This effect implies that people attempt 

some form of distribution equalization, similar to the process of histogram equalization in 

digital imaging applications (Gongalez and Woods 2002). They spread the objects in 

their perception, so that the new distribution comes closer to becoming uniform. 

Although it is possible to account for such effects mathematically, from a pragmatic 

standpoint there is no reason to do so. The existence of these effects depends on prior 

observation of the stimuli and their characteristics within a domain and the ability to 

retain such knowledge. Information retrieval, on the other hand, is immune to such 

phenomena, because in databases no such sensory processes are involved and users are 
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typically unaware of the set of entities against which their queries will be directed. A 

single exception concerns occasions where the range of an attribute for a set of objects 

may be bounded within two extreme values that are conventionally perceived as 

opposites (e.g., black and white). In these cases the extension effect becomes relevant 

(i.e., similarities among other values must be judged relative to the extreme pair).  

Other properties that are relevant for similarity comparisons may vary widely with 

age (Gentner 1988), expertise (Sjoberg 1972), environment (Harnad 1987), method of 

presentation (Gati and Tversky 1984), cerebral hemisphere of processing (Umilta et al. 

1978), and—most importantly for information retrieval—the individual comparison-

maker’s goal and knowledge (Goldstone 1994b). All of these factors constitute a 

personal context that biases similarity estimates. Hence, even for the same set of entities 

and considering the same properties in the assessment, similarity judgments may vary 

among individuals. Although it is expected that people sharing backgrounds, interests, 

and experiences (i.e., the people who commit to the same ontology) will also share the 

same similarity assumptions and biases for the entities in a domain of interest, it is logical 

to expect slight deviations from individual to individual. The personal context is typically 

captured by letting users specify weights or other parameters in order to fine tune 

similarity assessments according to their needs and intentions. 

2.2.1.6 Similarity in Classification 

Another factor that may influence similarity judgments is classification. Similarity and 

classification bear a close relationship (Rips and Shoben 1973; Lakoff 1987; Rips and 

Collins 1993; Goldstone 1994b). People tend to group entities into clusters based on their 

similarities. This process also works reciprocally, that is, the existing classification will 

influence the insertion of an entity into a cluster. Thus, similarity arises as a consequence, 

but also influences classification. 
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2.2.2 Models for Similarity Assessment 

A classification of models for similarity assessment distinguishes between geometric, 

featural, transformational, network, and alignment models. Whereas network models 

were mainly developed by computer scientists, the remaining models were proposed from 

cognitive psychologists. Besides these categories, there also exist hybrid models that 

combine characteristics from the other approaches. Since similarity is a not a unitary 

concept (Torgerson 1965; Goldstone 1994b), favoring the use of one model over another 

depends on the specific task, because each model carries different innate assumptions and 

emphasizes different properties of similarity. Selecting the appropriate model becomes a 

critical factor in improving the quality of a similarity measure. 

2.2.2.1 Geometric Models 

Geometric models have been amongst the most prevalent approaches in analyzing 

similarity. In these models, the entities under comparison are represented as points within 

a multi-dimensional metric space. A metric space is based on a distance function. The 

dimensions (i.e., axes) of the space represent features or properties that the entities 

possess. The coordinates of a point within the space represent specific (perceived) 

instances on each dimension; for example, a particular temperature or a particular length. 

Interpoint distances are perceived as measures of dissimilarity between the entities. They 

are typically computed by the r-Minkowski metric (Equation 2.2), where n is the number 

of dimensions and xik, xjk the values of entities i and j along dimension k. For 1r =  

Equation 2.2 yields the city-block distances between the points, whereas for 2r =  it 

produces Euclidean distances. The latter means that one travels along the dimensions in 

order to get from one point of the space to another. These distances indicate the 

dissimilarity between i and j. The role of the weight coefficient wk is to determine the 

salience of a particular dimension k. If it was omitted, then the scales of all dimensions 

would be identical and the distance measured along one of the axes would be the same as 
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the distance measured along another. Such an assumption is often violated, because in 

certain psychological contexts several dimensions are emphasized more than others 

(Attneave 1950; Torgerson 1965; Nosofsky 1992). Choosing the important dimensions 

depends on the knowledge, purpose, and interests of users who will perform the 

similarity assessment. The estimated distances can be converted to similarities through 

any of Equations 2.1a-c, however, non-linear functions are typically the norm in 

psychology (Ashby and Lee 1991). 
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( , )

n rr

ij k ik jk
k

Dissimilarity i j d w x x
=

⎡ ⎤
= = −⎢ ⎥⎣ ⎦

∑  (2.2) 

Geometric models are exemplified by the method of multi-dimensional scaling 

(MDS), which was originally implemented by Young and Householder (1938) and 

Torgerson (1952; 1958). Its conception, however, is attributed to Richardson (1938) who 

suggested that psychophysical judgments, such as similarity, involve more than one 

dimension for their representation. Since then, various researchers have improved the 

method (Klingberg 1941; Messick and Abelson 1956; Kruskal 1964; Nosofsky 1992) and 

provided the first computerized applications of it (Shepard 1962a;1962b). 

The objective of MDS techniques is to find n points whose interpoint distances match 

the experimentally obtained distances (i.e., dissimilarities) of n objects. The input to 

MDS routines may be similarity or dissimilarity judgments between a set of objects, 

whereas the output is a geometric model of the data in which each object of the set is 

represented as a point in a n-dimensional space. The intention is to come up with the 

space of the lowest possible dimensionality that will accurately reflect the original 

distances. Therefore, MDS does not aim at estimating similarity between objects; 

similarity judgments are only the input to the routine. It rather aims at revealing how the 

conceptual spaces of people are structured in dimensions, but the dimensions per se have 

no meaning. A secondary goal of MDS is the reduction of data. Substituting n2 implicit 
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distances for a set of n objects (i.e., the distance from each object to every other object of 

the set) with a set of nk ⋅  coordinates, where k is the number of the dimensions (usually 

much less than n), results in a reduction of data (Shepard 1962a). MDS is appropriate in 

complex situations when not all of the dimensions are known a priori (Torgerson 1952). 

The extraction of similar results from a typical relational database is concerned with 

the converse problem. A relational table corresponds to a set of objects and the number of 

attributes of the relational table defines dimensionality of the space. With each object 

having a different placement along the dimensions, depending on its attribute values, the 

goal is to exploit the differences in the values in order to derive similarity measures 

among the objects. 

Although geometric models can be modified to account for asymmetries in similarity 

judgments (Krumhansl 1978; Nosofsky 1991), these models typically adopt the view of a 

symmetric and transitive similarity. They perform better when the entities vary along 

attributes of a quantitative nature (Torgerson 1965; Tversky 1977), because values of 

quantitative dimensions represent points in a continuum. On the other hand, qualitative 

dimensions have a discrete structure such that the determination of a point with respect to 

a qualitative dimension presents difficulties in its placement. Hence, in such situations 

other models must be employed. 

2.2.2.2 Featural Models 

Such an alternative approach is based on featural models, which have a qualitative 

foundation. Rather than estimating similarity as a function of distance, featural models 

infer the similarity between two objects as a function of their common and distinctive 

features. Common features increase similarity, whereas different features decrease it. 

Jaccard (1908) first suggested a simple mathematical formula that captures these ideas 

(Equation 2.3). His measure, known as the Jaccard index or the coefficient of similarity, 

determines similarity between two entities a and b with sets of features A and B, 
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respectively, as the ratio of the cardinality of the intersection of their common features 

A B∩  divided through the cardinality of the union of their features A B∪ . 

 ( , )
A B

S a b
A B
∩

=
∪

 (2.3) 

Featural models are exemplified by the contrast model (Tversky 1977), which is a 

parameterized version of the Jaccard index. In this model, the similarity between two 

objects a and b (Equation 2.4a) is determined by three arguments: | A B∩ | the number of 

features that are common both to a and b; | A B− |, the number of features that belong to a 

but not to b; and | B A− |, the number of features possessed by b but not by a. The terms θ, 

φ, and ω reflect the weights given to the one common and the two distinctive sets of 

features, respectively. Equation 2.4a defines a family of functions depending on the form 

of f and the values of the weights. The function f can be modified so that a particular 

common or distinctive feature will receive a larger or smaller weight. Usually, however, 

it is simply assumed to be additive (Equation 2.4b). The most interesting variation of the 

contrast model is the ratio model, where similarity is normalized and has values between 

0 and 1 (Equation 2.4c). All these functions are called matching functions, because they 

measure the degree to which two objects match each other. 

 ( , )S A B f A B f A B f B Aθ ϕ ω= ⋅ ∩ − ⋅ − − ⋅ − ,   for , , 0θ ϕ ω ≥  (2.4a) 

 ( , )S A B A B A B B Aθ ϕ ω= ⋅ ∩ − ⋅ − − ⋅ − ,             for , , 0θ ϕ ω ≥  (2.4b) 

 ( , )
f A B

S A B
f A B f A B f B Aϕ ω

∩
=

∩ + ⋅ − + ⋅ −
,          for , 0ϕ ω ≥  (2.4c) 

Feature matching is a set-theoretic approach and, hence, is neither dimensional nor 

metric in nature. By modifying appropriately the weights and the form of function f, the 

contrast and ratio models may provide asymmetric measures of similarity when this is 

necessary. Features may correspond to components of an object (such as roof and 
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balcony for a house), concrete properties (such as having a square footage and 

construction date), or abstract attributes (such as quality of structure). It is obvious that 

the term feature in the parlance of the contrast model denotes the value of a binary or 

nominal variable; therefore, featural models are preferred when the available data for a 

similarity assessment consist of qualitative variables rather than values of the objects that 

can be mapped onto quantitative dimensions. 

A criticism of the featural models is that under a relatively general context two 

entities may share an arbitrary number of properties and hence be arbitrarily similar 

(Goodman 1972; Gärdenfors 2000). For example, both Iraq and the US are countries, 

have mountains, are places where people live, exist in the same galaxy, and so forth. On 

the other extreme of a very narrow context, the number of available properties that will 

count as common and distinctive features may be quite small for these two entities. In 

this case, Equations 2.4a-c will yield very coarse similarity measures; therefore, the two 

basic assumptions for featural models to become conceptually operational are that (1) a 

relatively large number of features is associated with the objects, which may include 

functions, parts, and properties and (2) the features employed in the similarity assessment 

will be selected depending on the context, as it is specified within a particular domain of 

interest. The second assumption is crucial, because shifts of attention to other domains 

will result in the selection of different features for the similarity assessment and, hence, in 

shifts in overall similarity judgments. According to Tversky (1977) “the selection of 

features is viewed as a product of a prior process of extraction and compilation.” 

Such extraction and compilation results in domain ontologies, which model all the 

properties and features of the entities as well as the relationships that hold among them 

depending on the context imposed by a particular universe of discourse. These properties 

and relationships may be counted as common or distinctive features of objects during a 

similarity assessment. Hence, ontologies satisfy both assumptions of featural models. 
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2.2.2.3 Transformational Models 

Another approach to similarity is based on the concept of transformational distance. The 

magnitude of a transformational distance measure is expressed by the number of 

operations that are required to transform one object into another (Imai 1977; Jagadish et 

al. 1995). For example, the sequence XXO requires one atomic operation to become XXX, 

whereas XOO requires two operations. Hence, XXO is more similar to XXX than XOO is. 

Similarity is assumed to decrease monotonically as the number of these operations 

increases. Transformational models are closely related to geometric models. 

Traditionally, it was thought that such models apply better to figures and visual 

configurations. Recent efforts (Hahn and Chater 1997; Hahn et al. 2001; Hahn et al. 

2003), however, have resuscitated transformational models and made them applicable in 

a much broader context. 

2.2.2.4 Models Based on Semantic Networks 

Unlike geometric and featural models, network models provide explicit support for 

similarity assessment among hierarchically organized concepts (Sattath and Tversky 

1977). The main work in this area is based on semantic networks (Quillian 1968) and 

dates back to the theory of spreading activation (Collins and Loftus 1975). According to 

Lee et al. (1993), “a semantic network is broadly described as any representation 

interlinking nodes with arcs, where the nodes are concepts and the links are various kinds 

of relationships between concepts.” The closer two concepts are in the network, the more 

they are semantically similar. 

Many of the network models aim at deriving the semantic relatedness rather than 

semantic similarity of two concepts (Hirst and Onge 1998; Banerjee and Pedersen 2003; 

Patwardhan 2003). The former is a term originating from studies in natural language 

processing and corresponds to a much broader notion that encompasses the latter. 

Semantic relatedness refers to the degree to which two concepts are related (or not). For 
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example, a theater is related to an actor because actors perform in theaters. Even 

concepts that are antonyms can be related to each other in this sense. Semantic similarity, 

on the other hand, is interpreted in this work as a measure that reflects the usefulness and 

suitability of a result to a user’s query. Semantic similarity is, therefore, only a special 

case of semantic relatedness (Resnik 1995). This distinction is important, because 

semantic relatedness measures are inappropriate for measuring similarity. 

The most basic network models are based on edge-counting techniques. The idea is 

straightforward: the shorter the path between two concepts, the more similar they are. 

Even such a simplistic measure has been found to perform surprisingly well with respect 

to people’s judgments of similarity (Budanitsky 1999). Better results were obtained for 

networks that consider only is-a hierarchies (Figure 2.3) and where the concepts were 

restricted to a particular domain of interest, which ensures a relative homogeneity of the 

hierarchy (Rada et al. 1989). Both requirements are met by domain ontologies, therefore, 

this simple measure is a good candidate for such structures. 

Figure 2.3: Shortest path and is-a relationships in a hierarchical network structure. 

Leacock and Chodorow (1998) followed this edge-counting technique, but counted 

nodes instead of edges. Therefore, the distance for two synonyms is 1, rather than 0. 

Their measure was applied to measuring the similarity of nouns in WordNet. WordNet 

has several separate noun hierarchies, which were all combined into a single hierarchy by 

placing an imaginary root node on top, to ensure the existence of a path between any two 
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concepts. They converted their measure of distance to similarity with Equation 2.5, where 

c1 and c2 are the compared concepts, 1 2( , )d c c expresses the length of the shortest path 

between c1 and c2 in terms of the nodes counted, and D is the maximum depth of the 

WordNet hierarchy (also known as height in graph theory). Despite its simplicity, a 

problem with the edge-counting technique is the erroneous assumption that links in the 

hierarchy represent uniform distances. In a realistic scenario, the distances in a hierarchy 

shrink as one descends in depth, because the classifications are based on finer details. 

Another factor that is neglected is the density of concepts in the hierarchy. It is expected, 

that concepts in a dense part of the hierarchy should be ranked as conceptually closer 

than those in a sparser region. 

 1 2
1 2

( , )( , ) log
2LC

d c cS c c
D

⎛ ⎞= − ⎜ ⎟⋅⎝ ⎠
 (2.5) 

To account for these additional factors, several researchers suggested other 

approaches (Sussna 1993; Wu and Palmer 1994). In one of them, Resnik (1995; 1999) 

combined the hierarchical structure of WordNet with the information content of concepts 

in order to derive similarity. His assumption was that the similarity of two concepts c1 

and c2 is expressed by the information that they share, which is indicated in an is-a 

hierarchy by the information content (IC) of a concept 1 2( , )lcs c c  that is the least common 

subsumer of c1 and c2 (Equation 2.6). According to Information Theory (Shannon 1948), 

the information content of a concept c is equal to –log p(c), where p(c) is the probability 

of the occurrence of c in a large text corpus (Ross 1976). This formula implies that the 

probability of a concept’s occurrence in a corpus increases as the concept’s 

informativeness decreases; therefore, abstract concepts are less informative than more 

concrete ones. For example, the information content of the concept building is less than 

the information content of more specific concepts, such as hospital and schools. The 

problem with this approach is that it underestimates the role of the hierarchical structure, 

which is used only for locating the immediate common superordinate of the compared 
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concepts. The measure depends completely on the information content of this lowest 

common subsumer, but the concepts themselves are not taken into consideration. Hence, 

in terms of semantic similarity, pairs of concepts that have the same lowest common 

subsumer are indistinguishable. 

 1 2 1 2( , ) ( ( , ))RS c c IC lcs c c=  (2.6) 

To address these limitations Jiang and Conrath (1997) developed a more sophisticated 

model that combines features from information content and from edge counting. Their 

measure is a distance measure (Equation 2.7a), but it can also be converted to a similarity 

measure by inverting the value of distance (Equation 2.7b) (Patwardhan 2003). Based on 

the same considerations, Lin (1998) proposed another similarity measure that uses the 

same constructs, but combines them differently. 

 1 2 1 2 1 2( , ) ( ) ( ) 2 ( ( , ))JCd c c IC c IC c IC lcs c c= + − ⋅  (2.7a) 
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An exhaustive survey of the majority of network similarity models can be found in 

Budanitsky (1999) and an evaluation of their performances in Budanitsky and Hirst 

(2001) and Patwardhan (2003). 

2.2.2.5 Integrated Approaches—The Matching Distance Model 

An integrated approach to semantic similarity among concepts is the Matching Distance 

model (Rodríguez et al. 1999). This model combines elements from featural and network 

models by considering the number of common and different features of two classes along 

with their semantic distance in an ontology. The semantic relations used are hyponymy 

(is-a) and meronymy (part-whole). Features of a class are subdivided into attributes, 

parts, and functions. The focus is specifically on spatial concepts such as building, 

highway, and park. The spatial entities and their features, which were extracted from the 
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Spatial Data Transfer Standard (SDTS) (USGS 1998), were organized hierarchically 

based on their network representation in WordNet (Miller et al. 1998). 

Similarity measures are obtained from Equation 2.8a, where the coefficients ωp, ωf,  

and ωa represent weights. The global similarity function 1 2( , )S c c  of two classes c1 and c2 

is, therefore, a weighted sum of the similarity values for parts, functions, and attributes of 

two classes, denoted respectively as 1 2( , )pS c c , 1 2( , )fS c c , and 1 2( , )aS c c . Each of these 

values is evaluated separately by a formula based on Tversky’s ratio model (Equation 

2.8b). C1 and C2 are the respective sets of features of type t (parts, functions, attributes) 

for classes c1 and c2, and | 1 2C C∩ | and | 1 2C C− |, | 2 1C C− | denote the cardinality of 

common and distinctive features, respectively. The coefficient α, is a function of the 

semantic distance between the two classes in the hierarchy, as well as of their distance to 

the immediate class that subsumes both of them (Equation 2.8c). 

 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )p p f f aS c c S c c S c c S c cαω ω ω= ⋅ + ⋅ + ⋅  (2.8a) 

where, 
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The MD model presents several desirable properties. One important characteristic is 

that the formula that evaluates the coefficient a may account for an asymmetric 

evaluation of entity classes located at different levels in the hierarchical structure. 

Although such asymmetric scores are somewhat artificially generated, the model has 

been found to scale well with people’s judgments of similarity (Rodríguez 2000). The 

assignment of different weights to the attributes, functions, and parts achieves context 
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flexibility. The consideration of the linguistic concepts of synonymy and polysemy (same 

word with multiple meanings) allows counting synonymous features as common, rather 

than as distinctive elements in the similarity assessment. The inclusion of meronymy 

relations and the consideration of parts in the assessment emphasize the spatial character 

of the model. 

2.2.2.6 Alignment Models and Configuration Similarity 

A configuration, such as a spatial scene, is a structurally rich description that comprises a 

collection of objects arranged in a specific manner. Geometric, featural, and network 

models cannot be readily applied to the task of configuration similarity assessments, 

because they rely on comparisons of isolated object (or concept) pairs and their attributes. 

Due to the multiplicity of objects, a similarity assessment between two configurations 

appears to be possible only after their objects have been placed in correspondence. The 

presence of a structure, encoded in the relationships that objects have with one another, 

also dictates that the quality of a match between two scenes is determined by the 

combined coherence of the correspondences created for objects and relations. Hence, the 

matching process should be governed interactively by both components. The dichotomy 

of a configuration into objects and relations suggests further that both of them should 

contribute to the similarity score between two such relational structures. Therefore, there 

is a need to assess and combine the similarity of the individual components within the 

scope of the more general comparison. 

The validity of these intuitive claims and observations, as well as additional insights, 

can be traced back to psychological research. Goldstone et al. (1991) concluded that 

people construe spatial scenes in terms of objects and relations and both components 

were psychologically salient. Markman and Gentner (1993) discovered that when asked 

to assess the similarity of configurations, subjects preferred structurally sound object 

correspondences. Analogous findings were also reported by Goldstone (1994a) in a series 
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of experiments whose purpose was to evaluate the role of relations in scene similarity 

judgments. Based on previous work on analogical reasoning (Gentner 1983), he proposed 

an alignment model of similarity, where part of the comparison is to determine how 

elements correspond to, or align with, one another. Goldstone also elaborated further on 

the rationale that drives the creation of such correspondences. The most significant 

findings of his and of the other research efforts can be summarized as follows: 

• Finding 1: People start scene comparisons by locating possible object-matches—

whether exact or sufficiently similar—across two scenes. Very dissimilar objects are 

ignored rather than forced to fit (Aisbett and Gibbon 1994). Once the candidates for 

matching have been established, the process of object association takes place. 

• Finding 2: Object association was done so as to also cause relations to be placed in 

correspondence. Subjects were reluctant to match similar objects that entailed 

correspondences of dissimilar relations (Markman and Gentner 1993). 

• Finding 3: As the similarity between objects and relations gradually decreases (i.e., as 

the compared scenes start exhibiting large differences), subjects become confused, 

failing to report consistent rankings of similar data scenes to the input scene 

(Goldstone 1994a). This finding is analogous to those of Shepard (1987) and 

Nosofsky (1986) who formulated respectively the exponential and Gaussian functions 

that relate psychological distances to similarities for pairs of objects (Equations 2.1b 

and c). As in the case of objects, very different scenes become practically irrelevant 

and, in a sense, completely dissimilar to the query scene. 

• Finding 4: When several mappings between objects and relations are possible, 

subjects choose the one that optimizes the overall fit (i.e., the one that maximizes 

similarity). While all previous findings are more or less inline with Ockham’s razor, 

this finding is also particularly reminiscent of the principle of minimal change, a 
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criterion often used in the field of default reasoning in order to revise a knowledge 

base’s beliefs (i.e., internal logical propositions) about an application domain. 

From a computational point of view, the problem of retrieving similar configurations 

has many commonalities with the problems of exact and inexact scene matching, which 

have been extensively studied in computer vision and pattern recognition (Shapiro and 

Haralick 1981; Ballard and Brown 1982). In these disciplines, configurations are 

interpreted as constraint systems. Typically, such systems are over-constrained; hence, 

most approaches relax the original constraints, retrieve solutions that satisfy the relaxed 

description, and rank them according to their similarity to the original scene. Retrieval is 

performed by algorithms operating on the graph representations of the scenes to be 

matched. Typically, scene-matching tasks translate to hard combinatorial problems of 

exponential complexity. Efforts from the community of multimedia databases adopted 

these techniques, but tried to incorporate aspects of domain knowledge in the process so 

that some of the complexity is reduced. For instance, image and video retrieval 

techniques focus primarily on aspects of visual content, that is, properties such as color, 

shape, and texture (Flickner et al. 1995; Santini and Jain 1996). 

A number of proposals have also emerged within the context of spatial databases, 

albeit without much concern for the psychological findings that were outlined, and often 

based on simplifying assumptions that prevent their wider applicability. Some approaches 

for instance, create an easier version of the problem by neglecting the relational 

component during the matching process (Blaser 2000; Wang et al. 2004). Object pairs are 

formed so that object-to-object similarities are maximized, but this criterion alone does 

not necessarily yield the fittest assignment had the similarity of the relations been 

considered as well. Conversely, other approaches focus on the relational component, but 

underestimate or do not provide explicit treatment for the object component (Papadias et 

al. 1999b). Paiva (1998) addressed the problem from the perspective of topological 

equivalence, rather than similarity. Bruns and Egenhofer (1996) developed a systematic 
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methodology for constraint relaxation, measuring dissimilarity as the number of discrete 

gradual changes required to transform one scene to another. They assume, however, that 

object correspondences are known a priori. Furthermore, it is impossible to reason about 

the best match when several scenes require the same number of atomic changes in order 

to be transformed to the query scene. A number of methods are based on variations of 2D 

strings, which encode object arrangements on each dimension using sequential structures 

(Lee and Hsu 1992; Chang and Jungert 1996; Papadias and Delis 1997). These methods 

restrict expressiveness since they rely on a restricted set of relations. Moreover, users are 

forced to specify queries by the schema of the relations according to which 2D strings are 

built. 

A commonly encountered simplifying assumption relates to the size of the query and 

the database scenes to be compared. An uncompromising technique should allow for an 

arbitrary number of objects in both scenes. This ideal is rarely the case, however. Instead, 

it is usually hypothesized either that the compared scenes have the same number of 

objects (Gudivada and Raghavan 1995; Nabil et al. 1996) or that the number of objects is 

relatively small (i.e., fewer than ten) (Petrakis and Faloutsos 1997; Li and Fonseca 2006). 

Sometimes this difficulty is not explicitly stated, but the limitation practically applies due 

to the huge computational cost introduced when such techniques generalize to scenes of 

arbitrary sizes (Stefanidis et al. 2002). 

In a series of papers, Papadias and colleagues improved on most of these issues 

(Papadias et al. 1998a; Papadias et al. 1998b; Papadias et al. 1999a; Papadias et al. 

1999b). They are concerned with the efficient implementation of traditional constraint 

satisfaction algorithms, such as backtracking, forward checking, and branch and bound 

techniques (Kumar 1992). Their methods, which are customized to exploit R-trees 

(Guttman 1984) or similar indexing variants used in spatial databases, achieve significant 

performance gains. However, introducing thorough relaxation policies for spatial 

relations or objects is beyond the scope of their work. Some of these algorithms also 
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require a total matching for all objects, thereby dismissing incomplete but possibly useful 

solutions based on partially matched substructures of the compared scenes. In more 

recent work, the same team of authors considered using approximate algorithms 

(Papadias et al. 1999c; Papadias 2000; Papadias et al. 2003), which minimize retrieval 

time, but do so at the expense of several factors such as: (1) usability: users may often 

need to fine tune many of the algorithm’s parameters (2) quality of output: the retrieved 

results cannot be guaranteed to be optimal and (3) quantity of output: some approximate 

algorithms retrieve a single match during each retrieval cycle. 

The tremendous complexity of the scene-matching problem justifies many of the 

limitations that characterize previous efforts. Undoubtedly, some of the restrictions are an 

inevitable product of the exponential complexity inherent to the nature of the problem. 

Others arise, however, due to an underestimation of the problem’s dimensions, neglect of 

provisions for accommodating different retrieval scenarios, and failure to incorporate 

geospatial domain knowledge and requirements into the approach. This thesis introduces 

a systematic methodology that considers such aspects and improves on previous work by 

addressing many of the difficulties of scene similarity assessments. 

2.3 Mathematics for Similarity 

It is quite tempting and oftentimes useful to substitute ill-defined similarity and its 

derivative processes with compatible—to some extent—axiomatic theories. Fuzzy sets 

(Zadeh 1965) comprise such a theory. Considered by many a lingua franca for 

applications involving uncertainty, it provides for similarity what could be called, a 

formal coat. Being inherently vague, similarity finds a natural expression in fuzzy set 

theory, because many of its basic ideas and inference mechanisms can be elegantly 

captured through fuzzy concepts and operations, respectively. This formal coat however, 

may not always fit perfectly. The expressive plurality of fuzzy set theory can easily lead 

to unintended correspondences and produce outcomes that distort, rather than reflect, 
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human similarity perception. A presentation of the fundamental concepts of fuzzy set 

theory is, therefore, instrumental to guiding the correct correspondences between the two 

fields of science in the following chapters. The relationship of graph theory to similarity 

is also vital, but distinct. Graph theory (Harary 1969) provides a powerful layer of 

abstraction onto which spatial objects, spatial relations, and their attributes can be 

mapped. Formulating an often difficult and obscure similarity assessment through a 

graph-theoretic equivalent abstraction allows one to exploit the vast arsenal of algorithms 

and methodologies that have been developed in the graph domain in order to solve the 

original similarity problem. Informal references to graph and set theory concepts were 

already made in previous parts of this chapter. Here, we provide formal definitions for 

these and other concepts that are used throughout the remainder of the thesis. 

2.3.1 Fuzzy Set Theory 

Fuzzy set theory and fuzzy logic constructs are based on a generalization of their classic 

counterparts. Classic set theory considers elements of a domain as either members or 

nonmembers of a set. From this view, classic sets are crisp sets. The intersection A B∩  

of two crisp sets A and B is the set containing only their common elements, their union 

A B∪  is the set containing all elements that belong to either A, or B, or both A and B, 

and the relative complement of A with respect to B, denoted by B A− , is the set 

comprising all members of B that are not also members of A. If B is the universal set U, 

then the complement of A in U is called the absolute complement or simply complement 

of A and denoted by A . A crisp relation between n sets represents the presence or 

absence of association or interaction between the elements of the sets. Each crisp relation 

is a subset of the Cartesian product of the sets involved in the relation and can be written 

as a set of ordered tuples or more conveniently as a n-dimensional array. Each element of 

the first dimension of this array corresponds to one member of the first set, each element 

of the second dimension to one member of the second set, and so on. Crisp relations have 

a characteristic function, which assigns a value of 1 to every tuple of U belonging to the 
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relation and 0 to every tuple not belonging to it. This binary rationale follows traditional 

logic where conjunctive, disjunctive, and negating statements can be either true or false. 

Extending the idea of a crisp set, a fuzzy set X is defined by assigning to each element 

in the universe of discourse U a value from the real interval [0,1]. This grade represents 

that element’s membership to the fuzzy set and corresponds to the degree to which the 

element is similar or compatible to the concept represented by the fuzzy set (Klir and 

Yuan 1995). The function that performs this assignment is called the membership 

function xμ  of a fuzzy set X, symbolized as : [0,1]x Uμ → . 

In the same paradigm, fuzzy relations allow for various degrees of association or 

interaction among elements; therefore, the characteristic function of a fuzzy relation 

allows for degrees of membership of tuples in the relation. Thus, a fuzzy relation is 

typically represented as a n-dimensional membership array whose entries correspond to 

n-tuples in the universal set and each entry takes a value in the interval [0,1]. Of primary 

interest are the types of fuzzy equivalence and fuzzy compatibility relations. A fuzzy 

equivalence or similarity relation is a generalization of the well-known crisp equivalence 

relation, which is reflexive, symmetric, and transitive. A fuzzy compatibility relation is 

similar to a similarity relation, with the difference that it is not transitive. 

The fuzzy theory concepts of intersections, unions, and complements correspond to 

the three fundamental scoring rules for conjunctions, disjunctions, and negations 

(Equations 2.9a-c), respectively in fuzzy reasoning. These functions are the most 

commonly used; however, a broad class of functions qualifies for the task of describing 

these operations. As Klir and Yuan (1995) point out, “since the fuzzy complement, 

intersection, and union are not unique operations, different functions may be appropriate 

to represent these operations in different contexts. The capability to determine 

appropriate membership functions and meaningful fuzzy operations in the context of each 

particular application is crucial for making fuzzy set theory particularly useful.” 
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 [ ]( )( ) min ( ), ( )    ( ) min{ ( ), ( )}A B A BA B x A x B x x x xμ μ μ∧∩ = → =  (2.9a) 

 [ ]( )( ) max ( ), ( )    ( ) max{ ( ), ( )}A B A BA B x A x B x x x xμ μ μ∨∪ = → =  (2.9b) 

 ( ) 1 ( ) ( ) 1 ( )A AA x A x x xμ μ¬= − → = −  (2.9c) 

These concepts make apparent that similarity and fuzzy set theory demonstrate strong 

connections, because similarity is the basic idea underlying fuzzy set theory. When 

determining the similarity of several entities to a reference entity, it is of little use if not 

absurd to distinguish between those that are similar to it and those that are not. It is rather 

desirable to have a gradual transition among the entities, going from the most to the least 

similar. Therefore, the set of similar values to a reference value is a fuzzy set. 

Furthermore, similarity and fuzzy set theory are even more interrelated, because, in 

essence, the degree of membership in any fuzzy set can be interpreted as a measure of 

similarity. This measure expresses how similar or compatible an element of the set is to 

the basic concept that defines the set, whether that concept is vague (e.g., “far”) or crisp 

(e.g., “3km”). Thus, the retrieval of similar results can be viewed as a fuzzification of the 

classical information retrieval process that was until recently based on exact matches. 

2.3.2 Graph Theory 

A graph G = (V, E) of V nodes (or vertices) and E edges (or arcs) represents a structure, 

consisting of a set of elements related in a specific way. The size or order |V| of a graph G 

is defined as the number of vertices in G. An edge from node i to node j is said to cover 

or to be incident to these nodes and is represented as (i, j). Conversely, the nodes are 

termed adjacent. An edge (i, i) that connects a node to itself is a loop. For multiple 

vertices, edges and loops generalize to paths and cycles: A path between two nodes u and 

v, is simply a non self-intersecting sequence of edges of the form 1 1 2( , ), ( , ),..., ( , )ku i i i i v . 

When such a path exists, the nodes u and v are connected. A cycle is a path 

1 1 2( , ), ( , ),..., ( , )ku i i i i u  containing at least one arc in which no node except u is repeated. 
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Based on these simple definitions it is possible to define several different kinds of 

graphs. A complete graph of n vertices, denoted by Kn, is a graph in which any two of its 

nodes are adjacent (Figure 2.4a). A connected graph has all pairs of nodes connected by a 

path of edges. A directed graph or digraph is a graph in which edges may be ordered pair 

of vertices, giving the direction from one vertex to another (Figure 2.4b). A multigraph is 

a graph or digraph with multiple edges between the same vertices, whereas a 

pseudograph is a multigraph that also contains loops (Figure 2.4c). Graphs containing 

additional information attached to their edges in the form of numerical or symbolic 

values (Figure 2.4d) are termed labeled graphs or attributed relational graphs (ARGs) 

(Ambler et al. 1973). An important subclass of ARGs are weighted graphs, which consist 

of a graph together with a function w from E to Z or . The weight of an arc ( , )i j can be 

denoted by wij or w(i, j). A graph G is called planar if it can be drawn so that its nodes are 

points in the plane and each arc (i, j) is drawn so that it intersects no other arcs and passes 

through no other nodes except the ones that it covers. Otherwise, the graph is called non-

planar. In a bipartite graph the vertices are partitioned into two disjoint sets A and B such 

that no two nodes in A or B are adjacent (Figure 2.4e). If A has a elements and B has b 

elements, the complete bipartite graph is denoted by Ka,b (Figure 2.4f). 

