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ABSTRACT 

The need for greater independence amongst the growing population of elderly people has made 

the concept of “ageing in place” an important area of research. Remote home monitoring 

strategies help the elderly deal with challenges involved in ageing in place and performing the 

activities of daily living (ADLs) independently. These monitoring approaches typically involve 

the use of several sensors, attached to the environment or person, in order to acquire data about 

the ADLs of the occupant being monitored.  

Some key drawbacks associated with many of the ADL monitoring approaches proposed for 

the elderly living alone need to be addressed. These include the need to label a training dataset 

of activities, use wearable devices or equip the house with many sensors. These approaches are 

also unable to concurrently monitor physical ADLs to detect emergency situations, such as 

falls, and instrumental ADLs to detect deviations from the daily routine.  These are all 

indicative of deteriorating health in the elderly.  

To address these drawbacks, this research aimed to investigate the feasibility of unsupervised 

monitoring of both physical and instrumental ADLs of elderly people living alone via 

inexpensive minimally intrusive sensors. A hybrid framework was presented which combined 

two approaches for monitoring an elderly occupant’s physical and instrumental ADLs. Both 

approaches were trained based on unlabelled sensor data from the occupant’s normal 

behaviours. The data related to physical ADLs were captured from Kinect sensors and those 

related to instrumental ADLs were obtained using a combination of Kinect sensors and a power 

meter. Kinect sensors were employed in functional areas of the monitored environment to 

capture the occupant’s locations and 3D structures of their physical activities. The power meter 

measured the power consumption of home electrical appliances (HEAs) from the electricity 

panel.  

A novel unsupervised fuzzy approach was presented to monitor physical ADLs based on depth 

maps obtained from Kinect sensors. Epochs of activities associated with each monitored 

location were automatically identified, and the occupant’s behaviour patterns during each 

epoch were represented through the combinations of fuzzy attributes. A novel membership 

function generation technique was presented to elicit membership functions for attributes by 

analysing the data distribution of attributes while excluding noise and outliers in the data. The 
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occupant’s behaviour patterns during each epoch of activity were then classified into frequent 

and infrequent categories using a data mining technique. Fuzzy rules were learned to model 

frequent behaviour patterns. An alarm was raised when the occupant’s behaviour in new data 

was recognised as frequent with a longer than usual duration or infrequent with a duration 

exceeding a data-driven value.  

Another novel unsupervised fuzzy approach to monitor instrumental ADLs took unlabelled 

training data from Kinect sensors and a power meter to model the key features of instrumental 

ADLs. Instrumental ADLs in the training dataset were identified based on associating the 

occupant’s locations with specific power signatures on the power line. A set of fuzzy rules was 

then developed to model the frequency and regularity of the instrumental activities tailored to 

the occupant. This set was subsequently used to monitor new data and to generate reports on 

deviations from normal behaviour patterns. 

As a proof of concept, the proposed monitoring approaches were evaluated using a dataset 

collected from a real-life setting. An evaluation of the results verified the high accuracy of the 

proposed technique to identify the epochs of activities over alternative techniques. The 

approach adopted for monitoring physical ADLs was found to improve elderly monitoring. It 

generated fuzzy rules that could represent the person’s physical ADLs and exclude noise and 

outliers in the data more efficiently than alternative approaches. The performance of different 

membership function generation techniques was compared. The fuzzy rule set obtained from 

the output of the proposed technique could accurately classify more scenarios of normal and 

abnormal behaviours. 

The approach for monitoring instrumental ADLs was also found to reliably distinguish power 

signatures generated automatically by self-regulated devices from those generated as a result 

of an elderly person’s instrumental ADLs. The evaluations also showed the effectiveness of 

the approach in correctly identifying elderly people’s interactions with specific HEAs and 

tracking simulated upward and downward deviations from normal behaviours. The fuzzy 

inference system in this approach was found to be robust in regards to errors when identifying 

instrumental ADLs as it could effectively classify normal and abnormal behaviour patterns 

despite errors in the list of the used HEAs. 
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CHAPTER 1:  
INTRODUCTION 

The latest statistics on world population show that population ageing has become a global 

phenomenon (World Health Organization, 2015). This change has resulted in the demand for 

aged care services in many countries to go beyond the resources of existing aged care providers 

(Labonnote & Høyland, 2015). There is a need to find better approaches to allow the elderly to 

live independently and reduce the demands for aged care services. Automatic well-being 

monitoring systems may provide one possible solution. This chapter presents a general 

introduction to key sensory technologies that can be used in these monitoring systems to 

capture data from elderly people’s homes. The chapter also outlines the purpose of the research, 

its significance, the research questions and the contributions that the research makes to the field 

of study. The general organisation of this thesis is also presented. 

1.1 Background to the study 

1.1.1 The growing elderly population 

Today many countries are faced with a growing population of elderly people. Some of the latest 

statistics and projections on the world population presented by the World Health Organization 

(2015) show that in 1950 there were nearly 205 million elderly people (aged over 65) across 

the world with only three countries (i.e. China, India, and the United States of America) having 

more than ten million elderly people (see Figure 1.1 (a) and b)). By 200 the number of elderly 

people had triple in population with 5 countries having already having a population more than 

20 million older people. China (129 million), India (77 million) and the United States of 

America (46 million) were found to have the greatest population of elderly people. The number 

of elderly people is projected to rise dramatically to 974 million by 2030, and subsequently, to 

nearly 1.5 billion by 2050 worldwide, with 33 countries expected to have more than 10 million 

people aged 65 or more (World Health Organization, 2015). China (437 million), India (324 

million), the United States of America (107 million), Indonesia (70 million), and Brazil (58 

million) are five countries that are expected to have more than 50 million elderly people by the 

year 2050.  
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(a) 

 

(b) 

Figure 1.1. (a) World population aged more than 65, 1950-2050, and (b) the number of countries with 

the elderly population exceeding 10 million (Harper, 2014). 

 

Estimations also indicate that the older population is growing faster than the total population 

in both developed and developing countries (Harmankaya et al., 2015). In the 1950s, the 

average annual rate at which the number of persons aged over 65 increased globally was only 

slightly higher than that for the whole population. This growth rate is projected to be more than 

three times the rate of the entire population by the middle of the 21st century. 

 

The proportion of elderly people relative to the rest of the population has increased 

significantly. One in every 20 individuals were at least 65 years of age in 1950 (see Figure 1.2). 
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This percentage increased to one in every 10 by the year 2000. By 2050 more than one in every 

six persons in the world is projected to be aged at least 65, with more developed countries 

having relatively higher proportions of this age group.  

 

 

Figure 1.2. Proportion of population aged 65 or over: the world, developing countries and developed 

countries, 1950-2050 (World Health Organization, 2015). 

   

Older adults have been found to prefer to live independently in their own homes and 

communities and maintain the control of their lives as long as possible (Claes, Devriendt, 

Tournoy, & Milisen, 2015). This requires older adults to be functionally stable and capable of 

independently performing essential daily activities. Those elderly people who do live 

independently are more prone to high-risk incidents such as falls, collapses or heart attacks, 

which may result in serious injuries (Bennett, Wu, Kehtarnavaz, & Jafari, 2016; Cohen & 

Miller, 2000). Even healthy older adults who live independently encounter challenges due to 

normal age-related changes (Tan, He, Chan, & Vehviläinen‐Julkunen, 2015). Tragic deaths 

amongst the elderly may occur if long delays occur before medical help is made available.  

 

1.1.2 Monitoring activities of daily living of elderly people 

In order to address the issues that the elderly have in living independently, systems have been 

devised to monitor their well-being and daily activities. These activities of daily living (ADLs) 

include self-care activities, such as walking and cooking, that are considered necessary for an 

individual’s daily living (Ravishankar, Burleson, & Mahoney, 2015). These activities can be 

divided into two categories:  
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1. Physical ADLs: activities in this category involve the person adopting a certain posture 

in order to fulfil an activity. Some examples are sitting on a sofa and lying in bed 

(Mlinac & Feng, 2016).  

 

2. Instrumental ADLs: these activities involve the use of electrical and non-electrical 

home instruments. Some examples are cooking and watching TV (Debes et al., 2016). 

 

The ageing process is an expected cause of reduced ADL performance. It impacts the 

performance of both physical and instrumental ADLs (Durant, Leger, Banks, & Miller, 2016). 

Both types of ADLs are crucial for monitoring the functional abilities of the elderly in order 

for them to be able to live independently (Bennett et al., 2016). Monitoring physical activities 

can help identify emergency situations (e.g. falls, collapses or heart attacks), while monitoring 

instrumental ADLs helps detect deviations from important daily tasks such as cooking and 

grooming (Riboni, Bettini, Civitarese, Janjua, & Helaoui, 2015). For example, the ADLs of a 

healthy elderly person for sleeping at night or watching TV in the afternoon typically involve 

a daily routine. If the person’s ADLs register a difference in their daily routine, such as sleeping 

late in the morning or spending an unusually extended amount of time watching TV, this may 

indicate a potential change in their well-being. It is important to detect abnormal behaviours in 

ADLs at an early stage of their occurrence as changes in behaviours are manifestations of 

changes in the health or the capacity of the elderly to live independently (Fouquet, Franco, 

Villemazet, Demongeot, & Vuillerme, 2010). 

 

An early study by Barnes, Edwards, Rose, and Garner (1998, p. 1) stated that “Telecare is the 

remote or enhanced delivery of health and social care services to people in their own home by 

means of telecommunications and computer-based systems.” The study also defined lifestyle 

monitoring as “the long-term, continuous gathering and analysis of information about a 

person’s activities and daily routines,” the final goal of which is to notify medical caregivers 

about the outliers in ADLs including emergencies. Such systems incorporate a range of sensory 

data that are used to monitor and model ADLs in a way that facilitates the recognition of 

unusual behaviours and the generation of unique health status reports (Brownsell, Bradley, 

Blackburn, Cardinaux, & Hawley, 2011). This monitoring can reduce the pressure on 

caregivers and enable elderly people to live independently in the safety and comfort of their 

own homes, while ensuring that caregivers are notified of any unexpected event. 
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1.1.3 Sensor technologies for monitoring home environments 

A number of practical and affordable sensors have been reported for use in elderly people’s 

houses to provide constant monitoring and detect medical emergencies. (Peetoom, Lexis, Joore, 

Dirksen, & De Witte, 2015). A wide range of sensor types has already been employed to 

develop ADL monitoring approaches for home environments. Figure 1.3 depicts the examples 

of such sensory technology installed in typical locations of a home environment. 

 

 

Figure 1.3. Several sensory technologies available for developing ADL monitoring systems, including 

(1) a passive infrared motion detector (2) a magnetic reed switch door sensor, (3) a pressure sensor to 

detect if a chair or bed is occupied, (4) a temperature sensor to detect if the stove is being used, (5) a 

water usage sensor, (6) an electricity consumption sensor to detect appliance power usage, (7) a 

microphone array, (8) a smart phone equipped with an accelerometer and a gyroscope, and (9) a 

video/depth camera (image adopted from Cook and Krishnan (2014)). 

  

A study by Akhlaghinia, Lotfi, Langensiepen, and Sherkat (2008) reported that these sensors 

vary in price, the level of intrusiveness and ease of installation. Various sensors provide 

complementary information that can be used for monitoring various aspects of behaviour 

patterns, such as duration and frequency. The following sections outline different sensor 

technologies employed for ADL monitoring and review relevant studies where a combination 

of these technologies have been employed to monitor elderly people’s ADLs. 

 

1.1.3.1 Wearable sensors 

There are various wearable health monitoring devices equipped with accelerators, gyroscopes 

and physiological sensors to provide data about an individual’s condition. These sensors are 
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able to measure the orientation of the body using accelerometers and physiological rates (e.g. 

blood pressure, heart rate, temperature, glucose levels, calories) which are then transferred as 

raw data to a server (Cook & Holder, 2011). Raw data from these sensors are pre-processed 

into data segments and features are extracted from segments to characterise ADLs. These 

features range from spectral to statistical features, such as spectral entropy, dominant frequency 

components, minimum, mean and variance.  

 

Accelerometers which are used to measure body orientation are considered to be among the 

most effective and commonly used sensors (Debes et al., 2016). These devices detect activities 

based on the placement and number of sensors. An individual’s waist is the most common 

place where a single sensor is employed to capture data. A study by Bao and Intille (2004) used 

waist-worn accelerometers to successfully differentiate 20 different activities related to body 

movements such as folding laundry and standing still. Waist-worn accelerometers were also 

used to detect falls, estimate metabolic energy expenditure and monitor functional balance 

(Bidargaddi & Sarela, 2008; Mathie et al., 2004). Other studies have used ear-worn 

accelerometer unit to classify the intensity of the level of activities (e.g. very low, low, mid, 

and high) (Atallah, Lo, Ali, King, & Yang, 2009). Accelerometers have also been attached to 

belts. Figure 1.4 (a) shows the hardware for an accelerometer used by Putchana, Chivapreecha, 

and Limpiti (2012) and Figure 1.4 (b) depicts the receiver unit. Data recorded by the device 

were analysed to identify different movement types including falls.  

 

                

 (a) (b) 

Figure 1.4. The accelerometer technology used by Putchana et al. (2012) for monitoring body 

movements. (a) The transmitter unit and (b) the receiver hardware (images adopted from Putchana et 

al. (2012)). 

 

Wearable physiological sensors have been used to provide information such as blood pressure, 

heart rate, and respiration for tele-monitoring purposes. This information can be used for early 

diagnosis of symptoms or monitoring and managing chronic diseases. Caregivers can be 

notified if abnormal situations occur (Medjahed, Istrate, Boudy, & Dorizzi, 2009). 
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There are some limitations to the use of wearable sensors. Wearable sensors have been 

considered to be obstructive since individuals need to constantly carry them. Other 

disadvantages include short battery life, high cost and the fact that for measurements to be 

reliable, the sensor has to be worn on specific body parts. 

 

1.1.3.2 Video and audio sensors 

Many studies have reported the use of high-fidelity sensing technologies like video cameras 

and microphones to monitor people’s activities (König et al., 2015; Vuegen, Van Den Broeck, 

Karsmakers, Van Hamme, & Vanrumste, 2015). The acquired data need to be pre-processed to 

segment those associated with the monitored person in the environment. For example, a study 

by Chung and Liu (2008) segmented the image of the person in video frames and then classified 

their activities by statistically analysing their body posture. A hierarchical method for 

modelling behaviours was developed when the posture was combined with the location and 

temporal duration of each activity.  

 

Another study by Nguyen, Phung, Venkatesh, and Bui (2005) mounted four cameras at each 

corner of the ceiling of an experimental laboratory. The study proposed an algorithm to detect 

a list of visited cells at specific times based on the partitioning of the scene into cells. A tracking 

system was then applied to obtain the subject’s trajectories and to classify behaviours. Other 

approaches have estimated features from the silhouette, such as shape, location, aspect ratio of 

the minimum bounding box and orientation, in order to recognise the ongoing activity (Brulin, 

Benezeth, & Courtial, 2012; Zhongna et al., 2008). 

 

A study by Jianfeng Chen, Kam, Zhang, Liu, and Shue (2005) used microphones to monitor 

bathroom activities such as hand washing and showering. The time of occurrence, duration, 

and sequence of occurrence of each detected activity were reported to the caregiver. Another 

experimental study by Brdiczka, Langet, Maisonnasse, and Crowley (2009) reported on a role 

detection approach which combined video with audio information by using a headset to 

determine the speaking status of the subject. A microphone array was also placed on the wall 

for noise detection. Video streams were used to track the subject’s posture, speed, and 

interaction with other objects. The data were gathered and integrated as codes to estimate the 

person’s activities.  

 



 

8 

 

Video camera images are dependent on appropriate levels of lighting. Any monitored activity 

is performed in three-dimensional space. The use of 2D video images reduces the 

discriminative ability to characterise these activities. The use of 3D camera technologies can 

overcome the drawbacks of these 2D video images. Microsoft recently introduced an 

inexpensive Kinect sensor ("Kinect v2," 2015) which has a depth camera that captures 3D 

human motions and an associated software development kit (SDK) which estimates the posture 

and the location of skeleton joints of the person detected in the scene. The original aim for this 

technology was to enable users to interact with the Microsoft gaming consoles using gestures. 

This type of sensor is considered as an improvement on traditional colour cameras as its person 

detection algorithms operate based on the depth information of the scene rather than colour 

images, making the algorithms robust to light, colour, and texture variations. Information 

obtained from Kinect depth maps preserves the privacy of monitored people (Banerjee, Keller, 

Skubic, & Stone, 2014; Kepski, Kwolek, & Austvoll, 2012). 

  

An example of a person sitting on a sofa in front of a Kinect sensor and the corresponding 

depth map and the person’s silhouette obtained from the Kinect sensor is shown in Figure 1.5. 

Note that in the depth maps shown in this thesis, the higher depth values are displayed through 

brighter pixels. Depth measurement errors, which occur because of surface reflections, take the 

form of black regions.  

 

Many researchers have investigated the use of Kinect sensors for different applications 

including object recognition (Velayudhan & Gireeshkumar, 2015) and human action 

classification (Raheja, Minhas, Prashanth, Shah, & Chaudhary, 2015). For monitoring the 

elderly, Rougier, Auvinet, Rousseau, Mignotte, and Meunier (2011) proposed a technique in 

which the Kinect depth maps of a subject were used to detect falls. This was achieved by 

collecting a training dataset of normal activities to establish the thresholds of two types of 

features, namely the human centroid height relative to the ground and body velocity.  
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(a) 

         

 (b) (c) 

Figure 1.5. An example of Kinect data: (a) the colour image shows a person sitting in front of the 

sensor; (b) the corresponding depth map of the scene; and (c) the silhouette of the detected person. 

 

1.1.3.3 Environmental sensors  

Wearable and video-audio sensors are mostly employed to allow the classification of physical 

activities via individuals’ postures and movements. In contrast, environmental sensors are used 

to detect interactions with domestic objects in the home or the location of the person. Examples 

include binary switches (door/window contacts), radio frequency identification (RFID) tags, 

and temperature, light and passive infrared (PIR) sensors. Although these switches are 

inexpensive and easy to install, a large number is required to distinguish different activities. 

 

RFID tags and magnetic switches 

RFID tags are postage stamp size and can be attached to everyday objects. The advantages of 

these tags are that no battery is required and they can withstand day-to-day use for years. A 

radio frequency pulse is sent to the tag by a tag reader, which then captures a unique identifier 

based on the tag. Signals from a tag can be picked up in a range of a few centimetres to several 

metres depending on the power of the reader. This technology has been installed in many types 
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of home electrical appliances (HEAs) commonly used in ADLs, such as toasters, microwaves, 

and dishwashers. These tags can be used to estimate ADLs based on recently manipulated 

objects. For example, Gu, Wu, Tao, Pung, and Lu (2009) asked participants to wear a RFID 

tag reader on their wrist to identify when the individual was in the vicinity of a key item. 

Another similar study by Jianxin, Osuntogun, Choudhury, Philipose, and Rehg (2007) 

described a RFID-based approach for activity recognition. This study used a RFID reader that 

was attached to the user’s wrist to indicate when the hand was near a tagged object. 

 

Another alternative which has been reported is the use of magnetic switches. This type of sensor 

can be used to monitor old people’s activities in their homes by positioning the sensors in 

different locations (such as on doors, appliances, cabinets, lights and other items in the 

environment) and detecting any changes to these objects (van Kasteren, Englebienne, & Kröse, 

2011).  

 

Other studies have described monitoring specific ADLs by linking spatial locations visited by 

an elderly person to ADLs. For example, S. Zhang, McCullagh, Nugent, Zheng, and Black 

(2011) tracked the person’s movements by installing RFID readers in various places and 

identifying the visited locations in the home. The person’s position was recorded using a 

passive tag which was tracked using an antenna. The environment was divided into several 

functional subareas based on the occupant’s likely ADLs. A classifier was then deployed to 

map the subject’s locations to activities. 

 

PIR and pressure mats  

PIR sensors have been found to be the most commonly used technologies for locating and 

capturing people’s movements (Gokalp & Clarke, 2013). These sensors are widely used to 

support home alarm systems (Munstermann, Stevens, & Luther, 2012). PIR sensors monitor 

the infrared (heat) level in the environment and emit a high signal when they detect changes. 

The sensors are used to record time, location and the frequency of triggering of the sensor. For 

example, Suryadevara and Mukhopadhyay (2015) developed a ADL tele-monitoring technique 

that exploited a network of such detectors to locate an elderly resident in a home setting. A 

similar study by Krishnan and Cook (2014) also employed a wireless network of these sensors 

in a home environment to obtain the sequences of sensor events resulting from human 

movement in the house. Those sequences were used to estimate the occupant’s appliance usage, 

activities and mobility (Krishnan & Cook, 2014).  
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The limitation of the techniques using PIR sensors is that they may not detect emergency 

situations such as falls. For example, if a person enters a room and does not move (because of 

an accident such as a fall), the measurements from PIR sensors cannot determine that the person 

is stationary in the monitored area. The technique cannot provide sufficient information to 

characterise ADLs as it cannot detect the posture of the person in the house.  

 

Pressure mat sensors have been used in the last decade as another alternative to detect a 

person’s movement and to identify fall incidents and other activities (Hanson, Barth, & 

Silverman, 2011; Lauterbach, Steinhage, & Techmer, 2012). For example, these mats have 

been used in a number of studies to measure the position, acceleration as well as the weight of 

the subject by installing several of these sensors underneath the floor in specific locations 

(Hamid et al., 2009; Wen-Chih, Wangling, YiLing, & PeiChing, 2007). Pressure mats have 

also been installed under mattresses to measure rest periods (Fernandez-Luque, Martínez, 

Domènech, Zapata, & Ruiz, 2013).  

 

Power sensors 

Power sensors provide another alternative for monitoring elderly people’s activities. For 

example, turning on a hair dryer can imply that the occupant is grooming, or turning on a toaster 

in the kitchen can indicate a feeding activity. A number of ADL recognition studies have 

reported the use of power sensors to monitor the status of HEAs via their power signatures and 

electrical consumption patterns (Noury, Berenguer, Teyssier, Bouzid, & Giordani, 2011; 

Rahimi, Chan, & Goubran, 2011). Most existing approaches that monitor the usage of HEAs 

commonly involve installing and maintaining separate sensors for each electrical device (Cho, 

Yamazaki, & Hahn, 2010; Rowe, Berges, & Rajkumar, 2010). This has been found to be a 

limitation to the use of these systems as it can increase the cost and complexity of the system. 

 

Studies by Suryadevara, Quazi, and Mukhopadhyay (2012) and Cho et al. (2010) proposed 

installing separate power sensors for each electrical appliance with data related to the operating 

status of the appliance transmitted wirelessly to a computer. ADLs were estimated based on 

the function and location of the appliance connected to the sensor and the time of use.  

 

Another alternative approach for monitoring instrumental ADLs is through nonintrusive load 

monitoring (NILM) from a centralised location and the identification of the operational state 
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of HEAs by disaggregating the composite power signal. A power sensor is installed in the 

electricity box of the house and a training dataset of the power consumption signal is collected 

in order to identify power signatures associated with the usage of each HEA. A number of 

studies have used this approach for the classification of instrumental ADLs. For example, 

Rahimi et al. (2011) demonstrated the application of a NILM system that mapped the power 

signatures of various electrical devices to ADLs. The advantage of this technique was that the 

environment in the home was not altered as monitoring occurred through the external power 

meter box.  

 

Another study by Noury et al. (2011) defined relationships between ADLs and HEAs. The 

approach mapped power signatures detected on the power line to the usage of HEAs in the 

home using an annotated training dataset of house power consumption. It then identified the 

performance of instrumental ADLs from the relationships between ADLs and HEAs.  

 

A similar study by Belley, Gaboury, Bouchard, and Bouzouane (2014) recognised ADLs by 

measuring the power signatures of HEAs through the external power meter box. The power 

signatures could characterise the number, types, consumption and the operational states of all 

HEAs from a household. The study used a similarity measure to classify a new power signature 

to the detected appliance and associated activity.  

 

Other studies have reported the use of smart water meters for monitoring ADL activities. A 

study by Srinivasan, Stankovic, and Whitehouse (2011) proposed a disaggregation technique 

to link water usage to individual fixtures in the home. Another study by Fogarty, Au, and 

Hudson (2006) attached simple microphones to a home’s plumbing system. This solution has 

several advantages as it requires a limited number of sensors. However, it is not considered 

appropriate for homes which have plumbing infrastructure that is not easily accessible. 

 

1.1.4 Combinations of sensor technology used for monitoring the elderly 

One type of sensor may not provide sufficient information about ADLs for all situations 

(Ranjan & Whitehouse, 2015). For example, PIR sensors cannot supply data associated with 

ongoing instrumental activities in the kitchen. Monitoring techniques that involve different 

sensor types may provide a solution to deficiencies which have been shown with individual 

sensors. Table 1.1 presents examples of research studies that used different combinations of 
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sensors for monitoring ADLs. All studies have reported an increase in the accuracy of 

monitoring ADLs. The combination of environmental sensory technologies can require a large 

number of sensors and can be expensive.  

 
Table 1.1. Examples of research studies that combined sensor technologies. 

Study Types of sensor used Monitored 

ADLs PIR VC RT BS PM WS POS TS 

Intille et al. (2006)  *  * * * * * I 

Helal, Chen, Kim, Bose, and Lee 

(2012) 

  *  *    
I 

Prakash, Kemp, and Rogers (2014)  * *      I 

Ariani, Redmond, Chang, and 

Lovell (2012) 

*    *    
P 

Alwan et al. (2003) *   * * *  * I/P 

Tong, Chen, and Gao (2015) *   *   * * I 

Nag and Mukhopadhyay (2014) *    *  * * I 

Cook and Holder (2011) *   * *   * I 

Bang, Kim, Song, and Park (2008) *     *   P 

Biswas et al. (2010) *     *   P 

Hein et al. (2010) * *    * *  I 

Roy, Bouzouane, Giroux, and 

Bouchard (2011) 

* *   * *   
I 

Lundström, Järpe, and Verikas 

(2016) 

*   * *    
I 

Sim, Phua, Yap, Biswas, and 

Mokhtari (2011) 

  * * * *   
I 

Suryadevara et al. (2012)    *  *   I 

Debes et al. (2016) *   *   *  I 

PIR= PIR sensor, VC= video camera, RT= RFID tags, BS= Binary switches, PM= 

pressure mat, WS= wearable sensors, POS= power sensors, TS= temperature sensors, 

P=physical ADLs, I=instrumental ADLs. 

 

 

An early study by Intille et al. (2006) investigated a technique for monitoring the elderly within 

a one-bedroom research environment equipped with numerous environmental sensors (e.g. 

binary switches and pressure sensors). Another study by Helal et al. (2012) reported using a 

RFID reader attached to the wall of the entranceway of a house (the Gator Tech Smart House) 

to identify residents approaching the house using RFID tags attached to their key rings. The 

systems also used numerous pressure mats that were fitted underneath the floor to localise 

occupants and to categorise their instrumental ADLs.  

 

Alwan et al. (2003) reported an ADL monitoring system which used PIR sensors and pressure 
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mats to identify the occupant’s locations. The study also used a stove temperature detector, 

switches on cabinet doors and a multi-function bed sensor capable of detecting the presence of 

the home occupant along with some other features such as respiration and pulse. The 

combination of these sensors was able to detect various instrumental ADLs under a sensor 

fusion paradigm. For example, if a person used the couch in the living room, pressure mats and 

location sensors could verify this activity.  

 

A recent study by Nag and Mukhopadhyay (2014) used PIR sensors to detect human motion, 

pressure mats to identify the sitting activity and multiple power sensors to monitor the use of 

HEAs. While using a network of environmental sensors may help detect a wider range of 

ADLs, it is considered to be obstructive to the elderly. It is also considered to be costly as it 

requires installation of many devices during the construction of a house, and maintenance 

thereafter. Other studies have reported the use of intrusive sensors such as wearable devices, 

microphones and video cameras (Bang et al., 2008; Biswas et al., 2010; Hein et al., 2010). The 

major challenges found body-worn sensor technologies are that subjects may feel 

uncomfortable when wearing the sensors or may forget to wear them. The use of video camera 

and microphones has been found to provide a large amount of information on activities. These 

systems have not been popular due to privacy concerns.  

 

Another limitation to the studies outlined in Table 1.1 is that they only combined sensory 

technologies to monitor either instrumental or physical ADLs. An early study by Celler et al. 

(1995) proposed that improvements could be made in these approaches by including both types 

of ADLs to provide a comprehensive monitoring system that could detect emergency situations 

and symptoms of decline in the functional status of the elderly.   

1.2 The purpose of the study 

This study aims to develop and validate a data-driven monitoring framework which can provide 

constant monitoring of both physical and instrumental ADLs of elderly people living alone in 

their homes. The monitoring framework uses a combination of inexpensive and non-intrusive 

sensors (i.e. Kinect sensors and a single power meter) which can be used in existing homes to 

monitor ADLs.  

 

Due to the absence of a formal definition and the scarcity of abnormal activities, it is 
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challenging to map low-level sensory data to high-level abnormal events. It is also difficult to 

model different aspects of diverse activities that characterise everyday living. This study aims 

to develop techniques: 

 

 to use multiple sensors (i.e. Kinect sensors and a power meter) to capture and represent 

the normal behaviours of a home occupant during physical and instrumental ADLs 

  

 to model sensor observations related to normal behaviours  

 

 to detect abnormal behaviour patterns in the occupant’s monitored behaviours.  

1.3 Significance of the research 

This research is significant in terms of advancing computer science techniques for monitoring 

ADLs of elderly people and providing support to this age group through helping them to live 

independently.  

 

The research proposes novel data-driven techniques and combined them with existing 

techniques in order to provide an integrated framework for monitoring both physical and 

instrumental ADLs in the existing homes of the elderly. Existing monitoring techniques are 

limited in that they use a costly network of environmental sensors, intrusive video cameras or 

obstructive wearable devices. This research proposes a framework that captures data from a 

novel combination of Kinect sensors and a power meter. This minimally intrusive combination 

of sensors is cost effective as it allows retrofitting of sensors to existing homes without the 

need for expensive renovation. These devices are not obstructive because the power meter is 

installed in the power panel and only one Kinect sensor needs to be installed in each regular-

sized room.  

 

The research improves existing monitoring approaches by presenting a novel unsupervised 

data-driven fuzzy approach to monitor key aspects of physical ADLs based on unlabelled 

Kinect depth maps. Current fuzzy techniques that monitor physical ADLs require a pre-

determined number of fuzzy sets to be defined over attributes which reduce the scalability and 

accuracy of those techniques. The proposed fuzzy approach uses a novel unsupervised 

technique which automatically defines different numbers of fuzzy membership functions that 



 

16 

 

describe the person’s body postures. These functions exclude noise and outliers in the data. 

 

This research is also significant as it introduces a novel unsupervised method to monitor the 

daily patterns of instrumental ADLs. This approach uses a fuzzy rule set that is learned from 

an unlabelled training dataset of the home power consumption and the occupant’s locations to 

model the occupant’s instrumental ADLs. A novel unsupervised technique within this approach 

identifies instrumental ADLs based on the occupant’s interactions with HEAs. Another novel 

statistical technique is also proposed to distinguish power signatures that are automatically 

generated by self-regulated devices (e.g. refrigerators) from the rest of power signatures.  

 

At a community level this research contributes to governments’ efforts in helping the growing 

elderly population live independently in their homes. The system can help caregivers to detect 

hazardous situations and any variations in the daily activities of elderly people and provide 

help when necessary. The techniques proposed in this study could also be used for monitoring 

in other industries such as agriculture or manufacturing.  

1.4 Research questions 

The following major research question has been addressed by the research study: 

 

How can a framework incorporating unlabelled data from inexpensive and non-intrusive 

sensors (i.e. Kinect sensors and a power meter) be developed for unsupervised monitoring of 

both physical and instrumental ADLs of elderly people living alone?  

 

To address the main question, the three sub-questions below must be considered: 

 

 Sub-question 1: How can data from multiple sensors (i.e. Kinect sensors and a power 

meter) be used to represent physical and instrumental ADLs of the monitored elderly 

person? 

 

 Sub-question 2: How can techniques be developed that automatically learn from the 

proposed data representation to generate models of physical and instrumental ADLs? 

 

 Sub-question 3: How can techniques be developed that detect unexpected patterns and 
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abnormal behaviours using the models of physical and instrumental ADLs? 

1.5 Summary of contributions 

The main contributions of this research include:  

 

Providing a framework to concurrently monitor both physical and instrumental 

ADLs: The ADLs of elderly people which need to be monitored include both physical 

and instrumental ADLs. No well-established framework for concurrently detecting 

abnormal behaviours during physical and instrumental ADLs has previously been 

reported. A hybrid framework has been proposed in this thesis in order to achieve this 

aim. The inputs to this framework are supplied by several Kinect sensors, each covering 

a functional subarea in the house, and a power sensor installed in the power box of the 

house. The outputs are alarms generated in emergency situations and reports of the 

similarity of instrumental ADLs to the learned normal behaviour. 

 

Proposing an unsupervised data-driven fuzzy approach to model key aspects of 

physical ADLs and detect abnormal behaviour patterns based on unlabelled Kinect 

depth maps: Current techniques to detect abnormal behaviour patterns in physical 

activities classify sensor data into certain ADLs and determine a threshold for the 

signatures of each activity by using a labelled training dataset. These approaches are 

prone to many false classifications due to the wide range of activities and the considerable 

variability in behavioural patterns. Labelling a large amount of training data also requires 

considerable labour and time. Several studies have used fuzzy logic to enhance the 

robustness of monitoring approaches in regards to variations in ADLs (e.g. Brulin et al. 

(2012) ). The parameters associated with fuzzy rules in these existing fuzzy approaches 

are defined experimentally, which limits the applicability of those approaches to various 

domestic settings and individuals. 

 

The fuzzy approach proposed in this thesis monitors the important aspects of ADLs 

without limiting the number of ADLs or having to determine the exact types of activities 

undertaken by the elderly. The approach automatically defines several fuzzy sets to 

replicate the variability of ADLs based on attributes extracted from the body postures of 

the occupant. This approach learns epochs corresponding to different activities in each 
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monitored location. It learns normal behavioural patterns based on training data 

associated with each epoch. This is achieved through identifying frequent co-occurrences 

among fuzzy attributes through the use of a fuzzy association rule mining algorithm. The 

occupant’s abnormal behaviour is detected in monitoring data through identifying 

patterns which differ from the occupant’s normal behaviours, based on their location, 

time of occurrence, duration and the occupant’s body posture. 

 

Proposing an unsupervised approach to the automatic generation of fuzzy 

membership functions: Existing fuzzy techniques to monitor physical ADLs require a 

pre-determined number of fuzzy sets to be defined for all attributes. The range of fuzzy 

sets generated by these techniques does not address the impact of outliers and “noisy” 

measurements in the data. This thesis proposes an unsupervised approach, called VBMS-

RS, to address these issues. VBMS-RS is based on the variable bandwidth mean shift 

algorithm and robust statistics to automatically generate location-specific fuzzy sets to 

parameterise the dataset of an attribute. The analysis of the data distribution is 

unsupervised as the VBMS-RS first determines the number of modes from the probability 

density function of data and then uses this value as the number of fuzzy sets. The 

associated parameters of fuzzy sets that represent the dataset are learned automatically 

and exclude noise and outliers in the data. 

 

Proposing an unsupervised technique to identify instrumental ADLs from the 

occupant’s interactions with HEAs: Many studies have proposed the monitoring of 

instrumental ADLs through load monitoring from a centralised location and the 

identification of the operational state of HEAs by disaggregating the composite power 

signal. Most of these techniques need a network of power sensors, a labelled dataset, or 

prior knowledge about the characteristics of HEAs to identify their usage.  

 

This thesis presents an unsupervised technique that identifies instrumental ADLs from 

the occupant’s interactions with HEAs within the home. This approach employs an 

association rule-mining algorithm to map the power signatures of HEAs to the occupant’s 

physical locations. Power signatures are obtained using a power meter, installed in the 

electrical panel of the home. The physical locations of the occupant are measured via 

non-intrusive Microsoft Kinect sensors. The association rules are used to verify whether 

a power signature observed on the power line resulted from the occupant interacting with 
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HEAs. The interaction is then labelled as a specific instrumental ADL using contextual 

information. A novel technique has also been proposed to distinguish the power 

signatures of self-regulated HEAs such as a refrigerator from the power signatures of 

other HEAs. 

 

 A fuzzy based approach to monitor the daily patterns of instrumental ADLs based 

on the occupant’s interactions with HEAs: Unlike many existing instrumental ADL 

monitoring approaches that classify sensor data into a specific set of activities, an 

unsupervised fuzzy approach is proposed to robustly monitor the daily pattern of 

instrumental ADLs based on interactions with HEAs. A fuzzy rule set is learned from an 

unlabelled training dataset to model important features associated with the occupant’s 

interactions with HEAs. This rule set is then used in a fuzzy inference system to robustly 

monitor the occupant’s pattern of using HEAs and to generate daily reports about any 

deviation from the learned regular pattern. 

1.6 Thesis organisation 

The thesis is organised into eight chapters which are described below:  

 

Chapter 1 introduces the background of the study as well as description of the sensory 

technologies which are available to monitor elderly people. It also explores the 

significance and challenges of this research, followed by sections about the research 

questions, contributions of the study, and the outline of the thesis.  

 

Chapter 2 reviews scholarly research related to the study, focussing on the 

classification and the detection of abnormal behaviour patterns in ADLs followed by. 

The chapter describes the nomenclature in the ADL monitoring followed by techniques 

developed for ADL detection and recognition. It also presents an account of techniques 

devised for abnormality detection in general which is followed by a review of those 

abnormality detection techniques that have been applied in the area of monitoring 

ADLs.  

 

Chapter 3 explains the research methodology adopted followed by an account of the 

study’s phases and associated tasks. It also describes the testbed that was used to collect 
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experimental data and describes the captured data. The computer science techniques 

used in this study are detailed followed by a brief description of the platforms used to 

implement those techniques. 

  

Chapter 4 introduces an unsupervised approach based on fuzzy logic to monitor the 

physical ADLs of the elderly using data supplied by Kinect sensors. This chapter 

introduces the problem of monitoring the physical activities of elderly people followed 

by a section on the training steps and monitoring phases associated with the approach. 

This chapter also demonstrates the experimental evaluations for the proposed approach 

based on the collected dataset. The chapter concludes with a discussion of the results 

and a summary of the chapter.  

 

Chapter 5 introduces a method for automatically obtaining robust location-specific 

fuzzy sets to characterise the normal range of attributes extracted from physical ADLs 

for each monitored location. It elaborates problems associated with the fuzzy sets used 

in Chapter 4. The chapter then describes modifications required to the structure of fuzzy 

rules to incorporate the proposed location-specific fuzzy sets and the procedure for 

generating location-specific fuzzy sets to represent normal ADLs. This is followed by 

a section demonstrating experimental results related to the collected dataset. The 

chapter concludes with a discussion and a summary. 

 

Chapter 6 introduces an unsupervised technique to identify instrumental ADLs from 

the interactions of the occupant with HEAs. After an introduction to the problem of 

estimating instrument ADLs from sensory data, it lists the steps for training the system 

and subsequently identifying instrumental ADLs in newly acquired data. This is 

followed by a presentation of the results of training the system, using the collected 

dataset, and a demonstration of the accuracy of the approach in the classification stage. 

The chapter concludes with a discussion and a summary. 

 

Chapter 7 proposes an approach for monitoring instrumental ADLs based on 

interactions with HEAs. It presents the steps of training the approach and identifying 

deviations from the normal behaviour in the subsequent monitoring data. The 

experimental results obtained for testing the approach are described next. The chapter 

concludes with a discussion and a summary. 
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Chapter 8 provides a general discussion and conclusion as to how the research 

questions have been addressed. It also presents concluding remarks in regard to 

different proposed techniques in this study. The limitations of the study and further 

research directions are also explored at the end of this chapter. 

1.7 Summary 

This chapter has provided an introduction to the thesis research. A growing population of 

elderly people and their willingness to live independently in their homes have been explored. 

These issues drive the need for systems that can provide lifestyle monitoring and notify 

caregivers of abnormal behaviour patterns. Different types of sensors available for this purpose 

were reviewed. The existing monitoring systems that are equipped with different sensor 

technologies to provide telecare for the elderly people were discussed. It was argued that 

existing approaches either monitor physical ADLs and detect emergency situations related to 

them (e.g. falls) or monitor instrumental ADLs. There are several affordable types of sensor 

used for monitoring ADLs. Video cameras, wearable sensors, and PIRs are usually used to 

monitor physical ADLs while for monitoring instrumental ADLs, the interactions with objects 

are identified via numerous sensors attached to them. The importance of improving existing 

monitoring approaches by incorporating both physical and instrumental ADLs was highlighted. 

 

The purpose of the study was to propose an unsupervised approach that monitors both physical 

and instrumental ADLs of elderly people via bringing together a combination of non-intrusive 

and easy-to-deploy sensors. The chapter also outlined the significance of the study and the 

specific research questions directing it. The next chapter reviews previous studies associated 

with monitoring the ADLs of the elderly and discusses the problems associated with those 

approaches, which this study addresses. 
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CHAPTER 2:  
LITERATURE REVIEW 

This chapter outlines a review of the literature related to the research. The chapter provides an 

introduction to the nomenclature of ADL monitoring in Section 2.1. It then explores literature 

on the techniques developed for activity detection and recognition (Section 2.2). The chapter 

presents an account of techniques devised for abnormality detection in general (Section 2.3) 

which is followed by a review of the techniques of abnormality detection for both physical and 

instrumental ADLs (Section 2.3). The chapter concludes with a summary in Section 2.5. 

2.1 Introduction  

Monitoring techniques are necessary for the rising demand for telecare to assist aged people to 

live independently in their homes. These monitoring techniques facilitate detection of 

emergency situations and timely response to changes in elderly people’s ADLs resulting from 

a decline in their functional health status. Such timely interventions by caregivers can help 

prevent potential health crises (and in some cases deaths) and extended hospitalisation of the 

elderly. These systems have been reported since the mid-1990s.  

 

A study by Celler et al. (1995) presented an early system for continuous monitoring of a home 

occupant’s functional health status based on their interactions with domestic objects and 

movements within the environment. The study described a technique which monitored the 

occupant’s movement between rooms and activity performance in specific areas of each room 

via magnetic switches in doors and infrared sensors on the walls. Some activities were 

identified using sound sensors.  

 

Other researchers have proposed several other monitoring approaches. These studies have also 

attempted to define different levels of semantics for modelling, recognising and analysing of 

human behaviour. These studies have used different nomenclature to describe these levels 

(Cook & Krishnan, 2014). A study by Andr et al. (2012) proposed a model were sensor data 

were classified into event (e.g. the motion of human body), action, activity, and behaviour 

based on their time scales (see Figure 2.1). A sensor event was defined at the lowest level as a 

simple and small part of an action represented by a change in the state of a motion sensor (e.g. 

the output signal changing from high to low). An individual’s actions and interactions with 
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HEAs in the home (e.g. opening a door and using a kettle) was detected at a higher level. 

Human activities were defined at the next level as a set of actions executed in a specific order. 

The ADLs were recognised at this level by classifying the detected sequences of actions in 

relation to time and location. The highest level of this model included the behaviours and daily 

routines. 

 

 

 

Figure 2.1. Classification of different semantic levels in human behaviour analysis (from Andr et al., 

2012) 

 

Performing common types of physical ADLs (e.g. sitting, walking and sleeping) and 

maintaining the routine for instrumental ADLs (i.e. cooking and grooming) can indicate 

physical and cognitive abilities of elderly people (C. Franco, Demongeot, Villemazet, & 

Vuillerme, 2010). This has led to researchers modelling the sensor observations at the activity 

and behaviour levels. This modelling requires a training dataset of sensory data to be obtained 

from ADLs inside the home and used to develop a model of activities. The model is then 

employed for monitoring the occupant to allow for the (1) detecting and classifying ADLs; (2) 

detecting abnormalities in ADLs such as falls (Peetoom et al., 2015). The following section 

outlines techniques developed for detecting and classifying ADLs.  

2.2 Techniques for detecting and classifying ADL  

Numerous techniques have been developed for collecting information about activities and 

using this information for detecting and recognising ADLs. The goal has been to map a set of 

sensor observations to a corresponding activity, which helps assess the quality of the performed 

ADLs through measuring their similarity to the normal profile of the monitored person. 

Activity recognition researchers have used different supervised and unsupervised machine 

learning techniques in environments ranging from laboratories to real-life settings. While the 
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experimental environment is typically occupied by one person, some studies have also involved 

multiple residents. 

 

The following section provides a review of activity classification which has focused on 

recognising predefined human activities using a supervised machine learning technique. The 

section is followed by reviewing research on activity pattern discovery which employed 

unsupervised data mining techniques to detect ADLs as frequent patterns observed in sensor 

data. 

 

2.2.1 Activity classification techniques 

One method which has been proposed for activity classification is the use of a supervised 

machine learning technique to map low-level features from the sensor data to human activities. 

Accurate activity recognition in real-life settings is challenging because human activities are 

complex and considerably diverse. A commonly used framework for this task has been 

described by Duda, Hart, and Stork (2012) and is shown in Figure 2.2. This framework involves 

collecting a labelled (annotated) training dataset of sensor data for specific activities. Several 

features are then extracted from the sensor data and machine learning techniques are used to 

create a model of ADLs. The model is then used by the classification component to label unseen 

testing data with activities. The following sections provide details of research studies which 

have used different machine learning techniques.  

 

 

Figure 2.2. General framework for supervised classification of ADLs (Duda et al., 2012). 
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2.2.1.1 Support Vector Machines (SVMs) 

The use of support vector machines (SVMs) has been explored for classifying ADLs. The 

algorithm for developing SVMs uses a supervised learning technique to develop decision 

boundaries that categorise sensor data into different ADLs. Each SVM can separate one class 

of ADLs from the rest. Given a labelled dataset of ADL features, the learning process of a 

SVM generates a hyperplane that maximises the separating margin between two classes. 

Support vectors are training points which are near the margin of this separating hyperplane. If 

the data distributions of different classes are not linearly separable, the algorithm of SVMs 

employs kernel functions (e.g. polynomial or Gaussian kernel) to map such input data to a 

higher dimension. This allows for data of different ADLs to become linearly separable.  

 

A study by Kadouche, Pigot, Abdulrazak, and Giroux (2011) trained SVMs for user 

classification. The study used data captured from motion, temperature, light, hot water, cold 

water, and electricity usage sensors to extract ADL patterns. SVMs were then trained based on 

the ADL patterns of each individual to identify the person when performing activities. This 

research developed SVMs based on the ADLs of eight individuals. The evaluations showed a 

high prediction precision of the trained SVMs for identifying individuals via their behavioural 

patterns. Another similar study by Geng, Chen, Fu, Bao, and Pahlavan (2016) trained SVMs 

for human motion classification with features obtained from the wearable devices. A limited 

number of activities including walking, running, lying, crawling were targeted at the 

experiments and the evaluations of this approach yielded a satisfactory average classification 

rate of 88.69 percent.  

 

2.2.1.2 Artificial neural network  

The use of artificial neural networks (ANNs) is another machine learning technique explored 

to model and identify ADLs. Artificial neurons are the fundamental processing elements of an 

ANN, which are interconnected by weighted links to form layers. An ANN employs a single 

input and output layers and several hidden layers depending on the complexity of the task. 

Neurons use an activation function to transform the weighted input into output. The weights 

are adjusted through a process called learning. Different types of ANNs have been found based 

on various parameters associated with the architecture of a neural network. A study by Mehr, 

Polat, and Cetin (2016) investigated the performance of different training algorithms of an 

ANNs for activity classification. The study used labelled data obtained from state-change 
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sensors attached to objects in an apartment. The dataset represented 13 different activities. The 

ANNs achieved 92.81% activity recognition accuracy when trained by the Levenberg 

Marquardt training algorithm.  

 

A One-Pass Neural Network (OPNN) was developed by H. Li, Zhang, and Duan (2008) to 

perform activity recognition. The OPNN was available online, which allowed for new sensors 

to be added to the architecture of the monitoring system and for new activities to be 

accommodated at any stage. The study used a bedroom equipped with a set of sensors to detect 

the use of furniture such as chairs, the bed, ceiling light switches, table lamps and bed lamps. 

The dataset was labelled based on responses from questionnaires completed by occupants, 

which recorded their activities of using HEAs. An evaluation of the OPNN for an unlabelled 

dataset of the same activities resulted in 92% accuracy in detecting activities.  

 

Despite these promising results, ANNs have been found to be unable to model temporal 

dependencies. Research by Rivera-Illingworth, Callaghan, and Hagras (2010) described an 

improved ANN to learn ADLs based on spatial similarity and temporal patterns in sensor data. 

The proposed ANN had short memory that could deal with temporal variations in input and 

output patterns. The researchers proposed adding a memory layer to the network with feedback 

connections from the hidden layer of neurons back to the same neurons to enable the classifier 

to discern the temporal order of events. The added layer held a copy of the activations of the 

hidden neurons from the previous step of the activity. A labelled dataset from distributed 

sensors was used to classify activities including listening to music, working at a computer and 

sleeping. The study showed an accuracy which exceeded 90% with the unseen test data 

(Rivera-Illingworth et al., 2010). 

 

2.2.1.3 Bayes classifiers 

Different types of probabilistic methods have also been applied to develop ADL classification 

techniques. One common technique has been the use of the naive Bayes classifiers. A naive 

Bayes classifier relies on Bayes’ theorem in order to generate the decision boundary in the 

space of ADL features assuming all input features to be independent of each other. The 

classifier is trained based on the probability of the co-occurrence of feature values and the 

activity labels to map feature values from new data to an activity label. For example, Cook and 

Schmitter-Edgecombe (2009) implemented a naive Bayes classifier to recognise specific 
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activities (i.e. hand washing, telephone use, preparing meals) using features including the 

occupant’s location, the usage of the stove and water, and the duration between sensor events. 

The study calculated the similarity of the learned model to each activity when labelling a 

sequence of sensor observations with an activity. Specific steps in the activity which the 

resident skipped or performed incorrectly were also identified. Messing, Pal, and Kautz (2009) 

also evaluated naive Bayes classifiers on video data and activities such as having snacks, 

drinking water and using the phone were targeted. The experimental evaluation showed that 

the classifiers achieved 89% accuracy in a laboratory environment.  

 

Another study by Brdiczka, Reignier, and Crowley (2007) proposed a Bayesian classifier 

system based on video tracking to segment and track moving occupants in a residence. The 

position, size and orientation of the detected occupant’s silhouette was extracted as input for 

the frame-wise recognition of basic activities (i.e. walking, sitting, sleeping and interacting 

with the table). A Bayesian classifier was developed for each activity via an expectation 

maximisation algorithm based on a labelled training data. A threshold on the probability 

provided by each classifier was applied to determine whether the ongoing activity in new data 

was a part of the learned classes.  

 

2.2.1.4 Hidden Markov Models 

A Hidden Markov Models (HMM) is a network of Bayesian classifiers which can model the 

joint probabilities of sequential data and observations based on the learned connections 

between unobserved (hidden) states. HMMs are the most widely used modelling techniques 

applied to activity recognition (Brownsell et al., 2011). Each state in a HMM is characterised 

by a probability distribution function, modelling the frequency of observations which 

correspond to that state (see Figure 2.3). The Markov process of HMM assumes that for each 

given time, the conditional probability distribution of any hidden state depends solely on the 

value of the observation and the value of a finite number of preceding hidden states. When 

HMMs are used to model ADL scenarios, the sequence of sensor events (denoted by Y1, …, 

YT in Figure 2.3) forms observations and activities (denoted by S1, …, ST) define hidden states. 

The HMM models correlations between the observations and their interdependence identified 

from sensory data. This information is used to classify unseen sensor data into an activity.  
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Figure 2.3. An example of conditional relations for a HMM (Charriere et al., 2016). 

 

ADL classification techniques using HMMs assume activities to be sequential. For example, 

Steinhauer, Chua, Guesgen, and Marsland (2010) trained HMMs for each activity to encode 

their sequential actions. The HMM with the highest likelihood indicated the type of activity 

based on observed ADL features. This approach was improved by the study presented by Cook 

and Holder (2011). The training sequences of sensor events for each target activity were used 

to model transitions between hidden states based on a Viterbi algorithm. This study also 

investigated the use of different number of binary sensors to maximize activity recognition 

accuracy.  

