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ABSTRACT 
The majority of Unmanned Aerial Vehicles (UAVs) in 
operation today are not truly autonomous, but are instead 
reliant on a remote human pilot. A high degree of 
autonomy can provide many advantages in terms of cost, 
operational resources and safety. However, one of the 
challenges involved in achieving autonomy is that of 
replicating the reasoning and decision making capabilities 
of a human pilot. One candidate method for providing this 
decision making capability is fuzzy logic. In this role, the 
fuzzy system must satisfy real-time constraints, process 
large quantities of data and relate to large knowledge 
bases. Consequently, there is a need for a generic, high 
performance fuzzy computation platform for UAV 
applications. Based on Lees’ [1] original work, a high 
performance fuzzy processing architecture, implemented 
in Field Programmable Gate Arrays (FPGAs), has been 
developed and is shown to outclass the performance of 
existing fuzzy processors. 
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1.  Introduction 
In recent times, Unmanned Aerial Vehicles (UAVs) have 
been employed in an increasingly diverse range of 
applications. Numerous UAV market forecasts portray a 
burgeoning future, including predictions of a USD10.6 
billion market by 2013 [2]. Within the civilian realm, 
UAVs are useful in performing a wide range of airborne 
science missions such as disaster monitoring, search and 
rescue, and atmospheric observation [3]. However, 
operation of UAVs in the National Air Space (NAS) 
requires an equivalent level of safety to that of a human 
pilot [4]. Achieving higher levels of onboard autonomy 
helps to address this safety requirement. At the same time, 
it also reduces the susceptibility to communications 
failure (with less reliance on a remote pilot), lowers the 
operational costs, and decreases operator workload.  
 
There are many components required to replicate the 
capabilities of a human pilot onboard a UAV. One 

significant component of this is replicating the decision 
making capabilities. A candidate approach to achieving 
this includes the application of fuzzy logic.  
 
1.1 Fuzzy Logic 
There has been increasing interest in employing fuzzy 
logic in applications that have large rule bases, real-time 
computational constraints and require processing of large 
quantities of data. These applications present a 
computational challenge as the fuzzy processor must meet 
stringent performance requirements. Examples include 
such diverse areas as fuzzy image processing, data 
mining, decision support, trajectory generation and 
trajectory tracking [5,6]. 
 
1.2 UAV Decision Making 
The motivation for the work described in this paper is the 
implementation of decision making systems within 
UAVs. Such systems are required to direct UAV 
responses to various scenarios equivalent to those of a 
human pilot. Examples include path planning, collision 
avoidance and forced landings [7,8]. This level of 
reasoning and decision making onboard a UAV can be 
modelled hierarchically as: deliberation, sequencing, and 
primitive actions [9]. 
 
A deliberator (the decision maker) prescribes tasks (to 
achieve some goal) to a task sequencing layer. This layer 
resolves high level tasks into a sequence of individual 
primitive tasks to a reactive action layer which executes 
real world actions. [9] 
 
Performing such cognitive activities inherently requires 
the evaluation of multiple and possibly conflicting 
objectives. Factors such as unanticipated weather 
changes, errors in terrain databases and vehicle subsystem 
failures are difficulties that human pilots routinely deal 
with, but are beyond the capability of most current UAVs. 
Intelligent control, and more specifically fuzzy logic, is 
seen as a potential method for encapsulating pilot 
behavior onboard a pilot-less aircraft. As these systems 
are expected to perform in near real-time due to the rapid 
dynamics of fixed wing aircraft, it is imperative that the 
fuzzy system meets real-time processing requirements. 



Computational platforms for fuzzy logic are an important 
consideration in terms of implementing UAV decision 
systems, as well as other control, navigation and path 
planning systems in real-time. In this regard, 
reconfigurable logic, in the form of Field Programmable 
Gate Arrays (FPGAs) has emerged as a candidate 
computational platform for these applications.  
 
