

COVER SHEET

This is the author-version of article published as:

Wu, Paul and Narayan, Pritesh and Campbell, Duncan and Lees,
Michael and Walker, Rodney (2006) A High Performance Fuzzy
Logic Architecture for UAV Decision Making. In Proceedings
IASTED International Conference on Computational Intelligence, San
Francisco.

Copyright 2006 ACTA Press

Accessed from http://eprints.qut.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10876937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/

A HIGH PERFORMANCE FUZZY LOGIC ARCHITECTURE FOR UAV
DECISION MAKING

Paul Wu1, Pritesh Narayan1, Duncan Campbell1, Michael Lees2, Rodney Walker1

1School of Engineering Systems, Queensland University of Technology
2Department of Electrical and Electronic Engineering, University of Melbourne

Australia
p.wu@qut.edu.au

ABSTRACT
The majority of Unmanned Aerial Vehicles (UAVs) in
operation today are not truly autonomous, but are instead
reliant on a remote human pilot. A high degree of
autonomy can provide many advantages in terms of cost,
operational resources and safety. However, one of the
challenges involved in achieving autonomy is that of
replicating the reasoning and decision making capabilities
of a human pilot. One candidate method for providing this
decision making capability is fuzzy logic. In this role, the
fuzzy system must satisfy real-time constraints, process
large quantities of data and relate to large knowledge
bases. Consequently, there is a need for a generic, high
performance fuzzy computation platform for UAV
applications. Based on Lees’ [1] original work, a high
performance fuzzy processing architecture, implemented
in Field Programmable Gate Arrays (FPGAs), has been
developed and is shown to outclass the performance of
existing fuzzy processors.

KEY WORDS
Fuzzy systems, hardware implementation, unmanned
aerial vehicle, pipelining, decision support systems,
parallel computing

1. Introduction
In recent times, Unmanned Aerial Vehicles (UAVs) have
been employed in an increasingly diverse range of
applications. Numerous UAV market forecasts portray a
burgeoning future, including predictions of a USD10.6
billion market by 2013 [2]. Within the civilian realm,
UAVs are useful in performing a wide range of airborne
science missions such as disaster monitoring, search and
rescue, and atmospheric observation [3]. However,
operation of UAVs in the National Air Space (NAS)
requires an equivalent level of safety to that of a human
pilot [4]. Achieving higher levels of onboard autonomy
helps to address this safety requirement. At the same time,
it also reduces the susceptibility to communications
failure (with less reliance on a remote pilot), lowers the
operational costs, and decreases operator workload.

There are many components required to replicate the
capabilities of a human pilot onboard a UAV. One

significant component of this is replicating the decision
making capabilities. A candidate approach to achieving
this includes the application of fuzzy logic.

1.1 Fuzzy Logic
There has been increasing interest in employing fuzzy
logic in applications that have large rule bases, real-time
computational constraints and require processing of large
quantities of data. These applications present a
computational challenge as the fuzzy processor must meet
stringent performance requirements. Examples include
such diverse areas as fuzzy image processing, data
mining, decision support, trajectory generation and
trajectory tracking [5,6].

1.2 UAV Decision Making
The motivation for the work described in this paper is the
implementation of decision making systems within
UAVs. Such systems are required to direct UAV
responses to various scenarios equivalent to those of a
human pilot. Examples include path planning, collision
avoidance and forced landings [7,8]. This level of
reasoning and decision making onboard a UAV can be
modelled hierarchically as: deliberation, sequencing, and
primitive actions [9].

A deliberator (the decision maker) prescribes tasks (to
achieve some goal) to a task sequencing layer. This layer
resolves high level tasks into a sequence of individual
primitive tasks to a reactive action layer which executes
real world actions. [9]

Performing such cognitive activities inherently requires
the evaluation of multiple and possibly conflicting
objectives. Factors such as unanticipated weather
changes, errors in terrain databases and vehicle subsystem
failures are difficulties that human pilots routinely deal
with, but are beyond the capability of most current UAVs.
Intelligent control, and more specifically fuzzy logic, is
seen as a potential method for encapsulating pilot
behavior onboard a pilot-less aircraft. As these systems
are expected to perform in near real-time due to the rapid
dynamics of fixed wing aircraft, it is imperative that the
fuzzy system meets real-time processing requirements.