 

Another study by Buettner, Prasad, Philipose, and Wetherall (2009) proposed a more efficient 

HMM-based activity recognition technique with a precision and recall of approximately 90%. 

A special type of RFID tag which were equipped with accelerometers was attached to everyday 

objects in the environment. A labelled training dataset of object-use was collected to train 

simple HMMs for 14 different ADLs such as making cereal, cleaning windows and taking 

vitamins. The daily activities from new sensor data were then identified based on the traces of 

object-use via the trained HMM models.  

 

Despite their popularity, Nguyen et al. (2005) concluded that techniques using HMMs for ADL 

recognition have several major drawbacks. The study stated that:  

 

 They are incapable of capturing the temporal aspects of activities, meaning that the 

duration of an ADL is not explicitly modelled; 

 Each hidden state can only produce one event, and the model is incapable of detecting 

changes in the order of events because of its strict independence assumptions for 

observations; 
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 Although many of our ADLs can be expressed by a hierarchical structure, HMMs are 

incapable of representing sub-activities shared among ADLs; and 

 Without significant training, an HMM may not recognise different instances of a 

particular activity. 

Several extensions to HMMs have been proposed to address these limitations including hidden 

semi-Markov models (HSMMs), hierarchical hidden Markov models (HHMMs) and abstract 

hidden Markov models (Bui, 2002).  

 

A recent study by Clement, Ploennigs, and Kabitzsch (2014) presented an approach based on 

HSMMs to detect the performance of ADLs from analysing a power meter data. HSMM 

learned habits of performing specific ADLs based on a labelled dataset of those ADLs. The 

occupant’s currently executed activity was inferred based on the similarity of the sensor data 

to the learned model of each target activity. A study by van Kasteren et al. (2011) compared 

the performances of HSMMs and HMMs. The study used magnetic switches to collect data 

related to activities of two different individuals which involved environmental interactions. 

The limited set of activities that was targeted included using a dishwasher, having snacks, 

eating main meals and drinking. The experimental evaluations showed that when the duration 

of activities was modelled via HSMMs, these models only marginally outperformed HMMs.  

 

HHMMs can model complex activities by splitting them into smaller units (i.e. actions) with a 

hierarchical structure. These models extend on traditional HMMs to include a hierarchy of 

hidden states. A study by Karg and Kirsch (2013) presented HHMMs with a shared structure 

for classifying kitchen activities based on the sequence of visited locations. ADL classification 

techniques based on HMMs are limited as they are only suitable for applications in which the 

subject follows specific steps for each daily activity. The training of these models has also been 

found to be computationally expensive.  

 

2.2.1.5 Conditional random fields 

The everyday activities of a person can be performed in a variety of ways involving a series of 

different steps. These activities may also be conducted either individually or concurrently. This 

results in the need for more flexible alternatives to the HMM and its variants. Conditional 
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random fields (CRF) has been proposed as an alternative approach. CRFs are modelled as 

undirected graphs which flexibly capture any relationship between a hidden state and an 

observation variable, hence allowing arbitrary relationships among the observation sequences. 

Another major advantage of CRFs is that probabilities associated with hidden states take 

account of future and past observations (Amiribesheli, Benmansour, & Bouchachia, 2015).  

 

CRFs were used in a study by Zhan, Faux, and Ramos (2015) to classify simple and concurrent 

activities.. The developed model of activities involved two levels; at the lower level the 

probability of each activity was calculated while the upper level involved a graph representing 

the correlation between different activities with each edge having a weight. A strong chance 

that the subject would perform two activities in a concurrent or interleaving manner was 

indicated by relating those activities by an edge with a high weight. The technique was 

developed and validated using two datasets of elder routine ADLs and achieved an overall 

recognition accuracy of 90.04%. 

 

2.2.1.6 Clustering techniques 

Several studies have proposed using clustering techniques to develop ADL classifiers from a 

training dataset. A study by Hein et al. (2010) manually annotated data from video cameras, in 

time slices of five seconds, to create a labelled dataset. The motion pattern of the subject in 

each time slice was extracted and represented by optical flow segments. The k-means clustering 

algorithm was used to define a codebook of optical flow segments to represent a finite set of 

ADLs. The extracted motion patterns from a new video stream were assigned to the nearest 

element of the codebook to recognise the ongoing ADLs. Another study by Belley et al. (2014) 

also presented a similar technique in which a k-nearest neighbourhood classifier identified the 

used HEAs based on an annotated dataset of power signatures from HEAs. The ADLs were 

estimated based on the function and location of these HEAs. Noury et al. (2011) also proposed 

measuring the power consumption of a house to estimate the time of interactions with specific 

HEAs. This approach exploited a k-means algorithm to group the time of interactions into 

epochs of activities. The number of interactions during each epoch was taken into account to 

monitor the behaviours of an occupant. 

 

2.2.1.7 Fuzzy logic 

 Another technique that has been used for ADL recognition is to employ classifiers based on 
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fuzzy set theory. Such classifiers have been found to be efficient in recognising imprecise 

sensor values attributed to real world environments and can tolerate slight variations in 

performed ADLs. For example, a study by Medjahed et al. (2009) used microphones, 

physiological sensors and infrared detectors to capture data for a fuzzy inference system. The 

system allowed the user to easily configure the input, output, and inference parameters. The 

testing of this approach with simulated data provided a classification accuracy of about 97%. 

The fuzzy inference system in this study used a predefined set of membership functions of 

inputs and outputs and fuzzy rules. This would result in this approach being unable to cope 

with noises and uncertain information in sensor readings. 

 

This limitation was addressed in a recent study by Doctor, Iqbal, and Naguib (2014). A fuzzy 

logic controller, named “Adaptive Online Fizzy Inference System” was developed which was 

consisted of five steps: capturing behaviours of the elderly person, designing fuzzy membership 

functions, determining fuzzy rules, designing the agent controller, and life-long learning. The 

parameters for input/output fuzzy sets were identified using a double-clustering technique. The 

fuzzy rule set obtained in this study was used to model the patient’s habitual behaviours in the 

environment.  

 

A study by Brulin et al. (2012) presented another fuzzy logic based ADL classification 

technique based on capturing the posture of elderly people from video data. The silhouette of 

the person was segmented in the image to extract features such as the subject’s position in the 

room and the aspect ratio of the minimum bounding box. A set of pre-defined fuzzy rules was 

used to map those features into different body postures including squatting, sitting and lying. 

Datasets used to evaluate the posture recognition technique involved different training 

scenarios recorded in a laboratory environment and various testing data acquired from a home 

environment with perturbations. This system displayed an accuracy ranging from around 65% 

to 72%. 

 

The approach presented by Brulin et al. (2012) was improved in a recent study by Banerjee et 

al. (2014) which used Kinect sensors to recognise specific activities of a monitored person (e.g. 

sitting, standing, and lying on the floor). Once the silhouette was obtained from the Kinect 

SDK, image moments were extracted and grouped into a pre-defined number of clusters using 

a fuzzy clustering technique. Cluster centres were then labelled by the user where each label 

indicated the posture category. The distances between the extracted features and cluster centres 
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were calculated to classify the new data into activities. The system was tested on datasets from 

laboratory and real-world settings and showed an average correct classification of nearly 90%. 

 

A recent study by Lundström et al. (2016) has highlighted a number of drawbacks from using 

supervised recognition. The study concluded that these techniques were inapplicable for real-

life settings. Some of the drawbacks noted by the study included: 

 

 These approaches monitor very specific activities but their underlying assumption is 

that each person performs these activities in a consistent predefined manner, while in 

reality an individual may perform an activity in different ways. For example, preparing 

dinner may take different durations, it may start at different times, and the objects with 

which the subject interacts during the activity may vary each time.  

 A consequence of detecting preselected activities is that other activities are ignored 

while they provide significant information about an elderly person’s functional health. 

Hayes et al. (2007) reported a correlation between variation in the activity level and 

mild cognitive impairment, which highlights the importance of taking into account all 

activities regularly performed in a residential environment. 

 A significant amount of training data must be labelled and made available to the 

machine learning algorithm for each individual. The reason is that individuals perform 

activities differently because of various reasons such as their physical conditions, 

culture and lifestyle.  

2.2.2 Activity pattern discovery techniques 

Activity pattern discovery techniques provided an advantage over supervised activity 

classification techniques that require a labelled dataset. These activity classification techniques 

automatically identify activity patterns in the data prior to those being modelled for recognising 

ADLs in new sensor data. 

 

Hierarchical activity models could help to identify daily patterns. A supervised classifier 

detects the lower-level activities, such as eating and sitting, while an unsupervised technique 

models the combinations of these activities which represent more complex activities. For 

example, a study by Anderson, Luke, Keller, and Skubic (2008) used a fuzzy logic based 
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technique to classify body postures into a specific set of states (i.e. upright, on the ground, and 

in between) from the silhouette of the detected person in video streams. The new activities of 

the person were recognised from the linguistic summarisations of those states. Some activities 

that were recognised included walking as having an upright position with a high level of motion 

and standing as having low motion and being in an upright position. This study employed a 

predefined set of fuzzy sets and fuzzy rules to classify the occupant’s activities from video 

data. The use of predefined fuzzy sets and fuzzy rules would limit the implementation of such 

a system in real-life environment.  

 

A popular approach for activity pattern discovery has been to deploy data mining algorithms 

to discover meaningful and frequent patterns hidden in sensor data. The various data mining 

approaches used for discovering human activities have mostly investigated the spatial and 

temporal relations between sensor events. Frequent pattern discovery, better known as frequent 

itemset mining (Manku, 2016), is a well-known data mining technique for finding items that 

frequently co-occur. The discovery of ADLs requires the partition of sensor data into time 

windows which comprise a sequence of events. These events have been used to identify 

meaningful patterns associated with the occupant’s ADLs. For example, the sequence of events 

over each time window can be put together to form a string. These strings are then treated as 

individual transactions in the data mining algorithm. The size of window could be strictly 

temporal or involve a fixed number of events. Various techniques, such as cross-validation 

(Guesgen & Marsland, 2010), have been proposed to choose a suitable size of window. The 

challenge involved in monitoring the elderly is identifying patterns of ADLs using these 

strings. 

 

A number of variations of a frequent itemset mining algorithm have been proposed to discover 

ADLs from the strings of sensor events. For example, Lühr, West, and Venkatesh (2007) used 

inter-transaction association rule mining to find significant sensor event associations and their 

temporal relationships using large amounts of data. The study applied a data mining algorithm 

to sensor events within a time window to define actions. An associative temporal relationship 

among actions was used to obtain frequent behaviours regardless of the order of events. The 

performance of the proposed mining algorithm was evaluated using two datasets of magnet 

switch sensors in a real-life environment. The window size to define actions and the minimum 

support of frequent behaviours were determined experimentally. 

Another variant of the frequent itemset mining algorithm is the AprioriAll (Agrawal & Srikant, 
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1995) which has been deployed in a group of studies to find frequent itemsets as ADLs. For 

example, Vrotsou, Ellegard, and Cooper (2007) proposed a technique in which AprioriAll 

generated candidate activity patterns (items) from sensor observations. These unrelated 

patterns where then filtered by applying constraints on their attributes such as the repetition 

and duration. This study was improved by Chikhaoui, Wang, and Pigot (2011) which used a 

network of distributed sensors, such as motion detectors and door switches to recognise ADLs 

from frequent patterns of sensor events. Each sensor event was associated with a timestamp 

specifying the time of the event. The AprioriAll algorithm was used to discover all episodes 

that had a particular significance. An episode was defined as a set of sensor events that occurred 

close to each other in a given order. A hierarchical characterisation of activities was proposed 

in which complex activities were identified in a bottom-up fashion by first estimating actions 

via sensor events. A mapping function was then used between the frequent patterns and the 

activity models to classify new sensor data.  

 

Another study by Hoque and Stankovic (2012) employed AprioriAll algorithm to recognise 

ADLs using data from state-change sensors installed into objects such as a dishwasher and cups 

cupboard. All sensor events during a room visit were segmented into an occupancy episode 

that included the room ID, entrance time and a list of objects used. The activities of each room 

were identified using the AprioriAll algorithm via the groups of objects that had been frequently 

used together. Each of these groups were called frequent itemsets. Once the duration of each 

frequent itemset was determined as the difference between the start time of the first and the last 

sensor events, the approach clustered frequent itemsets based on their temporal characteristics. 

Each obtained cluster represented a particular activity starting at a specific time and lasting for 

a specific duration. These clusters were then labelled by the user to recognise new occupancy 

episodes as activities. 

 

Data mining techniques do not consider the temporal order of events in the process of finding 

association. Some approaches have addressed this limitation by encoding the temporal relation 

in sensor events. The first step was to determine the start and end times for sensor events which 

result in the formation of intervals. This is considered to be practical approach as data streams 

generated by most sensors can be segmented into intervals. For example, in data supplied by 

sensors installed on home electrical devices, the interval of a related activity can be indicated 

through the difference between the starting time and the ending time of an appliance usage. 

Once sensor events are associated with intervals, Allen’s temporal logic (see Figure 2.4 for 
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some examples) has been employed to identify frequent temporal relations between intervals 

(Amirjavid, Bouzouane, & Bouchard, 2014; Papamatthaiakis, Polyzos, & Xylomenos, 2010). 

 

 

Figure 2.4. Example of Allen’s temporal relations (Allen & Ferguson, 1994). 

 

A study by Papamatthaiakis et al. (2010) integrated Allen’s temporal relations with mining 

association rules to segment the most important temporal relations in sensor events when 

characterising activities. The study considered the same temporal relationships in sensor events 

at the classification stage to calculate the similarity of new data to each candidate activity. The 

accuracy of this technique was evaluated using two datasets from real-life environments. The 

results showed that, when compared with a classifier such as decision tree, the data mining 

technique performed slightly better in recognising ADLs.  

 

Another data mining algorithm for discovering activities from sensor data was described by 

Gu et al. (2009). The study proposed mining a set of “Emerging Patterns” (EPs) from the 

sequential events obtained from two sources of data captured from wearable motion and RFID 

sensors. An EP is a feature vector associated with an activity that describes significant 

concurrent changes between the two sources of data. The study applied sliding time windows 

to a training dataset to find EPs and used those EPs to classify both simple activities and 

complex activities that can be performed in interleaving and concurrent manners. The accuracy 

of the technique was evaluated using multiple datasets and the results indicated that the 
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technique could recognise sequential activities more effectively than other types of activities.  

 

Another study by Rashidi, Cook, Holder, and Schmitter-Edgecombe (2011) introduced an 

unsupervised data mining algorithm for identifying frequent and repeatable sequences of sensor 

events that represent ADLs. The study argued that the proposed data mining technique could 

detect discontinuous sequences of sensor events that could have varied orders. The detected 

sequences were clustered into activity definitions using a sequence clustering technique. The 

cluster centroids represented the activities to be tracked and recognised in the system. A version 

of HMMs was developed to model and recognise target activities as they occur in the 

environment. All HMMs were evaluated for each new sequence of sensor events and the one 

which best supported the sequence of events was chosen as the activity label for the 

sequence. A testbed environment was used to validate the ability of the technique for 

discovering frequent activities. An evaluation of the experiment revealed that the clustering 

technique could find 80% of cluster representatives corresponding to some pre-defined 

activities and the developed HMM model could recognize 73.8% of target activities.  

 

A study by Gu, Chen, Tao, and Lu (2010) proposed another data mining based approach for 

automatically discovering and recognising specific activities from interactions with RFID-

tagged objects. This approach searched the relevant instructions for each activity on websites 

to mine a set of objects involved in performing the activity together with the probability of 

them being used. A fingerprint was then mined for each activity as a set of objects that were 

used during that activity. Those fingerprints were then deployed to label a new sequence of 

observations (i.e. object-use) with an activity label. One drawback of this approach was that it 

required the monitor person to carry the sensor all the time. 

 

The abovementioned ADL recognition techniques have yielded promising results in 

experimental settings. Kim, Helal, and Cook (2010) proposed that these techniques present a 

number of challenges when used for monitoring the well-being of elderly people in their 

homes: These included the following:  

 

 Activities can be performed concurrently or can overlap. An occupant may also stop 

the current activity (e.g. cooking in the kitchen) for a short time, and start doing another 

activity such as visiting the toilet. These techniques do not take account of these real-

life conditions.  
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 It is difficult to label sensor data since a number of activities can be performed for 

different purposes. For instance, entering the kitchen can be for performed for feeding 

activity or cleaning.  

 A home occupant can perform the actions involved in an activity in many ways and yet 

the activity is performed normally. For instance, interactions with specific objects in 

the environment for 30 minutes of cooking can occur in many combinations some of 

which have not been performed before by the person.  

Other monitoring approaches have been proposed which may overcome these challenges. 

These approaches do not aim to recognise the exact type of ADLs, but to find deviations and 

abnormalities in sensor data collected from the behaviours of an elderly person. The following 

sections outlines the techniques generally used for abnormality detection and provide a review 

of those applied in the application of monitoring ADLs.  

2.3 Techniques for abnormality detection  

Abnormality detection can be defined as the task of identifying data samples which differ from 

other data available in a dataset. According to Hawkins (1980), “an outlier is an observation 

that differs so much from other observations as to arouse suspicion that it was generated by a 

different mechanism.” A further definition by Bamnett and Lewis (1978) is “an observation 

(or subset of observations) which appears to be inconsistent with the remainder of that set of 

data.” These definitions are general which makes each anomaly detection tailored to the 

specific application domain. An example of two-dimensional data distribution for observations 

involving three clusters of typical data and three outliers X, Y, and Z is shown in Figure 2.5. 

The example shows that the three outliers are isolated and inconsistent with the main 

components of normal data.  

 

Abnormality detection has been considered a crucial task in many research fields as the 

occurrence of outliers can be associated with significant performance degradation in a system’s 

operation. For example, when monitoring credit card usage, an outlier may specify an 

unauthorized interaction of a stolen card. Abnormality detection in elderly people’s behaviours 

may also help recognise changes in their normal lifestyle and emergency situations such as 

faints or falls where caregivers’ rapid response is essential. 
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Figure 2.5. Example of data distribution for a two-dimensional dataset of observations including three 

clusters of normal data and three outliers. 

 

Many studies have explored how different kinds of outliers can be detected from various types 

of data. The simplest technique has been to apply a user-specified decision threshold on data. 

Data are labelled to be “abnormal” if the threshold is exceeded. For example, when a fall 

detection technique monitors the posture of an elderly person, the specific threshold (e.g. 30 

degrees) can be set based on the orientation of the body (Pierleoni, Belli, et al., 2015). The 

drawback of this technique is the difficulty of selecting the appropriate threshold for different 

environment settings and its inability to address variations in different subjects’ behaviours. 

Abnormality detection techniques address this issue by learning a model of normal (and 

abnormal) behaviour from a training dataset of the monitored person’s ADLs. These 

approaches have been categorised into two distinct types depending on the machine learning 

technique used to develop the model and whether the data are labelled and include examples 

of abnormalities. A summary of abnormality detection techniques is provided in Table 2.1.  

 

Table 2.1. A summary of abnormality detection techniques. 

Type of Supervision Classifier used Characteristics of the training dataset 

Type I: supervised  Multi-class  A labelled dataset of normal and 

abnormal examples 

Type II: unsupervised  One-class  A labelled/unlabeled dataset of normal 

examples 

 

Type I abnormality detection assumes the availability of labelled training instances of both 

normal and abnormal classes. The Type 1 outlier detection technique is explained in Figure 2.6 
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(a). Such techniques usually employ supervised classification to develop a model (e.g. a 

decision boundary) for both normal and abnormal classes based on the dataset. The class for 

any new data sample is determined by comparing the data against the learned model. The model 

for normal instances can be further subdivided into sub-classes of normal data depending on 

the application and requirements of the system. Techniques categorised as Type I have been 

found to not always be suitable as they are susceptible to over fitting and cannot generalise 

well to address different variations in both classes of data (Pimentel, Clifton, Clifton, & 

Tarassenko, 2014). One reason for this has been the scarcity of comprehensively labelled 

training data that represent every possible normal and abnormal behaviour. Another limitation 

of these techniques is that they cannot always handle new types of outliers that are not present 

in the training dataset. For example, many fall detection techniques that develop a classifier 

using specific types of falls cannot be applied to unseen types of falls which are not learned by 

the classifier. A further drawback is that labelling a training dataset is usually time-consuming. 

 

 

Figure 2.6. Examples of the decision boundary learned by (a) Type I and (b) Type II outlier detection 

techniques (Chandola, Banerjee, & Kumar, 2009). 

 

In Type II abnormality detection, the assumption is that the normal instances are far more 

frequent and easy to obtain than outliers. The Type 2 outlier detection technique is explained 

in Figure 2.6 (b). The advantage of the techniques in this category is that they do not require 

labeling a training dataset. The one-class classifier learns a boundary around normal instances 

according to the training data and subsequently uses it to pinpoint potential outliers as data 

points that would not fit the model (e.g. the remote points separated from the component 

distributions of normal data). These techniques require that the training dataset be sufficiently 

comprehensive (i.e. represents various normal behaviours) to permit generalisation. The rest of 

this section elaborates on techniques in this category.  
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2.3.1.1 Statistical techniques 

Statistical techniques are considered to be most applicable to single dimensional datasets. 

Sensor statistics over a period of time are employed to develop a normal behaviour pattern (i.e. 

a normal range over the universe of discourse of sensor data). If a new data point falls outside 

the learned normal range, it is categorised as abnormal. The two dominant statistical 

approaches that have been employed include the mean-variance test (Grubbs, 1969) and box-

plot (Laurikkala et al., 2000). In the former, it is assumed that normal data can be modelled via 

a Gaussian distribution N (µ, 𝜎2), where µ and 𝜎2 are the mean and the variance of the data. 

The root of 𝜎2 is standard deviation. A new data point is marked as an outlier if it lies two or 

more standard deviations away from the mean. Outliers therefore fall outside a normal range 

of [𝜇 − 𝐴 ∗ 𝜎, 𝜇 + 𝐴 ∗ 𝜎]. ′𝐴′ specifies the confidence interval for labelling a new data point as 

an outlier. For 𝐴 =2 and 𝐴 =3, the confidence values that the new data does not belong to the 

normal behaviour are almost 95% and 99%, respectively. This technique is data-driven as 𝜇 

and 𝜎 are learned directly from training data. The disadvantage of this technique is that it 

requires a high number of sample data points so that the determined range statistically 

represents the normal behaviour of the monitored person (i.e. the sample mean and standard 

deviation of sample data points represent those of the theoretically infinite population). 

 

An alternative approach is the box plot which is a graphical representation approach for 

examining an unlabelled dataset of a univariate attribute. For example, box plot was used in a 

study by B. Das, Chen, Dasgupta, Cook, and Seelye (2010) to distinguish between normal and 

abnormal activities in an elderly residence. A box plot was used to display a box on the data, 

extending from the lower quartile (Q1) of the data to their upper quartile (Q3). The location of 

the median of the data is marked inside the box. A box plot also shows whiskers through lines 

extending from the box. The ends of the whiskers are called extreme points. Data outside the 

extreme points are considered as outliers. In Tukey boxplot, the extreme points are located 

1.5×IQR times lower than Q1 or 1.5×IQR times higher than Q3 (Rousseeuw & Hubert, 2011). 

IQR is the inter quartile range, obtained as Q3-Q1. Figure 2.7 shows the respective box plot 

for the y axis of data distributions shown in Figure 2.5. Outlier points X and Y in Figure 2.7 

are located outside the whiskers.  

 

A Box plot makes no assumptions about the data distribution model and is optimal when 

applied to data with a unimodal distribution. Outliers located between the component 
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distributions of data with separate component distributions cannot detected by using box plot 

parameters. This technique also requires symmetry data distribution. The extreme points are 

determined by adding the same amount to Q3 and subtracting from Q1. 

 

 

Figure 2.7. The box plot of the y axis values of the data points in Figure 2.5 and the two outliers X and 

Z. The point Y in Figure 2.5 is not an outlier with respect to the y axis. 

 

2.3.1.2 Probabilistic techniques 

Probabilistic techniques have also been applied to detect abnormalities in data. Such techniques 

estimate the probability density function (PDF) of training samples and define a threshold on 

the resulting PDF to obtain the normal range of data. A new data point is considered an outlier 

if it does not fall within this normal range. The estimation of the PDF of multivariate training 

samples is a well-established area of research (Scott, 2015). These techniques to estimate PDF 

are categorised as either parametric or nonparametric.  

Parametric techniques used to estimate PDF assume that training samples are generated from 

some underlying parametric distribution and those parameters can be estimated if enough 

samples are available. Fitting a Gaussian distribution to training data has been the most 

frequently employed form of parametric probabilistic approaches. The training stage typically 

estimates the mean and variance of the Gaussian distribution based on training samples. More 

complex forms of data distribution can be modelled using a mixture of Gaussians known as 

GMMs. A study by Scholz (1985)) estimated parameters of GMMs using optimisation 

algorithms (e.g. maximum likelihood estimation) which maximise the likelihood of the model 

given a set of training samples. An incrementally learning technique was used by Fink, Zio, 

and Weidmann (2015) to learn a model of normal data from a set of sample data. Once a GMM 
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was estimated from the data, the likelihood of a new data point 𝑥 to the model 𝑡 was calculated 

by Equation 2.1 

 

𝑃(𝑥|µ 
𝑖
, Σ 𝑖 ) = ∑ 𝛼𝑖 𝑔(x|µ 𝑖, Σ 𝑖)

𝑀
𝑖=1   

(2.1) 

where M is the number of component Gaussian distributions, 𝛼𝑖 (𝑖 =  1, . . . , 𝑀) are the mixture 

weights, x is the input value and 𝑔(x|µ 𝑖, Σ 𝑖) (𝑖 =  1, . . . , 𝑀) are the component Gaussian 

distributions. Each component distribution is calculated using Equation 2.2.  
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(2.2)   

 

where µ 𝑖 and Σ 𝑖 represent the mean and covariance matrix of the training samples. 𝑑 specifies 

the dimensionality of the sample data. Given a new data point, a score for being normal can be 

calculated using Equation 2.1 and once this score is less than a specific threshold, the data point 

is marked as outlier.  

 

Mixture models may require large numbers of training examples to estimate model parameters. 

Another drawback reported was that the chosen functional form for the data distribution may 

not accurately represent the distribution that generated the data (Pimentel et al., 2014).  

 

Non-parametric probabilistic techniques used to estimate PDF typically employ a kernel 

density estimator. Outliers are identified as those data points that fall in the low density area of 

the learned density function. A kernel density estimator places a kernel function (e.g. Gaussian) 

on each training data sample and estimates the local PDF for that location with respect to the 

kernel bandwidth (the radius of the kernel). This means the local PDF for each data point is 

calculated by summing the contributions from kernels within a specific proximity of the data 

point. The data points in dense regions receive a higher value in the PDF and those in the tails 

of the distributions receive very low values. 

 

A study by Tarassenko, Hann, and Young (2006) proposed a non-parametric approach for 

detecting abnormalities in physiological information of patients. The study used a non-
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parametric probabilistic model of normality which was learned using a training dataset of 

normal high-risk patients. The model was estimated using a combination of k-means clustering 

and Gaussian kernels. A number of clusters were identified using k-means and the PDF of the 

training data was estimated by calculating the local PDF of each cluster centre using Gaussian 

kernels. The model of normality was employed to detect abnormality in test data acquired from 

a patient. An alert was generated if a novelty score for test data exceeded a threshold.  

 

2.3.1.3 Techniques based on one-class SVM 

Training a one-class SVM is another unsupervised technique for forming a novelty boundary 

in the feature space of an unlabelled dataset to separate normal data from outliers (Yu et al., 

2013). The location of outlier decision boundary is determined using the support vectors (i.e. 

those training data that lie closest to the boundary of normal data distribution). The one-class 

SVM projects the normal data onto a high-dimensional space using a kernel function in an 

attempt to draw the smallest hyper-sphere that separates normal and abnormal data with a 

maximum margin. To make the classifier more tolerant to outliers, a parameter needs to be set 

by the user to allow a proportion of the normal data to fall outside the decision boundary of the 

“normal” class. The kernel functions range from linear dot product, through polynomial 

nonlinear, and to a Gaussian function. Labelling new test data typically involves determining 

whether the test data falls outside the boundary of normal data (i.e. the boundary where the 

outliers lie). The problem associated with using this approach has been that the performance of 

the classifier is highly affected by the parameters defined by the user (Pimentel et al., 2014). 

 

A study by Gardner, Krieger, Vachtsevanos, and Litt (2006) described the application of a one-

class SVM in detecting seizures in humans. The intracranial electroencephalogram (EEG) 

time-series was mapped onto its respective sequences of novelty scores through the 

classification of one-second-window energy-based statistics computed from the signal. The 

separating hyper plane for the classifier was obtained using training data of normal EEG. Data 

containing seizure events were detected as those representing significant changes in the feature 

space. Another study L. A. Clifton, Yin, and Zhang (2006) also proposed an SVM-based 

abnormality detection technique for monitoring combustor operation. It employed a one-class 

SVM to predict combustion instability using multivariate combustion data. Wavelet analysis 

was used first for feature extraction, from which detail coefficients were extracted as two-

dimensional features. Novelty scores computed using the one-class SVM classifier were 
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obtained to detect unstable operation of the combustion machine. 

 

2.3.1.4 Data mining techniques  

Data mining techniques for abnormality detection include clustering techniques (e.g. k-means, 

Fuzzy C-Means (FCM) and DBSCAN) and rule extraction techniques, such as association rule 

mining (Agrawal, Imieliński, & Swami, 1993) and frequent episode rule mining (Agrawal & 

Srikant, 1995).  

 

Clustering techniques characterise boundaries for normality in the data space using a small 

number of unlabelled normal samples. The training data are grouped into clusters and a 

representative point for each cluster is obtained (i.e. the cluster centre). A score for abnormality 

in a test data point is calculated as its minimum distance to the nearest cluster centre. The test 

instance is labelled as an outlier if it is not close to any of the learned clusters.  

Clustering methods use different approaches to identify cluster centres. K-means and FCM are 

categorised as partitioning clustering algorithms which partition the dataset into a pre-defined 

number of clusters. The initial partitioning of the dataset iteratively changes in order to optimise 

an objective function. The k-means algorithm initially chooses k random data points as cluster 

centres. The data points in the dataset are then assigned to clusters based on their distances to 

the cluster centres. The locations of data points for each cluster are then averaged to update the 

location of the cluster centre. This process is repeated until a specific criterion is met (e.g. the 

locations of cluster centres do not change during two consecutive iterations).  

 

The FCM technique clusters data using a similar approach to k-means. Each data point in the 

dataset is assigned to different clusters to a certain degree. The centre of a cluster is the average 

of all data points, weighted by their degree of belonging to the cluster. The algorithm starts by 

choosing specific numbers of data points as cluster centres. Once the degree of membership of 

all data points in different clusters is calculated, the locations of cluster centres are updated. 

The algorithm then repeatedly recalculates the membership degrees of data points and updates 

the location of cluster centres until their locations do not change beyond a specific threshold 

during two consecutive iterations. This shows that each cluster includes data points that have 

the maximum degree of membership in that cluster.  

 

A study by D. A. Clifton, Bannister, and Tarassenko (2007) used the k-means clustering 
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technique to monitor the operation of aerospace gas-turbine engines, where k was determined 

empirically. Novelty scores were constructed based on the distance of test data from their 

closest cluster centre. Test data with a novelty score exceeding a threshold were classified 

“abnormal” with respect to the model. Since each cluster was represented via the location of 

the cluster centre, this technique is unable to represent clusters with arbitrary shapes. 

Techniques based on k-means are also sensitive to outliers since they can significantly affect 

the location of cluster centres. 

 

DBSCAN is a density-based clustering algorithm that finds clusters of an arbitrary shape. It 

has two application-specific parameters: MinPnts which determines the minimum number of 

data points in each cluster and Eps which specifies the radius in which two points in a cluster 

are reachable. The DBSCAN algorithm selects an arbitrary unprocessed point p from the 

dataset and generates a new cluster with p as the core object if Eps-neighbourhood of this point 

contains more than MinPts data points. p is then labelled as processed, and all its neighbours 

are selected as core objects and go through the same process to grow the cluster. Once this 

process is completed, a new unprocessed point is selected and this process is repeated until no 

new cluster can be developed (i.e. there are no new points that can be added to any clusters).  

 

Rule based data mining methods generate rules that represent frequent patterns in a training 

dataset. The set of these rules represent the regular behaviour of the monitored system 

(Chandola et al., 2009). Any test sample that does not trigger any rule is considered as an 

outlier. Various methods have been proposed to generate such rules. Association rule mining 

techniques extract rules that associate frequent itemsets in their antecedent and consequent. In 

a given database of transactions with each transaction including a limited list of items, frequent 

itemsets are those items that co-occur frequently in the database. The assumption of association 

rule mining techniques is that outliers occur very rarely in the dataset. Valid support and 

confidence thresholds for the association rules are chosen to prevent outliers being represented 

by any rule.  

 

A number of association rule mining algorithms have been proposed in research literature. An 

early study by He, Xu, Huang, and Deng (2004) used association rule mining to detect 

abnormal network traffic by characterising significant data patterns in a training dataset. 

Another study by Tajbakhsh, Rahmati, and Mirzaei (2009) described a fuzzy version of this 

algorithm in order to detect network intrusions. Fuzzy linguistic values were defined over the 
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domain of network traffic attributes. The data patterns that co-occurred frequently in the 

training dataset were characterised as fuzzy rules. This fuzzy rule set was then used to detect 

those abnormal data that had a low compatibility to the rule set. 

 

Techniques for mining frequent episodes extend the association rule mining algorithms since 

they take into account the order of items in sequential data. Such techniques generate rules 

from the sequences of sensor events in which each rule represents a frequent sequence of events 

known as a frequent episode. Outliers are those test sequences that do not match any rule.  

 

A technique for mining frequent episodes was presented by Y. Liu, Zhao, Chen, Pei, and Han 

(2012) to monitor a person’s visited locations inside a home. The approach collected sequences 

of n visited locations (n was a user specified parameter) in a training phase and mined frequent 

episodes to identify frequent trajectories inside the home. A monitoring phase was used to 

compare the sequences of visited locations with the frequent trajectories in order to detect 

abnormal behaviours. 

 

2.3.1.5 Fuzzy based techniques 

Deploying inference systems based on fuzzy logic is another technique for abnormality 

detection. The fuzzy rule base associated with a fuzzy inference system is flexible and 

incremental as new fuzzy rules can be added and existing rules. Fuzzy rules can be generated 

from a training dataset of both normal and abnormal samples or only normal samples. Each 

rule usually characterises a specific behaviour of the system. The output from the fuzzy rule 

set can be used to detect deviations from the normal behaviour of the system.  

 

A recent study by Chakraborty, Chakraborty, and Mukherjee (2016) reported on the 

development of a fuzzy inference system to detect Parkinson’s disease in the elderly. This study 

captured a dataset of biomedical measurements of elderly people’s voice and employed 

clustering techniques to extract fuzzy rules from the input and output dataset. The output of 

fuzzy rule set was a continuous value ranging from 0.1 to 1.5 with values higher than a pre-

defined threshold indicated the disease. The result indicated that the detection accuracy of the 

system was up to 97%. 
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2.4 Abnormality detection in ADLs of the elderly  

Abnormality detection has been considered as a challenging task in the realm of monitoring 

elderly people’s ADLs due to the absence of a formal definition and the scarcity of events that 

indicate such behaviours (Lundström et al., 2016). The first stage in the detection of the 

abnormal behaviour is to define a sequence of actions as an activity. Activities are then be 

regarded as abnormal based on different attributes, such as the posture of the person, the order 

of actions, duration, time, location, and the frequency of the activity. The subject’s posture and 

the time, duration and location associated with an activity are monitored to detect hazardous 

events such as falls, whereas the other attributes are used for detecting deteriorating health over 

a longer period. A recent study by Peetoom et al. (2015) on approaches developed to detect 

abnormality in elderly people’s ADLs suggests that these can be categorised as follows: 

 

1. Those that aim to detect short-term abnormal behaviours in physical activities which 

result in dangerous incidents. This category of abnormal behaviours can usually be 

identified by monitoring systems over a short period. For example, a fall can be detected 

within a few seconds of lying on the floor and becoming unconscious can be detected 

within several minutes. 

2. Those that detect deviations from the subject’s daily routine in a longer period (e.g. 

daily and weekly). These deviations are mostly detected by analysing instrumental 

ADLs and indicate a deteriorating functional ability of elderly people. 

This categorisation suggests that most studies are not able to detect both short-term abnormal 

behaviours during physical activities and long-term deviations from the routine of instrumental 

ADLs. This is due to the combination of sensors employed by these approaches not providing 

relevant data for monitoring both physical and instrumental ADLs. Monitoring the former 

requires identifying the subject’s body postures (e.g. sitting, walking, and lying) along with the 

time and location of the activity. This is achieved mostly by employing video cameras or 

wearable sensors. Monitoring instrumental ADLs on the other hand involved using 

environmental sensors to detect interactions with objects and measuring the person’s ability to 

follow a daily routine for important tasks, such as cooking and grooming.  

 

Another important reason is the difference in the intervals at which monitoring approaches 
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examine behaviours related to physical and instrumental ADLs. The focus in monitoring 

physical ADLs is typically on the short-term behaviours of the occupant. Once an abnormality 

(e.g. a sudden fall) is detected, an alarm is raised to notify a caregiver about a potential 

emergency situation. This is different from monitoring instrumental ADLs where the focus is 

to examine behaviors over a longer period of time. For example, a set of activity metrics may 

be calculated for an entire day to detect a noticeable drift from the occupant’s normal profile 

(Noury et al., 2011).  

 

Different types of output also need to be generated for monitoring physical and instrumental 

ADLs. Monitoring physical ADLs results in generating alarms as it aims at detecting 

emergency situations that need a rapid response by a caregiver or family member. This is in 

contrast to monitoring the daily routine for instrumental ADLs in which once a drift is detected 

across several days, a notice is sent to caregivers to help them identify deteriorating health.  

The following subsections will provide a review on research related to abnormality detection 

in physical and instrumental ADLs.  

 

2.4.1 Abnormality detection in physical ADLs  

Many elderly people face hazardous events during physical ADLs (such as becoming 

unconscious or falls) and may sustain an injury or remain on the floor for long durations until 

someone discovers them. Different factors can cause such abnormal behaviours during physical 

ADLs including side effects of medications and muscle weakness. Approaches that are 

proposed for detecting these events mostly target fall incidents using different sensor 

technologies such as cameras and wearable sensors. The majority of these approaches rely on 

simple thresholding of the sensor outputs. Other approaches have applied machine learning 

techniques to distinguish hazardous events from normal ADLs by using a training dataset. The 

following sections provides a review of literature on approaches used to detect abnormalities 

in physical ADLs. 

 

2.4.1.1 Thresholding techniques with wearable sensors 

Several studies have applied fixed thresholds on kinematic information obtained from wearable 

sensors, such as accelerometers and gyroscopes to detect abnormalities in physical ADLs. 

Research by Jay Chen, Kwong, Chang, Luk, and Bajcsy (2005) proposed an accelerometer-

based approach that monitored body-orientation changes. A potential fall would be indicated 
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if the orientation angle of the body was less than a user-defined threshold. The orientation 

change was then calculated over one second before and two seconds after the initial impact 

with the floor by calculating the dot product of the acceleration vectors. Despite many efforts 

to improve this algorithm, it was not able to distinguish between real-world falls and ADLs. 

Another similar study by Bourke and Lyons (2008) positioned a gyroscope on the subject’s 

chest and used threshold values for angular velocity, angular acceleration, and the change in 

the trunk angle to detect falls.  

 

A recent study by Pierleoni, Belli, et al. (2015) proposed another thresholding-based fall 

detection technique which used information supplied from an accelerometer, a gyroscope and 

a magnetometer to detect falls. The system raised an alarm if the body orientation was below a 

pre-determined threshold for a certain amount of time. The proposed algorithm was evaluated 

with a dataset of simulated falls and normal ADLs and results confirmed the detection accuracy 

of both types of activity.  

 

A similar approach was proposed by Q. Li et al. (2009) which applied a thresholding technique 

on data from accelerometers and gyroscopes. The sensor data were first categorised as 

belonging to static postures (i.e. standing, bending, sitting and lying) or motions between the 

static postures. Features including angular velocity and linear acceleration were extracted to 

detect fall incidents as unintended motion transitions before a static lying posture. The study 

reported that the proposed technique could not accurately differentiate specific activities (e.g. 

falling into bed and falling against the wall from a seated posture). 

 

2.4.1.2 Machine learning techniques with wearable sensors 

Monitoring approaches which involve wearable sensors have used different types of machine 

learning techniques such as k-nearest neighbour (k-NN) classifiers and SVMs to distinguish 

falls based on a training dataset of the elderly person’s activities. The wearable sensors are 

labelled with different activities including falls and then used to train the classifier. These were 

categorised as Type 1 classifiers as shown in Table 2.1. 

 

A recent study by Yuan, Yu, Dan, Wang, and Liu (2015) attached an accelerometer and a 

gyroscope to different parts of the monitored subject’s body to distinguish between falls and 

ADLs. A large set of statistical features was extracted from the sensors’ outputs and principal 
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component analysis (PCA) condensed this feature space into fewer dimensions. The 

performance comparison of six machine learning techniques, for a labelled dataset, showed 

that the k-NN classifier was the most accurate in detecting falls. A similar result was obtained 

by Özdemir and Barshan (2014) who attached six sensors to different parts of the subject’s 

body. Once the data from the wrist sensor reached a peak, raw data from other sensors in a 4 

second time window around this peak point were processed to extract features.  

 

Another recent study by Lustrek et al. (2015) partnered SVMs with a decision tree classifier to 

detect falls using location sensors attached to different body parts of the subject. The sensor 

data were pre-processed and the results were used to classify the subject’s posture. The 

estimated postures were combined with the subject’s locations to detect falls. The occurrence 

of a fall was confirmed as those situations that both classifiers output as a fall. Evaluation 

results revealed that taking into account the subject’s location improved the fall detection 

accuracy by approximately 30 percent. 

 

Another study by Pierleoni, Pernini, et al. (2015) also employed SVMs to develop a fall 

detection system using intervals of data supplied by a smart phone. For those intervals featuring 

a potential fall, features were extracted and fed into SVMs to detect fall events. SVMs were 

also used by S. H. Liu and Cheng (2012) to detect falls from signals provided by a wrist 

accelerometer. The study used a time sliding window to extract body orientation angle and the 

motion of the hand as the input of the SVMs. The SVMs were trained using a labelled dataset 

of simulated ADLs including falls. Although this approach required a labelled training dataset, 

the results proved to be more accurate than those of traditional thresholding techniques. 

 

Techniques relying on wearable devices to detect short-term abnormal behaviours have two 

key limitations (Khan & Hoey, 2016). These techniques have been found to provide a high rate 

of false alarm in real-life settings. This is because many normal ADLs can cause high 

acceleration of body parts (e.g. jumping or sitting down suddenly) that can result in sensor 

measurements being similar to those for real falls. Another drawback has been that some people 

find wearing a device uncomfortable when sleeping, changing cloths and bathing, hence raising 

issues about the maintenance of wearable devices.  
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2.4.1.3 Machine learning techniques with video cameras 

Several researchers have proposed video based monitoring techniques to detect short-term 

abnormal behaviours. These techniques overcome the limitations found with using wearable 

sensors. The silhouette of the monitored person is first segmented from video stream and 

features are then extracted to describe ADLs. These features include the aspect ratio of the 

minimum bounding box, the ratio of the major axes of the fitted ellipse, and the body 

orientation. Machine learning techniques are employed to distinguish short-term abnormal 

behaviours in physical ADLs.  

 

Hsueh, Lin, Chang, Chen, and Lie (2015) proposed a video/audio based approach which used 

a Bayesian network to detect abnormal behaviours. The trajectories of occupants along with 

audio features were first extracted from labelled sensor data and then used to build the Bayesian 

network model. The model was utilised to detect abnormal events in new sensor data. This 

approach was validated using data collected from a real environment and results showed that 

this outperforms the Naive Bayesian model. 

 

Another video based approach was reported by Seki (2009) in which an omni-directional vision 

camera was used to collect data and a fuzzy framework was created for detecting abnormal 

activities. The approach extracted the subject’s body orientation, the location and the time of 

activities to generate fuzzy rules. The degree of abnormality for each observed pattern of 

features was determined by calculating its frequency in a training dataset. One limitation to this 

approach was that each frame was evaluated independently which resulted in ignoring the 

duration of activity patterns. Another limitation was that the fuzzy sets were defined arbitrarily 

to obtain fuzzy attributes describing ADLs.  

 

Another approach proposed by Rougier, Meunier, St-Arnaud, and Rousseau (2011) detected 

falls via thresholding the body orientation and the ratio of the major axes of the fitted ellipse 

on the subject’s silhouette. This approach had some limitations as it was unable to extract 

features that characterise the 3D posture of the person during falls with the use of a single 

camera. For example, a fall which happens in the viewing direction of the camera cannot be 

differentiated from other postures because of the very small differences in the orientation of 

the subject’s body. 
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This issue was addressed by Zambanini, Machajdik, and Kampel (2010b) where a network of 

video cameras was employed to detect falls via the silhouettes of the monitored person. The 

video stream from each camera combined to estimate the 3D posture of the person, termed 

early fusion. Evaluation results showed that monitoring 3D posture of the occupant would 

significantly improve the accuracy of fall detection. 

 

Another study by Rougier, Meunier, et al. (2011) improved on this approach by proposing an 

unsupervised fall detection technique using late fusion of data from multiple cameras. From 

each camera stream, the subject’s silhouette was extracted for each frame and then falls were 

detected via analysing human shape deformation. The assumption was that during a fall, the 

subject’s posture changes rapidly and this is followed by a lack of significant movement. 

Several edge points from the silhouette were selected in each frame. The matching distances 

of those edge points from two consecutive frames were then calculated. The matching distances 

were classified by a GMM into normal or abnormal. The GMM was trained by an unlabelled 

dataset of normal activities. The system classified input data as representing a fall incident if 

GMM labelled data as abnormal and that situation was followed by low movement of the 

person for a specific period. 

 

Yu et al. (2013) research reported on the use of one-class SVMs to detects falls in video images. 

After capturing a dataset of an occupant’s ADLs for a specific number of days, features 

including body orientation and skeleton structure were extracted to determine a decision 

hyperplane for the SVM classifier. The study reduced false alarms by introducing two rules for 

cases in which an abnormal posture is detected; these would verify whether a large movement 

in the body posture occurred during the fall and whether the occupant lied on the ground for a 

certain duration. Evaluations using a dataset of simulated falls showed that the one-class SVMs 

performed better by nearly 10% compared with the GMMs proposed earlier by Rougier, 

Meunier, et al. (2011).  

 

Banerjee et al. (2014) concluded that systems using video cameras are limited as they have 

three key drawbacks: (1) the segmentation of the subject relies on background modelling in the 

colour image space, which is difficult in real-life conditions due to colour and light variations; 

(2) operating in low light or no light conditions is only possible if an active source of infrared 

light is available; and (3) for multi-camera systems, the installation and calibration of the 

cameras in the same reference frame become a major concern.  
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2.4.1.4 Thresholding techniques with Kinect sensors 

Researchers have used the recently developed Microsoft Kinect sensors to detect emergency 

situations such as falls in homes of elderly people. This motion sensing device includes a depth 

sensor to capture 3D data under any ambient light conditions. The depth information is utilised 

to estimate a skeletal model of any person in Kinect’s field of view along with their segmented 

silhouette.  

 

A number of recent studies have reported the use of Kinect sensors to detect abnormal 

activities. A fall detection system was proposed by Planinc and Kampel (2013) which relied 

on the location of skeleton joints with respect to the ground plane. The occupant’s spine was 

estimated from an analysis of full-body 3D data supplied by a Kinect sensor. The study defined 

potential fall events as scenarios where the occupant’s spine rapidly transformed from a state 

of vertical to horizontal and did not return to vertical within a specified period. One limitation 

of this approach was that for real-life environments the tracking of all skeletal joints cannot be 

carried out in a reliable manner. This is due to the tracked person being occluded by furniture 

resulting in their skeletal joints not being directly visible from the sensor (Kwolek & Kepski, 

2016). This has lead researchers to search for other techniques to characterise the 3D silhouette 

of the person to detect falls.  

 

A recent study by Yang, Ren, and Zhang (2016) described a Kinect-based fall detection 

technique in which the silhouette of the moving individual along with the floor plane equation 

were estimated from depth images. This study analysed the orientation of the human body and 

the distance between the silhouette’s centroid and the floor plane to detect a fall incident. This 

approach used some pre-defined thresholds which make its application limited across different 

real-life settings. An evaluation of results in laboratory environments showed that it could 

detect fall incidents effectively. 

 

2.4.1.5 Machine learning techniques with Kinect sensors 

Some Kinect-based fall detection studies have used machine learning techniques to avoid the 

drawbacks associated with the simple thresholding of the extracted features. A study by Dubey, 

Ni, and Moulin (2012) proposed a fall recognition system which combined depth maps with 

colour information. The subject’s motion was characterised via extracting Motion History 

Images (MHI) from both colour images and depth maps. SVMs then detected a fall through a 
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set of geometrical moments extracted from each MHI channel. The SVMs were trained using 

a labelled dataset of 12 activities including falls captured from a laboratory environment. A 

similar study by C. Zhang, Tian, and Capezuti (2012) trained SVMs to detect fall incidents 

from deformation of the subject’s height and skeleton joint angles. A high fall detection 

accuracy of 94% was achieved using a testing dataset of specific types of fall (i.e. fall from a 

chair and fall from standing) captured from a laboratory environment.  

 

A recent study by Stone and Skubic (2015) proposed a two-stage fall detection system from 

Kinect data. The first stage generated a time series characterising the vertical status of the 

detected person over time. A sliding widow in the second stage analysed this time series to 

identify segments in which the subject was lying on the floor. A set of features was extracted 

to characterise the dynamic of the body motions during potential fall incidents. An ensemble 

of decision trees was then used to calculate a confidence of fall for each segment. The decision 

trees were trained using a labelled dataset of fall and non-fall activities. This approach was 

compared against other fall detection algorithms and was found to achieve better results. 

 

Many Kinect-based fall detection approaches have applied fuzzy rule-based systems in the 

form of fuzzy If-Then rules. The use of fuzzy sets to parameterise input variables allowed some 

degree of variation in different samples of ADLs. The simple structure of fuzzy rules is easy to 

interpret. Kepski et al. (2012) presented a fuzzy rule-based system for fall detection which 

obtained data from a Kinect and a wearable device. The study extracted the acceleration and 

speed of the body’s motion from wearable sensors and these were combined with the distance 

of the person’s centre of gravity to the floor as measured by a Kinect camera. These features 

were the inputs to a set of manually defined fuzzy rules which distinguished fall incidents from 

other activities.  

 

Another recent study by Kwolek and Kepski (2016) proposed a similar fuzzy approach in 

which data captured by an accelerometer were thresholded to detect potential falls. The 

processing of Kinect depth maps was initiated each time a potential fall was detected. A set of 

features including the aspect ratio of the subject’s bounding box and the distance of their 

centroid from the floor was obtained from processing the depth maps. Features from both 

Kinect camera and accelerometer data were then used by a two-level fuzzy inference engine 

where, on the first level, two different fuzzy inference systems were used to determine the lying 

posture and motion transition associated with a fall. The second level of the inference engine 
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classified the output of the first level into a fall or non-fall activity via the use of a pre-defined 

set of fuzzy rules. Experiments performed on a dataset of simulated falls showed better 

performance using this technique compared with using SVMs as the classifier. 

 

Planinc and Kampel (2012) reported a similar fuzzy-based fall detection technique in which 

the body orientation and the height of the subject’s spine were estimated as the inputs of a fuzzy 

inference system to classify the posture of the body into on the ground, in between and upright 

states. The confidence values for the subject being in different states were thresholded for fall 

detection. Although evaluation results showed a fall detection accuracy of 98.6% on 72 testing 

videos, this method was evaluated using a set of predefined fuzzy rules with a dataset collected 

from a laboratory environment.  

 

2.4.2 Abnormality detection in instrumental ADLs  

A number of studies have reported on monitoring instrumental ADLs of elderly people in order 

to detect long-term deviations from their daily routine. Abnormalities over a long period (e.g. 

day or week) are infrequent and hard to simulate. Instead of modelling abnormalities, 

researchers typically modelled normal behaviours using data samples collected from the elderly 

person’s ADLs. Outliers were defined as those behaviours deviating from the developed model. 