Figure 2.4:  Various types of graphs: (a) complete graph, (b) digraph, (c) pseudograph, 

(d) ARG, (e) bipartite graph, and (f) complete bipartite graph. 

A matching in a graph G = (V, E) is a subset M of the edges E such that no two edges 

in M share a common vertex (Figure 2.5a). Vertices that remain unmatched are called 

free or exposed vertices, whereas those that are incident to a matching edge are called 

matched or covered. A maximum cardinality matching is a matching with the maximum 
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number of edges. If the edges of the graph have associated weights, then a maximum 

weight matching is a matching for which the sum of the edge-weights is a maximum 

(Figure 2.5b). When the weights assume only positive values, then the maximum weight 

matching is always a maximum cardinality matching. 

Figure 2.5:  Matchings in bipartite graphs: (a) a simple matching and (b) a maximum-

weight matching. 

Before presenting additional graph concepts, a definition of the notion of maximality 

is required. A power set P(S) of a set S is the set of all subsets of S. The cardinality of the 

power set is ( ) 2nP S =  where n S=  (the empty set ∅  is also an element of ( )P S ). 

Each element A in P(S) is a set. We say that ( )A P S∈  is minimal if there is no other set 

( )T P S∈  such that T A⊂ . Similarly, we say that ( )A P S∈  is maximal if there is no 

other ( )T P S∈  such that A T⊂ . For example, the power set of a set {1,2,3}S =  is 

( ) {{1,2,3},{1,2},{2,3},{1,3},{1},{2},{3}, }P S = ∅ , with {1} and {1,2,3} being examples 

of minimal and maximal elements, respectively. 

A graph ' ( ', ')G V E=  is called a subgraph of the graph ( , )G V E=  if 

' 'V V E E⊆ ∧ ⊆ , and a proper subgraph of G  if ' 'V V E E⊂ ∨ ⊂ . If 'V V⊆  then the 

subgraph of G induced by 'V  has the node set 'V  and all edges (u, v) in E such that both 

u and v are in 'V . A complete subgraph of G is called a clique and a maximal complete 

subgraph of G is called a maximal clique. A distinction is required between maximal and 

maximum cliques. Whereas a maximal clique is not a proper subset of any other clique, a 

maximum clique is a clique with largest cardinality. It follows that every maximum 
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clique is also maximal, but the converse does not always hold. The clique number of G, 

denoted by ω(G), is the size of the maximum clique. In the case of weighted graphs, the 

maximum-weight clique is the clique with the largest weight. The maximum-weight 

clique is always maximal, but it does not necessarily have the largest cardinality among 

other maximal cliques. A disconnected graph can be divided into connected components. 

A component is more formally defined as a maximal connected subgraph (i.e., it is not a 

subgraph of any other connected subgraph of the graph). 

Figure 2.6 provides a comprehensive visualization of these concepts. The graph G 

consists of two connected components, A and B. The maximum (and maximal) clique is  

{b,c,f,e} with size 4. The maximum-weight (and maximal) clique is {c,d,f} with total 

weight 2.1. There is a total of five maximal cliques and twenty-one non-maximal cliques 

in the graph. For clarity, only four non-maximal cliques are shown. 

Figure 2.6:  Demonstration of the concepts of component, maximum clique, 

maximum-weight clique, maximal clique, and clique. 

Two graphs G and H are isomorphic if there exists a bijective mapping f between the  

vertices in G and the vertices in H such that the number of edges joining any two vertices 

in G is equal to the number of edges joining the corresponding two vertices in H; that is, 

 iff  : : ( , )   ( ( ), ( ))i j i jG H f G H u u G f u f u H≅ → ∀ ∈ ∃ ∈ . Informally, two graphs are 
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isomorphic if they contain the same number of vertices connected the same way. A 

labeled graph or constrained isomorphism also introduces the requirement that the 

bijective mapping is performed among edges of the same kind (i.e., the labeling of arcs 

and nodes must also be equivalent). 

2.4 Summary 

Important characteristics of similarity are its often asymmetric behavior, its non-linear 

relationship to dissimilarity, and its dependence on various forms of context. Fuzzy set 

theory provides theoretical tools, which help model the complex behavior of similarity 

and complement traditional psychological models for similarity, such as geometric, 

featural, and network models. Geometric and featural models for similarity assessment 

have usually compared entities based on their quantitative and qualitative features, 

respectively, whereas network models consider the semantic relations among entities. 

These psychological models often need to rely on ontologies, which are explicit and 

axiomatized specifications of the vocabulary used to describe concepts and properties 

within a domain of interest. Ontologies provide a hierarchically organized structure of 

concepts that can be employed by a network model to assess similarity. In addition, they 

model qualitative features and properties of the entities that may be used as common or 

distinctive features by a featural model during a similarity comparison. Similarity 

comparisons of spatial scenes introduce additional requirements that traditional models 

cannot handle. Such comparisons are typically performed by specialized computational 

implementations that operate on the graph representations of the scenes. Graph theory 

concepts and algorithms can be thus exploited to provide more intuitive and efficient 

scene similarity assessments. 
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CHAPTER 3 

SEMANTIC SIMILARITY AMONG ATOMIC ATTRIBUTE VALUES 

Similarity among attribute values forms the foundation of the similarity framework 

developed in this thesis. Similarity is measured among atomic values of homogeneous 

entities that belong to a centralized or distributed GIS managed by a single DBMS. 

Entities could be either objects or relations. The term homogeneous implies that the 

entities conform to a common database schema, thus sharing attribute names and 

domains for each attribute. Numerical values are always expressed in the same units for 

each attribute or can be easily converted. Furthermore, the meanings of the same attribute 

names correspond to the same concepts in the universe of discourse for every entity. We 

also assume that there is no cognitive heterogeneity (Bishr 1998) among users of the 

database, meaning that they all interpret in the same way the concepts expressed by the 

attribute names and by the attribute values. If the database subscribes to a domain 

ontology, this assumption implies that all its local users also subscribe to the same 

ontology. In such a homogeneous environment, entities differ from each other only with 

respect to their attribute values, which assign to them specific qualities or quantities. 

The approach to attribute-level similarity assessments consists of determining the 

nature of each individual attribute and discussing algorithms appropriate to resolve 

similarity for its values. Due to the different types of attributes that may exist in a GIS, 

we do not limit the approach by complying with specific similarity algorithms, but 

employ different models and accept different properties of similarity depending on the 

particular attribute type. The list of operations for similarity assessment is not exhaustive, 

but rather aims at creating a repository of well-defined operations that may be used as is 

or with slight modifications for the plethora of attributes typically encountered in 

databases. In support of similarity queries, a set of methods for reasoning over null values 

is developed. Although this thesis focuses on geographic attributes (USGS 1998), the 
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ideas developed in this chapter merit generic application since the main attribute types 

that are examined are common across all general-purpose information systems. 

3.1 Similarity versus Change 

Retrieving and ranking similar results to a query on a single attribute is sometimes a 

simple task. An order of results to a query on a numerical attribute, for instance, could be 

determined through an operation as elementary as counting distances along the attribute 

scale. Values closer to the query would be more similar than values further apart. 

Similarity judgments at the attribute level, however, are prerequisites to inferring the 

similarity among higher-level representations, such as objects, relations, and spatial 

scenes. Hence, the choices involved in the quantification of similarity or dissimilarity at 

the attribute level will have a profound impact on the quality of the results obtained at the 

object and scene levels. Out of a set of alternative methods that work equally well at the 

attribute level (i.e., they produce identical ranks) the method deemed appropriate should 

be the one that ensures the scalability and coherence of the similarity framework as we 

ascend the levels. To avoid compromising the overall framework, the quantitative 

estimates must be derived based on a well-defined rationale that also takes into 

consideration psychological aspects of similarity. 

The issue that must be resolved first is to understand what is being measured, or what 

exactly a quantitative similarity value represents. Failure to answer this question will 

render the measures devoid of significance (Caws 1959). Geometric, featural, and 

network models of similarity do not provide a clear answer to this question. Since most of 

these efforts originate from psychological studies, the usual approach is to hypothesize a 

model, conduct a series of experiments, and evaluate the goodness of fit between the 

outcomes of the model and the human judgments of similarity. A good performance of 

the models corroborates their validity for a specific domain, but does not elucidate what 

is being measured in the particular domain and why the models are valid. The tacit 
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assumption is that the models simulate psychological distances in people’s mental spaces, 

but this claim does not answer the initial question. Instead, it shifts our effort in defining 

what psychological distances are and comprehending how humans arrive at their 

formation, both being issues open to interpretation; therefore, such models constitute ad-

hoc methodologies—some performing better, some worse—because they lack a unifying 

conceptual base. Establishing such a base would provide a more basic and fundamental 

concept of similarity, able to glue competing alternatives under a set of primitive 

operations (Quine 1969). Furthermore, it would explain what current similarity models 

measure, thus providing the ability to make critical remarks on their performance or to 

suggest improvements.  

Similarity is a relation between two things with respect to one or more perspectives 

(e.g., attributes). Chapter 2 emphasized that definitions and understandings of the 

similarity relation vary from researcher to researcher and from discipline to discipline 

(Holt 1999). Therefore, it seems appropriate to start the inquiry with a definition that 

leaves little room for dispute. Such a definition is provided by Bruns and Egenhofer 

(1996) who define similarity as “the assessment of deviation from equivalence.” 

Undoubtedly, equality is the one extreme of a similarity relation, since equal things are, 

in a way, totally similar. Any deviation from equivalence implies differences; therefore, 

an assessment of deviation means the assessment of differences, which is not surprising, 

since the term similarity frequently rides tandem with the term difference. It follows that 

when the differences between a pair of entities are equal to those of another pair, the 

similarity scores of the two pairs of entities should also be equal as well. Therefore, a 

successful measurement of similarity relies on the appropriate measurement of 

differences. 

One way to assess the differences between two entities is in an absolute fashion. For 

instance, if two entities are compared with respect to their length, the absolute difference 

is the absolute value of the algebraic difference of their lengths. Similarly, in a set-based 
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interpretation, the absolute difference between two concepts—each associated with a set 

of features—is the cardinality of the symmetric difference of the sets. Despite much 

evidence to the contrary (Rosch 1975; Tversky 1977), a dissimilarity measure based on 

the absolute assessment of differences will always produce symmetric similarity 

measures and may frequently lead to counter-intuitive results. Consider, for instance, the 

example of the spatial scene query in Figure 3.1. If dissimilarity is calculated as absolute 

difference, then both database scenes will be judged equally similar to the query by the 

system. It should be evident, however, that Scene B is a better result, because the 

difference between the larger matched segments is very small compared to the actual 

length, whereas in Scene A the smaller street segment must double to coincide with the 

corresponding small segment in the query. Therefore, the difference between 10 and 20 

does not mean the same thing as the difference between 1000 and 1010. 

Figure 3.1:  Assessing similarity based on absolute differences. 

These difficulties can be alleviated if the deviation from equivalence is assessed 

based on relative difference or change. Adopting this paradigm implies that during a 

comparison between two objects we attribute to them the same identity and perceive one 

as the changed version of the other; that is, an entity retains its identity while altering in 

some respect. This assumption underlies semantic information retrieval, where an 

approximate match is a surrogate for an exact match. It represents an informed guess by 

the system for the item that we are looking for, only slightly changed. This assumption is 

also precisely what the phrase deviation from equivalence suggests. In this context, 
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change and dissimilarity become equivalent. A measure of dissimilarity expresses the 

degree of change that one entity must undergo in order to become identical to the entity 

that it is being compared. The similarity of the entities can then be derived as the inverse 

of that change. 

Change does not always manifest in a like manner. Sometimes it may coincide with 

the distance of two values on the measurement scale that is being used, but in the general 

case it is just a function of this distance. The ability to measure change is predicated on a 

more analytical definition that allows recognizing the form of change that occurs and its 

properties. To accomplish this task, we partially rely on some simple yet powerful ideas 

that Aristotle developed in his work on Physics (Aristotle 350 B.C.-a; McKeon 2001). 

According to him, four generic types of change can be identified: (1) change in respect of 

substance or generation and destruction, (2) change in respect of quantity, (3) change in 

respect of quality, and (4) change in respect of place or movement. The same types of 

change are also recognized by contemporary researchers who either elaborate on one 

particular type of change (Galton 1995; Hornsby and Egenhofer 2000) or further 

subdivide these generic categories to apply better to their fields of study (Egenhofer and 

Al-Taha 1991; Claramunt et al. 1997; Yanwu and Claramunt 2003; Huang and 

Claramunt 2005). 

Universally present across all types of change is the state from which the change 

proceeds and the state to which the change leads. Under the adopted interpretation of 

change for the task of similarity retrieval, the former corresponds to the entity 

characterized by the query value and the latter to the (supposedly same) entity 

characterized by a database value. Objects change between such states through transitions 

that maintain a temporal order. Excluding the change with respect to substance, another 

invariant is the object identity that persists through the change. Identity represents an 

object’s individuality or uniqueness, independently of its attributes, values, and spatial 

characteristics (Khoshafian and Copeland 1986). A fourth variable, occasionally present, 
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is the existence of two extreme states that act as limits, bounding the potential for change. 

These states correspond to two values in the domain of the attribute that are considered 

opposites (e.g., north and south, black and white). When the two states of change 

coincide with the opposites the change is a maximum and similarity is zero. The extreme 

states are called contraries when intermediate states are possible between them and 

contradictories otherwise. Aristotle also observed that during similarity judgments people 

resort to a spatial metaphor, a fact for which Gärdenfors (2000) recently provided 

extensive evidence. 

These insights and notions must be given a more practical translation, appropriate for 

the context of similar information retrieval in GISs. Change in respect of substance is 

coming-into-being and going out of existence. The philosophical debates on the meaning 

of terms such as existence and on whether or not an object retains its identity during this 

type of change are heated and plenty (Barnes 1995), but irrelevant for our practical 

purposes. In this work, existence and non-existence refer to the presence or absence of an 

entity, respectively. The entity can be a physical object (i.e., the Parthenon) or an entity 

created by human decree (e.g., the country of Switzerland) (Smith 1995). The two 

extreme states of a process of generation are non-existence and existence (Figure 3.2a). 

During the process of destruction (Hornsby and Egenhofer 2000), the two extreme states 

are the same, but occur in reverse order. These states are the only possible in this type of 

change and no intermediate state may exist between them; therefore, they are 

contradictories. This type of change is commonly implied in GISs (e.g., during similarity 

comparisons of spatial scenes with different numbers of objects in them). 

Change in quantity is growth or diminution (Barnes 1995). We use the more casual 

terms expansion and contraction instead, but all of these terms imply the presence of 

magnitudes and quantities (Figure 3.2b). Such a change has to be assessed, for example, 

when comparing the similarity of street segments with respect to their lengths (Figure 

3.1). A distinction is required here between the terms magnitude and quantity. Magnitude 
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is anything capable of being greater than or less than something else, whereas quantity is 

an instance of a particular magnitude (Russell 1938). For a street segment, its magnitude 

would be the point in the continuum of length that corresponds to the length of the 

segment. Quantity would refer to the length of the segment itself. The distinction is easily 

understood if one visualizes magnitude as a point and quantity as an interval. In 

quantitative change, the meaning of contrary states is undefined. There is no opposite to a 

length of two meters, a length of four meters, or a length of any extent. Therefore, the 

contrary states of change have to be implemented conventionally, by imposing a 

threshold. The purpose of the threshold is to express the maximum amount of change 

beyond which two values are considered completely dissimilar. The criterion for its 

specification should be based on the amount of deviation that will still yield useful results 

to a user’s query. In the case of contraction, however, this threshold is limited by the 

value that results in complete loss of the quantity (i.e., 100% contraction). Infinite 

intermediate states are theoretically possible between the two extremes, but practically a 

finite number exists, determined by the precision of the system. 

Change in quality, or alteration, is a broad category. It encompasses all cases where 

an entity differs from another by possessing or lacking a quality (i.e., a property) or by 

possessing the same quality, albeit in a greater or lesser degree. The characteristics of this 

type of change exhibit the largest variability and should be determined on a case-by-case 

basis. Sometimes the change is bounded by two opposite states that admit no 

intermediaries (at least in the miniworld being modeled). For example, one entity has the 

property of having a roof, whereas another does not (Figure 3.2c). This binary or Boolean 

interpretation of qualities is the foundation of featural models of similarity. Other times, 

the possession of a property is a matter of degree. For instance, the property of having a 

black color has black and white as contrary states and levels of grey as intermediate states 

(Figure 3.2d). Change to the lesser degree of the quality is change to the contrary of that 

quality, whereas change to the greater degree of a quality is change from the contrary of 
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the quality to the quality itself (Aristotle 350 B.C.-a). The presence or absence of a 

property, represented by its two opposite states, is a qualitative change and should not be 

confused with generation and destruction, which indicate presence or absence of the 

entity itself. For some qualities, opposite states are meaningless (e.g., construction date); 

therefore, they have to be artificially created as in the case of quantities. 

Figure 3.2:  Forms of change: (a) generation and destruction, (b) expansion and 

contraction, (c) alteration with no intermediate states, and (d) alteration 

with intermediate states. 

For static objects, change with respect to place, or movement, is irrelevant for 

attribute or object-level similarity comparisons because it does not affect the qualities or 

quantities attributed to an object. It becomes relevant in comparisons of spatial scenes, 

however, where the movement of an object changes the qualitative and quantitative 

properties of its spatial relations with other objects of the scene. Even there, however, if 

one perceives relations also to be entities with their own sets of attributes, then an 

object’s movement may be alternatively registered as a quantitative or qualitative change 

on the relations of this object to the objects around it. Movement is also the change 

usually taking place in the abstract mental representations of the remaining forms of 

change. As Figure 3.2 demonstrates, all other types of change imply some motion from 

one opposite state to another in their metaphorical representation. 

The perspective of similarity that we adopted is that of a theoretical entity 

(Gärdenfors 2000). Following Sneed’s (1971) analysis on theoretical entities, similarity 
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can only be measured indirectly. The indirect measurement of the similarity between two 

entities is then provided by measuring the change required to make the entities identical. 

This perspective is close to the views of advocates of transformational models of 

similarity, who identify dissimilarity as transformational distance (Imai 1977; Hahn and 

Chater 1997; Hahn et al. 2001). It is also congruent with the argument, made in artificial 

intelligence, that objects are recognized by being aligned with visual descriptions stored 

or produced in memory (Ullman 2000). Defining similarity as the inverse of change does 

not rule out geometric or featural models. Instead, it provides the foundation for a more 

general theory that encompasses all accounts. Feature insertions and deletions as well as 

distance estimates along a continuous dimension are all bona fide expressions of change 

(Hahn et al. 2003); therefore, geometric and featural models measure change as well. 

Their weakness, however, is that they can only afford a restricted set of change types. 

3.2 Similarity Functions 

The conceptual definitions provided for similarity and dissimilarity highlight the meaning 

of these notions, but do not provide the specifics required to measure them. Therefore, 

they must be complemented with operational definitions, that is, algorithms that allow us 

to measure these concepts and quantify them. 

3.2.1 Specification and Properties 

The purpose of a similarity function is to express similarity in the quantitative realm. This 

mapping into the domain of numbers enables an ordering with a value of 1 representing 

an exact match, and a value of 0 denoting a complete difference (i.e., no similarity at all). 

The attribution of these meanings to the numerals zero and one is standard practice, albeit 

not essential since it is only a matter of convention. If A is an attribute with a value of x  

then this is denoted by A(x) where x X∈ , and X is the universal set containing all 

elements being considered in the domain of the attribute. A query with the value x on 

attribute A is denoted instead by *A(x). The domain of the attribute may be infinite or 
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finite. For example, X may be the set of all integers  or the set of all real numbers  or 

a list of alphanumeric values. The domain of a similarity function (Equation 3.1) is the 

Cartesian product of values in X and its codomain the real interval [0,1]. This is a dyadic 

(binary) function, because it accepts two arguments: the argument xq represents the user 

input (i.e., the query value) for which similarity S is determined against every other value 

xdb that exists for attribute A in the database. 

 ( , ) [0,1]A db qS x x →  (3.1) 

For an attribute with a finite domain, the results obtained by an exhaustive 

instantiation of the similarity function with all pairwise permutations of the values (i.e., 

the range of the function) produce a similarity matrix R (Table 3.1). The rows and 

columns of this matrix represent the elements of the attribute’s domain and a cell 

coefficient ( , ) : ,db q db qR x x x x X∈  gives the similarity of element xdb to element qx . 

Similarity matrices—also referred to as semantic distance matrices—have been used by 

psychologists in multi-dimensional scaling. These matrices served as input, from which 

the dimensions (i.e., features) involved in the cognitive similarity assessment of a set of 

stimuli were derived. In information retrieval from databases, however, the dimensions 

are known a priori (i.e., they are attributes themselves), and the similarity matrix is the 

end product that holds the similarity coefficients among all pairs of values. 

 Disjoint Meet Overlap Covers Covered_by Contains Inside Equal
Disjoint 1.00 0.75 0.50 0.25 0.25 0.00 0.00 0.25 
Meet 0.75 1.00 0.75 0.50 0.50 0.25 0.25 0.50 
Overlap 0.50 0.75 1.00 0.75 0.75 0.50 0.50 0.75 
Covers 0.25 0.50 0.75 1.00 0.50 0.75 0.50 0.75 
Covered_by 0.25 0.50 0.75 0.50 1.00 0.50 0.75 0.75 
Contains 0.00 0.25 0.50 0.75 0.50 1.00 0.50 0.75 
Inside 0.00 0.25 0.50 0.50 0.75 0.50 1.00 0.75 
Equal 0.25 0.50 0.75 0.75 0.75 0.75 0.75 1.00 

Table 3.1:  A possible similarity matrix for the attribute Topological_Relation 

(Egenhofer and Al-Taha 1992). 
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Although we always accept the notion that ( , ) 1 iff A db q db qS x x x x= =  (i.e., identity), 

the property of symmetry in similarity (i.e., ( , ) ( , )A db q A q dbS x x S x x=  for db qx x≠ ) might 

not always hold, because the change required for dbx  to become xq may not be the same 

as the change required for xq to become xdb. For example, the function that we employ to 

assess similarity for an attribute named Type_of_Structure might be symmetric, yielding 

S(building, house) = S(house, building), or asymmetric, taking into account that a variant 

is more similar to the prototype than the opposite (Rosch 1975). Similar considerations 

are made for the properties of transitivity and connectedness. The latter applies when, 

given any two elements in the domain of the attribute, the relation holds either between 

the first and the second, or between the second and the first, or both (Russell 1920). 

3.2.2 Mathematical Formalization 

Similarity functions and similarity matrices accept formalizations in the context of fuzzy 

set theory and graph theory. A similarity function (Equation 3.1) is equivalent to the 

characteristic function (i.e., the intensional specification) of a binary fuzzy similarity 

relation on a single set (Section 2.3.1), symbolized as ( , )R X X  or 2( )R X . A similarity 

matrix, on the other hand, corresponds to the extensional representation of the binary 

fuzzy similarity relation. In fuzzy terminology, the cells of Table 3.1 represent the degree 

to which the topological relations in the columns are similar to those in the rows. Since a 

fuzzy similarity relation is a generalized equivalence relation, one may alternatively say 

that an arbitrary cell ( , )db qR x x  gives the degree of truth of the proposition xdb is xq. For 

instance, the truth value of the proposition disjoint is meet is 0.75, or alternatively disjoint 

is 0.75 similar to meet. Fuzzy similarity relations are defined as strictly symmetric, 

whereas similarity can often be asymmetric. For this reason the produced n x n similarity 

matrix is best described via a complete weighted multigraph (Figure 3.3). 
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Figure 3.3:  Graph representation of a similarity matrix. 

While an equivalence relation groups elements into disjoint classes, a similarity 

relation groups elements into crisp sets whose members are similar to each other to some 

specified degree. The groups formed by the similarity relation are called similarity 

classes. For each Xx∈ , a similarity class can be defined as a fuzzy set in which the 

membership grade of any particular element represents the similarity of that element to 

the element x. The similarity class for each element is defined by the row of the 

membership matrix of R that corresponds to that element. For example, in Table 3.1 the 

similarity class of disjoint is given by the first row of the matrix; therefore, an 

instantiation of the generalized similarity function with a specific user input (i.e., query 

value) makes it the membership function of the fuzzy set defined by the values that are 

similar to some degree to that query value. For instance, [ ]( ,disjoint) 0,1RS x → . 

Assuming that the attribute values are crisp atomic values, then the fuzzy sets that are 

generated in this way are normal (i.e., there is at least one element that has a similarity 

value of 1 and, therefore, total membership in the fuzzy set) and the core (i.e., the set of 

attribute values with a similarity score of 1) consists of only one element (i.e., the query 

value). An α-cut on this fuzzy set, with 0 1α< < , determines the set of values that exhibit 

some similarity above α. Setting a threshold on a similarity algorithm, such that only 

values within a certain range are considered similar, changes the support of the produced 

fuzzy set (i.e., the set of attribute values with a similarity score larger than zero). 
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3.2.3 Thresholds and Normalization 

As long as the conversion function f that translates dissimilarity to similarity remains 

monotonically decreasing, its exact form is irrelevant at the attribute level. This 

observation entails a shift of attention to deriving appropriately the dissimilarity 

estimates. Since similarity is measured on a closed scale (i.e., a scale that also includes a 

fixed end in addition to a true origin), the same must hold for dissimilarity, which is its 

inverse. This effect can be achieved by using appropriately selected similarity thresholds. 

Their role is to define the meaning of maximum dissimilarity and they correspond to 

some amount of change beyond which two values become completely dissimilar. When 

the dissimilarity for a pair of values exceeds the threshold, the similarity is truncated to 

zero. A threshold, in this manner, defines the semantic or conceptual neighborhood of a 

query value, which delimits its potential for change. A conceptual neighborhood (Freksa 

1991) was originally suggested as a graph connecting temporal or spatial relations, so that 

similar relations are closer to each other in terms of path distance than dissimilar ones. 

The semantic neighborhood is similar to that concept, however, depending on the implied 

type of change in the attribute that is being measured, two types of semantic 

neighborhoods can be distinguished: neighborhoods relative to the query value itself that 

do not necessarily span the entire attribute range and neighborhoods bounded by two 

values that are perceived as opposites (Figure 3.2c). 

Normalizing by the threshold rescales similarity values in the closed interval [0,1]. 

The normalization of dissimilarities is also immaterial for the purposes of establishing 

similarity rankings within the level of an individual attribute. It becomes important, 

however, when dissimilarities with respect to multiple attributes must be summarized into 

a meaningful composite (Equation 2.2) in order to derive the similarity between pairs of 

objects or relations. In such cases, normalization enforces a common system of reference 

for dissimilarities across different dimensions (i.e., attributes), so that each of them 
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contributes equally to the aggregate similarity score. Otherwise, the attributes with the 

largest ranges will dominate the results. 

3.3 Classifications of Attributes 

The generic similarity function of Equation 3.1 must transmute differently depending on 

the type and the domain of the attribute to which it will apply. The semantics of the 

attribute type will be suggestive of the psychological properties of similarity that the 

function should incorporate, the form of change that should be measured, the thresholds 

that should be imposed on similarity neighborhoods, and the normalization techniques 

that should be applied. 

Three common classifications for attributes are pertinent to the task of similarity 

assessments. At a conceptual view we employ the terminology of the extended Entity-

Relationship Model (Hohenstein et al. 1986) to distinguish between properties such as 

atomic versus composite; single-valued versus multi-valued; and stored versus derived. 

In a perfectly normalized database, composite, multi-valued, and derived attributes 

should be eliminated. They often exist in typical databases, however. Composite and 

multi-valued attributes can contain several values and are, therefore, addressed in chapter 

4. In this chapter, the focus is on single-valued, atomic attributes. 

Another classification scheme is based on the domain of the attributes. The term 

domain in the context of an attribute embodies two concepts. The first is the enforcement 

of a data type. Although commercial DBMSs have a plethora of different data types to 

improve performance and save storage space, the main data types are bit or Boolean, 

integer and float for numbers, and alphanumeric or char for text. Specialized attributes 

also exist for date, time, currency, and large binary objects, such as images and sound 

files. The second notion of domain is associated with whether an attribute is defined by 

extension or intension. An extensional definition means that all possible values for the 
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attribute are listed explicitly (enumerated data types), whereas an intentional definition 

implies that the set of possible values is (theoretically) infinite. 

Attributes have also been categorized as nominal, ordinal, interval, and ratio, 

depending on the type of measurement that their values perform (Stevens 1946). This is 

the highest semantic classification, since these scales indicate the meaning of 

measurement. Each of these scales is best characterized by its range of invariance under 

groups of transformations, meaning the kinds of transformations that leave the inherent 

structure of the scale undistorted. As the scales progress from nominal to ratio, the 

information one can extract from numerals and their relations increases, but the number 

of transformations that preserve the structure of the scale decreases. Besides these four 

standard scales, two extensions must be considered. The first regards cyclic phenomena. 

Many measures are bound within a range and repeat in a cyclical manner (e.g., angles or 

seasons) (Chrisman 1995). Those measurements do not strictly adhere to any of the four 

standard scales. The second extension is a higher level of measurement than ratio, called 

absolute (Ellis 1968), or as Stevens (1951) put it, the numerosity scale. Absolute scales 

are almost the same as ratio scales, but their units are discrete and non-arbitrary. These 

are the scales used to count things—the scales of counts (e.g., population)—where units 

are always perceived as a whole and are indivisible (e.g., one person). The distinction 

between ratio and count scales seems to dissolve at the atomic level, where quantum 

theory (Bohm 1951) reveals that many quantities occur in discrete units, or quanta. 

The groupings based on the scales of measurement are ubiquitous in natural and 

social sciences. They also provide a convenient organizational structure for the definition 

of similarity algorithms customized to the type and the semantics of each scale. However, 

the correspondence between scale types and similarity algorithms is not one-to-one, but 

surjective. The reason for this discrepancy is that the scale type is not always an exclusive 

indicator of the form of change that is being assessed and, consequently, of the function 

appropriate to determine similarity or dissimilarity. 
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3.4 Similarity Assessment for Ratio Values 

Ratio measurements are typically expressed in positive numbers that have a true origin 

and arbitrary values. The label of the attribute determines the meaning of the distance 

among values. Differences between ratio scale units correspond to equal intervals. In 

addition to subtraction or addition, operations such as multiplication and division are also 

meaningful. A ratio scale is invariant under the similarity group of transformations 

'x a x= ⋅ , meaning that its numerical values can be transformed only by multiplying with 

a constant. In contrast, the only transformation that values on an absolute scale accept is 

the identity operation (i.e., multiplication by unity). This difference does not prevent the 

development of a uniform methodology to measure similarity for ratio and absolute 

values, because all permissible mathematical operations on ratios are also meaningful 

when applied to counts. An example of a ratio attribute is area. Its values may be placed 

on an axis isomorphic to the half-line of non-negative numbers and the origin is the zero 

point. Other examples include length, depth, and population. Attributes of a ratio nature 

are more commonly encountered in geographic databases than attributes that are interval 

or ordinal, since ratio is the predominant type of measurement for physical quantities. 

Ratio values that are closer along the axis are naturally expected to be more similar 

than other values that are further apart. This intuitive assumption, which underlies 

geometric models of similarity, is also compatible with an interpretation based on change, 

because near values require less change than remote values. A dissimilarity measure for 

this type of measurement should, therefore, reflect the properties of identity and triangle 

inequality that hold for the actual distances among the values on the scale. These 

properties of distance impose the following postulates on the dissimilarity measure: 

• Postulate 1: Distance(x, y) = 0 implies that the values x and y are equal. 

•  Postulate 2: Distance(x, z) > Distance(x, y) means that the dissimilarity of x to z is 

larger than that of x to y. 
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A ratio scale is the most sophisticated level of scale, because it allows for the 

interpretation of one observation exceeding another, not only by a certain amount, as in 

interval measurement, but also by a certain ratio. Consequently, the interpretation of 

similarity or dissimilarity may sometimes be abstruse. The definition of a ratio scale was, 

in a sense, based on how much information about the property the numbers represented. 

In order to create meaningful dissimilarity measures, however, it is also necessary to 

distinguish between what might be called the kinds of information that the numbers 

represent. To do so, two broad approaches to the construction of a ratio scale must be 

recognized. The distinction corresponds roughly to the difference between fundamental 

measurements as used in physics, and measurements used in other disciplines, such as 

psychology, segregating ratio scales into two classes: (1) quantitative ratio scales and (2) 

qualitative ratio scales. 

Under a loose interpretation, quantitative ratios refer to the entity itself, whereas 

qualitative ratios measure a property of the entity. Differentiating between these two 

kinds of ratio measurement is imperative for similarity, because different forms of change 

are implied in each occasion. The distinction between the two variations has also been 

noted elsewhere. Torgerson (1958) pointed out that the operation of central importance 

on quantitative ratio scales is that of addition, whereas what matters for the qualitative 

ratio scales is the relation of distance, or the difference between the values along the 

scale. This observation, incidentally, corresponds closely to Russell’s (1938) formulation, 

that distinguished between “attributes whose quantities are divisible, and attributes whose 

quantities possess the relation distance.” The same distinction—among other reasons—

has also motivated several researchers to suggest alternative scale taxonomies (Mosteller 

and Tukey 1977), in which the two types of ratio scales are explicitly separated. 

In quantitative ratio scales, the observable events in the real world are quantities (e.g., 

length, area); hence, the change that must be assessed is quantitative. Equal intervals 

along the scale do not indicate equal amounts of change for different pairs of values. The 
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absolute difference between two values informs about how far apart the values are on the 

scale, but it does not reveal the amount of relative change required for one value to 

transform into the other. For example, the difference between 10 and 20 meters is not the 

same as that between 100 and 200 meters, although each pair represents an expansion of 

100%. 

In qualitative ratio scales, the relevance of quantities dissolves, and the observable 

variable is the relative degree to which an entity possesses some property or quality. The 

relation is already innate in the values and the change that must be assessed is qualitative. 

What is of importance, in this scenario, is the distance relation between the magnitudes, 

since equal distances indicate equal amounts of change in the degree of possession of the 

property. Such ratio scales have inherent the notion of percentage, as there is a definitive 

limit implied on the degree to which an entity possesses the property. Percentage scales 

belong to the general class of ratio scales, although this has raised some criticism on 

Steven’s classification (Velleman and Wilkinson 1993). Qualitative ratio scales are 

standard in psychology. It is also possible, however, to encounter them in GISs, but not 

necessarily in an explicit percentage format (Figure 3.4). As long as the scale has an 

origin that indicates complete lack of the property being measured, and the assumption of 

equal intervals applies, the scale under consideration is formally a ratio scale. 