2.  Background 
The application of high performance fuzzy logic to UAV 
decision making is not new. Lundell [10] demonstrated 
the applicability of fuzzy logic to UAV decision making 
with an implementation of a fuzzy search and strike 
decision making algorithm. Multiple parameters (or 
dimensions in decision space) can be evaluated when 
deciding on a course of action. These include spatial, 
temporal and other aircraft related (e.g. fuel) constraints. 
It can be seen that such a fuzzy multi-criteria decision 
making system needs to process great quantities of data 
using a large array of rules.  
 
2.1 Current Application of Fuzzy Logic in UAVs 
Intelligent control architectures implemented on board 
UAVs are generally variations of the three tiered robotics 
architecture pioneered by Bonasso [9]. Boskovic [11] 
presents a variation of this multi-layered framework for 
UAVs. (Figure 1) This framework makes provisions for 
the entire range of onboard UAV functionalities, from 
decision making and path planning to low level reactive 
control for preservation of vehicle safety. 
 

 
Figure 1: UAV Conceptual Framework [11] 

 
2.1.1 Autonomous Path Planning 
Fuzzy logic based techniques have been applied to 
various components within intelligent control 
architectures for UAVs (see Figure 1). Autonomous path 
planning involves the generation of waypoints based on 
mission requirements. Shi [12] presents a novel technique 
for navigation and path planning of a rotary UAV in 
unknown environments through fuzzy reasoning.  
 

2.1.2 Autonomous Trajectory Generation 
The trajectory generation layer creates an optimal path 
through the waypoints with respect to a particular cost 
function (such as fuel or distance). Nojima [13] uses a 
fusion of fuzzy logic and genetic algorithms to generate 
trajectories for mobile robots. As UAVs are essentially 
mobile robots that fly, it is conceivable that fuzzy 
trajectory generation could be applied to UAVs. 
 
2.1.3 Fuzzy Control 
Fuzzy control is a popular application of fuzzy theory that 
has been extensively applied to UAV platforms. For 
example, Dong [14] describes a fuzzy controller that 
performs trajectory tracking (manoeuvring a UAV and 
track a generated trajectory). 
 
2.1.4 Computational Considerations 
The decision making and path planning layers do not have 
explicit real-time requirements as initial mission planning 
is generally computed offline. Updates take place during 
the mission as required. A mission update (or re-plan) 
requires the generation of a new set of mission waypoints 
that take into consideration the achievable dynamic 
performance of the aircraft. The planner must process a 
multitude of data each time a re-planning exercise occurs. 
These could include offline data in the form of mapped 
terrain or airspace boundaries, sensor data, and mission 
objectives and constraints. In this situation a fuzzy 
processing capability with a high throughput could greatly 
accelerate the mission re-planning phases and potentially 
decrease mission completion times.  
 

 
Figure 2: Throughput and Real-Time Requirements of 

the Different Decision Making Layers 
 
Lower layers perform the task of trajectory tracking, 
whilst avoiding any unforeseen obstacles and ensuring 
dynamic stability of the UAV (through the use of adaptive 
fuzzy controllers). These tasks must occur in real-time 
(Figure 2) as a processing unit with insufficient 
computational capacity could lead to inadequate control 
of the aircraft. This can be avoided with the use of a fuzzy 
processor with low latency. 
 
2.2 Fuzzy Real-Time Implementation 
First introduced in 1965 by Zadeh [15], fuzzy logic 
essentially provides a method for mapping input space to 
output space in a non-linear, rule based fashion. Fuzzy 
sets form the foundation of fuzzy reasoning and are a 
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form of multi-valued logic where an element can belong 
to a set (or Membership Function MF) with varying 
degrees of membership between 0 and 1 (typically). 
Generally, a fuzzy calculation involves 3 main stages:  
 
1. Fuzzification – where non-fuzzy (or crisp) real world 

data is transformed into fuzzy degrees of membership 
2. Inferencing – where the rules are applied to 

determine the output fuzzy variables 
3. Defuzzification – where the output fuzzy variables 

are resolved into crisp values. [6] 
 
A fuzzy processor needs to execute these three stages in 
sequence to create the input-output mapping. There have 
been many fuzzy processor implementations in the 
literature with examples of both digital and analogue 
fuzzy processing techniques. Typically, analogue fuzzy 
processors consume less power than their digital 
counterparts but are limited in terms of data precision [6]. 
Dualibe [16] presents an analogue processor that achieved 
a throughput of 5.26MFLIPS (Mega Fuzzy Logic 
Inferences Per Second). This architecture is limited to 
Sugeno inferencing and only offers the equivalent of 5 or 
6 bits of precision.  
 