These approaches mostly belong to the category of Type II described in Table 2.1 (Yu et al., 

2013). The majority of studies used environmental sensors (e.g. PIR sensors, magnetic switches 

and RFID tags) to estimate ongoing instrumental activities based on the subject’s locations 

and/or environmental interactions. The following section provides a review of research on 

some of the commonly used techniques for abnormality detection in instrumental ADLs. 

 

2.4.2.1 Statistical techniques 

Among various techniques described for outlier detection (see Section 2.3), statistical 

techniques are frequently used for monitoring elderly people’s long-term behaviours. Some 

studies have monitored the mobility of the elderly inside their homes to detect abnormal 

behaviours. Frequency rank order statistics were used by Shieh, Chuang, Wang, and Kuo 

(2006) to monitor the mobility changes of the elderly at home using PIR sensors. A day was 

divided into intervals and the number of sensor triggers during each interval was counted. The 

numbers associated with eight successive intervals were then mapped into a binary sequence 

of eight bits to represent a pattern of movement in the house. The average deviation of 
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frequencies of movement patterns were calculated for a test day to measure the deviation of 

the subject’s behaviour from their normal profile. This technique required a high number of 

training samples so that the calculated features represent the normal behaviour of the monitored 

person. 

 

A similar study by Virone et al. (2008) monitored an elderly individual’s mobility using PIR 

sensors installed in every room of a residence. Two metrics were obtained for each hour of the 

day namely, occupancy rate and activity level. The former measured the duration for which the 

occupant visits each room and the latter specified the number of sensor triggers for each room. 

A normal variation range was defined for each metric using the mean and the standard deviation 

of the training data. To monitor the occupant’s behavioural patterns, the hourly values of the 

two metrics were computed, and when they were found to be outside the ranges of normal 

variation, the system generated an alarm. The technique was tested on a dataset from real-life 

settings and validations showed that monitoring the occupant for each hour of the day could 

result in a high rate of false alarms.  

 

2.4.2.2 Probabilistic techniques 

A limited number of studies have described the use of probabilistic techniques for detection of 

abnormal of physical ADLs. Elbert, Storf, Eisenbarth, Ünalan, and Schmitt (2011) combined 

the statistical technique described previously by Virone et al. (2008) with a probabilistic 

technique to detect deviations in the long-term behaviours of elderly people. Attributes such as 

the start time and duration of ADLs were extracted from a labelled dataset of specific activities 

obtained from PIR sensors. GMMs were trained to characterise the normal variation range of 

attributes during different activities. The likelihood of new sensor data belonging to each 

activity was calculated based on the probability of those data being generated by the GMM 

model of that activity. A final score in a range of zero to one was obtained via averaging the 

likelihood of GMMs. Values closer to one indicated less deviation from the normal behaviour 

patterns. Experimental results showed different behaviour patterns on weekends than during 

weekdays which would require building separate models. 

 

Various approaches have been proposed for modelling the duration of activities using GMMs. 

A study by Alam, Reaz, and Husain (2011) that explored MIT’s PlaceLab and MavHome 

datasets found that GMMs were efficient for learning regular activity durations and could 
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highlight deviations. Switching Hidden Semi-Markov Models have also been successfully 

employed to model durations and to detect outliers (Duong, Bui, Phung, & Venkatesh, 2005). 

Another study by Shin, Lee, and Park (2011) used a one class SVM to monitor the activity 

level and mobility of the elderly through motion detectors. Each day was divided into one-hour 

intervals, and for each interval, a one-class SVM classifier was developed to model a decision 

boundary for the normal data patterns so as to identify outliers. This boundary was obtained 

through applying a Gaussian kernel function to the data. Evaluations on a dataset captured from 

a real-setting environment showed that the classification results of the one class SVM were 

influenced by the variance parameter of the kernel function. The optimal hypersphere resulted 

in a correct classification rate of nearly 98%.  

 

A recent study by Tong et al. (2015) developed an approach based on hidden state conditional 

random field (HCRF) to monitor ADLs via modelling sub-activity relations. A labelled dataset 

of ADLs captured by environmental sensors was used to train the HCRF model. The 

likelihoods of the activity in testing data to target ADLs were calculated to detect abnormal 

activities. The results showed that the HCRF this approach outperforms other approaches that 

were based on using SVMs. 

 

2.4.2.3 Clustering techniques 

A number of researchers have employed clustering techniques to find abnormalities in the 

sequence of visited locations. These studies are based on the assumption that different types of 

ADLs are related to spatial regions in a home. The clustering techniques in these studies 

determined a boundary of normal behaviour and defined outliers as data points outside the 

boundary or located far from any cluster.  

 

A study presented by Hsu, Lu, and Takizawa (2010) collected a person’s visited locations for 

a week using active RFID sensors. After a sliding window extracted movement patterns, a 

fuzzy c-means clustering algorithm was used to identify behavioural models. A new 

observation distant from all cluster centres was identified as an outlier. Bamis, Lymberopoulos, 

Teixeira, and Savvides (2008) also modelled the order of visited locations using a k-means 

clustering algorithm. The study clustered room occupancy durations and the patterns of visiting 

different rooms via using timestamped data from PIR and door sensors. The distance of the 

occupancy pattern to the closest cluster centre was calculated for each day as an indication of 
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deviation from the regular daily routine.  

 

Another study by Lotfi, Langensiepen, Mahmoud, and Akhlaghinia (2012) also employed 

clustering techniques, including SOM, k-means and FCM, for monitoring the pattern of visited 

locations in a house. The evaluation results confirmed the effectiveness of modelling the start 

time and durations of ADLs in finding abnormal behaviours in the elderly homes especially 

when the occupant was suffering from dementia. 

 

2.4.2.4 Data mining techniques 

Data mining techniques have shown promise for modelling the frequent behaviour patterns of 

the elderly using unlabelled sensor data. Munstermann et al. (2012) identified such patterns 

during instrumental ADLs using data from binary sensors attached to different objects. The 

study identified nine instrumental activities based on the practical knowledge of caregivers and 

these were modelled via the set of objects used during each activity. When the sensor data were 

transformed into sequences of activities, a sequential mining algorithm generated a model of 

frequent transitions between activities along with the probability of each transition. The sensor 

data for a new day were similarly transformed into activities and the probability of transitions 

between activities were compared with the learned model to decide whether the behaviour was 

normal. The evaluation of this technique showed that choosing a certain threshold value would 

lead to a precision of 96.5%. 

 

Another data mining technique, named sensor activity pattern (SAP), was recently proposed 

for modelling the spatio-temporal order of visited locations in a home (Suryadevara & 

Mukhopadhyay, 2015). The frequent patterns of visited locations were identified during several 

time periods of the day. An unlabelled dataset collected from PIR sensors was used to 

determine each frequent pattern which could be considered as a particular ADL. To monitor 

the ongoing ADLs, the likelihood of the patterns of visited locations relative to the learned 

ADLs was determined.  

 

Data mining techniques have also been used to monitor the order of actions during ADLs such 

as cooking, grooming, and taking medicine which are complex and contain sequences of 

actions. Jakkula and Cook (2008) concluded that the order of interactions with objects 

constituting ADLs is important as it can help indicate abnormality in behaviours. This study 
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collected an unlabelled dataset of environmental interactions (sensor events) from a network 

of binary switches attached to objects, with each sensor event tagged with a date and time. 

Allen’s temporal logic was employed via a data-mining algorithm to find frequent temporal 

relationships between sensor events. A probabilistic approach was then used to determine if a 

new sequence of sensor events was abnormal based on its similarity to the frequently occurring 

sequences of sensor events. The evaluation results of this approach based on synthetic data 

only showed that it is capable of identifying abnormal events based on the temporal information 

of sensor events. 

 

A recent study by Lundström et al. (2016) proposed using random forests to detect 

abnormalities in the time and space of ADLs. This approach trained a random forest for each 

activity to model most meaningful patterns of sensor data related to the activity. These models 

were used in the monitoring stage to flag temporal and spatial deviations of activities. A limited 

number of activities were modelled by this approach and validation experiments showed the 

high effectiveness of this approach in detecting deviating behaviours. 

 

2.4.2.5  Fuzzy logic approaches 

Machine learning techniques have a number of limitations for modelling human behaviours. 

This is due to their lack of tolerance to the inherent variations in performing ADLs and 

uncertainty in sensor data. Fuzzy logic has been used extensively in ADL monitoring 

approaches to address this limitation. For example, Martin, Majeed, Lee, and Clarke (2007) 

proposed a fuzzy system for monitoring an elderly person’s instrumental ADLs. After 

classifying the sensor events into activities in the training stage, the approach determined the 

usual time and duration of activities using a fuzzy version of the AprioriAll algorithm. It is 

reported that the use of fuzzy logic has enabled this approach to summarise the monitoring data 

in a manner understandable to caregivers. The disadvantage of this approach is that it only 

monitors a limited set of ADLs. 

 

This shortcoming was addressed by the fuzzy system developed by Mahmoud, Lotfi, and 

Langensiepen (2012) where abnormal days were identified using sequences of the visited 

locations obtained from PIR sensors. This study extracted two statistical attributes via the use 

of PCA to characterise the occupancy patterns of rooms during the training period. Several 

fuzzy rules were manually defined to map the attributes into degrees of abnormality. The 
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system verified the occurrence of an abnormal situation when both attributes exceeded their 

normal variation range.  

 

The monitoring of instrumental ADLs and visited locations inside an elderly person’s home 

has been shown to provide useful information about elderly people’s functional abilities. The 

disadvantage of this approach is that the information it provides does not always help to 

accurately determine the physical wellbeing of the elderly (Suryadevara & Mukhopadhyay, 

2015). It was extremely difficult to verify the subject’s wellbeing when no appliance was used 

or the location of the monitored person did not change. A more comprehensive framework is 

therefore required to monitor both physical and instrumental ADLs.  

2.5 Summary  

The literature review in this chapter showed that although detecting abnormal behaviour in 

both the physical and instrumental ADLs of elderly people is crucial, there is a lack of research 

in the area of monitoring both types of activities concurrently. Most techniques adopted for 

monitoring ADLs were found to be based on simple thresholding or supervised machine 

learning algorithms. These techniques were shown to have drawbacks with the former not able 

to be generalised to fit across different environments while the latter requiring the laborious 

generation of a labelled training dataset of activities. These approaches were limited as they 

can only monitor a pre-defined list of activities and confine emergency situations to fall 

incidents by using a pre-assumed model of body motion.  

 

The review of literature has found that most approaches proposed for monitoring physical 

ADLs have used either intrusive video cameras or asked the subject to wear sensors which 

might easily be forgotten. The application of Microsoft Kinect depth sensor for monitoring 

elderly people’s activities in a minimally intrusive manner is in its infancy stage. The related 

studies have been limited to simple thresholding techniques that can only detect falls among a 

wide range of abnormal behaviours. The review of literature also found that most approaches 

for monitoring instrumental ADLs involved either using a network of environmental sensors 

or a power sensor in the electricity box of the house. The use of environmental sensors requires 

a costly installation of many sensors during the construction of a house while using a power 

sensor in the electricity box needs a prior knowledge about HEAs in use or a labelled dataset 

of the home power consumption. 



 

61 

 

 

Sensory data captured from real life settings has been found to be noisy and there are inherent 

variations in ADLs. Monitoring approaches based on fuzzy logic have addressed noisy sensory 

data and variations in ADLs since they incorporate fuzzy sets to represent ADL attributes. 

Existing fuzzy monitoring approaches have been found to be limited as they have focused on 

using a fixed number of pre-defined fuzzy sets over attributes and detecting abnormalities 

based of pre-defined fuzzy rules. Fuzzy sets in these approaches do not accurately represent 

activities of the subject and incorporate outliers in sensor data. 

 

The next chapter presents the methodology of this research which aims to address the 

abovementioned gaps in the current knowledge.  
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CHAPTER 3:  
RESEARCH METHODS 

 

This chapter presents the research methods and phases employed to develop a novel hybrid 

ADL monitoring approach for the elderly living alone. The chapter is divided into a number of 

sections. Section 3.1 describes the adopted methodology and Section 3.2 provides the research 

framework to answer the research questions. Section 3.3 provides an account of the phases of 

the study and the tasks performed in each phase. Section 3.4 explains metrics used to evaluate 

the effectiveness of the research framework in this study. Section 3.5 describes the testbed used 

to collect experimental data, the data collection procedure and the characteristics of the adopted 

sensors. Section 3.6 reviews the computational intelligence techniques employed in this study. 

This is followed by an account of the platforms used to implement those techniques and a 

summary of the chapter in sections 3.7 and 3.8, respectively. 

3.1 Research methodology  

A research methodology is a formulation of techniques for addressing a problem, which 

involves components such as phases, tasks, and tools (Basili, 1993). Establishing a framework 

to describe the method for any research is considered to be important. The form taken by a 

research methodology may either be experimental or analytical. As monitoring ADLs of the 

elderly is a quantitative domain and the study involved the examination of various computer 

science techniques, a mixed approach within experimental methodology was adopted for the 

research. This included the combination of engineering and empirical approaches. The 

engineering approach is one of the standard approaches used in the research related to 

monitoring ADLs of the elderly. It involves solving a research problem by iteratively 

improving on a proposed solution until no further improvement is observed (Easterbrook, 

Singer, Storey, & Damian, 2008). An empirical approach involves using data from case studies 

to quantitatively evaluating the improvement of the developed solution (Wohlin, Höst, & 

Henningsson, 2003).  

 

A description of the steps undertaken for the overall research process is shown in Figure 3.1. 

The present research was initiated with defining the research objectives and performing an 

exhaustive study of the related literature to identify problems relevant to the research 
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objectives. The proposition of a solution to those problems was the next step. This was followed 

by conducting experiments based on a case study, where a dataset was collected from sensors 

installed in a testbed, to iteratively refine the developed solutions. The final stage was reporting 

the findings.  

 

 

Proposing a framework to address the 

research gaps

Evaluating the performance of the 

research framework

Is further refinement 

needed?

Yes

No

Reviewing the literature to identify 

research gaps

Report findings

Start

End

Identifying research objectives

 

Figure 3.1. The overall research process adopted in this study. 

 

The engineering approach was used in the research process to develop and refine the research 

solution iteratively until no further improvement on the proposed solution was observed. The 

empirical approach was used in the research process to evaluate the improvement of the 
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developed research solution using data from a case study. It was also employed for reporting 

the significance of the findings.  

3.2 Research framework 

This research has developed a hybrid-monitoring framework to address the research questions 

and to achieve the overall objectives as outlined in Chapter 1. The framework focused on the 

use of a combination of Kinect sensors and a single power sensor for the continuous monitoring 

of an elderly person’s physical and instrumental ADLs. Kinect sensors were employed in 

functional areas of the monitored house to capture the 3D structures of physical activities and 

the occupant’s locations in the room. The power sensor was installed in the power box to 

measure the power consumption of the house.  

 

The extensive review of the literature in Chapter 2 concluded that monitoring physical and 

instrumental ADLs requires different aspects of ADLs to be modelled. Differences also occur 

in the type of output and the time intervals at which the approaches for monitoring physical 

and instrumental ADLs examine elderly people’s behaviour. To address these requirements, 

the hybrid framework combines two approaches which monitor the occupant’s physical and 

instrumental ADLs based on unlabelled data collected from the sensors. The approach for 

monitoring physical ADLs is called AMP-ADLs and the approach for monitoring instrumental 

ADLs is called AMI-ADLs. The AMP-ADLs approach alarms a caregiver through notifying 

them of abnormal behaviours during physical ADLs while AMI-ADLs generates daily reports 

showing deviations from the regular routine of instrumental ADLs. 

 

The method adopted to develop each of these monitoring approaches involved three general 

stages as shown in Figure 3.2. Each stage addressed a sub question of the research and provided 

the information necessary to undertake the subsequent stage. 
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Figure 3.2. The general approach taken for monitoring physical and instrumental ADLs of an elderly 

person.  

 

The first stage of the two approaches was developed to answer the first research question (i.e. 

How can data from multiple sensors (i.e. Kinect sensors and a power meter) be used to 

represent physical and instrumental ADLs of the monitored elderly person?). It involved 

extracting features of the occupant’s activities from unlabelled data captured by sensors. 

Examples of features representing physical ADLs included the occupant’s body orientation and 

their location in the room. Different features were also extracted for monitoring instrumental 

ADLs. This was achieved by measuring the combination of the composite power consumption 

of the house and the occupant’s locations in order to extract features of regular usage of specific 

HEAs. The combination of the extracted features in this stage was used to represent the 

occupant’s physical and instrumental ADLs within the house.  

 

The second stage of the monitoring approaches involved developing techniques to model 

normal behaviour patterns associated with physical and instrumental ADLs. This stage was 
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developed to attempt to answer the second research question (i.e. How can techniques be 

developed that automatically learn from the proposed data representation to generate models 

of ADLs?).  

 

The model of physical ADLs included a set of fuzzy rules characterising key attributes of 

physical ADLs in order to help detect hazardous abnormal events. The model of instrumental 

ADLs involved a different set of fuzzy rules characterising the regular usage of HEAs. The 

fuzzy logic was employed to enhance the robustness of the models in regards to capturing fine 

variations in elderly people’s activities (e.g. variations in their posture and the time and 

duration of activities).  

 

The final stage of the monitoring approaches aimed to answer the third research question; How 

can techniques be developed that detect unexpected patterns and abnormal behaviours using 

the models of ADLs? 

 

This stage involved development of techniques to analyse and classify new data from ADLs. 

Unlike many existing approaches, the adopted techniques in this stage did not recognise the 

exact types of ADLs. This was because ADLs are performed differently in each household due 

to different room configurations and the occupant’s preferences. The similarity of new sensor 

observations to the developed models of normal behaviour were categorised into abstract 

labels. The labels associated with monitoring physical ADLs were “normal” and “abnormal” 

which were obtained based on the similarity of the monitored physical ADLs to their respective 

model. Abstract labels for monitoring instrumental ADLs included “low”, “normal”, “high” 

which were given according to the regularity and frequency of the daily usage of HEAs in 

comparison with the occupant’s normal routine. Deviations from the normal routine inform 

caregivers of the possibility of a decline in the cognitive ability or general health of the person.  

 

The combination of these three stages was followed to develop the two monitoring approaches 

in the hybrid framework. 

3.3 Research Phases 

The research was undertaken in five specific phases from data collection to validating the 

developed techniques. These phases and the relationship between each phase is illustrated in 

Figure 3.3. 
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Phase 1:

 Setting up the testbed and collecting data 

Phase 3: 

Developing the approach for identifying the occupant s 

interactions with electrical appliances

Phase 2: 

Developing the approach for monitoring physical ADLs (i.e., 

AMP-ADLs)

Phase 5: 

Validating the developed techniques

Data from the 

Kinect 

sensors

Data from the 

power meter

Phase 4: 

Developing the approach for monitoring instrumental ADLs 

(i.e., AMI-ADLs)

 

Figure 3.3. Flowchart diagram showing the research phases.  

 

Phase 1- Setting up a testbed and collecting data: This phase involved retrofitting sensors in a 

real-world environment and capturing a dataset. The dataset comprised continuous Kinect 

observations of the occupant’s ADLs and continuous composite power consumption of the 

house, captured from a power sensor. Section 3.5 provides more details about this phase. 

 

 



 

68 

 

Phase 2 – Developing an approach for monitoring physical ADLs. This phase investigated data 

mining techniques for monitoring different attributes of physical ADLs, including the 

occupant’s posture and the time, duration and location of activities. A prototype unsupervised 

approach based on fuzzy logic was developed for this monitoring with details presented in 

Chapter 4. This approach was then improved through a set of modifications as presented in 

Chapter 5.  

 

Phase 3 – Developing an approach for identifying the occupant’s interactions with HEAs. This 

phase investigated a data mining technique which identifies the performance of instrumental 

ADLs based on the composite power consumption of the house and the occupant’s locations. 

The rationale behind combining these sources of data was to distinguish power signatures on 

the power line generated as a result of the occupant’s interactions from those automatically 

generated by HEAs (e.g. by self-regulated and thermostatically operating devices including 

refrigerators or washing machines). It also facilitated the approach to differentiate between the 

usage of HEAs which have similar power consumption patterns. Details for this approach are 

presented in Chapter 6.  

 

Phase 4 – Developing an approach for monitoring instrumental ADLs. This phase investigated 

the use of simple features for monitoring key aspects of performing instrumental ADLs from 

the usage of HEAs. The developed approach generated daily reports showing the elderly 

person’s deviations from their habitual performance of instrumental ADLs. Chapter 7 provides 

an examination of this approach. An overview of the adopted steps in this monitoring 

framework is presented in Chapter 8. 

 

Phase 5 – Validation of the developed techniques: This phase was used to evaluate the 

performance of the developed methodology against other alternative techniques using the 

collected testing dataset of various normal and abnormal behaviour patterns. Each chapter 

includes a validation of results against other techniques.  

3.4 Evaluation metrics for the research framework 

The problem of monitoring an elderly person’s behaviour falls into the category of binary 

classifications. A binary classification model classifies each recording of the elderly person’s 

behaviours into one of the two classes of normal or abnormal. This gives rise to four possible 
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classifications for each testing recording, namely true positive (TP, the number of correctly 

classified recordings of abnormal behaviour), false positive (FP, the number of incorrectly 

classified recordings of normal behaviour), false negative (FN, the number of incorrectly 

classified recordings of abnormal behaviour) and true negative (TN, the number of correctly 

classified recordings of normal behaviour). These categories are shown in Table 3.1. 

 

Table 3.1. Definition of terms used in equations 3.1 and 3.2.  

Abnormal situation 

System classification 

Occurs Does not occur 

Abnormal TP FP 

Normal FN TN 

 

The performance of a developed classifier to monitor ADLs of an elderly person was evaluated 

through calculating its classification accuracy for testing recordings of both normal and 

abnormal behaviour patterns. These accuracies were defined as below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑓𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠(%) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
×100  (3.1) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑓𝑜𝑟 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠(%) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
×100  (3.2) 

3.5 The testbed of the study 

To the best of the researcher’s knowledge, no public dataset exists which supplies a 

combination of continuous power consumption and Kinect data for ADLs inside a private 

residence. The research established a testbed to capture such data for developing and validating 

the approaches presented in this study. The testbed provided a real-life setting for an individual 

living alone where ADLs of the researcher were captured using sensors set up in a variety of 

locations. A more detailed description of this testbed is presented below. 

 

3.5.1 Specifications of the testbed 

The testbed used for capturing the experimental data was a single-bedroom apartment 

consisting of a living room, a kitchen, a dining room, a bedroom, and a combined toilet and 

bathroom. The layout of this testbed, the setup of the Kinect sensors, the range of the depth 
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sensor of each Kinect (i.e. the shaded region in each room), and the location of the important 

furniture used during ADLs are shown in Figure 3.4.  

 

  

Figure 3.4. Furniture locations and the layout of the testbed.  

 

The Kinect data were captured using four Kinect sensors installed in the kitchen, living room, 

dining room, and bedroom as shown in Figure 3.4. All sensors were set up to cover the location 

of furniture used during ADLs except for those in the bathroom. The Kinect sensors were 

positioned approximately one and half metres from the floor using tripods and had different 

downward angles to cover as much of the floor plane of the monitored room as possible. The 

system used for recording these data consisted of four Windows 8.1 notebook computers, with 

one notebook per Kinect device. Each Kinect was assigned an ID (i.e. the first letter of the 

corresponding room monitored by the Kinect) to represent the room being monitored by the 

sensor, as shown in Table 3.2.  

 

 

Bedroom 

Kitchen 

Dining room 

living 

Living room 

Kinect camera 

Bathroom 

Electricity panel box 
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Table 3.2. Kinect IDs in the testbed 

Location  Kinect ID 

Living room L 

Kitchen K 

Dining room D 

Bedroom B 

 

Figure 3.4 indicates the location of the electricity box external to the home where a power 

sensor was installed to measure the composite power consumption of the house. Power 

consumption data were transmitted wirelessly to the notebook computer responsible for 

recording the living room Kinect data. A list of typical ADL-related HEAs used in the testbed 

is shown in Table 3.3. This table also shows the location of each appliance. These devices were 

considered to represent the typical setting of an elderly person’s home. 

  

Table 3.3. Monitored HEAs and their locations in the testbed 

Appliance Location Appliance Location 

Washing machine Bathroom Computer Living room 

Toaster Kitchen TV Living room 

Refrigerator  Kitchen Floor lamp Living room 

Electric cooktop  Kitchen Hair dryer Bedroom 

Kettle Kitchen Microwave Kitchen 

 

The furniture in the testbed also included other items frequently used by the occupant during 

ADLs such as a dining room table, and a living room sofa which was used for taking an 

afternoon nap, reading, and watching TV.  

 

3.5.2 Description of the sensors 

The data in this study were captured using a combination of Kinect sensors and a power meter. 

The following sections describe the technical aspects of each type of sensor.  
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3.5.2.1 Kinect Sensor 

3D information from the monitored environment was captured by using off-the-shelf and 

inexpensive Kinect sensors. As mentioned in Chapter 1, Kinect was initially introduced as a 

motion-sensing device for the Microsoft gaming system Xbox 360 (Kinect, 2013) in order to 

enable users to interact with the console using their gestures and voice commands. The camera 

can provide 3D structures of the environment and video images in one instrument.  

 

Microsoft introduced the first generation of Kinect sensors (i.e. Kinect V1) in 2010 (see Figure 

3.5). This version emits a specific pattern of infrared light over the camera field of view. The 

reflection of this pattern is then captured by an infrared sensor and is employed to illustrate the 

distance between objects in the scene and the sensor via depth maps. Two major problems 

associated with this technology include interference that can result from using multiple Kinect 

sensors and the limited field of view of the depth sensor. When the fields of view of two Kinect 

sensors interfere with each other (i.e. the same area of the room is observed by both depth 

sensors), the interference of infrared patterns emitted by the two Kinect sensors causes an 

unreliable estimation of depth by both sensors. Another problem which has been noted is that 

the field of view is limited to only 58.5 degrees horizontally and 46.6 degrees vertical. This 

limits the detectable range of a room in which a person can be detected (one to four metres 

from the sensor). 

 

 

Figure 3.5. First-generation Kinect sensors.  

 

The Kinect V2 associated with the Xbox One gaming consoles was introduced in 2013 in order 

to address these limitations (see Figure 3.6). The Kinect V2 hardware contains a 1080p colour 

camera and a 70-degree horizontal by 60-degree vertical field of view wide-angle depth sensor. 

The depth sensor comprises an infrared projector and an infrared camera. 

  

Infrared emitter 

Infrared sensor 

RGB camera 
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Figure 3.6. Kinect V2 sensor consisting of a depth sensor and a colour camera. 

 

The depth sensor in Kinect V2 is based on Time-Of-Flight technology which emits bursting 

short infrared lights and captures the reflections of the lights. The delay between the emitted 

and the received light reflection is calculated to obtain lighting-independent 3D information of 

the scene (Rob, 2013). The depth maps obtained from Kinect V2 sensors with overlapped fields 

of view are considered to be reliable (Dal Mutto, Zanuttigh, & Cortelazzo, 2012).  

 

A number of software development tools are available to acquire and process the Kinect sensor 

data. Kinect for Windows software development kit (SDK) (Kinect for Windows SDK 2.0, 

2015) and the OpenNI framework (OpenNI, 2013) are the most popular software tools in this 

area. Kinect for Windows SDK, which supports many Windows-based programming 

platforms, involves drivers, tools, APIs, and code samples for developing Kinect-enabled 

applications. In addition to raw sensor streams, the SDK can provide (Webb & Ashley, 2012): 

 

 3D coordinates of the detected persons’ skeletal joints in a range of [0.5 4.5] metres 

 depth map of the scene  

 human body segmentation (silhouette) for up to six people  

 infrared image of the scene  

 colour image of the scene 

 

The skeletal tracking feature of the SDK tracks up to six individuals and provides 3D positions 

of 25 skeleton joints per tracked person at a frame rate of 30 Hz. The location of each joint in 

the body along with its ID in the SDK are shown in Figure 3.7. These points form a skeletal 

representation of the human are provided with an associated state (e.g. tracked, not tracked, or 

RGB camera 
3D depth sensor 
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inferred) indicating the tracking status.  

 

 

Figure 3.7 Kinect V2 skeletal joint representation (Ashley, 2015). 

 

To represent the 3D coordinates of the skeleton joints, the Kinect sensor uses a Cartesian 

coordinate system centred at the sensor, as shown in Figure 3.8. The positive y-axis extends 

upward, the positive z-axis points along the viewing direction, and the positive x-axis extends 

to the left. The values of joint positions in the x and y axes range from approximately -2.2 to 

+2.2 and -1.6 to +1.6, respectively. The values of positions in the z-axis range from 0.0 to 4.5 

indicating the range of tracking in metre. This allows a single Kinect V2 sensor to effectively 

monitor most of a regular-size room. Person localisation using this type of skeletal tracking 

method is nonintrusive, in comparison with wearable sensors that the home occupant must 

remember to put on.  

 

 

Figure 3.8. x, y, and z coordinates for representing the position of skeleton joints. 

 

y 

z 

x 
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The SDK can supply the detected person’s silhouette and the depth map of the scene based on 

the depth maps produced from the sensors data. The Kinect can be used to monitor individuals’ 

ADLs in their home without compromising their privacy as it does not provide a colour image 

of the scene (Banerjee et al., 2014). The specifications of Kinect V2 are listed in Table 3.4. 

This version of the Kinect sensor was adopted to capture the 3D structures of activities in the 

testbed as it was considered to have a number of advantages over Kinect V1. 

 

Table 3.4 Specifications of Kinect V2 

Feature Specification 

Depth distance 0.5 - 4.5 metres 

Depth map 512 x 424, 30 Hz 

Colour image 1920 x 1080, 30 Hz 

Depth sensor horizontal viewing angle 70 degrees 

Depth sensor vertical viewing angle 60 degrees 

Minimum latency 20-60 ms 

 

3.5.2.2 Power sensors 

Two types of power sensor were used in the testbed. One type was placed in the main electrical 

panel box to measure the composite power consumption of the house. The other was placed 

between different HEAs and their respective power outlets to obtain the ground truth of their 

power consumption. Note that the monitoring approach presented in this study needs the power 

sensor at the main electricity box to be installed and the second power sensor was deployed for 

measuring the ground truth and validating results.  

 

Power sensor installed in the main electrical panel box: A power sensor called Ranger 

Power Master 1000 (PM1000F) (Outram Research Ltd., 2014) was installed in the main power 

box and continuously measured the composite power consumption of the house. The equipment 

that was included with the sensor was a traditional current clamp (to measure the current signal) 

and a power plug to measure line to neutral and neutral to earth voltages (see Figure 3.9).  
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Figure 3.9. The Ranger PM1000F sensor and accessories (Outram Research Ltd., 2014) 

 

The sensor pack includes a software tool which can be installed on a host computer. The 

software can be used to measure voltage, current and power factor, with a rate of 20 

milliseconds to once every 12 hours. The sensor has an associated Bluetooth interface to allow 

the software to retrieve sensor measurements wirelessly in a range of up to 10 metres from 

inside the house.  

 

Power sensor used for individual HEAs: A Power-Mate 10AHD Serial power sensor (Power-

Mate 10AHD Serial, 2016) was selected to measure the consumption characteristics of 

individual HEAs. It is an easy-to-use device which has a special power plug. The power 

consumption of a device can be measured by simply unplugging the appliance from the power 

outlet. The Power-Mate special plug can then be plugged into the outlet and appliance plugged 

into the rear of the special plug. The Power-Mate 10AHD Serial device is shown in Figure 

3.10. 

 

Figure 3.10. Power-Mate 10AHD Serial. 
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An example of measuring the power consumption of a TV is shown in Figure 3.11. For 

appliances hardwired to power lines, such as ceiling lights, the rated power consumption 

obtained from their power consumption label was used. 

 

 

Figure 3.11. Example of measuring the power consumption of a TV using Power-Mate 10AHD Serial. 

 

The sensor measures specific parameters from the power line and sends information such as 

voltage, current, and power factor via a built-in serial (RS-232) output to the associated 

software in a computer. The recording rate in the software can be configured to record at 

different time intervals from every second to several minutes. 

 

3.5.3 The collected dataset 

The collected dataset includes a training dataset in which the researcher simulated a daily 

timeline, including typical activities of an elderly person living alone. The collected dataset 

also included a number of testing datasets to evaluate the performance of different techniques 

proposed in this study. 

 

3.5.3.1 The training dataset 

The data in the training dataset were obtained from the combination of power meters (i.e. 

PM1000F and several Power-Mate 10AHDs) and several Kinect cameras during 30 days. 

Elderly people living alone tend to have a fixed daily routine of ADLs (Elbert et al., 2011). The 

researcher simulated a consistent daily routine of ADLs which would help identify subsequent 
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abnormal behaviours and deviations from the routine. The daily timeline followed to simulate 

the activities is shown in Table 3.5. The table indicates the location and the HEAs used by the 

occupant for each activity. The table also shows the type of sensor(s) that could collect data 

about each activity. 

 

Table 3.5. The timeline followed each day to simulate activities for the training dataset 

Time  Activity  Location  Sensors  Appliances 

7:00 Getting up  Bedroom Kinect N/A 

7:10 Taking a shower Bath room N/A N/A 

7:35 Grooming Bedroom PS - Kinect  H* 

7:50 Preparing breakfast Kitchen PS - Kinect T, K, M, R, E  

8:10 Eating breakfast Dining room Kinect N/A 

8:30 Using the computer Living room PS - Kinect Computer 

9:00 Washing dishes Kitchen Kinect N/A 

9:30 Using a computer Living room PS - Kinect Computer 

12:00 Cooking lunch Kitchen PS - Kinect T, K, M, R, E  

12-30 Eating launch Dining room Kinect N/A 

13:00 Watching TV Living room PS - Kinect TV 

14:30 Taking a nap  Living room or bedroom Kinect N/A 

15:30 Making tea Kitchen  PS - Kinect K 

15:40 Using the computer Living room PS - Kinect computer, L 

18:00 Cooking dinner Kitchen PS - Kinect T, K, M, R, E 

18:40 Eating dinner Dining room Kinect N/A 

19:30 Watching TV Living room PS - Kinect TV, L 

21:30 Sleeping Bedroom Kinect N/A 

*H= hair dryer, T=toaster, K=kettle, M=microwave, R=refrigerator, E=electric cooktop, L=living room 

lamp, and PS=power sensor. 

 

The variations in how an individual perform ADLs were simulated during activities shown in 

Table 3.5. The occupant carried out the activities with variations in their durations, starting 
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times or actions. The occupant was absent from the home for some periods of time when he 

left the house for shopping and other activities. The occupant also took afternoon naps in the 

bedroom or on the sofa in the living room to simulate the real-life variation in the location of 

ADLs. The occupant varied the activities for different days. For example, on some days the 

occupant went out in the afternoon while he would usually use the computer at this time of the 

day. All these variations were represented by the collected training dataset. 

 

Observations were taken from each Kinect, at one-second intervals. Data were collected for 

each time the occupant was observed. This resulted in more than three million Kinect 

observations of normal behaviour patterns associated with ADLs. The number of observations 

captured from each Kinect in the testbed is shown in Table 3.6. It was observed that the 

occupant spent majority of time in the living room area. Nearly 900,000 observations were 

captured from kitchen activities while the occupant was preparing a meal or refreshment or 

cleaning as shown in Table 3.5. Observations taken from the dining room area were in the order 

of half a million and were mostly related to eating and cleaning activities. Approximately 

800,000 observations were collected from the bedroom. This resulted from an average of 7.5 

hours sleeping during night, one hour taking occasional afternoon naps, and several minutes 

on after-shower rituals (e.g. blow-dry). 

 

Table 3.6. Characteristics of Kinect datasets obtained from different monitored locations. 

Kinect ID Location Number of observations 

K Kitchen 889,445 

L Living room 1,023,542 

D Dining room 421,036 

B Bedroom 785,236 

 

The Kinect SDK (Kinect for Windows SDK 2.0, 2015) was deployed to capture data from 

Kinect sensors. Each stored Kinect observation included a depth map, 3D positions of the 

occupant’s skeleton joints, a binary silhouette mask of the occupant, a timestamp, and a Kinect 

ID. Some examples of the collected observations are shown in Figure 3.12.  
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Kinect ID: D, Frame: 2096, Date: 2015-04-21, Time: 16-13-53 

       

 (a) (b) (c) 

Kinect ID: K, Frame: 45, Date: 2015-04-20, Time: 09-55-46  

      

 (d) (e) (f) 

Kinect ID: L, Frame: 11012, Date: 2015-04-22, Time:18-33-17 

      

  (g) (h) (i) 

Kinect ID: B, Frame: 45368, Date: 2015-03-09, Time: 13-18-33 

      

 (j) (k) (l) 

 Figure 3.12 (a) Example of Kinect observations. (a), (d), (g) and (j) show activities of having dinner 

in the dining room, making breakfast in the kitchen, sitting at a computer desk in the living room, and 

blow-dry in the bedroom, respectively. (b), (e), (h), and (k) show the respective depth map of the 

scene and (c), (f), (i), and (l) illustrate the occupant’s silhouettes detected by Kinect SDK. 

 

A timestamp consisting of a frame number, date and time of the day was also recorded for each 
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Kinect observation. The frame number indicates how many other observations have already 

been captured by the respective Kinect during that day. For example, Kinect ID ‘D’ and frame 

number 2096 was taken from the dining room as shown in  Figure 3.12 (a). Timestamps were 

used for synchronising the different sources of data in the dataset.  

 

It should be noted that all attributes associated with the subject’s body shape were obtained 

from depth maps (e.g. part (b) in  Figure 3.12) and the respective binary masks of the subject 

(e.g. part (c) in  Figure 3.12).  Figure 3.12 provides the colour images to illustrate the scene. 

Each Kinect observation was associated with a skeleton frame of the occupant. All skeleton 

frames from a particular Kinect for each day were saved in a separate text file. Each frame 

included the 3D positions of 25 skeletal joints, in the form of x, y and z coordinates. An example 

of these coordinates for a skeleton frame in the dataset is shown in Figure 3.13. The name of 

each joint ID can be found in Figure 3.13. Each skeleton frame had an associated timestamp so 

it could be synchronised with other types of data (i.e. depth maps, the occupant’s silhouettes 

and power consumption) stored in the dataset. For example, a timestamp might be “12 2015-

04-03 10-06-33” which indicates the frame number (12), date (2015-04-03) and time of the 

observation (10-06-33). 

 

The power consumption of the house was measured at one-second intervals, using PM1000F 

power meter. This frequency can be achieved by the use of inexpensive power sensors 

(Marchiori, Hakkarinen, Han, & Earle, 2011) and is adopted based on the assumption that only 

one appliance is switched on/off between the measurements. The measurements of the power 

consumption recorded for the dataset are shown in Table 3.7. Active and reactive powers 

(Arrillaga, Watson, & Chen, 2000) were supplied directly by the power sensor. The sensor uses 

Equation 3.3 to measure the active power. 

 
𝑃 =  𝐼×𝑉× 𝑐𝑜𝑠 (𝛩)                                      (3.3) 

 

𝛩 in Equation 3.3 is the angle between voltage (V) and current (I). Reactive power was 

calculated through Equation 3.4. 

Q = I×V× sin (𝛩)               (3.4) 
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 Joint ID    x  y  z 

1: 0.1658834 0.042834 2.104234 

2: 0.1309665 0.3645723 2.041522 

3: 0.09624073 0.6733708 1.966303 

4: 0.0786925 0.7788246 1.992168 

5: -0.02559494 0.4727924 1.914269 

6: -0.08591931 0.2625551 2.007757 

7: -0.1473993 0.1488807 2.145067 

8: -0.16559 0.08463367 2.222207 

9: 0.2456914 0.51015  1.894187 

10: 0.3685612 0.313965 1.955285 

11: 0.4142971 0.1020837 2.049423 

12: 0.4108421 0.03667326 2.076071 

13: 0.1106208 0.03405551 2.070805 

14: 0.07956149 -0.1973553 2.155784 

15: 0.009970853 -0.2117011 2.224953 

16: 0.07654364 -0.2475743 2.127875 

17: 0.2152837 0.05009888 2.063318 

18: 0.2958736 0.1782732 2.155258 

19: 0.3322443 -0.2530912 2.223233 

20: 0.2867146 -0.320666 2.173521 

21: 0.1049214 0.598042 1.987249 

22: -0.1711686 0.03021169 2.251483 

23: -0.158307 0.06588595 2.189 

24: 0.4075494 -0.02902544 2.071115 

25: 0.4354644 0.00133979 2.039818 

 

Figure 3.13. Example of 3D positions of joints composing the skeleton frame.  

 

The combination of date and time was recorded as a timestamp helping to synchronise power 

consumption measurements with Kinect data.  

 

Table 3.7. Power measurements in the dataset. 

Description Unit/Format 

Active Power Watt 

Reactive Power var 

Date dd/mm/yyyy 

Time hh-mm-ss  

 

The continuous power measurements of each day was stored in a separate text file. An example 

of measurements obtained on 3/11/2015 is shown in Table 3.8. During the first seven 

measurements, the consumption of the house was around 100 Watts and 1 var and then it raised 
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suddenly to around 130 Watts and 1 var at the eighth measurement. Some text files had data 

missing for different timestamps, resulting in the missing of 1,054 measurements. No two or 

more consecutive measurements were missed. For each missing measurement, the values of 

the active and reactive power consumption during the preceding and following measurements 

were averaged and added to the dataset. 

 

Table 3.8. Example of measurements obtained from the PM1000F power meter.  

Active Power Reactive Power Date Time 

100.72 0.902 3/11/2015 10-44-34 

100.73 0.902 3/11/2015 10-44-35 

100.73 0.902 3/11/2015 10-44-36 

100.7 0.902 3/11/2015 10-44-37 

100.64 0.901 3/11/2015 10-44-38 

100.79 0.901 3/11/2015 10-44-39 

100.68 0.902 3/11/2015 10-44-40 

127.2 0.927 3/11/2015 10-44-41 

132.3 0.939 3/11/2015 10-44-42 

132.45 0.938 3/11/2015 10-44-43 

 

Example diagrams for the aggregated active power signal (cut at 500 Watts) and the reactive 

power for the operation of HEAs, including a refrigerator, captured during a 24-hour period is 

displayed in Figure 3.14.  

 

Information about the names of HEAs, the rooms where they were located, and their power 

consumption ranges was collected in order to capture the ground truth about the power 

consumption of the house. In order to measure the power consumption range of each individual 

appliance, the Power-Mate 10AHD Serial was placed between the appliance and its respective 

power outlet and the appliance was then turned on and off 10 times. The ranges of active and 

reactive power consumption of the HEAs in the testbed is displayed in Table 3.9. 
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Figure 3.14. An example of active and reactive power signals (cut at 500 Watts) captured during the 

operation of HEAs including a refrigerator. 

 

Table 3.9. The power consumption of each individual appliance in the testbed. 

Appliance Active power (Watts) Reactive power (var) 

TV 60 ± 5 100 ± 8 

Computer 85 ± 7.2 60 ±4 

Microwave 1700 ± 64 500 ±12 

Toaster 900 ± 40 0 

Kettle 1900 ± 62 0 

Refrigerator compressor 110 ± 8 60 ± 5.5 

Refrigerator light 45  0 

Living room light 40  0 

Electric cooktop 850 ± 83, 1900 ± 64 0 

Mobile charger 9± .5 15 ± 1 

Washing machine (1) 15 ± 1.3 10 ± 3.9 

Washing machine (2) 250 ± 14 220 ± 12 

Washing machine (3) 250 ± 12 450 ± 19 

Washing machine (4) 500 ± 39 750 ± 15 

LED Lights (kitchen, dining 

room, bathroom, bedroom) 

10 – 15 0 
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The researcher logged the time and names of the HEAs interacted with to capture the ground 

truth of activities. An example of this is provided below:  

“The computer  10:12:30 AM, 2015-04-22”. 

3.5.3.2 The testing datasets 

The performance of the developed approaches for monitoring physical and instrumental ADLs 

was assessed based on two testing datasets captured from the testbed. Testing_Data 1 consisted 

of Kinect recordings representing scenarios of normal and abnormal behaviour patterns during 

physical activities. For each of the four monitored locations in the testbed, 30 recordings were 

captured for normal behaviour patterns and 30 for abnormal behaviour patterns (240 in total). 

Each recording involved one or a combination of the ADLs performed by the occupant in their 

routine and for normal durations in their respective locations. For example, activities including: 

sitting behind the computer desk, watching TV and taking a nap on the sofa were performed in 

the living room. A testing recording for the living room could involve one or a combination of 

these activities. 

 

Although the same ADL might be carried out multiple times across different test recordings, 

each instance the ADL was performed with perturbations (including starting time, duration, 

and the posture of the occupant) in order to simulate real-life variations in ADLs. Other 

variations in ADLs were also recorded in which the location of the furniture used during ADLs 

(e.g. dining table, sofa, and computer desk) was slightly modified.  

 

Recordings of abnormal behaviour patterns were captured according to use-cases to test the 

output of the monitoring system (Guesgen & Marsland, 2010). Software engineers define use-

cases as a collection of possible scenarios used to study the behaviour of a system under 

different inputs and configurations (Wang, Pastore, Goknil, Briand, & Iqbal, 2015). The use-

cases were developed to describe scenarios that may happen to the elderly and indicated the 

expected output of the monitoring system (e.g. raising an alarm). The use-cases for each 

monitored location described an initial normal behaviour followed by an abnormal behaviour 

pattern and the expected output of the system. A use-case defined in this study is shown in 

Figure 3.15 as an example. 
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A use-case for the living room 

Goal: To detect unusual durations of ADLs 

Initial state: The occupant is in the living room sitting on the sofa.  

Description: It is 2 PM and the occupant is watching TV. Then he turns off the TV and lies 

down on the sofa to take a nap. However, his nap takes 2 hours longer than usual. 

Normal behaviour: The occupant occasionally has a 1-2-hour nap on the sofa in the afternoon. 

Expected output: The occupant has a sleeping posture lasting significantly longer than usual 

duration. This could be because of his deteriorating health. An alarm should be raised to notify 

a caregiver.  

Figure 3.15. An example of the use-cases defined to evaluate the performance of the developed 

approaches in detecting ADLs that have a considerably long duration.  

 

The Testing_Data 2 was developed to evaluate the effectiveness of the proposed approach for 

identifying instrumental ADLs from the usage of HEAs (see Chapter 6); and the proposed 

approach to detect drifts from habitual performance of instrumental ADLs (see Chapter 7). The 

dataset included two recordings of continuous data from the combination of power meters (i.e. 

PM1000F and several Power-Mate 10AHDs) and Kinect cameras. Each recording was made 

for a duration of nine days (18 days in total) and represented three-day periods of normal 

routine of instrumental ADLs, slight drifts from this routine and major drifts from it (see Table 

3.5). The drifts away from the normal routine were upward (the person performed more 

instrumental ADLs) in one recording and downward (the person performed less instrumental 

ADLs) in the other. The ground truth of instrumental ADLs was determined from the recording 

of the time and name of the HEAs used by the occupant.  

3.6 Computational intelligence techniques 

This section provides a description of the computational techniques and concepts used in the 

research. The section first describes the fuzzy set theory and fuzzy logic techniques. This is 

followed by explaining the Plug-in rule and the skewness adjusted boxplot techniques. The 

section concludes with details on the data mining techniques employed in the research 

 

3.6.1 Fuzzy sets 

Fuzzy set theory was proposed by Zadeh (1965) and has been utilized to solve many problems 

including clinical diagnosis (H. Pazhoumand-Dar & Yaghobi, 2010; Sarabadani Tafreshi, 
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Klamroth-Marganska, Nussbaumer, & Riener, 2015), driving safety monitoring (Wu, Chen, 

Yeh, & Li, 2013), and data classification (Moeinzadeh, Nasersharif, Rezaee, & Pazhoumand-

dar, 2009; Hossein Pazhoumand-dar & Yaghoobi, 2013). The technique allows for computing 

with words and using linguistic quantifiers such as ‘low’ or ‘high’. The degrees of membership 

of elements in a fuzzy set are allowed to vary in a range of [0 1]. If U is the universe of discourse 

of a variable, then the degree of membership in a fuzzy set A defined over U is denoted by 

 

∀𝑥 ∈ 𝑈, 𝜇𝐴(𝑥) ∈ [0 1] 
 

where x is an element in U and 𝜇𝐴(𝑥) is the degree of membership of each x in A. This is 

different from the classical theory in which the membership of elements is restricted to two 

values, i.e. 𝜇𝐴(𝑥)= 1 if 𝑥 ∈ 𝐴 or 𝜇𝐴(𝑥)=0 if 𝑥 ∉ 𝐴. Element x can belong to more than one 

fuzzy set in different degrees. The degree of membership to a fuzzy set is typically defined 

using a membership function (MF); it defines how each point in the universe of discourse of 

input is mapped to a degree of membership in range of [0 1]. Support of a MF is the part of U 

that is characterized by non-zero degree of membership (Zadeh, 1978). Different types of MFs 

can be associated with a fuzzy set; the most common types include triangular, trapezoidal, z-

shaped and Gaussian, as shown in Figure 3.16 (a), (b), (c), and (d), respectively. 

 

 

 (a) (b) 

  

 (c) (d) 

Figure 3.16. Different types of membership functions used in fuzzy set theory; (a) Triangular, (b) 

trapezoidal, (c) Gaussian, and (d) z-shaped. 
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As shown in Figure 3.16 (a), the parameters of triangular MFs are defined by a triad (𝐴, 𝐵, 𝐶), 

with point A representing the left foot of triangular MF, B is the location of the center, and C 

is the location of the right foot. A triangular MF is defined using Equation 3.5. 

 

𝜇𝐴 (𝑥) =

{
 
 

 
 
0                  𝑖𝑓 𝑥 ≤ 𝐴
𝑥 − 𝐴

B − C
    𝑖𝑓 A < 𝑥 ≤ 𝐵

C − 𝑥

C − B
    𝑖𝑓 B < 𝑥 ≤ C

0                  𝑖𝑓 C ≤ 𝑥

 

(3.5) 

A trapezoidal MF is characterized by four parameters A, B, C, D (with 𝐴 <  𝐵 ≤  𝐶 <  𝐷) as 

shown in Figure 3.16 (b). These determine the x coordinates of the four corners of the 

underlying trapezoidal defined over the attribute space. Specifically, points A and D specify 

the left and right feet. Parameters B and C specify the shoulders for the trapezoidal. A 

trapezoidal MF is define using Equation 3.6. 

 

𝜇𝐴 (𝑥) =

{
 
 

 
 
0                  𝑖𝑓 𝑥≤A
𝑥−A
B−𝐶

    𝑖𝑓 𝐴<𝑥<B

1             𝑖𝑓  𝐵≤x≤C
C−𝑥
C−B

    𝑖𝑓 C<𝑥≤D

0                  𝑖𝑓 C≤𝑥

 

(3.6) 

A Gaussian MF or a bell-shaped MF is specified according to two parameters A and B, as 

indicated by Equation 3.7. 

 

𝜇𝐴 (𝑥) = 𝑒
−(𝑥−𝐴)2

2𝐵2      (3.7) 

 

In Equation 3.7, parameter A represents the mean and parameter B is the standard deviation of 

the Gaussian function - B controls the width of the bell.  

 

A z-shaped MF is defined by two parameters A and B, as shown in Figure 3.16 (d). Equation 

3.8 shows how z-shaped MF is defined using these two parameters. 

 



 

89 

 

𝜇𝐴 (𝑥) = 

{
 
 

 
 
1 ,                        𝑥 ≤ 𝐴

1 − 2 (
𝑥−𝐴

𝐵−A
)
2

,   𝑢 < 𝑥 ≤
A+B

2

2 (
𝑥−B

B−A
)
2

,           
A+𝑣

2
< 𝑥 ≤ B

0,                         B ≤ 𝑥

 

(3.8) 

 

3.6.2 Fuzzy logic 

One popular concept associated with fuzzy set theory is fuzzy logic, introduced by Zadeh 

(1973). A fuzzy inference system (FIS) seeks to map numerical input values onto fuzzy sets 

and use fuzzy rules to generate numerical outputs; this way a FIS allows flexibility for making 

decisions under conditions of uncertainty in the data. The most popular fuzzy inference systems 

are: (1) Sugeno type and (2) Mamdani type. The main difference between these two lies in the 

way the numerical output is generated.  