Computational platforms for fuzzy logic are an important
consideration in terms of implementing UAV decision
systems, as well as other control, navigation and path
planning systems in real-time. In this regard,
reconfigurable logic, in the form of Field Programmable
Gate Arrays (FPGAs) has emerged as a candidate
computational platform for these applications.

2. Background
The application of high performance fuzzy logic to UAV
decision making is not new. Lundell [10] demonstrated
the applicability of fuzzy logic to UAV decision making
with an implementation of a fuzzy search and strike
decision making algorithm. Multiple parameters (or
dimensions in decision space) can be evaluated when
deciding on a course of action. These include spatial,
temporal and other aircraft related (e.g. fuel) constraints.
It can be seen that such a fuzzy multi-criteria decision
making system needs to process great quantities of data
using a large array of rules.

2.1 Current Application of Fuzzy Logic in UAVs
Intelligent control architectures implemented on board
UAVs are generally variations of the three tiered robotics
architecture pioneered by Bonasso [9]. Boskovic [11]
presents a variation of this multi-layered framework for
UAVs. (Figure 1) This framework makes provisions for
the entire range of onboard UAV functionalities, from
decision making and path planning to low level reactive
control for preservation of vehicle safety.

Figure 1: UAV Conceptual Framework [11]

2.1.1 Autonomous Path Planning
Fuzzy logic based techniques have been applied to
various components within intelligent control
architectures for UAVs (see Figure 1). Autonomous path
planning involves the generation of waypoints based on
mission requirements. Shi [12] presents a novel technique
for navigation and path planning of a rotary UAV in
unknown environments through fuzzy reasoning.

2.1.2 Autonomous Trajectory Generation
The trajectory generation layer creates an optimal path
through the waypoints with respect to a particular cost
function (such as fuel or distance). Nojima [13] uses a
fusion of fuzzy logic and genetic algorithms to generate
trajectories for mobile robots. As UAVs are essentially
mobile robots that fly, it is conceivable that fuzzy
trajectory generation could be applied to UAVs.

2.1.3 Fuzzy Control
Fuzzy control is a popular application of fuzzy theory that
has been extensively applied to UAV platforms. For
example, Dong [14] describes a fuzzy controller that
performs trajectory tracking (manoeuvring a UAV and
track a generated trajectory).

2.1.4 Computational Considerations
The decision making and path planning layers do not have
explicit real-time requirements as initial mission planning
is generally computed offline. Updates take place during
the mission as required. A mission update (or re-plan)
requires the generation of a new set of mission waypoints
that take into consideration the achievable dynamic
performance of the aircraft. The planner must process a
multitude of data each time a re-planning exercise occurs.
These could include offline data in the form of mapped
terrain or airspace boundaries, sensor data, and mission
objectives and constraints. In this situation a fuzzy
processing capability with a high throughput could greatly
accelerate the mission re-planning phases and potentially
decrease mission completion times.

Figure 2: Throughput and Real-Time Requirements of

the Different Decision Making Layers

Lower layers perform the task of trajectory tracking,
whilst avoiding any unforeseen obstacles and ensuring
dynamic stability of the UAV (through the use of adaptive
fuzzy controllers). These tasks must occur in real-time
(Figure 2) as a processing unit with insufficient
computational capacity could lead to inadequate control
of the aircraft. This can be avoided with the use of a fuzzy
processor with low latency.

2.2 Fuzzy Real-Time Implementation
First introduced in 1965 by Zadeh [15], fuzzy logic
essentially provides a method for mapping input space to
output space in a non-linear, rule based fashion. Fuzzy
sets form the foundation of fuzzy reasoning and are a

Decision Making

Path Planning

Adaptive Control

Trajectory Gen.