By contrast, digital fuzzy processors offer more resolution 
(8 bits or more) and are common due to the ubiquity and 
ease of use of development tools [6]. Some relatively 
recent architectural implementations include that by 
Salcic [17] which attains 50 MFLIPS using true Centre of 
Gravity (CoG) defuzzification. Samman [18] presents 
another architecture employing Sugeno inferencing that 
has a pipeline delay of 100ns. Aranguren [19] describes a 
balanced implementation (with regards to performance 
and resource usage) that has a system latency of 423ns. 
Similarly, Daijin [20] implemented an 8 bit processor that 
has a system latency of 5.14ms. However, Lees’ [1] 
implementation arguably provides the highest 
performance in terms of throughput (1.2GFLIPS with 
max defuzzification and 25MFLIPS with CoG 
defuzzification) and system pipeline delay (28.7ns). This 
also surpasses the performance obtained by the Motorola 
68HC12 microcontroller which makes fuzzy 
computations in the order of microseconds (given a clock 
cycle duration of 125ns) [21]. 
 
Daijin, Aranguren, Samman and Lees all made use of 
FPGAs. Besides the flexibility offered through 
reconfigurability, modern FPGAs also boast high resource 
availability in terms of on-chip logic elements, dedicated 
signal processing elements (such as multipliers) and 
streamlined circuit development tools (often referred to as 
Electronic Design Automation or EDA software). 
Furthermore, modern FPGAs also feature on-chip 
memory elements (e.g. Cyclone II, Stratix II, Virtex 4, 
Spartan 3) for caching data. [22,23] 
 

3.  Design and Methodology 
Based on Lees’ [1] architecture, a high performance fuzzy 
processor is described. This synchronous, 8-bit, fully 
parallel and pipelined architecture is targeted at 
programmable logic devices and especially modern 
FPGAs. The architecture and implementation presented 
by Lees is further developed with the view of potential 
adoption in UAV onboard decision making. By adapting 
the architecture to newer technology (notably the Altera 
Cyclone II FPGA), even greater performance outcomes 
were achieved. 
 
3.1 Parameters 
Fuzzy systems are characterised by several important 
design parameters. These are: 

• Number of inputs (or input variables) 
• Number of outputs 
• Number of input membership functions 
• Number of output membership functions 
• Number of rules 
• Type of fuzzification 
• Type of inferencing 
• Type of defuzzification 

The architecture is extensible to systems with any number 
of rules, inputs and outputs. It employs singleton 
fuzzification and Mamdani inferencing (derived from 
Zadeh’s compositional rule of inference) using 
Generalised Modus Ponens (or forward chaining) 
reasoning: 
 

Implication statement: IF X is A THEN Y is B 
Premise: X is A’ 
Conclusion: Y is B’ 

 
where A, A’ and B, B’ are input and output MFs 
respectively. In this case, X is A is the antecedent and Y is 
B is the consequent; note that in general, each fuzzy rule 
would take the form of:  

 1 1 2 2

1 1 2 2

IF  is  and  is  and... THEN 
        is  and  is  and...

X A X A
Y B Y B

 (1) 

With Mamdani inferencing, the output set B’ for a single 
input single output system is calculated as: 

( )' ' 1..
( ) sup min ( ),max min ( ), ( )B A Ai Bii n
z x x zµ µ µ µ

=
⎡ ⎤= ⎣ ⎦

 (2) 

where A’ is the input MF, A and B are input and output 
MFs respectively associated by n rules on universes of 
discourse x and z respectively. Extension to multiple input 
single output (MISO) systems can be done by performing 
conjunction on the antecedents. Multiple Input Multiple 
Output (MIMO) systems, on the other hand, can be 
broken down into multiple parallel MISO systems [6].  
 