 

A Sugeno FIS has no output fuzzy set and it uses a weighted average of rule outputs to compute 

the crisp output of the system. As there is no intuitive method for determining the numerical 

output of fuzzy rules, this type of FIS is particularly popular to be used for dynamic non-linear 

control systems. Fuzzy rules in Mamdani type FIS use linguistic terms in their output to 

qualitatively describe the system behaviour. As those linguistic terms in rule outputs are 

associated with MFs, the evaluation of fuzzy rules results in obtaining a combined MF. 

Defuzzification of this MF is performed to calculate the final crisp output. This intuitive nature 

of the fuzzy rules makes a Mamdani type FIS interpretable and suitable in particular for 

decision support applications such as monitoring ADLs.  

 

The research described in this thesis uses Mamdani type FIS and will be referred to it as FIS. 

The process of a FIS is shown in Figure 3.17. The process involves four main blocks, namely 

the fuzzifier, the fuzzy rule set, the inference engine, and the defuzzifier. Each of these 

components are described in detail below. 
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Figure 3.17. The process of fuzzy logic inference (L. Li, Song, & Ou, 2011) 

 

Fuzzifier: It constitutes the first step of a FIS process. The role of this block is to map the crisp 

input data into degrees of membership functions of fuzzy sets defined over the input variables.  

 

Fuzzy rules: The rule base structured in a set of fuzzy IF–THEN propositions in the form of 

‘IF a set of conditions is true, THEN a set of consequences can be true”. The IF part and the 

THEN part of a rule are referred to as the antecedent and the consequent of the rule, 

respectively. Fuzzy rules can be obtained by using the knowledge of experts or extracted 

directly from numerical data. A set of IF–THEN rules is consistent if it does not contain 

contradictory rules.  

 

The antecedent and consequence of rules are comprised of linguistic variables. These variables 

are described by fuzzy terms. Such rules are in the following form:  

 

𝐼𝐹 𝑥1 is 𝐴1 AND 𝑥2 is 𝐴2 … AND 𝑥𝑛 is 𝐴𝑛 THEN 𝑦1 is 𝐵1 AND 𝑦2 is 𝐵2 … AND 𝑦𝑛 is 𝐵𝑛 

 

where 𝑥1, …, 𝑥𝑛 are the input variables and 𝐴1,…, 𝐴𝑛 are the fuzzy sets associated with the 

input variables. 𝑦1, …, 𝑦𝑛 are the output variables and 𝐵1,…, 𝐵𝑛 are the fuzzy sets associated 

with those variables. As observed in the example of fuzzy rule above, statements in both 

antecedent and consequent of the rules may involve fuzzy logical connectives (e.g. AND and 

OR). The conjunction (fuzzy AND) and disjunction (fuzzy OR) in the antecedent of rules are 

referred to as T-norm and S-norm, respectively, which aggregates membership functions in the 

input variable. Assume fuzzy rules have two input variables, 𝑥1 and 𝑥2, and one output variable 

𝑦1. Let two fuzzy sets 𝐴1 and 𝐴2 to be associated with the two input variables in a fuzzy rule. 

The fuzzy "AND" and “OR” are written as: 

 

Fuzzification

Inference 

engine

Defuzzification

IF – THEN 

Rules

Fuzzy outputFuzzy input

Crisp inputs
Crisp outputs
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𝜇𝐴1 𝐴𝑁𝐷 𝐴2 = 𝑇(𝜇𝐴1 , 𝜇𝐴2) 

 

𝜇𝐴1 𝑂𝑅 𝐴2 = 𝑆(𝜇𝐴1 , 𝜇𝐴2) 

 

where 𝜇𝐴1 and 𝜇𝐴2  are MFs associated with 𝐴1 and 𝐴2, respectively. 𝑇(. , . ) and 𝑆(. , . ) are T-

norm and S-norm operators, respectively. There are different types of T-norm and S-norm 

operators. For example, Zadeh’s T-norm and S-norm are shown in Equations 3.9, and 3.10. 

respectively. 

𝑇(𝜇𝐴1 , 𝜇𝐴2) = 𝑚𝑖𝑛[𝜇𝐴1 , 𝜇𝐴2] 

 (3.9) 

𝑆(𝜇𝐴1 , 𝜇𝐴2) = 𝑚𝑎𝑥[𝜇𝐴1 , 𝜇𝐴2] 

 (3.10) 

Inference engine: The inference engine operates on fuzzy rules to generate a fuzzy output 

based on crisp input values. Fuzzifier determines the degrees of membership of numerical 

inputs in the fuzzy sets associated with input variables. Fuzzy operators (AND and OR) are 

then used to evaluate the antecedent of all rules. Those rules whose antecedent has a degree of 

membership with respect to the input are triggered. The next step is rule implication which 

involves obtaining the membership degree of the fuzzy set in the consequence of the triggered 

rules with respect to the truth degree specified by their antecedent. There can be defined plenty 

of implication functions. The most common way is to truncate the MFs in the consequent using 

the min function (known as Mamdani implication). Back to the example of fuzzy rules defined 

above, the min implication function for each rule is calculated as Equation 3.11. 

 

𝜇𝐵1′(𝑦)  = min (min (𝜇𝐴1(𝑥1), 𝜇𝐴2(𝑥2)) , 𝜇𝐵1(𝑦1)) 

(3.11) 

In Equation 3.11, 𝜇𝐵1′(𝑦) is the membership function associated with the rule output, which is 

derived from truncating 𝜇𝐵1(𝑦) with the degree of truth of the antecedent of the triggered rules. 

Fuzzy outputs of the triggered rules are combined into a single fuzzy set in a process called 

aggregation. An S-norm operator is typically used to combine these fuzzy outputs. For 

example, in Mamdani FIS, the fuzzy output of the system is obtained using Equation 3.12. 
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𝜇𝑜𝑢𝑡(𝑦) = 𝑚𝑎𝑥
𝑛=1,…,𝑁

(𝜇𝐵1′
𝑛 (𝑦)) 

(3.12) 

where 𝜇𝐵1′
𝑛 (𝑦) is the membership function associated with the output of n-th fuzzy rule and N 

is the total number of fuzzy rules. Upon obtaining 𝜇𝑜𝑢𝑡(𝑦), the next step is to use a defuzzifier 

to convert the fuzzy output of the system into a numerical value. 

 

Defuzzifier: There are several defuzzification methods to generate a crisp value from the fuzzy 

output of a FIS. These include centroid of area, mean of maximum, smallest of maximum and 

largest of maximum. 

 

The centroid of area defuzzifier calculated the crisp output of the system as the centre of mass 

in the fuzzy output (see Equation 3.13).  

 

y∗ =
∬ y µout(y) dy
∝

−∝

∬ µout(y) dy
∝

−∝

 

(3.13) 

Intuitively, this defuzzifier finds the point where a vertical line would slice the aggregate output 

fuzzy set into two equal masses. The mean of maximum defuzzifier is obtained using Equation 

3.14 

 

y∗ =
∑ xn

∗N
n=1

N
 

(3.14) 

where 𝑥𝑛
∗  (𝑖 = 1,… ,𝑁) indicates the maximal values of 𝜇𝐵1′

𝑛 (𝑦) obtained from Equation 3.11. 

Smallest of maximum and largest of maximum defuzzifier are calculated using Equations 3.15 

and 3.16, respectively. 

y∗ = min
n=1,…,N

xn
∗  

(3.15) 

y∗ = max
n=1,…,N

xn
∗  

(3.16) 
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3.6.3 Plug-in rule 

The Plug-in rule technique (Sheather & Jones, 1991) provides a data-driven procedure for 

selecting the bandwidth of kernel function (the degree of smoothing applied to the data) for 

nonparametric kernel density estimation of data.  

 

Plug-in rule performs the estimation of the PDF of data per different values for the bandwidth 

of the kernel function and the bandwidth that minimises an error function is selected. The 

procedure of selecting the bandwidth is as follows. 

 

1. Compute 𝐼𝑄𝑅 = 𝑄3 − 𝑄1, where 𝑄1 and 𝑄3 are the first and the third quartiles of the 

data.  

2. Compute 𝑎 = 0.92×𝐼𝑄𝑅×𝑛−1/7 and 𝑏 = 0.912×𝐼𝑄𝑅×𝑛−1/9. 

3. Calculate �̂�𝐷(𝑏) =
1

−{𝑛(𝑛−1)}×𝑏7
∑ ∑ ∅𝑣𝑖𝑛

𝑗=1
𝑛
𝑖=1 [

1

𝑏(𝑥𝑖−𝑥𝑗)
] where ∅𝑣𝑖 is the sixth 

derivative of the normal kernel (Wand & Jones, 1994, p. 177). 

4. Calculate �̂�𝐷(𝑎) =
1

{𝑛(𝑛−1)}×𝑎5
∑ ∑ ∅𝑖𝑣𝑛

𝑗=1
𝑛
𝑖=1 [

1

𝑎(𝑥𝑖−𝑥𝑗)
] where ∅𝑖𝑣 is the fourth 

derivative of the normal kernel. 

5. Calculate �̂�2(ℎ) = 1.357×(
�̂�𝐷(𝑎)

�̂�𝐷(𝑏)
)1/7ℎ5/7. 

6. Obtain h by solving the following equation: 

 

[
𝑅(𝐾)

{𝑚2
2(𝐾)�̂�𝐷(�̂�2(ℎ))}

]

1
5

𝑛−
1
5 − ℎ = 0 

 

where 𝑚2(𝐾) = ∫ 𝑧1
2𝐾(𝑧)𝑑𝑧 and 𝑅(𝐾) = ∫𝐾(𝑧)𝑑𝑧. For more information, including the 

technique used to solve the above equation, the reader is referred to Sheather and Jones 

(1991). 

Note that the histograms provided in this thesis were obtained using the plug-in rule technique 

with the bin size of each histogram equal to the bandwidth calculated from applying the plug-

in rule to the respective data. 

 

3.6.4 The skewness adjusted boxplot technique 

The skewness adjusted boxplot (SAB) technique is a graphical tool (with a robust measure of 
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skewness) used in robust statistics (RS) for the purpose of outlier detection (Rousseeuw & 

Hubert, 2011). Given a continuous unimodal data, SAB first calculates a robust measure of 

skewness of the underlying data distribution called medcouple (MC). It then outputs a normal 

range for the data, which excludes possible outliers in the data. 

 

If 𝑥𝑛 (𝑛 = 1, … , 𝑁) is a univariate data, the MC of the data is calculated as below (Brys, Hubert, 

& Struyf, 2004): 

𝑀𝐶 = med
𝑥𝑖≤𝑚𝑛≤𝑥𝑗

𝑘(𝑥𝑖 , 𝑥𝑗) 

(3.17) 

where for all 𝑥𝑖 ≠ 𝑥𝑗 the kernel function 𝑘 is given by: 

 

 𝑘(𝑥𝑖 , 𝑥𝑗) = 
(𝑥𝑗−𝑚𝑛)−(𝑚𝑛−𝑥𝑖)

𝑥𝑗−𝑥𝑖
                                  (3.18) 

 

In Equation 3.18, 𝑚𝑛 is the median of data points. If 𝑥𝑖 = 𝑥𝑗 = 𝑚𝑛, let 𝑚1  < . . . < 𝑚𝑠 be the 

indices of the data points which are associated with the median 𝑚𝑛. The kernel 𝑘 is then defined 

as Equation 3.19.  

 

𝑘 (𝑥𝑚𝑖
, 𝑥𝑚𝑗

) = {

+1,   𝑖𝑓 𝑖 + 𝑗 − 1 < 𝑠
0,   𝑖𝑓 𝑖 + 𝑗 − 1 = 𝑠
−1,   𝑖𝑓 𝑖 + 𝑗 − 1 > 𝑠

 

 (3.19) 

In case the distribution is skewed to the right, MC gets a positive value up to +1. MC becomes 

negative (up to -1) in a left-skewed distribution. A symmetric distribution has a zero MC. Once 

the value of MC is obtained for the data, SAB calculates the normal range (NR) for the data as 

 

 

(3.20) 

where 𝑄1 and 𝑄3 are the first and the third quartiles of the data and 𝐼𝑄𝑅 = 𝑄3 − 𝑄1. For a left-

skewed distribution (with a MC <0), the cut-off interval of the distribution will be the upper 

range shown in Equation 3.20. The lower range in Equation 3.20 is for right-skewed 

1 3

1 3

( ) (3MC)-4MC

(-3MC) (4MC)

[Q   -1.5 e   IQR ;Q   + 1.5 e IQR]   if MC 0 

NR=

[Q   -1.5 e   IQR ;Q   + 1.5 e IQR]   otherwise
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distributions having a positive MC. All data points outside the NR range of a distribution are 

marked as potential outlier.  

 

3.6.5 Data mining techniques  

Data mining techniques analyse data for discovering useful patterns hidden in large quantities 

of data (Berry & Linoff, 1997). Various data mining techniques were used in this study for 

monitoring ADLs of elderly people including mean shift and variable bandwidth mean shift 

clustering techniques, association rule mining and fuzzy association rule mining. These 

techniques are discussed in more detail in the following sections. 

 

3.6.5.1 Mean shift clustering 

Mean shift is a general non-parametric clustering procedure which does not rely on the number 

of clusters having known beforehand (Comaniciu & Meer, 2002). A non-zero radially 

symmetric kernel is used in this algorithm to estimate the local density of data-points with 

respect to a specific bandwidth as the radius of the kernel. The location of the kernel centre 

shifts iteratively to find the local maxima or modes of the underlying data distribution. The 

output of the algorithm is the location of modes in the data distribution and the cluster of data 

associated with each mode. Given a univariate dataset of N data points 𝑥𝑖 (𝑖 = 1,… ,𝑁), a 

kernel function K, and the bandwidth parameter h, kernel density estimator for the dataset is 

obtained using Equation 3.21. 

 

𝑓̅(𝑥) =
1

Nh
∑K(

x − xi
h

)

N

i=1

 

(3.21) 

where the kernel function is defined as Equation 3.22. 

 

 𝐾(𝑥) = 𝑐𝑘𝑘(𝑥)    (3.22) 

 

𝑐𝑘 in Equation 3.22 is a normalization constant to assures 𝐾(𝑥) integrates to 1. The gradient of 

the density estimator 𝑓(̅𝑥) is calculated using Equation 3.23. 
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∇f̂(x) =
2 ck 

Nh2
[∑g(

x − xi
h

)
2

N

i=1

] [
∑ xig (

x − xi
h

)
2

N
i=1

∑ g(
x − xi
h

)
2

N
i=1

− x]  

(3.23) 

𝑔(𝑥)  =  −𝑘 ′ (𝑥) is the derivative of the kernel profile in Equation 3.23. The second term in 

Equation 3.23 is called the mean shift vector denoted as 𝑚(𝑥). 

 

The mean shift clustering algorithm can be summarised as follow (Comaniciu & Meer, 2002):   

 

1. Choose the location of an unprocessed data as the initial location of the kernel and move 

mean shift vector represented iteratively till convergence (i.e. 𝛻𝑓(𝑥) = 0).  

2. Record the location of kernel at convergence as the location of a mode of density 

function, and group all data points covered by the kernel, during its successive 

locations, as the cluster associated with the mode. 

3. Repeat step 1 to 2 until no unprocessed data is left. 

 

3.6.5.2 Variable Bandwidth Mean shift clustering 

Variable bandwidth mean shift clustering (VBMS) is a nonparametric clustering technique 

which does not require the number of clusters to be defined (Comaniciu, Ramesh, and Meer 

(2001). It estimates the density function of data by taking the average of locally scaled densities 

that are obtained by applying kernels centred at each of the data points. The output of this 

technique is location of modes in the data distribution and the cluster of data associated with 

each mode. Usually the kernel K is taken to be a radially symmetric, nonnegative function 

centred at zero such that 𝐾(𝑥)  = 𝑘(‖𝑥2‖). Given data points 𝑥𝑖 (𝑖 = 1,… ,𝑁) as input, steps 

of the VBMS algorithm are as follows: 

 

1. Use the plug-in rule to find an initial bandwidth ℎ0 for the kernel 𝐾(𝑥) and estimate the 

PDF of data using Equation 3.24. 

𝑓(̅𝑥) =
1

𝑛ℎ0
∑(

𝑥 − 𝑥𝑖
ℎ0

)

𝑁

𝑖=1

 

(3.24) 
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2. Obtain   

3. Compute the adaptive bandwidth ℎ(𝑥𝑖) for each data point 𝑥𝑖 using Equation 3.25. 

 

                      (3.25) 

 

ℎ0 in Equation 3.25 is a fixed kernel bandwidth obtained from the plug-in rule (in step 1) and 

 is a proportionality constant parameter, which divides the range of density values into low 

and high densities. When the local density for a given data point 𝑥𝑖 is low (i.e. 𝑓(̅𝑥𝑖) < ), 

ℎ(𝑥𝑖) increases relative to ℎ0, implying more smoothing in the estimated density for the point 

𝑥𝑖. The bandwidth becomes narrower for data points where their estimated density 𝑓(̅𝑥𝑖) is 

greater than . 

𝑚(𝑥) = [
∑ xig (

x − xi
h

)
2

N
i=1

∑ g(
x − xi
h

)
2

N
i=1

− x] 

 (3.26) 

where d is the dimension of the data and 𝑔(𝑥) =  −𝑘′(𝑥) 

 

4. Choose the location of an unprocessed data as the initial location of kernel and compute 

mean shift vector represented in Equation 3.26 iteratively until convergence.  

5. Record the location of the kernel at convergence as the location of a mode in the PDF 

of data and group all data points covered by the kernel, during its successive locations, 

as the cluster associated with the mode. 

6. Repeat step 4 to 5 until no unprocessed data is left. 

 

3.6.5.3 Association rule mining 

Research by Agrawal et al. (1993) presented the problem of mining association rules with the 

motivation coming from improving sales strategies via analysis of ‘market-basket’ data. An 

example of such an association rule may be that 70% of people who purchase item X will also 

purchase product Y with some degree of confidence. A formal statement of the problem 

introduced by Agrawal et al. (1993) is as follows: 

1

1
 log  ( ( )i

N

N i

f x

e 




1/ 2

0
( ) [ ]

( )i
i

h x h
f x
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Let the set of all binary items to be denoted by 𝐼 = {𝑖1,⋯ , 𝑖𝑚} and D be a transaction database 

where each transaction T is a binary vector containing a set of items such that 

 

𝑇(𝑘) = {
1, 𝑖𝑓 𝑇 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑖𝑘
0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

X is satisfied by a transaction T if for all items 𝑖𝑘 in X, 𝑇(𝑘) = 1. An association rule is an 

implication of the form 𝑋  𝑌 where 𝑋 ⊆ 𝐼, 𝑌 ⊆ 𝐼 and items in 𝑌 are not present in X. The 

rule X  Y has a support of sup percent, if the fraction of transactions in D that contains 𝑋 ∪ 𝑌 

is at least sup. The rule 𝑋  𝑌 is satisfied in the transaction set D with confidence 0 ≤ 𝑐𝑜𝑛𝑓 ≤

1 if conf percentage of transactions in D that contain X also contain Y. The confidence of a rule 

𝑋  𝑌 can be determined by computing: 

 

𝑐𝑜𝑛𝑓(𝑥 → 𝑦) =
sup (𝑥 ∪ 𝑦)

sup ( 𝑥)
. 

 

The support of a rule specifies the percentage of transactions in D that contain both the 

consequent and antecedent of the rule. The confidence of a rule is the ratio of transactions that 

contain both the consequent and antecedent of the rule to the total number of transactions that 

contain only the antecedent of the rule.  

 

The aim of mining association rules is to generate all rules that satisfy user specified thresholds 

of minimum support and minimum confidence. The following two steps are performed in order 

to achieve this aim: 

 

Step 1. Generate all frequent itemsets: The algorithm generates all combinations of items that 

have support above a certain threshold minsupport.  

Step 2. Generate association rules: For a given frequent itemset 𝐹𝐼 = 𝑖1, ⋯ , 𝑖𝑘 (𝑘 ≥ 2), the 

algorithm generates all rules 𝑋 𝑌 that 𝑋 ∪ 𝑌 = 𝐹𝐼 and the rule confidence is greater 

than a threshold minconf. The antecedent of each of these rules would be a subset 𝑋 ⊆

𝐹𝐼 such that X has k-1 items, and the consequent would be items in 𝐹𝐼 − 𝑋. 
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3.6.5.4 Fuzzy association rule mining 

The study by Agrawal et al. (1993) introduced an association rule-mining algorithm for the 

problem of mining transactional databases that have attributes capable of taking one of a 

limited and fixed number of items (e.g. the name of a product in a supermarket). This algorithm 

has some limitations when applied to the problem of monitoring ADLs. ADL monitoring 

results in datasets that contain numerical attributes obtained from sensors data. The original 

association rule-mining algorithm proposed by Agrawal et al. (1993) cannot directly be used 

for datasets of numerical attributes as transformation of the numerical attributes into binary 

attributes is required.  

 

A study by Kuok, Fu, and Wong (1998) introduced the fuzzy association rule-mining algorithm 

as one solution to this problem. It integrated fuzzy logic into association rule-mining algorithm 

where each rule is in the form 'IF X is A THEN Y is B'. X and Y are attributes from the database 

and A and B are fuzzy terms characterising X and Y, respectively. For each transaction database 

D with transactions 𝑇 = {𝑡1,⋯ , 𝑡𝑀} and a set of numerical attributes 𝐼 = {𝑎1, ⋯ , 𝑎𝐾} assume 

the value of attribute 𝑎𝑘 (1 ≤ 𝑘 ≤ 𝐾) can be retrieved from the m-th transaction using 𝑡𝑚[𝑎𝑘]. 

Let each attribute 𝑎𝑘 to be associated with a set of fuzzy sets 𝐹𝑎𝑘 = {𝑓𝑎𝑘
1 , … , 𝑓𝑎𝑘

𝐽 }. Each fuzzy 

set 𝑓𝑎𝑘
𝑗

 in 𝐹𝑎𝑘 represents the j-th fuzzy set in 𝐹𝑎𝑘  and has an associated linguistic term as well 

as a membership function 𝜇
𝑓𝑎𝑘
𝑗 (𝑥) such that 𝜇

𝑓𝑎𝑘
𝑗 (𝑥) ∶  𝑑𝑜𝑚(𝑎𝑘 ) → [0 ,1]. This allows the rules to 

be mined in the form of:  

 

𝐼𝐹 𝑋 𝑖𝑠 𝐴 𝑇𝐻𝐸𝑁 𝑌 𝑖𝑠 𝐵 

 

where 𝑋 = {𝑥1, ⋯ , 𝑥𝑝} and 𝑌 = {𝑦1, ⋯ , 𝑦𝑝} are a subset of 𝐴 and 𝑋 ∩ 𝑌 = ∅. 𝐴 = {𝑓𝑥1 , … , 𝑓𝑥𝑝} 

and 𝐵 = {𝑓𝑦1 , … , 𝑓𝑦𝑝} are fuzzy sets defined over X and Y, respectively. Each fuzzy association 

rule is interpreted as when “X is A” is satisfied, it can be inferred that “Y is B” is also satisfied. 

Kuok et al. (1998) states that the word satisfied here means “there are sufficient amount of 

records which contribute their votes to the attribute fuzzy set pairs and the sum of these votes 

is greater than a user specified threshold”. (Kuok et al., 1998, p. 3). 

 

The support of each rule is a value in range of [0 1]. It is calculated by summing all votes of 

transactions with respect to the itemset described in the rule which is calculated using Equation 
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3.27. 

S𝑢𝑝𝑝(𝑋, 𝐴) =
∑ ∏ {𝛼𝑎𝑗𝑡𝑖[𝑥𝑗]}𝑥𝑗∈𝑋𝑡𝑖∈𝑇

𝑡𝑜𝑡𝑎𝑙(𝑇 )
 

(3.27)  

In the above equation 

 

𝛼𝑎𝑗𝑡𝑖[𝑥𝑗] = {
𝜇𝑓𝑥𝑗𝜖𝐴(𝑡𝑖[𝑥𝑗]),𝑖𝑓 

𝜇𝑓𝑥𝑗≥𝜔

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

 

The confidence of a rule is the ratio of transactions that support both the consequent and 

antecedent of the rule, divided by the total number of transactions that contain only the 

antecedent of the rule. It is calculated using Equation 3.28 

 

Supp(〈X, A〉, 〈Y, B〉) =
∑ ∏ {αckti[zk]}zj∈Zti∈T

∑ ∏ {αajti[xj] xj∈Xti∈T
 

(3.28)  

where 𝑍 = 𝑋 ∪ 𝑌, 𝐶 = 𝐴 ∪ 𝐵, and 𝛼𝑎𝑗𝑡𝑖[𝑥𝑗] is obtained from the following equation. 

 

𝛼c𝑘𝑡𝑖[𝑧𝑘] = {
𝜇𝑓𝑐𝑘𝜖𝐶(𝑡𝑖[𝑧𝑘]),𝑖𝑓 

𝜇𝑓𝑐𝑘≥𝜔

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

The same two steps described at the end of Section 3.6.5.3 is followed to generate fuzzy 

association rules.  

3.7 Platform  

All programming codes developed for the collection of research data were undertaken using 

C# and the Microsoft .Net framework. Development. Analysis and validation of the techniques 

were carried out using MATLAB™. The MATLAB (MATrix LABoratory) software is a 

computing platform that is very flexible and adaptable for visualisation of data via 2D and 3D 

surface plots, histograms, etc. This platform offers a range of products for implementation of 

algorithms as it endowed with rich functions for matrix and data manipulation. The integrated 

fuzzy logic toolbox in MATLAB provides various functions for designing and analysing of 

systems based on fuzzy logic. This toolbox allows the user to implement rules and specify 
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parameters associated with a fuzzy inference system to interactively view and analyse the 

behaviour of the developed system using a graphic user interface. 

3.8 Summary 

This chapter described the research methods used in the research study. Section 3.1 described 

the research methodology. This was followed by Sections 3.2 which outlined the steps for the 

research are activity representation, behaviour modelling, and abnormality detection using 

fuzzy rule based systems. The five phases defined to develop the monitoring framework to 

answer the research questions were explained in Section 3.3. Section 3.4 discussed the metrics 

used to evaluate the effectiveness of the developed approaches. Descriptions of the 

experimental place, deployed sensors, and the collected datasets were also explained in Section 

3.5.  

 

Various data mining techniques, such as mean shift, VBMS, association rule mining, and fuzzy 

association rule mining, were discussed in Section 3.6. This was concluded with a description 

of the platform used and a summary of the chapter. The next chapter presents an approach for 

monitoring physical ADLs of an elderly person living alone.  
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CHAPTER 4:  
MONITORING PHYSICAL ADLS USING KINECT DEPTH 

MAPS  

This chapter presents an approach, called AMP-ADLs, for monitoring physical ADLs of an 

elderly person living alone. Stages of this approach are undertaken to answer the research 

questions regarding monitoring of physical ADLs. The chapter first introduces the problem of 

monitoring physical ADLs of the elderly through sensor data and briefly reviews limitations of 

existing approaches (Section 4.1). This is followed by describing the stages of the AMP-ADLs 

approach in Section 4.2. The experimental results related to the collected dataset are explained 

in Section 4.3. A discussion of these results followed by a summary of the findings of the 

chapter are provided in Section 4.4 and Section 4.5, respectively.  

4.1 Introduction 

The aim of many telecare environments is to deploy automatic sensor-based techniques that 

can monitor the physical wellbeing of their elderly occupants and detect abnormal behaviour 

patterns and hazardous situations. Abnormality detection in this type of context is particularly 

challenging as sensor data represent only normal behaviour patterns. It is also challenging as 

the modelling of multiple types of abnormal situations can be difficult. Monitoring techniques 

usually involve two phases. The first phase is a training stage in which they model important 

aspects of normal behaviour patterns that are indicative of the occupant’s wellbeing. The 

second phase is a monitoring stage where the developed model is used to distinguish any 

abnormalities which do not match the normal profile of the occupant.  

 

Several supervised techniques that can monitor the performance of a limited set of ADLs (e.g. 

walking and sleeping) have been reported over the last few decades. Training these techniques 

typically depends on a labelled dataset which can be difficult to acquire. Numerous studies 

have proposed unsupervised approaches for monitoring physical ADLs in which metrics 

relevant to assessment of elderly people’s wellbeing are automatically monitored based on 

sensor data (Zerrouki, Harrou, Sun, & Houacine, 2016). Physical independence, mobility, and 

time orientation are prominent metrics that have been used in these studies. Physical 

independence can be associated with performing ADLs in a normal duration. Mobility indicates 

the ability to move in the environment and visit different locations during the day (Fillenbaum, 
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1984). Time orientation involves functions that show awareness of time and location (i.e. 

performing ADLs at the right time and location).  

 

Attributes related to ADLs have been extracted from sensor data to measure metrics described 

above. The choice of attributes depends on the type of sensors used. Attributes describing the 

occupant’s body posture and motion during ADLs have been extracted when the visual data or 

depth maps of the scene were available. Such attributes help to monitor physical independence 

and mobility of the person.  

 

The time of ADLs in visual data have also been monitored for an indication of time orientation 

and independence of the person. For example, the behaviour patterns of walking around at 

midnight and sleeping for an extended duration in the late morning are considered as abnormal 

because they suggest deterioration of the elderly person’s perception of time and illness (G. C. 

Franco, Gallay, Berenguer, Mourrain, & Couturier, 2008). Monitoring the duration of 

behaviour patterns can also help in many situations to judge whether a specific behaviour 

pattern is abnormal. A normal behaviour of sitting on the kitchen floor for a few seconds for 

cleaning purposes can be distinguished from a similar activity which lasts for two hours. The 

longer activity in this example can be associated with undesirable incidents such as fainting. 

 

To model attributes related to ADLs, different techniques such thresholding and statistical 

measures have been adopted (Noury et al., 2011; Virone, Noury, & Demongeot, 2002). Most 

of these techniques are unable to accommodate fine variations in real-life ADLs and generate 

so many false alarms in real-life settings. Several studies have incorporated fuzzy logic into 

their techniques to achieve this robustness. The parameters associated with fuzzy sets in 

existing fuzzy approaches are defined experimentally, limiting the applicability of those 

approaches to various domestic settings and individuals.  

 

This chapter describes an unsupervised and data-driven approach (i.e. AMP-ADLs) based on 

fuzzy logic to monitor physical ADLs of the elderly using depth maps supplied by Kinect 

sensors. AMP-ADLs extends upon existing fuzzy based monitoring approaches in the 

following respects: 

 

 Presenting a data-driven technique to identify epochs of activities for each monitored 

location. Usually ADLs are associated with locations inside the home and hence each 



 

104 

 

room is occupied during specific hours of the day. For each monitored location, the day 

is divided into a number of activity epochs, the duration of which learned from the data. 

This is in contrast to existing approaches where the day is divided into a number of 

fixed periods (Martin, Majeed, Lee, & Clarke, 2006; Seki, 2009) and the occupant’s 

ADLs are modelled during each period. 

 Presenting a technique to automatically learn the duration of frequent activities from 

Kinect depth maps. The duration of frequent ADLs carried out in each location usually 

depends on the nature of the activity. For example, while the activity of watching TV 

may take one or more hours, making tea is shorter. A technique is presented in this 

approach to work out the duration of frequent ADLs performed in each monitored 

location. 

 Using a data-driven technique to tune the parameters of membership functions defined 

over ADL attributes extracted from Kinect depth maps. This is in contrast to existing 

approach where a set of pre-defined membership functions are assumed for ADL 

attributes. 

4.2 The proposed approach 

The AMP-ADLs approach in this chapter is comprised of three stages: representing physical 

ADLs, modelling physical ADLs and detecting abnormal behaviours. The layout of this 

approach is displayed in Figure 4.1.  

The first stage is to represent physical ADLs. It comprises a number of steps. The first step is 

to collect an unlabelled training dataset of Kinect observations from the occupant’s physical 

ADLs. A set of attributes of the occupant’s ADLs is then extracted from Kinect depth maps. 

Membership functions are defined for each depth map attribute to determine the membership 

of the attribute values to the linguistically labelled fuzzy sets. Each combination of fuzzy labels 

for depth map attributes represents a specific body posture of the occupant observed at a 

specific location. The last step in this stage is defining fuzzy sets for epochs of activities for 

each monitored location, corresponding to usual times where the occupant is active in the 

location (Section 4.2.1.3). The output of this stage is the fuzzy representations of the occupant’s 

physical ADLs. These representations are in the form of combinations of fuzzy labels for depth 

map attributes and the time of activities.  
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Figure 4.1. An overview of AMP-ADLs. 
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An example of a physical activity representation is 

 

{body_orientation = ‘high’, body_aspect_ratio=’high’, body_location_x_axis= ‘medium’, 

body_location_y_axis= medium, Time= ‘epoch 2’} 

 

where body_orientation, body_aspect_ratio, body_location_x_axis are depth map attributes 

and Time specifies the time of the activity. ‘high’, ‘medium’, and ‘epoch 2’ are fuzzy labels. 

 

The second stage of AMP-ADLs automatically generates a model of physical ADLs. It first 

applies a fuzzy association rule-mining algorithm on the representations of physical ADLs to 

identify frequent physical ADLs for each epoch. This stage then determines the expected 

duration of frequent physical ADLs within each epoch. The output of this stage for each 

monitored location is the duration of infrequent physical ADLs and a set of fuzzy rules that 

models frequent physical ADLs. 

 

The last stage of AMP-ADLs is to detect unexpected patterns and abnormal behaviours using 

the model of physical ADLs. It uses the fuzzy rules and information on the normal duration of 

infrequent ADLs in order to detect abnormal behaviours. The three stages of AMP-ADLs are 

described in detail in section 4.2.1 to 4.2.3. 

 

4.2.1 Stage 1 – Representing physical ADLs 

This stage addresses the first research sub-question in monitoring physical ADLs. It takes an 

unlabelled training dataset of Kinect depth maps to generate fuzzy representations of the 

occupant’s physical ADLs. The training dataset is called 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and includes observations 

of normal behaviours during physical ADLs from all Kinect sensors in the house. 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is 

composed of several datasets 𝑑𝑟 (𝑟 = 1,⋯ , 𝑅) each captured by a Kinect sensor. R indicates 

the number of monitored locations (i.e. the number of Kinect sensors).  

 

This stage involves three steps. The first step extracts a set of attributes from the depth maps 

in 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 (Section 4.2.1.1). The second step defines fuzzy membership functions for each 

depth map attribute in order to convert the attribute values into fuzzy labels (details in Section 

4.2.1.2). Each combination of fuzzy labels for depth map attributes represents a specific body 

posture of the occupant observed at a specific location. For each monitored location, the last 
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step determines fuzzy sets characterising epochs of activities (Section 4.2.1.3). These steps are 

explained below. 

 

4.2.1.1 Extracting depth map attributes  

A large set of attributes has been adopted to describe body postures for the purpose of 

classification and monitoring physical ADLs. Some of these attributes are intera-frame, 

describing the posture of the person at each individual frame, while the others are inter-frame. 

Inter-frame attributes characterise the change of body postures during consecutive frames.  

 

A feature selection procedure was performed to evaluate the effectiveness of different subsets 

of attributes in characterising physical ADLs. A labelled dataset of Kinect depth maps was 

collected during an experiment in which various ADLs were performed in the living room area 

of the testbed and a Kinect sensor captured the activities. Different possible combinations of 

attributes were then extracted from the Kinect data and an activity classification score was 

calculated for each combination. The best score was obtained for the subset of {AR, θ, CX, Cy} 

with a classification error rate of 6.25%. AR is the aspect ratio of the 3D bounding box for the 

detected person. θ is the orientation of the body, and Cx and Cy denote the horizontal and 

vertical coordinates of the silhouette’s centre of gravity, respectively. This set of attributes is 

referred to as the depth map attributes in the remainder of this thesis. 

 

Robust enough to minor variations of postures, the combination of AR and θ can describe the 

global shape of the subject’s body during ADLs while Cx and Cy specify the location of ADLs. 

Figure 4.2 (a) shows an individual in the living room area of the testbed and Figure 4.2 (b) 

depicts the bounding box of the person’s silhouette (the red rectangle) with the location of the 

silhouette’s centre of gravity shown via the red dot in the bounding box. Details on the 

calculation of different attributes and the procedure of the performed feature selection are 

provided in Appendix A. Note that the colour images of the testbed are displayed only to 

provide a visualisation of the scene and all attributes were obtained from Kinect depth maps.  
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(a) 

 

(b) 

Figure 4.2. (a) Colour image for a Kinect observation in the living room area of the testbed (b) the 

bounding box and centre of gravity calculated for the detected person in the scene.  

 

The map attributes {𝐴𝑅, 𝜃, 𝐶𝑥, 𝐶𝑦} denoted as {𝑎𝑘} (𝑘 = 1,… ,4) are extracted from each Kinect 

observation in 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. This results in obtaining a feature vector in the form of 

{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑟, 𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑚𝑝} for each Kinect observation. r indicates the ID of the Kinect 

sensor that has captured the observation and 𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑚𝑝 denotes the time of observation in 

the form of hh:mm:ss. The example of eight consecutive Kinect observations (the depth map 

of the scene and the corresponding binary mask of the subject) taken from the kitchen area of 

the testbed is shown in Figure 4.3. The corresponding feature vectors for these observations 

are shown in Table 4.1. In this table, r is 2 to indicate that the Kinect sensor in the kitchen has 

captured the observations. 
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     (a) (b) (c) (d) (e) (f) (g) (h) 

Figure 4.3 (a) – (h) Example of observations taken by the kitchen Kinect sensor. For each observation, 

the depth map of the scene and the corresponding binary mask of the subject are shown. 

 

Table 4.1. The depth map attributes extracted from the Kinect observations shown in Figure 4.3. 

Observation AR 𝜽 Cx Cy r Time_stamp 

a 0.7530 18.74 315.45 368.25 2 '10-18-23' 

b 0.7530 18.50 315.27 368.07 2 '10-18-24' 

c 0.7439 18.30 314.54 367.59 2 '10-18-25' 

d 1.1161 54.43 304.83 335.92 2 '10-18-26' 

e 1.488 78.22 249.63 238.87 2 '10-18-27' 

f 1.4112 72.87 283.50 210.44 2 '10-18-28' 

g 1.6530 69.58 362.93 192.80 2 '10-18-29'' 

h 2.2432 70.77 484.38 203.40 2 '10-18-30' 

 

4.2.1.2 Obtaining fuzzy sets for the depth map attributes 

The role of this step is to convert the crisp values of the depth map attributes into fuzzy 

linguistic labels. For example, the value of 𝜃 might be converted into the fuzzy label ‘low’ 

when the occupant lies on the floor. As the range of each depth map attribute varies, the 

mapping of values to fuzzy labels needs to be determined for each attribute separately.  

 

Let 𝑑𝑜𝑚(𝑎𝑘) = [𝑙𝑎𝑘 , ℎ𝑎𝑘] denote the domain of a depth map attribute 𝑎𝑘 across all 

observations in 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. 𝑙𝑎𝑘 and ℎ𝑎𝑘 in 𝑑𝑜𝑚(𝑎𝑘) are the minimum and maximum values of 

𝑎𝑘, respectively. A fixed number (J) of fuzzy sets are defined over the domain of 𝑎𝑘. The set 

of these fuzzy sets is represented by 𝐹𝑎𝑘 = {𝑓𝑎𝑘
1 , … , 𝑓𝑎𝑘

𝐽 }. Each fuzzy set 𝑓𝑎𝑘
𝑗

 in 𝐹𝑎𝑘 represents 

the j-th fuzzy set in 𝐹𝑎𝑘 and has an associated linguistic fuzzy label as well as a membership 

function 𝜇
𝑓𝑎𝑘
𝑗 (𝑥) such that 𝜇

𝑓𝑎𝑘
𝑗 (𝑥)  ∶  𝑑𝑜𝑚(𝑎𝑘 ) → [0 ,1]. 
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A set of fuzzy labels is associated with the obtained fuzzy sets for each choice of J. Different 

sets of fuzzy labels for J=3, 5 and 7 are shown in Table 4.2. For example, when J=5, and thus 

five fuzzy sets are defined over each depth map attribute, the fuzzy labels associated with these 

fuzzy sets are Low, LowerMedium, Medium, UpperMedium, and High. 

 

Table 4.2. Fuzzy labels associated with different numbers of fuzzy sets defined for the depth map 

attributes. 

J Set of linguistic terms 

3 {low, medium, high} 

5 {Low, LowerMedium, Medium, UpperMedium, High} 

7 {very low, Low, LowerMedium, Medium, UpperMedium, High, very high} 

 

Triangular MFs are used to represent these fuzzy sets. This is because triangular MFs can be 

easily calculated and also they show good performance when no information about the 

distribution of attribute values is available (Pedrycz, 1994). The three parameters that define a 

triangular MF are learned from the training dataset of each attribute. This involves using the 

FCM clustering technique to group all values of attribute 𝑎𝑘 into J clusters. The boundaries of 

each cluster and the location of the cluster centre are used to determine the cluster membership 

function parameters.  

 

Let the upper and lower bounds of cluster j (1 ≤  𝑗 ≤  𝐽) that contains data points 𝐶𝑗 =

{𝑝1, … , 𝑝𝑛} to be defined by 𝑢𝐶𝑗 = 𝑀𝑎𝑥(𝐶𝑗) and 𝑙𝐶𝑗 = 𝑀𝑖𝑛(𝐶𝑗), respectively. The cluster 

centre is denoted by 𝑐𝐶𝑗. Equation 4.1 is used to define the MF associated with fuzzy set 𝑓𝑎𝑘
𝑗

. 

 

𝜇
𝑓𝑎𝑘
𝑗 (𝑥) =

{
  
 

  
 

0                  𝑖𝑓 𝑥 ≤ 𝑙𝐶𝑗
𝑥−𝑙𝐶𝑗

𝑐𝐶𝑗−𝑙𝐶𝑗
    𝑖𝑓 𝑙𝐶𝑗 < 𝑥 ≤ 𝑐𝐶𝑗

𝑢𝐶𝑗−𝑥

𝑢𝐶𝑗−𝑐𝐶𝑗
    𝑖𝑓 𝑐𝐶𝑗 < 𝑥 ≤ 𝑢𝐶𝑗

0                  𝑖𝑓 x < 𝑢𝐶𝑗

    (4.1) 

 

An example of the distribution of 𝜃 for 30 days of observations across four locations in the 
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testbed is shown in Figure 4.4 (a). The results of determining clustering-based MFs for this 

attribute (J=5) are shown in Figure 4.4 (b). 

 

   

(a)  (b) 

Figure 4.4. Learning the parameters of triangular MFs; (a) the histogram of θ for 30 days of Kinect 

observations and (b) the results of determining five triangular MFs. 

 

The MFs associated with the obtained fuzzy sets are used to convert each attribute’s crisp 

values into their respective fuzzy labels. Table 4.3 shows the results of this conversion for the 

observations shown in Table 4.1. Note that in this example J=5.  

 

Table 4.3. Fuzzy labels of depth map attributes’ values shown in Table 4.1. 

Observation AR  𝜽 Cx Cy r Time_stamp 

a Low Low Medium VeryHigh 2 '10-18-23' 

b Low Low Medium VeryHigh 2 '10-18-24' 

c Low Low Medium VeryHigh 2 '10-18-25' 

d Medium Medium Medium High 2 '10-18-26' 

e Medium High Low Medium 2 '10-18-27' 

f Medium High Low Medium 2 '10-18-28' 

g High High High Low  2 '10-18-29'' 

h High High VeryHigh Medium 2 '10-18-30'  

 

4.2.1.3 Obtaining fuzzy sets for epochs of activities 

The human behaviour pattern is observed to vary in a cyclical manner over a period of 24 hours, 

which has been referred to as circadian rhythmic variability (CAV) (Shin et al., 2011). This 

step performs the following three operations to convert the time of Kinect observations into 

fuzzy labels according to the occupant’s CAV: 
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1. Identifying epochs of activities performed in each location 

2. Defining fuzzy sets for each location to represent the identified epochs 

3. Converting the time of training observations into their respective fuzzy labels.  

 

The timestamps of training Kinect observations captured from each location is used to perform 

the first operation. The behaviour patterns that occur at similar times are grouped using a 

clustering technique. The result for each monitored location is a set of epochs during which 

each group of activity is expected to occur. For example, the behaviour patterns during 

morning, afternoon, evening or night are grouped into different epochs of activities.  

 

The amount of activity for a set of observations from a particular Kinect sensor, 𝑑𝑟, and within 

a particular time period is obtained by counting the number of observations recorded in that 

period. The time of observations is converted from their original format in the dataset (i.e. 

hh:mm:ss) to numbers ranging from zero to 24. The minutes in the timestamp of observations 

are divided by 60, resulting in a decimal number. This is then added to the hour part of the 

timestamp. For example, 22:45:22 is converted into 22+(45/60) = 22.75. The result of this 

conversion for location r is a series of crisp values 𝑡𝑟 (0 ≤ 𝑡 ≤ 24) representing the time of 

ADLs. The set of these data points constitutes an unknown probability density function 𝑓𝑟 . 

 

An example of this density function for a living room through the histogram of the data points 

is shown in Figure 4.5. The number of observations for each bin is determined for 30-minute 

intervals. As this series is built over a number of days, peaks typically correspond to distinct 

recurrent activities at a particular time such as watching the nightly news. Each peak in the 

density function of time of activities can be linked to major epochs in the CAV of the occupant. 

Since there are variations in the time of activities, each peak is usually associated with a 

component distribution.  
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Figure 4.5. An example of hourly count of observations for a living room area during 30 days. 

 

The mean shift clustering algorithm (see Section 3.6.5.1) is used to find modes (local maxima) 

of 𝑓𝑟 representing the epochs of activities. This algorithm provides the locations of modes and 

the cluster of data associated with each mode. For example, the locations of modes in the data 

distribution shown in Figure 4.5 are provided to be 9, 15 and 20. 

 

Choice of bandwidth parameter h in the mean shift algorithm is considered critical (Comaniciu 

& Meer, 2002). A large h might result in incorrect clustering and merging distinct clusters. A 

very small h, on the opposite, might result in a large number of clusters. In the implementation 

of the mean shift algorithm h is determined using the plug-in rule (see Section 3.6.3). 

 

The location of modes and the cluster of data associated with each mode for a monitored 

location are used to represent epochs of activities through fuzzy sets. Each detected mode is 

represented by a fuzzy set and the variation in the cluster of data associated with the mode 

determines the width of the fuzzy set. 

 

Several studies suggest that the duration of ADLs follows a Gaussian distribution (Rashidi & 

Cook, 2010; Tang, Yoshihara, Takeda, Botzheim, & Kubota, 2015). This hypothesis is 

validated by Alam et al. (2011). Each detected mode i for a monitored location r is therefore 

modelled by a fuzzy set with a Gaussian MF denoted as 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖 . Let 𝑚𝑜𝑑𝑟

𝑖  and 𝜎𝑟
𝑖 be the 

location of a detected mode and the standard deviation of data points associated with that 

mode, respectively. The MF to represent 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖  is defined as Equation 4.2.  
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𝜇𝑒𝑝𝑜𝑐ℎ𝑟
𝑖 (𝑥) = 𝑒

−(𝑥−𝑚𝑜𝑑𝑟
𝑖 )
2

2(𝜎𝑟
𝑖)2  

 (4.2) 

Figure 4.6 shows the induced fuzzy sets associated with the epochs of activity shown in Figure 

4.5. This figure displays that the CAV of the occupant has three epochs of major activities in 

the living room. It also shows that the occupant performed more ADLs in this location after 

01:00 PM since two different epochs were estimated after this time. 

 

 

Figure 4.6 An example of Gaussian membership functions for the time of observations in a living 

room area. 

 

The procedure for determining activity epochs is repeated for each monitored location and a 

different number of fuzzy sets are obtained for each location, corresponding to the ADLs and 

their duration in that location.  

 

For each location, the time of observations in the training dataset is then converted into the 

label of fuzzy set with the highest membership value. For example, the time of observations 

shown in Table 4.1 is converted into fuzzy labels shown in Table 4.3. Note that it is assumed 

all these observations belong to the first detected epoch for the kitchen (𝑟 = 2) and thus, the 

times of observations were represented by 𝑒𝑝𝑜𝑐ℎ2
1. 

 

The index of location, the combinations of fuzzy labels for the depth map attributes along with 

the time of activities constitutes representations of the occupant’s physical ADLs in the house. 
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Table 4.4. Replacement of time of fuzzified observations in Table 4.3 with their fuzzy sets. 

Observation AR  𝜽 Cx Cy r Time_stamp 

a Low Low Medium VeryHigh 2 𝑒𝑝𝑜𝑐ℎ2
1 

b Low Low Medium VeryHigh 2 𝑒𝑝𝑜𝑐ℎ2
1 

c Low Low Medium VeryHigh 2 𝑒𝑝𝑜𝑐ℎ2
1 

d Medium Medium Medium High 2 𝑒𝑝𝑜𝑐ℎ2
1 

e Medium High Low Medium 2 𝑒𝑝𝑜𝑐ℎ2
1 

f Medium High Low Medium 2 𝑒𝑝𝑜𝑐ℎ2
1 

g High High High Low  2 𝑒𝑝𝑜𝑐ℎ2
1 

h High High VeryHigh Medium 2 𝑒𝑝𝑜𝑐ℎ2
1 

 

4.2.2 Stage 2 – Modelling physical ADLs 

This stage addresses the second research sub-question in monitoring physical ADLs. It uses 

the fuzzy representations of activities from the previous stage to generate a model of physical 

ADLs for each location.  

 

The process of this stage first identifies the set of frequent and infrequent physical ADLs in 

each monitored location and then works out the expected duration of ADLs in each set. A set 

of fuzzy rules is then generated for each location to model the frequent ADLs. The fuzzy 

representation of each frequent ADL constitutes the antecedent of the respective fuzzy rule and 

the expected normal duration of that ADL is characterised as the consequent of the rule. 

 

4.2.2.1 Identifying frequent physical ADLs in each location 

The depth map attributes in Kinect observations belonging to each epoch 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖  associated 

with location r are examined at this step to determine a set of frequent behaviour patterns during 

physical ADLs. This is carried out using the fuzzy association rule-mining algorithm described 

in Section 3.6.5. This algorithm examines the co-occurrence of fuzzy labels for the depth map 

attributes and provides association rules that have levels of support. The combination of fuzzy 

attributes in each association rule represents a behaviour pattern during physical ADLs. The 

level of support of each behaviour pattern indicates the proportion of observations in 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖  

corresponding to that behaviour pattern.  

 

A threshold value MinSupp is adopted to prune the set of generated association rules according 
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to their levels of support. Each behaviour pattern in the result is considered as a frequent 

behaviour pattern, indicated as  𝑏𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

. q indicates the index of frequent behaviour pattern 

obtained for 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖 . These are used to generate a list of frequent behaviour patterns (𝐹𝑃𝑒𝑝𝑜𝑐ℎ𝑟𝑖 ) 

of the occupant during epoch 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖  associated with location r. For example, 

 

 𝑏1
𝑒𝑝𝑜𝑐ℎ2

1

: {𝐴𝑅 = ′𝐿𝑜𝑤′, 𝜃 = ′𝐿𝑜𝑤′, 𝐶𝑥 = ′𝑀𝑒𝑑𝑖𝑢𝑚′, 𝐶𝑦 = ′𝑉𝑒𝑟𝑦𝐻𝑖𝑔ℎ′} 

and  

 𝑏2
𝑒𝑝𝑜𝑐ℎ2

1

: {𝐴𝑅 = ′𝑀𝑒𝑑𝑖𝑢𝑚′, 𝜃 = ′𝐻𝑖𝑔ℎ′, 𝐶𝑥 = ′𝐿𝑜𝑤′, 𝐶𝑦 = ′𝑀𝑒𝑑𝑖𝑢𝑚′} 

 

can be respectively the two frequent behaviour patterns of standing in front of the counter and 

standing in front of the sink in the kitchen (r=2) in the first epoch of activity (i.e. 𝑒𝑝𝑜𝑐ℎ𝑑2
1 ). If 

only these two frequent behaviours are found for 𝑒𝑝𝑜𝑐ℎ2
1, 𝐹𝑃𝑒𝑝𝑜𝑐ℎ21 = { 𝑏1

𝑒𝑝𝑜𝑐ℎ2
1

,  𝑏2
𝑒𝑝𝑜𝑐ℎ2

1

}. The 

Kinect observations from each epoch 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖  are then divided into two datasets: 

 

1- 𝐷𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

, containing Kinect observations from epoch 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖  that have a 

combination of attributes corresponding to a frequent behaviour pattern in 𝐹𝑃𝑒𝑝𝑜𝑐ℎ𝑟𝑖 . 