Real-Time
Requirement

Information
Throughput

form of multi-valued logic where an element can belong
to a set (or Membership Function MF) with varying
degrees of membership between 0 and 1 (typically).
Generally, a fuzzy calculation involves 3 main stages:

1. Fuzzification – where non-fuzzy (or crisp) real world

data is transformed into fuzzy degrees of membership
2. Inferencing – where the rules are applied to

determine the output fuzzy variables
3. Defuzzification – where the output fuzzy variables

are resolved into crisp values. [6]

A fuzzy processor needs to execute these three stages in
sequence to create the input-output mapping. There have
been many fuzzy processor implementations in the
literature with examples of both digital and analogue
fuzzy processing techniques. Typically, analogue fuzzy
processors consume less power than their digital
counterparts but are limited in terms of data precision [6].
Dualibe [16] presents an analogue processor that achieved
a throughput of 5.26MFLIPS (Mega Fuzzy Logic
Inferences Per Second). This architecture is limited to
Sugeno inferencing and only offers the equivalent of 5 or
6 bits of precision.

By contrast, digital fuzzy processors offer more resolution
(8 bits or more) and are common due to the ubiquity and
ease of use of development tools [6]. Some relatively
recent architectural implementations include that by
Salcic [17] which attains 50 MFLIPS using true Centre of
Gravity (CoG) defuzzification. Samman [18] presents
another architecture employing Sugeno inferencing that
has a pipeline delay of 100ns. Aranguren [19] describes a
balanced implementation (with regards to performance
and resource usage) that has a system latency of 423ns.
Similarly, Daijin [20] implemented an 8 bit processor that
has a system latency of 5.14ms. However, Lees’ [1]
implementation arguably provides the highest
performance in terms of throughput (1.2GFLIPS with
max defuzzification and 25MFLIPS with CoG
defuzzification) and system pipeline delay (28.7ns). This
also surpasses the performance obtained by the Motorola
68HC12 microcontroller which makes fuzzy
computations in the order of microseconds (given a clock
cycle duration of 125ns) [21].

Daijin, Aranguren, Samman and Lees all made use of
FPGAs. Besides the flexibility offered through
reconfigurability, modern FPGAs also boast high resource
availability in terms of on-chip logic elements, dedicated
signal processing elements (such as multipliers) and
streamlined circuit development tools (often referred to as
Electronic Design Automation or EDA software).
Furthermore, modern FPGAs also feature on-chip
memory elements (e.g. Cyclone II, Stratix II, Virtex 4,
Spartan 3) for caching data. [22,23]

3. Design and Methodology
Based on Lees’ [1] architecture, a high performance fuzzy
processor is described. This synchronous, 8-bit, fully
parallel and pipelined architecture is targeted at
programmable logic devices and especially modern
FPGAs. The architecture and implementation presented
by Lees is further developed with the view of potential
adoption in UAV onboard decision making. By adapting
the architecture to newer technology (notably the Altera
Cyclone II FPGA), even greater performance outcomes
were achieved.

3.1 Parameters
Fuzzy systems are characterised by several important
design parameters. These are:

• Number of inputs (or input variables)
• Number of outputs
• Number of input membership functions
• Number of output membership functions
• Number of rules
• Type of fuzzification
• Type of inferencing
• Type of defuzzification

The architecture is extensible to systems with any number
of rules, inputs and outputs. It employs singleton
fuzzification and Mamdani inferencing (derived from
Zadeh’s compositional rule of inference) using
Generalised Modus Ponens (or forward chaining)
reasoning:

Implication statement: IF X is A THEN Y is B
Premise: X is A’
Conclusion: Y is B’

where A, A’ and B, B’ are input and output MFs
respectively. In this case, X is A is the antecedent and Y is
B is the consequent; note that in general, each fuzzy rule
would take the form of:

 1 1 2 2

1 1 2 2

IF is and is and... THEN
 is and is and...

X A X A
Y B Y B

 (1)

With Mamdani inferencing, the output set B’ for a single
input single output system is calculated as:

()' ' 1..
() sup min (),max min (), ()B A Ai Bii n
z x x zµ µ µ µ

=
⎡ ⎤= ⎣ ⎦

 (2)

where A’ is the input MF, A and B are input and output
MFs respectively associated by n rules on universes of
discourse x and z respectively. Extension to multiple input
single output (MISO) systems can be done by performing
conjunction on the antecedents. Multiple Input Multiple
Output (MIMO) systems, on the other hand, can be
broken down into multiple parallel MISO systems [6].