Figure 3.4:  An ostensibly ordinal scale is ratio if the origin indicates absence of the 

property and the intervals between consecutive values represent equal 

amounts of change to the degree that the property is fulfilled. 
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3.4.1 Similarity for Ratio Quantities 

One approach to similarity of ratio quantities is based on the absolute difference of the 

logarithms of their magnitudes (Equation 3.2). On a logarithmic scale, equal differences 

in orders of magnitude are represented by equal distances. The coefficient C allows 

control over the amount of change that is required on the original scale, so that the 

distance between units becomes 1 on the logarithmic scale. For instance, if C is set to 1 

(meaning 100% change), then the logarithmic distances between any two values, where 

one is the double of the other, will be 1. The logarithmic measure is symmetric, since it 

does not consider the direction of the change. The similarity of a pair of values will be the 

same regardless of which value becomes the query and which the target. Given a specific 

query value, the value that corresponds to its half will be equally similar to it as the value 

that corresponds to its double (Figure 3.5a). This behavior violates the second postulate 

about dissimilarity (Section 3.4). For example, if the query value is 100, a value of 40 

would be less similar than a value of 200. 
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This problem can be rectified by calculating dissimilarity based on the direct ratio of 

two values, rather than the logarithm of that ratio (Equation 3.4). Dissimilarity is defined 

as the relative change C that must be applied to the interval represented by the query 

value xq, so that it coincides with the interval represented by the database value xdb 

(Equation 3.3). Similarity is then computed as the inverse of that change (Figure 3.5b). 
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Figure 3.5:  Similarity for ratio quantities: (a) as the inverse of logarithmic distance 

and (b) as the inverse of relative change. 

The changes and similarities for ratio values, as computed by Equations 3.3 and 3.4, 

are asymmetric. They are both dimensionless quantities and cannot have a negative value. 

The type of change that must be applied to a query value so that it coincides with a 

database value can be either an expansion, if xq <  xdb, or a contraction, if xq >  xdb. In the 

former case, the value of the non-normalized dissimilarity is the interval (0, )+∞ , 

whereas in the latter it is in the interval (0,1). The parameter T in Equation 3.4 is a 

threshold that demarcates the conceptual neighborhood for each query value, serving at 

the same time as a normalizing constant. This threshold is specified as a percentage that 

expresses the maximum amount of change beyond which two values become completely 

dissimilar. It must be conventionally defined, since no quantity can be intuitively 

perceived as the opposite of another. If the dissimilarity for a pair of values exceeds this 

threshold, then the similarity is truncated to zero. For instance, if T is set to 2 (i.e., 200%) 

and the query value is 100, values equal to or larger than 300 will have a similarity of 0. 

Defining the threshold in terms of change is conceptually and operationally simpler 

for the database users. If they know this threshold or set it at will, they may easily infer 

the permissible amount of fluctuation for any query value so that they adjust their mental 

representations of the similarity neighborhoods accordingly (i.e., extension effect). Thus, 
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an alignment is achieved between the objective and the perceived width of similarity 

neighborhoods. For multi-attribute queries (i.e. object-level queries), such a threshold 

results in a uniform creation of similarity neighborhoods for each attribute, because the 

extent of the neighborhood is tailored accordingly to the magnitude of the query value for 

each particular attribute. This is a preferred alternative to defining similarity 

neighborhoods with arbitrary assignments of ranges of permissible values on each 

attribute’s scale. It allows different dissimilarities to be aggregated in a coherent manner, 

which approximates better the dimensions and the extent of a user’s conceptual space. 

An interesting observation can be made about the semantics of the zero point. Zero, 

on a ratio scale of quantities, has a particular physical meaning. If a query value is zero, 

change becomes infinite (Equation 3.3). This is no accident, since the non-arbitrary origin 

of the ratio scale is theoretical, rather than practical. For any physical and continuous 

property, an actual zero magnitude is unattainable, implying absence of the entity. There 

cannot be a physical object with zero length or zero area, as there cannot be an absolute 

temperature of zero degrees (i.e., in Kelvin) because this would require that even atoms 

stop their motion. Therefore, a possible explanation of why change becomes infinite is 

because this is the amount of change required to bring a non-existent object into 

existence, or simply, because there cannot be similar objects to an object that does not 

exist. 

Such speculations, of course, do not prevent users from querying with a zero value. 

Furthermore, a zero value is also possible for counts. For example, there could be a 

deserted village with zero population. In addition, zeroes may exist in the database 

because of erroneous entries or due to the finite precision of measurement instruments. 

A change-based framework can address such rarities in a theoretically sound manner. 

When the query involves a zero quantity, the type of change that takes place is not 

quantitative anymore. A transition from a state of zero quantity to a state of some 

quantity characterized by a positive magnitude is change with respect to substance. This 
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type of change has only two possible states: existence and non-existence. For this reason, 

the similarity of a zero quantity to any positive quantity is zero; hence, the provision in 

Equation 3.4. This strict interpretation is not always desirable. After all, a village with ten 

habitants is closer to becoming deserted than one with a thousand habitants. The key 

phrase here is “to be deserted.” This phrase defines a qualitative property for a place. 

Hence, from this standpoint, the question asked of the system is to find similar entities to 

an entity that has the quality of having a zero quantity. The change being assessed then is 

qualitative, with different distances from zero indicating different degrees of membership 

to that property. The methodology for ratio and interval similarity assessments where the 

form of change is qualitative is presented in the following sections. 

3.4.2 Similarity for Ratio Magnitudes 

When magnitudes on a ratio scale indicate the presence or absence of a quality to some 

degree, change and distance coincide. Equal distances indicate equal amounts of change 

to the degree to which the entity possesses the property (Figure 3.4). Opposite values or 

contrary states are those indicating complete absence or total presence of the property. 

Therefore, the similarity between two values is an inverse function of their distance on 

the scale (Equation 3.5). The normalizing parameter T should be set—under normal 

circumstances—equal to the distance between the two extreme values, because their 

opposite meaning is transparent and this setting is most likely what users would expect 

(i.e., extension effect); however, a smaller distance than the range could also serve as a 

threshold if so desired. The similarity scores, as computed by Equation 3.5, are 

symmetric and lie in the interval [0,1] (Figure 3.6). 
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Figure 3.6: Similarity for ratio magnitudes as the inverse of distance. 

3.5 Similarity Assessment for Interval Values 

Interval values differ from ratio with respect to the existence of a zero point, which for 

interval scales is simply a matter of convenience. An additional difference compared to 

physical ratio quantities is that values can be negative. Measurements on one scale can be 

converted into values on another through any affine transformation of the form 

baxx +=' , which highlights that the origin and the units of the scale are arbitrary. 

Examples of interval type values include the year date in various calendars, the common 

temperature scales, and energy (Neumann and Morgenstern 1947). Interval scales are 

commonplace in psychology, but scarce in physical sciences. On an interval scale 

multiplication and division have no meaning. Addition and subtraction, however, can be 

meaningful (i.e., adding energy, or subtracting dates to obtain time periods). 

Interval values represent magnitudes, but the notion of quantity is inapplicable. 

Although such values are often referred to as quantitative, the transition from one value 

to another on an interval scale indicates change in quality. For example, consider a user 

who requests to find a building constructed in the year 2000. The quality (i.e., property) 

in this case is “constructed in the year 2000.” Buildings whose construction date differs 

from 2000 have varying degrees of membership to this property. What matters for 

similarity is the distance relation between the values. Therefore, the procedure is almost 
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identical to that described in Section 3.4.2. and similarity is computed by Equation 3.5. 

The only difference is the lack of a pair of values that act as logical opposites. Hence, the 

limit T that indicates complete absence of the property must be artificially created. 

There are several approaches to defining the threshold T, thereby normalizing the 

distance. The easiest is to set T equal to the range of the attribute, determined as the 

absolute value of the difference between a maximum and a minimum value. This 

technique is known as min-max normalization (Korfhage 1997) and can be further 

classified into two scenarios. The first scenario arises when the range is dynamically 

specified from the maximum and minimum values that exist in the current database 

instance for the attribute in question. This specification is dynamic in the sense that a new 

entry in the database may alter the range. The second case arises when these values are 

statically defined a priori by a declarative constraint, such as those created with the 

“Create Assertion” and “Check” clauses of the SQL language (Groff and Weinberg 

2002). Such statements restrict the values of the domain to a subrange of the data type. 

Division by the range usually fails at creating commensurate similarity measures, because 

it allows outliers (i.e., extreme values in the data) to have a profound effect on the 

contribution of an attribute to an aggregate score. For example, in presence of an extreme 

(or erroneous) value of 150, range normalization of an interval variable whose remaining 

values all fall within the interval (5,15) would make the values in this set appear almost 

identical to each other, since their distances would be trivial compared to the range. 

To prevent this effect, measures other than the range can be used to describe the 

variation of values in an attribute’s domain (i.e., the spread of values). A more robust 

alternative is a linear transform that creates a normalized version of the scale of the 

variable, with the property that the mean μ is 0 and the standard deviation σ is 1. This 

transformation is called standardization or z-score reduction (Equation 3.6). A zero mean 

avoids aggregation distortions stemming from differences among means of different 

attributes. The z-score of a value indicates how far the value is from the mean in standard 
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deviation units. The meaning of maximum dissimilarity is then defined by specifying 

some multiple of the standard deviation. Since in normal distributions approximately 

95% of the values fall within two standard deviations from the mean, the difference 

between the values is divided by four standard deviations to scale each value into a range 

of width 1 (i.e., 4T σ= ⋅ ) (Wilson and Martinez 1997). It is possible to use tighter 

thresholds by setting T equal to two standard deviations (i.e., 68.2% of the data) or equal 

to the interquartile range (i.e., 50% of the data). Whatever threshold is chosen, values 

exceeding it are mapped onto the minimum or maximum to avoid normalized values 

outside the range [0,1], thus, trimming in-essence the tails of the attribute’s distribution. 

 x
xZ μ
σ
−

=  (3.6) 

Clipping out-of-range values would be treating them as equivalent to the limits of the 

threshold range. Under rare circumstances, this may affect the correct sorting order of the 

list of similar results that are retrieved. For example, consider the query 

*Construction_Date(1900). Two objects with construction dates of 1750 and 1450 might 

both be well off the threshold range and, therefore, have a similarity of zero. In absence 

of exact matches, however, it is still desirable to be able to sort such distant matches from 

most to least similar. This objective can be achieved with a logistic function (Equation 

3.7), which can keep a specified range under a linear transform and still handle outliers 

without discarding them. Such a transformation is called softmax scaling (Pyle 1999). It 

transforms the range of [ , ]−∞ +∞  into the range [0,1]. The desired part of the range that 

should have a linear response r is defined in terms of standard deviations (e.g., 4 σ⋅ ). 
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All these normalization alternatives seek to automate the process of defining a 

maximum distance at which two values are considered opposite so that their similarity 
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becomes zero. The choice is important, because it determines the effect of the attribute on 

a composite similarity score and, hence, the produced rankings to multi-attribute queries. 

Successively stricter thresholds result in consecutively tighter similarity neighborhoods 

around a query value. Z-score and softmax scaling methods are superior to the range, 

because the latter is sensitive to outliers. Choosing among them depends on additional 

factors, such as the distribution of the values and their concentration around the mean. In 

information systems, however, it is unlikely that users have any knowledge about such 

information, especially in the case of interval and ratio values that may spread through 

very large ranges. Therefore, none of these system-imposed thresholds—despite the 

provisions they make—guarantees an alignment between the distance that they define as 

the maximum possible and the maximum possible distance that the users would expect. 

Such an ideal situation is achieved only in three cases: (1) when the threshold is 

manually declared by the users, (2) when the attribute is enumerated and the domain 

contains a relatively small set of values with which users are familiar (e.g., ordinal rating 

scales), and (3) when the attribute’s domain contains two opposite values (i.e., contrary 

states of change) that are unequivocally identified (Section 3.4.2). In the case of such 

interval values as temperatures or calendar dates, however, only the first option provides 

a viable alternative to an automated system threshold. As a last resort, weights can be 

used to calibrate the results. The scarcity of pure interval scales in GISs compensates for 

the unpredictable effects that the normalization of their values may entail for the quality 

of the produced similarity scores. 

A final point of attention about similarity for interval type values relates to queries 

that use interval values in their expression, but do so in a way that transforms the type of 

the scale. For example, consider a spatial scene query where the user is interested in 

finding two buildings whose construction dates differ by 10 years. A difference of 

interval values becomes a ratio value (the subtraction gets rid of the additive constant b in 

the affine transformation equation); therefore, the period of time in this user’s query 
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represents a ratio quantity (Section 3.4.1). Other queries may evoke the same kind of 

scale transformation, albeit in a more subtle manner. For instance, a user may be 

querying for a building constructed in the year 2000, but her actual intention is to find 

buildings that are 6 years old. Thus, the same attribute values are treated as measuring 

different things for different purposes. Such intentions cannot always be predicted 

automatically. Ultimately, the measurement level depends on the question asked and is 

not an immutable property of the data (Velleman and Wilkinson 1993). 

3.6 Similarity Assessment for Ordinal Values 

Attributes with ordinal values preserve the concept of ordering on a scale, but lack a 

numeric representation. The sequence of values is registered, but their positioning and 

spacing along the scale is not explicitly stated. Therefore, in addition to multiplication 

and division, addition and subtraction are also meaningless. An ordinal scale is invariant 

under the isotonic (i.e., order-preserving) group of transformations ' ( )x f x= , where f is 

any increasing monotonic function. Typically, ordinals are defined by extension. They 

can be grammatically expressed by adjectives, nouns, and adverbs, thus having assigned 

to them a variant of the data type text. Occasionally integers may be used; however, these 

integers should not be perceived as numbers, but rather as codes mapped onto the 

concepts or categories represented. They help resolve order-related ambiguity when the 

actual values are not intuitive for that purpose. 

Ordinal scales can be divided into rank-order scales or rating scales. Rank-order 

scales represent the weakest form of ordinal measurement. They delineate nothing more 

than ordinal relationships. Values on a rank-order scale correspond to points. An example 

of a rank-order scale is a list of the most similar items to a query. A more widespread 

variation of the theme of ordinal measurement comprises rating scales. A classic—though 

not spatial—example of a rating scale is the grading system of U.S. universities from A 

to F. Examples of a spatial nature include the Physical_Condition_Of_Feature, defined in 
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SDTS as, “the state of repair of a feature or the extent of deterioration,” or the 

Density_Of_Growth, defined as “the degree or measured degree to which the area is filled 

or occupied by plant life.” As these definitions suggest, the order of symbols in rating 

scales corresponds to successively increasing or decreasing degrees to which some 

property is fulfilled. Thus, the idea of intervals between successive values is somewhat 

more pronounced in this type of scale. The values themselves correspond either to points 

(Figure 3.7a) or to intervals (Figure 3.7b). In the latter case, the values have a fuzzy 

character, serving as groupings or sets of finer discriminations. 

Figure 3.7: Values of ordinal rating scales: (a) as points and (b) as intervals. 

Rating scales share many commonalities with qualitative ratio scales (Section 3.4.2), 

where transitions from one value to the next reflect qualitative change. Both scales are 

also bounded by two extreme values, which may be perceived as the origin and the end of 

the scale (Torgerson 1958). Unlike ratio or interval scales, however, consecutive ordinals 

are not intrinsically separated by equal intervals. The obvious implication is that, unless 

we promote ordinal scales to a higher level of measurement under certain assumptions, a 

quantitative similarity score between two values is impossible. Assuming equal intervals, 

similarity among the values may be derived by applying Equations 3.8a and 3.8b, where 

parameters j and i are integers onto which the n ordinal values have been mapped 

depending on their order of succession. These integers correspond to either points (Figure 

3.7a) or the midpoints of the intervals defined by the ordinal values (Figures 3.7b). 
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The different denominators of the two equations point out a semantic distinction, 

which relates to the exact positioning of the two contrary states of change that indicate 

complete absence or total presence of the property being measured. Equation 3.8a regards 

the first and last values in the ordering as opposites, thus yielding a similarity of zero 

magnitude. Similarity among n ordinals is defined in the same way as for n integers on a 

closed ratio scale of length n-1. Equation 3.8b, on the other hand, treats the first and last 

values as the least semantically similar pair of values, rather than as opposites, yielding a 

slightly above zero positive similarity coefficient. In this case, the length of the scale is n. 

Favoring the use of one equation over the other is a matter of personal judgment. An 

intuitive decision can be taken based on the actual values at stake. For instance, it is more 

logical in the example of Figure 3.7b to apply Equation 3.8a, since an area with very 

dense plant life seems to be the opposite of an infertile area. If, however, the set of 

available values was {very dense, dense, medium dense, sparse, very sparse}, then 

Equation 3.8b should be preferred, because it would be exaggerated to consider an area 

with little vegetation as the exact opposite of an area with very dense plant life. 
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Both of these equations are based on the rather strong assumption of equal intervals. 

When ordinal values barely evolve from a nominal level, this speculation seems to be the 

only viable alternative in order to obtain approximate similarity measures. The surmise 

that people will most likely consent to an equal interval interpretation is also justified by 

the range-frequency theory (Parducci 1965), which states that people tend to divide their 

psychological ranges into a fixed number of sub-ranges of equal size and employ the 

alternative categories with equal frequency. The conclusion of this theory is not 
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surprising. Although purely illusory, the impression stimulated by ordinal values on the 

scale is often highly suggestive of equal intervals (Figure 3.7). 

The same theory, however, explains many misunderstandings concerning ordinal 

scales that emerge from underlying interval or ratio models, for which they serve as 

crude—though convenient—surrogates. An example is the Richter scale of earthquake 

intensity. Because of its logarithmic basis, each ordinal magnitude increase on this scale 

represents a tenfold increase in earthquake intensity. When such additional information is 

available, it should be exploited so that similarity assessments can take place at a higher 

level of measurement. Unfortunately, people are often unaware of the mathematical basis 

supporting such ordinal scales, so that their mental representation of the scale may vary 

drastically from the real one, thus leading to preposterous conclusions. Similar problems 

may occur in other scales of measurement as well. Considering the interval scale of 

measurement, for instance, some users may believe that 40° means twice as warm as 20°. 

The argument demonstrates that approximating people’s perceptions, although desirable 

(McCloskey 1983; Egenhofer and Mark 1995b), is not always a means to an end. 

3.7 Similarity Assessment for Nominal Values 

A nominal scale is invariant under the permutation group of transformations ' ( )x f x= , 

where f is any one-to-one substitution. A nominal attribute type describes values that can 

be distinguished only by equality. Such attributes present the most challenging case of 

similarity assessment, because they perform a labeling on the entity instances for which 

no intuitive mapping onto a metric scale can be derived. With respect to this labeling, two 

types of nominal values are possible: (1) classifiers, which group entities into sets (i.e., 

many entities have the same label) and (2) identifiers, which distinguish each entity 

individually (i.e., each entity has a unique label). Identifiers may be viewed as a special 

case of classifiers where the sets are as many as the entities and, therefore, each entity is 

the only member of its class (Stevens 1946). An example of a classifier is the attribute 
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Land_Use_Category, defined in SDTS as “a broad classification of the use of land for 

planning and zone purposes.” Many entities in the database may belong to the same land-

use category (e.g., agricultural field). A typical case of an identifier is the attribute Name, 

defined in SDTS as “a word or phrase that constitutes the distinctive designation of an 

occurrence of a feature.” In contrast to the Land_Use_Category example, each entity in 

the database will have its own unique name (e.g., Boardman Hall). 

3.7.1 Similarity Assessment for Nominal Classifiers 

The values of nominal classifiers group entities into disjoint classes and are often listed 

explicitly a priori. Grammatically, they are usually expressed by nouns. In contrast to 

ordinal, interval, and ratio attributes, which describe a single property and have values 

that vary along one dimension, nominal values represent concepts, which may vary with 

respect to multiple dimensions (Gärdenfors 2000). Similarity assessment in this case 

requires a more complex approach because one needs to compare the stimuli overall, and 

not with respect to a particular feature as was done with the other types of attributes. The 

global character of this comparison increases the cognitive factor and reduces the 

appropriateness of rigid geometric models (Torgerson 1965; Tversky 1977). 

In order to find the similarity between two concepts one must first establish a reliable 

representation for them. Reliability in the representation implies modeling accurately the 

type of change that is required for one concept to transform into another. Since concepts 

can be described in terms of their qualities (i.e., possessed properties) (Sloman et al. 

1998), measuring the similarity of nominal classifiers involves an enumeration of the 

properties that a concept must acquire, as well as those that it must discard, in order to 

become identical to the concept that it is being compared. This enumeration constitutes 

measurement of qualitative change along many dimensions. The Boolean interpretation 

of properties requires that change has only two contradictory states: full possession or 

total absence of the property. Ontologies that contain features of concepts, in addition to 
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the hierarchical relationships among them, can provide the representation upon which one 

operates to measure such qualitative differences of concepts. In this manner, an ontology 

becomes an organization of differences within similarity. The ability to measure change 

becomes, therefore, strongly dependent on the expressive plurality and the structural 

coherence of ontologies. 

A key factor in the successful measurement of the qualitative change between two 

concepts through ontologies is the isolation of the core from the irrelevant properties for 

each concept (Lewis 1986). Redundancy or lack of relevant properties implies that the 

similarity measures will be overestimated or underrated, respectively. The quality of a 

similarity measure is also inextricably tied to the users’ understanding and acceptance of 

an ontology (i.e., ontological commitment). The representational availability of a domain 

in terms of an ontology does not necessarily imply an explicit awareness of the 

ontology’s structure and content from the users (Holsapple and Joshi 2002). The 

computed similarity scores will have greater fidelity for the users who have more 

expertise and familiarity with the domain of interest. 

Assuming that these conditions are met, an appropriate model for the evaluation of 

semantic similarity of concepts is the MD model (Rodríguez 2000) (Section 2.2.2.5), 

which subdivides the features (properties) of spatial entity types into parts, functions, and 

attributes of the objects. By including all these components in the representation, the 

model considers simultaneously different descriptions of a spatial entity that capture 

diverse aspects of its use, purpose, and structure (Marr 1982). By separating these 

components for queries, users and database administrators can adjust the context of 

similarity assessments (Rodríguez and Egenhofer 1999). For example, a user may be 

interested in playing a sport, therefore, being interested mainly on similarity with respect 

to the function component of spatial entities and not with respect to the parts or attributes 

components. The consideration of meronymy relations, in addition to hyponymy, 

emphasizes the suitability of this model for spatial databases. 
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The treatment of the hyponymy relation in the MD model, as well as in other models 

that consider it, is problematic. This relation merits further comment if it is to be 

interpreted appropriately for the purposes of information retrieval. Usually, very general 

concepts, located at the top of the hierarchical structure, have very few distinguishing 

features compared to concepts that are more specific. Since set-theoretic models rely on a 

comparison of distinguishing features, the lack of such features in an entity’s definition 

will produce a similarity value with respect to any other entity class in the ontology equal 

to zero. This is at odds with information retrieval, where a query value specifies a 

constraint. The more general a query value is, the less restrictive this constraint becomes. 

Therefore, if a user queries for an entity with some particular area, any subclass of entity 

(i.e., the most general concept in ontologies) will be an exact match to the query as long 

as the area constraint is also met. Similarly, a user who queries for a building is interested 

in anything that is a building and any subclass of building should be an exact match. The 

reverse does not hold, however; a building should not be an exact match to a house query. 

This asymmetry is due to the homonymic use of the word “is.” A house is actually a 

building, hence, its similarity to building should be 1 (i.e., the house does not need to 

change to become a building). A building is potentially a house, therefore, its similarity 

to house should be less than 1 (i.e., a building may need to change to become a house). 

The conclusion is that whenever the database value is a subclass of the query value, the 

similarity score of this pair should be 1, indicating an exact match. 

The application of any set-theoretic model is possible only if the ontology fully 

defines the features (i.e., attributes, functions, and parts) associated with the concepts. For 

ontologies that provide only a hierarchical structure, it is mandatory to resort to network 

models that rely on the concepts’ information content and their distance in the hierarchy 

(Section 2.2.2.4). In a comprehensive comparison of these measures, Budanitsky (2001) 

concluded that the measure from Jiang and Conrath (1997) is the most reliable. His 

results have been independently confirmed by Patwhardan (2003). Regardless of what 
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network model one abides by, few—if any of them—are able to capture accurately the 

exact amount of qualitative change that one concept should undergo in order to coincide 

with another. Information-theoretic or edge-based models do not measure qualitative 

change directly. They are approximations, acting in lieu of featural models when the level 

of detail of the ontology prohibits the employment of the latter. Furthermore, some of the 

measures produced by network models may be hard to normalize (Patwardhan 2003). For 

instance, Resnik’s (1995) measure does not have an upper bound. For both the MD model 

and the network models, retrieval time of similar results, can be optimized by computing 

a priori the minimum distances between the n concepts in the network, using a shortest 

path algorithm (Dijkstra 1959) and storing them in a nxn matrix. 

If a local database does not subscribe to an ontology, or it subscribes but the values of 

a nominal classifier attribute do not correspond to ontology classes, one must seek 

different methods to assess similarity among the nominal values. One solution is to resort 

back to geometric models. Since a concept is viewed as comprising several properties, 

the first step would be to identify the relevant properties and the second to examine how 

they can be represented geometrically. In this sense, the nominal value temporarily 

becomes an entity instance with its own set of ratio, interval, or ordinal attributes. This 

approach works well when the relevant prominent dimensions of the nominal values are 

relatively small in number, and can be easily recognized using common sense. A fitting 

example is color, for which several geometric models exist. Therefore, a nominal value 

such as orange can be mapped onto several concomitant attributes, whether these are 

levels of red, green, and blue, or hue, saturation, and brightness. 

Custom geometric decompositions work sufficiently when the component dimensions 

are easy to obtain. Moreover, in all the scenarios discussed about nominal attributes, it 

was assumed that the set of values is defined by extension, or that a specialized spatial 

ontology exists. When none of these requirements is met, two simple alternatives are (1) 

to employ the hierarchical structure of WordNet (Miller 1995) or (2) to lookup for 
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synonym words. In the first case, any networking algorithm (section 2.2.2.4) may be 

used. WordNet, however, is a generic ontology and does not have the specificity of a 

domain ontology. The similarity measures obtained from pure network models are likely 

to vary widely and will be symmetric (Table 3.2). In the second case, when the user 

queries the information system for a nominal value, the value is passed by means of a 

module to WordNet, which returns a set of synonyms. A string matching may then be 

performed between the synonym words and the rest of the nominal values in the 

database. Nominal values that match one of the synonyms could be returned as similar 

results. Although synonym-lookup is a valid choice, it is a coarse approach to semantic 

similarity compared to the rest of the methodologies developed. 

MODEL USED Similarity of 
Building to Library

Similarity of 
Library to Building

Rada (Normalized Path Length) 0.5 0.5 
Leacock and Chodorow (Eqn. 2.6) 2.8904 2.8904 
Resnik (Eqn. 2.7) 5.1947 5.1947 
Jiang and Conrath (Eqn. 2.8) 0.1106 0.1106 
MD Model (original) (Eqn. 2.9) 0.557 0.666 
MD Model (modified for hyponymy) 0.557 1.0 

Table 3.2:  Similarity measures obtained from WordNet with network models versus 

those obtained from a spatial ontology with the Matching Distance model. 

3.7.2 Similarity Assessment for Boolean Attributes 

For Boolean or binary variables, the classes of one-to-one, monotonically increasing, and 

affine transformations become identical; Therefore, it may be argued that Boolean 

variables are at least at the interval level. If the variable also implies presence or absence 

of a property then Boolean variables are at the ratio or absolute levels. For the purposes 

of similarity assessment it matters that the values divide the entities into two classes, with 

one being the negation (i.e., opposite) of the other. Such values can be true and false, 0 

and 1, or an arbitrary string and its antonym. In this sense, Boolean attributes always 

admit of a nominal interpretation, and the values imply a change between two 
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contradictory states. Similarity is 1 if the values are the same and 0 if they are different. 

An example of two Boolean values from the STDS is Onshore and Offshore. 

3.7.3 Similarity Assessment for Nominal Identifiers 

Nominal identifiers assign an unique value to each entity. Values of such attributes do not 

represent concepts and are not defined by extension. Numeric or text data types may be 

employed, however, the numerals, when used, are not subject to any valid arithmetical 

operations. If text is used, the values may consist of a single or multiple words. 

Nominal identifiers do not represent entity classes; therefore, ontology-based or 

custom geometric approaches cannot be implemented. Although synonym-lookup may be 

a viable approach in certain situations, a similarity measure based on semantics is often 

undesirable. For example, assume that a user queries a lodging database for a hotel by 

providing part of the hotel’s name as input. If the name of the hotel is The Beacon, then 

hotels whose name contains words such as lighthouse, tower, and pharos will be returned 

from WordNet as similar entries. It is highly unlikely, however, that hotel names 

containing these words have any association with the original hotel that the user was 

trying to retrieve. On the other hand, a string-matching algorithm (Aho and Corasick 

1975; Boyer and Moore 1977) will behave more reliably in this scenario. Hence, a 

syntactic rather than semantic evaluation of similarity is preferred for nominal identifiers. 

The most common string-matching algorithms are variants of approaches that operate 

in terms of transformational distances (Hamming 1950; Damerau 1964; Levenshtein 

1965), thereby measuring implicitly the change required to transform one string into 

another in terms of insertion, deletion, substitution, and swapping of characters. Another 

possible approach—also based on transformations—is phonetic matching, which 

identifies strings of similar pronunciation (Zobel and Dart 1996) Table 3.3 summarizes 

the discussion on similarity among nominal values by presenting the possible and 

recommended methods for the attributes types discussed. 
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 Classifiers with 
Detailed Ontology 

Classifiers with 
Basic Taxonomy 

Classifiers with 
no Ontology Identifiers 

MD Model ++ ─ ─ ─ 
Featural Models ++ ─ ─ ─ 
Network Models + ++ ─ ─ 
Custom Geometric + + ++ ─ 
Synonym Lookup + + + + 
String-Matching + + + ++ 

Table 3.3:  Alternative approaches to similarity assessment for the various cases of 

nominal attributes. A + represents a feasible approach for a case, whereas 

a ++ represents the recommended approach for that case. A – means that 

the approach does not apply. 

3.8 Similarity Assessment for Cyclic Values 

Ratio, interval, and ordinal values are typically thought of as being ordered along a 

straight line. Certain attributes, however, have values that are best conceptualized when 

positioned on a circle’s perimeter. Such attributes are called cyclic (Chrisman 1995). 

Cyclic attributes order values such that the last element in a sequence coincides with the 

first element of the next round. The values can be either continuous or discrete, and can 

be represented by either points or intervals. The partitioning of the year into seasons or 

the week into days are examples where the values form discrete cyclic intervals. 

Although seasons and days can also be perceived as nominal values, sometimes their 

periodic order of succession is relevant. Examples of non-temporal cyclic attributes 

include angles (Isli and Cohn 1998) and the set of qualitative cardinal directions 

{N, S, E, W, NE, SE, NW, SW} (Frank 1996). The latter have been investigated as 

binary relations involving a reference and a target object (Goyal and Egenhofer 2001). 

The values of angles are continuous, whereas those of cardinal directions are discrete. 

Cyclic scales are particularly interesting as they do not classify neatly within the ratio, 

interval, ordinal, and nominal scale typology, yet they are capable of exhibiting 

characteristics innate to each of these types of measurement. Hence, they are also capable 
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of implying different kinds of change. Cyclic values that can be represented as points or 

as non-overlapping intervals of an equal length are called uniform (Figure 3.8). In this 

case, the measurements resemble those on an interval scale: the values are ordered, they 

are separated by equal intervals, and the position of the zero point appears to be arbitrary. 

Although angles can be multiplied and divided, an angle of zero degrees does not indicate 

absence of an angle or absence of direction. Hence, the notion of quantity, as defined for 

ratio measurements, is inapplicable. The transition from one cyclic value to another 

represents a different kind of change than quantitative. For angles or cardinal relations, 

the change that is pertinent to the phenomenon being measured is change with respect to 

place, or movement, since an object moving cyclically changes its directional relation 

with the observer (i.e., the center of the cycle). If the values were of temporal nature 

instead, the change would have been of a qualitative nature as explained in Section 3.5 

(although the perspective of movement through time would also be valid). 

Figure 3.8:  Cyclic scales with uniform values: (a) angles and (b) cardinal directions. 

In both cases, equal distances along the perimeter indicate equal amounts of change. 

Dissimilarity can be taken equivalent to the length of the arc that must be traversed along 

the circle to join the two values under comparison. For any pair of values, there are two 

such arcs, one clockwise the other counter-clockwise. We choose the smaller arc, based 

on the criterion of minimum change (Section 2.2.2.6). When the values correspond to 
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intervals (Figure 3.8b), the length of the arc can be measured from the midpoints, starting 

points, or endpoints of the intervals, as long as the choice of the point to which the 

intervals are reduced remains consistent. Since the origin and the end of a cyclic scale 

coincide, the two contrary states of change that indicate maximum dissimilarity 

correspond to anti-diametrical points or intervals on the circle. Therefore, a unique 

characteristic of cyclic scales with uniform values is that each value has an exact opposite 

(although for values corresponding to intervals, this assertion holds only when the 

number of intervals is even). Similarity is computed from Equation 3.9, where P is the 

total length of the circle’s perimeter. Both P and the absolute difference between the 

query and database values are expressed in the units of the cyclic attribute (e.g., for 

cardinal directions 8P =  and ( ) 4SW NE− = ). 

 
2 min(( ), ( ))

( , ) db q db q
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P
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⎝ ⎠

 (3.9) 

Uniform values do not exhaust all possibilities, since cyclic values may also 

correspond to intervals of unequal length (Figure 3.9). Movement alone is then 

insufficient to make the two values identical. The interval of the query value may also 

need to expand or contract by a certain amount, thereby undergoing also quantitative 

change. Under this setting, cyclic values can be viewed at a nominal level of 

measurement, differing along two constituent dimensions: position and size. Positional 

similarity is derived by Equation 3.9. The values along the second dimension represent 

quantities and are at a ratio level of measurement (e.g., the time periods of Figure 3.9). 