In the example provided above, 𝐷𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠
𝑒𝑝𝑜𝑐ℎ2

1

 is composed of observations a, b, 

c, e, f, and g (see Table 4.4). 

 

2- 𝐷𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

, containing the rest of the observations in 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖 . In the 

example above, 𝐷𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠
𝑒𝑝𝑜𝑐ℎ2

1

 is composed of observations d and h (see Table 

4.4) as the behaviour patterns in those observations are not correspond to any frequent 

behaviour pattern in 𝐹𝑃𝑒𝑝𝑜𝑐ℎ21. 

 

Note that the body posture and location of individuals are stationary during most ADLs. For 

example, people usually maintain their location and general posture when sitting on the sofa 

for watching TV and sleeping in the bed. The observations for those stationary postures 

therefore comprise the majority of the training dataset and are very likely to be included in 

𝐷𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠.  
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Behaviour patterns that a monitored occupant performs for only a few times during collecting 

the training dataset usually share a little portion of the training dataset and they compose 

𝐷𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠. For example, assume that the occupant usually sits on a sofa in a living 

room area. During the collection of the training dataset occupant may have also sat on the floor 

for a few occasions. Observations for sitting on the floor would be classified as infrequent 

behaviour and compose 𝐷𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠. Some other behaviour patterns that were short 

might be also included in 𝐷𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠. For example, assume that the occupant spends 

most of their time sitting on a sofa in the living room area and spends few seconds each time 

for walking around in this area. Observations for walking around in the living room would be 

classified as infrequent behaviour.  

 

These datasets are used in the next step to determine the expected durations of both behaviour 

classes (i.e. frequent and infrequent ADLs). The system uses the results to monitor the duration 

of frequent behaviour patterns (e.g. sleeping in bed). This also allows the occupant to repeat 

the same infrequent behaviour patterns (e.g. sitting on the floor in the living room area) for a 

similar duration without the system raising alarms. 

 

4.2.2.2 Determining expected duration of physical ADLs 

Fuzzy sets are defined in this step to model the expected duration of frequent behaviours 

associated with an epoch of activity. Fuzzy rules are then generated based on the results to 

model frequent physical ADLs of the occupant. The duration of infrequent physical ADLs in 

each monitored location is also identified.  

 

From Stage 1 epochs of activities are determined for each monitored location. Assume that 

𝐹𝑃𝑒𝑝𝑜𝑐ℎ𝑟𝑖  holds frequent behaviour patterns associated with 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖 . The following two steps 

are performed to model the expected duration of frequent behaviours associated with this 

epoch. 

 

1. Sequences of consecutive observations that correspond to each frequent behaviour 

pattern  𝑏𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

 in 𝐹𝑃𝑒𝑝𝑜𝑐ℎ𝑟𝑖  are found in 𝐷𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

. This is done by sorting 

observations in 𝐷𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

 according to their original timestamp and then 

putting all consecutive observations which have the same fuzzy attributes as 𝑏𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖
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into a sequence 𝑆𝑒𝑞𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

. Each frequent behaviour pattern 𝑏𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

 in 𝐹𝑃𝑒𝑝𝑜𝑐ℎ𝑟𝑖  would 

be related to a set of sequences shown as 

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

= {Seq(1)𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

, … , Seq(y)𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

}. 

 

2. The mean and standard deviation of durations of sequences in 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

 are 

calculated as  𝑚𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

 and  𝜎𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

, respectively. Using these two values the fuzzy set 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

 is defined over the time domain to model the duration of behaviour 

pattern  𝑏𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

. A z-shaped membership function (Berkan & Trubatch, 1997) is 

associated with this fuzzy set with two parameters  𝑢 = (𝑚𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

) and   𝑣 =

(𝑚𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

+ 3𝜎𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

) to characterise its break points (see Equation 4.3). 

 

𝜇
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑞

𝑒𝑝𝑜𝑐ℎ𝑟
𝑖 (𝑥) = 

{
 
 

 
 
1 ,                        𝑥 ≤ 𝑢

1 − 2 (
𝑥−𝑢

𝑣−𝑢
)
2

,   𝑢 < 𝑥 ≤
𝑢+𝑣

2

2 (
𝑥−𝑣

𝑣−𝑢
)
2

,           
𝑢+𝑣

2
< 𝑥 ≤ 𝑣

0,                         𝑣 ≤ 𝑥

 

(4.3) 

An example of a z-shaped MF with 𝑢 = 800 and 𝑣=2450 is shown in Figure 4.7. The output 

of the function is 1 for durations less than u. For those longer than u the function slopes down 

to its extreme point (i.e. 2450) where its output becomes zero. This means that the MF does 

not support a behaviour pattern that lasts longer than 2450 seconds. 

 

Figure 4.7. An example of a z-shaped MF with u = 800 and v=2450. 
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The above two steps are repeated to obtain fuzzy sets that model the duration of all frequent 

behaviour patterns during physical ADLs. A fuzzy rule base is then generated to model the 

frequent behaviour patterns. Each rule describes a frequent behaviour pattern in its antecedent 

and has the duration of that behaviour pattern in its consequent. Table 4.5 shows an example 

where each fuzzy rule is in the form of:  

 

“IF Location is r AND Time is 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖  AND 𝐴𝑅 is A1 AND θ is A2 AND 𝐶𝑥 is A3 AND 𝐶𝑦 is 

A4 THEN Duration is 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

" 

 

Here A1, A2, A3, and A4 are fuzzy sets of the depth map attributes defining a frequent behaviour 

pattern. 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖

 is the fuzzy set describing the expected duration of the behaviour 

pattern. r is the ID of a particular Kinect camera and 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖  is the fuzzy set for the i-th epoch 

of activities for location r. The rule base in Table 4.5 can be segmented based on the number 

of monitored locations and the number of detected epochs of activities for each location. 

Assume that there are four monitored locations with each location having three epochs of 

activities and for each epoch five frequent behaviour patterns are detected. The number of fuzzy 

rules in this case is:  

 

Number of fuzzy rules= locations × number of epochs × number of frequent behaviours=60. 

 

Table 4.5. An example of fuzzy rule set obtained from the training phase. 

 Antecedent Consequent 

Index r Time AR θ Cx Cy Duration 

rule1 1 Td1
1  medium high low low 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛2

𝑒𝑝𝑜𝑐ℎ𝑑1
1

 

rule2 1 Td1
2  high high medium high 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛1

𝑒𝑝𝑜𝑐ℎ𝑑1
2

 

rule3 2 Td2
1  high high medium high 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛1

𝑒𝑝𝑜𝑐ℎd2
1

 

rule4 3 Td3
1  medium medium high medium 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛2

𝑒𝑝𝑜𝑐ℎd3
1

 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

 

This step also determines the maximum duration of infrequent behaviours in each monitored 

location. This duration for a monitored location r is called 𝐸𝐴𝑟 and is estimated based on 
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processing all 𝐷𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠 obtained for that location. Sequences of consecutive 

observations in 𝐷𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑠 associated with all epochs of activities are obtained and 

three standard deviations of their lengths is regarded as the value of 𝐸𝐴𝑟. For example, assume 

that there are only three sequences of infrequent behaviours identified for a kitchen area (r=2) 

and the durations of these sequences are 240, 100, and 50 seconds. 𝐸𝐴2 in this case would be 

294 seconds. 

 

4.2.3 Stage 3 – Detecting abnormal behaviours 

This stage is devised to address the third research sub-question in monitoring physical ADLs. 

An algorithm is developed to detect abnormal behaviours in physical ADLs based on the set of 

fuzzy rules and the duration of infrequent ADLs that are obtained for each monitored location.  

 

This algorithm calculates the depth map attributes from the occupant’s activity in each new 

Kinect observation. The activity is represented by the ID of the Kinect sensor and the 

combination of fuzzy labels representing the time of activity and the depth map attributes. If 

this combination corresponds to a frequent activity represented by the antecedent of a fuzzy 

rule associated with the same Kinect ID, the duration of the activity during consecutive 

observations is calculated and evaluated against the consequent of that fuzzy rule. An alarm is 

raised when the duration of the activity no longer matches to the consequent part of the rule. 

 

If no fuzzy rule can be matched to the activity in the observation, the system monitors the 

duration of the activity for a specific amount of time before raising an alarm. During that time 

if the occupant performs a frequent activity, the system starts monitoring the new frequent 

activity. This avoids generating false alarms for occasional abnormal postures lasting for few 

seconds (such as bending to fasten the shoe ties).  

 

Steps of this algorithm are shown in Figure 4.8. NormalDuration is to indicate the duration of 

a currently ongoing frequent behaviour pattern. AbnormalDuration holds the duration of an 

ongoing behaviour which is not in the list of frequent behaviours (i.e. it is either an infrequent 

or an abnormal behaviour). 

  



 

121 

 

The Algorithm for Monitoring Physical ADLs Based on Kinect Depth Maps 

Input: fuzzy rules and 𝐸𝐴𝑟 for all locations (𝑟 = 1, … , 𝑅) 
Output: an alarm to notify a caregiver 

 
1. 𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0; 
2. 𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0; 
3. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 = 0; 
4. while (True) 
5.          if (new observation) 
6.              obtain 𝑂𝑚 
7.              compute  QueryBehaviour using Equation 4.5 
8.              if (𝑄𝑢𝑒𝑟𝑦𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟) 
9.                    𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0 
10.                  if (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 ==  𝑄𝑢𝑒𝑟𝑦𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟) 
11.                  𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + +; 
12.                   if    𝜇

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑞
𝑒𝑝𝑜𝑐ℎ𝑟

𝑖 (𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) == 0   

13.                           trigger Alarm 
14.                               end if 
15.                   else 
16.                   𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 =  𝑄𝑢𝑒𝑟𝑦𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟; 
17.                   𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 1; 
18.                  end if 
19.            else 
20.                   𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + +; 
21.                 𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0; 
22.                   if AbnormalDuration > 𝐸𝐴𝑟  
23.                    trigger Alarm 
24.                  end if 
25.            end if 
26.        end if 
27. end while 

Figure 4.8. The algorithm for monitoring physical ADLs in the monitoring phase. 

 

Line 6 extracts attributes from a query Kinect observation. These attributes are shown as 𝑂𝑚 =

{𝑜𝑚
1 , 𝑜𝑚

2 , 𝑜𝑚
3 , 𝑜𝑚

4 , 𝑜𝑚
5 , 𝑜𝑚

6 }. 𝑜𝑚
1  is the ID of the Kinect sensor and 𝑜𝑚

2  is the time of observation. 

Components  𝑜𝑚
3 , 𝑜𝑚

4 , 𝑜𝑚
5 ,  and, 𝑜𝑚

6  are the values of AR, θ, 𝐶𝑥 and 𝐶𝑦, respectively. Line 7 

evaluates 𝑂𝑚 against the fuzzy rule set to see whether the occupant’s activity in the query 

Kinect observation corresponds to a frequent activity. This is done using a fuzzy concept called 

firing strength (Kukolj, 2002). The firing strength of a rule is the degree of satisfaction of the 

antecedent of the rule by the elements of 𝑂𝑚. Let 𝑉 =  {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} be the set of 

variables in the antecedent of rule 𝑟𝑢𝑙𝑒𝑝 and 𝐴 =  {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6} be the fuzzy sets 

associated with those variables. Also let {𝜇𝑓1 , 𝜇𝑓2 , 𝜇𝑓3 , 𝜇𝑓4 , 𝜇𝑓5 , 𝜇𝑓6} be the set of membership 
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functions of A such that 𝜇𝑓𝑤 (𝑤 = 1,⋯ ,6) represents the membership function of 𝑓𝑤. The 

following formula is used to calculate the firing strength of 𝑟𝑢𝑙𝑒𝑝 with respect to 𝑂𝑚. 

 

𝑓<𝑂𝑚,𝑟𝑢𝑙𝑒𝑝> =∏𝜇𝑓𝑤(

6

𝑤=1

𝑜𝑚
𝑤) 

                 (4.4) 

where ∏ is the standard fuzzy intersection operator defined as 

 

∏(𝜇𝑓1 ,⋯ , 𝜇𝑓𝑛) = min{𝜇𝑓1 , ⋯ , 𝜇𝑓𝑛}. 

The best match to 𝑂𝑚 is given by the rule with the maximum firing strength (see Equation 4.5). 

The index of that rule is recorded in 𝑄𝑢𝑒𝑟𝑦_𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 to indicate which frequent behaviour 

pattern is observed in the query Kinect observation. 

 

𝑄𝑢𝑒𝑟𝑦𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 =  argmax
1≤p≤P

𝑓<𝑂𝑚,𝑟𝑢𝑙𝑒𝑝> 
 

   (4.5) 

Line 8 in Figure 4.8 checks if 𝑄𝑢𝑒𝑟𝑦𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 is not zero. This implies that the query Kinect 

observation has matched a frequent behaviour pattern and thereby 𝑄𝑢𝑒𝑟𝑦𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 is 

holding the index of the respective rule. If 𝑄𝑢𝑒𝑟𝑦𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 is not zero, Line 10 checked 

whether the behaviour of 𝑄𝑢𝑒𝑟𝑦_𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 has also been observed in the previous 

observation. If yes, the duration of the ongoing identical (matched) behaviour, defined as 

𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, is incremented and evaluated against the consequent of the fuzzy rule 

indexed as 𝑄𝑢𝑒𝑟𝑦𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 (𝑖. 𝑒. , 𝑟𝑢𝑙𝑒𝑄𝑢𝑒𝑟𝑦𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟). 

 

Equation 4.3 models the duration of a behaviour up to three standard deviations from the mean 

value of the duration of its training samples. When NormalDuration is no longer satisfying the 

consequent of 𝑟𝑢𝑙𝑒𝑄𝑢𝑒𝑟𝑦𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟, the approach is at the 99% confidence interval that the 

duration of the ongoing behaviour no longer belongs to the behaviour modelled by the rule. An 

alarm is raised in this case (Line 13). If 𝑄𝑢𝑒𝑟𝑦𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 has a new value corresponding to a 

frequent behaviour pattern, this new value is assigned to CurrentBehaviour (Line 16) and 

NormalDuration is then re-initialised to 1 (Line 17). The algorithm in this case starts 

monitoring the duration of the new behaviour pattern. 
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If 𝑂𝑚 cannot be matched to any rules in the fuzzy rule set, it means that the observed behaviour 

pattern of the occupant either corresponds to one of the infrequent behaviours or belongs to an 

abnormal situation (e.g. falling on the floor). If this condition persists during consequent 

observations, the system keeps incrementing 𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 while monitoring the scene. 

An alarm is raised when this variable reaches 𝐸𝐴𝑟(line 23). 

 

The Kinect SDK estimates the number of individuals detected in the room. This feature is used 

to stop monitoring when more than one person is in the room. This indicates that observations 

during occasions that other people were present in the room are not classified.  

4.3 Experimental results 

No public dataset was known to be available to provide continuous Kinect data for ADLs inside 

a residential home. The collected dataset from the testbed was used to test the effectiveness of 

the AMP-ADLs approach. It included a training dataset of continuous Kinect observations for 

the activities carried out over 30 days to simulate ADLs of an elderly occupant living alone. It 

also had a testing dataset. This dataset, which is called Testing_Data 1, involved several 

recordings of scenarios for normal and abnormal behaviours.  

 

The results of applying the techniques associated with stages 1 and 2 on the training dataset are 

presented through Section 4.3.1 to Section 4.3.4. These sections also demonstrate the impact 

of the number of fuzzy sets defined over the depth map attributes on the characteristics of fuzzy 

rules and values of EAr. Section 4.3.5 describes the results of evaluating the performance of 

the monitoring approach based on Testing_Data 1. 

 

4.3.1 Results of extracting fuzzy depth map attributes 

The MFs generated for the depth map attributes with J=3 are shown in Figure 4.9. The fuzzy 

labels of the three MFs for each attribute were named as ‘low’, ‘medium’, and ‘high’. The MFs 

generated for the depth map attributes with J=5 are shown in Figure 4.10. The fuzzy labels of 

the five MFs for each attribute were ‘veryLow’, ‘low’, ‘medium’, ‘high’, and ‘veryHigh’. The 

MFs generated for the depth map attributes with J=7 is shown in Figure 4.11. The fuzzy labels 

of the seven MFs for each attribute were ‘veryLow’, ‘low’, ‘lowerMedium’, ‘medium’, 

‘higherMedium’,‘high’, and ‘veryHigh’.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.9. MFs generated for (a) AR, (b) θ, (c) Cx, and (d) Cy via using the FCM algorithm with J=3.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.10. MFs generated for (a) AR, (b) θ, (c) Cx, and (d) Cy via using the FCM algorithm with 

J=5. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.11. MFs generated for the depth map attributes with J=7; MFs for each attribute were given 

linguistic terms, namely veryLow, low, lowerMedium, medium, upperMedium, high, and veryHigh. 
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It can be inferred that increasing J correlates with support area of the generated MFs being 

smaller. This indicates that slight variations in the occupant’s postures during physical ADLs 

could easily change the pattern of fuzzy labels obtained for the depth map attributes. It is then 

very likely that when J is set to a high value (e.g. 7) multiple fuzzy rules would be generated 

to model the same ADL. This is because each time the person slightly changes their posture 

during an ADL, a new combination of fuzzy attributes would be obtained. These combinations 

would cause fuzzy rules to be generated if they are frequent enough.  

 

4.3.2 Results of identifying epochs of activities 

The results of identifying epochs of activities are presented in this section. The accuracy of the 

proposed technique for identifying epochs of activities was estimated through comparing its 

results with the ground truth for epochs of activities. The ground truth for epochs of activities 

was obtained based on the daily schedule followed by the researcher to simulate activities 

(shown in Table 3.5). The histogram for the time of activities for different locations with the 

ground truth of epochs represented as different colour rectangles is shown in Figure 4.12 (a)-

(d). The vertical axis represents the number of observations. Five peaks were detected in the 

histogram for the kitchen (Figure 4.12 (a)) which corresponded to the five major activities 

carried out in this area during the collection of the dataset (i.e. preparing the breakfast, cleaning, 

preparing the lunch, making a refreshment, and preparing dinner). Variations in the starting 

time of these activities during the data collection period resulted in the formation of component 

distributions in the data. The combination of these component distributions resulted in a 

mixture of distributions on the histogram. Each component distribution in this mixture 

represents an epoch of activity. For example, the typical time for preparing lunch was 12:00 

PM (see Table 3.4) and ranged from 10:30 AM to 13:00 PM. Lunch and dinner times had 

higher peaks than breakfast. This figure also shows less presence of the occupant in the kitchen 

immediately after lunch. This suggests the occupant spending time elsewhere, such as the 

dining room or living room.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.12. The histogram for the time of observations from the (a) kitchen, (b) living room, (c) 

dining room, and (d) bedroom datasets with epochs of activities segmented from the ground truth.  
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The ground truth for the living room is shown in Figure 4.12 (b). By taking Figure 4.12 (a) into 

consideration, it is evident that the living room was usually occupied after breakfast, washing 

dishes in the kitchen and lunch. The living room was also occupied between 18:00 and 22:00 

for watching TV or using the computer. The ground truth for epochs of the bedroom is shown 

in Figure 4.12 (d). This figure displays two separate segments labelled as Epoch 1 (black 

rectangles) which represents sleeping in the bed. The duration of activities for this epoch was 

calculated by taking into account the total duration of continuous observations for the two 

segments. When the occupant went to bed at 22:00 PM and slept until 06:00 AM the following 

morning, the duration of this activity for the right-hand side segment (i.e. 2 hours) was added 

to that of the observations for the left-hand side segment (i.e. 6 hours). 

 

MFs were generated based on the proposed technique in Section 4.2.1.3 to model epochs of 

activities for each location. The different parts in Figure 4.13 display the obtained MFs for 

different locations in the testbed. The estimated epochs were found to accurately represent 

those obtained from the ground truth. This is due to the use of mean shift clustering algorithm 

which grouped all observations belonging to the same component distribution as belonging to 

the same cluster. For example, the living room area was occupied during specific periods in a 

daily routine to perform specific ADLs. Performing each activity in this area caused a 

component distribution in the time of activities. This resulted in the mean shift algorithm 

correctly identifying the epochs for these activities. Most of epochs for the living room, kitchen, 

and dining room were associated with overlapping MFs as shown in Figure 4.13. The extent of 

overlapping determines the amount of variation the system allows in the occurrence time of 

activities at the monitoring stage from the occurrence time in their training samples. 

 

Existing ADL monitoring systems have employed different clustering algorithms for 

estimating epochs of activities. Those alternatives were also implemented and the accuracy of 

the proposed technique was compared against them. Details for this comparison are presented 

in Appendix B. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.13. MFs generated to model epochs of activities in different locations of the testbed: (a) the 

kitchen, (b) living room, (c) dining room, and (d) bedroom. 
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4.3.3 Results of identifying frequent behaviour patterns 

This section presents the results of determining frequent behaviour patterns for each epoch of 

activity for different configurations of J.  

 

The plots of support level versus the number of behaviour patterns from processing different 

activity epochs for different locations with J=3 is shown in Figure 4.14. Examination of these 

plots showed that they all have similar characteristics, in that once the support level reduces to 

less than 2%, it flattens out and approaches zero. This indicates that the association rules with 

less than 2% support represented very small proportion of the occupant’s behaviours, hence 

representing infrequent behaviours. MinSupp was set such that rules with at least 2% support 

were picked as to represent frequent behaviours. Reducing MinSupp to a smaller value such as 

1% increased the number of fuzzy rules for different values of J. Subsequent analysis of the 

classification results associated with using either of the values of MinSupp (1% or 2%) showed 

no significant difference between the two. 

 

The numbers of frequent behaviour patterns in the kitchen dataset during epochs 1 to 5 were 

estimated to be 11, 14, 8, 10, and 8 (51 in total) as shown in Figure 4.14 (a). In the case of the 

dining room, however, these numbers for the four detected epochs were smaller, resulting in a 

sharper fall in the diagrams in Figure 4.14 (b). This may be due to the occupant usually visiting 

the dining room to have a meal during most of those epochs. The performed activities were 

therefore limited to sitting behind the dining table and eating food. Epoch 2 for the dining room 

was associated with a higher number of frequent behaviours because cleaning up the room was 

carried out in this epoch. 

 

The detected epochs 1-4 for the living room had 7, 7, 10 and 8 (32 in total) frequent behaviour 

patterns respectively with greater than 2% support (see Figure 4.14 (b)). Epochs 1 and 2 had 

the same number of frequent behaviour patterns since the activities carried out during these 

two were almost the same (sitting behind the computer). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.14. The number of behaviour patterns with a specific level of support obtained for epochs 

associated with J=3 in the dataset: (a) kitchen, (b) dining room, (c) living room, and (d) bedroom. 
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The numbers of frequent behaviours for both detected epochs in the bedroom were one, as 

shown in Figure 4.14 (d). Each epoch belonged to the same activity of sleeping in bed. The 

support of this activity in each epoch was more than 95%. Although during these two epochs 

other activities such as blow-drying (by standing by the mirror) and walking around in the room 

were performed, the ratio of observations of sleeping in bed to those of the other activities was 

very high. For example, the ratio of observations associated with blow-drying performed in 

Epoch 1 to all other observations for that epoch was less than 1% (less than minsupp).  

 

In another experiment, J was set to higher values (i.e. 5 and 7) and plots of the support level 

versus the number of behaviour patterns were examined. The parameter minsupp for these 

configurations was also set to 2% because the support level flattened out once it reduced to less 

than 2%.  

 

Figure 4.15 shows these plots when J=7. A comparison of the results in Figure 4.14 and Figure 

4.15 shows that increasing the value of J elevated the number of frequent behaviours for each 

epoch. This is because the supports of fuzzy sets were smaller when the number of fuzzy sets 

for the depth map attributes increased. Therefore, the occupant’s ADLs were represented 

through a higher number of combinations of fuzzy attributes. 

 

The total number of rules obtained for different values of J to represent frequent behaviour 

patterns in each monitored location is summarised in Table 4.6. 

 

Table 4.6. The number of fuzzy rules obtained from the output the proposed MF generation 

techniques for different monitored locations. 

 

Number of rules 

Kitchen Living room Dining room Bedroom overall 

J = 3  51 32 19 2 104 

J = 5  58 37 24 2 121 

J = 7  61 43 28 2 134 

 

 

 

 



 

134 

 

 

(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.15. The number of frequent behaviour patterns with a specific level of support obtained for 

epochs associated with J=7 in the dataset: (a) kitchen, (b) dining room, (c) living room, and (d) 

bedroom. 
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4.3.4 Results of modelling the duration of behaviour patterns 

The results of modelling the duration of frequent behaviours using different values of J are 

presented in this section. The z-shaped MFs representing the duration of the frequent behaviour 

of sleeping in bed for epochs 1 and 2 with J=3 is shown in Figure 4.16. The MF for Epoch 1 

represents a duration of approximately nine hours and the MF for Epoch 2 displays a duration 

of approximately three hours. This is because Epoch 1 is for the activity of sleeping at night 

which usually took six to eight hours and Epoch 2 is for the activity of occasionally taking a 

one- or two-hour nap in the afternoon. There were instances in the training dataset where the 

sleeping activity took more than the usual duration. These instances increased the standard 

deviation of durations of this activity.  

 

Figure 4.16. The duration of two frequent behaviours obtained from the bedroom dataset with J=3. 

The horizontal axes represent time in seconds. 

 

The MFs generated to represent the duration of frequent behaviour patterns for the kitchen 

using different values of J are shown in Figure 4.17. Increasing J generally decreased the 

estimated duration of behaviour patterns. Increasing J also increased the sensitivity of the fuzzy 

attributes. By setting J to a high value, variations in people’s body postures and the slight 

changes in the attribute values during activities resulted in formation of various representations 

of frequent behaviour patterns.  
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(a) 

 

(b) 

 

(c) 

Figure 4.17. MFs generated to represent the duration of frequent behaviour patterns for the kitchen 

dataset, using (a) J=3, (b) J=5, and (c) J=7. 
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Examples of Kinect observations belonging to the longest activities in the kitchen identified 

for J=7 is visualised in Figure 4.18; for each example, the colour image and its corresponding 

binary mask of the subject is displayed. It was observed that the longest identified activity was 

standing by the kitchen countertop (preparing a meal) followed by two different behaviour 

patterns for the same activity of standing by the cooktop. The combinations of fuzzy attributes 

for these two behaviour patterns were  

 

{AR=’high’, θ=’high’, Cx=’lowerMedium’, Cy=’upperMedium’} 

and  

{AR=’high’, θ=’veryHigh’, Cx=’lowerMedium’, Cy=’upperMedium’}. 

 

These combinations only differ in their fuzzy label for 𝜃. This variation was due to the 

occupant’s different body postures during the activity. 

 

   

(a)  

   

(d) 

Figure 4.18. Examples of observations belonging to longest identified frequent behaviour patterns 

obtained from the kitchen with J=7. 

 

The duration of the frequent behaviour patterns obtained for other values of J (i.e. 3 and 5) was 

examined. It was confirmed that for other values of J, the longest durations still were for those 
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activities in the same order. The duration detected for these activities increased as the value of 

J decreased. This was due to the wider support of MFs obtained when J increased. 

 

Different values of J were used to obtain 𝐸𝐴r for the monitored locations. Table 4.7 shows the 

results for these configurations. Increasing J had a positive impact on 𝐸𝐴r obtained for most 

locations in Table 4.7. For a low value of J (e.g. J=3), the support of the respective MFs for the 

attributes widens. Slight variations of the occupant’s posture during most ADLs did not result 

in changes in the combinations of fuzzy labels. This resulted in more observations associated 

with frequent behaviours, hence a shorter 𝐸𝐴𝑟 for most monitored locations. 

 

Table 4.7. Values of 𝐸𝐴𝑟 obtained for different configurations of J. The figures represent time in 

seconds. 

Number of MFs Living room (r=1) Kitchen (r=2) Dining room (r=3) Bedroom (r=4) 

J=3 725 256 212 640 

J=5 861 281 315 680 

J=7 905 478 400 682 

 

4.3.5 Results of monitoring the test dataset of normal and abnormal activities 

The Testing_Data 1 (see Section 3.5.3) was used to evaluate the accuracy of the AMP-ADLs 

approach. It consisted of 60 recordings for each of the monitored locations. Half of these 

recordings were associated with scenarios of different normal behaviour patterns and the other 

half of the recordings were associated with different abnormal situations. Each of these 

recordings was tested using different configurations of J. 

 

The performance of AMP-ADLs was evaluated by calculating its classification accuracy for 

testing recordings of both normal and abnormal behaviour patterns. These accuracies were 

calculated using Equation 3.1 and 3.2 (see section 3.4). The performance of AMP-ADLs with 

different configurations of J is summarized in Table 4.8. The highest average accuracy in 

classifying abnormal behaviour patterns was estimated to be 75.8% when J=7. The highest 

average performance in terms of classifying normal behaviour patterns was calculated to be 

74.2% when J=3. This showed that the ability of AMP-ADLs to detect an abnormal behaviour 

improves when J increases while lower values of J resulted in more accuracy in classification 

of normal behaviours. This was because lower values of J resulted in fuzzy sets with wider 

MFs. Greater variation in normal behaviours were tolerated in the test recordings when such 



 

139 

 

fuzzy sets were used. The ability of the system to identify drifting attribute values as abnormal 

behaviour reduced as a result of this. The highest average correct classification rate (i.e. 72.1%) 

for both normal and abnormal behaviour patterns was obtained when J=3 (see Table 4.8).  

 

The results obtained for several testing scenarios of normal behaviour patterns using different 

values of J are presented in the next section. It is followed by another section elaborating the 

results of classifying different abnormal behaviours for each configuration of J. 

 

Table 4.8. Performance of the AMP-ADLs approach in classifying recordings of normal and abnormal 

behaviour patterns using different values of J. 

Number of 

MFs 

Accuracy for normal 

behaviours 

Accuracy for 

abnormal behaviours 

Overall 

accuracy 

J=3 74.2% 70.0% 72.1% 

J=5 67.5% 71.7% 69.6% 

J=7 61.8% 75.8% 68.3% 

 

4.3.5.1 Scenarios of normal behaviour patterns 

An examination of scenarios for different normal behaviour patterns was carried out for each 

of the monitored locations. 30 Kinect recordings were captured for these scenarios, examples 

of which are described in the following. The results obtained using the rule sets associated with 

different values of J are illustrated for each example. 

 

Sitting on the living room sofa in the evening: An example of a test scenario including one 

ADL for the living room was for watching TV in the evening. A colour image and its 

corresponding binary mask of the occupant is shown in Figure 4.19. The occupant sat on the 

sofa in the living room for 30 minutes in the evening while watching TV resulting in the 

recording to be consisted of nearly 18000 Kinect observations. The posture of the occupant had 

slight variations during the recording. 
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       (a) (b) 

Figure 4.19. An example of observations for sitting on the sofa in the living room in the evening. (a) 

The colour image and (b) the corresponding binary mask of the occupant obtained from the Kinect 

SDK. 

 

The physical ADL in this recording was a part of the occupant’s frequent behaviour patterns in 

the evening. Some fuzzy rules in the rule set associated with each configuration of J represented 

this behaviour. The triggered rule number in the rule set for different configurations of J during 

the first 400 observations of this recording is shown in Figure 4.20. Note that rules have been 

given arbitrary numbers in the respective rule set for each value of J. For example, rule number 

10 in the rule set for J=3 did not necessarily represent the same activity as rule number 10 in 

the rule set for J=5.  

 

For J=3 the behaviour pattern {AR=medium, θ=high, Cx=high, Cy=low, time=Epoch3} was 

obtained from the Kinect observations in this recording. This behaviour pattern was present in 

the antecedent of rule number 21 in the rule set obtained when J=3. The blue line in Figure 

4.20 indicates that monitoring this recording triggered this rule to fire, which resulted in this 

recording being considered as normal.  

 

The red line in Figure 4.20 indicates that the attribute values for most Kinect observations in 

this recording triggered rule number 32 in the respective rule set for J=5. However, the 

combination of fuzzy attributes obtained for some Kinect observations did not match with the 

antecedent of any rule in the rule set. This was due to slight variations in the segmented posture 

of the occupant during the ADL. Those Kinect observations were categorised as belonging to 

infrequent behaviours and the duration of the infrequent behaviour was monitored. The 

duration for each instance of infrequent behaviour was reset to zero each time rule number 32 

fired again during the sequence. The recording was labelled as normal because there was no 

instance of the duration of the infrequent behaviour exceeding the corresponding EAr. 



 

141 

 

 

Figure 4.20. Testing a recording of sitting on the sofa in the living room in the evening. The index of 

the triggered rule in the respective rule set (for different values of J) for each observation. 

  

It was observed that degrees of match between rules associated with J=5 and the observations 

in this recording was lower compared to those for J=3. The reason was that the supports of 

MFs becomes narrower when J=5. The rules in the corresponding rule set was then more 

specific and it was less likely that the attribute crisp values for a Kinect observation resulted in 

a high membership degree in the antecedent part of the triggered rule. 

 

The green line in Figure 4.20 showed that only few observations caused a rule to fire when 

J=7. The system classified all the Kinect observations as showing infrequent behaviour after 

frame number 100. This was because a slight change in the posture of the occupant caused a 

new combination of the fuzzy attributes not to be supported by any rule in the respective rule 

set. The duration of consecutive observations labelled as infrequent behaviour lasted for more 

than the respective EAr and resulted in the recording to be labelled as abnormal by this 

configuration.  

 

Washing dishes in the kitchen in the morning: This scenario was an example of a test 

recording which included the daily activity of washing dishes in the kitchen in the morning. 

This activity was performed slightly differently from what was undertaken in the training 

samples. The occupant intentionally stood in a slightly different location in front of the sink 

after frame number 96. An example of a colour image along with the occupant’s binary mask 

is shown in Figure 4.21. The occupant’s hands usually moved while interacting with objects 

during this activity. This caused variations in the depth map attributes, mostly in Cx and AR.  
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The results of monitoring observations in this recording are shown in Figure 4.22. It displays 

the number assigned to the triggered rule in the respective rule set for each value of J. All 

Kinect observations in this recording were related to the same activity.  

 

It was expected that the same rule would be triggered for these Kinect observations. However, 

the blue line in Figure 4.22 shows that monitoring observations in the recording triggered 

several rules when J=3 (mostly rules 14 and 19). This was because for these observations Cx 

varied in a range of 240 – 290. Values in the first half of this range had a higher degree of 

membership in ‘medium’ while the other half belongs to ‘high’ (see Figure 4.9 (c)). The same 

situation applied to values of AR during the Kinect observations as they varied between 0.75 

and 1.3. Different combinations of fuzzy attributes were therefore obtained during monitoring 

this sequence. These different combinations triggered different rules in the rule set. The 

occupant changed his location in front of the sink after frame number 96. This change did not 

change the combination of fuzzy attributes due to the wide support of MFs associated with J=3. 

 

   

(a)     (b) 

Figure 4.21. An example of observations related to washing dishes in the kitchen. (a) The colour 

image and (b) the corresponding binary mask of the occupant obtained from the Kinect SDK. 

 

The red line in Figure 4.22 indicates that fewer observations were supported by rules in the 

rule set obtained when J=5. The combination of fuzzy attributes changed after frame 96 and 

since no rule was triggered for the new combination, those observations were labelled as 

belonging to infrequent behaviours. The system continued to monitor the activity to record 

whether it lasted longer duration than the respective EAr before raising an alarm. The recording 

was labelled as abnormal because the next 400 observations did not trigger any rule.  
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Figure 4.22. Testing a recording of washing dishes based on rule sets associated with different values 

for J. The diagrams show the numbers assigned to the corresponding triggered rules in the rule set (for 

each value of J).  

 

The green line in Figure 4.22 shows that when J=7 most observations were categorised as 

showing infrequent behaviours. This was because slightly different attribute values extracted 

from this activity resulted in an infrequent combination of fuzzy attribute. Monitoring this 

recording caused the system to raise an alarm since at the end of monitoring periods no rule 

supported the slightly different behaviour of the occupant after frame 96. 

 

Multiple activities of sitting on the sofa and then sitting behind the computer desk in the 

evening: Another example of a testing recording for normal behaviour patterns in the living 

room included a 35-minute recording for a combination of living room activities the occupant 

performed in the evening. The occupant’s binary masks for the first 21 observations with the 

index for each observation is shown in Figure 4.23 (a). This figure illustrates that the recording 

starts with the occupant walking towards the sofa and sitting there for a few seconds (Kinect 

observations 4 to 14). He then changed his activity and sat behind the computer desk which 

lasted for the rest of the recording. An example of colour images for observations 11 and 21 is 

shown in Figure 4.23 (b) and (c), respectively. 

 

The output of the AMP-ADLs approach for the first 21 observations of this recording is shown 

in Figure 4.24. The diagrams this figure indicates the triggered rule from the rule set associated 

with different values of J.  
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No rule set supported the observations for the activity of walking towards the sofa or towards 

the computer desk as shown in Figure 4.24. The monitoring systems associated with the 

different values of J classified those observations as showing infrequent behaviours. The reason 

was that the ratio of observations in the training data for walking around in the living room to 

those of more frequent activities (e.g. sitting on the sofa and sitting behind the computer desk) 

was less than 1%. All observations belonging to walking were thus included in Dinfrequent 

behaviours.  

 

The blue line in Figure 4.24 indicates that at the beginning of sitting on the sofa both 

observations 4 and 6 resulted in the same combination of fuzzy attributes (i.e. {AR=medium, 

θ=high, Cx=high, Cy=low, time=Epoch3}). This resulted in rule number 21 to be triggered for 

those observations. The subject’s posture changed slightly once he started to write notes while 

sitting on the sofa as his head was down. This slight change in values associated with AR caused 

the combination of fuzzy attributes to change to {AR=low, θ=high, Cx=high, Cy=low, 

time=Epoch3}. Rule 18 corresponding to the new combination of fuzzy attributes was thus 

fired for observations 8 to 14. Note that this rule was developed in the training phase since the 

behaviour of writing notes while sitting on the sofa was observed frequently during the training 

period.  

 

The posture of the occupant for sitting behind the computer desk slightly changed during 

observations associated with this activity. Although the same rule was expected to fire for all 

those observations, different rules in the rule set were triggered because of slightly different 

postures.  

 

The red line in Figure 4.24 illustrates that the AMP-ADLs approach with J=5 recognised fewer 

observations associated with sitting on the sofa as showing frequent behaviours. The 

occupant’s activity in those observations triggered several rules in the system with almost 50% 

similarity to the behaviour patterns in the training dataset. 
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(a) 

            

(b)          (c) 

Figure 4.23. (a) Binary images of the occupant during the first 21 frames of a test recording involving 

multiple ADLs; walking in the room, sitting on the sofa and then sitting behind the computer desk. (b) 

A sample colour image for the activity of sitting on the sofa, and (c) an example of a colour image for 

sitting behind the computer desk. 

 

 

Figure 4.24. Testing a recording of multiple ADLs with the rule set based on different values of J. The 

number assigned to the corresponding triggered rule in the rule set (for each value of J) is shown for 

each observation. 
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Increasing J to a value of 7 caused the system to categorise almost half of the observations as 

representing infrequent behaviours (see the green line in Figure 4.24). For narrower fuzzy sets 

associated with J=7, it was less likely that the value of the attributes during this test sequence 

fall within the boundaries of the learned fuzzy sets for sitting behind the computer desk. 

 

 A new activity in the kitchen for eight minutes in the morning. The occupant carried out a 

new normal activity in this scenario which was cleaning inside the refrigerator for several 

minutes. An example colour image is shown in Figure 4.25. This activity was not present in 

the original training dataset. The posture was significantly different from the other refrigerator-

related postures in the training dataset. The combination of fuzzy attributes associated with this 

new behaviour pattern was therefore not within the bounds associated with the set of learned 

frequent behaviours for any value of J. This resulted in no rule for any configuration of J to be 

triggered during the process of monitoring this recording. The monitoring approach eventually 

triggered an alarm when the elapsed duration of this new activity exceeded EA𝑟. This scenario 

is an example where using a more comprehensive training dataset consisting of typical ADLs 

with more variability would enable the proposed approach to learn a more representative rule 

base for characterising the behaviour of the occupant.  

 

 

Figure 4.25. A colour image taken from a test sequence of a new behaviour of crouching down on the 

kitchen floor while cleaning inside the fridge. 

 

4.3.5.2 Scenarios of abnormal behaviour patterns 

Testing_Data 1 was comprised of 30 use-cases for each monitored location (see Section 3.5.3). 

These were used to evaluate the accuracy of the developed system in detecting various 

abnormal behaviours. The use-cases for each monitored location were categorised into three 
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groups with 10 use-cases associated with each group. Each group tested the ability of the 

system to detect abnormality in a key aspect of ADLs. These groups were:  

 

(1) The occupant’s postures: This category defined situations where the body posture 

observed at a specific location is abnormal. Such abnormality can occur because of a 

hazardous incident like a fall or a decline in the physical independence of the person 

(Gokalp & Clarke, 2013). Examples of use-cases in this group were lying on the floor in 

the dining room and sitting at unusual locations, such as the kitchen floor.  

 

(2) Time of ADLs: The behaviour time is very important for the elderly people’s behaviour 

analysis as it is related to individuals’ time orientation. Abnormalities in the time of 

activities can be regarded as an indicator of cognitive impairments (Xavier, Sigulem, & 

Ramos, 2010). For example, walking around at midnight may indicate insomnia or other 

diseases. Use-cases in this category demonstrated scenarios where the occupant performs 

normal activities in abnormal times of the day. 

(3) Duration: This category defined scenarios where the occupant performs one or a 

combination of ADLs for a longer duration than normal. It was defined to evaluate the 

ability of the system to detect extended activities which could indicate an emergency 

incident such as a fall. For example, a sitting posture can be an abnormal behaviour if it 

lasts for too long in the case of a faint or a heart attack. A longer duration in performing 

activities can also indicate a decline in mobility and general wellbeing of the elderly 

(Cardinaux, Brownsell, Hawley, & Bradley, 2008; Gokalp & Clarke, 2013).  

 

Examples of different categories of use-cases for abnormal behaviour patterns are described 

below. The results obtained from the rule sets associated with different values of J are 

illustrated for each scenario.  

 

Lying on the floor in the kitchen for a duration of 20 minutes. This scenario is an example of 

the first category of use-cases defined for testing the ability of the system to detect abnormality 

in the occupant’s posture during ADLs (i.e. an unusual posture of lying on the kitchen floor). 

The use-case defined for this scenario is shown in Figure 4.26. The situation described in this 

use-case may occur if an elderly person shows some dizziness as a symptom of a health issue 

or a sudden fall. 
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Use-case #1 defined for the kitchen:  

Goal: To test the ability of the system to detect an abnormal posture of the occupant in the 

kitchen  

Initial state: The occupant is washing dishes in the kitchen. 

Description: It is 9:30 AM when the occupant usually washes dishes from the day before in 

the kitchen. He suddenly feels faint and lightheaded and lies on the kitchen floor. This situation 

persists as he continues to lie on the floor for the next 20 minutes. 

Normal behaviour: The occupant normally does not lie on the floor in the kitchen. 

Expected outcome: The Kinect observations represent an abnormal behaviour in the kitchen. 

The system should continue to monitor if this situation persists for a specific duration and then 

raise an alarm to notify a caregiver.  

Figure 4.26. The description of a use-case defined for the abnormal behaviour pattern of lying on the 

kitchen floor for a duration of 20 minutes. 

 

An example colour image for this recording along with its detected binary mask of the occupant 

is shown in Figure 4.27. It shows that the occupant’s body was within the field of view of the 

kitchen Kinect sensor. 

 

            

(a)      (b) 

Figure 4.27. An image from the abnormal behaviour of lying on the kitchen floor. (a) The colour 

image and (b) the corresponding binary mask of the occupant. 

The combination of attributes obtained from the Kinect observations associated with this 

recording did not trigger any rules in the set of the learned frequent behaviours for any 

configuration of J. The system associated with each value of J considered this behaviour as 

belonging to the set of infrequent behaviours and the associated duration for this recording was 

monitored. The AMP-ADLs approach raised an alarm after the elapsed duration of this 

behaviour exceeded the learned value of EAr for the kitchen. 
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Lying on the floor in the immediate vicinity of the kitchen (partially occluded) for a duration 

of 20 minutes. This scenario was another example of the first category of use-cases where the 

occupant finishes an activity in the kitchen and then falls over on the floor on his way to the 

dining room (see Figure 4.28).  

 

An example colour image and the respective binary mask of the occupant for this use-case are 

displayed in Figure 4.29. The body of the occupant is partially occluded, as only part of the 

occupant’s body is evident to the kitchen Kinect sensor. 

 

The first 19 Kinect observations in this recording involved the activity of standing by the 

electrical cooktop in the kitchen (the initial state of the use-case). The rest of the observations 

are related to the abnormal behaviour of lying on the floor. Figure 4.30 shows the output of 

different configurations of J for this test recording. This figure indicates that all configurations 

of J resulted in the observations of standing by the electrical cooktop to be classified as 

belonging to a frequent behaviour pattern. The diagrams for J=7 and J=5 in Figure 4.30 indicate 

that none of the observations associated with lying on the floor caused rules to fire, which 

resulted in an alarm to be raised eventually by those configurations.  

 

Use-case #2 defined for the kitchen:  

Goal: To test the ability of the system to detect an abnormal posture of the occupant where it 

is partially occluded.  

Initial state: The occupant is standing by the electric cooktop in the kitchen. 

Description: It is 6:00 PM which is the time when the occupant usually cooks dinner and goes 

to the dining room to eat. While walking, he suddenly overbalances and falls on the floor right 

outside the kitchen. This situation can happen to elderly people as they may lose balance. 

Normal behaviour: The occupant normally does not lie at the mentioned location. 

Expected outcome: The posture of the occupant indicates an abnormal situation of lying on 

the floor outside the kitchen. The system should monitor if it persists for specific duration and 

then raise an alarm to notify a caregiver.  

Figure 4.28. A use-case defined for abnormal behaviour pattern of lying on the floor outside the 

kitchen for a duration of 20 minutes. 
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(a)     (b) 

Figure 4.29. An observation of the abnormal behaviour of lying on the floor outside the kitchen. (a) 

The colour image and (b) the corresponding binary mask of the occupant. 

 

This recording was classified as normal when the rule set from the configuration of J=3 was 

employed. The combination of fuzzy attributes for lying on the floor was present in the 

antecedent of a fuzzy rule in this rule set which caused the recording to be classified as 

representing a normal behaviour. This fuzzy rule (rule number 30) was developed during the 

training phase to represent the frequent behaviour of standing by the counter in the kitchen. 

The supports of the MFs in this rule were wide enough to encompass attribute values for the 

occluded posture of lying on the floor in this recording. This resulted in the triggering of this 

rule (rule number 30) during monitoring the lying posture. 

 

 

Figure 4.30. Using rule sets associated with different values of J to monitor a test recording of falling 

on the floor outside the kitchen area. The diagrams show the index of the triggered rule for each 

observation. 
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Sitting on the floor at an unusual location in the living room: This scenario is another 

example of situations representing abnormality in the occupant’s posture during monitoring 

ADLs. The use-case defined for this scenario is shown in Figure 4.31. 

 

Use-case #3 defined for the living room:  

Goal: To test the ability of the system to detect an abnormal posture of the occupant during 

ADLs.  

Initial state: The occupant is walking in the living room. 

Description: It is 09:30 AM when the occupant usually goes to the kitchen to wash the dishes. 

Because of his deteriorating health he cannot walk and decides to sit on the floor next to the 

computer desk. He cannot change his posture as his problem persists and eventually faints. 

Normal behaviour: The occupant normally does not sit on the floor at the specified spot. 

Expected outcome: As the posture of the occupant indicates an abnormal situation, the system 

should raise an alarm to notify a caregiver.  

Figure 4.31. A use-case defined to represent the abnormal behaviour pattern of sitting at an unusual 

place on the living room floor. 

 

An example colour image and its binary silhouette of the occupant for this recording is shown 

in Figure 4.32. The indexes of the triggered rules in the rule set for different values of J are 

shown Figure 4.33. This figure shows that when J=3, rule number 22 (i.e. one of the rules 

associated with the activity of sitting behind the computer desk) was triggered. This was 

because the depth map attributes during this abnormal behaviour were represented by a 

combination of fuzzy sets which also represented the normal behaviour of sitting behined the 

computer desk. For example, the values of Cx during this behaviour were mostly around pixel 

location 66 (see Figure 4.32) which fall within the boundary of “low” in Figure 4.9 (c). This 

fuzzy set also represented values of Cx for the behaviour of sitting behind the computer desk. 

This behaviour pattern was therefore misclassified as being normal and no alarm was raised by 

the system. By increasing J, this value of Cx fell within the domain of a different fuzzy set, 

making this abnormal behaviour distinguishable from sitting behind the computer desk. For 

other values of J therefore this recording was correctly classified since no rule was triggered 

during monitoring the observations. 
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Figure 4.32. An example colour image of recordings for an abnormal activity of sitting at an unusual 

location on the floor with value of Cx shown in the image. 

 

 

Figure 4.33. Using rule sets associated with different values of J to monitor a test recording of sitting 

on the floor at an unusual location in the living room. The diagrams show the index of the 

corresponding triggered rule for each observation. 

 

Performing a normal activity at an abnormal time of the day. This testing scenario was 

associated with the second category of use-cases. It depicts an abnormal situation in which the 

occupant is sitting for 30 minutes on the sofa in the living room at 1 AM in the morning. The 

use-case associated with this scenario is shown in Figure 4.34. 

The behaviour in this sequence was classified correctly by all the configurations of J as being 

abnormal. This is because no epoch of activity was learned for 1 AM in the living room (see 

Figure 4.13). Although the combination of depth map attributes corresponded to a frequent 

learned behaviour pattern of sitting on the sofa, no rule from the learned rule set (associated to 

any configuration of J) fired. The behaviour in this sequence fell into the set of infrequent 

behaviours and the system continued to monitor its duration. Once the elapsed duration for this 

behaviour was detected to be more than the respective 𝐸𝐴𝑟, the system raised an alarm. 
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Use-case #4 defined for the living room: 

Goal: To test the ability of the system in detecting a normal ADL carried out at an abnormal 

time of the day.  

Initial state: The occupant is in the bedroom at 10:30 PM and goes to bed. 

Description: It is 01:00 AM, and the occupant cannot sleep. He goes to the living room and 

sits on the sofa. 

Normal behaviour: The occupant normally does not carry out any ADLs late at night in the 

living room. 

Expected outcome: As the time of the activity does not fit the normal profile of the occupant, 

the system should raise an alarm to notify a caregiver about a possible problem in the normal 

daily routine of the occupant. 

Figure 4.34. A use-case defined for the abnormal behaviour pattern of performing an ADL in an 

unusual time of the day. 

 

Sleeping on the sofa for an unusual duration in the afternoon. This was an example of test 

scenarios defined for the third category of use-cases evaluating the ability of the system to 

detect unusual duration of ADLs. The use-case associated with this scenario is shown in Figure 

4.35. 

 

Use-case #5 defined for the living room  

Goal: To detect ADLs with unusual durations. 

Initial state: The occupant is in the living room. 

Description: It is 2 PM and the occupant is watching TV while sitting on the sofa. Then he 

turns off the TV and lies down on the sofa to take a nap. However, because of his deteriorated 

health, his nap takes 2 hours more than usual. 

Normal behaviour: The occupant occasionally has a 1-2-hour nap on the sofa in the afternoon. 

Expected outcome: As the posture of the occupant indicates a sleeping activity and has lasted 

considerably longer than usual duration, an alarm should be raised to notify a caregiver.  

Figure 4.35. A use-case defined for abnormal behaviour pattern of sleeping on the sofa in the living 

room for a long duration. 

 

An example colour image along with the occupant’s binary mask from this recording is shown 

in Figure 4.36. The monitoring systems developed for different configurations of J could not 
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classify this recording correctly. In the training dataset, different sleeping positions of the 

occupant during sleeping on the sofa were learned through different combinations of fuzzy 

attributes. As a result, multiple rules were developed to represent those slightly different 

postures for this activity. Since the occupant changed his sleeping position a few times in the 

test recording, different fuzzy rules were triggered. The monitored duration for the behaviour 

of sleeping on the sofa reinitialised to one each time a new rule fired and the system kept 

monitoring the duration of the new matched behaviour pattern. The transitions between rules 

happened for multiple times by the end of the recording causing the monitored duration of this 

extended sleeping behaviour not exceeding EAr for the living room. 

 

    

 (a) (b) 

Figure 4.36. (a) A colour image from in the recording of sleeping on the sofa in the living room and 

(b) the binary mask of the person. 