Min-max inferencing was implemented where min was
the conjunctive (or t-norm) and max the disjunctive (or s-

norm) operator. As the architecture is modular, other
conjunctive and disjunctive operators could be
implemented such as product-sum. Note that when more
than one rule implicates the same output MF, the
maximum implication value is taken; this process is called
aggregation.

With regards to defuzzification, both true CoG
defuzzification (refer equation (3)) and max
defuzzification (where the output zo corresponds to the
highest point in ' ()B zµ) were implemented. Again, as the
architecture is modular, other forms of defuzzification
could also be implemented.

 '

'

()

()
B

o
B

z z dz
z

z dz

µ

µ
= ∫
∫

 (3)

3.2. Architecture
An overview of the pipelined fuzzy processing
architecture is shown in Figure 3.

3.2.1 Fuzzification
Singleton fuzzification was implemented using Look Up
Tables (LUT) as LUTs are the fastest single element on
an FPGA [24]. Each 8-bit input value is interpreted as the
address to a LUT to obtain the degree of membership to
that MF. In this way, the degree of membership to every
MF for every input variable is obtained in parallel. It can
be seen that this reduced runtime processing is offset by
increased memory resource usage. However, this is not a
problem given the availability of extensive memory
resources in modern FPGAs.

3.2.2 Inferencing
Based on equation (2), a fully parallel and pipelined
inferencing structure was derived as shown below.

Figure 4: Inferencing Architecture [1]

For each input in implication (or each rule in
aggregation), a tree structure was employed using the
relevant min or max operator to arrive at the resulting
output as shown in Figure 5.

Figure 5: Implication/Aggregation Tree Structure

Unlike Lees [1], each min or max block was sub-
pipelined into two sub-stages to further reduce the system
pipeline latency. This was possible due to advancements
in FPGA technology resulting in reduced clock skew,
memory register propagation and setup delays.
Additionally, a more effective design of the internal logic
for min and max blocks also helped in reducing the
pipeline latency [25].

3.2.3 Defuzzification
Both max defuzzification and CoG defuzzification were
implemented. Max defuzzification can be performed with
a tree of disjunctive elements similar to that shown in
Figure 5.

On the other hand, CoG defuzzification, which is often
touted as the most computationally expensive process in a
fuzzy system, was implemented using a partially pre-
calculated approach. First proposed by Lees [1], this
method assumes that there are only 2 degrees of overlap
between output MFs. Membership functions are divided
into non-overlapping segments (A, B and C in Figure 6).
The Moment of Area (obtained from the numerator of
equation (3)) and Area (from the denominator) are pre-
calculated and stored in LUTs for each segment for all
alpha cut levels.

Figure 6: Segmenting Two Overlapping MFs into

Non-overlapping Regions A, B and C

In this way, the aggregated truncation level from the
inferencing stage can be used to look up the moment of
area and area in one step. The sums for the moments of

Figure 3: Critical Path of the Pipelined Fuzzy Processor Architecture

area and area for all segments are calculated and a
division is performed to obtain the final CoG. (Figure 7)

Figure 7: Defuzzification [1]

Lees’ implementation is further enhanced by the use of a
pipelined divider thereby greatly reducing the system
pipeline latency, which in turn increases the net data
throughput.

3.3 FPGA Implementation
A 36 rule, dual input single output fuzzy system was
implemented as a test system as it reflected the test
system employed by Lees [1]. It had 6 MFs per input
variable and 6 MFs per output variable. The system made
use of singletons for fuzzification, employed Mamdani
inferencing and offered a choice of max or CoG
defuzzification.

With max defuzzification, a pipeline delay of 5ns,
corresponding to a throughput of 7.2GFLIPS was
simulated. The entire fuzzy processor used just 7% of the
available logic elements on the Cyclone II FPGA
(EP2C35F672C6) and 5% of on chip memory. This result
(7.2GFLIPS) was confirmed through hardware
experimentation. Similarly, a throughput of 3.6GFLIPS
was achieved with a pipeline delay of 10ns using CoG
defuzzification. Again, resource utilisation was just 8% of
logic elements and 14% of available memory.

It can be seen that the achieved performance is an order of
magnitude greater than all of the aforementioned fuzzy
processors and even greater than that originally presented
by Lees [1]. Therefore, this architecture is particularly
suited for applications requiring very high fuzzy
processing rates.

