75,598 research outputs found

    Hybrid subjective evaluation method using weighted subsethood - based (WSBA) rule generation algorithm

    Get PDF
    Fuzzy rules are important elements that should take into account in any fuzzy expert system.This paper proposes the framework of subjective performance evaluation using fuzzy technique for ranking the attributes of different types of datasets under a multi-criteria environment.The techniques such as fuzzy similarity function, fuzzy synthetic decision and satisfaction function have been adopted in these fuzzy evaluation methods.The framework is based on fuzzy multicriteria decision-making that consists of fuzzy rules. The use of fuzzy rules, which were extracted directly from input data through Weighted Subsethood-based (WSBA) Rule Generation Algorithm.WSBA rule generation use the subsethood values to generate the weights which finally produced the fuzzy general rules.The rules generated through the data provided knowledge in developed fuzzy rule The fuzzy rules embedded in the framework of subjective evaluation method showed advantages in generalizing the evaluation of the performance achievement, where the evaluation process can be conducted consistently in producing good evaluation results with the use of the membership set score.The results from the numerical examples are comparable to other fuzzy evaluation methods, even with the use of small rule size

    Unsupervised monitoring of an elderly person\u27s activities of daily living using Kinect sensors and a power meter

    Get PDF
    The need for greater independence amongst the growing population of elderly people has made the concept of “ageing in place” an important area of research. Remote home monitoring strategies help the elderly deal with challenges involved in ageing in place and performing the activities of daily living (ADLs) independently. These monitoring approaches typically involve the use of several sensors, attached to the environment or person, in order to acquire data about the ADLs of the occupant being monitored. Some key drawbacks associated with many of the ADL monitoring approaches proposed for the elderly living alone need to be addressed. These include the need to label a training dataset of activities, use wearable devices or equip the house with many sensors. These approaches are also unable to concurrently monitor physical ADLs to detect emergency situations, such as falls, and instrumental ADLs to detect deviations from the daily routine. These are all indicative of deteriorating health in the elderly. To address these drawbacks, this research aimed to investigate the feasibility of unsupervised monitoring of both physical and instrumental ADLs of elderly people living alone via inexpensive minimally intrusive sensors. A hybrid framework was presented which combined two approaches for monitoring an elderly occupant’s physical and instrumental ADLs. Both approaches were trained based on unlabelled sensor data from the occupant’s normal behaviours. The data related to physical ADLs were captured from Kinect sensors and those related to instrumental ADLs were obtained using a combination of Kinect sensors and a power meter. Kinect sensors were employed in functional areas of the monitored environment to capture the occupant’s locations and 3D structures of their physical activities. The power meter measured the power consumption of home electrical appliances (HEAs) from the electricity panel. A novel unsupervised fuzzy approach was presented to monitor physical ADLs based on depth maps obtained from Kinect sensors. Epochs of activities associated with each monitored location were automatically identified, and the occupant’s behaviour patterns during each epoch were represented through the combinations of fuzzy attributes. A novel membership function generation technique was presented to elicit membership functions for attributes by analysing the data distribution of attributes while excluding noise and outliers in the data. The occupant’s behaviour patterns during each epoch of activity were then classified into frequent and infrequent categories using a data mining technique. Fuzzy rules were learned to model frequent behaviour patterns. An alarm was raised when the occupant’s behaviour in new data was recognised as frequent with a longer than usual duration or infrequent with a duration exceeding a data-driven value. Another novel unsupervised fuzzy approach to monitor instrumental ADLs took unlabelled training data from Kinect sensors and a power meter to model the key features of instrumental ADLs. Instrumental ADLs in the training dataset were identified based on associating the occupant’s locations with specific power signatures on the power line. A set of fuzzy rules was then developed to model the frequency and regularity of the instrumental activities tailored to the occupant. This set was subsequently used to monitor new data and to generate reports on deviations from normal behaviour patterns. As a proof of concept, the proposed monitoring approaches were evaluated using a dataset collected from a real-life setting. An evaluation of the results verified the high accuracy of the proposed technique to identify the epochs of activities over alternative techniques. The approach adopted for monitoring physical ADLs was found to improve elderly monitoring. It generated fuzzy rules that could represent the person’s physical ADLs and exclude noise and outliers in the data more efficiently than alternative approaches. The performance of different membership function generation techniques was compared. The fuzzy rule set obtained from the output of the proposed technique could accurately classify more scenarios of normal and abnormal behaviours. The approach for monitoring instrumental ADLs was also found to reliably distinguish power signatures generated automatically by self-regulated devices from those generated as a result of an elderly person’s instrumental ADLs. The evaluations also showed the effectiveness of the approach in correctly identifying elderly people’s interactions with specific HEAs and tracking simulated upward and downward deviations from normal behaviours. The fuzzy inference system in this approach was found to be robust in regards to errors when identifying instrumental ADLs as it could effectively classify normal and abnormal behaviour patterns despite errors in the list of the used HEAs