4.4 Discussion 

A technique based on the FCM clustering algorithm was employed in this chapter to define a 

specific number (i.e. J) of fuzzy sets over each depth map attribute based on the combined 

dataset of all monitored locations. The performance of the AMP-ADLs approach with different 

values of J was evaluated and the best overall performance was obtained when J=3 as it could 

correctly classify a greater number testing scenarios of normal and abnormal behaviours. The 

findings from this chapter revealed that the proposed method for generating fuzzy sets for the 

depth map attributes had three key drawbacks:  

 

(1) A fuzzy rule does not necessarily represent variation of attributes during an activity. 

Variations in frequent activities in a particular room typically cause the depth map 

attributes of that location to have a number of component distributions each associated 
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with a mode in the distribution. For each dataset of the attributes collected from a 

particular room, each combination of component distributions represents a frequent 

activity in that room. Various distributions of the attributes were captured from different 

rooms. This was the result of different ADLs being recorded for a particular room. For 

example, the attribute 𝐶𝑥 associated with the living room dataset had two modes 

associated with two separate component distributions (see Figure 4.37). The reason was 

that the living room was occupied mainly for sitting at a computer desk (the left 

distribution) and using the sofa for watching TV (the distribution to the right). Values 

of 𝐶𝑥 were therefore concentrated around two separate regions in the attribute space. 

The values of 𝐶𝑥 from the kitchen dataset were concentrated around three locations 

(see Figure 4.39) as the occupant spent most of his time in the kitchen in front of the 

sink, the electric cooktop, and the countertop.  

 

The mixture distribution of attributes from the combined dataset of different locations did not 

have the same component distributions compared to when an individual location was 

considered. When the datasets from all locations were combined, component distributions of 

particular activities could joint together to result in a wider component distribution. A 

component distribution for an activity could also split and become a part of two or more other 

major component distributions in the combined dataset. This is illustrated in Figure 4.40 where 

the mixture distribution of 𝐶𝑥 obtained by combining datasets from all monitored rooms did 

not represent the frequent activities mentioned for the living room and kitchen. 

 

The technique presented in this chapter generated a fixed number of MFs for each depth map 

attribute based on the combined dataset of all rooms. The resulting MFs for each attribute did 

not necessarily represent the component distributions (frequent activities) associated with the 

dataset of each location. For example, the left side of the distribution to the left in Figure 4.37 

is represented via the fuzzy set ‘low’ in Figure 4.9 (c) whereas the values on the right side 

(more than 165) in that data distribution have a higher degree of membership in the fuzzy set 

‘medium’.  

 

Slight variations in attribute training values during activities such as “sitting behind the 

computer desk” may result in various combinations of fuzzy sets and hence the creation of 

multiple rules for slightly different physical ADLs. This affects the performance of the system 
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in the monitoring phase. For example, some combinations of fuzzy sets for a normal activity 

might not be frequent enough to form a fuzzy rule and the system become unable to label those 

combinations as normal behaviour.  

 

As the MFs generated by the technique in this chapter did not accurately represent ADLs, slight 

variations in the attribute values could easily change the triggered rule and cause the system to 

reinitialise the duration of the current behaviour to one. This makes the system unable to 

monitor the duration of those activities accurately. One example of this situation was described 

for monitoring the activity described in use-case #5 in the previous section. 

 

 

Figure 4.37. The bimodal distribution of 𝐶𝑥 associated with the living room dataset. 

 

 

(a)     (b) 

Figure 4.38. (a) Sitting at a computer desk, and (b) watching TV while sitting on a sofa in the living 

room. The body of the occupant is masked by its binary silhouette obtained from the Kinect SDK and 

the numbers in the vertical and horizontal axes indicate pixel location. 
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Figure 4.39. The mixture distribution of 𝐶𝑥 associated with the kitchen dataset. 

 

 

Figure 4.40. The mixture distribution of 𝐶𝑥 associated with all monitored areas. 

 

(2) The need to define the number of MFs. The technique for parameterising the depth 

map attributes requires the number of MFs to be stipulated by the user. The system can 

tolerate more variations in normal behaviour patterns when this number is set to a low 

value but this results in a decline in the ability to detect abnormal situations. Increasing 

this number on the other hand results in an increase in the accuracy of classifying more 

abnormal behaviours. This parameter has a high impact on the performance of the 

monitoring approach and there is a need for a data-driven technique which could 

calculate this parameter according to the data distribution of attributes. 

 

(3) Outliers and noisy measurements in data are incorporated in generating MFs. 

Outliers mostly result from errors in the Kinect human detection algorithm or very rare 

activities performed by the subject during the training phase. An example of a noisy 

measurement where the refrigerator door has been included in the binary silhouette of 

the occupant is shown in Figure 4.41. This caused AR to have an unusual value during 

the training phase.  
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Figure 4.41. An example of noisy Kinect observation in the training dataset. 

 

Such outliers and noisy measurements are included in the range of generated MFs because the 

technique adopted in this chapter did not provide a mechanism to filter these from the main 

data distributions. During monitoring of some abnormal situations it was observed that outliers 

in the attributes could still trigger a fuzzy rule representing a regular behaviour pattern. This 

resulted in the system being unable to raise an alarm for those situations. One example of this 

was observed when applying the AMP-ADLs approach with J=3 to monitor the behaviour 

described in use-case #3 in the previous section. 

4.5 Summary 

This chapter presented an unsupervised fuzzy-logic-based approach for monitoring physical 

activities tailored to behaviours of each elderly individual using observations obtained from 

Kinect sensors. An unlabelled training dataset of normal behaviour patterns was collected to 

model specific dimensions of activities relevant to the wellbeing of the elderly (i.e. the body 

posture, location, time, and duration of ADLs). This was achieved by extracting a number of 

depth map attributes that described the occupant’s location and posture and representing them 

via a specific number of fuzzy sets, the parameters of which were learned from the training 

data. The approach learned epochs of activities in each monitored location and then generated 

rules modelling frequent behaviour patterns associated with each epoch using a fuzzy 

association rule-mining algorithm. Unusual behaviours were detected in subsequent data by 

looking for patterns which differed from the learned normal behaviours.  

 

Evaluation of the approach using testing sequences of various normal and abnormal behaviours 

showed the impact of the number of fuzzy sets generated for the depth map attributes on the 
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ability of the system to pick up various abnormal events and correctly classify normal 

behaviours. It was observed that while this number should be provided empirically, it has a 

major impact on the sensitivity and specificity of the approach. The evaluations also 

highlighted the need to elicit location-specific MFs for the depth map attributes to better 

tolerate slight attribute variations during activities and to address the outliers in the dataset.  

 

The next chapter presents a robust MF generating technique which can automatically determine 

location-specific MFs for the depth map attributes. This technique is an improvement on the 

one presented in this chapter in terms of determining the number and parameters of MFs from 

the dataset of a depth map attribute while excluding outliers in data. It effectively addresses 

problems mentioned with regard to the proposed MF generating technique in this chapter.  
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CHAPTER 5:  
AUTOMATIC GENERATION OF LOCATION-SPECIFIC 

MEMBERSHIP FUNCTIONS FOR THE DEPTH MAP 

ATTRIBUTES 

Findings from Chapter 4 highlighted the need to elicit location-specific MFs for the depth map 

attributes in order to better tolerate slight attribute variations during physical activities. That 

chapter also proposed the need to address the outliers when defining MFs for a dataset. This 

chapter presents a robust MF generation technique which automatically determines location-

specific MFs for those attributes. This technique replaces the one introduced in Section 4.2.1.2 

as a part of the AMP-ADLs approach. 

 

The chapter first provides a review of the limitations of the MF generating technique used in 

Chapter 4 to define MFs over the depth map attributes. This is followed by an explanation of 

how location-specific MFs for the depth map attributes can be used in fuzzy rules of AMP-

ADLs to improve the monitoring of the occupant’s physical ADLs (Section 5.2). It then 

presents the stages of the new MF generation technique to generate different forms of robust 

location-specific MFs in Section 5.3. The experimental results of evaluation of this technique 

are presented in Section 5.4 followed by a discussion and summary in Section 5.5 and 5.6 

respectively. 

5.1 Introduction 

The AMP-ADLs approach for monitoring a home occupant’s physical activities was presented 

in Chapter 4. The FCM clustering algorithm was employed in that approach to define a fixed 

number of fuzzy sets for each depth map attribute. For each attribute, these fuzzy sets were 

obtained based on processing the combined training dataset of all monitored locations. 

Evaluations revealed that this technique has a number of drawbacks including the inability of 

the generated fuzzy rules to tolerate variation of the attributes during some frequent activities 

and to address the impact of outliers and noisy measurements in data. It was also noted that 

variable number of MFs could better represent different physical ADLs carried out in different 

rooms. For example, two MFs could better represent the mixture distribution of attribute 𝐶𝑥 in 

the living room dataset (see Figure 4.37) while three MFs could better represent the mixture 

distribution of 𝐶𝑥 for the kitchen dataset (see Figure 4.39). When each MF covers a particular 

component in the mixture distribution of an attribute from a monitored location, variations 
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during ADLs in that location can be better tolerated by the fuzzy attributes.  

 

This chapter presents a novel unsupervised technique (i.e. VBMS-RS) to generate location-

specific MFs over depth map attributes. The rationale for developing this technique is to 

improve the accuracy of the AMP-ADLs approach. VBMS-RS is used in this approach instead 

of the FCM algorithm (presented in Section 4.2.1.2) in order to generate different number of 

MFs over a depth map attribute for each location. VBMS-RS is based on VBMS and RS.  

 

The dataset of an attribute captured from each monitored location is processed separately in 

order to identify component distributions that represent frequent ADLs associated with that 

location. The analysis of the data distribution for each dataset is unsupervised as VBMS-RS 

first determines the number of modes in the PDF of data and then uses this value as the number 

of MFs. The associated parameters of MFs to represent the dataset are learned automatically 

from the data distribution and the generated MFs exclude noise and outliers in the data. The 

next section explains how location-specific MFs for the depth map attributes are used in fuzzy 

rules of the AMP-ADLs approach.  

5.2 Applying location-specific MFs in the fuzzy rules of AMP-ADLs 

The representation of fuzzy rules in AMP-ADLs is modified so that the fuzzy rules employ 

location-specific MFs to characterise the depth map attributes. From the previous chapter it is 

observed that the AMP-ADLs approach involves three stages. Fuzzy sets are defined for the 

depth map attributes in the second step of Stage 1. VBMS-RS is used in that step to generate 

location-specific fuzzy sets over the depth map attributes. Variable number of fuzzy sets are 

obtained for a depth map attribute to model ADLs associated with different locations. This 

results in the generation of a different fuzzy set for each monitored location to be tailored to 

frequent ADLs performed in that location. Location-specific fuzzy sets are therefore used in 

the antecedent of fuzzy rules obtained from Stage 2 of AMP-ADLs.  

 

Let 𝑑𝑟(𝑎𝑘) be the training dataset of attribute 𝑎𝑘 (𝑘 = 1,⋯ ,4) captured from location r (r=1, 

…, R). Also let 𝑙𝑎𝑘 and ℎ𝑎𝑘  denote the minimum and maximum values of 𝑎𝑘 across observations 

associated with all training datasets of 𝑎𝑘. Different number of fuzzy sets are defined over the 

domain of 𝑎𝑘 for different monitored locations. Assume that 𝐹𝑎𝑘,r = {𝑓𝑎𝑘,r
1 , … , 𝑓𝑎𝑘,r

𝐽𝑘,r} is the set 
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of fuzzy sets obtained for attribute 𝑎𝑘 for location r. Each fuzzy set 𝑓𝑎𝑘,r
𝑗

 in 𝐹𝑎𝑘,r represents the 

j-th fuzzy set in 𝐹𝑎𝑘,r and has an associated linguistic term as well as a membership function 

𝜇
𝑓𝑎𝑘,r
𝑗 (𝑥) such that  

𝜇
𝑓𝑎𝑘,r
𝑗 (𝑥) ∶ [ 𝑙𝑎𝑘 , ℎ𝑎𝑘  ] → [0 , 1]. 

These location-specific fuzzy sets replace the fuzzy sets introduced in Section 4.2.1.2 for 

characterising the depth map attributes. The fuzzy rules obtained from Stage 2 of AMP-ADLs 

can then be divided into R subsections with each having different fuzzy sets in their antecedents 

to characterise the depth map attributes. An example of such fuzzy rules is shown in Table 5.1. 

k is equal to 1 in the case of AR. Table 5.1 shows that this attribute has three fuzzy sets 𝑓𝑎1,1,
1 𝑓𝑎1,1

2 , 

and 𝑓𝑎1,1
3  for location r=1, and two fuzzy sets, denoted as 𝑓𝑎1,2 

1 and 𝑓𝑎1,2
2 , for location r=2. 

 

Table 5.1 An example of a fuzzy rule set with location-specific MFs. 

  Antecedent Consequent 

 Index r Time AR O 𝑪𝒙 𝑪𝒚 Duration 

 rule1 1 Td1
1  𝑓𝑎1,1

1  𝑓𝑎2,1
3  𝑓𝑎3,1

1  𝑓𝑎4,1
2  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛1

𝑒𝑑1
1

 

 rule2 1 Td1
2  𝑓𝑎1,1

3  𝑓𝑎2,1
2  𝑓𝑎3,1

1  𝑓𝑎4,1
2  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛1

𝑒𝑑1
2

 

 rule3 1 Td1
2  𝑓𝑎1,1

2  𝑓𝑎2,1
1  𝑓𝑎3,1

2  𝑓𝑎4,1
2  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛2

𝑒𝑑1
2

 

 rule4 2 Td2
1  𝑓𝑎1,2

2  𝑓𝑎2,2
1  𝑓𝑎3,2

1  𝑓𝑎4,2
1  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛1

ed2
1

 

 rule5 2 Td3
1  𝑓𝑎1,2

1  𝑓𝑎2,2
1  𝑓𝑎3,2

1  𝑓𝑎4,2
1  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛2

ed3
1

 

 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

 rule n-1 R Td2
1  𝑓𝑎1,𝑅

2  𝑓𝑎2,𝑅
1  𝑓𝑎3,𝑅

2  𝑓𝑎4,𝑅
1  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛1

ed2
1

 

 rule n R Td3
1  𝑓𝑎1,𝑅

1  𝑓𝑎2,𝑅
2  𝑓𝑎3,𝑅

3  𝑓𝑎4,𝑅
1  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛2

ed3
1

 

 

 

The notation of each fuzzy rule i when using location-specific fuzzy sets changes to the 

following:  

 

r=1 

r=2 

r=R 
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IF Location is r AND Time is 𝑒𝑝𝑜𝑐ℎ𝑟
𝑖  AND AR is 𝐴𝑟

1
 AND θ is 𝐴𝑟

2 AND Cx is 𝐴𝑟
3

 AND 

Cy is 𝐴𝑟
4 THEN Duration is 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑞

𝑒𝑝𝑜𝑐ℎ𝑟
𝑖

. 

 

Here 𝐴𝑟
1, 𝐴𝑟

2, 𝐴𝑟
3, and 𝐴𝑟

4 are fuzzy sets of the depth map attributes associated with location r, 

the combination of which defines a frequent behaviour pattern in that location. 

 

The next section describes how VBMS-RS automatically generates robust location-specific 

MFs for the depth maps attributes. MFs generated by this technique are robust with respect to 

noisy and outlier sensor data as they only cover main components in the distribution of data.  

5.3 The procedure of VBMS-RS  

The procedure undertaken for VBMS-RS is described in this section. The input to VBMS-RS 

is a training dataset of a depth map attribute, captured by a Kinect sensor from a monitored 

location, and the output is a number of MFs, defined automatically to characterise the 

attribute’s values. Let the attribute in the given dataset take a series of crisp numerical values 

𝑥𝑛 (𝑛 = 1,… ,𝑁) and assume that these data points belong to an unknown data distribution. 

The two-step procedure of VBMS-RS to generate MFs over the attribute is as below: 

 

Step 1. Use VBMS to locate modes (local maxima) in the distribution of the attribute and to 

cluster data points associated with each mode. VBMS is a nonparametric clustering 

technique which does not require the number of clusters to be defined. It takes data 

with an unknown density function and estimates the density of data by taking the 

average of locally-scaled kernels centred at each of the data points. Each data point is 

mapped into its corresponding mode to constitute clusters of data. The procedure of 

VBMS is described in Section 3.6.5.2 

 

Step 2. Use the SAB technique to obtain the normal range of data points for each cluster 

(where there are no outliers) and accordingly define a MF to represent the cluster.  

 

The output of Step 1 is: 1) the location of modes in the attribute distribution and 2) the cluster 

of data points associated with each mode. Each data cluster represents a component distribution 

in the attribute mixture of distributions. When an attribute has a multimodal distribution, the 

width of the component distribution associated with each mode might be different. Using a 
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kernel function with one fixed global bandwidth is not considered to be optimal for estimating 

the location of modes in such distribution and a choice of local bandwidth for each data point 

can lead to better results (Comaniciu et al., 2001). This is mainly because the density estimator 

can be adapted to the density of each target data point and can take a larger bandwidth where 

data points are sparse (Brockmann, Gasser, & Herrmann, 1993). VBMS determines a local 

bandwidth for the kernel function applied on each data point in a way that kernels 

corresponding to points in tails of the data distributions receive a wider bandwidth than kernels 

applied on the data points lying in the large density region of distributions. As a result, the 

estimated density function for tails of the distributions is further smoothed.  

 

MFs are defined in Step 2 to represent data clusters obtained from Step 1. The number of MFs 

is equal to the number of modes detected in the attribute data distribution. For each data cluster 

obtained from Step 1, the location of the cluster centre and its normal range are used to 

determine the parameters of the respective MF. The SAB technique is employed to determine 

the normal range of a data cluster.  

 

The SAB technique is a graphical tool (with a robust measure of skewness) used in RS for the 

purpose of outlier detection. Given data points with a continuous unimodal distribution, SAB 

first calculates a robust measure of the skewness of the underlying data distribution. It then 

outputs a normal range for the data points which excludes possible outliers from the regular 

data. Details associated with this technique can be found in Section 3.6.4. 

 

VBMS-RS can be employed to determine the parameters associated with different forms of 

MFs to characterise the depth map attributes. The following sections demonstrate how Step 2 

of this technique determines the parameters of two different types of MF, namely the triangular 

and trapezoidal MFs. These two types of MFs are selected because of their simplicity of 

calculation and ability to represent skewed distributions.  

 

5.3.1 Generating triangular membership functions 

The parameters of a triangular MF are defined by a triad (A, B, C) with A, B, and C respectively 

representing the location of the left foot, the centre, and the right foot (see Section 3.6.1). The 

mode and the normal range of a detected data cluster are used in Step 2 of VBMS-RS to define 

a triangular MF. This is illustrated through an example in Figure 5.1. Figure 5.1 (a) shows the 
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histogram associated with an identified cluster from Step 1. A PDF is estimated through 

normalising this histogram by scaling its maximum height to one. The respective triangular 

MF obtained from Step 2 to represent the cluster is shown in Figure 5.1 (b). 

 

 

(a)              (b) 

Figure 5.1. (a) An example of a histogram of a data cluster obtained from Step 1. The vertical axis 

shows the number of data points in each bin. (b) The triangular MF defined to represent the cluster. 

 

𝑚 in Figure 5.1 (a) denotes the location of the mode in the data cluster and [𝑙, ℎ] represents the 

normal range of the cluster. The following operations are performed in Step 2 of VBMS-RS to 

define the triangular MF shown in Figure 5.1 (b). 

 

1. Calculate the probability density of the lowest value (𝑙) and the highest value (ℎ), denoted 

by 𝑃(𝑙) and 𝑃(ℎ), respectively (see Figure 5.1 (b)). 

2. Extrapolate A from the two points (𝑚, 1) and (𝑙, 𝑃(𝑙)). 

3. Extrapolate C from the two points (ℎ, 𝑃(ℎ)) and (𝑚, 1).  

4. Set B as m and define the triangular MF using Equation 5.1. 

 

𝜇𝑖(𝑥) =

{
 
 

 
 
0                  𝑖𝑓 𝑥 ≤ A
𝑥 − A

B − 𝐶𝑖
    𝑖𝑓 𝐴 < 𝑥 ≤ B

C − 𝑥

C − B
    𝑖𝑓 B < 𝑥 ≤ C

0                  𝑖𝑓 C ≤ 𝑥

 

(5.1)  

                           

Note that the location of mode has the highest probability in the PDF of a cluster. This location 
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is adopted as B (the centre of the respective triangular MF) to represent the full membership of 

the mode in the cluster. In the extrapolating calculations performed in operations 2 and 3, point 

(𝑚, 1) represents the coordinates of the mode in the PDF. 

 

 

 

 

                                (a)      (b) 

 

 

 

 

                                 (c)  (d) 

 

 

 

 

                                 (e)   (f) 

Figure 5.2 (a) and (b) are examples of attributes with a unimodal and bimodal distributions, 

respectively. (c) and (d) show the normal range and the location of the mode detected for these 

distributions, respectively. (e) and (f) display the obtained triangular MFs. 

 

Examples of histograms for attributes with unimodal and bimodal distributions are shown in 

Figure 5.2 (a) and (b), respectively. Each component distribution associated with a detected 

mode is shown with a different colour. VBMS associated all the data points with the only mode 

detected in the PDF of the unimodal distribution in Figure 5.2 (a). VBMS has detected two 
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separate distributions as shown in blue and red colours for the bimodal distributions in Figure 

5.2 (b). The normal range and the location of the mode detected for each of the component 

distributions in Figure 5.2 (a) and (b) are shown in Figure 5.2 (c) and (d), respectively. 

 

The detected normal range of each distribution is shown by the two vertical black lines in 

Figure 5.2 (c) and (d). The range between these two lines forms the normal range of the cluster. 

Figure 5.2 (c) shows the distance between the lower limit and the mode of the distribution is 

larger than that between the mode and the upper limit, hence the skewness of the underlying 

distribution. The data points shown as red dots outside of the detected normal ranges in Figure 

5.2 (c) and (d) are marked as outliers in VBMS-RS and are eliminated. The triangular MFs 

representing the component distributions in Figure 5.2 (a) and (b) are shown in Figure 5.2 (e) 

and (f), respectively. 

 

5.3.2 Generating trapezoidal membership functions 

The trapezoidal MF is defined by four parameters A, B, C, D (with 𝐴 <  𝐵 ≤  𝐶 <  𝐷) in 

Section 3.6.1. In Step 2 of VBMS-RS these parameters are determined through obtaining the 

normal range and the first and third quartiles of the data cluster. Figure 5.3 (a) shows the 

histogram for an example data cluster obtained from Step 1. Q1 and Q3 in this example denote 

the location of the first and third quartiles, respectively. The normal range of the cluster is 

shown as [𝑙, ℎ]. The following operations are performed in Step 2 of VBMS-RS to define the 

trapezoidal MF shown in Figure 5.3 (b). 

 

1. Calculate the probability density of the lowest value (𝑙) and the highest value (ℎ) of the 

cluster, denoted by 𝑃(𝑙) and 𝑃(ℎ), respectively (see Figure 5.3 (b)). 

2. Extrapolate A from the two points (𝑄1, 1) and (𝑙, 𝑃(𝑙)).  

3. Set B and C as the locations of Q1 and Q3, respectively. 

4. Extrapolate D from the two points (ℎ, 𝑃(ℎ)) and (𝑄3, 1).  

5. Define the trapezoidal MF using Equation (5.2). 
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(a)             (b) 

Figure 5.3. (a) An example of a histogram of a data cluster obtained from Step 1. The vertical axis 

shows the number of data points in each bin. (b) The corresponding trapezoidal MF defined for the 

cluster. 

 

𝜇𝑖(𝑥) =

{
 
 

 
 0                  𝑖𝑓 𝑥≤A𝑥−A
B−𝐶

    𝑖𝑓 𝐴<𝑥<B

1             𝑖𝑓  𝐵≤x≤C
C−𝑥
C−B

    𝑖𝑓 C<𝑥≤D

0                  𝑖𝑓 C≤𝑥

 

 (5.2) 

Data between Q1 and Q3 are assigned full membership as they represent the middle 50% of 

cluster values. Points (𝑄1, 1) and (𝑄3, 1) represent the coordinates of the shoulders in the 

extrapolation performed in operations 2 and 4. 

 

5.3.3 Impact of the shape of a cluster on the support of its MF 

The supports of the generated triangular MFs can be greater than those of the trapezoidal MFs. 

This is dependent on the shape of the data cluster. Figure 5.4 (a) shows an example data 

distribution with different colours indicating the range of clusters identified from Step 1 of 

VBMS-RS. The characteristics of the triangular and trapezoidal MFs generated for the cluster 

shown in red is presented in Figure 5.4 (b). The tail ends of this cluster have been truncated as 

the cluster is located in the middle of the data distribution. When the extrapolations are 

performed to obtain parameters of the triangular and trapezoidal MFs, it is evident that the 

support of the triangular MF is greater than that of the trapezoidal MF. This means that 

generated triangular MFs generally can tolerate more perturbation of normal data without 

labelling them as abnormal.  
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 (a) (b) 

Figure 5.4. (a) An example data distribution - different colours indicate the range of clusters obtained 

in Step 1. (b) The characteristics of the triangular and trapezoidal MFs generated for the cluster shown 

in red. 

5.4 Experimental results 

The captured dataset from the testbed (Section 3.5.3) was used to evaluate the performance of 

VBMS-RS. The evaluation consisted of three stages. In the first stage, the performance of 

VBMS-RS in parameterising the depth map attributes was compared with other MFs 

generation techniques. In the second stage, the impact of employing VBMS-RS in the AMP-

ADLs approach was evaluated. The performance of the fuzzy rule set obtained based on 

VBMS-RS was compared with that of the rule sets obtained based on using other MFs 

generation techniques. Both triangular and trapezoidal MFs were generated in these two stages 

in order to evaluate the impact of the shape of MFs on the performance of AMP-ADLs. In the 

last stage, the performance of monitoring physical ADLs using VBMS-RS was compared 

against other state-of-the-art unsupervised fuzzy monitoring approaches. 

 

5.4.1 Comparison of techniques for parameterizing the attributes  

The training dataset of each attribute captured from different locations were found to have 

different data distributions. These datasets were used to compare the parameterisation results 

between VBMS–RS and other techniques. These techniques involved: 

  

1. Using mean shift (MS) instead of VBMS in Step 1 of the proposed approach followed 

by the procedure of robust statistics in Step 2. This technique is denoted as MS–RS.  

 

2. Using the FCM clustering algorithm to generate a fixed number of membership 

functions without the use of robust statistics. This was the same technique used in 

Chapter 4 to generate MFs over depth map attributes (see Section 4.2.1.2). In the 
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experiments in this chapter, however, this technique processed the dataset of each 

location separately and generated location-specific MFs. The number of clusters to be 

created for a dataset of an attribute associated with a location was set according to the 

number of modes in the data distribution.  

 

The rest of this section describes the results of comparisons conducted based on the clusters 

and MFs produced by each of the techniques. 

 

Attribute with separate component distributions 

An example of an attribute with separate component distributions was 𝐶𝑥 captured from the 

living room area. The data distribution of this dataset is shown via the histograms on the left-

hand side of Figure 5.5 (i.e. (a), (d), and (g)). Figure 5.6 (a) illustrates the results of using 

VBMS–RS for parameterising this dataset. Each component distribution that has been 

associated with a detected mode is shown with a different colour. 

 

VBMS–RS could correctly divide this attribute into two main component distributions. The 

component distribution to the right in Figure 5.5 (a) is in the shape of reverse-J (skewed to the 

left). The corresponding triangular and trapezoidal MFs defined by VBMS–RS represented 

only the range of the normal data points associated with this component distribution (see Figure 

5.5 (b) and (c)). Note that since the normal ranges obtained for both clusters in Figure 5.5 (a) 

are small, the shoulders of the trapezoidal MFs in Figure 5.5 (c) are small. Therefore, both the 

trapezoidal and triangular MFs have similar shapes and cover nearly the same area in the 

attribute space. 

 

VBMS was replaced with MS in Step 1 of the proposed MF generation technique and the 

experiment was repeated. Results demonstrated that both methods work equally well where the 

component distributions in the attribute space are separated. MS–RS requires an empirical 

input (i.e. the bandwidth parameter) whereas the initial bandwidth for VBMS-RS is 

automatically derived from the data (see Section 3.6.5.2). 

 

In the comparison of VBMS-RS with the FCM technique, the number of membership functions 

was empirically set to 2 (as this was obvious from a visual examination of the data). This 

technique correctly identified the two component distributions in the attribute space as 

demonstrated in Figure 5.5 (g). The triangular and trapezoidal MFs in Figure 5.5 (h) and (i) 
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were generated, respectively to represent the two detected component distributions. Since this 

technique does not use robust statistics, the resulting parameterisation of the attribute was not 

the same as that of VBMS-RS. The MFs generated by this technique had a wider support and 

thus represented a wider area outside the normal range of the two component distributions. 

This resulted in the MFs generated by this technique to encompass many rare observations 

(outliers) around the main component distributions. For example, the triangular MFs generated 

by FCM gave membership degrees 0.17 and 0.83 to the outlier point 𝐶𝑥 =400. This was in 

contrast to the triangular MFs generated by VBMS-RS which gave zero membership to this 

outlier point. 

 

VBMS-RS  

 

 (a)    (b)  (c) 

MS-RS 

  

 (d)    (e)  (f) 

FCM 

 

 (g)    (h)  (i) 

Figure 5.5. Results for different techniques of parameterising an attribute which has two separate 

component distributions. The different colours in each of (a), (d), and (g) show the ranges of clusters 

obtained from different techniques. (b), (e), and (h) show the respective triangular MFs, resulted from 

the output of the 3MF generation techniques. (c), (f) and (i) show the trapezoidal MFs resulted from 

the output of the 3 techniques.  

 

 



 

172 

 

Attribute with a unimodal distribution 

One example of attributes which possessed a unimodal skewed distribution was AR from the 

dining room. The data distribution of this dataset is illustrated in images on the left-hand side 

of Figure 5.6 (i.e. (a), (d), and (g)). The data distribution shown in those images illustrates the 

skewed distribution of AR. Different colours in each of the images indicate the distributions 

related to the clusters that have been identified using different Mf generation techniques. The 

triangular MFs generated using the three techniques are illustrated in Figure 5.6 (b), (e), and 

(h). The results of using the three techniques for generating trapezoidal MFs are provided in 

Figure 5.6 (c), (f), and (i).  

 

VBMS-RS  

 

 (a)    (b)  (c) 

MS-RS 

   

 (d)    (e)  (f) 

FCM 

 

 (g)    (h)  (i) 

Figure 5.6. Using different techniques for parameterising distribution of AR attribute for the dining 

room dataset. (a), (d), and (g) show the range of clusters obtained using the 3 different techniques. (b), 

(e), and (h) show the respective triangular MFs resulting from the output of the 3 techniques. (c), (f) 

and (i) show the corresponding trapezoidal MFs resulting from the output of the 3 techniques. 

 

VBMS-RS correctly associated all data points with the only mode in the distribution (see 

Figure 5.6 (a)). This was in contrast to the results of using MS-RS (Figure 5.6 (d)) as it broke 

the distribution into two clusters. This difference was because in VBMS data points that 
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correspond to the tails of the underlying density received a broader neighbourhood and a 

smaller importance. This resulted in these points being included in the main component 

distributions and the tails of the underlying density not being divided into smaller pieces. This 

is unlike MS as it assigned a fixed global bandwidth to all data points and assigned them the 

same importance when estimating the PDF of data. 

 

The input value for the number of clusters in FCM was set to 1 because the distribution was 

unimodal. Figure 5.6 (g) shows that although this technique grouped all data points in the 

distribution into the stipulated one cluster, the supports of the generated MFs in Figure 5.6 (h) 

and (i) were much broader than the MFs generated by VBMS-RS. This can lead to non-specific 

responses for classification of the attribute values (i.e. every point is considered to be in the 

fuzzy set).  

 

The MFs generated by FCM represented many rare observations (outliers) located between 

AR=4 and AR=6. The rules generated based on such MFs could not correctly classify a new 

abnormal observation within that range. This was in contrast to the results of VBMS-RS as 

both the triangular and trapezoidal MFs generated by this technique did not represent any data 

point for outside the normal range [0.5, 3.5]. VBMS-RS yielded better classification results for 

normal points and handled outlier observations more accurately. 

 

Attribute with a multimodal distribution 

An example of an attribute with a multimodal distribution was Cx from the kitchen dataset. 

Examining the Kinect observations for this dataset showed three distinct places for Cx where 

the occupant performed most of the activities in the kitchen. The PDF of this attribute had three 

modes, each associated with a component distribution in the attribute mixture distribution. The 

three components overlap. 

 

The results of parameterising this attribute using the different MF generation techniques are 

shown in Figure 5.7. Input value for the number of clusters to be created by FCM was set to 3. 

Results indicated that unlike other techniques, VBMS-RS correctly partitioned the feature 

space into the right number of MFs, according to the components in the mixture distribution. 

The results for VBMS-RS and MS-RS differ because VBMS assigned a narrower 

neighbourhood to the data points lying in large density regions. This example shows that 

VBMS could identify mixed component distributions more accurately than MS when the 
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attribute has a mixture of multiple distributions. This finding is consistent with other findings 

by Comaniciu et al. (2001). 

 

VBMS-RS  

  

 (a)    (b)  (c) 

MS-RS 

   

 (d)    (e)  (f) 

FCM 

 

 (g)    (h)  (i) 

Figure 5.7. Using different techniques for parameterising distribution of AR from the dining room 

dataset. (a), (d), and (g) show the range of clusters obtained using the 3 MF generation techniques. 

(b), (e), and (h) show the respective triangular MFs resulting from the output of the 3 techniques. (c), 

(f) and (i) show the corresponding trapezoidal MFs resulting from the output of the 3 techniques. 

 

The ranges of the triangular MFs generated by the three techniques were generally greater than 

that of the ranges of the trapezoidal MFs (see Figure 5.7). For example, the wider data 

distribution associated with the right-hand-side cluster (ranging from pixel location 220 to 500) 

in Figure 5.7 (a) and (d) caused the respective trapezoidal MFs in Figure 5.7 (c) and (f) to have 

a relatively wider shoulder. This in turn resulted in those MFs receiving steeper descending 

foots upon performing the extrapolation in Step 2 of VBMS-RS. These MFs also covered less 

area when compared to their respective triangular MFs in Figure 5.7 (b) and (e). The wider 

support of triangular MFs allowed more variations of normal data for each cluster which means 

they could tolerate more variation in physical ADLs without labelling them as abnormal. 

The FCM technique partitioned the attribute space by three MFs as shown in Figure 5.7 (g). 
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Parameters of these MFs were different to those of the results from VBMS-RS. The reason was 

that this technique aimed to minimise the distance of data points from their respective cluster 

centres. The locations of the cluster centres identified by FCM did not always correspond to 

the modes in the distribution of data. As a result of this, the same MF represented both 

component distributions that have modes on pixel locations 150 and 200 (see Figure 5.7 (h) 

and (i)).  

 

5.4.2 The performance of AMP-ADLs based on using different MF generation 

techniques 

The characteristics of MFs generated by a particular technique have a direct impact on the 

performance of the corresponding fuzzy rule set for classification purposes. A better technique 

to estimate the component distributions of an attribute can generate more representative MFs 

and provide a higher classification accuracy of the corresponding rule set. This section provides 

the findings from comparing the classification performance of fuzzy rule sets obtained from 

employing the output of three possible MF generation techniques including VBMS-RS. As the 

training dataset of Kinect observations involved data from four Kinect sensors and the dataset 

from each Kinect was associated with four depth map attributes with different numbers of 

modes in their PDFs, the number of clusters for FCM was empirically set to a specific number 

(i.e. 3) to suit all situations.  

 

The total number of rules obtained from the output of each MF generation technique is shown 

in Table 5.2. VBMS-RS resulted in the least number of rules. It was observed that by using this 

technique slight variations during most physical ADLs were represented by the same 

combination of fuzzy attributes. This was due to the MFs generated by this technique accurately 

representing component distributions in the space of attributes which in turn resulted in one 

fuzzy rule to be generated for modelling each physical ADL. For example, two fuzzy rules 

were generated to represent the frequent activities of sitting behind the computer desk and 

sitting on the sofa for each of the four activity epochs in the living room. This caused eight 

rules to be generated for the living room rule set. In addition to these eight rules, another rule 

was generated to model the activity of sleeping on the sofa in the afternoon epoch. The set of 

these nine rules represented the nine physical ADLs frequently carried out by the occupant 

during the collection of the training dataset (see Table 3.4). 
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Using the output of other MF generation techniques (e.g. FCM and MS-RS) resulted in a higher 

number of rules to be generated as indicated in Table 5.2. This was due to the MFs obtained 

from the output of those techniques not necessarily representing component distributions in the 

dataset of attributes. This was also due to the slightly different values of attributes during an 

ADL being represented by different fuzzy sets. This resulted in different fuzzy rules to be 

generated for modelling slightly different versions of the same activity and a resultant higher 

number of rules.  

 

The numbers of rules obtained when different techniques generated trapezoidal MFs were 

slightly higher than the numbers of rules when those techniques generated triangular MFs, as 

shown in Table 5.2. In most cases, the generated trapezoidal MFs had narrower support than 

their respective triangular ones. More combinations of fuzzy attributes were then required to 

represent variations of the attributes during activities. Since the triangular and trapezoidal MFs 

generated by VBMS-RS represented component distributions well, variations in attributes 

during activities have been modelled by very similar numbers of rules. 

 

The Testing_Data 1 used in this study had 60 recordings of different scenarios for normal and 

abnormal behaviours for each location, with 30 recordings for each category of normal and 

abnormal behaviours. These were used to evaluate the classification accuracy of the fuzzy rule 

set obtained using the output of different MF generation techniques. The classification accuracy 

of using different types of MFs was also evaluated. The results of these evaluations are shown 

in Table 5.3. The accuracy of the monitoring approach was 86.3% when MS-RS generated 

triangular MFs in the fuzzy rules. This was largely due to MS-RS not identifying overlapping 

component distributions of attributes. In some occasions one MF was generated to represent 

two overlapping component distributions in an attribute, which caused multiple physical ADLs 

to be represented by one fuzzy rule. For example, values of AR for crouching on the kitchen 

floor (to pick up an object) and bending down (to manipulate objects inside the kitchen cabinet) 

were grouped into the same cluster although each belonged to different component 

distributions in the attribute space. The corresponding fuzzy rule was not able to label a 

recording for spending a long time sitting on the kitchen floor as abnormal behaviour.  

 

Using MS-RS to obtain trapezoidal MFs resulted in a slightly lower classification accuracy 

than the case of triangular MFs. The supports of the trapezoidal MFs were narrower in 

comparison with those of their respective triangular MFs and thus slightly different normal 
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behaviour of the occupant in more number of recordings was misclassified as abnormal. 

 

The classification that resulted from using FCM to generate triangular MFs produced an 

average accuracy of 80.1%. This was because the rule set obtained based on this technique 

misclassified normal behaviour patterns that were slightly different from their corresponding 

training samples. The reason was that FCM divided the component distributions of many 

attributes into pieces. When most of training values for a given activity belonged to a particular 

part of the component distribution and the values for test sequences fell into another part, the 

corresponding fuzzy rule could not fire, hence less accuracy of the classifier. The MFs 

generated by this technique also represented many outliers in the attributes which resulted in 

some test recordings that represented an abnormal behaviour to be misclassified as normal. 

Using FCM to generate trapezoidal MFs produced a less average accuracy of 77.2%. 

 

Table 5.2. The number of fuzzy rules obtained from the output of different MF generation techniques 

for different monitored locations. 

Technique Type of MF Kitchen Living room Dining room Bedroom Overall 

FCM 
Triangular  30 28 22 2 82 

Trapezoidal  33 29 23 2 87 

MS-RS 
Triangular  24 12 9 2 47 

Trapezoidal  26 13 11 2 52 

VBMS-RS  
Triangular  15 9 6 2 32 

Trapezoidal  16 9 6 2 33 

 

Note that in the experiments in this chapter, FCM processed the dataset of each location 

separately to generate location-specific MFs. This was different from the MF generation 

technique presented in Chapter 4 in which FCM processed the combined dataset of all locations 

for an attribute to generate MFs. The resulting fuzzy rules which used location-specific MFs 

showed a higher classification performance than those generated in Chapter 4 (see Table 4.8 

for comparison). This confirms the hypothesis that location-specific MFs can be used to better 

represent physical ADLs performed in each location of a house. 

 

The classification accuracy of the fuzzy rules obtained by applying VBMS without RS was 

also evaluated and the results are shown in Table 5.3. Using VBMS to generate triangular MFs 

resulted in many test recordings for abnormal behaviour to be label as normal. Since RS was 
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not employed in generating MFs, the range of the triangular MFs was wider than the range of 

their respective component distributions and thus they included many outlier values. Although 

values of attributes in those test recordings for abnormal behaviour were well outside of the 

normal range of component distributions they caused fuzzy rules for normal behaviours to fire 

and resulted in those recordings being labelled normal. The generated trapezoidal MFs covered 

less area (fewer outliers) in the space of each attribute and caused slightly fewer test sequences 

for abnormal behaviour to be labelled as normal. 

 

The rule set obtained from the triangular MFs generated by VBMS-RS could classify most test 

sequences correctly with an accuracy of 92.9% (see Table 5.3). Combining VBMS and RS 

caused most of the triangular MFs to represent only the normal range of the component 

distributions in the attributes. While the outlier observations for abnormal behaviours were 

classified correctly, the attribute values during most recordings of normal behaviour were 

represented correctly by the generated MFs. These recordings of normal behaviour triggered a 

rule corresponding to a normal behaviour. The misclassified recordings for normal behaviour 

were those representing new behaviour patterns of the occupant. One example was cleaning 

inside the refrigerator for eight minutes in the morning, a behaviour which was not present in 

the training data. The approach could classify such observations correctly by introducing a 

more comprehensive training dataset consisting of typical ADLs with more variability.  

 

Table 5.3. The classification accuracy of different fuzzy rule sets obtained from the output of 

different MF generation techniques. 

Method  Type of MF 

Accuracy for 

normal 

behaviours 

Accuracy for 

abnormal 

behaviours 

Overall 

accuracy 

FCM (3 clusters) 
Triangular  81.7% 78.4% 80.1% 

Trapezoidal  78.0% 76.3% 77.2% 

MS-RS 
Trapezoidal  87.5% 85.0% 86.3% 

Triangular  89.0% 83.7% 86.4% 

VBMS 
Trapezoidal  95.0% 84.2% 89.6% 

Triangular  95.8% 83.3% 89.6% 

VBMS-RS 
Trapezoidal  93.3% 89.1% 91.2% 

Triangular  95.0% 90.8% 92.9% 
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5.4.3 Comparison with other monitoring approaches 

The performance of the AMP-ADLs approach was compared with other unsupervised 

monitoring approaches. These approaches were the two fuzzy monitoring systems presented 

by Seki (2009) and Brulin et al. (2012). The validation datasets in these studies were collected 

using 2D cameras in laboratory environments. As these datasets were not publicly available, 

the dataset collected from the testbed was used for evaluating the performance of all 

approaches. The fuzzy rule set in the proposed approach was generated by using VBMS-RS 

and triangular MFs. The results of evaluations are shown in Table 5.4 where the proposed 

approach is denoted as “AMP-ADLs with triangular MFs”. 

 

The approach described by Seki (2009) used omni-directional cameras to extract attributes 

from the binary mask of a detected person in order to monitor their physical ADLs. The 

attributes included the area of the silhouette, the orientation of the body, and the coordinates of 

the silhouette’s center of gravity. The crisp attribute values in a training dataset were converted 

into their fuzzy equivalents. The day was then divided into three-hour overlapping epochs and 

fuzzy rules were constructed for each epoch to model the frequency of fuzzy attributes (i.e. 

behaviour patterns). Unusual behaviour patterns were then identified for each epoch as those 

combinations of fuzzy attributes with low probability of occurrence.  

 

Table 5.4. The performance of different approaches for monitoring physical ADLs in the collected 

dataset. 

Approach 

Accuracy for 

Normal 

behaviours 

Accuracy for 

Abnormal 

behaviours 

Overall 

accuracy 

The approach in Seki (2009) 74.2% 67.5% 70.8% 

The approach in Brulin et al. (2012) 73.3% 70.0% 71.7% 

AMP-ADLs with triangular MFs  95.0% 90.8% 92.9% 

 

The abovementioned attributes were extracted from the binary mask of the occupant in Kinect 

training observations. Following the technique employed by Seki (2009), six fuzzy sets with 

evenly distributed triangular MFs were defined over each attribute. The attributes’ crisp values 

were then converted into fuzzy labels. The frequency of observing different behaviour patterns 

was calculated for each epoch and abnormal behaviours were defined as those patterns with 
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very small probability of occurrence. The generated fuzzy rules were then used to classify test 

recordings for different scenarios of normal and abnormal behaviours. 

 

This approach accurately classified 74.2% of the test recording for normal behaviours as shown 

in Table 5.4. Unlike AMP-ADLs, this approach used a set of pre-defined MFs to convert 

attributes values into fuzzy labels. These MFs divided the space of each attribute equally into 

fuzzy intervals, resulting in some activities to be modelled by multiple rules. When attributes 

in a test recording were slightly different from their training samples, a different combination 

of fuzzy attributes was resulted and thus the respective fuzzy rule in the rule set could not 

represent the activity in the recording. The behaviour in such test recordings was therefore 

labelled as belonging to the abnormal category.  

 

The Seki (2009) approach differed from the AMP-ADLs approach as it did not take into 

account the duration of infrequent activities and misclassified test recordings of normal 

behaviour which included an infrequent activity performed for a short period (e.g. bending 

down in the dining room to pick up an object). The probability of occurrence of the infrequent 

activity fell below the threshold and caused this approach to raise an alarm.  

 

The approach of Seki (2009) was found to correctly classify 67.5% of test recordings 

representing abnormal behaviours. It misclassified all sequences of normal activity performed 

with an abnormal duration. The reason was that, unlike AMP-ADLs, this approach did not 

monitor the duration of activities and all observations in test recordings of extended activities 

received a high probability of occurrence.  

 

The fuzzy-logic-based monitoring approach proposed by Brulin et al. (2012) categorised the 

binary mask of the monitored person in camera images into a set of specific postures. Four 

image attributes were extracted from each binary mask, namely the aspect ratio of the person’s 

bounding box, the person’s centre of gravity in x and y axis, and the ratio of distance between 

the centre of gravity pixel location and the bottom of the bounding box to the height of the 

bounding box. A set of pre-defined fuzzy sets was used to convert the attributes values into 

fuzzy labels. A set of pre-defined fuzzy rules then categorised the fuzzy labels for each 

observation into postures of ‘lying’, ‘sitting’, ‘squatting’, and ‘standing’. The fuzzy rules 

identified emergency situations, such as falls, based on the duration of the person’s posture, 

time of the day and the location of activities.  
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The same attributes described by Brulin et al. (2012) were calculated from the binary mask of 

the occupant in Kinect training datasets. The set of fuzzy rules were then used to classify the 

combination of the duration, time, and location of the person in a test recording into normal 

and abnormal. As suggested by Brulin et al. (2012), for each combination of postures and 

locations a fixed maximum duration was considered normal.  

 

This approach could correctly classify 73.3% of the test recordings of normal behaviours, as 

shown in Table 5.4. Many of the misclassifications occurred due to partial occlusions of the 

occupant’s body in the testbed. The fuzzy rules in Brulin et al. (2012) were defined based on 

the assumption that the entire human body is visible to the camera. The occupant was partially 

occluded by the furniture (e.g. the dining table) in some test recordings and thus his postures 

during those recordings were estimated incorrectly. The system raised an alarm in each instance 

that the incorrectly estimated posture lasted for more that its threshold.  

 

The Brulin et al. (2012) approach could correctly classify 70% of the recordings for abnormal 

behaviours, as shown in Table 5.4. Unlike AMP-ADLs, the parameters of the MFs defined 

over the attributes were set manually rather than based on the data distribution of attributes. 

The posture of the occupant in some recordings of abnormal behaviours was estimated 

incorrectly and resulted in the approach misclassifying those recordings. The approach in 

Brulin et al. (2012) was also limited as it did not model the physical location of ADLs in each 

room. The abnormal behaviours of lying on the floor in the living room and in the bedroom 

were confused respectively with the normal behaviours of sleeping on the sofa and sleeping in 

the bed.  

5.5 Discussion 

The training dataset in this study aimed at simulating a set of typical activities usually 

performed in the residence of an elderly person living alone. Taking cooking in the kitchen as 

an example, it involved visiting specific physical locations in the residence on a daily basis 

with similar durations and starting times for an elderly person. To accurately monitor the 

duration and the time of ADLs, the combination of fuzzy attributes to represent behaviour 

patterns should be robust against fine variations in performing ADLs. Using VBMS-RS with 

triangular MFs resulted in the lowest number of rules, as shown in Table 5.2. Investigating 
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those rules revealed that different instances of the same ADLs were represented by only one 

rule. This indicated that variations within individual instances of the same ADL were 

represented by the same combination of fuzzy attributes, and confirmed the robustness of the 

generated MFs with regards to those variations.  

 

The results in Section 5.4.1 showed that VBMS-RS generated MFs according to the number of 

modes of an attribute and robustly excluding outliers. When the attribute values during an 

abnormal activity fell outside their normal range, no rule represents those values and the 

activity was considered to be infrequent. The system then raised and alarm once the ongoing 

duration of the activity elapses the respective EAr. It was observed that the MFs generated by 

other techniques to parameterise an attribute supported a wider range outside the boundary of 

component distributions. This results in observations for abnormal situations to receive a 

positive membership degree from those MFs and the observations to be classified as normal. 

If fields of view of multiple Kinect sensors in the same room interfere, each Kinect can add its 

own fuzzy rules to the final rule set. Some rules in this case might model the same activity 

carried out in the overlapping field of view. 

5.6 Summary 

This chapter examined the use of VBMS-RS as an unsupervised MF generation technique for 

robustly parameterising the depth map attributes associated with monitoring the behavioural 

patterns of an elderly person living alone. The technique incorporated variable bandwidth mean 

shift and robust statistics for automatically generating MFs based on the data distribution of 

attributes to represent frequent activities. Comparisons were carried out between the results of 

the proposed technique and other MF generation techniques using trapezoidal the triangular 

MFs. Results in Section 5.4 demonstrated that, in terms of partitioning an attribute, the MFs 

generated by VBMS-RS were better at separating the component distributions. This led to more 

representative MFs and a higher classification accuracy of the corresponding fuzzy rule set. 

The classifiers constructed using VBMS-RS had a better performance in comparison with the 

three other techniques in terms of the number of fuzzy rules and classification accuracy. The 

classifier with triangular MFs generated by VBMS-RS outperformed classifiers that used other 

approaches for parameterisation of attributes including the one presented in Chapter 4. 

 

A comparison was also made between the performance of other unsupervised physical activity 
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monitoring approaches (Table 5.2) and the one proposed in this study. The results of this 

comparison indicated that the AMP-ADLs approach significantly outperforms the existing 

approaches. The next chapter presents an unsupervised technique to identify instrumental 

ADLs from the occupant’s interactions with HEAs. 
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CHAPTER 6: IDENTIFYING INSTRUMENTAL ADLS BASED 

ON COMBINING KINECT DEPTH MAPS WITH POWER 

CONSUMPTION OF HEAS 

This chapter presents an approach to identify the performance of instrumental ADLs (AIPIA) 

based on associating the occupant’s physical locations with the power consumption of HEAs. 

The output of the AIPIA is a daily list of identified instrumental ADLs along with their time. 

AIPIA is a part of the approach for monitoring instrumental ADLs presented in the next 

chapter. The approach for monitoring instrumental ADLs uses AIPIA to monitor a daily index 

of instrumental ADLs for the monitored elderly person.  

 

The chapter first introduces the problem of identifying the performance of instrumental ADLs 

from sensor data and provides a review of the limitations of existing approaches (Section 6.1). 

It then presents the stages of AIPIA in Section 6.2. This is followed by the experimental results 

of validating this approach in Section 6.3 where the results of training AIPIA using the 

collected dataset and assessment of its accuracy are provided. Section 6.4 presents a discussion 

of the results followed by a summary of this chapter in Section 6.5. 