4. Evaluation
It is prudent to make some observations regarding the
commonly used measure of performance of fuzzy systems
(based on Fuzzy Logic Inferences Per Second).

4.1 Performance Measurement
Presently, there is a lack of consensus on a standard
method of performance measurement and this gives rise
to ambiguity when comparing the performance of
different fuzzy processors [6]. However, a survey of the
literature revealed that many authors make use of the
FLIPS measurement. The number of FLIPS is calculated
by multiplying the number of inference rules by the

number of complete end-to-end fuzzy evaluations per
second. Therefore, the FLIPS criterion only provides an
indication of the throughput of the processor and is
heavily influenced by the size of the rule base.

Another method for performance assessment is to
measure the system latency but this too is also dependent
on the test fuzzy system. One could investigate the
latencies of components in the system to obtain a more
pertinent evaluation of the scalability of the architecture.
Another method for measuring performance is to find the
pipeline delay – this provides an indication of the
throughput of the architecture that is independent of the
test system.

4.2 Fuzzy Processor Performance
The experimental results are summarised and compared
against other works in Table 1. It can be seen that the
performance achieved is significantly greater than that
obtained by other authors. It was found that there were
some timing discrepancies between simulation and
physical hardware tests but these were attributed to
Altera’s preliminary simulation timing characteristics for
the Cyclone II.

Table 1. Performance Comparison
Author Throughput System

latency
Proposed work with CoG
defuzzification

3.6GFLIPS
10ns pipeline delay

292ns

Proposed work with Max
defuzzification

7.2GFLIPS
5ns pipeline delay

95.2ns

Lees [1] with CoG
defuzzification

25MFLIPS 980ns

Lees [1] with Max
defuzzification

1.2GFLIPS
28.7ns pipeline
delay

265.5ns

Dualibe [16] 5.26MFLIPS
Salcic [17] with CoG
defuzzification

50MFLIPS

Samman [18] Pipeline delay 100ns
Aranguren [19] 423ns
Daijin [20] 5.14ms
Motorola 68HC12 µseconds

5. Conclusion
The fuzzy computational architecture presented in this
paper is shown to produce vastly greater levels of
throughput (3.6GFLIPS) than that of existing fuzzy
processing systems. Based on the original work by Lees
[1], it further capitalises on opportunities for pipelining,
parallelisation and newer FPGA technology, including
on-chip memory and lower logic element latencies. The
architecture is extensible and easily adaptable to different
fuzzy systems with differing numbers of inputs, outputs,
rules, methods of inferencing and defuzzification. Hence,
this generic architecture is suited to a wide variety of
fuzzy applications which require high performance.

In particular, the combination of low system latency and
high throughput makes it especially suited to UAV
decision making. The need for real-time fuzzy processing,
coupled with the complexity involved in multi-criteria
decision making could be satisfied using a fuzzy
processor employing the architecture presented here.

Future Work
It is a natural extension to this work to devise a
computational architecture for type-2 fuzzy reasoning
which embeds the ability to cater for uncertainty in input
data. This is of particular interest in UAVs where there
may be elements of uncertainty through sensors, or
inferences of particular aspects of the state of the aircraft.
This, and other candidate computational platforms, will
be implemented and evaluated on test UAV platforms for
decision making operations.

Acknowledgements
The authors wish to acknowledge the support of the
Queensland University of Technology (QUT), the
Australian Research Centre for Aerospace Automation
(ARCAA) and the CSIRO.