Similarity along the second dimension is computed by Equation 3.4. The overall 

similarity score between two cyclic values is then produced by combining the similarity 

scores in each dimension. Aggregating individual similarity scores is studied in chapter 4. 
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Figure  3.9:  Four different periods of land use including timbering, fishing, hunting, 

and fruit gathering (Hornsby et al. 1999). 

3.9 Attribute Considerations beyond the Five Levels of Measurement 

The algorithms for the five levels of measurement (i.e., nominal, ordinal, interval, ratio, 

and cyclic) can accommodate the majority of attributes encountered in a database. The 

choice, however, may not always be intuitive. For some attributes, the classification into 

one of the measurement types may be abstruse or depend on each individual’s 

interpretation of the data. Other attributes may require their own unique custom algorithm 

to be implemented. Capturing all attributes that exhibit such behavior is infeasible; 

therefore, we present characteristic examples of such cases that will serve as exemplars 

for similar situations. In most cases, the specialized similarity algorithms that need to be 

implemented for such attributes consist of a combination of primitive algorithms that 

were developed for the five levels of measurement. 

Perhaps the most striking example of attributes that accept multiple interpretations is 

provided by temporal attributes. From a semantic perspective, two different views are 

usually adopted for temporal data types: the linear view and the cyclic view (Frank 

1998). In the linear view, time events are points at some granularity and are represented 

on the dimension of time. For example, the purchases of land parcels or the construction 
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year of buildings may be respectively associated with the timestamps when the purchases 

occurred or the year the construction of a building was completed. These time values 

should be classified as interval. When the measurement pertains to duration and time 

values represent periods or are interpreted as such, then these time values should be 

classified as ratio, however. In the cyclic view, the values are associated with recurrent 

processes and, hence, should be treated as cyclic. For example, a weather database may 

record the day of the time that the maximum temperature occurred or the month of the 

most intense precipitation for each year. Cyclic events of arbitrary durations become 

nominal values differing not only with respect to their time of occurrence, but also with 

respect to their duration. The same is true for linear time intervals (Allen 1983). 

There are additional examples of attributes with special innate semantics that prohibit 

their immediate classification under a scale of measurement. For example, a geographic 

database containing information about the lakes in the state of Maine may have an 

attribute Average_pH_Value for each lake. The pH value is a chemical term, which 

indicates the acidity of a liquid or a liquid body. It is measured on a closed scale, ranging 

from 0 to 14. This scale appears to be ratio, but these numbers are actually ordinals 

because the acidity is a logarithmic function of the amount of hydrogen ion concentration 

in the liquid body. Furthermore, the pH scale groups bodies of liquids into two classes: 

acids, if the pH value is less than 7, and bases or alkalines if the pH value is larger than 

7. Acids present some general chemical properties that differ from the chemical 

properties of the bases. For example, most acids have a characteristic sour taste and act 

corrosively when they come in touch with the skin, whereas most bases have a bitter taste 

and produce a slippery or soapy feeling when applied to the skin. It might be desirable to 

reflect this difference of the properties of the two groups in the adopted similarity 

algorithm. From this perspective, a pH value becomes a nominal value. The similarity 

measure is not only a function of the distance of two values on the pH scale, but also 

dependent on whether the value classifies the water body as acidic or basic. 
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3.10 Null Values in Similarity Assessments 

Null values refer to attributes that have no value stored. Database theory recommends the 

elimination of null values through proper database design and normalization (Elmasri and 

Navathe 2000); however, even in the most carefully designed systems null values are 

often unavoidable due to an inability to collect all required information about an entity, 

schema restructuring, or tradeoffs between performance and normalization. Null values 

waste space, lead to problems with relational JOINs, and database functions such as 

COUNT and SUM. Most importantly, they introduce ambiguities related to the meaning 

of the missing attribute values. The concern is to address the implications that derive 

from null values when such values are encountered in a similarity assessment. 

A rudimentary way of dealing with null values is to assign a zero similarity measure 

between two values when one of them is null (Richter 1992). Another crude approach is 

to substitute a null with a precise extreme value, which is meaningless in the context of 

the attribute domain (Date 1982). This approach misses the different semantics that a null 

value may carry—for instance, up to 14 different types as reported in the ANSI/SPARC 

interim report (Bachman et al. 1975). Only a subset of three different interpretations, 

however, is vital for a formal treatment with respect to their meaning. 

• Unknown null values were initially investigated by Codd (1979). An unknown value 

(unk) states that a precise value exists, but is currently missing. Specializations of unk 

nulls include p-domains and p-ranges. Both refer to a subset of the attribute’s 

domain. A p-domain (Lipski 1979; Imielinski and Lipski 1984) implies that the 

unknown value, although missing, is restricted to a value in a subset of the attribute’s 

domain; for instance, {2,4,7} is an example of a p-domain for a numeric attribute. In 

addition to unk, and p-domains, Morrissey (1990) also considered p-ranges, which 

state that the missing value is within a particular range. For example, a p-range of 

(20,50) means that the precise value is between 20 and 50. A p-domain applies better 

to attributes with an enumerated domain of finite elements, whereas a p-range is more 
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suited to attributes whose values vary along a continuum. In response to a query, one 

set of objects captures the exact matches, while another set captures objects with one 

or more null values that could possibly be exact matches. While this approach is 

concerned with the retrieval of possibly exact matches, this work is interested in 

finding similar results that, among others, encompass possible exact matches. 

• Non-applicable (or dne for does not exist) nulls (Vassiliou 1979; Codd 1986), mean 

that the value is unavailable, because the specific attribute is not applicable for an 

object. Attributes that are applicable for several but not for all the entities of a class 

are called partial (Kusters and Borgida 2001). 

• No-information nulls (ni) (Zaniolo 1982) are more generic, subsuming unk and dne 

types of nulls. They state that the value is missing either because it exists but is 

unknown or because it does not apply for that object. An open ni value includes the 

possibility of more than one existing but unknown values for a property of an object 

(i.e., a multi-valued property) (Gottlob and Zicari 1988). No-information nulls are 

conceptually simpler but less informative. Their use may result in loss of potentially 

useful information, since such nulls are unable to express the full spectrum of 

semantic interpretations that null values may have. For example, it is not possible to 

retrieve the set of objects for which an attribute does not apply. 

Such different meanings imply that a successful treatment of null values relies on the 

simultaneous consideration of these types. To handle efficiently the different semantics of 

nulls, DBMSs must extend the domain of attributes in the system with the codes unk, dne, 

and ni, rather than using only the generic code null. Similarity between a null value and 

any other value of an attribute A may be derived from Equation 3.10, where a and b are 

the respective minimum and maximum values that define the range of A, xq is the query 

value, and ( , )A qS a x  and ( , )A qS b x  are measures of similarity between a and xq and b and 

xq respectively. 
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A comparison between a dne and a query value is indeterminate, because dne does 

not exist, whereas the query value exists. This existence vs. non-existence of a value can 

be interpreted as the maximum possible dissimilarity and, therefore, a similarity measure 

of 0 is assigned to the pair of dne and any query value. Dne nulls are particular useful in 

comparisons of objects that are not described through the same set of attributes. In such 

cases, missing attributes of one entity can be assumed to be present, and instantiated with 

dne nulls. An exception applies in some cases, where a dne value should be best 

substituted by a zero. For instance, when looking for employees that receive a low salary, 

volunteers could be considered as employees that receive a $0 salary and, therefore, be 

retrieved as similar results to the query. In other cases, a dne specification would apply 

much better; for example, when comparing a lake to a building, and the lake has a pH 

value. In this scenario, any pH value for the building other than dne would be absurd. 

This distinction closely resembles the two different treatments of the zero value for ratio 

attributes (Section 3.4.1). Such issues constitute engineering choices that should be 

addressed during database design by the database administrator/designer. 

Unlike unk and ni, a dne mark should always be treated by the database as a precise 

value, whether it is encountered in a stored object or used as a query. Unk and ni nulls, on 

the other hand, are treated as precise values only when a user queries the system by using 

them. Such queries are meaningful in the sense that the user may be looking for all 

missing values in the database in order to update them. In this case, a symbolic matching 

is necessary. In all other cases where unk and ni values are compared with precise query 
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values, they should be treated as placeholders instead and follow the substitutions 

(Equation 3.10). Here, the matching is semantic, rather than symbolic (Codd 1986). 

The unk code represents knowledge that the actual value, although missing, belongs 

to the set of values that are allowed in the attribute range (Lipski 1979). Due to 

uncertainty, Equation 3.10 assumes minimum similarity and, therefore, substitutes unk 

with the domain value that maximizes the distance from the query value xq. In cases of 

quantitative attributes, this value is logically either the minimum or the maximum as 

implied by the domain of the attribute or as specified via an explicit constraint. Hence, 

only two results need to be evaluated. For qualitative attributes, the algorithm may 

perform only when one deals with a finite domain of values. In this case, however, all 

values have to be checked in order to choose the one that minimizes similarity. If the user 

queries specifically for unk values, no substitution takes place and unk values are the only 

exact matches, followed by ni values. 

The ni value is a lower-level placeholder for either unk or dne nulls and is the least 

informative. For any query where ni values are encountered (excluding the case when the 

query value is dne) a worst-case scenario is chosen, where ni values are treated as dne 

values and thus assigned zero similarity. During output presentation, however, tuples 

with ni values must be ranked higher than dne in terms of similarity, because they leave 

open the possibility of existence. If the query asks to retrieve specifically the tuples that 

have a dne value for the attribute instead, then the order is reversed, since dne values are 

exact matches and ni values the next best results, with everything else excluded. Such 

types of null-retrieving queries are typically performed by administrators for database 

maintenance purposes. In more realistic scenarios that account for the vast majority of 

database queries, users will enter precise values, and retrieve similar results, free of nulls. 

For an example of queries involving null values, consider the relation in Table 3.4. 

Each record stores information about the type of the accommodation, the category of 

luxury, the total number of rooms, and the restaurant types within the establishments. Let 
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the range of possible rooms for accommodations vary from 5 to 70 and explicitly stated 

so by a constraint. The query *Type(hotel) and *Restaurant_Type(Greek) and 

*Rooms(50) requires similarity assessments with null values. Dameia Palace is a good 

result, because it is a hotel, the value for beds is relatively close to that of the query, and 

an Italian restaurant—also Mediterranean cuisine—exists on its premises. Caldera 

Apartments would be the second best match, followed by Santorini Palace and Sun 

Rocks. The reason for Santorini Palace being ranked so low is its unk value for rooms. 

This value will be substituted with number 5, since this is the value in the allowable 

range for rooms that minimizes similarity. If, however, there was a database constraint 

stating that hotels of category A must have between 40 and 70 rooms, then unk would be 

substituted by the number 70, yielding an ordering in which Santorini Palace is the most 

similar result, followed by Dameia Palace and then Caldera Apartments. Sun Rocks is 

the least similar match, because it is not a hotel and has no restaurants. The similarity 

between the query value for a Greek restaurant and the dne value would evaluate to zero. 

Name Type Category Restaurant_Type Rooms 
Sun Rocks Apartments B dne 10 
Dameia Palace Hotel A Italian 70 
Caldera Apartments Apartments A Italian 30 
Santorini Palace Hotel A Greek unk 

Table 3.4:  Relation accommodations with attributes that include null values. 

This approach offers a semantically enhanced and elegant method when dealing with 

null values, especially when combined with consistency constraints that may be inserted 

as rules in the database and reduce the uncertainty for certain facts. Specifying the types 

of null values with different codes allows for more expressive power, both during the 

modeling of a database, as well as during the retrieval from it. The procedure adopts a 

pessimistic view when encountering unk values, by substituting unk with the most 

dissimilar value possible. Approaches based on probabilities, information content, or 

entropy (Morrissey 1990) do not apply for similarity assessments as they aim at locating 
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probable exact matches. For example, if the values of two tuples in the database are the p-

domains {Greek, Chinese}, {Greek, Italian} and a query asks for a Greek restaurant. 

Since Italian cuisine is more similar to Greek cuisine than to Chinese, it is logically 

inferred that the second p-domain is always a better similarity match for the query. 

However, information content or entropy measures would yield equal estimates when 

assessing the probability of whether these two values are exact matches or not. 

3.11 Summary 

The relation of change to similarity is a close one. The similarity between two attribute 

values can be interpreted as the inverse of the change required to make the two values 

identical. Based on the ratio, interval, ordinal, nominal, and cyclic typology of 

measurements we described algorithms that yield a similarity measure between a query 

and a database value by assessing and measuring the type of change that the level of 

measurement implies (Table 3.5). In support of our methods, we also developed a 

rationale for reasoning with null values by denoting the semantics of different types of 

unavailable values with explicit identifiers that imply different degrees of uncertainty. 

Appropriate normalization techniques for each attribute type enable meaningful 

inferences when individual similarity scores need to be integrated. Complex attributes 

with rich semantics, such as nominal or cyclic values, may require a combination of 

similarity algorithms. Nominal values in particular are strongly dependent on the quality 

of the underlying representational structure. 



 111

Attribute Types Section Equations for Similarity Comparisons 

Quantitative Ratios 3.4.1 Eqn. 3.2 or Eqn. 3.4 

Qualitative Ratios 3.4.2 Eqn. 3.5 

Interval Values 3.5 Eqn. 3.5 

Ordinal Values 3.6 Eqn. 3.8a or Eqn. 3.8b 

Classifiers (Detailed Ontology) 3.7.1 Eqn. 2.8 (modified for Hyponymy) 

Classifiers (Basic Ontology) 3.7.1 Path Length, or Eqn. 2.5, or Eqn. 2.6, 
or Eqn. 2.7b (2.7b preferred) 

Classifiers (no Ontology) 3.7.1 Geometric Decomposition, 
or Synonyms from WordNet 

Boolean Classifiers 3.7.2 S=1 for same values 
S=0 for different values 

Nominal Identifiers 3.7.3 String Matching Algorithms 

Uniform Cyclic 3.8 Eqn. 3.9 

Non-Uniform Cyclic 3.8 Eqn. 3.9 and Eqn. 3.4 

Null Values 3.10 Eqn. 3.10 

Table 3.5:  The different attribute types, their corresponding chapter sections, and the 

recommended methods for performing similarity assessments between 

their values. 

Under typical circumstances, the way in which the measurement was conducted will 

dictate the type of change being measured and, consequently, the level of measurement at 

which a similarity assessment occurs. This correspondence is not always clear. In some 

cases, the level of measurement depends not only on the data, but on the question asked 

and what one concludes from it. The solutions based on the notion of change contribute a 

sound framework for measuring similarity at the attribute level, reasoning about the 

appropriateness of existing similarity models, and capturing inherent properties of 

similarity, such as asymmetry. 
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CHAPTER 4 

SEMANTIC SIMILARITY AMONG OBJECTS 

The algorithms of Chapter 3 return similar results for equality-constrained queries on 

atomic values of a single attribute. Examples include a query to retrieve a spatial entity 

that occupies a certain area or a query for a particular lake. Queries, however, may link 

simultaneously a number of attributes through the combination of multiple constraints. 

This chapter develops a consistent and comprehensive methodology for spatial similarity 

retrieval in response to such complex queries formed by combinations of relational and 

logical operators. Relational operators refer to such predicates as greater than or less 

than, whereas logical operators combine separate spatial constraints using such 

connectives as and, or, and not. Multiple interacting constraints also raise the 

requirement for an effective weighting scheme that captures the users’ personal intentions 

with minimal interaction, yet preserves the fidelity of the results to these intentions. 

4.1 Queries Expressed through Relational Operators 

Relational operators extend the concept of an exact match to that of a range match. 

Besides the equality operator, relational operators determine whether one value is greater 

or less than another. They are denoted by the symbols >  (i.e., greater than), ≥  (i.e., 

greater than or equal to), <  (i.e., less than), and ≤  (i.e., less than or equal to). Specifying 

queries with relational operators is meaningful only on terms that have a natural order on 

a scale; therefore, their usage applies to ratio, interval, ordinal, and—in some cases—

cyclic attributes. 

The equality operator defines a single query value xq, whereas a relational operator 

specifies a query range Rq with endpoints r1 and r2. The range may be a closed or an open 

interval. For instance, in a query with 100x ≥ , r1 is the number 100 and r2 is plus infinity. 

Similarity between the range Rq specified by the user and any database value xdb of an 
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attribute A is derived by Equation 4.1, where 1( , )A dbS x r  and 2( , )A dbS x r are measures of 

similarity between xdb and r1 and xdb and r2, respectively. If an attribute value xdb is 

contained in the range Rq, then it is an exact match and, therefore, that attribute value 

receives a similarity measure of 1. If xdb is outside of the range, then its similarity is 

determined by the algorithm chosen for the attribute (Chapter 3). Relational operators are 

typically pertinent only to quantitative attributes where similarity is derived as a function 

of distance. In order to estimate the distance, we choose from the range of values that 

constitute exact matches the one that is closer to xdb. This value will logically be either the 

minimum or the maximum value of the range Rq (i.e., either r1 or r2). 

 1 2 if    max( ( , ), ( , ))
( , )   

if    1
db qA db A db

A db q
db q

x RS x r S x r
S x R

x R
∉⎧

= ⎨ ∈⎩
 (4.1) 

For example, if a query requests all land parcels that occupy an area between 4,000 

and 6,000 square feet (i.e., r1 = 4,000 and r2 = 6,000), then every land parcel whose area 

is within the specified interval is an exact match. The similarity for land parcels with an 

area xdb outside of the interval is a function of the distance from xdb to r1 if xdb is less than 

4,000, or from the distance of xdb to r2 if xdb is greater than 6,000 (Figure 4.1). In both 

cases, similarity is calculated by performing the appropriate substitutions in Equation 3.4. 

Figure 4.1: Similar results to a query involving relational operators. 
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4.2 Queries Expressed through Logical Operators 

Querying a system with logical operators is based on concepts from Boolean algebra. 

Conjunctive queries refer to the combination of constraints using the logical operator 

and; for instance, “Find objects where attribute A has value x and attribute B has value y.” 

Similar combinations can be obtained with the use of disjunctions (or-operator) and 

negation (not-operator). The evaluation of each constraint yields a separate similarity 

value, so that the key issue becomes how to combine the similarity values. 

4.2.1. Queries with AND on Different Attributes 

The use of and requires that all the values that it connects be present in the results. Terms 

(i.e., constraints) joined by the and-operator are called conjuncts. In a typical and-query 

the conjuncts are values of two or more different attributes; therefore, the operator and is 

used to allow queries that simultaneously engage several attributes of an object. This 

usage of the and connective is particularly important, because it allows the extension of 

the similarity framework from the attribute to the object level, where two objects need to 

be compared globally with respect to multiple features. Furthermore, the manner in which 

constraints interact with one another and the order in which they are evaluated may vary 

depending on the tasks that users seek to accomplish. To guarantee the tractability of the 

framework, a detailed treatment is necessary that gives users the possibility of embedding 

diverse semantics into a conjunctive query. 

A first step to an enhanced functionality is the separation of constraints (conjuncts) 

into those that are required or hard and those that are preferential or soft. Hard 

constraints accept only exact matches, whereas soft constraints can also accept similar 

results. The provision for the former is important since it maintains compatibility with 

standard database queries and allows the execution of tasks where similar results may be 

unacceptable. An example is the retrieval of buildings in violation of environmental 

regulations in order to be fined or demolished. In addition, hard constraints are more 
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efficient to process, because the similarity calculations are restricted only on the subset of 

database tuples that fully satisfies their union. 

Additional semantics that facilitate the expression of diverse user objectives can be 

captured through different interaction modes among the constraints. Two variants are 

possible based on whether some constraints have total or partial dominance over others: 

(1) those that require locally-better results and (2) those that require globally-better 

results. 

4.2.1.1 Locally-Better Conjunctive Matching 

Locally-better matching is based on the concept of constraint hierarchies (Borning et al. 

1987; Borning et al. 1992). The constraints are organized by the user in a constraint 

hierarchy of depth n, where the different levels imply different degrees of preference. 

Constraints at a higher level are more important than constraints at a lower level. The 

levels of the hierarchy are assigned sequential integers with 0 denoting the highest level 

and n-1 the lowest. Required constraints are placed at the zero level. Constraints at all 

other levels are preferential. If all constraints are placed at the zero level then only exact 

matches are acceptable. Otherwise, one database object is a locally-better match to a 

query than another, if for each of the constraints through some level k-1 their values are 

identical and at level k the dissimilarity is strictly less for at least one constraint and less 

than or equal for all the rest. Hence, in locally-better matching, higher-level constraints 

have total dominance over lower-level constraints. Deviations from the query value at a 

certain level in the hierarchy are used to break the ties between results at the immediate 

higher level (Figure 4.2). Since sorting, rather than combining similarity values, plays the 

primary role in locally-better matching, the deviations can be calculated by the 

dissimilarity functions that are assigned to each attribute (Chapter 3) and the results can 

be ranked accordingly. 
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Figure 4.2: Similar results to a conjunctive query using locally-better matching. 

4.2.1.2 Globally-Better Conjunctive Matching 

Globally-better matching relies on a compensatory use of the and operator and follows 

principles from geometric models of similarity. According to such models, the similarity 

of one object to another is an inverse function of the distance between the objects in a 

conceptual space. The use of attribute weights that indicate each dimension’s salience 

within the space offers a refinement of this process. The distance in a conceptual space 

indicates dissimilarity. A measure of the latter should be compatible with human 

judgments of overall dissimilarity and its correct calculation becomes, therefore, 

important. Following widely accepted psychological research (Attneave 1950; Torgerson 

1965; Shepard 1987;1988; Ashby and Lee 1991; Nosofsky 1991;1992; Gärdenfors 2000), 

the perceived interpoint distances between the objects’ point representations in the space 

should be computed either by Equation 4.2 or 4.3, where n is the number of dimensions 

and xik, xjk are the values of entities i and j on dimension k. Dividing by the sum of the 
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weights ensures that the final measure is bounded within 0 and 1. Equation 4.2 

corresponds to a Euclidean metric. The distance is defined as the shortest path along a 

straight line between points i and j. Equation 4.3, on the other hand, corresponds to the 

city-block metric where the distance between the two points is defined as the sum of their 

distances on the individual dimensions. 
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Whether one employs Equation 4.2 or 4.3 depends on whether one deals with integral 

or separable dimensions. Integral dimensions are strongly unanalyzable and typically 

perceived as a single stimulus. For instance, the proximity of two linear objects may be 

described with a number of measures that associate the boundaries and interiors of the 

objects (Nedas et al. in press), but the closeness relation may be perceived as one 

stimulus from the users that inspect the lines. Another example includes color, where one 

cannot assign a value for an object in one dimension (i.e., brightness) without doing so 

for the others (i.e., hue and saturation). Hence, a set of integral dimensions constitutes in 

essence one multi-dimensional attribute (Torgerson 1965). Separable dimensions, on the 

other hand, are different and distinct properties (e.g., length and height) that are 

perceptually independent (Ashby and Lee 1991). It has been suggested and 

experimentally confirmed (Attneave 1950; Torgerson 1965; Shepard 1987) that, with 

respect to human judgments for similarity, a Euclidean metric performs better with 

integral dimensions, whereas a city-block metric matches more closely separable 

dimensions. 
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Perceptually separable dimensions are expected to have a higher frequency of 

occurrance in databases; therefore, in the general case the composite dissimilarity 

indicator between two objects will be calculated by the weighted average of individual 

dissimilarities along each of the dimensions (Equation 4.3). For a group of n integral 

attributes, however, an Euclidean metric (Equation 4.2) should be adopted to derive the 

dissimilarity of the objects with respect to this integral group. Therefore, the combination 

of the n concomitant attributes of an integral group should yield one dissimilarity 

component rather than n individual components in the composite measure. (Figure 4.3). 

Figure 4.3: Combining two integral attributes to one that is separable (all weights are 

set to 1). 

Converting composite dissimilarity to composite similarity can be done via any 

inverse monotonically decreasing function. As in the case for similarity assessments at 

the attribute level (Section 3.2.3), the choice of the conversion function also remains 

irrelevant at the object level. Different functions, such as linear (Equation 2.1a), 

exponential variants (Equation 2.1b), or Gaussian variants (Equation 2.1c), will affect the 

similarity scores for each tuple in the set of retrieved similar results, but the ordering 

from most similar to least similar object will be preserved. The choice of the aggregation 

function that yields dissimilarity matters, however, as different choices may produce 

divergent rankings. For instance, the employment of an Euclidean metric on separable 

dimensions or a city-block metric on groups of integral attributes is likely to distort the 

results. The extent of such distortions is investigated in detail in Chapter 6. The approach 
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of this thesis differs from other efforts in the literature (Motro 1988; Papadias et al. 

1999b; Blaser 2000; Dey et al. 2002; Ortega-Binderberger et al. 2002; Stefanidis et al. 

2002; Chakrabarti et al. 2003) in that it does not employ an Euclidean or city-block 

distance metric in an ad-hoc fashion, but introduces instead a psychologically correct 

dissimilarity measure that offers explicit treatment for separable and integral dimensions. 

4.2.1.3 Other Approaches to Conjunctive Matching 

Additional methods for calculating the similarity to conjunctive queries include the 

productive combination (Ruttkay 1994) and approaches based on the fundamental scoring 

rule for fuzzy set intersections, which, for conjunctive queries, resorts to selecting the 

minimum of the similarity values produced for each attribute (Equation 2.9a). The 

problem with the productive combination is that it cannot differentiate between results 

that receive a zero similarity score for one of the conjuncts. The fuzzy-based approach 

that uses the minimum operator suffers from an even more compelling lack of 

discrimination among the retrieved output, because the rank of a retrieved item depends 

only on the lowest similarity measure (Santini and Ramesh 1997; Fagin 1998; 

Ramakrishna et al. 2002). Two objects A and B, for instance, would both score as 0.2 

similar to a conjunctive query with three attributes if the similarities of object A’s and 

object B’s attributes to the query’s attributes were (0.2,0.8,0.9) and (0.2,0.3,0.3), 

respectively. This seems counter-intuitive (Elkan 1993;2000), because object A is clearly 

a better match. In fact, most researchers who have used this measure seem to be 

somewhat troubled by their results. Santini and Ramesh (2000) report problems between 

judgments of similarity with their model and others that were experimentally obtained, 

and admit that the minimum is too restrictive for conjunction. The same is raised by 

Ortega et al. (1998), as well as Fagin (1998) who justifies the use of minimum because it 

has attractive properties that are useful in optimizing the algorithms for faster access to 

the database. 
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Accuracy and correctness of a computer-produced similarity measure and the 

suitability of an algorithm are only reflected in their fidelity to human behavior, 

perceptions, and intuition. In the realm of similarity it makes little sense to succumb to 

the niceties of a well-defined theory or model that does not comply with human 

reasoning. This argument is not to say, however, that fuzzy logic is flawed, but rather that 

the choice of minimum as a fuzzy intersection operator when reasoning for similarity is 

erroneous and counter-intuitive. As Goldstone (1994b) puts it “our most basic similarity 

computation appears not to be one of determining identity in a particular dimension, but 

one of determining proximity across many dimensions.” Klir and Yuan (1995) also stress 

this very point when urging for the careful selection of fuzzy operators so that they reflect 

appropriately the context of the application in which they are used. Under this 

perspective, the approach of this thesis is compatible with fuzzy logic, because it uses 

another valid function—the weighted average—as a fuzzy aggregation operator that 

combines in a desirable way several fuzzy sets to produce a single fuzzy set. 

4.2.2. Queries with AND on the Same Attribute 

An alternative but rather unorthodox use of and occurs when the conjunction is used to 

connect values of the same attribute. If A is an attribute of a set of objects, the expression 

*A(x) and *A(y) means that the user wants to retrieve those objects for which the attribute 

A simultaneously attains the values x and y. This objective is not related to fuzzy 

variables to which an object may belong simultaneously with different degrees of 

membership (Cross and Sudkamp 2002), but rather it implies the presence of multi-

valued attributes (i.e., attributes that have a set of values for an entity). Comparing a 

multi-valued property of two objects requires a different logic than comparing a single-

valued property. The similarity measure in this case relates two sets of values, rather than 

two individual values, and describes how similar one set is to the other. 
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4.2.2.1 Conjunctive Queries on Multi-valued Attributes 

In order to calculate the similarity of two sets Q and H, the correspondences between 

compared values must be first established. Such correspondences can be based on the 

criterion of optimum fit, which seeks to maximize the sum of the individual similarity 

scores (or minimize the dissimilarities). This choice is justified by people’s tendency to 

evaluate similarity from the perspective of the minimal change required to transform one 

of the compared things into the other (Section 2.2.2.6). In the case of multi-valued 

attributes, the criterion of optimum fit also captures indirectly a combination of principles 

from featural and geometric similarity models. Pairs of values that are common in the 

two sets have a similarity coefficient of 1 assigned to them so that they are likely to be 

included in the combination of pairs, which yields the maximum sum; therefore, common 

values are counted as common features and contribute significantly to the overall 

similarity of the sets compared. The remaining pairs, which consist of different values 

from each set, are not simply treated as distinctive features according to the binary logic 

of featural models, but are rather assigned a similarity score that indicates how different 

they are. 

The two sets Q and H can be formally represented with a complete bipartite graph 

(Figure 2.4h), where each node in Q corresponds to a value of the query set, and each 

node in H to a value of the database set. A weighted edge from each node of Q to each 

node of H denotes the similarity for this pair of atomic values. The objective is to retrieve 

a maximum-weight matching from this graph (Figure 4.4a). If the edges of the bipartite 

graph indicate dissimilarities instead, then the objective becomes to minimize their sum. 

This alternative formulation is known as the assignment problem (Papadimitriou and 

Steiglitz 1998), which states: given a nxm matrix, find a subset of the elements, exactly 

one element in each column and one in each row, such that the sum of the chosen 

elements is minimum (Figure 4.4b). For multi-valued attributes, n refers to the elements 

of the query set, m to the elements of the database set, and the nxm matrix is the 



 122

dissimilarity matrix that contains the pairwise dissimilarities. The maximum-weight 

matching problem on a bipartite graph and the assignment problem are equivalent. One 

can easily formulate the former as the latter, simply by subtracting all edge weights (i.e., 

similarities) from a value larger than the larger weight. Although the possible 

permutations for sets of n cardinality are n!, efficient polynomial algorithms that can cope 

with multi-valued sets of reasonably large sizes (thousands of elements) exist (Goldberg 

and Kennedy 1995). The most famous is the Hungarian algorithm (Kuhn 1955) with a 

complexity of ( ( log )O n m n n⋅ + ⋅ . Once the pairs have been created, the overall 

dissimilarity of the sets can be computed (Equation 4.2 or 4.3) and converted to similarity 

through an inverse function (Equations 2.1a-c). 

Figure 4.4:  Formulating multi-valued attribute similarity as (a) the problem of 

maximum-weight matching in a bipartite graph and (b) the assignment 

problem. 

This approach to multi-valued attribute similarity applies under all circumstances 

where two sets of values must be compared and the sequence of the elements in the sets 

is immaterial. This statement implies that the identity of the elements in irrelevant and, 

therefore, every element in one set may be matched with any element of the other set. 

Such comparisons may be necessary in a number of different scenarios in GISs, for 

instance, in the comparisons of detailed topological representations (Egenhofer and 

Franzosa 1995; Clementini and di Felice 1998). Detailed representations elaborate over 

their coarse counterparts (e.g., the 9-interection) by describing a topological relation in 
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terms of multiple component intersections. Examples include the two possible ways to 

infer the similarity of the topological relation between the two configurations (Figure 

4.5a) and the case of periods of time represented by disjoint temporal intervals (Figure 

4.5b). To assess the similarity between the hunting period and the fishing period a multi-

valued similarity assessment must be performed. 

Figure 4.5: Applications of a similarity measure for multi-valued attributes: (a) 

detailed topological relations and (b) disjoint temporal intervals. 

A problem arises when the sets have different cardinalities as it is questionable how 

to account quantitatively for the missing elements. For instance, if the second 

configuration of Figure 4.5a had only one intersection component (Figure 4.6), neglecting 

the additional elements of the set with the larger cardinality will lead to misleading 

similarity estimates. Therefore, a method is needed that accounts for the discrepancy in 

the number of values between the database and the query set. A simple approach to 

inflicting this penalty would be to extend the smaller set in the assessment with dne nulls, 

up to the cardinality of the larger set (Figure 4.6). The addition of the pair (1, dne) in the 

formula that yields the dissimilarity of the sets (Equation 4.2 or 4.3) reflects the existence 

of one additional intersection in configuration 1 and produces a similarity estimate that 

corresponds better to the real-world situation. 
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Figure 4.6: Multi-valued similarity for sets of different cardinalities. 

Such cases of incomplete correspondences can be handled more flexibly and in a 

more general manner by introducing the value completeness parameter of two sets Q and 

H, denoted by ( , )comp H QV . This parameter’s value should be interpreted as the similarity of 

set H to set Q with respect to completeness. Its specification is based on the ratio contrast 

model, which allows expressing the completeness as a function of the matched and 

unmatched elements of the two sets, and its value is bounded in the interval [0,1]. The 

simpler approach considers each value of equal importance (Equation 4.4a), whereas a 

more elaborate version assigns a weight to each value (Equation 4.4b). 
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 where:  M  : Number of matched elements    

   n  : Number of elements in the query set Q   

   m  : Number of elements in the database set H   

   α  : The weight of the subset of unmatched query elements 

   β  : The weight of the subset of unmatched database elements 
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iOw  : The weight of the i-th matched query element  

   
jOw  : The weight of the j-th unmatched query element  

 and  [ ], 0,1α β ∈  

The value completeness measure is a flexible measure able to accommodate a number 

of different scenarios and to produce asymmetric similarities between two sets. Different 

user intentions can be captured by adjusting the weights α and β. Three cases are 

possible: 

• m n= : When the cardinality of the sets is equal then all values in the query set will 

be associated with values in the database set (Figure 4.7a). In this case, the value 

completeness becomes 1, because the number of matched pairs M equals the 

cardinality of the sets. 

• n m> : When the cardinality of the query set n is larger than the cardinality of the 

database set m, then the number of associated value pairs M equals m (Figure 4.7b). 

The weight β plays no role in this case since the term ( )m Mβ ⋅ −  is cancelled out. 

Setting α to any value larger than 0 will inflict a penalty for completeness. Setting α 

to 1 is equivalent to extending the cardinality of the database set with dne values up to 

the cardinality of the query set. For the bipartite description of the problem this 

setting translates to adding new nodes with edges of zero weight incident upon them. 

•  n m< : When the cardinality of the query set n is smaller than the cardinality of the 

database set m, then the number of associated value pairs M equals n (Figure 4.7c). 