6.1 Introduction 

Many researchers have developed remote home occupant monitoring approaches which have 

used a training sensor dataset to model instrumental ADLs (Clement, Ploennigs, & Kabitzsch, 

2012; Shin et al., 2011). The developed models have been used for recognition and monitoring 

of activities to measure elderly people’ ability to live independently and to detect their 

cognitive decline at an early stage. 

 

Several instrumental ADLs such as grooming and cooking can be identified from the 

occupant’s interactions with objects. Studies have embedded binary sensors into objects inside 

their monitored environments to identify interactions with objects. Implementing the approach 

proposed by most of these studies poses various limitations including equipping the house with 

many sensors during its construction and the need for the occupant to wear sensors in some 

cases (Peetoom et al., 2015).  

 

Reviewing ADL monitoring sensor technologies in Chapter 1 revealed that power consumption 
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meters have been employed in ADL classification techniques in order to none-intrusively 

monitor the status of HEAs via their power signatures and consumption patterns (Gaddam, 

Mukhopadhyay, & Sen Gupta, 2011; Noury et al., 2011). The existing approaches that use a 

single power meter to identify ADLs require an initialization phase where the number, types, 

consumption and the operational states of all HEAs from a household have to be stipulated 

(Aritoni & Negru, 2011). Another challenge of existing approaches is distinguishing power 

signatures automatically generated by HEAs from those resulted from the occupant’s ADLs. 

Power signatures generated by HEAs are not always the result of ADLs performed by the 

occupant as some HEAs automatically change their operational state. As a result identifying 

ADLs via only monitoring power signatures is not always accurate (Ghassemian, 

Auckburaully, Pretorius, & Jai-Persad, 2011). For example, a refrigerator turns its cooling 

system on and off multiple times throughout a day to keep its temperature within a specific 

range. Using a single power sensor also makes it very challenging to differentiate the usage of 

HEAs that possess similar power consumption patterns. Such HEAs may be used at different 

locations in the home for different ADLs. For example, the power consumption of a kettle and 

an iron can be very similar as both use a heating element but are employed for different ADLs; 

 

Combining the occupant’s locations with power consumption data can help identifying ADLs 

which involve different HEAs with similar power consumption patterns. As the majority of 

instrumental ADLs are performed at specific physical locations in the room, combining the 

occupant’s physical locations inside a room with power consumption of HEAs can help with 

identifying ADLs which involve different HEAs with similar power consumption patterns. The 

occupant’s physical locations can be estimated from Kinect’s depth maps and when combined 

with power signatures, the usage of HEAs with similar power signatures inside the same room 

can be differentiated. By combining these sources of data, the power signature of self-

regulating HEAs can also be distinguished from those resulting from the occupant’s 

interactions with HEAs.  

 

This chapter presents an unsupervised approach called AIPIA to identify instrumental ADLs 

based on data fusion between the Kinect depth maps and power consumption of HEAs. An 

association rule-mining algorithm was employed in AIPIA to map power signatures generated 

by HEAs to physical locations of the occupant obtained from the depth maps. Power signatures 

were obtained using a power meter installed in the main electricity panel of the house. Given 

the location of the occupant, association rules were used to verify whether a power signature 
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observed on the power line resulted from the occupant interacting with HEAs. The interaction 

was labelled as a specific instrumental ADL using contextual information. This chapter also 

introduces a statistical test to identify power signatures automatically generated by self-

regulated HEAs. 

6.2 The AIPIA approach 

The AIPIA approach comprises of 2 stages including training and classification stages ( 

Figure 6.1). The training stage uses a training dataset from Kinect sensors and a power meter 

as input to automatically establish mappings between relevant power signatures of HEAs and 

the occupant’s physical locations in the house. The output of this stage is used in the 

classification stage to identify the occupant’s interactions with HEAs and label these as 

different instrumental ADLs. The classification stage provides a timestamped list of identified 

instrumental ADLs which is used to monitor the wellbeing of the occupant. The following 

sections provide further details of these stages.  

 

6.2.1 Training stage 

The training stage is initiated by the collection of an unlabelled training dataset of the home 

composite power consumption and the occupant’s locations as shown in  

Figure 6.1. Features are extracted from each source of data after pre-processing operations. 

These features are separately grouped into clusters and the cluster labels are used to find a set 

of association rules which specify frequently co-occurring power signatures and the occupant’s 

physical locations.  

 

The outputs of this stage are the boundaries of the detected clusters and the learned association 

rule set; these are used during the classification stage to identify interactions with HEAs and 

label them with instrumental ADLs. 
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Figure 6.1. An overview of the AIPIA approach. 

 

6.2.1.1 Data acquisition and pre-processing  

The aim of this step is to capture a training dataset of the overall power consumption and Kinect 

depth maps via a combination of a single power meter and a number of Kinect sensors each 

covering a different functional subarea in the house. Pre-processing operations were then 

applied to the data captured from each type of sensor. 

 

Power consumption data: a single power sensor is installed in the main electricity panel of the 
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house to capture raw power consumption data at one sample per second intervals. In contrast 

to conventional intrusive load monitoring techniques that require putting sensors on each 

appliance, this configuration is achievable using low cost and off-the-shelf power meters and 

no access to individual HEAs is necessary for installing sensors.  

 

Characteristics of HEAs in-operation are calculated in a two-dimensional space consisting of 

active power (P) and reactive power (Q). Active power is expressed in Watts and is taken into 

account because any HEA consumes some active power. Reactive power is calculated as some 

devices use similar amounts of active power. Reactive power is associated with capacitive and 

inductive elements of a device and is expressed in volt-ampere reactive (var).  

 

A noise removal operation is applied on the power consumption data to remove short impulses 

generated when a device is turned on or off due to a switching transient current. A median 

smoothing filter is adopted for this aim which replaces the value of each power measurement 

with the median of its neighbouring values located within a window size 𝑇𝑚. The duration of 

each instance of this type of noise at residential sites has been found to be usually less than a 

second (Hughes, Chan, & Koval, 1993). A spike may not co-occur with one measurement as it 

may occur at the end of one measurement and the beginning of the next one, affecting two 

consecutive measurements in power signal. 𝑇𝑚 is chosen to be five seconds as it should be 

more than twice as long as the longest spike in the data (Chandra, Moore, & Mitra, 1998).  

 

An example of an active power signal over a period of time associated with turn-on and turn-

off events of HEAs is shown in Figure 6.2 (a). As the refrigerator is switched on, a spike in the 

active power signal is noted at the third second. This is followed by the operation of a 

microwave and a toaster. An example of applying a median filter with 𝑇𝑚 = 5 seconds on the 

same power signal is shown in Figure 6.2 (b). This figure shows that the filter removed the 

effect of the spike noise while preserving step-like changes associated with the events of HEAs 

being turn-on and turn-off. 

 

Kinect depth maps:  The environment is divided into several functional subareas and a Kinect 

sensor is installed in each subarea to capture depth maps of the occupant’s ADLs. The only 

requirement for positioning Kinect sensors is to monitor as many functional areas of the home 

as possible, including locations where the occupant interacts with important HEAs. The Kinect 
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software includes a tracking functionality that uses the captured depth map of the scene to 

provide the 3D spatial locations of a detected person in the environment. It outputs 3D positions 

of 25 skeletal joints for each detected person (see Figure 6.3) at a frame rate of 30 Hz. 

Localisation using this type of skeletal tracking method is nonintrusive unlike wearable sensors 

that the home occupant must remember to put on. 

 

  

 (a)             (b)    

Figure 6.2. (a) An example of the effect of a spike on the active power signal caused by operation of a 

refrigerator. (b) Plot after application of a 5-second median filter. 

 

Each Kinect sensor is given a unique ID to represent the room being monitored by the sensor. 

Observations from each Kinect sensor are taken, and those in which a person is detected are 

stored. Each stored observation includes 3D positions of 25 skeletal joints for the tracked 

occupant, a timestamp, and the respective Kinect ID. 

 

 

Figure 6.3. The Kinect skeletal joint representation and the location of the hip centre.  

 

Two steps of pre-processing operations are applied to the raw 3D positions of skeletal joints 

acquired from each Kinect sensor in the monitored environment. The first step stores the 3D 
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positions of the occupant’s hip centre joint (see Figure 6.3) in the form of 𝑥, 𝑦, and 𝑧 and 

discards the information of other joints.  

 

The sequence of raw joint positions is found to contain high frequency jitters and temporary 

spikes. The second step of pre-processing removes the noise in the obtained positions of the 

centre of the hip joint using a variant of the Holt Double Exponential Smoothing method 

(Kalekar, 2004). This method provides smoothing with less latency than in other signal 

smoothing techniques. The red line in Figure 6.4 shows an example of the occupant’s hip joint 

positions in the x-axis and the blue line shows their smoothed values. This figure shows that 

significant jitters are eliminated - especially those occurred after Frame 130 in the original 

signal. 

 

Figure 6.4. An example of the original signal of the occupant’s hip joint in x-axis along with its 

smoothed values. 

 

6.2.1.2 Extracting features 

This step involves two operations; the extraction of power signatures and the extraction of the 

occupant’s physical location. The first operation takes the pre-processed composite power 

signals and extracts power signatures associated with the operation of specific HEAs. The 

second operation extracts physical locations of the occupant in the monitored home. 

 

Extracting power signatures: Every turn-on and turn-off event of an HEA changes the overall 

power consumed in the home and manifests itself as a positive and negative step change in the 

composite power signal (see Figure 6.2). Only turn-on events are detected in AIPIA in order to 

estimate appliance usage in the home. The reason is that many HEAs such as microwaves and 

toasters are switched on manually, resulting in a positive step-like change in the overall active 
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power consumption. Many devices however may end their operation automatically after a 

specific amount of time and a turn-off event may not result from an interaction of a person with 

an HEA.  

 

Since turn-on events of pure resistive loads produce no variation on the reactive power signal, 

only the active power signal is processed to detect positive step-changes. A positive step-

change (i.e. an HEA turn-on event) is detected where the deference in two consecutive active 

power values exceeds a threshold α. A simple differentiating method is applied on the active 

power signal to detect turn-on events of HEAs. Each power measurement 𝑃(𝑡) with its previous 

measurement 𝑃(𝑡 − 1) is compared and if the magnitude of difference, i.e. 𝑑𝑃(𝑡), is more than 

α, the differences in both active 𝑑𝑃(𝑡) and reactive 𝑑𝑄(𝑡) power signals along with their 

timestamp (i.e. t) are obtained as power signatures and are stored in a list named 

power_signatures. Note that 𝑑𝑄(𝑡) is the difference between 𝑄(𝑡) and 𝑄(𝑡 − 1). An example 

of seven records in power_signatures is shown in Table 6.1.  

 

Table 6.1. An example of records in power_signatures. 

𝒅𝑷 𝒅𝑸 Timestamp 

45 0 10-Oct-15, 09:15:04 

1700 0 10-Oct-15, 11:35:47 

115 44 10-Oct-15, 12:25:14 

1752 651 10-Oct-15, 18:42:43 

915 0 10-Oct-15, 21:11:18 

453 0 11-Oct-15, 09:23:09 

42 0 11-Oct-15, 11:40:34 

 

The value of α depends on the accuracy of the power measuring sensor and noise on the power 

line. Its value should be larger than random fluctuations in the power signal so as to avoid 

detecting those fluctuations as power signatures.  

 

Extracting the occupant’s physical locations: The 3D positions of the occupant’s hip centre 

joint from all frames acquired in one second are averaged along each of the axes to obtain the 

3D location of the occupant at one-second intervals. The calculated 3D locations are then 

mapped onto the 2D plane of the room using coordinates corresponding to the x- and z-axes. 

The resulting 2D locations of the occupant in the scene along with their timestamps and Kinect 
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IDs are stored in a list named visited_locations. The Kinect IDs are used in the subsequent 

steps to identify the room in which an activity is performed. An example of visited_locations 

consisting of seven records is shown in Table 6.2. Note that the timestamp of some records can 

be matched to those in Table 6.1.  

 

Table 6.2. Example of visited_locations consisting of seven records. 

Kinect ID The 𝒙-axis The 𝒛-axis Timestamp 

K 0.4973 2.4705 10-Oct-15, 08:47:04 

K -0.4760 1.9812 10-Oct-15, 11:35:47 

K -0.5653 1.9355 10-Oct-15, 15:25:11 

L -0.4829 2.0520 10-Oct-15, 18:42:43 

L 0.4480 2.3061 10-Oct-15, 21:11:18 

B 0.3475 2.2758 11-Oct-15, 09:23:09 

K 0.1322 2.4330 11-Oct-15, 11:40:34 

 

6.2.1.3 Grouping power signatures and post processing 

A clustering technique is employed in this step to group power signatures resulting from the 

same mode of operation of a device. Post-processing operations are then carried out to remove 

power signatures automatically generated by HEAs. 

 

Grouping power signatures: The power signatures of an HEA may have variations in the P-Q 

space due to the noise on the power line and errors in sensor measurements. A novel data-

driven algorithm is presented to group similar power signatures as belonging to the same device 

in a particular mode of operation. The steps of this algorithm is shown in Figure 6.5. The input 

is power_signatures obtained from the last step. The algorithm outputs a cluster ID for each 

power signature in the list. 

 

Each power signature corresponds to a point in P – Q space with two neighbourhood distances, 

called respectively A_P_Eps and R_P_Eps, as specific percentages of its active and reactive 

powers. The algorithm involves repeating certain operations until all power signatures are 

processed (i.e. labelled with a cluster ID). An arbitrary unprocessed power signature p is 

selected at the beginning of each iteration and all neighbours with respect to A_P_Eps and 

R_P_Eps from p are then retrieved using function N(p) (line 5 of Figure 6.5). The list of 

neighbours is recorded in neighbour_p. 
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The active and reactive power consumption of different devices can vary in residential 

enviornments up to 20% (Pihala, 1998). A value of 10% of a point’s active and reactive power 

values is conservatively used in order to calculate A_P_Eps and R_P_Eps (line 4 of Figure 

6.5). Using this technique, larger power signatures are resulted in a wider distance for their 

neighbours.  

 

The number of neighbours around p is compared with MinPnts to determine whether p belongs 

to a noisy measurement (line 6 of Figure 6.5). MinPnts in this algorithm determines the 

minimum number of data points constituting a cluster. If MinPnts is set to a value of one, then 

each cluster should contain at least two data points. MinPnts therefore is set to this value to 

filter out unusual power signatures in the P – Q space that result from infrequent situations in 

which more than one turn-on event occur simultaneously. If there are enough neighbours (more 

than one) around p, the algorithm assigns a cluster ID to p, or alternatively it set the cluster ID 

of p as noise. 

 

If p has enough neighbours, all neighbours are assigned with the cluster ID of p and are marked 

as processed in a for-loop (lines 10:19). For each of the neighbours, function N(p) is used to 

find their unprocessed neighbours in order to add them to neighbour_p. In line 22, p is marked 

as processed and the operations are repeated for another unprocessed point. This is repeated 

until all data points are marked as processed. 

 

An example of power signatures for an operation mode of a device, including one measurement 

q and one noisy measurement r is shown in Figure 6.6. Both indices are shown with red dots. 

The neighbourhood distances for q and r are shown with a red-dotted boundary around them. 

Since q has enough neighbours within its neighbourhood distances, it is identified as a cluster 

member and is tagged using the same cluster ID as its neighbours. r has no neighbour within 

its neighbourhood distances and hence is labelled as noise. 
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The Algorithm for grouping power signatures 

Input: a dataset of active and reactive power signatures  

Output: cluster ID for each data point in the dataset 

1 ClId=1 

2 Do 

3        select an unprocessed data point p from the dataset  

4        compute A_P_Eps and R_P_Eps values for p 

5        determine neighbour_p =N (p) as neighbours of p  

6        if (|neighbour_p| < MinPnts) then 

7            set the cluster_ID of p as noise 

8        else  

9            set cluster_ID of p as ClId 

10            for every point in neighbour_p  

11                  set its cluster_ID as ClId 

12                  mark it as processed 

13                  for every point in its neighborhood  

14                         if it is unprocessed  

15                              add it to neighbour_p   

16                         end if 

17                         set its cluster_ID as ClId 

18                  end for 

19            end for 

20                ClId= ClId+1 

21         end if 

22        mark p as processed  

23 Until all the data points are processed 

 
Figure 6.5. The proposed clustering algorithm for grouping power signatures. 
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Figure 6.6. Examples of an outlier r and a cluster member q. The searching neighbourhoods of each 

point are defined as 10% of the point’s active and reactive powers to account for variation in power 

signatures produced by HEAs. 

 

The cluster label of each power signature is added to the power signature’s entry in 

power_signatures. Post processing are then applied on power_signatures to remove power 

signatures which are not resulted from the occupant’s interactions. 

 

Post processing of power signatures: Three stages of post-processing are applied on the 

processed power_signatures.  

 

Stage 1: The first stage is removal of outliers which involved removal of data points tagged by 

the algorithm as noise.  

 

Stage 2: The second stage is Removal of data points of self-regulated HEAs. It uses the chi-

square statistic for goodness of fit (Cochran, 1952) to identify cluster labels generated through 

the operation of self-regulated HEAs and removes their respective data points from 

power_signatures. An example of the active power signal belonging to the operation of some 

HEAs, including a refrigerator, is presented in Figure 6.7. The operation cycles of the 

refrigerator caused several power consumption events of around 100 Watts to be regularly 

scattered through time.  
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Figure 6.7. An example of an active power signal captured during operation of HEAs including a 

refrigerator. 

 

The example shown in Figure 6.7 illustrates that turn-on events of self-regulated HEAs tend to 

spread over a 24-hour cycle and thus the PDF of their time of occurrence follows a relatively 

uniform distribution. The time of occurrence of turn-on events associated with other devices 

that operate upon the occupant’s interactions follows a non-uniform PDF. This may be because 

turn-on events of those devices have been found to be heavily concentrated around times when 

the occupant is active in the home (Hart, 1992).  

 

Chi-square statistic test is employed to categorise each cluster of power signatures into two 

categories. The first category is interaction-generated which corresponds to HEAs that operate 

upon the occupant’s interactions and the second category is self-regulated which corresponds 

to self-regulated HEAs in the home. The Chi-square statistic test categorises each cluster of 

power signatures using the following steps: 

 

Step 1. Estimating 𝐺(ℎ) as the PDF of the time of occurrence of the cluster members (with h 

indicting the hour of the day). This PDF is obtained by calculating the normalised 

hourly number of the cluster members. A uniform distribution function 𝐹(ℎ) is also 

estimated based on the assumption that the power signatures in the cluster are generated 

by a self-regulated HEA. 𝐹(ℎ) for the power signatures of the cluster is obtained by 

averaging their daily number of occurrences during the training period. The result is 

applied to every h in 𝐹(ℎ). The test statistic is then formulated for binary hypothesis 

testing: 

 𝐻0: 𝐺(ℎ) =  𝐹(ℎ) 
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   𝐻1: 𝐺(ℎ) ≠  𝐹(ℎ)   

(6.1) 

If the estimated PDF of a cluster follows an almost uniform distribution across a day, 𝐻0 is true 

and the cluster belongs to the self-regulated category. Otherwise if 𝐻1 is true, the cluster is 

categorised as interaction-generated. 

 

Step 2. Comparing 𝐺(ℎ) with 𝐹(ℎ) through calculating the value of 𝑋2 statistic test using 

Equation 6.2. 

𝑋2 = ∑
(𝐺(ℎ) − 𝐹(ℎ))2

𝐹(ℎ)

24

ℎ=1

 

        (6.2) 

Step 3. Classifying the cluster label into one of the two categories. This classification is based 

on whether the calculated value of 𝑋2 is greater than the critical value 𝜒𝐶𝑉
2  which 

depends on the degree of freedom and a significance level. The number of variables for 

this case is 24 (the number of hours in a day) and thus the degree of freedom become 

23. A number of experiments were carried out using publicly available datasets of 

power measurements of residential houses (Makonin, Popowich, Bartram, Gill, & 

Bajić, 2013; Reinhardt et al., 2012) to experimentally determine the significance level. 

This parameter is accordingly set to 0.05%. The corresponding critical value of 𝜒𝐶𝑉
2  for 

this classification is thus equals to 35.172 (Lancaster & Seneta, 2005). 

 

All cluster labels are categorised into either of interaction-generated and self-regulated 

categories. The boundaries of clusters in each category are determined as the range between 

the smallest and largest members of the cluster in P and Q spaces. A list consisting of cluster 

labels, their category, and their power range in in P and Q spaces is then developed as 

power_cluster_info. An example of this list is shown in Table 6.3; the group of power 

signatures labelled as P01 belongs to the self-regulated category whereas P02, P03, and P04 

belong to the interaction-generated category.  
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Table 6.3. An example of power_cluster_info containing boundaries for each cluster of power 

signatures along with their category type. In this example, P02, P03, and P04 are generated by the 

power signatures of a refrigerator (light), an electric cooktop, and a microwave, respectively, whereas 

P01 created by the operation of a refrigerator (cooling). 

Cluster label 
Range 

Category 
P Q 

P01 [85 - 121] [55 – 70] self-regulated 

P02 [31 - 45] 0 Interaction- generated 

P03 [980 - 1210] 0 Interaction-generated 

P04 [1380 - 1650] [340 - 551] Interaction- generated 

⋮ ⋮ ⋮ ⋮ 

 

The category of each cluster label in power_cluster_info is used to remove data points in 

power_signatures that belong to the self-regulated category.  

 

Stage 3: Other data points in power_signatures generated automatically by thermostatically 

controlled HEAs (e.g. electric cooktops and coffee makers) may also occur. Once the occupant 

switched on those HEAs, they repeatedly generate their power signatures during their operation 

to maintain the temperature. The category of those power signatures in power_cluster_info 

tends to be interaction-generated as those HEAs are typically used by the occupant during 

specific times of the day and thus their PDF throughout the day is different from a uniform 

distribution. Such automatically generated data points are removed by merging the power 

signatures of the same cluster with close times of occurrence as one event. The cluster label 

and timestamp of each data point p in power_signatures are taken into consideration and that 

data point is kept if no other data point with the same cluster label has occurred within wk 

seconds before p.  

 

An example of pulses of power of three HEAs groups of power signatures labelled as P01, P02, 

and P03 is shown in Figure 6.8. Note that only P02 is thermostatically controlled HEA which 

produces short-duration pulses of power. The figure shows the active power consumption. Each 

pulse of power is labelled with a letter. Figure 6.9 (a) demonstrates the timestamp and pulse 

label for each instance of the power signatures of P01, P02, and P03 shown in Figure 6.8. 

Figure 6.9 (b) shows that when wk = 180 seconds, this operation merges points within a time 

window wk from the point of initialisation and records only the initial timestamp. For example, 

the two entries associated with P01 in the list of Figure 6.9 (a) are recorded as is (pulses a and 
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j in Figure 6.8). This indicates that no merging is performed because the starting times of the 

first pulse (labelled as a) and the second invocation (labelled as j) are separated with a long 

duration. With regard to P02, only entries corresponding to pulses b and g are kept, while the 

remaining entries are removed from the list. This is because the length of time between the 

occurrence of pulses b and g and the last invocation is more than 180 seconds (in the case of g, 

it is 374 seconds) whereas for c, d, e, h, and i, the duration between their occurrence and the 

last invocation is less than 180 seconds. 

 

 

Figure 6.8. Example of power consumption pulses of the three HEAs whose groups of power 

signatures are labelled as P01, P02, and P03. Only P02 belongs to a thermostatically controlled HEA. 

 

Timestamp 
Cluster 

ID 

Pulse in 

Figure 6.8 
   

 

10-Oct-15, 10:00:30 P01 a      

10-Oct-15, 10:01:38 P02 b      

10-Oct-15, 10:02:30 P02 c      

10-Oct-15, 10:03:29 P02 d  Timestamp Cluster ID 
Pulse in 

Figure 6.8 

10-Oct-15, 10:04:28 P02 e  10-Oct-15, 10:00:30 P01 a 

10-Oct-15, 10:06:18 P03 f  10-Oct-15, 10:00:38 P02 b 

10-Oct-15, 10:10:41 P02 g  10-Oct-15, 10:06:18 P03 f 

10-Oct-15, 10:11:42 P02 h  10-Oct-15, 10:10:41 P02 g 

10-Oct-15, 10:12:54 P02 i  10-Oct-15, 10:14:20 P01 j 

10-Oct-15, 10:14:20 P01 j      

(a)                          (b) 

Figure 6.9. Merging of identical symbols in power_signatures to remove the effect of short-duration 

pulses of power of thermostatically controlled HEAs. (a) An example list of data points in 

power_signatures. (b) Merging data resulting from short pulses of power of thermostatically 

controlled HEAs. 
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6.2.1.4 Grouping visited locations 

An occupant usually visits specific physical locations in order to interact with HEAs in an 

indoor environment. The visited physical locations for interacting with a specific HEA are also 

usually close to each other. This step of the AIPIA includes two operations; to group the 

occupant’s physical locations when interacting with HEAs, and to processes power_signatures 

so each data point in that list includes the respective occupant’s location.  

 

The input to the first operation is data points in visited_locations the timestamps of which 

correspond to those of data points in the processed power_signatures. A technique similar to 

the algorithm described in Figure 6.5 is used to assigned cluster IDs to the groups of these 

locations using their Euclidean distance.  

 

Instead of the two distances (A_P_Eps and R_P_Eps) in line 3 of the algorithm, a searching 

distance for the neighbours of a physical location is defined which is denoted as 𝑚𝑖𝑛𝑟. This 

distance is a context-specific parameter measured directly from the monitored home to indicate 

the radius of space normally used by the occupant to interact with an HEA. A regular choice 

for this parameter would be 50 cm. The distance between two occupant’s physical locations is 

measured through performing a calibration procedure on Kinect sensor (Webb & Ashley, 

2012). HEAs occupying a larger space cause larger clusters to be created as clusters in the 

algorithm can have arbitrary sizes and shapes. 

 

MinPnts in line 6 of the algorithm is set to zero in order to label the location of all potential 

HEAs that operate based on the occupant’s interactions. A new cluster is created once a location 

is visited to interact with HEAs. For example, L01 and L02 are two different groups of locations 

in the kitchen having a distance of more than 𝑚𝑖𝑛𝑟 between their cluster boundaries. Similarly, 

L03 and L04 correspond to the groups of locations which the subject mostly visit in order to 

manipulate a TV and a computer in the living room, respectively.  

 

The output of this grouping is a list called location_cluster_info. It contains the cluster ID, 

boundaries, and the Kinect label associated with each detected cluster of the occupant’s 

locations. An example of location_cluster_info is shown in Table 6.4. It is assumed that two 

clusters of the occupant’s locations (labelled L01 and L02) are found for a kitchen area and 

one cluster labelled L03 is found in a living room area. 
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Table 6.4 An example of location_cluster_info obtained from grouping visited locations 

Kinect label Cluster ID 
Range 

The x-axis The z-axis 

K L01 [-0.2378, 0.4522] [1.4363, 1.7511] 

K L02 [-0.720, -0.1520] [1.6874, 2.3145] 

L L03 [0.1259, 0.7544] [0.8232, 1.5332] 

 

The second operation processes each data point in power_signature to include the 

corresponding cluster ID of the occupant’s location using their timestamps. Those data points 

not associated with any label for the occupant’s location are eliminated from the list as they 

cannot help to associate power signatures with locations of the occupant. The corresponding 

label for the occupant’s location is then added to each of the remaining data points in 

power_signature. After this operation, each record in power_signature has a power signature 

ID, a label for the occupant’s location, and a timestamp. This is shown in the example provided 

in Table 6.5 where it is assumed that four groups of power signatures (P01, P02, P03, and P04) 

are identified in the power signal and the three clusters of locations corresponding to those 

power signatures are labelled L01, L02, and L03. 

 

Table 6.5. An example of a processed power_signature. Each data point includes a label for a power 

signature, a label for the corresponding location of the occupant, and a timestamp.  

Timestamp 
Location 

 Cluster ID  

Power signature 

 Cluster ID 

19-Oct-15, 08:47:04 L01 P01 

19-Oct-15, 11:35:47 L01 P04 

19-Oct-15, 15:25:11 L03 P03 

19-Oct-15, 18:42:43 L02 P02 

19-Oct-15, 21:11:18 L03 P03 

20-Oct-15, 09:23:09 L02 P04 

20-Oct-15, 11:40:34 L01 P01 

20-Oct-15, 14:47:56 L03 P03 

20-Oct-15, 19:31:27 L01 P04 

21-Oct-15, 08:46:41 L02 P02 

21-Oct-15, 13:29:40 L03 P03 

21-Oct-15, 18:26:11 L01 P01 

21-Oct-15, 19:24:51 L02 P02 

21-Oct-15, 21:01:27 L01 P04 

 

6.2.1.5 Associating the occupant’s locations with power signatures 

This section describes the last step of the training stage as shown in  
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Figure 6.1. It takes power_signatures as input and employs an association rule-mining 

algorithm (see Section 3.5.5.3) to establish association between the occupant’s locations and 

power signatures. This results in a set of rules which have a location and a power signature as 

their antecedent and consequent, respectively. This rule set is used to identify the occupant’s 

instrumental ADLs in case the occupant’s current location is associated with a detected power 

signature on the power line. For example, let an association rule for the kitchen to be L01P01 

and at a given time the occupant’s location in the kitchen be well within the range of L01. At 

that time if a detected power signature falls within the boundary of P01, it can be confirmed 

that the power signature has resulted from the occupant’s interaction with an HEA rather than 

being generated automatically. 

 

The employed association rule-mining algorithm is based on a two-step strategy. A binary 

transaction table is generated in the first stage. The columns of this table include labels for all 

groups of locations and power signatures in power_signatures. If there are m groups of the 

occupant’s locations and n groups of power signatures in power_signatures, the number of 

columns in the transaction table is equal to m+n. The number of rows in this table is equal to 

the number of records in power_signatures. Each row specifies a record in power_signatures 

and has two non-zero values. One value belongs to the column associated with the power 

signature label and the other value belongs to the column associated with the occupant’s 

location label.  

 

A transaction table for the example of power_signature shown in Table 6.5 is displayed in  

Table 6.6. Each row in this table relates to seven labels: four labels of power signatures (P01, 

P02, P03, and P04) in Table 6.5 and three location labels corresponding to those power 

signatures (L01, L02, and L03). Each row corresponds to a record in power_signature. For 

example, the first row which has two non-zero values for L01 and P01 corresponds to the first 

record in Table 6.5 with the combination of L01 and P01.  

 

The association rule-mining algorithm uses the binary transaction table to list frequent items 

which are combinations of locations and power signatures. The algorithm then outputs rules 

that reveal frequent co-occurrences of power and location labels, with each rule having a 

location label and a power signature label respectively as its antecedent and consequent. Each 

rule has a confidence level to show the level of association between the elements in the rule. 
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These rules are divided into two categories based on whether a rule has a cluster label for a 

visited location or a power signature as its antecedent part: 

 

Table 6.6. The transaction table for the example shown in Table 6.5. 

Timestamp L01 L02 L03 P01 P02 P03 P04 

19-Oct-15, 08:47:04 1   1    

19-Oct-15, 11:35:47 1      1 

19-Oct-15, 15:25:11   1   1  

19-Oct-15, 18:42:43  1   1   

19-Oct-15, 21:11:18   1   1  

20-Oct-15, 09:23:09  1     1 

20-Oct-15, 11:40:34 1   1    

20-Oct-15, 14:47:56   1   1  

20-Oct-15, 19:31:27 1      1 

21-Oct-15, 08:46:41  1   1   

21-Oct-15, 13:29:40   1   1  

21-Oct-15, 18:26:11 1   1    

21-Oct-15, 19:24:51  1   1   

21-Oct-15, 21:01:27 1      1 

 

The first category is called location_rules and consisted of those rules associating a location 

label with a power signature label. Rules in this category are in the form of  

 

“location Cluster ID → power signature Cluster ID” 

 

which indicate locations that are linked to specific power signatures. The confidence of such 

rules is the probability of the power signature in the rule being a result of the occupant’s 

interaction with HEAs given that the occupant is within the location specified by the rule. If 

during the collection of training dataset, a location is mostly visited for manipulating one 

particular HEA, the corresponding rule associating the visited location with the power signature 

of the appliance carries a high degree of confidence. For example, the rule associating a 

location with the power signature of a refrigerator light, which is only observed when the 

occupant was in front of the refrigerator, generates almost 100% confidence. This means that 

when the occupant is in front of the refrigerator and the power signature of the refrigerator light 

is observed, the approach is 100% confident that the power signature has been resulted from 

the occupant’s interaction.  

A location in the house may also be associated with multiple groups of power signatures. For 

example, some kitchen HEAs may be adjacent, or one device may generate several groups of 



 

204 

 

power signatures. The confidence of rules associating such locations with their power 

signatures would not be high because different groups of power signatures are observed when 

the occupant visited the location. For example, if a toaster and its adjacent kettle share the same 

group of visited locations, labelled as L01, and the numbers of their interaction events are 

similar, the confidence of the corresponding rules associating L01 to the power signatures of 

the toaster and the kettle would be around 50%. 

 

The second category, power_rules, involves rules associating the label of a power signature 

with a label of a location in the form of  

 

“power signature cluster ID → location cluster ID”. 

 
The confidence of the rules in this category specifies the confidence with which a power 

signature observed on the power line can be linked to a specific location. This means that if a 

power signature is mostly detected when the occupant was visiting a specific location, the 

corresponding rule associating the power signature with the location would carry a high degree 

of confidence. If the power signatures of the toaster and the kettle in the abovementioned 

example were detected only when the occupant’s location is labelled as L01, the confidence 

of the rules for their power signatures would be approximately 100%. If the power signatures 

of an automatic HEA are detected when the occupant was visiting different locations, the 

confidence of the corresponding rules associating those power signatures to different locations 

would be low.  

 

The rules for each category from the transaction matrix shown in Table 6.6 are presented in 

Table 6.7 (a) and (b), respectively. Note that for each rule in part (a) there is a corresponding 

rule in part (b) with the antecedent and consequent parts in the reverse order. 

 

Only rules the form of those in location_rules are regarded as the final rules because the aim 

of AIPIA is to identify interactions with HEAs based on the occupant’s locations. Rules in 

location_rules with a confidence higher than a threshold can be used to confirm whether based 

on the occupant’s current location, a detected power signature is resulted from the occupant 

interacting with HEAs.  
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Table 6.7 (a) location_rules and, (b) power_rules generated by the association rule-mining algorithm 

based on the transaction dataset shown in Table 6.6. 

Rule Confidence  Rule Confidence 

L3 -> P3 100%  P3 -> L3 100% 

L2 -> P2 75%  P2 -> L2 100% 

L1 -> P1 50%  P1 -> L1 100% 

L1 -> P4 50%  P4 -> L1 75% 

L2 -> P3 50%  P3 -> L2 40% 

L2 -> P4 25%  P4 -> L2 25% 

(a)      (b) 

Pruning rules based on a threshold may cause rules associating the location of adjacent HEAs 

with their groups of power signatures to be eliminated as their confidence is usually low. To 

prevent this, the confidence of each rule in location_rules is compared with that of the 

corresponding rule in power_rules (i.e. the rule with the consequent and antecedent parts in the 

reverse order) and the higher value is replaced with the confidence of the rule in location_rules. 

For example, assume in the example mentioned above, P01 and P04 are the cluster IDs for the 

power signatures of the kettle and toaster, respectively. Table 6.7 (a) shows that the confidence 

of observing P01 and P04 at location L01 (i.e. P01 L01 and P04 L01) is 50%. The 

confidence of these rules is replaced by that of their corresponding rules in power_rules (i.e. 

L01 P01 and L01 P04) which are 100% and 75%, respectively. Table 6.8 shows the results 

of performing this operation on location_rules shown in Table 6.7 (a). 

 

A thresholding is performed to remove rules in the processed location_rules with a confidence 

less than an adopted min_conf. This is to remove rules which associate locations with the power 

signatures of the automatically changing state of HEAs (e.g. power signatures resulting from 

changing from washing to spin drying in a washing machine). The confidence of such rules is 

low because generation of those power signatures does not require the occupant to be near the 

appliance and hence the corresponding locations of the occupant are likely to vary.  

 

The remaining rules in location_rules are regarded as the final rule set. Each rule is then 

arbitrarily labelled with an instrumental ADL, a technique typically used by existing 

approaches (Noury et al., 2011). The contextual information of the room associated with each 

rule can be used to label the rules (e.g. a feeding activity can be adopted for a rule associated 

with the kitchen). The name of the monitored room for each rule can be identified based on the 

Kinect ID in location_cluster_info. 
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Table 6.8. The effects of the post processing operation on the confidence of rules in Table 6.7 (a).  

Rule Confidence 

L3 -> P3 100% 

L2 -> P2 100% 

L1 -> P1 100% 

L1 -> P4 75% 

L2 -> P3 50% 

L2 -> P4 25% 

 

6.2.2 Classification stage 

The location_rules, location_cluster_info, and power_cluster_info information obtained from 

the training stage are used to detect the occupant’s interactions with HEAs and assign them 

unique labels. The sensor data in this stage are first processed in a similar method as the training 

stage in order to extract power signatures and the occupant’s locations as shown in  

Figure 6.1. Each power signature is then checked against the corresponding power ranges of 

each cluster in power_cluster_info to obtain its cluster ID. If no cluster ID is found for the 

power signature or it falls within power ranges of a cluster ID of self-regulated category, the 

power signature is ignored.  

 

The process described in Section 6.2.1.3 for removal of data points caused by pulses of power 

of thermostatically controlled HEAs is executed on the rest of the power signatures. The 

remaining power signatures that do not have a corresponding location of the occupant is 

eliminated as they cannot help with identification of interactions with HEAs. The occupant’s 

locations for the rest of power signatures are compared against the boundaries of each cluster 

of locations in location_cluster_info and those labelled with a location cluster are paired with 

the cluster ID of their respective power signature. The approach then checks each pair of cluster 

IDs to see whether those are associated by a rule in location_rules. The power signature in each 

pair is inferred as the result of an instrumental ADL in case a rule confirms an association for 

the pair of cluster IDs (performing an instrumental ADL). The occupant’s activity is then 

labelled using the label adopted for the rule. 

6.3 Experimental results 

The collected dataset from the testbed was used to evaluate the effectiveness of the AIPIA 
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approach in identifying instrumental ADLs. The assignment of the approach parameters in the 

testbed is first described in this section followed by reporting the results of associating the 

occupant’s locations with the power signatures of HEAs in the training procedure. This section 

also reports the performance of the approach in identifying instrumental ADLs and compares 

it with another implementation of AIPIA where only power consumption data was used to 

identify the occupant’s interactions with HEAs.  

 

6.3.1 Assignment of the approach parameters  

The α parameter described in Section 6.2.1.2 was set to 25 Watts in order to prevent noise on 

the power line from being detected as a power signature. Figure 6.10 shows an example of 

noise on the composite active power signal where no HEA changed its operational mode. The 

example in this figure shows that noise caused variations up to nearly 6 Watts on the signal. 

Setting α to 25 Watts enabled the approach to robustly detect power signatures generated by 

HEAs. 𝑤𝑘 in Section 0 was set to 180 seconds to account for pause gaps of thermostatically 

operating HEAs (i.e. the electric cooktop and the microwave) in the testbed. 𝑚𝑖𝑛𝑟 was set to 

50 cm. 

 

Figure 6.10. An example of noise on the composite active power signal where no HEA changed its 

operational mode. 

 

6.3.2 Training in the experimental setup 

The training dataset was processed to obtain information necessary for the classification stage 

including the rules associating the occupant’s locations inside the testbed with power 

signatures. Power signatures associated with turn-on events in this dataset were detected 

yielding power_signatures to have 1826 entries.  
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The data points in power_signatures were grouped into clusters as shown in Figure 6.11. This 

figure shows a total of 11 clusters in different colours. Each cluster contains instances of the 

power signatures it represents. The boundaries of the clusters are shown with black rectangles. 

Data points surrounded by red rectangles were labelled as noise by the clustering technique 

and discarded in the subsequent steps. 

 

 

 
Active power (Watt) 

Figure 6.11. P - Q space for the measurement in the experimental place and the detected steady-state 

clusters shown by their cluster ID  

 

That the region of P - Q space with P and Q less than 100 Watts and 200 vars included the 

groups of power signatures (i.e. P01, P02, P05, P11) positioned close to each other (see Figure 

6.11). Using the ground truth, it was verified that except for the refrigerator light and the living 

room floor lamp that shared the same cluster P02, other HEAs were correctly assigned different 

cluster labels. HEAs with a relatively high power consumption in this figure were those that 

consumed more than 100 Watts and 200 vars. It was verified that in terms of high power 

consumption HEAs, the kettle and one of the operational modes of the electric cooktop shared 

the same group of power signatures, labelled P03. The reason was that both HEAs performed 

a heating operation in the kitchen with similar power consumption. This was also the case for 

the hair dryer and the toaster. The power signatures of both hair dryer and the toaster were thus 

labelled P07. 

 

The detected cluster IDs were labelled with the name of their corresponding HEAs based on 

the ground truth for power consumption of HEAs inside the testbed as shown in Table 6.9. This 

was carried out to evaluate the performance of the AIPIA approach. The implementation of 
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this approach does not require the name of HEA(s) corresponding to each group of power 

signature to be known. All the groups of power signatures that occurred based on the occupant’s 

interactions are shown in bold in Table 6.9. Note that since there was no Kinect sensor in the 

bathroom, none of the cluster IDs for the washing machine is displayed in bold. It is observed 

that some HEAs generated multiple clusters. For example, the washing machine produced 

different groups of power signatures because of its components and operation program. Some 

of these power signatures could not be removed as short pause gaps because of a long period 

between their occurrences. The electric cooktop produced two groups of power signatures in 

the data (i.e. P03 and P06) both generated upon the interaction of the occupant. 

 

Table 6.9. The name of HEAs in the testbed along with their associated label of power signatures. 

Cluster IDs shown in bold are generated upon the interaction of the occupant. The labels are generated 

arbitrarily. 

HEAs Group(s) of power signatures 

Washing machine P08 P09 P10 

Kettle P06     

Refrigerator (light) P02     

Electric cooktop  P03 P06  

Toaster P07     

Microwave P04     

Computer P11     

TV P05     

Living room light P02     

Hair dryer P07     

Refrigerator (cooling) P01   

 

The power signatures were labelled with cluster IDs and the steps outlined in Section 0 were 

taken to remove data points of self-regulated HEAs (i.e. the refrigerator). Figure 6.12 shows 

the results of calculating 𝑋2 for the PDF associated with each cluster ID. The ground truth of 

power consumption of the refrigerator showed that the power signature with the value of 

𝑋2 less than the critical value (i.e. 35.172) was associated with the refrigerator. This resulted 

in the removal of the refrigerator turn-on events from the dataset. The 𝑋2 values for the PDF 

of cluster IDs associated with the hair dryer and washing machine were relatively high as 

shown in Figure 6.12. The reason was that these HEAs were only used in specific times during 

the day and therefore their PDFs were more different from uniform distributions than the rest. 
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Figure 6.12. Results of the chi-square test on the hourly frequency of turn-on events of HEAs. 

 

Short pause gaps of the remaining HEAs were removed, which resulted in removal of some 

turn-on events belonging to signature groups P03, P04, P06, P07, and P08. The hair dryer 

caused pause gaps due to the occupant’s behaviour (e.g. turning it on and off) rather than an 

internal operation. Data for the first interaction in those situations were kept and the rest were 

eliminated from power_signatures. Events of P08 were caused by cyclic reversals of the 

washing machine tub during the washing cycle. power_signatures had 754 entries at the end 

of this operation.  

 

The occupant’s locations during the remaining turn-on events were clustered and each group 

was assigned an abstract label as shown in Figure 6.13. The physical location of each detected 

cluster in a room was manually determined based on the ID of the corresponding Kinect and 

coordinates of the cluster centre. Note that most of the turn-on events of the washing machine 

took place when the occupant was performing activities elsewhere (e.g. at the dining table or 

in bed). As a result, the occupant’s locations while visiting dining table and bed were associated 

with a cluster ID. These two detected locations (i.e. L01 and L08) are referred as false locations. 

 

Note that some cluster IDs in Figure 6.13 represent the location of more than one group of 

power signatures. For example, L03 was the location of interactions with both modes of 

operation of the electric cooktop. Similarly, L04 included the occupant’s locations while 

interacting with both the kettle and the toaster.  

 

15.4

85.0 95.0 104.4
115.8 115.0

240.0

200.0
189.0 198.0

142.0

0

50

100

150

200

250

300

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11

X
2

Cluster IDcritical value (35.172)



 

211 

 

 

Figure 6.13. Cluster IDs of the occupant’s locations inside the testbed. 

 

The initial location_rules associating the occupant’s locations with their respective power 

signatures is shown in Table 6.10 (a). The rules associating the power signatures with the 

occupant’s locations (power_rules) are shown in Table 6.10 (b). The confidence of rules 

associating false locations (i.e. L01 and L08) to the groups of power signatures is relatively 

low in Table 6.10 (a). This is the case for their corresponding rules in Table 6.10 (b) with the 

consequent and antecedent parts in the reverse order. The confidence of these rules was low 

because their power signatures were also observed when the occupant visited places other than 

the location specified by the rule. 

 

The Precision metric in the context of generating rules to associate visited locations with the 

groups of power signatures was considered to be the ratio of the number of locations correctly 

associated with their groups of power signatures to the number of all locations associated with 

the groups of power signatures. The Recall metric was the ratio of the number of locations 

correctly associated with the groups of power signatures to the number of locations that should 

have been associated with the groups of power signatures. An accurate set of rules results in a 

high recall, which means the majority of locations in which HEAs that were interacted with 

were detected. An accurate set of rules also results in a high precision, meaning false locations 

were not included in the discovered ones.  
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Table 6.10. (a) Initial location_rules obtained from applying the proposed approach on the training 

dataset (b) power_rules associated with the results. 

Location 

Cluster  

 Power 

signature 

cluster  

Confidence  Location 

Cluster  

 Power 

signature 

cluster  

Confidence 

L01  P08 38.30%  P08  L01 32.80% 

L01  P09 40.80%  P09  L01 39.90% 

L01  P10 20.90%  P10  L01 52.90% 

L02  P04 100%  P04  L02 100% 

L03  P03 45.20%  P03  L03 100% 

L03  P06 33.60%  P06  L03 80% 

L03  P09 21.20%  P09  L03 10% 

L04  P06 78.80%  P06  L04 20% 

L04  P07 21.20%  P07  L04 77.20% 

L05  P02 98.10%  P02  L05 75.20% 

L05  P08 1.90%  P08  L05 5.70% 

L06  P05 88.70%  P05  L06 100% 

L06  P09 11.30%  P09  L06 8.70% 

L07  P11 100%  P11  L07 100% 

L08  P08 34.20%  P08  L08 31.50% 

L08  P09 45%  P09  L08 41.30% 

L08  P10 20.80%  P10  L08 47.30% 

L09  P07 100%  P07  L09 22.80% 

L10  P08 6%  P08  L10 30% 

L10  P02 94%  P02  L10 24% 

 (a) (b)  

 

It was observed that when min_conf is low, rules associating false locations with power 

signatures are selected (see Table 6.10). This decreased the precision of the output rule set. 

Increasing min_conf, on the other hand, caused rules associating locations with less frequently 

observed power signatures to be ignored and a lower level of recall. This parameter was 

experimentally set to 75% which was considered as a good compromise between a high 

precision and a high recall.  

 

The final set of association rules obtained from the training stage is shown in Table 6.11. This 

table shows that the occupant’s locations during interactions with all the monitored HEAs have 

been associated with the power signatures of the respective HEAs. HEAs that had more than 

one mode of operation (e.g. the electric cooktop) caused multiple rules to be generated with 

each rule associating the location of those HEAs with one of their power signatures. For 
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example, rules L03  P03 and L03  P06 associated the location of the occupant in front of 

the electric cooktop with each of its modes of operation.  

 

Two different rules were generated to associate the location L04 to the power signatures 

generated by the kettle and the toaster as shown in Table 6.11. This was because the occupant 

was in the same location in the kitchen while interacting with them.  

 

Each rule in the final rule set was labelled with an activity based on the ground truth 

information. This means that the location and the name of the HEA for each rule were obtained 

from the ground truth and then the occupant’s activity associated with the use of that HEA was 

assigned to the rule. The labels assigned to rules are shown in Table 6.11.  

 

Table 6.11. The output rule set of the training phase associating locations in the house to power 

signatures. 

Location   Power signature  Confidence Activity label 

L02  P04 100% Using microwave 

L03  P03 100% Using the cooktop mode #1 

L03  P06 80% Using the cooktop mode #2 

L04  P06 78.80% Using the kettle 

L04  P07 77.20% Using the toaster 

L05  P02 98.10% Using the refrigerator 

L06  P05 100% Watching TV 

L07  P11 100% Working at the computer 

L09  P07 100% Using the hair dryer 

L10  P02 94% Using the floor lamp 

 

6.3.3 Results of identifying instrumental ADLs 

Testing_Data 2 from the collected dataset (See Section 3.5.3.2) was used to evaluate the 

performance of AIPIA in identifying activities from sensor data. This dataset represents 

instrumental ADLs of an occupant collected from a combination of a single power meter and 

Kinect cameras for a total period of 18 days. The AIPIA approach labelled the detected 

interactions with HEAs as instrumental ADLs based on the labels given to the learned rules in 

Table 6.11. The label given to each detected interaction was verified by comparing it with the 
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ground truth provided by the occupant. The confusion matrix for all labelled activities 

(percentage values) is shown in Table 6.12. There are two extra columns in the tables as 

follows:  

 ‘Missed’ corresponding to cases where interactions with HEAs mentioned in the 

ground truth were not identified. This may happen when the occupant’s location or the 

power signature of the HEA during an interaction with the HEA was not within the 

boundaries of their respective clusters. 

 ‘False detection’ for situations where an automatically generated power signature was 

detected as the occupant’s interaction with an HEA and labelled with an instrumental 

ADL. 

Each value in the diagonal elements of Table 6.12 shows the accuracy of the approach in 

identifying the occupant’s interaction events associated with a specific ADL. These values are 

calculated using Equation 6.3. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑒𝑣𝑒𝑛𝑡

 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑒𝑣𝑒𝑛𝑡 +  𝑚𝑖𝑠𝑠𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

(6.3) 

Many missed interaction events were associated with interactions of the cooktop and the 

electrical kettle as indicated in Table 6.12. The table also shows that most misclassified 

activities were ‘making tea’ and ‘using the cooktop mode #2’ which have been misclassified 

as each other. This was due to the variations in the occupant’s locations during interactions 

with HEAs associated with these activities. The power signatures generated by these two 

activities shared the same cluster ID. Since the locations of these activities were close to each 

other, the AIPIA approach confused these two activities in cases where the occupant was 

making tea but was located within the boundary of ‘using the cooktop mode #2’ or vice versa. 

The diagonal elements showed a classification accuracy of more than 85% for six out of the 

nine activities, with two classes having a rate of 100% as shown in Table 6.12. 

 

The AIPIA approach was modified in another experiment to use only the data captured from 

the power sensor and the accuracy in identifying instrumental ADLs was re-calculated. This 

was carried out to evaluate the impact of combining the occupant’s locations with power 

consumption data on the accuracy of AIPIA in identifying instrumental ADLs. The occupant’s 
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activities were identified in this experiment based on observing specific power signatures on 

the power line. The training stage of AIPIA assigned activity labels to the groups of power 

signatures associated with the category of interaction-generated. The classification stage then 

checked whether a detected power signature falls within the boundaries of a cluster in 

‘interaction-generated’ category. In this case the activity label associated with the cluster was 

assigned to the power signature, hence the identification of instrumental ADLs.  

 

Table 6.12. Confusion matrix for activities (percentage values). The rows represent actual activities, 

and the columns represent the identified activities.  