Min-max inferencing was implemented where min was 
the conjunctive (or t-norm) and max the disjunctive (or s-



norm) operator. As the architecture is modular, other 
conjunctive and disjunctive operators could be 
implemented such as product-sum. Note that when more 
than one rule implicates the same output MF, the 
maximum implication value is taken; this process is called 
aggregation. 
 
With regards to defuzzification, both true CoG 
defuzzification (refer equation (3)) and max 
defuzzification (where the output zo corresponds to the 
highest point in ' ( )B zµ ) were implemented. Again, as the 
architecture is modular, other forms of defuzzification 
could also be implemented.  
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 (3) 

3.2. Architecture 
An overview of the pipelined fuzzy processing 
architecture is shown in Figure 3.  
 
3.2.1 Fuzzification 
Singleton fuzzification was implemented using Look Up 
Tables (LUT) as LUTs are the fastest single element on 
an FPGA [24]. Each 8-bit input value is interpreted as the 
address to a LUT to obtain the degree of membership to 
that MF. In this way, the degree of membership to every 
MF for every input variable is obtained in parallel. It can 
be seen that this reduced runtime processing is offset by 
increased memory resource usage. However, this is not a 
problem given the availability of extensive memory 
resources in modern FPGAs. 
 
3.2.2 Inferencing 
Based on equation (2), a fully parallel and pipelined 
inferencing structure was derived as shown below. 
 

 
Figure 4: Inferencing Architecture [1] 

 
For each input in implication (or each rule in 
aggregation), a tree structure was employed using the 
relevant min or max operator to arrive at the resulting 
output as shown in Figure 5. 

 
Figure 5: Implication/Aggregation Tree Structure 

 
Unlike Lees [1], each min or max block was sub-
pipelined into two sub-stages to further reduce the system 
pipeline latency. This was possible due to advancements 
in FPGA technology resulting in reduced clock skew, 
memory register propagation and setup delays. 
Additionally, a more effective design of the internal logic 
for min and max blocks also helped in reducing the 
pipeline latency [25]. 
 
3.2.3 Defuzzification 
Both max defuzzification and CoG defuzzification were 
implemented. Max defuzzification can be performed with 
a tree of disjunctive elements similar to that shown in 
Figure 5. 
 
On the other hand, CoG defuzzification, which is often 
touted as the most computationally expensive process in a 
fuzzy system, was implemented using a partially pre-
calculated approach. First proposed by Lees [1], this 
method assumes that there are only 2 degrees of overlap 
between output MFs. Membership functions are divided 
into non-overlapping segments (A, B and C in Figure 6). 
The Moment of Area (obtained from the numerator of 
equation (3)) and Area (from the denominator) are pre-
calculated and stored in LUTs for each segment for all 
alpha cut levels. 
 

 
Figure 6: Segmenting Two Overlapping MFs into 

Non-overlapping Regions A, B and C 
 
In this way, the aggregated truncation level from the 
inferencing stage can be used to look up the moment of 
area and area in one step. The sums for the moments of 

Figure 3: Critical Path of the Pipelined Fuzzy Processor Architecture 



area and area for all segments are calculated and a 
division is performed to obtain the final CoG. (Figure 7) 
 

 
Figure 7: Defuzzification [1] 

 
Lees’ implementation is further enhanced by the use of a 
pipelined divider thereby greatly reducing the system 
pipeline latency, which in turn increases the net data 
throughput.  
 
3.3 FPGA Implementation 
A 36 rule, dual input single output fuzzy system was 
implemented as a test system as it reflected the test 
system employed by Lees [1]. It had 6 MFs per input 
variable and 6 MFs per output variable. The system made 
use of singletons for fuzzification, employed Mamdani 
inferencing and offered a choice of max or CoG 
defuzzification.  
 