    Soft computing applications in dynamic model identification of polymer extrusion process

    Get PDF
    This paper proposes the application of soft computing to deal with the constraints in conventional modelling techniques of the dynamic extrusion process. The proposed technique increases the efficiency in utilising the available information during the model identification. The resultant model can be classified as a ‘grey-box model’ or has been termed as a ‘semi-physical model’ in the context. The extrusion process contains a number of parameters that are sensitive to the operating environment. Fuzzy ruled-based system is introduced into the analytical model of the extrusion by means of sub-models to approximate those operational-sensitive parameters. In drawing the optimal structure for the sub-models, a hybrid algorithm of genetic algorithm with fuzzy system (GA-Fuzzy) has been implemented. The sub-models obtained show advantages such as linguistic interpretability, simpler rule-base and less membership functions. The developed model is adaptive with its learning ability through the steepest decent error back-propagation algorithm. This ability might help to minimise the deviation of the model prediction when the operational-sensitive parameters adapt to the changing operating environment in the real situation. The model is first evaluated through simulations on the consistency of model prediction to the theoretical analysis. Then, the effectiveness of adaptive sub-models in approximating the operational-sensitive parameters during the operation is further investigated

    A High Performance Fuzzy Logic Architecture for UAV Decision Making

    Get PDF
    The majority of Unmanned Aerial Vehicles (UAVs) in operation today are not truly autonomous, but are instead reliant on a remote human pilot. A high degree of autonomy can provide many advantages in terms of cost, operational resources and safety. However, one of the challenges involved in achieving autonomy is that of replicating the reasoning and decision making capabilities of a human pilot. One candidate method for providing this decision making capability is fuzzy logic. In this role, the fuzzy system must satisfy real-time constraints, process large quantities of data and relate to large knowledge bases. Consequently, there is a need for a generic, high performance fuzzy computation platform for UAV applications. Based on Lees’ [1] original work, a high performance fuzzy processing architecture, implemented in Field Programmable Gate Arrays (FPGAs), has been developed and is shown to outclass the performance of existing fuzzy processors

    Automatic generation of fuzzy classification rules using granulation-based adaptive clustering

    Get PDF
    A central problem of fuzzy modelling is the generation of fuzzy rules that fit the data to the highest possible extent. In this study, we present a method for automatic generation of fuzzy rules from data. The main advantage of the proposed method is its ability to perform data clustering without the requirement of predefining any parameters including number of clusters. The proposed method creates data clusters at different levels of granulation and selects the best clustering results based on some measures. The proposed method involves merging clusters into new clusters that have a coarser granulation. To evaluate performance of the proposed method, three different datasets are used to compare performance of the proposed method to other classifiers: SVM classifier, FCM fuzzy classifier, subtractive clustering fuzzy classifier. Results show that the proposed method has better classification results than other classifiers for all the datasets used

    A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

    Get PDF
    In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify appropriate and efficient data as learning samples; a high-performance Particle Swarm Optimisation (PSO) based multi-objective optimisation mechanism is developed to further improve the fuzzy model in terms of both the structure and the parameters; and a new tolerance analysis method is proposed to derive the confidence bands relating to the final elicited models. This proposed modelling approach is evaluated using two benchmark problems and is shown to outperform other modelling approaches. Furthermore, the proposed approach is successfully applied to complex high-dimensional modelling problems for manufacturing of alloy steels, using ‘real’ industrial data. These problems concern the prediction of the mechanical properties of alloy steels by correlating them with the heat treatment process conditions as well as the weight percentages of the chemical compositions

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets

    Fuzzy Content Mining for Targeted Advertisement

    Get PDF
    Content-targeted advertising system is becoming an increasingly important part of the funding source of free web services. Highly efficient content analysis is the pivotal key of such a system. This project aims to establish a content analysis engine involving fuzzy logic that is able to automatically analyze real user-posted Web documents such as blog entries. Based on the analysis result, the system matches and retrieves the most appropriate Web advertisements. The focus and complexity is on how to better estimate and acquire the keywords that represent a given Web document. Fuzzy Web mining concept will be applied to synthetically consider multiple factors of Web content. A Fuzzy Ranking System is established based on certain fuzzy (and some crisp) rules, fuzzy sets, and membership functions to get the best candidate keywords. Once it is has obtained the keywords, the system will retrieve corresponding advertisements from certain providers through Web services as matched advertisements, similarly to retrieving a products list from Amazon.com. In 87% of the cases, the results of this system can match the accuracy of the Google Adwords system. Furthermore, this expandable system will also be a solid base for further research and development on this topic
    • 

    corecore