The weight α plays no role in this case since the term ( )n Mα ⋅ −  is cancelled out. 

Setting β to any value larger than 0 will inflict a penalty for completeness. A positive 

value in this case means that the user is interested in finding a database set that 

matches the query set exactly. A value of 0, in contrast, means that the user is 

interested in locating a database set with at least as many elements as those in the 
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query set. The interest is shifted only to the matched elements, while unmatched 

values in the database set are ignored. 

Figure 4.7: Behavior of the value completeness parameter for similarity queries that 

involve sets of different cardinalities: (a) the query and database sets have 

the same number of values, (b) the query set has more values than the 

database set, and (c) the query set has fewer values than the database set. 

The final similarity between the two sets ( , )H QS  incorporates the completeness 

correction (Equation 4.5). The value completeness has a limiting influence on the 

similarity of the sets. If the weight of the value completeness is 1, then the set similarity 

cannot exceed the specification of the value completeness. The weight Compw  for the 

completeness is distinct from the weights α and β of Equations 4.4a and 4.4b. The former 

determines the degree to which completeness affects the final score, whereas the latter 

define what completeness means. 

 ( , ) ( , ) ( , )' ( ( 1) 1)H Q H Q Comp Comp H QS S w V= ⋅ ⋅ − +  (4.5) 

where:    ( , )' H QS : The averaged similarity of the matched pairs only 

     Compw  : Weight of the value completeness parameter 

4.2.2.2 Conjunctive Queries on Composite Attributes 

A special variation of the multi-valued attribute theme concerns composite attributes. A 

composite attribute can be divided into smaller subparts, which represent more basic 
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attributes with independent meanings (Elmasri and Navathe 2000). In this case, the 

identity of the elements becomes significant as there is an unambiguous correspondence 

between the elements of the compared sets. Hence, the methodology for composite multi-

valued attributes is identical to that for globally-better conjunctive matching (Section 

4.2.1.2), since such attributes can be treated as objects or as nominal values varying in 

several dimensions. Depending on whether these dimensions are integral or separable, 

Equations 4.2 or 4.3 can be respectively used to determine the dissimilarity of the sets. 

An example is the boundary closeness measure (Nedas et al. in press), which applies 

to line-line relations, describing the remoteness of one line’s boundary from the boundary 

of the other line. This attribute comprises a pair of normalized ratio values. The smaller 

value corresponds to the smallest realizable distance between boundary points of the two 

lines, whereas the larger value corresponds to the distance formed between the remaining 

boundary points. The distances are chosen such that the two sets of boundary points are 

mutually exclusive (Figure 4.8). The magnitude of the distances essentially prescribes an 

identity to each of the two values. The smaller distance can be thought of as the minimum 

boundary closeness, while the larger distance forms the maximum boundary closeness. 

Hence, when two pairs of lines are compared with respect to their boundary closeness, 

the correspondences during the similarity assessment become evident. 

Figure 4.8: Establishing correspondences for multi-valued similarity of composite 

attributes. 
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4.2.3 Queries with OR on the Same Attribute 

The use of the disjunction or requires that at least one of the values that it connects be 

present in the result. Terms joined by the or-operator are called disjuncts. In a typical or-

query, the disjuncts are values of the same attribute. If A is an attribute of a class of 

objects, the expression *A(x) or *A(y) means that the user wishes to retrieve objects for 

which the value for attribute A is either x or y. As in the case with relational operators, 

there is not one query value, but a set of query values. The difference to queries 

expressed through relational operators is that the set of query terms is not represented by 

a range, but by a finite number of distinct values. 

Similarity is derived from Equation 4.6, where 1 2{ , ,..., }nQ x x x=  is the set containing 

the n values that are connected by the or-operator in the query expression, and xdb is any 

stored value for attribute A in the database. If xdb coincides with any of the values in Q 

then it is an exact match and the similarity is 1. Otherwise, the process consists of 

examining the similarities between xdb and all the values that are elements in Q. Since all 

values in Q are exact matches, we choose the one that gives the largest similarity measure 

for xdb, when compared to it, that is, the similarity of xdb is determined by its distance from 

the closest exact match. 

 
max( ( , ),

( , )
1

A db i
A db

S x x
S x Q ⎧

= ⎨
⎩

if  where (1,..., )
     

if  
db

db

x Qi n
x Q

∉=
∈

 (4.6) 

For example, for a query asking to retrieve buildings in downtown Bangor that 

occupy an area either of 400 or 600 square feet (i.e., Q = {400,600}), every building 

whose area is 400 or 600 is an exact match. For buildings with a different area value xdb 

the maximum similarity measure obtained for the pairs ( , 400)dbx  and ( ,800)dbx  is 

chosen, as this is computed from the algorithm that has been assigned to attribute A 

(Figure 4.9). 
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Figure 4.9: Similar results to a logical or-query involving one attribute. 

This approach is equivalent to the standard scoring rule for fuzzy disjunction (Santini 

and Jain 1996; Ortega et al. 1998). The values of the query set can be interpreted as 

prototyping concepts of fuzzy sets, and the measures 1 2( , ), ( , ),..., ( , )A db A db A db nS x x S x x S x x  

as indicators of the membership of the database values to these sets. 

4.2.4 Queries with OR on Different Attributes 

Specifying queries with or where the disjuncts are values of different attributes 

constitutes uncommon practice, but is still a viable option for the database users. If A1 and 

A2 are two attributes of an object, the expression *A1(x) or *A2(y) means that the user 

wants to retrieve those objects for which the attribute A1 has the value of x, or those 

objects for which the attribute A2 has the value of y. The satisfaction of either of these 

constraints implies an exact match, therefore, the methodology is similar to that for 

disjunctive queries on the same attribute (Section 4.2.3).  

If 1 2{* ( ),* ( ),...,* ( )}q q n qQ A x A x A x=  is the set containing n query values (xq) of n 

different attributes connected by the or-operator, and 1 2{ ( ), ( ),..., ( )}db db n dbH A x A x A x=  is 

the set containing the corresponding n database values for an object in the database, then 

Equation 4.7 yields the similarity score between the reference object Oq, characterized by 
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the query values of the user and any other object (i.e., record) Odb in the database. If a 

database object matches any of the values contained in Q for some attributes Ai then it is 

an exact match. Otherwise, we separately examine the similarity of all corresponding 

pairs ( ( ), ( ))i db i qA x A x  for all attributes Ai connected by the or-operator and the pair of 

maximum similarity is chosen. 
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For example, consider the query *Relation(covers) or *CommonArea(100) (Table 

4.1). Regardless of its value for the attribute CommonArea, configuration 1 is an exact 

match, because it matches the query value for the attribute Relation. Similarly, 

configuration 2 is also an exact match, because it matches the query value for the 

attribute CommonArea. For configurations 3 and 4 the similarities between their attribute 

values and the respective attributes of the query are calculated separately, and the larger 

score of each configuration is assigned as its overall similarity to the configuration 

specified by the query. 

ID Topological Relation Common Area Overall Similarity 
Configuration 1 covers 100% 80 80% 100% 
Configuration 2 contains 75% 100 100% 100% 
Configuration 3 overlaps 75% 150 50% 75% 
Configuration 4 meets 50% 0 0% 50% 

Table 4.1:  Similar results to a logical or-query involving two attributes. 

4.2.5 Queries with NOT 

Values that the not-operator takes as arguments are missing in the results. If A is an 

attribute for a class of objects, the expression *not A(x) means that the user wants to 

retrieve any object, except those that have a value of x for attribute A. The similarity 

between a database object Odb with a value of xdb for attribute A and the query object Oq 

characterized by the negation statement *notA(xq) can be calculated by Equation 4.8. 
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Negations are another area where common fuzzy-based implementations of similarity 

(Section 2.3.1) to complex queries suffer. The effect of the standard fuzzy operator for 

negation (Equation 2.9c) is that it returns as most similar the objects that are the most 

dissimilar with respect to the value negated in the query. While such objectives may be 

best captured with different operator combinations, interpreting negation in this manner 

may not always align well to human reasoning, and may even return paradoxical results. 

For instance, if a traveler queries for a hotel, but not in the center of a city, then this query 

does not necessarily mean that she would like to find a hotel in the middle of the desert or 

on the top of a mountain, while one in the suburbs would be acceptable. Similarly, it is 

absurd to search for one land parcel containing another in response to user’s request for 

finding non-disjoint land parcels. Therefore, the role of negations in information retrieval 

is to avoid undesirable associations or, in general, eliminate unwanted tuples from the set 

of retrieved results. Hence, it should be interpreted by a similarity query processor as it 

has always been interpreted traditionally in the classic logic paradigm. 

An interesting situation occurs during the combination of a conjunction and a 

negation over the same constraint; for instance *A(x) and *not A(x). This expression can 

be interpreted as “find the objects that simultaneously have and do not have the value x 

for attribute A.” Although in classic logic this is a contradiction, in a similarity setting it 

can be interpreted as a request to retrieve all similar results for a query, excluding those 

that are exact matches. 

4.3 Attribute Weights 

Whereas normalization removes the unintentional and persistent distance scale biases that 

are introduced in the data space from different attribute ranges, weights aim at reinserting 

biases—albeit deliberate and dynamic this time—so that the data space is aligned with 
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the user’s conceptual space. Such an alignment is often required, because the central trait 

that influences similarity judgments is attention (Smith and Heise 1992). Selective 

attention to different properties changes the perceived similarity of two objects; therefore, 

the primary role of weight coefficients is to serve as context adjustors: a dimension 

weight determines the relative importance of that particular dimension on the composite 

score. A large value for the weight of a dimension stretches the space along that 

dimension, while a small value shrinks it. Hence, similarity is a function of both the 

magnitude of the difference between values of entities on the dimensions and of the 

dimension weights (Gärdenfors 2000). 

Currently, no uniformly agreed-upon methodology exists to weighting individual 

dimensions before aggregating them into a composite measure. It is common practice to 

either assume equal weights on all attributes (Dawes and Corrigan 1974; Dawes 1979) or 

to rely on the users’ explicit weight specification (Motro 1988; Blaser 2000). Translating, 

however, one’s objective into a set of precise ratio values may be a challenging task as it 

assumes knowledge of what weights are and how they interact, but also mandates a 

precision that may be absent in the mind of the decision maker (Kirkwood and Sarin 

1985; Borcherding et al. 1991). Weighting decisions may become even more abstruse 

and error-prone as the number of soft constraints increases (e.g., spatial scenes with 

multiple objects and attributes), forcing users to vacillate among their own judgments, or 

even worse, become unwilling to specify weights at all. 

A better approach is offered by rank-order weighting methods (Barron and Barret 

1996), which rely solely on ordinal information in order to derive ratio weights. The 

user’s responsibility is reduced to ranking the constraints based on their importance. 

Providing ordinal preference is easier and more reliable than specifying exact values 

(Stillwell et al. 1981; Barron and Barret 1996). Hence, such an approach is more suitable 

for complex spatial information retrieval. The concept is peripheral to that of constraint 
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hierarchies (Borning et al. 1992) (Section 4.2.1.1), but differs in that higher-ranked 

constraints prevail, but do not dominate completely, their subordinates. 

There exist several methods to convert rank information to ratio weights (Stillwell et 

al. 1981), however, the most effective and reliable is the rank-order centroid method 

(Barron 1992; Barron and Barret 1996; Jia et al. 1998), which interprets weights as 

defining the vertices of a simplex. For example, for two attributes the simplex is a 

straight line with coordinates (1,0) and (0,1). All points on this line have coordinate pairs 

whose sum is the unit value. Absence of knowledge about the weights is represented by a 

uniform probability density function on this line. The expected value of this distribution 

is the centroid of the line with coordinates (0.5, 0.5) and the values of this pair define the 

weights. Knowledge that the first attribute is more important than the second means that 

it should also receive a higher weight, therefore, we expect that 10.5 1w≤ ≤ . The 

expected value of the uniform probability density function over this interval is 0.75, 

therefore, 1 0.75w = , which implies in turn that the value for w2 is 0.25. Equation 4.9, 

where wk is the weight of the k-th dimension, generalizes this argument to n attributes. 

 1 1( ) ,    k 1,...,
n
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w ROC n
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4.4 Summary 

This chapter elevated similarity comparisons from the attribute level to the object level, 

by developing a comprehensive model for dealing with complex similarity constraints 

expressed through relational and Boolean operators (Table 4.2). Current implementations 

of complex similarity assessments that use standard fuzzy logic operators have 

limitations, especially for conjunctions and negations. Although disjunctions perform 

realistically with a fuzzy logic interpretation of the or-operator, negations require a 

traditional logic interpretation. On the other hand, conjunctions require a pluralistic 

approach. 
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 Section Methods for Similarity Comparisons 
Relational Operators 4.1 Eqn. 4.1 
Locally-Better Conjunction 4.2.1.1 Hierarchical Sorting 
Globally-Better Conjunction  4.2.1.2 Eqn.4.2 (Integral), Eqn. 4.3 (Separable) 
Multi-Valued Attributes 4.2.2.1 Eqn. 4.5 (Hungarian Algorithm and Eqn. 4.4) 
Composite Attributes 4.2.2.2 Eqn.4.2 (Integral), Eqn. 4.3 (Separable) 
Single-Attribute Disjunction 4.2.3 Eqn. 4.6 
Multi-Attribute Disjunction 4.2.4 Eqn. 4.7 
Negation 4.2.5 Eqn. 4.8 
Weight Specification 4.3 Eqn. 4.9 

Table 4.2:  The different types of constraint connectives, their corresponding chapter 

sections, and the recommended methods for similarity assessments with 

each type. 

Locally-better matching is useful for applications that demand absolute dominance of 

some constraints over others. Globally-better matching relies on a compensatory use of 

the and operator. The constraints can still be prioritized using weights, but all of the 

individual similarity estimates contribute to the final score. The theory for this type of 

conjunction was based on widely accepted psychological findings about similarity. The 

Euclidean aggregation function is appropriate for perceptually correlated attributes, 

whereas a Manhattan metric approximates more closely perceptually distinct properties. 

An interesting case of conjunction occurs when the aggregated terms refer to values of 

the same attribute. Such queries are possible in systems that allow storage of multi-valued 

attributes. A new set of methods was developed to support them. Weighting the 

constraints to reflect user preferences and goals constitutes an important component of 

the similarity process but the process may oftentimes be unintuitive. Ranked-weighting 

methods can address this problem because they rely on minimal user interaction and 

delegate the main computational details to the system. 
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CHAPTER 5 

SEMANTIC SIMILARITY AMONG SPATIAL SCENES 

This chapter extends similarity assessments to the scene level. Geographic scene-

matching problems present several variations depending on the types of the scene query 

and the underlying database (Section 5.1), as well as on the different kinds of results that 

are possible (Section 5.2). An explicit awareness of such parameters exposes the 

intricacies of the problem within a geographic context, but must also be complemented 

with a plausible rationale for obtaining similar results to a scene query (Sections 5.3 and 

5.4). The three key psychological principles (Section 2.2.2.6) that people: (1) match only 

sufficiently similar objects in a way that preserves the correspondences among relations 

(Figure 5.1a), (2) ignore entirely very dissimilar scenes (Figure 5.1b), and (3) choose 

among different solutions the one requiring the least amount of change (Figure 5.1c), can 

serve as loose guidelines for such a formalized rationale. 

Figure 5.1:  Psychological principles for spatial scene similarity assessments (Section 

2.2.2.6). 
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The interpretation of these principles in the context of scene retrieval and the 

incorporation of knowledge unique to the spatial domain drive the choice for a systematic 

computational methodology that is able to obtain reliable similar results to a spatial scene 

query (Section 5.5). The final part of this chapter (Section 5.6) concludes with a detailed 

example that demonstrates how the presented concepts and methods apply in a practical 

retrieval scenario. 

5.1 Spatial Scene Queries 

Retrieving similar configurations crosses the boundaries of many disciplines and has 

stimulated considerable research due to its numerous applications in such fields as 

computer vision (Ballard and Brown 1982), multimedia databases (Flickner et al. 1995), 

medicine (Petrakis and Faloutsos 1997), and biology (Wang et al. 2004). The hard 

combinatorial nature of the problem often implies that its solution requires not only the 

adoption of appropriate computational techniques, but also their fusion with domain or 

application-specific knowledge. The central question that arises in scene comparisons, 

one that is virtually irrelevant for simpler levels of representation, is how to associate 

parts of one scene with corresponding parts of another scene. Therefore, it is important to 

recognize what those parts are under a geographic setting, and what the principles are that 

should guide the correspondences amongst them. Aspects of geographic domain 

knowledge are also implicit in the form in which a spatial query is expressed, since 

different forms of input may suggest alternative distributions of significance to the 

various components, thereby affecting similarity. 

5.1.1 Types of Spatial Scene Queries 

Spatial scene queries can be roughly divided into two categories based on their form of 

input: (1) queries by expression, which the user constructs using the modalities provided 

by the system and (b) queries by selection, where the query is set equal to a selected 

database configuration (Figure 5.2). Queries by expression can be syntactic (Chamberlin 
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et al. 1976), sketched (Egenhofer 1996), or a combination of both (Calcinelli and 

Mainguenaud 1994; Di Loreto et al. 1996; Agouris et al. 1999). They can be formulated 

via an appropriate command-oriented language (Egenhofer 1994a), or a graphical user 

interface that facilitates sketching on the screen (Gross 1996; Haarslev and Wessel 

1997b; Blaser and Egenhofer 2000). Queries by selection, on the other hand, require 

minimal user intervention as users simply select a prototype scene and the system must 

retrieve other scenes that resemble it. This method of querying is popular in databases 

that contain collections of individual scenes (collection databases), such as image 

databases (Kelly et al. 1995), or databases of protein structures (Artymiuk et al. 1994). In 

the case of large continuous datasets (continuous databases), querying by selection could 

be carried out by selecting part of a map on the screen and requesting similar areas from 

the database. Current GISs, however, do not yet natively support such functions. 

Figure 5.2:  Forms of spatial scene queries. 

The various forms of spatial scene queries spawn different considerations for their 

processing. Syntactic queries contain an explicitly stated and precisely specified set of 

constraints. However, there could be relational constraints that are missing but implied, 

or the set of existing constraints might be logically inconsistent, thus describing an 
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impossible configuration. Such anomalies should be detected during a preprocessing 

stage. Sketch queries are inherently approximate, although sometimes they also contain 

precise constraints (e.g., through optional hand-written annotations). A feature unique to 

syntactic and sketched queries is their often-exploratory character, since they need not 

necessarily correspond to real-world scenes reconstructed from memory.  

Whereas queries by expression employ only a subset of the constraints that may be 

imposed, selection queries contain the exhaustive set of all possible constraints (i.e., each 

attribute value of objects and relations in the selected database scene becomes a 

constraint during selection). Considering all constraints might be undesirable, therefore, 

users should be able to shift the context of similarity to the dimensions of interest, either 

by appropriate weight allocation or by dismissing those constraints that are irrelevant for 

the purposes of the comparison. By definition, all selection queries correspond to real-

world configurations. 

5.1.2 Components of a Spatial Scene Query 

A spatial scene query comprises a number of objects, each with its own set of 

specifications. Furthermore, the objects must adhere to a certain structure, meaning that 

there may be several spatial (and potentially thematic) relations among them (i.e., Figure 

1.1); therefore, such a query has two major components: objects and relationships among 

the objects (Figure 1.2). The characteristics of the objects (e.g., their class or a geometric 

attribute) form a set of unary constraints, while those of the relations (e.g., the topology 

or distance) form a set of binary constraints on the pairs of objects. An exact match to 

such a scene query is then any database scene that simultaneously satisfies both sets of 

constraints. 

Typically, object constraints are specified by assigning an atomic value to an attribute 

(e.g., *class(house) or *area(300m2)). Cases of multivalued attributes are also possible. 

Spatial relational constraints are more complex, mainly for two reasons: (1) the lack of a 
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universally accepted representational scheme (Hernández 1994; Cohn and Hazarika 

2001) and (2) the availability of representational structures at various levels of detail. For 

example, a topological constraint between two objects could be defined as coarsely as a 

simple topological relation classifier (i.e., overlap or contains), or as comprehensively as 

the resolution of the representational formalism allows, containing also additional 

topological invariants (Egenhofer and Franzosa 1995; Clementini and di Felice 1998) and 

metric refinements (Shariff 1996; Egenhofer and Shariff 1998; Godoy and Rodriguez 

2002; Stefanidis et al. 2002; Nedas et al. in press) (Figure 5.3). Currently, all approaches 

in the literature that address geographic scene similarity deal exclusively with coarse 

spatial relations. For clarity of presentation, the examples in this chapter also use coarse 

relations; however, this issue is revisited in Section 5.4.2. 

Figure 5.3:  Representing a topological relation at progressively finer levels of detail. 

5.1.3 Formulating Spatial Scene Queries 

A spatial query can be formulated as a constraint satisfaction problem (CSP), (Kumar 

1992) which consists of: 

• A set of n variables 1 2, ,..., nV V V  that correspond to the objects appearing in the query. 
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• For each variable iV , a finite domain of N possible values 1 2{ , ,..., }i ND O O O=  that 

correspond to the objects in the database. 

• For each variable a k-tuple of k unary constraints 1 2( , ,..., )i i i kiP p p p= , where 

1 2, ,...,i i kip p p  are specific instantiations of the attributes 1 2, ,..., kp p p  for variable iV . 

If the database contains j attributes for each object and the domain of each attribute is 

1 2, ,..., jA A A , then iP  is a subset of an element of the Cartesian product 0
j
i iA=∏ , that 

is, 0,  j
i i jP x x A=⊆ ∈∏ . 

• For each pair of variables an m-tuple of m binary constraints 1 2( , ,..., )ij ij ij mijR r r r= , 

where 1 2, ,...,ij ij mijr r r  are specific instantiations of the properties 1 2, ,..., mr r r  of the 

relation between the variables iV  and jV . If the database contains l properties for each 

relation and the domain of each property is 1 2, ,..., lB B B , then Rij is a subset of an 

element of the Cartesian product 0
l
i iB=∏ , that is, 0,  l

ij i iR x x B=⊆ ∈∏ . 

A solution to the CSP is an assignment of values to variables (i.e., database objects to 

query objects) such that no constraint is violated. When no constraints exist on relations, 

the problem becomes conceptually identical to that of matching multi-valued attributes. 

In this case the CSP degenerates to the assignment problem, which can be solved with the 

methodology developed for multi-valued attributes (Section 4.2.2.1). In the general case, 

however, a different method is required that performs the matching in a manner that 

satisfies both the unary and the binary constraints. 

5.1.4 Representing a Spatial Scene as a Graph 

A scene CSP can be abstracted as an attributed pseudograph (Figure 5.4). Objects and 

binary relations in the scene are abstracted as nodes and edges of the graph, respectively. 

The edges of the graph are directed if non-symmetric relations, such as containment and 

direction, are modeled in the scene. Numerical or symbolic attribute values attached to 
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the loops correspond to properties of the objects, and those attached to the remaining 

edges correspond to properties of the binary relations. Adhering to the view of a singular 

relation that encapsulates all relational properties for an object pair, only one edge is 

drawn between two nodes. If a relation exists between any two objects in the original 

scene, then the resulting graph is complete and its number of m edges is equal to 

( 1) / 2n n⋅ −  (or ( 1)n n⋅ −  for directed relations), where n is the number of nodes. 

Figure 5.4:  Representation of a spatial scene as a complete labeled pseudograph (road 

networks were omitted to avoid clutter). Properties of objects and relations 

that become constraints are denoted with a color-coding scheme, which is 

reused in subsequent chapter figures. 

Graphs of spatial scenes can be automatically derived during a preprocessing stage. 

Although in some approaches this transformation is a prerequisite (Messmer and Bunke 

1995), the method that we outline can operate either on the graphs of the scenes, or on the 

scenes themselves. A graph abstraction is helpful, however, in revealing the nature of the 

scene-querying problem and the different types of solutions that are possible. 

5.2 Types of Solutions for a Scene Query 

To test for simple isomorphism between the graph representations of a query and of a 

database scene would be insufficient to determine if the two scenes are equivalent, 

because the identity of the nodes and edges of their graphs must also be identical. This 

requirement introduces the need for a constrained isomorphism testing between the query 
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and the database scene (Section 2.3.2). Even then, establishing a constrained 

isomorphism between compared graphs is of little value, since the graphs of two spatial 

scenes will rarely contain the same number of nodes. There might be objects in the query 

scene missing from the database scene, or the other way around. Several approaches 

attempt to compensate for this disparity by defining a distance measure between two 

graphs in terms of node or edge deletions, insertions, or substitutions required to make 

the graphs isomorphic. Such methods have little practical merit for spatial scenes unless 

the graph sizes differ only slightly. Hence, their effectiveness on collection databases is 

questionable and their application to large continuous datasets, where the number of 

objects in the query is trivial compared to the number of objects in the database (i.e., 

n N ), is difficult. 

In the general case, the graphs will contain a different number of nodes. A solution, 

therefore, is derived by a constrained subgraph isomorphism, not a constrained graph 

isomorphism. The objective is to match corresponding substructures of the two graphs, 

rather than match the graphs in their entirety. Depending on how such substructures align 

with one another, three types of solutions can be distinguished with respect to their 

completeness to a scene query: 

• A subgraph 'H  of the database graph H  is isomorphic to the query graph G . In this 

scenario, 'H  constitutes a complete solution, because all query objects and relations 

have a counterpart in the database (Figure 5.5a). It is likely—especially for large 

continuous databases—to have several complete solutions, meaning that there exist 

multiple proper subgraphs of H  isomorphic to G . However, if 'H  is not a proper 

subgraph (i.e., if 'H H= ) then 'H is also the only complete solution. Obviously, 

having two isomorphic graphs is just a special case of the general problem. 

• A subgraph 'H  of the data graph H  is isomorphic to a proper subgraph 'G  of the 

query graph G . In this case, 'H  is an incomplete solution to G , because the solution 



 143

matches only a subset of the queried configuration (Figure 5.5b). As for the case of 

Figure 5.5a, there could be more than one incomplete solutions and if 'H H= , then 

'H  is the only incomplete solution (Figure 5.5c). 

• No subgraph 'H  of the data graph H  is isomorphic to any subgraph 'G  of the query 

graph G , therefore, no solution exists (Figure 5.5d). This last scenario is more likely 

to occur in collection databases. 

Figure 5.5:  Complete and incomplete solutions to spatial scene queries. 

Performing a constrained subgraph isomorphism yields solutions—whether complete 

or incomplete—that require an exact match between the corresponding objects and 

relations. In realistic scenarios, the approximate nature of spatial queries and the 

abundance of combined constraints make the existence of exact solutions unlikely. 

Therefore, it is desirable to relax some of the initial constraints in order to permit 

additional acceptable value combinations so as to retrieve similar results. The relaxation 

implies an error-tolerant subgraph isomorphism as well as a method for measuring the 

deviation (i.e., dissimilarity) from the ideal solution (i.e., the original CSP prior to 

constraint relaxation). Such methods are provided by the algorithms developed in 

Chapters 3 and 4. 
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Relaxing the constraints produces a weaker version of the original problem, which is 

known as partial constraint satisfaction problem (PCSP) (Freuder and Wallace 1992). 

The relaxation means that the original problem P is modified to a different problem 'P  

such that the set of solutions to P is a proper subset of the set of solutions to 'P . The new 

set will contain some additional approximate (or partial2) solutions, which can be ranked 

according to their similarity from the exact ones. Exact and approximate solutions could 

both be complete or incomplete (Figure 5.6). 

Figure 5.6:  Types of solutions to a relaxed CSP: (a) exact and complete, (b) exact and 

incomplete, (c) partial and complete, and (d) partial and incomplete. 

5.3 Types of Retrieval 

An entirely unconstrained version of the relaxed problem 'P  (i.e. setting each constraint 

to equal its domain) would require generating all n-permutations for a query and a data 

scene of n and N objects respectively. Such a brute-force approach would need to 

                                                 

2 The term partial, referring to constraints or solutions, should be taken as synonymous to inexact or 

approximate, not to be confused with the term incomplete, which was reserved to refer to solutions that 

valuate only a subset of the query variables 
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consider !/( )!N N n−  different valuations and assess the similarity of each to the ideal 

solution. For any practical application, exhaustive searches of this kind fail to complete 

within a reasonable amount of time. For instance, for a relatively small geographic 

dataset of 1,000 objects and a moderate size query of 5 objects, 1399 10⋅  solutions would 

need to be tested. To ensure retrieval within realistic time bounds, the extent of relaxation 

must be controlled through thresholds, which define what objects and relations of the 

database scene can be matched to those of the query scene. 

A global threshold T applies to the whole scene and represents the maximum 

acceptable dissimilarity of a result to the query scene. A database scene is considered a 

solution if its global dissimilarity D to the query scene is less than or equal to T and 

rejected otherwise. Local thresholds, on the other hand, can be imposed either at the 

component level (i.e., individual objects or relations) or at the attribute level (i.e., 

individual constraints on each object or each relation). They are defined as component-

local and constraint-local thresholds and denoted with t and τ, respectively. For a 

component-local threshold, an association between a pair i of objects or relations is valid 

if the dissimilarity di (Equations 4.2 and 4.3) of that pair is less than or equal to ti. For a 

constraint-local threshold, an association between a pair i of objects or relations is valid if 

the dissimilarity δj (Equations 3.2-3.5 and 3.8-3.10) of each individual constraint j on this 

pair is less than or equal to τj. Alternatively, we say that the association partially violates 

(or satisfies) the constraints. The dissimilarity value δj determines the degree of 

satisfaction for each constraint j. If δj> τj, a constraint is totally violated. A solution is 

acceptable if none of the individual constraints is totally violated and rejected otherwise. 

Obviously, if there is only one constraint on an object or a relation then d = δ and t = τ, 

and if the scene consists of a single object then D = d and T = t. 

Deciding on the usage of a particular type of threshold has different repercussions on 

the efficiency and the semantics of the retrieval. A global threshold corresponds to a soft 

retrieval strategy, which finds solutions that are on average good. However, it is prone to 
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creating a few locally weak matches that make little sense, but whose effect on the global 

similarity score is insufficient to prevent such discrepancies from occurring. In this sense, 

it defies the first three psychological findings about how people perform scene similarity 

assessments (Section 2.2.2.6), which imply that: (1) the quality of local matches between 

individual pairs of objects and relations is more important than that of a global scene 

match that is highly similar on the average, but contains a few weak object associations 

or relationship correspondences (Figure 5.1a), and (2) unlikely solutions that create 

absurd object associations and relationship correspondences need not be considered and 

should be excluded from assessment early (Figure 5.1b). In terms of performance, a soft 

retrieval type also suffers, because all different solutions need to become partially 

instantiated in order to decide whether they should be rejected or not. In general, 

processing time increases with higher values for T and as the number of constraints in the 

query increases. 

Using only local thresholds, on the other hand, corresponds to a hard retrieval 

strategy. A solution must then satisfy, either partially or totally, every individual 

constraint. If a single constraint is totally violated the solution is rejected. Hard retrieval 

on a relaxed CSP possesses several desirable properties: (1) it approximates human 

perception of similar scenes, because it maintains high quality local-matches consistently 

throughout the entire configuration (Figure 5.1a and b); (2) all local constraints could be 

automatically relaxed by the system and translated in the form of range queries, on the 

precondition that users simply input the number of desired candidate matches for each 

object or relation (Schumacher and Bergmann 2000), a property, which relieves uses 

from the burden of manually specifying multiple thresholds; and (3) it guarantees a 

considerably more efficient query processing, because the DBMS can exploit database 

indexes to execute the range queries faster and the search space for each variable is 

pruned significantly. 
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5.4 Relaxation 

The semantic and computational benefits of local thresholds come at the expense of a 

very strict retrieval policy that will reject a solution, if a single constraint threshold is 

slightly exceeded. Therefore, a hard retrieval strategy must also be complemented with a 

rationale that prevents arbitrary choices during the relaxation of the initial constraints. 

Since some alternatives may compromise the quality of the retrieval by producing results 

that deviate from the intentions and meaning of the original query and others might 

practically trivialize the problem by allowing thousands of new solutions, such a rationale 

must incorporate aspects of spatial domain knowledge, as they relate to spatial objects 

and relations. 

5.4.1 Relaxation for Spatial Objects 

Constraints that are more significant should be relaxed less than others in order to 

preserve the quality of the results. Among object-specific constraints, the class is the 

central element of an object’s identity and a primary characteristic, since it conveys 

information about the possible attributes, parts, and functions of the object. The 

diagnostic effect of classes in object categorization is the highest among all object 

features (Tversky 1977). Therefore, when class constraints are present they should be 

relaxed conservatively compared to constraints on the remaining properties of objects. 

Failure to do so may produce incongruous matches (Figure 5.7). 

Figure 5.7:  A low quality result produced by assigning the same significance to the 

class and the geometric attributes of the objects. 

 



 148

Establishing the relative significance among other attribute types of an object or 

properties of a relation, depends largely on the form of a spatial query. Sketched objects 

are typically crude approximations of their real-world counterpart, consisting mainly of 

simple boxes and lines. Furthermore, when sketching real scenes, people fail at capturing 

the metric relations between objects accurately, but are better at preserving the 

topological and directional structure (although this can be partially attributed to the 

dominance of the disjoint relation) (Blaser 2000). An automated transformation of a 

freehand sketch to a partial CSP should consider such evidence and take corrective action 

by relaxing object geometries and metric relations more than other constraints (Figure 

5.7). 

Another distinction with possible ties to significance is between explicit and implicit 

constraints. For instance, the syntactic statements in the query of Figure 5.2a introduce 

explicit constraints, but the missing relation , ,A inside C< >  is implicit. Similarly, in the 

sketch query of Figure 5.2b, the metric relation between the bakery and the station is 

explicit, in contrast to the other metric relations whose quantitative properties have to be 

extracted by the system. Choosing to assign more detail to a subset of the objects or 

relations in a query implies a pronounced interest in those components. 

5.4.2 Relaxation for Spatial Relations 

Spatial relations distinguish the relative placement of objects in the embedding space. 

Excluding topological relations, which are inherently qualitative, directional and metric 

relations can be expressed either in the quantitative or in the qualitative realm. The 

relaxation of quantitative distance and angle relations can be treated in the same way as 

ratio and cyclic attributes, respectively. The deviation from the initial values can be 

delimited by specifying an amount of change that the relaxed values should not exceed 

(i.e., a maximum allowed percentage of fluctuation), or by entering a desired number of k 

to-be-retrieved matches and let the system infer the extent of relaxation (Schumacher and 
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Bergmann 2000). The only difference is that, in order to define the value domain of such 

relations, an exhaustive database search must first be performed to determine all 

( 1)N N⋅ −  relations between the distinct object pairs. 