With max defuzzification, a pipeline delay of 5ns, 
corresponding to a throughput of 7.2GFLIPS was 
simulated. The entire fuzzy processor used just 7% of the 
available logic elements on the Cyclone II FPGA 
(EP2C35F672C6) and 5% of on chip memory. This result 
(7.2GFLIPS) was confirmed through hardware 
experimentation. Similarly, a throughput of 3.6GFLIPS 
was achieved with a pipeline delay of 10ns using CoG 
defuzzification. Again, resource utilisation was just 8% of 
logic elements and 14% of available memory.  
 
It can be seen that the achieved performance is an order of 
magnitude greater than all of the aforementioned fuzzy 
processors and even greater than that originally presented 
by Lees [1]. Therefore, this architecture is particularly 
suited for applications requiring very high fuzzy 
processing rates. 
 
4.  Evaluation 
It is prudent to make some observations regarding the 
commonly used measure of performance of fuzzy systems 
(based on Fuzzy Logic Inferences Per Second). 
 
4.1 Performance Measurement 
Presently, there is a lack of consensus on a standard 
method of performance measurement and this gives rise 
to ambiguity when comparing the performance of 
different fuzzy processors [6]. However, a survey of the 
literature revealed that many authors make use of the 
FLIPS measurement. The number of FLIPS is calculated 
by multiplying the number of inference rules by the 

number of complete end-to-end fuzzy evaluations per 
second. Therefore, the FLIPS criterion only provides an 
indication of the throughput of the processor and is 
heavily influenced by the size of the rule base.  
 
Another method for performance assessment is to 
measure the system latency but this too is also dependent 
on the test fuzzy system. One could investigate the 
latencies of components in the system to obtain a more 
pertinent evaluation of the scalability of the architecture. 
Another method for measuring performance is to find the 
pipeline delay – this provides an indication of the 
throughput of the architecture that is independent of the 
test system.  
 
4.2 Fuzzy Processor Performance 
The experimental results are summarised and compared 
against other works in Table 1. It can be seen that the 
performance achieved is significantly greater than that 
obtained by other authors. It was found that there were 
some timing discrepancies between simulation and 
physical hardware tests but these were attributed to 
Altera’s preliminary simulation timing characteristics for 
the Cyclone II. 
 
Table 1. Performance Comparison 
Author Throughput System 

latency 
Proposed work with CoG 
defuzzification 

3.6GFLIPS 
10ns pipeline delay 

292ns 

Proposed work with Max 
defuzzification 

7.2GFLIPS 
5ns pipeline delay 

95.2ns 

Lees [1] with CoG 
defuzzification 

25MFLIPS 980ns 

Lees [1] with Max 
defuzzification 

1.2GFLIPS 
28.7ns pipeline 
delay 

265.5ns 

Dualibe [16] 5.26MFLIPS  
Salcic [17] with CoG 
defuzzification 

50MFLIPS  

Samman [18] Pipeline delay 100ns  
Aranguren [19]  423ns 
Daijin [20]  5.14ms 
Motorola 68HC12  µseconds 
 
5.  Conclusion 
The fuzzy computational architecture presented in this 
paper is shown to produce vastly greater levels of 
throughput (3.6GFLIPS) than that of existing fuzzy 
processing systems. Based on the original work by Lees 
[1], it further capitalises on opportunities for pipelining, 
parallelisation and newer FPGA technology, including 
on-chip memory and lower logic element latencies. The 
architecture is extensible and easily adaptable to different 
fuzzy systems with differing numbers of inputs, outputs, 
rules, methods of inferencing and defuzzification. Hence, 
this generic architecture is suited to a wide variety of 
fuzzy applications which require high performance. 
 



In particular, the combination of low system latency and 
high throughput makes it especially suited to UAV 
decision making. The need for real-time fuzzy processing, 
coupled with the complexity involved in multi-criteria 
decision making could be satisfied using a fuzzy 
processor employing the architecture presented here.  
 
Future Work 
It is a natural extension to this work to devise a 
computational architecture for type-2 fuzzy reasoning 
which embeds the ability to cater for uncertainty in input 
data. This is of particular interest in UAVs where there 
may be elements of uncertainty through sensors, or 
inferences of particular aspects of the state of the aircraft. 
This, and other candidate computational platforms, will 
be implemented and evaluated on test UAV platforms for 
decision making operations.  
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