References
[1] M. J. Lees and D. A. Campbell, A 1.2 GFLIPS
fuzzy logic inference processor: breaking the billion rules
per second barrier, Proc. International Conference on
Neural Information Processing and Intelligent
Information Systems, 1997, 696-699.
[2] T. Cox, Civil UAV Capability Assessment
(NASA, 2004)
[3] S. S. Wegener, S. S. Schoenung, J. Totah, D.
Sullivan, J. Frank, F. Enomoto, C. Frost and C. Theodore,
UAV Autonomous Operations for Airborne Science
Missions, Proc. AIAA 3rd "Unmanned Unlimited"
Technical Conference, Workshop and Exhibit, Chicago,
Illinois, 2004.
[4] Federal Aviation Administration, Order 7610.4K
Special Military Operations (2004)
[5] J. C. Bezdek, M. R. Pal, J. Keller and R.
Krisnapuram, Fuzzy Models and Algorithms for Pattern
Recognition and Image Processing (Norwell, MA:
Kluwer Academic Publishers, 1999)
[6] E. H. Ruspini, P. P. Bonissone and W. Pedrycz,
Handbook of Fuzzy Computation (Bristol: Institute of
Physics Pub., 1998)
[7] I. Mcmanus, A Multidisciplinary Approach to
Highly Autonomous UAV Mission Planning and Piloting
for Civilian Airspace (Brisbane: QUT, 2004)
[8] D. Fitzgerald, R. Walker and D. Campbell, A
Vision Based Forced Landing Site Selection System for
an Autonomous UAV, Proc. International Conference on
Intelligent Sensors, Sensor Networks and Information
Processing, 2005, 397-402.
[9] R. P. Bonasso, D. Kortenkamp, D. P. Miller and
M. G. Slack, Experiences with an Architecture for
Intelligent, Reactive Agents, Proc. International Joint
Conference on Artificial Intelligence, 1995.

[10] M. Lundell, J. Tang and K. Nygard, Fuzzy petri
net for UAV decision making, Proc. International
Symposium on Collaborative Technologies and Systems,
2005, 347-352.
[11] J. D. Boskovic, R. Prasanth and R. K. Mehra, A
multilayer control architecture for unmanned aerial
vehicles, Proc. American Control Conference, 2002,
1825-1830 vol.3.
[12] D. Shi, M. F. Selekwa, E. G. Collins, Jr. and C.
A. Moore, Fuzzy behavior navigation for an unmanned
helicopter in unknown environments, Proc. IEEE
International Conference on Systems, Man and
Cybernetics, 2005, 3897-3902 vol.4.
[13] Y. Nojima, F. Kojima and N. Kubota, Trajectory
generation for human-friendly behavior of partner robot
using fuzzy evaluating interactive genetic algorithm,
Proc. IEEE International Symposium on Computational
Intelligence in Robotics and Automation, 2003, 306-311
vol.1.
[14] T. Dong, X. H. Liao, R. Zhang, Z. Sun and Y. D.
Song, Path tracking and obstacle avoidance of UAVs -
Fuzzy logic approach, Proc. IEEE International
Conference on Fuzzy Systems, 2005, 43-48.
[15] L. A. Zadeh, Fuzzy Sets, Inf. Control, 8, 1965,
338–353.
[16] C. Dualibe, P. Jespers and M. Verleysen, A 5.26
MFLIPS programmable analogue fuzzy logic controller in
a standard CMOS 2.4µ technology, Proc. IEEE
International Symposium on Circuits and Systems, 2000,
377-380 vol.5.
[17] Z. Salcic, High-speed customizable fuzzy-logic
processor: architecture and implementation, Systems, Man
and Cybernetics, Part A, IEEE Transactions on, 31(6),
2001, 731-737.
[18] F. A. Samman and E. Y. Syamsuddin,
Programmable fuzzy logic controller circuit on CPLD
chip, Proc. Asia-Pacific Conference on Circuits and
Systems, 2002, 561-564 vol.2.
[19] G. Aranguren, M. Barron, J. L. Arroyabe and G.
Garcia-Carreira, A pipe-line fuzzy controller in FPGA,
Proc. Sixth IEEE International Conference on Fuzzy
Systems, 1997, 635-640 vol.2.
[20] D. Kim, An implementation of fuzzy logic
controller on the reconfigurable FPGA system, Industrial
Electronics, IEEE Transactions on, 47(3), 2000, 703-715.
[21] Freescale Semiconductor, CPU12 Reference
Manual (2006)
[22] Xilinx, Virtex 4 (2004)
[23] Altera Corporation, Cyclone II Device Handbook
(2005)
[24] K. Morris, Stratix II - Altera unveils new 90nm
architecture, FPGA and Programmable Logic Journal, 2,
2004.
[25] P. Wu, A Reconfigurable Hardware Fuzzy Logic
Implementation (Brisbane, Australia: Queensland
University of Technology, 2005)