Oftentimes, however, qualitative relations are required in a scene similarity 

assessment (e.g., a map or image without scale and orientation, or a sketch query). Such 

relations are graphically organized in terms of their conceptual neighborhoods based on 

the gradual changes required to derive one set of relations from another (Freksa 1991; 

Egenhofer and Mark 1995a). The concept of gradual change originates from the gradual 

deformation of objects until the spatial relation between them is changed. Conceptual 

neighborhoods allow measuring similarity between two spatial relations as a function of 

the length of the shortest path that joins them along the graph. If the shortest path has one 

edge then the relations are 1st degree neighbors, if it has two edges then they are 2nd 

degree neighbors, and so forth. Hence, the process of relaxing a qualitative binary 

constraint (relation) consists simply of gradually expanding its domain with its n-degree 

neighbors, where n is determined by the desired amount of relaxation. 

Despite their simplicity and intuitive appeal, coarse topological and directional 

qualitative models have characteristics that render them unsuitable for a coherent 

relaxation of relational constraints. Choosing to represent relations in a continuous space 

with a number of discrete equivalence classes introduces two fundamental problems for 

scene similarity assessments. The first problem arises out of the implicit assumption of an 

equi-distance step between adjacent classes in the conceptual neighborhood graph. 

Because of this assumption, the relaxed version of an original constraint may dismiss 

potentially good matches, while introducing weak ones (Figure 5.8a). The second 

problem is inability to distinguish among members of the same class. As a result, all 

relations within the same category are considered equally similar (Figure 5.8b). 
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Figure 5.8:  Problems of coarse topological relations for scene similarity assessments: 

(a) reasoning for similarity based on distances in a conceptual graph may 

exclude highly similar matches in favor of others that are less similar and 

(b) the inability to discriminate among members of the same class treats 

relations, for which people may have distinct mental images, as equally 

similar. 

These problems persist even if one substitutes coarse relations with their detailed 

counterparts in the relaxation process. Detailed representations of topological relations 

rely on a number of invariants in order to establish topological equivalence, and assign a 

number of properties to each intersection component between interiors and boundaries of 

the objects (Egenhofer and Franzosa 1995; Clementini and di Felice 1998); therefore, the 

equi-distance assumption is only transposed at a finer level of detail and the lack of 

discrimination between topologically-equivalent relations persists. In fact, one may argue 

that employing detailed relations makes matters worse. Establishing a reliable relaxation 

process for them is a largely unintuitive and complex task, and it is questionable if there 

is value in relaxing constraints at such a fine level of granularity (i.e., if any additional 

matches will result out of the relaxation). Furthermore, detailed relations have 

performance ramifications because they largely increase the computational cost for 

similarity assessments between relations. 
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The difficulties associated with the coarse and detailed formalisms for spatial 

relations can be overcome by employing a representational scheme that comprises a 

number of semi-qualitative metrics. These measures are more appropriate for the 

relaxation of qualitative relational constraints because they are continuous. The core 

notion behind them is that of a normalized distance or angle. The normalization of these 

quantities can be achieved in numerous ways. For example, the distance between the 

centroids of the objects’ MBRs could be divided by the total area of the MBRs; or the 

distance between the boundaries of the objects’ could be divided with their perimeter. 

Therefore, one talks about a family of metrics because multiple measures are possible. 

Choosing the quantities to be normalized and those that they should be normalized by, 

are important choices that instill different qualities and weaknesses in the produced 

measures. Several research efforts have recently tried to introduce such measures, albeit 

with mixed success (Egenhofer and Shariff 1998; Goyal and Egenhofer 2001; Godoy and 

Rodriguez 2002; Stefanidis et al. 2002; Nedas et al. in press). For instance, some studies 

assume a-priori knowledge of the objects’ identities, while others require that the two 

scenes contain the same number of objects or that the objects are of the same type (i.e., 

lines or regions). 

The different assumptions underlying these approaches inflict different restrictions on 

the applicability of the qualitative metrics that they advocate. Deriving such metrics is 

beyond the scope of this thesis. However, it is relevant to provide a list of requirements 

that a family of such measures must comply with, in order to be useful for the purposes of 

constraint relaxation of spatial relations for scene similarity assessments. This list 

comprises five orthogonal preconditions: continuity, scale-invariance, object identity-

invariance, universality, and minimality. The first two requirements are obvious, since 

continuity is the reason for introducing these measures in the first place, and scale-

invariance is an indispensable characteristic for qualitative representations (Lindeberg 

1993). Object identity-invariance implies that the choice of a reference object should be 
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immaterial for any relation between two objects. In other words, a different labeling of 

the objects should not change the measure that describes their relation. This precondition 

is necessary because in the general case of scene similarity queries there is no a-priori 

knowledge about the correspondences between objects of different scenes. Universality 

means that a measure must not be tied to any specific coarse topological or directional 

relation but apply to the full spectrum of relations to which it serves as a surrogate. The 

last requirement of minimality pertains to efficiency. A family of qualitative metrics 

should achieve the maximum descriptive ability with the fewest possible measures. 

The importance of qualitative metrics for similarity purposes can be conceived by 

considering that, on average, over 95% of the topological relations in spatial datasets of 

normal density are disjoint. For such relations, these metrics are the only viable 

alternative for making similarity judgments. Qualitative metrics, however, should 

complement rather than replace models based on conceptual neighborhoods because in 

some cases the employment of the former might be impossible (e.g., Figure 5.2a). 

Furthermore, since similarity is goal-dependent, the user might insist that the similarity of 

relations is determined strictly with respect to topology. 

5.5 Query Execution 

The relaxation process creates a weaker version of the original CSP (i.e., a PCSP). A 

methodology that identifies and extracts subgraphs of the database scene, which are 

constrained isomorphic to the graph representation of the PCSP, yields a set of similar 

solutions to the original CSP. The most elegant approach to solving the common 

subgraph problem is by extracting the maximal cliques of an association graph (Bomze et 

al. 1999). 
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5.5.1 Query Preprocessing 

Before executing a spatial scene query, all relational constraints that are missing but 

implied must become explicit (e.g., Figure 5.2a). This process achieves better efficiency 

because it prunes the search space for the implicit relations and does not have to consider 

their entire domain. It also helps with the early detection of logically inconsistent queries 

that correspond to impossible configurations. The explication of implicit relations can be 

automated with composition tables, which encode the possible spatial relations between 

two variables Vi,Vj given the relations between variables Vi,Vk and Vk,Vj. Composition 

tables exist for topological relations (Egenhofer and Sharma 1993; Egenhofer 1994b), 

directional relations (Papadias and Egenhofer 1996), and combinations of directional and 

distance relations (Papadias et al. 1999b). 

5.5.2 Creating the Association Graph and Extracting the Maximal Cliques 

The solutions to a scene query can be given by extracting the maximal cliques of an 

association graph. An association graph (Ambler et al. 1973) captures the mutual 

dependencies between two relational structures. For a query graph G  with node set 

1( ,..., )nv v  and a database graph H  with node set 1( ,..., )Nu u  the nodes and edges of their 

association graph are created in two distinct steps, as follows: during the first step, a node 

of the association graph is created for each compatible pair of nodes between G and H. 

Specifically, if a node uj of the database graph satisfies the relaxed unary constraints of a 

node vi in the query graph, then an association graph node aij = (vi ,uj) is created to register 

this possible correspondence. During the second step, the edges of the association graph 

are generated by joining nodes that have compatible relations; that is, an edge is inserted 

between nodes aij and akl of the association graph if the relationship between nodes uj and 

ul of the database graph satisfies the relaxed binary constraints explicated by the 

relationship between nodes vi and vk of the query graph. 
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Given the way that the association graph was constructed, the notions of complete 

solution and incomplete solution coincide with those of maximum clique and maximal 

clique (Section 2.3.2), respectively. Simple cliques amount to redundant solutions, that 

is, they are incomplete solutions already encapsulated within a larger complete or 

incomplete solution. The traversal of the association graph and the extraction of the 

maximal cliques can be done by clique-enumerating algorithms (Bron and Kerbosch 

1973; Loukakis and Tsouros 1981; Tomita et al. 1988). 

5.5.3 Post-Processing of Results 

The stage of post-processing consists of evaluating the similarity of each retrieved scene 

to the query, filtering the results, and presenting the final set of solutions to the user. 

5.5.3.1 Component Similarity 

The association graph, which was obtained for the graphs of the relaxed scene query and 

the database scene, is transformed into a weighted association graph by attaching a 

dissimilarity score to each node and each edge. The value at each node ( , )i jV O  

represents the dissimilarity of object jO  of the database scene, with respect to object 

(variable) iV  of the query scene, whereas the value at each edge (( , ), ( , ))i k j lV O V O  

represents the dissimilarity of the relation ( , )k lO O  in the database scene, with respect to 

the relation ( , )i jV V  in the query scene. Since both relations and objects are modeled as 

tuples that contain several attribute values (i.e., their constraints), the similarity scores at 

each node and edge are calculated by performing the following steps: (1) For each 

attribute-level constraint a dissimilarity measure is calculated by the algorithms that were 

developed in Chapter 3. (2) The aggregation of the attribute-level dissimilarities yields 

the overall dissimilarity for a pair of objects or relations (Equation 4.3). This step takes 

into consideration the weights specified on constraints at the attribute level. Groups of 

integral attributes are also combined to form separable attributes before being aggregated 
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(Equation 4.2). (3) The dissimilarities for each pair of matched elements are converted to 

perceived similarities using either of Equations 2.1b-c. 

The object similarity component SObj between the matched substructures of two spatial 

scenes is calculated based on the similarities of all their associated object pairs as 

described by the labeled nodes of the maximal clique of the scenes in the weighted 

association graph (Equation 5.1). 
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where: 
iOs  : Object similarity of an associated object pair i   

  
iOw  : Weight of the query object in the i th associated object pair 

  M  : Number of associated object pairs (matched objects) 

The relational similarity component SRel between the matched substructures of two 

spatial scenes is computed based on the similarities of their corresponding binary 

relations, as described by the labeled edges of the maximal clique of the scenes in the 

weighted association graph (Equation 5.2). 
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where: 
iRs  : Relational similarity of an associated pair i of binary relations 

  
iRw  : Weight of the query relation in the i th associated relation pair 

  M  : Number of associated object pairs (matched objects) 

The weights 
iOw and 

iRw are global weights on each object and relation of the query, 

respectively, which should not be confused with attribute-level weights that apply to a 
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particular property of an object or a relation. Due to their dependency on algorithms 

operating at the attribute level, the measures SObj and SRel are not always symmetric, but 

depend on the order of the scenes in the assessment. 

5.5.3.2 Scene Completeness 

Each non-maximum maximal clique of the association graph corresponds to an 

incomplete solution that matches only a subset of the query objects. Under typical 

retrieval circumstances, the objects that remain unmatched should inflict a penalty to the 

incomplete scene’s similarity score, which implies a reduced similarity value for that 

scene. The specification of this penalty is the purpose of the scene completeness 

parameter, which is analogous to the value completeness measure for multivalued 

attributes (Section 4.2.2.1) based on the ratio contrast model (Tversky 1977). The scene 

completeness ( , )Comp db qS , a directed measure that operates at the scene level, is a function 

of the matched (i.e., common) and unmatched (i.e., different) objects for two scenes, 

taking values between 0 and 1. Its value should be interpreted as the similarity of the 

database scene to the query scene with respect to completeness. The assessment of this 

type of similarity depends only on the existence or absence of corresponding object pairs 

and is invariant under all other parameters. The simpler approach considers each object in 

the query scene of equal importance (Equation 5.3a), whereas a more elaborate version 

considers the weight assigned to each object (Equation 5.3b). 
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 where:  M  : Number of matched objects     

   n  : Number of objects in the query scene   

   N  : Number of objects in the database scene   

   α  : The weight of the set of unmatched query objects  

   β  : The weight of the set of unmatched database objects 

   
iOw  : The weight of the i-th matched query object  

   
jOw  : The weight of the j-th unmatched query object 

This scene completeness measure is an extension of Blaser’s (2000) measure. By 

explicitly accounting for the effect of unmatched objects in both scenes, Equations 5.3a 

and 5.3b embed more flexibility and expressive power to the scene completeness 

measure, allowing it to capture different retrieval objectives through the adjustment of 

weights α and β. Three cases are of special interest: 

• 1α β= = : setting both weights to 1, results in a strict penalty for scene similarity 

with respect to completeness. The completeness of one scene to another relies not 

only on the matched objects, but also on the symmetric difference of the sets of 

unmatched objects. In this case, scene completeness behaves symmetrically. Such an 

assignment is useful when comparing scenes of approximately equal cardinality and 

the interest is distributed evenly on elements that match, as well as those that are 

different in both scenes (e.g., two aerial photographs of the same area, taken at 

different dates). 

• 0α β= = : setting both of these weights to 0 results in no penalty for completeness. 

This weight specification makes scene completeness symmetric, yielding 1 if pairs of 

matched objects exist and 0 otherwise. The similarity of the scenes depends only on 

the similarity of the corresponding elements in the matched substructures. 

• 1,  0α β= = : the penalty for completeness depends only on the unmatched query 

objects. This weight assignment reflects the purpose of the most typical retrieval 
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scenario, which occurs when trying to locate a sub-scene in the database that matches 

best the query (e.g., a sketched query against a large continuous database). The 

interest is shifted to matched and unmatched query objects, but the unmatched objects 

in the database scene are ignored. In this case, the measure produces asymmetric 

values, depending on what scene becomes the query and what scene is the target. 

5.5.3.3 Scene Similarity 

The similarity between two scenes is called scene similarity. For a query and a database 

scene, the similarity of their matched substructures 'SceneS  is computed as the weighted 

and averaged sum of the relational and the object components (Equation 5.4). The final 

scene similarity SceneS  between the query and the database scenes incorporates the 

completeness correction (Equation 5.5). 
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 ( , ) ( , )' ( ( 1) 1)Scene db qry Scene db qry Comp CompS S w S= ⋅ ⋅ − +  (5.5) 

where:  Objw  : Weight of the object similarity component   

   Relw  : Weight of the relational similarity component  

   Compw  : Weight of the scene completeness parameter 

The scene completeness has a limiting effect on the scene similarity: if the weight of 

the scene completeness is 1, then the scene similarity cannot exceed the value of the 

scene completeness. The weight for the completeness should not be confused with 

weights α and β of Equation 5.3. The latter determine the type of completeness (i.e., what 

is meant by completeness) whereas the weight Compw  in Equation 5.5 specifies the effect 

of the chosen completeness type on the scene similarity score. 
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The weights of the object and relation similarity components allow an easy 

adjustment of the contribution of each parameter to the scene similarity. A simpler way to 

calculate the similarity of the solutions and to rank them might be to add up the similarity 

scores for each maximal clique in the weighted association graph. The maximum-weight 

clique would then represent the best match. The similarity of the relations, however, 

would then dominate the scene similarity score for larger cliques, because for n objects 

there are ( 1) / 2n n⋅ −  undirected or ( 1)n n⋅ −  directed relations. In fact, this method of 

deriving the scores is just a special case of Equation 5.4 and its equivalent normalized 

case can be reproduced by specific values for the weights wObj and wRel (i.e., for wObj = n 

and wRel = m, with n and m being the number of objects and relations, respectively, in the 

query scene). Although it has been unequivocally established that both object and 

relational similarity contribute to the scene similarity score (Dubitzky et al. 1993; 

Goldstone 1994a), further research is required to determine the appropriate weight 

distribution for these two components. 

Applying all calculations involved in Equations 5.1 to 5.5 for each maximal clique of 

the association graph produces a set of results that are ranked according to their similarity 

to the original scene query. 

5.5.3.4 Filtering and Presentation 

Each of the ranked results represents a spatial scene. In a GIS environment, these scenes 

should typically be retrieved in visual form (e.g., by zooming in the part of the map that 

contains the match or returning the matched sub-scene in a new window). An artifact of 

the algorithmic approach to the scene retrieval problem is that, occasionally, what seems 

for the user to be the same scene is retrieved as two or more different solutions. This 

peculiarity occurs when the same subset of database scene objects are assigned 

differently to the query objects (Figure 5.9). Although mathematically justified, the 

multiple retrieval of the same scene would be redundant for the purposes of visual 
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inspection and analysis of the results, because users care for the combinations rather than 

the permutations of the matched objects. In such cases, only the solution that yields the 

maximum similarity score should be retained, as the criterion of minimal change purports 

(Figure 5.1c). 

Figure 5.9:  Two algorithmically different solutions (i.e., different assignments of 

database objects to query objects) to a scene query may be perceived from 

the users as a double retrieval of the same scene. 

Another feature unique to the clique approach is that for a query of n objects, all 

incomplete solutions with n-1 to 1 objects will be retrieved. The number of incomplete 

solutions is likely to increase as the number of matched objects decreases. To avoid 

presenting an overwhelming amount of results, or results of little value such as single 

object matches, the set of solutions may be filtered to include only maximal cliques (i.e., 

solutions) that exceed a certain size. Such a threshold may be specified as a percentage of 

the size of the maximum clique ω(A) of the association graph A. An additional filtering 

option consists of returning only solutions whose scene similarity exceeds some 

similarity value S. Such a threshold, however, is not related to the process of constraint 

relaxation; it is simply cosmetic and serves presentation purposes. 

5.6 An Example of Processing a Spatial Scene Query 

To demonstrate how the concepts and methods of this chapter apply to a practical scene 

retrieval scenario, consider the example of the spatial scene query of Figure 5.10. The 
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database scene represents part of the campus of the University of Maine. The solutions to 

the CSP that corresponds to the user’s query can be extracted as the maximal cliques of 

an association graph, which is formed by comparing the respective constraints between 

the query and the database scene. These solutions, which can be complete or incomplete, 

are the subgraph isomorphisms between the query graph and the database graph. 

The construction of the association graph starts by selecting an arbitrary object in the 

query scene, for instance, X, and finding objects in the data scene that are compatible. 

Object X is an academic building; therefore, it can be matched with objects A, I, E, and N 

of the data scene that are also academic buildings. Thus, nodes ( , ), ( , ), ( , )X A X I X E  and 

( , )X N  of the association graph are generated. The rest of the nodes are created 

accordingly, by matching variables Y and Z of the query scene with all objects of the data 

scene that are faculty parking lots and resident parking lots, respectively. To insert the 

edges of the association graph, all node pairs are examined sequentially. Nodes ( , )Y G  

and ( , )X A  should not become adjacent, because Y meets X, whereas G is disjoint from 

A. However, nodes ( , )Y G  and ( , )Z H  should be joined by an edge, because the relation 

between Y and Z is the same as the relation between G and H (i.e., meets). The only pairs 

of nodes that are a priori excluded from this process are those that include the same 

variable in both nodes of the pair. For instance, the pair (( , ), ( , ))X E X A  need not be 

examined at all, because variable X cannot correspond to objects E and A simultaneously. 

Differently expressed, the uniqueness requirement prevents solutions that assign multiple 

objects to one variable. Continuing this process for all nodes completes the creation of 

the association graph. 



 162

Figure 5.10:  Solving a CSP by creating the association graph for a query and a database 

scene and extracting the solutions. 

Maximum-maximal cliques in this graph correspond to complete solutions, maximal 

but not maximum cliques to incomplete solutions, while simple cliques correspond to 

redundant incomplete solutions already embedded into a larger solution. For example, the 

clique {( , ), ( , )}X I Y G  is a redundant solution, because it is already contained within the 

maximum clique {( , ), ( , ), ( , )}X I Y G Z H . The latter is the only complete solution, 

yielding the object assignment ( , , )I G H  to variables ,X Y  and Z, respectively. The graph 

also contains two maximal cliques of size 2 and six maximal cliques of size 1, all of 

which constitute assignments that yield incomplete solutions. 

The solutions to the original query, whether complete or incomplete, are all exact. To 

retrieve similar results, a relaxed version of the original CSP (Figure 5.6) must be 

generated by weakening the original constraints. The solutions to the relaxed version of 

the CSP (i.e., the PCSP) are obtained in exactly the same manner as those for the original 
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query, that is, by extracting the maximal cliques of an association graph. The nodes and 

edges of the new association graph, however, are formed this time with respect to the 

relaxed constraints. The extraction of the maximal cliques for the PCSP is equivalent to 

obtaining a set of approximate solutions to the original CSP, which also includes 

incidental exact matches. An arbitrary relaxation policy that relies on 1st neighbors of the 

coarse topological relations and enlarges the domain of the objects’ class constraints 

degrades the speed of the retrieval by creating a complex association graph, as well as the 

quality of the results by retrieving many irrelevant solutions (Figure 5.11). 

Figure 5.11:  Costs on efficiency and quality introduced by a careless relaxation. 

These problems are alleviated if the original topological constraints are substituted 

with semi-qualitative metrics and the class constraints are not relaxed (Figure 5.12). For 

example, the original meet constraint on the relation of object X to object Y is substituted 

with a normalized distance of 0, which is then relaxed to allow matches with database 

distance relations in the range (0, 0.15). In addition to the exact complete solution 

{( , ), ( , ), ( , )}X I Y G Z H  in Figure 5.10, the solutions to this PCSP include two more 

complete, but approximate solutions, which are {( , ), ( , ), ( , )}X E Y F Z L  and 
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{( , ), ( , ), ( , )}X N Y P Z Q . There are four incomplete solutions, two of them being exact and 

two being approximate. 

As the example demonstrates, the combination of quantitative or qualitative distance 

and object constraints is likely to return solutions that form local structures in the 

database scene. Such local structures correspond to disjoint components in the association 

graph (Figure 5.12). Hence, further efficiency can be achieved by operating an 

enumerating clique algorithm independently on each of these components, rather than on 

a larger graph consisting of a single connected component (Figure 5.11). 

Figure 5.12:  Creating the association graph for a relaxed query and a database scene 

and extracting the solutions. 
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Solutions of little value, such as single-object matches (i.e., isolated nodes in the 

association graph) may now be discarded by applying a filter as a percentage of the nodes 

of the maximum clique. For example, a filter of 0.6 ( )Aω> ⋅  for Figure 5.12 omits from 

the results all maximal cliques consisting of a single node, thus eliminating node 

{( , )}Z M . The dissimilarities to the ideal values at each node and edge are converted to 

similarities by a non-linear monotonically-decreasing function (Equations 2.1b-c), thus 

transforming the association graph to a weighted association graph (Figure 5.13). By 

applying the sequence of Equations 5.1 to 5.5 on each maximal clique of the resulting 

graph, a scene similarity score is assigned to each maximal clique, and the results can be 

ranked and presented to the user. 

Figure 5.13:  The calculation of the similarities between objects and relations 

transforms the association graph into a weighted association graph.  

5.7 Summary 

The often-exploratory character of a spatial query and the approximate expressions that it 

may take combined with the relatively large number of constraints that exist in it 

diminish the possibilities of retrieving exact matches. Whereas similarity retrieval at the 

level of attribute values and objects may be considered a welcome enhancement to 

current spatial information systems, similarity at the level of a scene becomes imperative. 

 



 166

Thus, the initial constraints should be seen as ideal starting points that should be 

approximated by some measure. Approximating is tantamount to relaxing the original 

constraints, thus substituting the original problem with a weaker version of it. Relaxation 

is a critical part of the solving process because it affects the efficiency of the retrieval and 

the quality of the solutions. Performing the relaxation is not simply a matter of expanding 

the set of acceptable attribute values to a constraint but requires the aggregation of a 

variety of knowledge specific to the spatial domain. Such knowledge can be captured by 

deciding on the relative importance of constraints based on the form of the query and by 

considering what spatial relations to employ in order to create a weaker version of the 

original problem. Solving the weaker problem yields a number of complete and 

incomplete solutions that may be exact or similar matches to the initial query. The 

solution process consists of extracting the maximal cliques of an association graph. The 

latter is constructed by matching objects and relations of the database scene, whose 

properties satisfy the relaxed constraints of the query scene. Each solution is assigned a 

similarity score based on the similarity of the matched relations and objects. Incomplete 

solutions are optionally penalized for their lack of completeness. Further filtering of the 

results is also possible based on several criteria. The maximal clique approach establishes 

the best possible correspondence between the inherent conceptual nature of the problem 

and its practical implementation and does not rely on simplifying assumptions that may 

restrict its applicability. 
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CHAPTER 6 

MODEL EVALUATION 

The hypothesis of this thesis stated that a psychologically compliant approach to 

similarity yields a set of results, in the relevant portion of the ranking list, dissimilar to 

that obtained by other commonly used methods. In this context, a psychologically 

compliant method produces the set of results that is consistent with people’s judgments of 

similarity and, therefore, desirable. Any deviation from such an approach distorts this set. 

To evaluate the hypothesis we implemented SASA (Sensitivity Analyzer for Similarity 

Assessments), a software prototype used as a test bed for the examination of different 

processing strategies for an exhaustive set of similarity queries. Section 6.1 explains and 

justifies the measures chosen to evaluate the incompatibility between two result sets. 

Section 6.2 gives the general overview of the approach. Sections 6.3 and 6.4 describe the 

characteristics of the experiments aiming at object and scene-level similarity assessments, 

respectively, and discuss their results. Section 6.5 summarizes the findings of this study 

and concludes with the verdict on the hypothesis. 

6.1 Measures of Incompatibility 

There exist several approaches to compute the deviations between two ranking lists 

(Mosteller and Rourke 1973; Gibbons 1996). Most rely on statistical tests, which 

consider the entire range of the lists. An evaluation of ranking lists produced from 

database queries or web search queries is different, however. The focus here is only on 

the first few ranks, because the relevance of retrieved items decreases rapidly for lower 

ranks. For the experiments in this study, the relevant portion of the ranking list was 

defined as that, which comprises the ten best results. This decision was partially based on 

the experimental outcomes that people retain no more than five to nine items in short 

term memory (Miller 1956). The rule of 7 +/- 2 items refers to unidimensional stimuli; 
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therefore, people are expected to be able to retain this number of results in short term 

memory only for very simple queries. This decision was also based on the typical 

strategy of current web-search engines, which present ten items per page, starting from 

the most relevant. Therefore, the set of the ten best results is not only easy to browse and 

inspect, but also convenient in the sense that users can memorize it to a large degree and 

perform swift comparative judgments about the relevance of each match to their query. 

As the database size grows, the ranks of the ten best results are determined based on 

finer differences of their similarity values. If one also considers that psychologically 

compliant methods approximate better, but do not necessarily model human perception 

exactly, then a measure of incompatibility that relies only on rank differences would be 

strict. A more practical and objective indicator of the incompatibility between two 

methods considers instead the overlap of common objects within the relevant portion of 

the ranking lists. This measure, denoted O, expresses the percentage of the common items 

within the ten best results that the compared methods produce. The selection of this 

measure is also further justified by the fact that each of the items in the relevant portion is 

equally accessible to the users (i.e., ten results per page). 

The actual rank differences are examined as a secondary and less crucial index of 

incompatibility. They are used as an additional criterion to support or reject the tested 

hypothesis when the overlap measure provides borderline evidence for that purpose. The 

rank differences are assessed using a Spearman Rank Correlation (SRC) test. This test is 

an appropriate statistic for ordinal data, provided that its resulting coefficient is used only 

to test a hypothesis about order (Stevens 1951). The SRC coefficient R, with xi and yi as 

the rank orders of item i in two compared samples that contain n items each (Equation 

6.1), takes a value between 1−  and 1+ , where 1+  indicates perfect agreement between 

two samples (i.e., the elements are ranked identically), while 1−  signals complete 

disagreement (i.e., the elements are ranked in inverse order). A value of 0 means that 
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there is no association between the two samples, whereas other values than 0, 1, and -1 

would indicate intermediate levels of correlation. 

 

2

1
2

6 ( )
1

( 1)

n

i i
i

x y
R

n n
=

⋅ −
= −

⋅ −

∑
 (6.1) 

The SRC coefficient and similar statistics are designed for evaluations of ranking lists 

that contain exactly the same elements. Hence, it cannot be readily applied to tests that 

require a correlation value between a particular subsection of the ranking lists. This 

observation is essential, because the items in the relevant portion of the lists will only 

incidentally be the same for two different methods. To enable the comparison of lists 

with different numbers of entries, a modified SRC coefficient is computed as follows: 

first, the different elements in the two lists are eliminated and R (Equation 6.1) is 

computed for the common elements that remain. Second, the modified coefficient 'R  is 

calculated by multiplying R with the overlap percentage O (Figure 6.1). The second 

corrective step is necessary in order to avoid misleading results. For example, when 

among the top ten items only one common element exists, 1R = , but ' 0.1R = . 

Figure 6.1:  Overlap percentage O and modified Spearman Rank Correlation 

coefficient 'R  for the relevant portion of two ranking lists. 
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Methods that produce very similar results are characterized by positive values of the 

measures O and 'R , close to 1, whereas methods that produce very dissimilar results are 

characterized by an overlap value close to 0 and by a modified SRC coefficient value 

close to 0 or negative. 

6.2 Experimental Design 

This thesis postulated that a psychologically compliant (or simply, compliant) approach 

to similarity has three crucial characteristics (Section 1.3.4): 

• It identifies groups of integral attributes when they are present (testable hypothesis 

statement HS1). 

• It aggregates these groups to form new separable attributes with a Euclidean metric 

(Equation 4.2) and, consequently, it combines these and other separable attributes to a 

total object or relation dissimilarity with the Manhattan metric (Equation 4.3) 

(testable hypothesis statement HS2). 

• It translates the total dissimilarity scores obtained for each pair of objects or relations 

into similarity estimates using a non-linear conversion function (Equations 2.1b-c) 

(testable hypothesis statement HS3). 

A psychologically deviant (or short: deviant) method is one that deviates in some way 

from the psychological findings. Any such deviation affects the similarity scores and may 

result in different ranks for a reference query. The evaluation consisted of four 

experiments, each highlighting the distortions on the desirable ranking list, which is 

produced by the compliant method, when one or several aspects of the hypothesis were 

violated (Figure 6.2). 



 171

Figure 6.2:  Experiments (E1-E4) used to evaluate the hypothesis. 

A violation of the first two arguments of the hypothesis would distort the results for 

queries at the object level. The extent of such distortions is tested with Experiments E1, 

E2, and E3. Experiment E1 compares the compliant method (Figure 6.3a) with a deviant 

method that ignores, or does not recognize, possibly existing groups of integral attributes, 

thus treating each attribute as separable (Figure 6.3b). In Experiment E2, the deviant 

method identifies correctly the groups of integral attributes. It uses, however, the same 

aggregation function throughout for both integral groups and separable attributes. This 

conduct is in contrast to the compliant method, which relies on a combination of 

functions. The variations tested are the single usage of the Manhattan (Experiment E2A) 

(Figure 6.3c) or the Euclidean function (Experiment E2B) (Figure 6.3d). Although 

additional aggregation functions have been proposed (Cross and Sudkamp 2002), the 

Manhattan and Euclidean metrics are predominant in existing similarity-enhanced 

information retrieval systems and current prototype implementations (Motro 1988; 

Petrakis and Faloutsos 1997; Papadias et al. 1999b; Dey et al. 2002; Ortega-Binderberger 

et al. 2002; Chakrabarti et al. 2003). Furthermore, these functions are the closest in form 

to the compliant method; therefore, proving the hypothesis for them is sufficient to justify 
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its validity for less similar aggregation functions. Whereas Experiments E1 and E2 

concentrate exclusively on the integral attributes and the aggregation function 

hypotheses, respectively, Experiment E3 examines the combined effect of deviant choices 

for both of those premises on the results (Figure 6.3e). 

Figure 6.3:  Experiments for object-level queries: (a) compliant aggregation function, 

(b) deviant function that ignores integral attributes (E1), (c) deviant 

function that aggregates integral attributes with a Manhattan metric (E2A), 

(d) deviant function that aggregates separable attributes with a Euclidean 

metric (E2B), and (e) deviant function that ignores integral attributes and 

aggregates separable attributes with a Euclidean metric (E3). 

The third part of the hypothesis, which is concerned with results to queries at the 

scene level, is evaluated with Experiment E4. To demonstrate the issue behind this section 

of the hypothesis consider the example in Figure 6.4. The association graph for scene 

queries is created by matching objects and relations below a certain dissimilarity 

threshold. The threshold used in this example is 0.6. The final similarity score of each 

solution (i.e., maximal clique) extracted from the association graph is computed with 

Equation 5.5. Excluding the completeness correction factor, this equation is a weighted 
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average of the similarities for the object (i.e., node similarities) and the relational (i.e., 

edge similarities) components of the association graph. Converting the dissimilarities to 

similarities at the nodes and edges with a linear, an exponential, and a Gaussian function 

yields three different rankings of the derived solutions to the submitted scene query. The 

linear function assigns equal importance to any match, whereas the non-linear functions 

promote highly similar pairs and disfavor highly dissimilar ones. The goal of Experiment 

E4 is, therefore, to assess the extent of variation for scene results in the relevant portion of 

the ranking lists when different conversion functions are employed. The three types of 

functions considered in this experiment correspond to Equations 2.1a-c. In contrast to 

what psychologists have suggested, the linear function, which treats similarity and 

dissimilarity as complementary magnitudes, accounts for the majority of current systems’ 

approach to similarity (Papadias et al. 1999b; Blaser 2000; Goyal and Egenhofer 2001). 

Figure 6.4:  Experiment for scene-level queries: (a) three solutions to a scene query 

with dissimilarities computed for each node (i.e., object) and for each edge 

(i.e., relation), and the scene ranks produced when the dissimilarities were 

converted to similarities using (b) a linear function, (c) an exponential 

function, and (d) a Gaussian function. 
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A difficulty with the third postulate of the hypothesis is the lack of specificity in the 

psychological findings on which it was based. Although it is generally accepted that the 

conversion function should follow an exponential or Gaussian gradient, the exact form of 

such a function is not further elaborated, possibly because it may vary slightly depending 

on the stimuli under consideration. Mathematically, this uncertainty is represented by the 

coefficient c of Equations 2.1b-c, which is left unspecified. These equations describe, 

therefore, families of functions, rather than individual functions. 

To compensate for this ambiguity, Experiment E4 compares the linear function L, 

with several different versions of the exponential and Gaussian alternatives (i.e., obtained 

for different values of the c parameter), abbreviated hereafter as iE  and iG , respectively 

(Figure 6.5). The curves of LE  and LG  were made to fit the data of L with a regression 

technique. In this sense, LE  and LG  are the closest to the linear plot. The pairs ( , )S SE G  

and ( , )G GE G  were defined such that they represent very strict and very generous 

functions of similarity, respectively. Strict means that similarity drops very fast as 

dissimilarity increases, whereas generous implies that similarity diminishes very slowly 

with a dissimilarity increase. These behaviors are also evident from inspecting Figure 6.5: 

the pair ( , )S SE G  is located, for the most part, to the left of the linear function, whereas 

the pair ( , )G GE G  lies mainly to its right. For both the strict and the generous pairs, the 

exponential function was first obtained empirically and the Gaussian was subsequently 

derived through regression. 
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Figure 6.5:  Strict and generous non-linear conversion functions used in Experiment 

E4. 

Although in most psychological experiments the exponential and Gaussian curves fit 

better the points plotted from human similarity-dissimilarity judgments (Nosofsky 1986; 

Shepard 1987), the differences are often subtle (Ennis 1988). In some efforts, the slope of 

the regression lines obtained for such judgments was evaluated to be very close to -1 

(Attneave 1950; Hosman and Kuennapas 1972; Tversky 1977), which is the slope of the 

linear function. Moreover, similarity and dissimilarity judgments mirrored each other 

closely in several MDS studies where, under some circumstances, they both produced 

almost identical results (Rapoport and Fillenbaum 1972). These observations suggest that 

the plots of the psychologically representative non-linear alternatives should not deviate 

significantly from the straight line of the linear method. For this reason, the emphasis for 

the validity of this section of the hypothesis is on comparisons between the three 

functions L, LE , and LG . Experiments that involve additional pairs complement the 

investigation by revealing the relative behavior of members of the same (e.g., LE  vs. GE ) 

or different (e.g., SE  vs. SG ) families of functions, and by allowing inferences about the 
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repercussions on the results when more arbitrary choices are made for the conversion 

function. 

The results of every experiment comprise two ranked lists, one obtained with each of 

the compared methods. The compatibility of these lists is then evaluated according to the 

value of the overlap O and the modified SRC coefficient 'R  (Section 6.1) for the relevant 

portion of the lists. In the following experiments, negative values of 'R  were rarely 

obtained and in all cases these values were only marginally below 0 (i.e., -0.05 in the 

worst case). To allow a uniform visualization scheme such values were truncated to 0, 

and the range used for both measures was delimited in the closed interval [0,1]. 

The exhaustive character of the experiments was a prohibitive factor in locating real-

world datasets that accommodate all of the tested scenarios. Hence, the assessment relies 

on simulations with synthetic datasets and queries, randomly generated within SASA. 

These synthetic constructs were originally populated with random values that followed 

different statistical distributions each time (e.g., uniform, normal). The underlying 

distribution of the data had a negligible effect on the final results. The distribution of 

random values is, therefore, kept constant and assumed to be uniform throughout this 

study. Likewise, a consideration of different attribute types in the simulated databases is 

immaterial for the purposes of the experiments, because all algorithms that perform 

atomic value assessments yield a dissimilarity measure between 0 and 1 regardless of the 

attribute type (Chapter 3). The focus of the experiments, however, is to examine how 

such atomic dissimilarities should be combined to create scores of aggregate dissimilarity 

and, consequently, how these scores should be converted to similarity values. Each 

experiment was conducted several thousand times and the results were averaged in order 

to make the measures O and 'R  converge to their medium values. The number of 

repetitions was determined empirically, such that successive executions of the 

experiments for that number of cycles yielded results with a deviation of less than 1%. 
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6.3 Experiments at the Object Level 

This section describes the setup and discusses the results obtained from Experiments E1-

E3. These experiments assume the existence of a user-submitted object query against 

which the similarity of the objects in the database is calculated with compliant and 

deviant approaches. All attributes of the query are weighted equally. 

6.3.1 Setup 

The similarities or dissimilarities of the ranks obtained in response to an object query 

with different methods are captured through the incompatibility measures O and 'R , 

which are each functions of five variables n, m, p, g, and d (Equation 6.2): 

 , ' ( , , , , )O R f n m p g d=  (6.2) 

• Variable n is the number of objects in the database, determining the database size. 

The experiments were conducted for the set {1,000, 5,000, 25,000, 100,000}N = , so 

that each database size increases approximately one order of magnitude over its 

predecessor. A dataset of 1,000 objects was adopted as a characteristic case of a small 

database, a dataset of 100,000 objects as a characteristic case of a large database, 

whereas datasets of 5,000 and 25,000 objects were used as representatives of 

medium-small and medium-large databases, respectively. 

• Variable m is the number of attributes for each object, determining the number of 

attributes that participate in the similarity assessment of a database object to a query 

object. The set examined is {2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}M =  and 

accounts for the most simple and complex modeled objects. The case of queries on a 

single attribute is omitted, because it is irrelevant for both hypotheses tested. For the 

integral-attributes hypothesis, one integral attribute is undefined because it essentially 

degenerates to one separable attribute. For the aggregation hypothesis, the rankings 
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produced by different aggregation functions become identical when the query 

involves a single attribute (i.e., no aggregation of dissimilarity measures takes place). 

• Variable p is the percentage of integral attributes out of the total number of attributes 

m. The actual number of integral attributes is, therefore, p m⋅ . In this manner, p also 

indirectly determines the number of separable attributes. The percentages taken 

are {0%, 10%, 20%, 30%, 40%, 50%, 70%, 80%, 90%, 100%}P = . The two extreme 

values of 0% and 100% represent the cases where all attributes are separable and 

integral, respectively. 

• Variable g is the number of integral groups in which the integral attributes are 

distributed. The possible values for this variable are constrained by the specific 

instantiations of the variables m and p. For example, when the objects have ten 

attributes (m=10), four of which are integral (p=40%), then the number of integral 

groups g could either be 1 (i.e., one group of four attributes) or 2 (i.e., two groups of 

two attributes). For the experiments in this thesis, g has a range from 1 to 50. The 

smallest value occurs in various settings, starting with the case for m=2 and p=100%. 

The largest value occurs only if m=100 and p=100%. 

• Variable d is the group distribution policy. This parameter describes how a number of 

integral attributes p m⋅  is distributed in a number g of integral groups. For some 

configurations there could be numerous such possibilities. For instance, when eight 

integral attributes must be distributed in two groups, there can be multiple allocations, 

such as 6-2, 5-3, and 4-4. Preliminary experimentation indicated that the results can 

be affected by the distribution policy, especially for larger percentages of integral 

attributes. This parameter is treated as a binary variable taking the values “optimal” 

and “worst.” An optimal distribution policy tries to distribute the integral attributes 

evenly, such that each integral group contains approximately the same number of 

attributes (Figure 6.6.a). A worst distribution policy will create disproportionately-
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sized groups by assigning as many attributes as possible to one large integral group, 

while populating the remaining groups with the minimum required amount of 

attributes (Figure 6.6b). The binary treatment of the group distribution policy allows 

inferences about the behavior of this variable between its two extremes settings, while 

keeping the number of produced diagrams within realistic limits. 

Figure 6.6:  Splitting integral attributes into groups using (a) an optimal and (b) a 

worst distribution policy. 

A specific instantiation of the variables n, m, p, g, and d represents a possible 

database configuration and is referred to as a db scenario. The simultaneous interaction 

of all variables involved for such db scenarios and their effect on the ranks cannot be 

accommodated by the representational capabilities of typical 2-dimensional or 3-

dimensional visualization techniques due to the large amount of diagrams that would 

have to be produced. In order to visualize the results effectively, while keeping the 

number of produced diagrams within acceptable bounds, a 4-dimensional visualization 

technique was employed. For each 4-dimensional diagram, the database size n and the 

distribution policy d are kept fixed, while the remaining variables are allowed to vary 

within a 3-dimensional cubic space. The axes X, Y, and Z of this space correspond to the 

number of integral groups g, the number of attributes m, and the percentage of integral 

attributes p, respectively. Each point in the cubic space signifies, therefore, a db scenario 

determined by the instantiation of the triple ( , , )m p g  that defines the point, and the fixed 

values of n and d. The color assigned to a db scenario (i.e., point) embeds a fourth 
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dimension in the visualization, which represents the measurement of O or 'R  (i.e., the 

overlap or the modified SRC coefficient) between the two compared methods for that db 

scenario. Since there are two incompatibility measures, four database sizes, and two 

distribution policies, a total of sixteen diagrams was produced for each experiment. 

As an example, consider the 4-dimensional diagrams of Figure 6.7. Point A in this 

figure corresponds to the scenario of a database of 1,000 objects, each having 40 

attributes. There are 20 separable and 20 integral attributes. The latter are distributed in 

10 groups through an optimal distribution policy, meaning that each group contains 2 

attributes. For the db scenario of point A, the overlap measure is approximately 40%, 

whereas the value of 'R  is approximately 0.2. 

Figure 6.7:  A 4-dimensional diagram depicting the measures (a) O and (b) 'R . 

A triangular half of the volumes of the produced cubes is not populated with 

measurements, because it corresponds to non-applicable db scenarios. For example, point 

B in Figure 6.7 is such a db scenario, because it is impossible to allocate 60 integral 
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attributes within 40 groups. Realizable db scenarios are located within the remaining half 

of the cube. Since the values of the variables m, p, and g are discrete, the realizable db 

scenarios form a dense grid, rather than a continuous surface. The diagrams, however, 

use continuous color-rendered surfaces instead—produced by interpolating the grid 

values—in order to facilitate the interpretation of the results. Furthermore, the cube is 

sliced at regular intervals along the Z-axis to reveal the patterns in its interior. 

6.3.2 Results and Discussion 

The next sections present and discuss the results obtained from Experiments E1, E2A, E2B, 

and E3 (Figure 6.3). Each experiment comprises 16 diagrams, accompanied by a 

summarizing figure, which reveals the overall trend of the results for different database 

sizes. 

6.3.2.1 Results of Experiment E1 and Interpretation 

The results obtained for the first testable statement of the hypothesis HS1, which 

evaluates how ignored integral attributes affect the results, are displayed for various 

dataset sizes in ascending order (Figures 6.8-6.11). Figure 6.12 provides the summarizing 

overview. 
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Figure 6.8:  Experiment E1: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 1,000 objects. 
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Figure 6.9:  Experiment E1: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 5,000 objects. 
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Figure 6.10:  Experiment E1: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 25,000 objects. 
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Figure 6.11:  Experiment E1: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 100,000 objects. 
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Figure 6.12:  Overview of the results acquired from Experiment E1. 
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These results indicate a definitive pattern of gradual variation. The deviant method in 

this experiment is a manifestation of the Manhattan distance function with no integral 

groups recognized. Hence, the number of aggregated terms is always equal to the total 

number of attributes m. Furthermore, each term contributes equally to the similarity score 

assigned to each object of the database. As the variables change, the form of the 

compliant method becomes more or less similar to the pattern of the deviant method. The 

interactions behind these deviations explain the outcome illustrated in the diagrams. 

The main conclusion is that the measures O and 'R  become progressively worse as 

the percentage of integral attributes increases and the number of groups in which these 

integral attributes are distributed decreases. When either or both trends occur, the 

aggregated terms with the compliant method reduce to a number much less than m. For 

example, for one separable attribute, nine integral attributes, and three groups, the deviant 

method aggregates ten terms and the compliant four terms. Moreover, the effect of the 

one remaining separable attribute with the compliant method is disproportionate on the 

final score compared to that of the other attributes. As the number of groups increases, 

the measures have a greater concordance, because the impact of such isolated attributes 

on the final score diminishes. 

This observation also explains the dissonance to the deterioration pattern observed at 

the highest layer of the optimal distribution policy diagrams, where such separable 

attributes disappear. The even distribution of integral attributes into groups makes the 

compliant method behave similarly to the deviant at this layer. For example, consider a 

query with ten attributes, all of which are integral and must be distributed in five groups. 

The deviant approach will aggregate all ten attributes as separable. The compliant will 

first separate the ten attributes in groups of two, aggregate each group, and combine the 

resulting five terms to derive the object’s similarity. For a single group, the compliant 

method becomes identical to the Euclidean distance function. The trend of deterioration, 

however, is not interrupted at the highest layer of the diagrams for the worst distribution 
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policy because the group sizes with this policy differ drastically. In this case, the smaller 

integral groups continue to have a disproportionate influence on the final similarity score. 

In general, the more uniform the distribution into groups is, the less significant the 

effects on the measures O and 'R  become. The wavy patterns at the higher layers of the 

diagrams that depict the optimal distribution measures are also related to this conclusion. 

Such effects are due to the alternating exact and approximate division of integral 

attributes into groups. For example, for nine integral attributes and three groups the 

division is exact with three attributes in each group. For ten or eleven integral attributes, 

the groups differ in size by necessity, whereas for twelve attributes, the groups contain 

again the same number of elements. In the diagrams of the worst distribution policy 

where group sizes remain consistently imbalanced, the small stripes of temporary 

improvements disappear. Excluding the wavy patterns and the case of all attributes being 

integral, the measures appear to be invariant to the group distribution policy elsewhere. 

The results worsen slightly with an increase in the number of attributes; however, the 

influence of this variable is much more subtle compared to the others. When the attribute 

number is very small, and especially at its lowest setting (i.e., 2), the methods are often 

identical, because the attributes are insufficient to form integral groups (e.g., for two 

attributes and up to 50% percentage of integral attributes). This observation explains the 

cause for the very high values of O and 'R  detected at the rightmost edge of the diagrams. 

The compared methods also yield progressively different outcomes as the database 

size increases (Figure 6.12). This was an anticipated result, because two functions are 

expected to demonstrate approximately the same degree of correlation regardless of the 

sample size with which they are tested. Hence, if the entire ranking lists were considered 

(i.e., if the lists contained all database objects), and assuming all other variables equal, 

the two compared methods would exhibit on average the same correlation, regardless of 

the database size. Increasing the number of objects in the database, while keeping the size 
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of the relevant portion constant leaves more potential for variations within the ten best 

results and explains why the overlaps and correlations decline for larger databases. 

Both O and 'R  take a value of 1 at the lowest layer where all attributes are separable 

and the compared methods coincide. For all other db scenarios, the modified Spearman 

Rank Correlation coefficient 'R  has a lower value than the overlap O. This result is not 

surprising considering that 'R  is a stricter measure than O. The diagrams suggest that the 

correct recognition of integral attributes and groups is immaterial for smaller datasets as 

long as the percentage of integral attributes remains below 40%. For the largest database 

considered this limit drops to around 20%. At these percentages, O and 'R  have values of 

0.5 and 0.2, respectively. Such values constitute borderline measurements for the 

acceptance of the first hypothesis statement HS1, because they imply that only half of the 

retrieved objects in the relevant portion are the same and that these common objects are 

ranked very differently. Therefore, there is an approximate value for the percentage of 

integral attributes, which determines when this hypothesis should be accepted or rejected, 

and this value drops as the database size increases. Since there is no way, however, to 

know the percentage of integral attributes unless one identifies them first, hypothesis HS1 

must be universally accepted. The validity of the first premise of the hypothesis is also 

corroborated by the fact that real-world geographic databases can often be much larger 

than the largest dataset in this experiment. The single exception, where the task of 

recognizing the integral attributes can be dismissed with certainty, is when there are no 

more than two or three attributes for the objects in the database. 

6.3.2.2 Results of Experiments E2A and E2B and Interpretation 

This section presents and discusses the results acquired for hypothesis statement HS2, 

which is concerned with the choice of the aggregation function. The compliant 

aggregation function is compared to the Manhattan metric (Figures 6.13-17) and to the 

Euclidean metric (Figures 6.18-22). 



 190

Figure 6.13:  Experiment E2A: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 1,000 objects. 
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Figure 6.14:  Experiment E2A: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 5,000 objects. 



 192

Figure 6.15:  Experiment E2A: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 25,000 objects. 
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Figure 6.16:  Experiment E2A: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 100,000 objects. 
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Figure 6.17:  Overview of the results acquired from Experiment E2A. 
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Figure 6.18:  Experiment E2B: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 1,000 objects. 
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Figure 6.19:  Experiment E2B: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 5,000 objects. 
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Figure 6.20:  Experiment E2B: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 25,000 objects. 
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Figure 6.21:  Experiment E2B: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 100,000 objects. 
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Figure 6.22:  Overview of the results acquired from Experiment E2B. 
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The results of Experiment E2 indicate again a gradual pattern of variation, although 

the pattern is considerably more subtle than that of Experiment E1. The variation is more 

obvious in the diagrams of 'R . The Manhattan aggregation function is identical to the 

compliant aggregation function with respect to the treatment of the separable attributes, 

whereas the Euclidean aggregation function is identical with respect to the treatment of 

the integral attributes. Hence, the two functions approach the compliant method from 

converse directions, an observation that explains many of the reverse trends that they 

demonstrate. 

The more dominant reverse trend is evident along the Z-axis and pertains to the 

number of integral attributes. As this variable assumes higher values, the compliant 

method becomes progressively similar to the Euclidean metric; therefore, the results 

produced with the Euclidean function are worst at the lowest layer where no integral 

attributes exist, while they improve gradually for higher values of p. Conversely, the 

results produced with the Manhattan function are best at the lowest layer and deteriorate 

thereafter. The culmination of this trend occurs at the highest layer where no separable 

attributes remain. At the highest layer, the Manhattan function scores better with a worst 

distribution policy, whereas the Euclidean function yields more compatible results with 

an optimal distribution policy. 

The two competitors also demonstrate a different behavior with respect to the number 

of integral groups. The Euclidean metric seems to be invariant to changes of this variable, 

whereas the Manhattan metric offers better results for fewer groups. The root of this 

phenomenon is that in the compliant approach the integral groups are aggregated with the 

Euclidean metric; therefore, more errors propagate to the final similarity score with the 

Manhattan function as the number of groups increases. The Euclidean metric, on the 

other hand, remains naturally unaffected. 

Several edge effects appear in the diagrams. They take place for extreme values of the 

variables, for which the tested functions coincide with the compliant approach, or exhibit 
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the maximum deviation from it. Such db scenarios occur, for instance, in the case of only 

two attributes, where the overlaps and correlations have high values. They also occur in 

the case of one integral group where the Euclidean and the compliant functions coincide. 

For both functions, the overlaps and correlations deteriorate as the database size 

increases. The justification for this trend is the same as that given for the first experiment 

(i.e., increasing the database size while leaving the size of the relevant portion constant). 

Experiment E2 gives unequivocal evidence that for the overwhelming majority of db 

scenarios the Manhattan function provides drastically better results than its Euclidean 

counterpart. The overlaps remain consistently high, occasionally reaching the maximum 

value of 1. The correlations also score highly, although to a somewhat lesser degree than 

the overlaps. These measurements imply not only that the results in the relevant portion 

are the same as those of the compliant approach, but also that they follow approximately 

the same order; therefore, the hypothesis statement HS2 about the aggregation function 

should be rejected for the Manhattan case. For the Euclidean case, the validity of this 

hypothesis is undecisive, since it could be accepted for larger datasets and rejected for 

smaller datasets. The interpretation of the hypothesis HS2 for the Euclidean function, 

however, becomes rather indifferent, as the Manhattan function can serve as a surrogate 

aggregator of higher fidelity to the compliant method. This is a welcome outcome, 

because the Manhattan metric, is simpler and usually more efficient than the compliant 

and the Euclidean aggregation functions. 

6.3.2.3 Results of Experiment E3 and Interpretation 

The next diagrams (Figures 6.23 to 6.27) show the results of Experiment E3. The 

diagrams depict the combined distortion on the desirable set of results when a deviant 

aggregation function is used and the groups of integral attributes are not identified. 
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Figure 6.23:  Experiment E3: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 1,000 objects. 
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Figure 6.24:  Experiment E3: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 5,000 objects. 
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Figure 6.25:  Experiment E3: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 25,000 objects. 
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Figure 6.26:  Experiment E3: averaged overlaps and correlations between the compliant 

and the deviant method for a database of 100,000 objects. 
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Figure 6.27:  Overview of the results acquired from Experiment E3. 
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As anticipated, the diagrams of Figures 6.23 to 6.27 interweave the diagrams of 

Experiment E1, which illustrate the outcome when integral attributes are not recognized, 

and those of Experiment E2, in which the Euclidean aggregation function is used to 

combine separable attributes. The overlaps and correlations increase only at the rightmost 

edges where the tried method converges to the compliant approach. For all other db 

scenarios the measures do not have a significant concordance; therefore, when both 

premises HS1 and HS2 are violated, the distortions in the desirable set of results are 

unacceptable. Experiment E3 confirms, therefore, the conclusions about the hypothesis 

statements HS1 and HS2 that were formulated in the commentary of Experiments E1 and 

E2, respectively. 

6.4 Experiments at the Scene Level 

This section describes the setup and discusses the results obtained from Experiment E4. 

This experiment relies on the prior existence of an association graph created in response 

to a scene query, where the aggregate dissimilarities at each node and edge have already 

been computed. The dissimilarity value of each element of the cliques is converted into a 

similarity value with each of the compared functions, and the final similarity score is then 

computed for the entire solution (Equation 5.5). All objects and relations are equally 

weighted. Furthermore, the object and relational components of each clique have an equal 

contribution to the similarity of each solution (Equation 5.4). 

6.4.1 Setup 

The incompatibility measures O and 'R  at the scene level are a function of three 

variables q, t, and c (Equation 6.3): 

 , ' ( , , )O R f q t c=  (6.3) 

• Variable q is the number of objects in the query scene, determining the query size. 

The experiment was conducted for the set {2, 3, 4, 5, 7, 10, 20, 30, 40, 50}Q = . 
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Values between 2 and 10 were sampled more frequently and are considered of higher 

importance, because typical user-sketched queries contain a small number of objects 

(Blaser 2000). Larger query sizes of up to 50 objects are possible in cases of selection 

queries in collection databases, where users do not sketch or define the objects 

themselves, but rather select an existing scene that they use as the query. Single-

object queries are omitted, because all functions rank the results identically in this 

case. The variable q also determines indirectly the number of relations present in the 

query (i.e., ( 1) / 2q q⋅ − ). This term, summed with q, gives the total number of 

elements in a scene query. The smallest and largest queries considered have, 

therefore, 3 and 1,275 elements, respectively. 

• Variable t is the threshold used in the matching process during the creation of the 

association graph. This variable models the degree of the query’s constraintedness. 

Database objects and relations are matched with those of the query only if their 

computed dissimilarity scores do not exceed the threshold (Figure 6.4). A threshold 

specification thus segments the functions and delimits their response within a 

particular subsection of their curves (Figure 6.5). The set of thresholds considered in 

this experiment is {0.02,  0.2, 0.4, 0.6, 0.8, 1}T = . The first element of this set was 

taken slightly above 0 to avoid trivializing the outcome of the experiment. If the 

lowest value had been set to 0, all results would have been exact matches, thus 

receiving a similarity of 1, which would render the ranking and comparison processes 

of the lists meaningless. Creating the association graph with a dissimilarity threshold 

of 1 is also poor practice, because such a specification implies no pruning of the 

search space and entails the retrieval of a huge number of solutions for large 

databases. In the controlled environment of the experiment, however, the maximum 

number of solutions was delimited to some maximum number, because the interest 

instead is in evaluating how the conversion functions react to severely under-

constrained queries. 
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• Variable c is the number of cliques extracted from the association graph, determining 

how many solutions will be ranked after the similarities of their elements (i.e., objects 

and relations) have been computed with each of the compared functions. The set 

examined is {10, 20, 50, 100, 200, 500, 1000, 2000, 3000, 4000, 5000}C = . This 

variable depends on the underlying database size, because more solutions are 

anticipated from larger databases. It also depends on variables t and q, because the 

number of retrieved solutions is expected to increase with less constrained queries or 

queries that involve fewer objects. 

A specific instantiation of the variables q, c, and t is referred to as a query scenario. 

Experiment E4 uses the same visualization technique as that described for Experiments 

E1-E3, with colored 3-dimensional diagrams sliced along the Z-axis. The axes X, Y, and Z 

of the diagrams correspond to the number of objects in the query q, the number of 

solutions c, and the threshold value t, respectively. The different value combinations of 

the triple ( , , )q c t create a grid in the cubic space, where each point represents a particular 

query scenario. The only difference with the diagrams of the previous experiments is that 

the entire cubic space is utilized this time, as all of the query scenarios in it are—at least 

theoretically—possible (Figure 6.28). The seven conversion functions that are considered 

amount to 21 pairwise comparisons. Since there are two incompatibility measures for 

each pair, a total of 42 diagrams was produced for this experiment. 
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Figure 6.28:  A sample diagram from Experiment E4, giving a rough estimate of the 

database size required to accommodate the tested query scenarios. 

6.4.2 Results of Experiment E4 and Interpretation 

The next figures show the agreement in the results of different pairs of conversion 

functions. The first set of diagrams (Figures 6.29-35) concentrates on comparisons of the 

linear function with the non-linear alternatives. The pair of functions ( , )L LE G is 

representative of non-linear curves that are relatively close to the linear slope, a 

proximity, which psychological research suggests should hold in most situations (Section 

6.2). Particular emphasis for the assessment of the third part of the hypothesis is, 

therefore, attributed to the interpretation of Figures 6.29-31, which depict how LE  and 

LG  compare to L, and to each other. 
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Figure 6.29:  Experiment E4: averaged overlaps and correlations between the functions 

L and LE . 

Figure 6.30:  Experiment E4: averaged overlaps and correlations between the functions 

L and LG . 
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Figure 6.31:  Experiment E4: averaged overlaps and correlations between the functions 

LE  and LG . 

Figure 6.32:  Experiment E4: averaged overlaps and correlations between the functions 

L and SE . 
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Figure 6.33:  Experiment E4: averaged overlaps and correlations between the functions 

L and SG . 

Figure 6.34:  Experiment E4: averaged overlaps and correlations between the functions 

L and GE . 
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Figure 6.35:  Experiment E4: averaged overlaps and correlations between the functions 

L and GG . 

The diagrams indicate that the non-linear functions produce very similar results to the 

linear function, but less similar results to one another. The congruence between L and the 

exponential functions is very high for low dissimilarity thresholds (i.e., over-constrained 

queries) and deteriorates slightly for higher dissimilarity thresholds (i.e., under-

constrained queries). The interaction between L and the Gaussian functions is exactly the 

opposite, with the concordance of the results being less at the lowest layers and 

increasing for higher layers. A plausible interpretation for this reverse trend is that it is 

due to the different shapes of the curves. When the shape is convex, the results improve 

for higher threshold values. When it is concave, the results are relatively stable and 

independent of the threshold value. This speculation is substantiated from the diagrams in 

Figures 6.33 and 6.35. In Figure 6.33, the measures O and 'R  start improving at the 

tipping point where the shape of the Gaussian function changes from concave to convex. 

This improvement climaxes at the threshold value of 0.8. At this point, the measures start 

deteriorating again, following the same trend as that exhibited by the exponential 
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functions. In Figure 6.35, where the tipping point of the generous Gaussian function is 

shifted much further, the results are almost the same at the first three layers and start 

improving slowly thereafter. 

As anticipated, the results are also affected by the distance between the graphical 

representations of the functions. The further apart two plots are, the worse the acquired 

measures become. For example, the strict exponential function SE  (Figure 6.32) gives 

worse results when compared to the linear, than the closer exponential function LE  does 

(Figure 6.29). The effect of the distance appears to be less significant than that of the 

shape. For example, even though the curve of LG  is closer to the straight line for 

threshold values below 0.4, (Figure 6.30) its concave shape produces worse results 

compared to the convex form of the more distant LE (Figure 6.29). For larger threshold 

values, however, both curves become convex and LG  correlates better due to its smaller 

distance from the linear function. 

Excluding the beginnings of the X and Y axes, the results stabilize shortly thereafter 

and remain invariant to the variables q and c, which correspond to query size and the 

number of cliques extracted from the association graph, respectively. Smaller-sized 

queries (i.e., X-axis) have a positive effect on the results, which becomes evident at the 

front-left fringes of the layers and the left edge of the diagram along the Z-axis. A slightly 

more pronounced improvement is also observed when the number of cliques extracted 

from the association graph is relatively small (i.e., below 300). This improvement 

manifests at the red-colored front-right fringes of the layers and at the right edge of the 

diagram along the Z-axis. In general, for typical user queries that are reasonably 

constrained and contain a few objects only, the agreement between the measures is high. 

The choice of a stricter or a more generous conversion function does not alter the 

results radically. The overlap measure, which was deemed of primary importance, 

maintains high values for the overwhelming majority of query scenarios. In some cases 



 216

(e.g., Figure 6.34) the results are practically identical throughout the cubic space. The 

worst deviations are observed in the performance of the linear function versus the strict 

exponential for severely under-constrained queries (Figure 6.32, highest layer). Even 

there, the overlaps are high around the edges, which correspond to more typical retrieval 

scenarios. In all other cases, the overlaps consistently exceed the value of 0.6. The 

diagrams strongly suggest, therefore, that the third hypothesis statement HS3 should be 

rejected. 

The next set of diagrams (Figures 6.36-41) reveals how different non-linear functions 

of the same family compare to one another. 

Figure 6.36:  Experiment E4: averaged overlaps and correlations between the functions 

LE  and SE . 
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Figure 6.37:  Experiment E4: averaged overlaps and correlations between the functions 

LG  and SG . 

Figure 6.38:  Experiment E4: averaged overlaps and correlations between the functions 

LE  and GE . 
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Figure 6.39:  Experiment E4: averaged overlaps and correlations between the functions 

LG  and GG . 

Figure 6.40  Experiment E4: averaged overlaps and correlations between the functions 

SE  and GE . 
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Figure 6.41:  Experiment E4: averaged overlaps and correlations between the functions 

SG  and GG . 

These diagrams provide further evidence for the rejection of hypothesis statement 

HS3. The overlaps are very high and close to 1 in all query scenarios. The correlations 

also remain reasonably high for the most part. The diagrams corroborate the initial 

speculation about the dominant effect of the shape of the functions on the results. 

Functions with a relatively large distance among their curves (e.g., Figures 6.40-41) still 

yield results of high concordance as long as their shapes are similar. The variation of the 

measures along the three axes and the edge and fringe effects are the same as those 

detected in the previous set of diagrams (i.e., Figures 6.29-6.35). 

The last set of diagrams (Figures 6.42-49) demonstrates the relative performance 

between non-linear functions of different families. 
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Figure 6.42:  Experiment E4: averaged overlaps and correlations between the functions 

SE  and SG . 

Figure 6.43:  Experiment E4: averaged overlaps and correlations between the functions 

GE  and GG . 
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Figure 6.44:  Experiment E4: averaged overlaps and correlations between the functions 

LE  and SG . 

Figure 6.45:  Experiment E4: averaged overlaps and correlations between the functions 

LG  and SE . 
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Figure 6.46:  Experiment E4: averaged overlaps and correlations between the functions 

LE  and GG . 

Figure 6.47:  Experiment E4: averaged overlaps and correlations between the functions 

LG  and GE . 
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Figure 6.48:  Experiment E4: averaged overlaps and correlations between the functions 

SE  and GG . 

Figure 6.49:  Experiment E4: averaged overlaps and correlations between the functions 

SG  and GE . 
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The conclusion drawn from this last set of diagrams is analogous to that inferred from 

Figure 6.31. Exponential and Gaussian functions correlate less well to each other than 

each of these types does with the linear function. The diagrams verify again the initial 

conjecture that shape is more important than distance for the congruence of the results. 

For example, SG , where the change from a concave to a convex form occurs very early 

along the curve, gives for the most part highly compatible results to the exponential 

functions. Nevertheless, it is evident that the distance factor can also become significant, 

particularly when its effect is propagated to that of dominantly different shapes (e.g., 

Figure 6.42). For well-constrained queries of a small size the measures still exhibit a high 

compatibility. Moreover, less arbitrary choices of the non-linear functions that do not 

deviate drastically from the linear function continue to produce results of high agreement 

(i.e., Figures 6.44, 6.47, and 6.49). 

The results of Experiment E4 demonstrate that, for practical applications, the choice 

of the conversion function does not affect seriously the results of a scene query. 

Therefore, the major conclusion is that the third postulate of the hypothesis (i.e., 

statement HS3) should be rejected. A corollary from this conclusion is that in all cases the 

linear function, which is simpler to calculate, can be used to convert dissimilarities to 

similarities. 

6.5 Summary 

This chapter evaluated the relative performance of a psychologically compliant similarity 

framework versus commonly encountered approaches in the literature that do not 

consider psychological principles about the nature and behavior of similarity. The 

evaluation was based on a comparison of the relevant portion of the ranking lists 

produced with the compliant and the deviant methods. The first three experiments 

focused on the distortions in the desirable set of results for queries at the object level. The 

fourth experiment examined the distortions for scene queries. From the three statements 
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of the hypothesis, only the one that pertains to the recognition of the integral attributes 

and groups was confirmed (HS1). The results point out that the distortions in the desirable 

set of retrieved objects are negligible when the Manhattan aggregation function is used. 

The distortions in the set of retrieved scenes are also acceptable for different dissimilarity 

to similarity conversion functions. These outcomes imply that the second and third 

premises of the hypothesis must be rejected. The second premise HS2, which is concerned 

with the choice of the aggregation function, can be rejected only as long as a Manhattan 

metric is employed as a substitute to the compliant approach, whereas the third premise 

HS3 is rejected universally. An important implication is that the Manhattan aggregation 

function and the linear conversion function, both of which are simpler than their rivals, 

are reliable surrogates of their compliant counterparts, and able to provide 

psychologically trustworthy estimates of similarity. 
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CHAPTER 7 

CONCLUSIONS 

Relying on established psychological findings about the nature and behavior of similarity, 

this thesis developed a scalable framework for assessing the similarity among attribute 

values, objects, and spatial scenes. The framework addressed explicitly aspects of 

similarity that are unique to the spatial domain, but the approach is versatile enough to 

accommodate generic information retrieval scenarios. The formalization of the semantic 

aspects that are involved in the volatile and subjective task of similarity assessments is 

expected to contribute significantly to the design of future geographic information 

systems and spatial search engines that will be able to compare and process information 

on a semantic basis and, therefore, escape the narrow interpretation of a match to a query. 

This chapter provides a summary of the dissertation, highlights major contributions and 

findings, and discusses possible future research directions. 

7.1 Summary of the Thesis 

People’s estimates of similarity are intuitive, qualitative, and subjective. To reliably 

enable corresponding comparisons in information systems, the qualitative needs to 

become quantitative, the subjective needs to become objective, and the comparison needs 

to be performed not directly on the real-world instances, but on their representations in a 

database. In order to perform this task computers depend on what is known and stored for 

the real-world entities in an information system. Such information can be encoded at 

different levels of abstraction. This work separated the conceptual structure of spatial 

information systems into the three levels of attribute values, objects, and scenes, each 

corresponding to user queries of successively increasing complexity. It then adopted a 

bottom-up approach for similarity assessments. Thus, complex assessments are simplified 

by breaking down the process into more simple comparisons, which involve a pair of 
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attribute values at a time, and then merging those individual scores to find the similarity 

of objects, relations, and spatial scenes. 

Attributes in a database are rarely of the same type, however, and the nature of their 

values exhibits wide diversity. A careful inspection of different similarity models 

revealed that each model makes unique assumptions, emphasizes different aspects of 

similarity, and performs better with specific attribute types. Since none of these 

approaches applies globally, we did not comply with a specific model, but employed 

elements from each depending on the task at hand. A functional classification of attribute 

types was provided based on the scales of measurement (Stevens 1946; Chrisman 1995). 

Ratio, interval, ordinal, and cyclic values can be represented as points on a scale; 

therefore, a geometric approach is implied, where similarity is a function of the distance 

between values. For nominal values, the selection of a similarity algorithm is driven by 

whether such values correspond to ontological classes or not. In the first case, variations 

in the level of detail of the ontology will evoke the use of alternative similarity models. 

Detailed ontologies allow for the employment of more sophisticated models and are, 

therefore, capable of providing better measures of similarity than coarse ontologies. If the 

nominal values do not correspond to ontological classes, then a custom geometric 

approach can be implemented, where a nominal value is analyzed to a number of 

constituent ratio and ordinal dimensions. Special cases, such as counts, nominal 

identifiers, Boolean values, cyclic intervals, and temporal attributes were thoroughly 

addressed. An algorithm based on denotational semantics was also created for handling 

the uncertainty that null values introduce into similarity assessments. 

In addition to this classification, a similarity score among attribute values required the 

specification of a similarity neighborhood, which divides the continuum of values into 

those that are similar and those that are not. Establishing fitting similarity neighborhoods 

and employing appropriate normalization techniques for each attribute type are important 
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factors for the fidelity of the computed scores to human perception, as they capture an 

implicit aspect of context. 

The initial set of algorithms is adequate only for standard equality queries on atomic 

attributes. This set was expanded with a comprehensive model for handling more 

complex inquiries that involve the interaction of several constraints, expressed through 

relational and Boolean operators. A combination of such operators defines an ideal or 

reference object so that the objective becomes to retrieve objects similar to it. Negations 

require a traditional interpretation of the not operator, whereas the similarity for 

disjunctions depends entirely on the score of the most similar disjunct. Two semantically 

different modes of conjunction were identified: (1) locally-better and (2) globally-better 

matching. The former is appropriate for applications where higher-ranked constraints 

should dominate completely their subordinates in the constraint hierarchy. In this manner, 

locally-better matching resembles a multi-level sorting process. In globally-better 

matching, on the other hand, similarity is a weighted average of all the conjuncts. A 

psychologically informed approach mandates that the form of the aggregation function 

should be predicated on the perceptual nature of the attributes. Integral attributes are 

those that are perceptually correlated and perceived as one quality. When the dimensions 

are obvious and compelling instead, the attributes are separable. A group of integral 

attributes becomes a separable attribute with a Euclidean dissimilarity function, whereas 

separable attributes are aggregated with a city-block dissimilarity metric. 

In the context of object-level queries the treatment of special cases and the 

specification of a weighting scheme were investigated as well. A methodology based on 

the assignment problem was developed to support similarity assessments among 

multivalued attributes. Such attributes are especially common in the representational 

formalisms of detailed topological and directional qualitative relations. In this case, 

similarity involves a comparison between two sets of values. The sets may be of equal or 

unequal cardinality. A flexible and intuitive weighting scheme is of paramount 
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importance for well-accepted similarity results because it allows users to inflict a 

dynamic and personal context on the assessment. Such a scheme can be based on rank-

order centroid method that relies on an ordinal specification of the weighting coefficients 

in order of significance. The transformation of the ordinal preferences into ratio values is 

delegated to the information system. 

Spatial scenes comprise objects arranged in a particular structure. In this sense, spatial 

scenes are conglomerations of objects, relations, and their attribute values. The retrieval 

of similar scenes to a spatial scene query was performed in three stages: (1) the relaxation 

stage, (2) the matching stage, and (3) the actual assessment and ranking stage. The 

relaxation phase consists of enlarging the initial constraints of the scene query to permit 

additional acceptable value combinations. Arbitrary relaxation policies may compromise 

the quality of the similar results or trivialize the problem by retrieving a large number of 

irrelevant solutions. Successful relaxation strategies, however, are strongly application-

dependent and domain-dependent. Part of the domain knowledge is captured by deciding 

on the relative significance of the different constraints. Important constraints should be 

relaxed conservatively to prevent absurd matches. For spatial queries, the significance of 

a constraint depends on its type, its explicit or implicit specification, and the form of the 

query in which it is present. A key aspect of relaxation relates to the kind of spatial 

relations that can be used to create a weaker version of the problem. Scale-independent 

semi-qualitative metrics are particularly fitting for this task, as they strike a balance 

between strictly quantitative and qualitative approaches. They absorb much of the 

quantitative detail, but maintain the discriminative ability that qualitative relations lack. 

During the matching phase, objects and relations of the query scene are placed in 

correspondence with those of the database, provided that their respective dissimilarities 

are within the relaxed set of values. This interactive process ensures that the quality of the 

matches is determined based on the combined coherence of the correspondences 

generated for both objects and relations. The outcome of the matching stage was an 
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association graph, where maximal cliques give the set of solutions to the scene query. 

The extraction of the maximal cliques can be performed with an exact or an approximate 

algorithm. Many of the maximal cliques reduce to single object solutions, which can be 

of little value. Criteria for discarding such suboptimal solutions, while retaining the most 

useful ones for presentation, were also presented. 

The ranking and assessment stage consists of computing a similarity score for each 

clique and ranking the solutions. A scene completeness coefficient was specified as a 

method that can be optionally used to inflict a penalty for incomplete solutions, where the 

cardinality of objects in the database scene does not coincide with that of the query scene. 

The final similarity score of a clique is a weighted average of its object and relational 

components. The dissimilarities at each node and edge can be converted to similarities 

with linear or non-linear functions. Linear functions view similarity and dissimilarity as 

complementary and have a constant slope. In non-linear functions, the slope varies such 

that similarity decreases more rapidly with an increase of dissimilarity. Hence, values 

closer to a user’s query are weighted more heavily, whereas those that are fairly distant 

are practically ignored. Psychological research concluded that exponential and Gaussian 

functions that do not deviate significantly from the linear plot are likely to approximate 

better human perceptions of similarity. 

This statement was part of the hypothesis of this thesis, which asserted that the ranks 

of the results to a similarity query differ for psychologically compliant and 

psychologically deviant approaches. Besides the form of the conversion function, key 

aspects of a compliant process are the recognition of integral attributes and groups, and 

the choice of the aggregation function used for the composition of atomic assessments. 

The hypothesis was evaluated within SASA, a prototype software application that 

examined the relative performance of compliant and deviant methods for an extensive set 

of different database and query scenarios. 
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7.2 Major Results 

The major result of this thesis comprises the findings obtained from the evaluation of the 

hypothesis. A central tenet of this work was that a seemingly complex similarity 

assessment between any two things could be segregated into conceptually simpler 

operations on their parts or components. In an information system that reasons about 

similarity in such a bottom-up fashion, the methods for acquiring dissimilarities at the 

lower levels, aggregating them, and converting them to similarities in order to serve the 

needs of higher-level assessments become important. Negligible deviations from the 

psychologically compliant processes in the simpler assessments may propagate at higher 

levels, thus introducing considerable distortions in the set of results that are consistent 

with people’s judgments of similarities and, therefore, desirable. The evaluation of the 

hypothesis separated psychological aspects with a major impact on the cognitive 

plausibility of the results from those that are immaterial for practical retrieval purposes. 

An experimental comparison between a psychologically compliant approach that 

recognizes groups of integral groups and a psychologically deviant approach that fails to 

detect such groups showed that the rankings produced with each method are dissimilar to 

one another. Even for a modest amount of integral attributes within the total set of 

attributes considered, the dissimilarities are pronounced, particularly in the presence of a 

single integral group or a small number of them. This trend worsens for large-scale 

databases. Both scenarios correspond closely to spatial representations and geographic 

databases. The structure of the current formalisms used to represent detailed topological, 

directional, and metric relations is often based on criteria other than a one-to-one 

correspondence between the representational primitives employed and human perception. 

Such formalisms are likely to contain one or few integral groups within their 

representation. Furthermore, geographic databases are typically large, in the order of 105 

or 106 objects. This result is, therefore, significant, because it suggests that existing 
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similarity models may need to be revised such that new similarity algorithms must 

consider the possible presence of perceptually correlated attributes. 

The experiments revealed, however, that the differences between the Manhattan 

aggregator and the compliant function in the relevant portion of the rankings are 

negligible. Similarly, the experiments proved that the form of the conversion function is 

immaterial as long as non-linear functions do not deviate extremely from the linear plot, 

according to what psychological research suggests. These results are important for two 

reasons: (1) they suggest that current similarity implementations should rely on a city-

block rather than an Euclidean metric and (2) they indicate that the Manhattan metric and 

the interpretation of similarity and dissimilarity as complementary magnitudes still 

produce results of high fidelity to human perception. The second finding could also help 

reduce the cost that similarity computations, since both the Manhattan aggregation 

function and the linear conversion function are typically more efficient computationally 

than their psychologically compliant counterparts. 

An additional contribution from the hypothesis testing is that the significance of the 

effect of different choices on the results can be judged on a per-application basis. The 

experiments simulated a large number of alternative scenarios; therefore, the produced 

diagrams can be consulted for specific database configurations or expected query sizes 

and types. More sensitive applications, for instance, may require not only high overlaps, 

but also identical ranks in the relevant portion. For less crucial applications, on the other 

hand, even a small number of overlaps may be satisfactory. 

The second major contribution of this thesis is the definition of a similarity-reasoning 

framework for spatial information systems. The framework introduced many novel ideas 

and methods, while at the same time it consolidated previous efforts on similarity into a 

single mechanism that discarded many of their incompatible characteristics and enabled 

their harmonious integration. Part of the consolidation process was to assess the relative 

performance and suitability of different models and algorithms for specific tasks and to 
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suggest extensions and corrections when necessary. New contributions include among 

others: (1) the algorithms implemented for different attribute types, (2) a model to 

support similarity assessments for multivalued and composite attributes, and (3) a 

rationale for the relaxation of spatial queries, and particularly the relaxation of qualitative 

spatial relations. 

The analysis demonstrated that similarity assessments become feasible for any 

attribute through a relatively small and well-defined set of functions. The assignment of 

functions to attributes is facilitated by classifying the possible attribute types based on 

some criterion. The benefit of providing such an abstraction is that all attributes falling 

under a specific category can be assigned the same generic similarity algorithm. The 

criterion upon which classification was based was the type of measurement that the 

values of an attribute perform as well as the type of change that these values imply. Ratio, 

interval, ordinal, nominal and cyclic types of attributes were distinguished. This is a 

highly semantic classification, since these scales indicate the meaning of measurement. 

An aspect of similarity assessments that has been largely neglected or only 

inadequately treated pertains to the handling of uncertainty and incompleteness. This 

thesis explicitly addressed these topics when they arose. It was concluded that their 

proper treatment relies on a combination of featural and geometric models. The former 

account for elements in the source that do not have a correspondence in the target of a 

similarity assessment. The latter produce a similarity measure between 0 and 1 for the 

corresponding elements, instead of adopting the binary perspective that considers them 

simply as common or distinctive elements. Joint application of these models might be 

required at several levels, for instance, at the attribute level when values are missing or 

when some entities comprise more attributes than others in their specification, at the 

object level among multivalued attributes, and at the scene level when the compared 

scenes contain a different number of objects. Instead of providing a generic formula for 

all these cases, each topic was addressed separately to accommodate the particularities 
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that it manifests. For example, an enhanced approach for null values and missing 

attributes is possible through the introduction of different identifiers that imply varying 

degrees of uncertainty. An effective treatment of incompleteness for multivalued 

attributes and scene queries relies instead on the introduction of complete and incomplete 

types of solutions, and the specification of special corrective coefficients. 

A key characteristic of the current framework, and distinguishing feature from 

previous efforts, is its independence from simplifying assumptions that may restrict its 

wider applicability. Every methodology eventually reduces to comparisons among 

attribute values, which are universal primitives across all representational structures. 

Reliance on this framework expedites, therefore, the process of assembling similarity 

models for any attribute-based representation. Conversely, the need to resort to 

specialized and often incompatible models that are tailored to perform with spatial 

relations that must belong in a finite set of predefined classes (Chang and Jungert 1996; 

Papadias and Delis 1997) is avoided. The independence of the framework also persists 

over different types of databases and queries. The methods can apply to both continuous 

or collection databases, as well as sketched or syntactic queries. The graph theoretical 

approach for scene similarity assessments addresses the very essence of scene retrieval 

problem and presents many desirable properties such as: (1) object identity invariance, 

that is, no prior knowledge of the objects’ identities is required, (2) derivation of 

solutions drawing not only on the similarity of objects or relations, but on the combined 

influence of both, (3) ability to retrieve more than one solution, (4) ability to retrieve 

incomplete solutions. 

Another attractive aspect of the current implementation is that it can—to a large 

degree—be implemented on top of existing database systems, a considerable advantage 

when such systems cannot be modified (e.g., legacy databases). The similarity algorithms 

implemented in this work are only limited by the level of detail in the underlying 

representation. This is a pragmatic limitation, since the discriminative power of a 
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similarity algorithm that operates on a representation cannot exceed the discriminative 

ability of that representation. 

Similarity is resistant to many theories and models that try to formalize it. On the 

cognitive side, this thesis contributed towards a unifying theory of similarity, which 

accounts for much of its volatile and flexible behavior and alleviates many of the 

inefficiencies of conventional models. Such a unifying perspective was based on the idea 

that similarity can be measured through change. Simple philosophical principles about 

the nature of change and the forms in which it can be manifested provided the foundation 

for this novel view and guided its computational implementation. Within this context, the 

acquisition of a cognitively plausible similarity score is predicated on the successful 

measurement of the amount of change required to transform one of the compared things 

into the other, whether such things are attribute values, objects, or spatial scenes. In the 

light of this interpretation, much of the asymmetric behavior of similarity judgments 

finds satisfying explanation, since the amount of change required for one entity to 

coincide with another is not necessarily the same as when the reverse process is followed. 

Asymmetries, in this context, can arise naturally, without resorting to corrective factors 

that artificially generate them (Nosofsky 1991; Rodríguez 2000). Moreover, it is possible 

for asymmetric measures of similarity to be produced not only in comparisons of 

instances that belong to classes at different levels of abstraction (i.e., superclass-subclass 

relationships), but also in comparisons between instances of the same class. 

Interpreting change and similarity as inverses was also helpful throughout this study, 

as it assisted in: (1) making the subtle distinction between two conceptually different 

kinds of ratio attributes, (2) addressing anomalies or rare cases in a theoretically sound 

and consistent manner, (3) establishing appropriate similarity neighborhoods and defining 

the meaning of zero similarity, (4) detecting the strengths and weaknesses of existing 

similarity models and reasoning about the suitability of one similarity model over another 

for a particular task, and (5) developing a thorough rationale for handling incompleteness. 
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7.3 Future Research 

The formalization and optimization of similarity operations in information systems is a 

field that encompasses many possible variations and extensions. The following 

compilation of topics highlights issues complementary to the work presented in this 

thesis, as well as others that were raised during this research. Each topic includes a short 

introduction that highlights the extent and significance of the issue to be addressed, 

followed by suggestions on how it could be approached. 

7.3.1 Similarity Models for Detailed Spatial Relations 

The 9-intersection (Egenhofer and Herring 1990) and the set of the basic cardinal 

directions (Frank 1996) are effective tools to reason about qualitative topological and 

directional relations, respectively. Such formalisms are theoretically sound yet simple, 

therefore, attractive both for modeling as well as for querying purposes. The caveat of 

using these models in spatial querying is that they are too generic and cannot distinguish 

among situations for which people may have distinct mental images. Complex 

topological, directional, and metric formalisms were developed in an effort to establish 

equivalence between a spatial configuration and its representation (Egenhofer and 

Franzosa 1995; Clementini and di Felice 1998). They model a spatial relation through a 

number of intersection components, each described by several topological and, 

optionally, some metric properties (Figure 1.2) (Shariff 1996; Nedas et al. in press). For 

example, an overlap relation between two regions may have several interior-interior 

intersections, and each of these encompasses a set of attribute values in its description. 

The problem with complex relations is that they can be overwhelmingly detailed, and 

usually succeed only in creating a surjective, rather than a bijective, mapping from a 

spatial configuration to a representational structure (i.e., one configuration may 

correspond to multiple representations). 
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To alleviate the difficulties that both coarse and detailed relations entail for similarity 

assessments (Section 5.4.2) this thesis advocated instead the use of simpler semi-

qualitative metrics for scene queries. Such metrics may perform fine for most practical 

retrieval scenarios. Occasionally, however, the focus of a query may be strictly on 

topological or directional similarity. On the other hand, the employment of semi-

qualitative metrics may not always be possible and the ability to establish similarity 

among detailed relations may be further needed in order to break ties among retrieved 

solutions. Current similarity models mostly apply to coarse relations and yield crude 

estimates based on simple conceptual neighborhood graphs (Freksa 1991; Egenhofer and 

Mark 1995a; Blaser 2000). Models for detailed relations are scarce (Goyal and Egenhofer 

2001). These arguments stress the need to establish effective similarity models for 

detailed spatial relations. 

During the course of this thesis it was realized that the current framework is a good 

candidate for this task if one only transposes the level of abstraction. Within the context 

of a topological relation for instance, the detailed relation itself can be thought of as a 

spatial scene. Intersection components correspond to objects, and the only relation among 

these “objects” is their sequence. The parameters that are used to describe the intersection 

components and their values correspond to attributes and attribute values, respectively. 

This one-to-one correspondence suggests that the methodology employed for scene 

similarity can be recursively applied to assess the similarity of detailed spatial relations. 

The suitability of the current framework to establishing similarities of detailed relations is 

further emphasized by its ability to handle multivalued attributes because many of the 

parameters used to describe the intersection components can accept multiple values. The 

provisions made to account for incompleteness are also vital because the number of 

intersections between two compared relations may differ. 

Although this thesis provides the foundation for reasoning about the similarity of 

detailed topological relations, there is room for differences in the approach, which future 
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research must detect and address. For example, a relaxation process may not be necessary 

because the anticipated number of intersection components is relatively small. 

Simplifications may also be possible because the only relation of interest among 

intersection components is their order. The results from the hypothesis testing also point 

out that future efforts on the same topic should also concentrate on the detection of 

integral groups within the representational formalisms used for complex relations. This 

task can be accomplished by combining human-subject experiments with multi-

dimensional scaling techniques that reveal the prominent dimensions in similarity 

judgments. Maddox (1992) provides a survey and analysis of tests that can be used to 

decide the separability or integrality of sets of attributes. Besides contributing useful 

similarity models, research in this direction could also be reciprocally beneficial. It may 

discover, for instance, that simpler representations perform equally well, or derive new 

criteria about how future formalisms for representing detailed spatial relations should be 

structured. 

7.3.2 Automated Weight Calibration and Constraint Significance 

Understanding how people prioritize individual components (e.g., geometric vs. thematic 

specifications, completeness vs. topology vs. direction, a scene’s relational vs. the object 

component) in a similarity assessment would assist in establishing the relative 

significance of constraints in spatial object or scene queries and improving the current 

framework in two significant aspects. First, it would help outline a more informed 

relaxation strategy, which is key to retrieving better results and speeding up the retrieval 

process. Second, it would enhance the user-system interaction, contributing to the vision 

of a naive geography environment where user involvement in the specifics of the system 

is expected to be minimal. For instance, users could simply query by selecting an object 

or a scene. This type of querying is more intuitive as it removes the burden of creating 

SQL statements, forming Boolean expressions, and worrying about weight specifications. 

For geographic information systems in particular, this querying technique would be even 
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more advantageous, because such systems provide inherent support for visual inspection 

and selection of objects. 

In contrast to thresholds, however, an automated weight assignment by the system is 

a considerably more perplexed issue, because it depends on a multitude of factors, not all 

of which can be a priori known. Such factors are the form of the query, the context of the 

comparison that mirrors the intents and purposes of the user, and even the proficiency of 

each user in expressing the query using the constructs provided by the system. Relevant 

research has only contributed peripheral solutions, rather than addressing the core of the 

problem. For example, some efforts rely on a “more like this” criterion, where users 

indicate the result closest to their expectations, and the weights are fine-tuned 

accordingly for the next retrieval cycle (Ortega-Binderberger et al. 2002; Chakrabarti et 

al. 2003). An excessive repetition of the querying process, however, may become 

frustrating. Other methods, such as the ones adopted in this thesis (Section 4.3), aim at 

reducing the cognitive load through the assignment of ordinal preferences; however, the 

reliance on the user’s explicit instructions remains a prerequisite. Moreover, the process 

may become unfathomable for spatial scene comparisons due to the plethora of existing 

constraints, their presence at different levels of abstraction (i.e., scene, object, and 

attribute levels), and the complex interactions among them. On the other hand, a default 

equal-weighting scheme in absence of any user feedback is more like adopting the 

ostrich’s behavior to danger. It has been observed that in many contexts several 

dimensions are implicitly highlighted more than others (Attneave 1950; Torgerson 1965; 

Nosofsky 1992). 

Recognizing these dimensions may be difficult. An automated weight calibration for 

all circumstances and users is an elusive and probably unrealistic goal. Future research 

should first establish whether the assessment of relevance of individual components is 

consistent for different users and tasks. If the outcome is affirmative, the next task would 

be to provide generic guidelines about the prominence of several components over others 
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and to incorporate them in weight templates for typical query cases. This should be done 

in conjunction with the development of algorithms or agents that monitor the users’ 

querying patterns over time and create dynamic personalized user-profiles. 

An obvious route to these objectives is through human-subject testing. An alternative 

approach is through statistical techniques and stems from the observation that in many 

cases, several attributes can have a functional dependency on others. A functional 

dependency between two attributes Ai and Aj holds when the value of Ai for a tuple t 

uniquely determines the value of Aj for the same tuple. Considering both of these 

attributes equally weighted through an automated process introduces a “double-counting” 

bias in the similarity assessment. This argument can be generalized to different degrees of 

correlation between attributes. It is in this area, therefore, that causal, rather than 

perceptual, correlation becomes relevant for similarity. Methods have to be found that 

assess the degree of correlation between attributes and derive the ratio values of weights 

accordingly. In the general case, a slight positive or negative correlation even between 

practically independent attributes will exist. Hence, such methods should also need to 

decide on the thresholds beyond which correlation entails a bias introduction. 

7.3.3 Efficient Execution of Similarity Queries 

This thesis focused primarily on the conceptual level of performing similarity operations 

in a database. The results of the hypothesis evaluation also contributed to more efficient 

query processing by justifying the use of simpler equations in the assessments. Many 

issues, however, still remain, which must be resolved in order to complement this work 

and provide efficient mechanisms and algorithms for the faster execution of similarity 

queries. 

Traditionally, similarity operations have been in the realm of software engineering. 

Further efficiency can be achieved if similarity becomes an integral component of future 

system architectures. This integration will contribute to the trend that states that the 
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disciplines of information retrieval and database management should become more 

tightly joined (Elmasri and Navathe 2000). Many commercial products have already 

adopted this paradigm. Examples include the data blade feature of Informix Universal 

Server, which makes use of the WordNet thesaurus, and the specification of the SIMILAR 

function introduced within later versions of the query language SQL. Such extensions are 

still crude and unable to deal with the full spectrum of similarity in a database. Hence, 

further research is required on the language and architectural extensions needed to 

enhance current DBMSs with semantic capabilities. 

In relational databases, for example, the similarity functions could be implemented as 

system-stored procedures. A one-to-many relationship can exist between one of these 

procedures and some of the attributes in the database. These mappings could be 

registered in the system catalog or the data dictionary. Similar methods could be followed 

for object-oriented DBMSs where the similarity functions may be implemented as 

internal functions of objects—whether such objects are classes or attributes. In such 

systems, objects may contain more than one function, or make use of polymorphism to 

account for similarity comparisons with objects whose values use different data types. 

Part of the research should focus exclusively on the physical level to provide 

sophisticated indexing methods for similarity queries (Roussopoulos et al. 1995; White 

and Jain 1996), or investigate how such indexing structures as R-trees (Guttman 1984) 

can be fully exploited. Other topics for research include language extensions and 

interface design that will assist users in interacting more efficiently and customizing their 

queries during a similarity retrieval session. 

Another set of future research questions, related to efficiency, deals with the 

implementation of approximate algorithms for scene matching (Papadias et al. 2003; 

Rodríguez and Jarur 2005), particularly the task of extracting maximal cliques from an 

association graph. Although there can be no formal estimates on the performance of such 

algorithms, they are able to demonstrate a remarkable improvement in efficiency 
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compared to their exact counterparts (Bomze et al. 1999). Some of the approximate 

algorithms, however, return only one solution and none guarantees the retrieval of the 

optimal solutions. Another problem is that the performance of several of these 

methodologies (e.g., genetic algorithms) is heavily dependent on a high number of input 

parameters that must be defined prior to query execution. Therefore, in order to tune such 

algorithms correctly and to obtain satisfactory results, the user must be thoroughly 

acquainted with the algorithms’ internal operation. Examples of approximate algorithms 

include DNA-Computing (Zhang and Shin 1998), simulated annealing (Aarts and Korst 

1989), tabu search (Battiti and Protasi 1995), and genetic algorithms (Marchiori 1998). 

Such algorithms should be evaluated to assess their relative performance, fine-tuned for 

the problem of spatial scene queries through the embedding of knowledge particular to 

the spatial domain, and modified, if possible, to require little or no user input. An 

additional challenging topic with efficiency repercussions is the development of better 

semi-qualitative metrics that comply with the requirements of continuity, scale-

invariance, object identity-invariance, universality, and minimality that were outlined and 

analyzed in Section 5.4.2. 

7.3.4 Extension to Heterogeneous Database Systems 

Previous work on multidatabase systems from the computer science (Doan and Halevy 

2005) and the geographic information communities (Duckham and Worboys 2005; Lutz 

and Klien 2006) concentrated primarily on data integration, that is, the process by which 

the schematic, structural, and semantic heterogeneities among such systems are resolved. 

The ultimate goal is to ensure location, schema, and language transparency for the users, 

thus giving them the illusion of accessing a single centralized database (Busse et al. 

1999; Uschold and Gruninger 2004). After the integration has taken place, users can 

retrieve information by querying the heterogeneous system in the same way that they 

would query a centralized DBMS. 
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Within this field, similarity was used mainly from the perspective of information 

integration rather than that of information retrieval. Thus, it was employed as a tool for 

identifying and matching corresponding structural elements among different systems that 

model related application domains (Rahm and Bernstein 2001; Maedche and Staab 2002; 

Kalfoglou and Schorlemmer 2003; Noy and Musen 2003; Palopoli et al. 2003; Rodríguez 

and Egenhofer 2003; Noy 2004). Little emphasis, however, was placed on the 

requirements on data integration so that similarity retrieval becomes feasible in such 

systems. The few approaches that considered the issue (Mena et al. 1996) provided 

coarse similarity measures, but that usually came as a welcome side-effect of the 

proposed data integration architecture, and not as a result of a thorough and explicit 

treatment. 

Some of the basic assumptions for determining similarity in a homogeneous 

environment, however, could be violated in a heterogeneous setting. A logical extension 

of this work is, therefore, to investigate the various impediments in the retrieval of similar 

results from heterogeneous data sources and suggest ways to address them. The approach 

should follow a detailed compilation of possible heterogeneity problems (Batini et al. 

1986; Sheth and Larson 1990; Kim and Seo 1991), examine each in isolation, and suggest 

extensions to the existing data integration architectures, when they are not adequate to 

enable the types of similarity assessments developed in this thesis. For some of the 

problems it is possible that the methods of this thesis will create less stringent 

requirements than those imposed by traditional retrieval, because similarity itself could 

be the means by which they could be resolved (e.g., missing attributes can be addressed 

with dne or ni types of nulls). 

7.3.5 Formalizing Similarity in Ontologies for the Semantic Web 

Prominent commercial GIS packages rely on a relational or object-oriented architecture 

to organize data. Throughout this study, it was assumed that results to similarity queries 
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were obtained from such structured data sources. It is interesting to investigate how the 

current framework should be adapted to apply on the semantic web (Berners-Lee et al. 

2001) where the structure of data sources is less rigid, and how it can be combined with 

emerging standards and technologies such as XML (i.e., eXtensible Markup Language), 

RDF (Resource Description Framework) (Decker et al. 2000), and the web ontology 

language, OWL. This exploration could lead to a semantic web that is also able to reason 

about similarity. 

The building blocks of the semantic web are domain ontologies. Research on this 

topic should assess the possibility of creating similarity-enhanced ontologies. These 

could be ontologies that, in addition to explicating the meaning and formalizing the 

relationships between concepts and properties for a specific domain of interest, also 

provide an agreement on the meaning of similarity between such concepts and properties 

for the domain community. This meaning can be captured by embedding similarity 

algorithms in an ontology as ontological functions. Each role (i.e., attribute) could be 

associated with one similarity function appropriate to assess the semantic proximity 

among its values. The similarity model for concepts would be a global function in the 

ontology and not unique to each concept. It would exist at a meta-ontological level, 

because the arguments passed to such an algorithm are the concepts themselves. These 

functions could have a suggestive character and need only be specified in their most 

generic form in the ontology. Their role could be to formalize the context of similarity, 

but not necessarily elaborate on its exact quantification details. 

Similarity relations fit well into an ontological framework, because it is expected that 

people who commit to the same ontology perceive identically not only the concepts that 

are important in their domain of interest, but also the similarity relations that hold among 

these concepts. This alignment of individual similarity views towards a common one is 

emphasized by the fact that ontologies already have inherent a notion of qualitative 

similarity relations among the concepts that they model. This notion is reflected in their 
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structure (i.e., in the way they specify classes and subclasses) and in the properties and 

roles that are attributed to each concept. Furthermore, ontologies typically include 

restrictions on the allowed ranges for such properties and roles, thus demarcating 

explicitly the allowed ranges for values within a domain. Some of the similarity 

algorithms in this work exploit exactly those features to derive a quantitative similarity 

measure. Geometric models use range-related information, network models use the 

ontology structure, and featural models use the common and different properties of the 

entities. Formalizing similarity within ontologies would be a step forward in the 

employment of ontologies not only as means for semantic integration, but also as tools 

for semantic management (Rosenthal et al. 2004), and would help their transition from 

symbolic to conceptual constructs. 

Another related topic of larger scope is the investigation of a more scalable 

architecture, by implementing a top-level similarity ontology and then provide mappings 

from the models and functions of that ontology to the concepts and roles of other domain 

ontologies. The feasibility of the construction of a top-level similarity ontology, as well 

as the precise details of its implementation, are interesting areas for future research. 

7.3.6 Discovering Additional Applications of Similarity 

The motivation of this thesis was the enhancement of spatial information systems for 

semantic information retrieval. The formalization of similarity, however, can open up a 

world of additional exciting possibilities where similarity can be exploited in a variety of 

ways and as a tool that will facilitate and automate many diverse tasks. Some of these 

tasks are related to user-interface improvements and extensions in the functionality of 

existing GISs. Examples include: 

• The identification and removal of duplicate entries in a database or during the process 

of merging different databases into a larger one (Chatterjee and Segev 1991; Monge 

and Elkan 1997; Dey et al. 2002). 
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• The use of similarity as a predictive tool. For instance, in the case of failure of a pipe, 

the sewer company may search its GIS for pipes with characteristics similar to the 

failed pipe, and place them under inspection or perform maintenance on them.  

• Replacement of expert operations with simpler alternatives. Answering a query such 

as “find all locations that are within 0.5km of a major road, not in a built-up area and 

on a sand/gravel deposit” (Worboys and Duckham 2004) requires a layer-based 

analysis with current GIS tools, which will only yield exact matches. In contrast, a 

similarity-based approach would not force the users to cope with sequences of 

complex operations of buffering and overlays. The answer to the above query could 

be provided immediately by applying the methods presented in this thesis. 

• Landmark determination. This area is another promising field for similarity, or rather, 

dissimilarity. Since landmarks are entities that stand out from their surroundings, they 

are expected to be the most dissimilar from other entities nearby. A four step 

approach could then be to: (1) decide on the conceptually salient characteristics (i.e., 

attributes that are important for a landmark’s determination) (Winter 2003; Nothegger 

et al. 2004; Klippel and Winter 2005), (2) define the desired extent of the spatial 

neighborhood from which landmarks will be extracted, (3) calculate for each object in 

this neighborhood the sum of its dissimilarities to other objects, and (4) based on 

some threshold extract the objects with the largest sum as possible landmarks. Of 

course, these are only crude guidelines that would also need to be combined with 

methods for space partitioning and principles from psychological theories of 

attention. Another important aspect to consider is the distribution of objects (Haken 

and Portugali 2003). For example, many prominent buildings are often grouped 

together in the center of cities; therefore, landmark determination for such areas 

should be based on finer differences or, perhaps other criteria. 

This list of examples is only a small subset of the enhancements that become feasible 

with semantic similarity assessments. Future studies should explore the theory and 
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methods required to make these ideas concrete and incorporate them in the functionality 

of next-generation GISs. Such enhanced modes of interaction have the potential to 

maximize expressiveness, and to change the conventional ways of thinking about query 

formulation. 

7.3.7 Evolution of Similarity Models 

Defining a flawless computational implementation of a notion as abstract as similarity 

would probably require total decryption of the processes of the human mind. The 

problem encompasses many aspects and questions for some of which no definitive 

answers yet exist. This thesis strived to keep a balance by incorporating the findings of 

theoretical disciplines, such as philosophy and psychology, while still maintaining 

practicality and versatility. The evolution of the field of semantically similar information 

retrieval needs to proceed hand-in-hand along with the latest developments in those 

disciplines. New theories and interpretations of change must be considered and new 

findings about the nature and properties of similarity must be integrated into the future 

similarity algorithms as we make advances in our understanding of the human brain. 
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