 Using the 
microwave 

Using the 
cooktop 

mode #1 

Using the 
cooktop 

mode #2 

Using the 

kettle 

Using the 

toaster 

Watching 

TV 

working 
at the 

computer 

Using the 

floor lamp 

Using the 

hair dryer 
Missed 

False 

detection 

Using the 

microwave 94% 0 0 0 0 0 0 0 0 0 %6 

Using the 
cooktop 

mode #1 
0 80% 0 0 0 0 0 0 0 17% 3% 

Using the 
cooktop 

mode #2 
0 0 75% 10% 0 0 0 0 0 9% %6 

Using the 

toaster 0 0 10% 78% 0 0 0 0 0 12% 0% 

Using the 

kettle 0 0 0 0 95% 0 0 0 0 5% 0% 

Watching 
TV 0 0 0 0 0 89% 0 0 0 5% 0 

working at 
the 

computer 
0 0 0 0 0 0 100% 0 0 0 0 

Using the 

floor lamp 0 0 0 0 0 0 0 89% 0 8% 0 

Using the 

hair dryer 0 0 0 0 0 0 0 0 100% 0 0 

 

Equation 6.3 was used to measure the accuracy of this version of the AIPIA. The evaluations 

showed that this version of the approach had a classification accuracy of 75.1%. It was 

observed that it could successfully filter out many of the power signatures generated 

automatically by the thermostatically controlled HEAs as well as the only self-regulating 

appliance in the testbed which was the refrigerator. All power signatures belonging to the 

washing machine (i.e. those belonging to clusters P08, P09, and P10) were mistakenly 

identified as the result of the occupant interacting with HEAs. This was because the approach 

did not have the occupant’s locations during his interactions with the HEAs. This approach 

also could not correctly distinguish activities involving different HEAs which shared the same 

group of power signatures. For example, interactions with the hair dryer were labelled as “using 

the toaster” since the hair dryer and the toaster had similar power signatures and shared the 

same cluster ID. This was also the case for the kettle and the electric cooktop.  
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The classification accuracy of AIPIA when used only power consumption data was much lower 

than the average accuracy of 85.3% obtained when the occupant’s locations were combined 

with power consumption data (the average of diagonal elements in Table 6.12). This 

combination of data enabled AIPIA to distinguish between the usage events of HEAs with 

similar power signatures in the same room. It could correctly label most interactions with the 

kettle and the electric cooktop in the kitchen. None of the power signatures from the washing 

machine were detected by AIPIA as the result of an activity of the occupant since no rule 

associated those power signatures with a location. Most misclassifications were due to the fact 

that the occupant’s locations and/or the detected power signatures were outside of their 

respective cluster boundaries. The combinations of the occupant’s location and the detected 

power signature in those situations did not trigger any rule in the set of learned rules and as 

such the approach did not identify those events as instrumental ADLs.  

6.4 Discussion 

The MinPnts parameter in the algorithm for grouping visited locations was set to zero so every 

visited location that has co-occurred with a power signature (in ‘interaction-generated’ 

category) has the potential to become a cluster. This parameter can be automatically calculated 

from the training dataset according to its size. For example, it can be obtained using 

 

MinPnts = 𝑁𝑜𝑀 ×25%  

 

where NoM indicates the number of months in the training dataset. This choice guarantees that 

a cluster of the occupant’s locations has to have instances in at least 4 days in each month in 

the dataset.  

 

In the results presented in this chapter, the name of HEAs and the occupant’s location for each 

rule were known from the ground truth. In the implementation of the approach only the 

contextual information can be used for the room associated with each rule to select more 

general activity labels. For example, each rule associating a location in the kitchen with a power 

signature can be labelled as a feeding activity because the kitchen is usually visited for 

preparing meals. In this case, each interaction with an HEA in the kitchen is identified as a 

feeding activity.  
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6.5 Summary 

A generic approach was presented to automatically identify instrumental ADLs through 

detecting an occupant’s interactions with HEAs. This approach used an association rule-mining 

algorithm to find mappings between the power signatures of HEAs and the occupant’s physical 

locations. The approach then identified instrumental ADL using the set of association rules. 

This is the first known system that combines data from a power sensor with Kinect depth maps 

to identify instrumental ADLs inside a house.  

 

Evaluations of the approach using the data captured from a real-life setting have shown the 

effectiveness of this approach in terms of detecting interactions with HEAs and identifying 

them as instrumental ADLs. Evaluation results have also verified the improved performance 

of the approach when combining data from Kinect sensors with a power meter. 

 

The next chapter presents an approach for monitoring instrumental ADLs of an elderly person 

living alone. AIPA is employed in the first stage of this approach to generate representations 

of instrumental ADLs based on the occupant’s interactions with HEAs. 
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CHAPTER 7: MONITORING INSTRUMENTAL ADLS USING 

KINECT DEPTH MAPS AND POWER CONSUMPTION DATA 

This chapter presents an approach for monitoring instrumental ADLs of an elderly person 

living alone. Stages of this approach are undertaken to answer the research questions regarding 

monitoring of instrumental ADLs. The chapter first introduces the problem of monitoring 

instrumental ADLs and provides a review of the limitations of existing approaches (Section 

7.1). It then presents the stages of the proposed approach in Section 7.2. This is followed by 

the experimental results of evaluation of the approach in Section 7.3 and a discussion and 

summary in Sections 7.4 and 7.5 respectively.  

7.1 Introduction 

Monitoring instrumental ADLs and identifying long-term deviations from their regular patterns 

are important in the evaluation of an elderly person’s ability to live independently and early 

detection of deteriorating health. Elderly people tend to have stable lifestyles, enabling the 

detection of abnormalities in their rhythm of daily living. Some ADL scales have been 

developed in clinical research to assess the rhythm of daily living of elderly individuals (Xiang 

et al., 2015). These traditional assessment methods depend on filling out questionnaires and 

self-reports and consequently fail to elicit precise answers as the elderly person might have 

difficulty remembering their ADLs or perceive the questionnaire as intrusive.  

 

Advances in telecommunication and sensor technology have led many researchers to propose 

continuous monitoring of elderly people’s interactions with HEAs to assist ADL 

measurements. The proposed approaches involve fitting sensors into the house and acquiring 

data about the subject’s interactions with domestic objects. The performance of instrumental 

ADLs is usually identified from sensor data, and the normal patterns of these activities are 

modelled using machine learning techniques. The model is used to identify long-term 

deviations of the subject’s behaviours from the learned regular patterns. This can allow timely 

intervention of care givers and early detection of diseases such as dementia and Alzheimer’s.  

 

Most existing instrumental ADL monitoring approaches aim at recognising the exact type of 

subject’s activities in order to model their normal behaviour patterns (Peetoom et al., 2015). 

This poses a limitation on real-life implementation of these approaches as individuals can 
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perform a wide range of ADLs in various ways in real-life settings. 

 

Another drawback of approaches that involve recognising ADLs is that the subject is required 

to provide information about the objects in the monitored environment (e.g. the name and 

application of HEAs), which may not be possible for all situations. For example, a set of fuzzy 

rules was developed by Banerjee, Keller, Popescu, and Skubic (2015) to recognise instrumental 

ADLs based on a person’s interactions with domestic objects. A single Kinect sensor was 

installed in the monitored room to provide the depth map of ADLs. The user was required to 

label objects in the Kinect’s field of view and provide information about the room. The set of 

fuzzy rules was then able to recognise only few instrumental ADLs in new data based on the 

information provided by the user.  

 

The choice of sensors deployed by an instrumental ADL monitoring approach along with the 

adopted machine-learning technique is important. The cost, ease of use, and privacy are key 

aspects of choosing sensors. The most practical and successful approach is considered to be 

one which involves the use of a machine learning technique for ADL monitoring that is robust 

to fine variations in ADLs of an individual and requires little training or configuration effort in 

a household.  

 

This chapter presents a person-tailored unsupervised approach, called AMI-ADLs, for 

monitoring the pattern of performing instrumental ADLs without a need for recognising the 

exact type of ongoing ADLs. AMI-ADLs measures a set of activity features, from an unlabelled 

dataset of Kinect depth maps and house power consumption, to quantify important aspects of 

the occupant’s normal behaviours. The training values of these features are automatically 

modelled by fuzzy rules in order to characterise the daily activity level of the occupant. Sensor 

data for each new day are then similarly processed and the long-term deviations of activity 

level from the occupant’s learned profile are reported to a caregiver.  

7.2 The proposed approach 

An unsupervised fuzzy approach, called AMI-ADLs, is proposed to monitor the habitual 

performance of instrumental ADLs based on simple features extracted from the occupant’s 

daily interactions with HEAs. The layout of this approach which consists of three stages is 

shown in Figure 7.1. An unlabeled training dataset of the home overall power consumption 
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(obtained from the power sensor) and the occupant’s skeleton data during ADLs (obtained from 

the Kinect sensors) is used in the first stage to identify the occupant’s interactions with HEAs. 

The detected appliance usage events form representations of the occupant’s instrumental 

ADLs. Each representation includes a unique arbitrary label given to the activity of using the 

HEA and the time of the usage event. An example of this representation is  

 

Activity:  Using 𝐻𝐸𝐴1    𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑚𝑝: 10: 33: 14  11-11-2015 

 

where Using 𝐻𝐸𝐴1is an arbitrary label given to the activity of using a specific HEA inside the 

home and 10: 33: 14 is the time of the occupant’s interaction with 𝐻𝐸𝐴1.  

 

The second stage is to automatically generate a model of instrumental ADLs. It first calculates 

simple features from the habitual performance of instrumental ADLs. A fuzzy rule set is then 

learned in this stage to model these features. This rule set is used in a fuzzy inference system 

at Stage 3 to detect deviations in the habitual performance of instrumental ADLs in new data. 

The output of Stage 3 is daily reports about deviations of instrumental ADLs from the learned 

normal behaviours of the occupant. By observing drifts from normal behaviour throughout 

time, caregivers can identify significant changes in the person’s wellbeing. Details of these 

stages are described in the following sections. 

 

7.2.1 Stage 1: Generating representations of instrumental ADLs 

This stage addresses the first research sub-question in monitoring instrumental ADLs. The 

input to this stage is a training dataset supplied by a combination of Kinect cameras and a 

power sensor. The training dataset is processed by AIPIA (see Chapter 6) to generate a 

timestamped list of detected interactions with HEAs as the representations of instrumental 

ADLs.  

 

AIPIA generates rules to associate the occupant’s locations inside the house with the power 

signatures of specific HEAs. Each rule in the association rule set is then given an arbitrary label 

(e.g. Using HEA1, Using HEA2,…) to indicate the usage of different HEAs. This is to 

differentiate the usage events of different HEAs. Note that AMI-ADLs does not require the 

actual name of the monitored HEAs. Given the occupant’s current location and a detected 

power signature, the rule set determines whether the power signature is the result of the 

occupant’s interaction with an HEA and the label of the rule is assigned to that usage event.  
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Figure 7.1. The workflow of AMI-ADLs. 
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This rule set is employed by the procedure described in the classification stage of AIPIA (see 

Section 6.2.2) to identify and to label the occupant’s interactions with HEAs in the training 

dataset. The output of this operation is a list of the usage events of HEAs along with their 

timestamps. Table 7.1 shows an example of this list. Column “Activity” in this table indicates 

the label of the rule that associates the occupant’s location with the power signature of the 

respective HEA. Note that the timestamps of the first four appliance usage events are very 

close, indicating that they may belong to the same activity (e.g. preparing breakfast in the 

morning). Activity “Using HEA1” has been repeated multiple times across the day indicating 

that the HEA associated with this activity plays a significant role in the occupant’s daily 

routine.  

 

Table 7.1. An example of the representations of instrumental ADLs 

Activity Timestamp 

Using HEA1 10-Oct-15, 07:34:47 

Using HEA1 10-Oct-15, 07:25:14 

Using HEA2 10-Oct-15, 07:42:43 

Using HEA3 10-Oct-15, 07:42:55 

Using HEA1 10-Oct-15, 08:52:41 

Using HEA4 10-Oct-15, 09:23:10 

Using HEA2 10-Oct-15, 11:23:08 

Using HEA1 10-Oct-15, 12:23:14 

Using HEA1 10-Oct-15, 16:08:39 

 

7.2.2 Stage 2: Modelling the performance of instrumental ADLs 

This stage addresses the second research sub-question in monitoring instrumental ADLs. It 

takes the representations of activities from the previous stage and models important aspects of 

instrumental ADLs. This stage involves two steps. In the first stage, two simple activity features 

are estimated based on the training representations of instrumental ADLs, and the normal 

variation ranges of these activity features are calculated. In the second stage, fuzzy rules are 

generated to model the normal variation ranges of the activity features.  

 

Calculating activity features from representations of instrumental ADLs: Two simple 

activity features are calculated to quantify the daily instrumental ADLs with regards to their 
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regularity and frequency. These features which are (1) regularity and (2) frequency are 

explained below. 

 

(1) Regularity: Instrumental ADLs are carried out in different times throughout the day. 

Considering that elderly people usually follow a constant daily routine, the ratio of the length 

of time the elderly take to perform instrumental ADLs to the overall duration they spend at 

home is almost constant. A study by Ranjan and Whitehouse (2015) suggested that a substantial 

change in the regularity of instrumental ADLs lasting for several days can feature a potential 

warning for a decline in the functional and cognitive abilities of the person.  

 

Regularity characterises how regularly the occupant interacts with HEAs (performs 

instrumental ADLs) on a daily basis. Each day is divided into 24 hourly periods. Let 𝐼𝑖 show 

the number of interactions with HEAs detected for each period 𝑖 (1 ≤ 𝑖 ≤ 24) and let Boolean 

𝑂𝑖 show whether the occupant is observed by any Kinect sensor inside the home during that 

period. Each period i with 𝐼𝑖  greater than zero is called a period of activity and each period with 

𝑂𝑖 = 1 is called a period of presence. Regularity for each day is defined by the ratio of periods 

of activity to periods of presence, as shown in Equation 7.1.  

 

𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =  
𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑜𝑓 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒
 

 (7.1) 

The reason why ‘periods of presence’ are taken into account instead of 24 periods of the day 

is to ensure that periods in which the occupant is not inside the house (e.g. during weekends) 

do not affect the estimation of this feature. The regularity of instrumental ADLs in this case is 

measured based on only those time periods when the occupant is present in the house. 

 

The regularity factor is calculated for every day in the representations of instrumental ADLs. 

This results in a series named 𝑅𝐸𝐺𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = {𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦1, ⋯ , 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝐷} in which 

𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑗 indicates regularity for day j (1 ≤ 𝑗 ≤ 𝐷) and is calculated via Equation 7.1. 𝐷 

is the total number of days in the training dataset.  

 

(2) Frequency: In addition to the regularity of interactions with HEAs, it is important to 

monitor their frequency. This is because a decline in the frequency of instrumental ADLs can 
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be attributed to a decline in the occupant’s functional ability and health (Ranjan & Whitehouse, 

2015). Frequency for a given day quantifies how similar the pattern of using important HEAs 

is to the occupant’s daily routine. Important HEAs are those that have been used during most 

days of capturing the training dataset and thus play an important role in the occupant’s daily 

routine.  

 

The example of representations of instrumental ADLs in Table 7.1 shows that the activity label 

in each record characterises the usage of a specific HEA. The level of importance of using each 

HEA in these records is calculated as the ratio of how many days the HEA has been used to 

the total number of days in the training dataset.  

 

Assume that the occupant’s interactions with HEAs during the training period have resulted in 

a set of A different association rules each having a unique activity label. A choice for these 

labels can be “using HEA1,…, using HEAA”. A binary variable 𝐵𝑖,𝑗 is defined such that i (1 ≤

𝑖 ≤ 𝐴) and j (1 ≤ 𝑗 ≤ 𝐷) indicate the index of an activity and a day in the training dataset, 

respectively. 𝐵𝑖,𝑗 is equal to one only if activity label i has been observed during day j in the 

training dataset (see Equation 7.2). 

 

𝐵𝑖,𝑗 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑙𝑎𝑏𝑒𝑙 ′𝑖′𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑑𝑎𝑦 ′𝑗′

0,                                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(7.2)  

 

The level of importance for each activity label i is calculated using Equation 7.3. 

 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒i =
∑ 𝐵𝑖,𝑗
𝐷
𝑗=1

𝐷
 

(7.3)         

Let the number of times an activity i is observed during a given day be denoted by 𝐶𝑜𝐴𝑖. The 

frequency for that day is obtained by Equation 7.4. 
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𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =∑CoAi . 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒i

A

i=1

 

(7.4)  

 

where A is the number of different activity labels in the representations of instrumental ADLs. 

frequency is calculated for each day in the training dataset to obtain a normal variation range 

for this feature. This operation results in a series named 𝐹𝑅𝐸𝑄𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =

{𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦1,⋯ , 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝐷} in which D indicates the total number of days in the training 

dataset and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑗 (1 ≤ 𝑗 ≤ 𝐷) denotes denoted frequency calculated for day 𝑗. For 

example, assume that representations of instrumental ADLs from Stage 1 involve instances of 

four different activities labelled using HEA1, using HEA2, using HEA3, and using HEA4. Also, 

let the count of these activities for each day to be those in Table 7.2. Note that in this example 

D is 5. 

 

Table 7.2. An example of the daily number of activities involving interaction with HEAs 

Activity 

Day 

Using HEA1 (i=1) Using HEA2 (i=2) Using HEA3 (i=3) Using HEA4 (i=4) 

 1 𝐶𝑜𝐴1=15 𝐶𝑜𝐴2=4 𝐶𝑜𝐴3=1 𝐶𝑜𝐴4=2 

 2 𝐶𝑜𝐴1=16 𝐶𝑜𝐴2=7 𝐶𝑜𝐴3=0 𝐶𝑜𝐴4=4 

 3 𝐶𝑜𝐴1=11 𝐶𝑜𝐴2=6 𝐶𝑜𝐴3=2 𝐶𝑜𝐴4=1 

 4 𝐶𝑜𝐴1=10 𝐶𝑜𝐴2=2 𝐶𝑜𝐴3=0 𝐶𝑜𝐴4=0 

 5 𝐶𝑜𝐴1=8 𝐶𝑜𝐴2=0 𝐶𝑜𝐴3=2 𝐶𝑜𝐴4=2 

 

The values of frequency for these five days in this example are calculated as shown in Figure 

7.2. It can be seen that ‘𝑈𝑠𝑖𝑛𝑔 𝐻𝐸𝐴1’ has been carried out every day and thus received an 

importance of 100%. ‘𝑈𝑠𝑖𝑛𝑔 𝐻𝐸𝐴3’ was observed only on 50% of days, hence a lower 

importance. Day 2 has the highest frequency of instrumental ADLs whereas Day 5 has the 

lowest as shown in Figure 7.2. During day 5 ‘𝑈𝑠𝑖𝑛𝑔 𝐻𝐸𝐴1has been carried out much less than 

on day 2. This highly affected frequency for day 5, since 𝑈𝑠𝑖𝑛𝑔 𝐻𝐸𝐴1 has an importance of 

100%. 
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Figure 7.2. An example of frequency of four activities shown in Table 7.2. 

 

Modelling activity features via fuzzy rules: In this step a set of fuzzy rules is developed to map 

the activity features into different levels of performing instrumental ADLs. Table 7.3 shows an 

example where each rule is in the form of:  

 

Rule Ri: IF regularity is 𝐴𝑚
1  AND 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 is 𝐴𝑛

2  THEN Activity_level is 𝐵𝑘” 

 

Ri is the i-th rule, regularity and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 are the inputs to the fuzzy rule, Activity_level is 

the output variable which describes how similar the regularity and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 are to those of 

the occupant’s normal behaviour. 𝐴𝑚
1  and 𝐴𝑛

2  are the fuzzy sets describing regularity and 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, respectively. Parameters of these fuzzy sets are learned from the training dataset. 

𝐵𝑘 is the fuzzy set for the output variable. 

 

Table 7.3. An example of a fuzzy rule set modelling the variation range of regularity and frequency. 

 Antecedent Consequent 

Index Regularity Frequency Activity level 

R1 Low Low VeryLow 

R2 Normal Low Low 

R3 Normal Normal Normal 

⋮  ⋮  ⋮  ⋮  

 

Determining these rules involves two operations. The first operation is defining fuzzy sets for 

activity features (i.e. regularity and frequency) where a data-driven technique is used to 

determine the mapping of features values to membership of linguistically labelled fuzzy sets. 

A number of fuzzy sets are also defined over the output variable. The second operation is 

19.8

24

17.2

11.6
10

0

5

10

15

20

25

30

day 1 day 2 day 3 day 4 day 5

Fr
eq
u
en
cy



 

227 

 

determining the relation between fuzzy sets of input and output variables where the fuzzy rule 

set is generated. 

 

7.2.2.1 Defining fuzzy sets for activity features 

 Fuzzy sets are defined over activity features to convert their crisp values into fuzzy labels. 

These labels quantify the occupant’s performance of instrumental ADLs. For example, the 

value of frequency might be mapped to the linguistic label “high” if the occupant uses too many 

HEAs during the day. Three fuzzy sets are defined over each activity features, namely “low”, 

“medium”, and “high”. These fuzzy sets for regularity are obtained by calculating the mean 

and standard deviation of the training samples in 𝑅𝐸𝐺𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. The mean value is denoted by 

𝑚𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦  and the standard deviation value is shown as 𝜎𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 .  

 

The associated membership functions for "low", "𝑛𝑜𝑟𝑚𝑎𝑙", and "high" are defined as 

equations 7.5, 7.6, and 7.7, respectively. All of these fuzzy sets have Gaussian membership 

functions. The left horizontal side of the function for “low” starts from 

𝑚𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 −4𝜎𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 and the right horizontal side of the function for “high” starts from 

𝑚𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦+4𝜎𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦  of the input domain. This is to make sure that input values lying 

outside the domain interval receive a degree of membership in a fuzzy set. 

 

µlow
1 (x) =

{
 
 

 
 

e

−(x−(mregularity−4σregularity ))
2

2 (𝜎regularity
 )2 , x ≥ (mregularity−4σregularity )

  
1                                                                                   , otherwise   

 

           (7.5) 

 

µnormal
1 (x) = e

−(x−mregularity)
2

2 (𝜎regularity
 )2

 

                     (7.6) 
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µhigh
1 (x) =

{
 
 

 
 

e

−(x−(mregularity+4σregularity ))
2

2 (𝜎regularity
 )2 , x ≥ (mregularity+4σregularity )

  
1                                                                                   , otherwise   

 

           (7.7) 

 

An example of these fuzzy sets defined over regularity is shown in Figure 7.3. Note that in this 

example 𝑚𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦  and 𝜎𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦  are 0.4 and 0.07 respectively. regularity receives a higher 

membership degree from “normal” if it falls within the range of [𝑚𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 −

2𝜎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ,𝑚𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 2𝜎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦].  

 

 

Figure 7.3. An example of fuzzy sets defined over regularity. 

 

Three fuzzy sets are similarly defined over frequency by using the mean and standard deviation 

of training samples in 𝐹𝑅𝐸𝑄𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. The mean value is denoted as 𝑚𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 and the standard 

deviation is shown as 𝜎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦. The membership functions associated with fuzzy sets 

"low", "𝑛𝑜𝑟𝑚𝑎𝑙", and "high" are defined as equations 7.8, 7.9, and 7.10 respectively.  

 

µlow
2 (x) =

{
 
 

 
 

e

−(x−(mfrequency−4σfrequency ))
2

2 (𝜎frequency
 )2 , x ≥ (mfrequency−4σfrequency )

  
1                                                                                   , otherwise   

 

(7.8)  

 



 

229 

 

µnormal
2 (x) = e

−(x−mfrequency)
2

2 (𝜎frequency
 )2

 

                     (7.9) 

 

µhigh
2 (x) =

{
 
 

 
 

e

−(x−(mfrequency+4σfrequency ))
2

2 (𝜎 frequency
 )2 , x ≥ (mfrequency+4σfrequency )

  
1                                                                                   , otherwise   

 

           (7.10) 

 

The space of the output variable activity_level is limited to [-1 +1]; a value near -1 means that 

the occupant’s instrumental ADLs showed a high downward drift from the normal routine in 

terms of their frequency and regularity. A value of around +1 indicates the opposite. A value 

of around zero shows normal regularity and frequency of instrumental ADLs during the day. 

The range of this variable is composed of five fuzzy sets “VeryLow”, “Low”, “Normal”, High” 

and “VeryHigh”. Figure 7.4 shows the fuzzy partition of this range into the fuzzy sets. 

 

 

Figure 7.4. Fuzzy sets defined over activity_level. 

 

7.2.2.2 Determining fuzzy rules 

Nine fuzzy rules are defined to characterise the relationship between the input fuzzy variables 

(i.e. regularity and frequency) and activity_level. A simple way to demonstrate these rules is 

through an IF-THEN table that captures the relationship between fuzzy variables in the 

antecedent and consequent of the rules. This is illustrated in Table 7.4. Each rule in this table 

indicates the activity level of the occupant given the regularity and frequency of instrumental 

ADLs.  
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Table 7.4. Table of fuzzy rules to monitor instrumental ADLs 

Rule 
If Then 

Frequency Regularity Activity_level 

R1 low Low very_low 

R2 low Normal Low 

R3 low High High 

R4 normal Low Low 

R5 normal Normal Normal 

R6 normal High High 

R7 high Low Low 

R8 high Normal High 

R9 high High very_high 

 

Note that when frequency is low and regularity is high, the activity_level is determined to be 

high. This situation suggests that although there are fewer instrumental ADLs than in the 

normal profile, the occupant has been active for an extended duration of time. On the contrary, 

high frequency and low regularity lead activity_level to be low, which suggests that the subject 

has spent less time to perform instrumental ADLs. For example, they might have skipped 

preparing a meal in the kitchen.  

 

7.2.3 Stage 3: Detecting abnormal behaviours 

This stage addresses the third research sub-question in monitoring instrumental ADLs. The 

fuzzy rule set developed in the previous stage is used by a fuzzy inference system to monitor 

the performance of instrumental ADLs in new data. The outputs of this stage are customised 

reports showing the trends of the subject’s activity level over a long-term period (e.g. days or 

weeks). These outputs can be interpreted intuitively by care givers to identify deviations from 

normal behaviours.  

 

Sensor data of each new day are similarly processed using the procedure described in Section 

6.2.2 to identify appliance usage events. This results in a list of instrumental ADLs in the form 

shown in Table 7.1. The daily values of regularity and frequency are then calculated using 

equations 7.1, and 7.4 respectively. These values are converted into their respective fuzzy 

labels and evaluated by the FIS to determine the occupant’s activity level for the day. 

 

Among different types of FIS, Mamdani is implemented because it is robust and involves 

simplified calculations. This type of FIS consists of a fuzzifier, a fuzzy rule set, a fuzzy 

inference engine, and a defuzzifier. For each input variable, the fuzzifier determines the 
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degrees of membership of a crisp value in the fuzzy sets defined over the variable. The degrees 

of membership of the input in the fuzzy sets over variables are employed by the inference 

engine to evaluate the fuzzy rules and to generate the fuzzy output of the system.  

 

The ‘min’ operator is used to calculate both “AND” and “THEN” parts of the fuzzy rules. Since 

fuzzy sets in the input variables might have overlapping ranges, an input crisp value can be a 

member of multiple fuzzy sets. This causes the membership degree of a fuzzy set at the 

consequent of multiple rules to be nonzero which means multiple rules are triggered. The fuzzy 

sets that represent the outputs of the triggered rules are combined to generate the fuzzy output 

of FIS. This is carried out through a process called aggregation. The input of the aggregation 

process is the list of truncated membership functions returned by the consequent of the 

triggered rules. The output of the aggregation process is a fuzzy set for the output variable.  

 

The aggregation operator ‘max’ is used here. The fuzzy set for the output variable is therefore 

the maximum of the output fuzzy sets in the consequent of the triggered rules (Equation 7.11). 

 

𝑓𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑙𝑒𝑣𝑒𝑙  =  𝑚𝑎𝑥 (𝐵𝑘𝑅1
 , 𝐵𝑘𝑅2

 , . . . , 𝐵𝑘𝑅𝑛
 ) 

 (7.11) 

𝐵𝑘𝑅𝑖 in the above equation represents the degree of membership in the fuzzy set in the 

consequent of the i-th triggered rule.  

 

The defuzzification step of the FIS converts the fuzzy set for the output variable into a crisp 

value, i.e. activity_level. The centre of gravity method is used here as the defuzzifier which 

outputs the centre of the gravity of the combined fuzzy set of the output variable (see Equation 

7.12).  

 

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙 =
∫𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙  ×𝑑 ( 𝑓𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙)

∫ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙  ×𝑑 ( 𝑓𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙)
 

(7.12)  

For each day in the new data, the occupant’s activity level is reported to the caregiver via a 

notice generated in the form of: 
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“The activity level of the occupant was X on dd/mm/yy”     

(7.13) 

X represents the fuzzy set with the maximum matching measure for activity_level of that day 

and is obtained from Equation 7.14.  

 

𝑋 = arg𝑚𝑎𝑥𝑘=1
5 (𝜇𝐵𝑘(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙)) 

(7.14) 

𝜇𝐵𝑘(𝑥) in Equation 7.14 represents the membership function of fuzzy set 𝐵𝑘. dd/mm/yy 

indicates the date at which instrumental ADLs are monitored. One example of the generated 

notice can be: 

 

“The activity level of the occupant was normal on 02/04/15” 

 

The interpretation of activity_level for a given day is simple. This figure would be around zero 

if the frequency and the regularity of instrumental ADLs for the day are close to those 

associated with the occupant’s normal behaviour. This indicates that the occupant maintained 

the normal routine throughout the day. If this index is below zero, it means that the occupant 

performed instrumental ADLs either less frequently or less regularly than they normally do. If 

this situation persists for consecutive days, it indicates a need for medical help. If this index is 

around one, it shows a major upward drift from the normal daily routine. For example, this 

situation may occur if the occupant is awake most of the night (as a result of an illness) and 

hence more usage events of HEAs.  

 

The daily values of activity_level along with their respective fuzzy terms are stored in a 

database for the purpose of generating visual representations for a given long-term period. 

Plotting values of activity_level across this period allows long-term trend analyses of the 

occupant’s behaviours. The x axis in this plot shows the days during which monitoring happens 

and the y axis indicates activity_level whose value ranges between -1 to 1. Observing trends of 

changes in activity_level can help caregivers to identify persisting drifts from the daily routine 

as warning signs (Noury et al., 2011).  

 

A Gantt chart is also generated for a given period to represent the time span of each activity 

level. On the vertical axis of this chart there is a list of linguistic labels associated with 
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activity_level (i.e. “very low”, “low”, “normal”, “high”, and “very high”) and the horizontal 

axis represents the time span of the monitoring period broken down into days. Activity levels 

are represented by horizontal bars of varying lengths; the position and length of each bar 

reflects the start date, duration and end date for the respective period during which the activity 

level has been detected. This chart facilitates interpretation of activity levels of instrumental 

ADLs, identification of when each deviation from normal behaviour begins and ends, and 

estimation of how long each period of deviation is.  

 

The Gantt chart of an imaginary two-week period is shown in Figure 7.5. The occupant’s 

behaviour is shown as normal for the first four days followed by a drift to a state of being 

overactive during the next two days. This upward trend continues as the occupant is detected 

to be highly overactive during the following four days. The occupant is again normally active 

during the last three days of the period. 

 

 

Figure 7.5. Example of a Gantt chart for a two-week period of monitoring. The horizontal axis shows 

the days and the vertical axis indicates the activity level during each day. 

7.3 Experimental results 

The dataset captured from the testbed (see Section 3.4.3.2) was used to evaluate the 

effectiveness and robustness of AMI-ADLs. Section 7.3.1 provides a validation of the 

effectiveness of this approach and Section 7.3.2 evaluates its robustness in regards to errors in 

the identification of the occupant’s instrumental ADLs. 

 

7.3.1 Evaluating the performance of AMI-ADLs 

The training dataset captured from the testbed was used to develop the stages of AMI-ADLs. 



 

234 

 

Daily data in this dataset simulated a normal routine of ADLs associated with an elderly person 

living alone. A rule set was obtained from the first stage of AMI-ADLs to associate the 

occupant’s locations with the power signatures. This rule set was shown in the previous chapter 

(see Table 6.11). The rules were labelled with the names of their respective HEAs (see 

“Activity labels” in Table 6.11) for the sake of presenting results to readers. In an 

implementation of AMI-ADLs, these rules can be assigned arbitrary labels and there is no need 

for the names of their respective HEAs to be stipulated. 

 

Using this rule set the occupant’s interactions with HEAs were detected in the training dataset. 

These interaction events were then labelled based on labels that were given to the rules which 

resulted in obtaining the representations of instrumental ADLs in the form of those shown in 

Table 7.1. The representations of instrumental ADLs were then used to perform steps if Stage 

2. Regularity of instrumental ADLs was measured for each day in the training dataset as shown 

in Figure 7.6.  

 

 

Figure 7.6. Regularity values obtained for 30 days of the training period. 

 

The indices 𝑚𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦  and 𝜎𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 were estimated based on the regularity values. The 

former was estimated to be 0.39 while 𝜎𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦  was 0.066. Three fuzzy sets were then 

defined to represent regularity (see Figure 7.7). 
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Figure 7.7. Fuzzy sets learned from the training dataset for regularity.  

 

The importance of different activities was calculated, as shown in Figure 7.8. The refrigerator 

and kettle received an importance of 100% because they had been used every day while 

capturing the training dataset. The hair dryer had been used 82% of the days, the computer 48% 

of the period, and “using cooktop mode #2” occurred 27% of the period, which was the least 

frequent. The other HEAs had been employed almost every day resulting in an importance of 

over 85%. 

 

 

Figure 7.8. The importance of different activity labels calculated from Stage 2. 

 

The value of frequency was calculated for each day in the training dataset based on the 

importance of using different HEAs (see Figure 7.9). 
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Figure 7.9. Frequency values calculated based on the training data. 

 

The indices 𝑚𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  and 𝜎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 were estimated based on these values to be 23.46 and 

5.266, respectively. Three fuzzy sets shown in Figure 7.10 were accordingly defined to 

represent frequency. 

 

 

Figure 7.10. Fuzzy sets learned from the training dataset to represent frequency. 

 

Figure 7.11 shows the input–output surface plot of the developed FIS based on fuzzy sets 

defined over regularity and frequency. This figure indicates that the use of the centre of gravity 

method for defuzzification provides smooth transitions between different levels of activity. 
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Figure 7.11. The surface plot of the developed FIS. 

 

Testing_data 2 from the collected dataset was used to validate the ability of the system to 

identify changes in the daily routine of the monitored person. The data involved two 9-day 

recordings each featuring a scenario of deviation from routine instrumental ADLs. Each 

recording showed three periods: normal behaviour (the first three days), slight deviation (the 

second three days) and major deviation (the last three days). The deviation from the normal 

behaviour in the first recording was upward which means the occupant became more active 

throughout the day and used more HEAs. The deviation in the second recording was 

downward, showing that the occupant used fewer HEAs during shorter periods of the day. 

These scenarios were defined according to cognitive impairments that might affect the elderly 

people’s activities in real-life settings (Gustafson, Brun, Johanson, Passant, & Risberg, 1995).  

 

The activity_level and its respective linguistic label were obtained for each day in these 

recordings. The linguistic labels were compared with the ground truth of the scenarios to see 

whether they reflect the correct level of deviation from the normal daily routine. It was 

observed that the system associated normal to the three normal days at the beginning of each 

recording and generated a different output for the subsequent days in which instrumental ADLs 

were carried out differently from the normal routine. Details of the two testing scenarios with 

the outputs obtained from the system are explained below.  

 

A downward deviation from the normal routine of instrumental ADLs: This scenario was 

devised to test how effectively AMI-ADLs detects a downward deviation from the normal 
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profile of instrumental ADLs. This decline usually happens as a result of deteriorating health, 

such as cognitive impairment and fatigue (Noury et al., 2011).  

 

This scenario was carried out over a period of nine days. The occupant performed instrumental 

ADLs according to his daily routine during the first third. He started to skip breakfast and 

performed fewer instrumental ADLs (e.g. using the refrigerator) during the second third. 

During the last three days, he spent most of daytime in the living room and skipped two major 

meals (i.e. breakfast and lunch).  

 

 

(a) 

 

(b) 

Figure 7.12. (a) The plot for activity_level and (b) the respective Gantt chart for a test scenario 

featuring a downward deviation from the normal routine of instrumental ADLs. 
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(a) and (b) is shown in Figure 7.12. Figure 7.12 (a) clearly shows a noticeable downward trend 

in activity_level. The activity level fluctuated around zero for the first three days indicating a 

normal behaviour. The system correctly labelled this period as “normal”. regularity and 

frequency decreased during the second three days and thus the values of activity_level dropped 

to around -0.40. The activity levels during those days were labelled “low”. activity_level for 

days 7 to 9 fell down substantially to around -0.85, hence “very less” in the figure.  

 

An upward deviation from the normal routine of instrumental ADLs: This scenario was 

devised to evaluate how effectively AMI_ADLs could detect a rising level of instrumental 

ADLs. This increase may occur when an elderly person becomes insomniac and stays active 

around the house for a longer period which in turn increases night-time or early morning 

activities. Another possible situation where this may occur is when a wandering or agitated 

elderly person with cognitive deterioration stays active for an extended duration and repeats 

some instrumental ADLs several times during the day (e.g. making the afternoon tea multiple 

times) (G. C. Franco et al., 2008). 

 

The recording for this scenario also involved a period of nine days. The occupant performed 

instrumental ADLs according to his daily routine during the first three days. This was changed 

during the second three days as he simulated the behaviour associated with insomniac elderly 

people. He stayed awake for a longer period and interacted with more HEAs. For example, he 

prepared a snack late at night in the kitchen or interacted with computer and TV more than 

usual in the evening. The occupant simulated a higher deviation from the daily routine during 

the last three days. He woke up earlier than usual (5:30 AM instead of 7 AM), went to bed late, 

and carried out instrumental ADLs multiple times during the day. Parts (a) and (b) in Figure 

7.13 respectively show the plot of activity_level values and the Gantt chart of their 

corresponding linguistic labels. 

 

The values of activity_level show an overall upward trend in Figure 7.13 (a) due to an increase 

in the regularity and frequency of instrumental ADLs across the three periods. The first three 

days were labelled as normal since their activity_level values were around zero (see Figure 

7.13 (b)).  
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(a) 

 

(b) 

Figure 7.13. (a) The plot of activity_level values and (b) the respective Gantt chart obtained from 

monitoring a testing scenario of being over active.  

 

The activity_level during the second three days increased and therefore was labelled as high as 

shown in Figure 7.13 (a). This was because unusual numbers of electrical events were 

identified in the early morning and late night of these days which resulted in the daily values 

of regularity and frequency to fall outside their normal variation range. 

 

The activity_level was correctly flagged as very high for the last third of the recording (see 

Figure 7.13 (b)). The reason was that the number of appliance usage events almost doubled and 

the duration in which the occupant was active in the house was also longer than usual duration. 

As a result, activity_level went beyond 0.7 for the last period of the recording (see Figure 7.13 

(a)).  
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7.3.2 Robustness of AMI-ADLs in regards to errors in identifying instrumental ADLs  

The experimental evaluations in Chapter 6 suggested that the labels given to the occupant’s 

interactions with HEAs are not always accurate. Evaluating the performance of AIPIA showed 

an error rate of approximately 15%. This error in identifying instrumental ADLs occurred in 

the following situations: 

 

1. Misclassification of instrumental ADLs: this happens when AIPIA assigns wrong labels 

to the occupant’s interactions with HEAs. 

 

2. Missing instrumental ADLs: this happens in case the occupant interacts with a 

monitored HEA and the approach cannot identify this event. 

 

3. Identifying automatically generated power signatures as a result of the occupant’s 

interactions with HEAs: although AIPIA performs post-processing operations to 

eliminate automatically generated power signatures, some may remain in the processed 

data. Depending on the occupant’s location when those power signatures occur, 

association rules might fire and identify the power signatures as instrumental ADLs.  

 

This section demonstrates the impact of these errors on the performance of the FIS developed 

in Stage 3 to monitor instrumental ADLs. Testing_Data 2 which involved sensor data for 18 

days (two nine-day recordings) with different levels of instrumental ADLs was used. Based on 

the ground truth information for the usage of HEAs, all of the occupant’s interactions with 

HEAs were manually assigned labels. This resulted in a list of instrumental ADLs with their 

timestamps in the form of those shown in Table 7.1. The FIS developed in Stage 3 of AMI-

ADLs was then used to assign a linguistic label to the activity level of each day. These linguistic 

labels were used as the ground truth of the activity level for these 18 days.  

 

To simulate a specific error rate in identifying instrumental ADLs of each day in the list, the 

labels of instrumental ADLs were modified according to three situations mentioned above. 

Given an error rate 𝑒, 𝑒 3⁄  of instrumental ADLs of the day were randomly selected and deleted. 

Another 𝑒 3⁄  were randomly selected and their labels were replaced by randomly chosen labels, 

and the other 𝑒 3⁄  were added to the day with a randomly chosen label and a random time of 

the day. The resulting list of instrumental ADLs was then processed by the FIS to obtain labels 
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for the activity levels of different days. The ratio of days that received a label different from 

their ground truth to the total number of days in the list was then calculated.  

 

The process described above was repeated for values of e from 0 to 1 with steps of 0.05. The 

results in Figure 7.14 show the error rate in identifying instrumental ADLs on the horizontal 

axis and the percentage of days labelled differently from their ground truth on the vertical axis. 

Results in this figure suggest that the developed FIS possess a high level of robustness in 

regards to errors in the detection of instrumental ADLs. From Chapter 6 the error rate of 

identifying instrumental ADLs was estimated to be around 15%. The results in this figure show 

that only 6% of the days may be labelled incorrectly by AMI-ADLs because of this error rate, 

hence the robustness of this approach in regards to errors in the detection of instrumental ADLs.  

 

 

Figure 7.14. Results of evaluating the robustness of the developed FIS in regards to error in the 

detection of instrumental ADLs. x axis shows the error rate in detecting instrumental ADLs and y axis 

represents the percentage of inaccurately categorised days. 

7.4 Discussion 

This chapter examined the use of an unsupervised fuzzy approach to monitor instrumental 

ADLs of an elderly person living alone. For each monitoring day, the index of the occupant’s 

activity level was reported to caregivers in the form of a number and its corresponding 

linguistic label. This output is more intuitive to caregivers in comparison with the output from 

the ADL monitoring approach in Belley et al. (2014) where a list of events in which an 

appliance is switched on and off is reported to caregivers. 

 

Noury et al. (2011) used a similar index to report the daily activity level of an elderly to 

caregivers and reported that this index is intuitive and informative to professionals working in 
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the field. The index of activity level reported by Noury et al. (2011) ranged from 0 to 1 and 

decreased in both cases of the occupant being less active than usual or over active. This is 

different from the output of AMI-ADLs as it ranges from -1 to 1 and thereby provides the 

direction of deviation from the normal activity level. 

 

Although the index of activity level has no dimension, its trend can be monitored for the same 

occupant during a given period. This is because the normal variation ranges of activity features 

are tailored to the daily routine of the monitored person. Obtaining similar values of this index 

during a monitoring period for a person indicates that similar patterns of instrumental ADLs 

have been followed by that person. Obtaining similar values of this index from another 

individual does not necessarily mean that the second person performed patterns of ADLs 

similar to the first person’s. 

 

The comparison of AMI-ADLs with existing approaches for monitoring instrumental ADLs 

was challenging. No existing approach has been described which uses unlabelled data from a 

combination of Kinect depth maps and power consumption of the house to monitor 

instrumental ADLs of the elderly. Defining comparison standards between AMI-ADLs and 

existing approaches was not possible. Yet it can be argued that an advantage of AMI-ADLs 

over other approaches is that it involves a single power sensor and a few Kinect sensors which 

can be retrofitted to existing houses. Unlike other approaches such as the one presented in 

Debes et al. (2016) which involves attaching numerous sensors to household objects.  

 

Another advantage of the AMI-ADLs approach was that it does not require labelling a training 

dataset of the occupant’s activities to identify the performance of instrumental ADLs. This is 

in contrast to many existing approaches (e.g. approaches in Belley et al. (2014), Rahimi et al. 

(2011) and Wilson et al. (2015)). For example, the approach in Clement et al. (2014) involved 

an initialising phase in which individual sensors were attached to each appliance to gather 

information about their consumption pattern. 

 

The use of simple activity features in AMI-ADLs which does not require the name of HEAs to 

be known is also an improvement on other approaches. Many other approaches that monitor 

instrumental ADLs are based on the usage of HEAs. For example, the approaches in Cho et al. 

(2010) and Noury et al. (2011) involved a learning phase in which the name and function of 

the detected HEAs are acquired. These approaches then used this information to associate 
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importance levels to the occupant’s interactions with different HEAs. 

  

The AMI-ADLs approach was evaluated only in one real-life experimental setting. It is 

proposed that it could also be applied to different dwelling situations. Each room in the testbed 

was monitored by one Kinect camera. Multiple Kinect sensors could be used in the same room 

to obtain richer training data for monitoring the same area from different angles.  

7.5 Summary 

This chapter examined the use of an unsupervised fuzzy approach to monitor instrumental 

ADLs of an elderly person living alone. AIPA was employed in the first stage of this approach 

to generate representations of instrumental ADLs based on the occupant’s interactions with 

HEAs. Two activity features were employed to quantitatively describe key aspects of the 

occupant’s daily routine of instrumental ADLs. Normal variations in the training samples of 

these features were modelled via fuzzy sets to address real-life variations in the occupant’s 

habit of performing instrumental ADLs. A set of fuzzy rules was defined to classify these fuzzy 

sets into levels of daily activities. The occupant’s activity level for each monitoring day was 

reported to caregivers both in the form of an index ranging from -1 to 1 and a linguistic label.  

 

The validation results using scenarios from real-life settings have shown the effectiveness of 

AMI-ADLs in identifying upward and downward drifts from the daily routine of instrumental 

ADLs. The results also confirmed the robustness of this approach as its output remained stable 

around the normal range during periods in which the occupant displayed normal behaviour and 

accurately represented the days when the occupant became less or more active in the form of 

downward and upward deviations, respectively. 

 

The next chapter presents a general discussion, conclusions and future directions of this study. 
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CHAPTER 8:  
GENERAL DISCUSSION  

This chapter presents general discussions and conclusions of the research reported in the earlier 

chapters. It starts with a general discussion of the research methodology and the overview of 

the adopted ADL monitoring framework (Section 8.1). This section also focuses on how the 

research questions were answered through the development of the monitoring framework. This 

is followed by conclusions derived from the findings and validation of the approaches involved 

in the framework (Section 8.2). The chapter then outlines the limitations of the study in Section 

8.3 and future research directions in Section 8.4. 

8.1 General discussion and overview of the research 

The primary aim of this research was to investigate a hybrid framework for the unsupervised 

monitoring of both physical and instrumental ADLs of elderly people living alone via 

inexpensive and minimally-intrusive sensors. This research aimed to address existing gaps in 

the research related to monitoring ADLs of the elderly which have not been answered 

adequately. The methodology was developed in light of a critical examination of existing 

monitoring approaches which was conducted in Chapter 2.  

 

The review of the literature concluded that detecting abnormal behaviour in both physical and 

instrumental ADLs is crucial when monitoring elderly people’s well-being and their ability to 

live independently. Different approaches have been proposed to detect abnormal physical and 

instrumental activities. To date, however, no well-established framework has been proposed to 

monitor both types of activities concurrently. 

 

The literature review in the present study also indicated that for monitoring physical ADLs, 

most studies have used either intrusive video cameras or have asked the subject to wear sensors 

which might easily forget to put on. The Microsoft Kinect depth sensor is a low-intrusive 

alternative to video cameras which can provide the 3D structure of ADLs. The application of 

Kinect depth sensors for monitoring elderly people’s activities is in its infancy. Most current 

approaches consist of simple thresholding techniques that detect only falls amongst a wide 

range of abnormal behaviours (e.g., Banerjee et al., 2014).  
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The literature indicates that most approaches for monitoring instrumental ADLs involve either 

using a network of environmental sensors or installing a power sensor in the electricity box of 

the house. The use of environmental sensors requires a costly maintenance and the 

incorporation of sensors into a house during its construction. Although a power sensor installed 

in the electricity box can help to non-intrusively identify instrumental ADLs based on the use 

of HEAs, this approach needs a prior knowledge about HEAs in use or a labelled dataset of 

home power consumption.  

 

The literature review also revealed that most techniques adopted for monitoring physical ADLs 

were based on simple thresholding or supervised machine learning algorithms. The former 

cannot be generalised to fit across different environments while the latter entails the laborious 

generation of a labelled training dataset of activities. These approaches are limited as they 

confine emergency situations to only fall incidents and have a pre-assumed model of body 

motion. Many of the approaches proposed for monitoring instrumental ADLs involve a 

supervised machine learning technique to map sensor data into a limited list of activities carried 

out by most elderly people.  

 

Sensory data captured from real life settings are noisy and there are inherent variations in 

ADLs. Monitoring approaches based on fuzzy logic have addressed noisy sensory data and 

variations in ADLs since they incorporate fuzzy sets to represent attributes describing ADLs. 

Most existing fuzzy ADL monitoring approaches focus on using a fixed number of pre-defined 

fuzzy sets over attributes (e.g., the approach presented by Kepski et al. (2012)). Fuzzy sets in 

these approaches do not accurately represent the subject’s activities and incorporate outliers in 

sensor data.  

 

The research questions in this study aimed to address drawbacks mentioned above. The main 

research question directing this research was 

How can a framework incorporating unlabelled data from inexpensive and non-

intrusive sensors (i.e., Kinect sensors and a power meter) be developed for 

unsupervised monitoring of both physical and instrumental ADLs of elderly 

people living alone? 

This question was answered through developing the hybrid monitoring framework, which used 

unlabelled data from a combination of Kinect sensors and a power meter to concurrently 
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monitor physical and instrumental ADLs. While Kinect depth maps provided 3D information 

on physical ADLs, the instrumental ADLs were monitored through the fusion of power 

consumption data with the occupant’s locations, the latter obtained from the Kinect depth maps. 

This hybrid framework represented the general approach taken in this study (i.e., continuous 

monitoring of physical and instrumental ADLs), and its overview is shown in Figure 8.1.  
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Figure 8.1. The overall approach taken for monitoring the physical and instrumental ADLs of an elderly 

person. 
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The framework involved two unsupervised approaches, named AMP-ADLs and AMI-ADLs, 

for monitoring physical and instrumental ADLs, respectively. Each approach took an 

unlabelled training dataset of the subject’s ADLs and generated important information for 

caregivers.  

 

The procedure of AMP-ADLs was described in Chapter 4. This approach took the depth maps 

of ADLs from Kinect sensors and notified caregivers when a potential emergency situation was 

detected. The details of AMI-ADLs were explained in Chapter 7. This approach used the 

occupant’s physical locations from Kinect depth maps together with the aggregated power 

consumption of the house and generated daily reports showing the deviations of the occupant’s 

behaviours from their normal routine.  

 

Each of the monitoring approaches involved three stages as shown in  

Figure 8.1, with each stage answering one research sub-question. These questions are reiterated 

and how each has been addressed is explained below.  

 

Research sub-question 1: Since elderly people may perform ADLs differently, the two 

monitoring approaches in  

Figure 8.1 needed to be adequately tailored to the behaviours of the monitored elderly person. 

The first step in tailoring the monitoring approaches to a specific person was to convert raw 

sensory data captured from their activities into representations of ADLs. The first research sub-

question was therefore to investigate:  

 

How can data from multiple sensors (i.e., Kinect sensors and a power meter) be 

used to represent physical and instrumental ADLs of the monitored elderly 

person? 

 

This question was answered through steps included in Stage 1 of each monitoring approach. In 

Stage 1 of AMP-ADLs the occupant’s location and 3D body posture during physical ADLs 

were described through a set of attributes extracted from Kinect depth maps. These attributes 

were called depth map attributes, examples of which were shown in Table 4.1. The crisp values 

of the depth map attributes were converted into fuzzy labels based on the location-specific 

fuzzy sets defined for each attribute. Equation 5.1 was used for this conversion. Examples of 

fuzzy labels for attributes were shown in Table 4.3 where each combination of fuzzy labels 
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represented a specific body posture of the occupant observed at a specific location. 

 

The time of physical activities associated with each monitored location was also converted into 

fuzzy labels. Equation 4.2 was used for this conversion. The physical ADLs of the subject were 

then represented through combinations of fuzzy labels describing the depth map attributes and 

time of the activities. An example of this representation was provided in Table 4.4. 

 

In Stage 1 of AMI-ADLs, the instrumental ADLs during each day were represented as a 

timestamped list of the occupant’s interactions with different HEAs (see Table 7.1 for an 

example). The AIPIA approach presented in Chapter 6 was used to generate this list based on 

an unlabelled training dataset captured from a combination of Kinect sensors and a power 

meter. The occupant’s visited locations were associated with power signatures to identify 

instrumental ADLs based on the occupant’s interactions with HEAs. Each association between 

the occupant’s location and a power signature was represented by an association rule and was 

given an arbitrary label to differentiate the usage of different HEAs. These rules were then 

employed to obtain a timestamped list of interactions with different HEAs during the training 

period. This list represented instrumental ADLs.  

 

Research sub-question 2: In order to learn the normal behaviour patterns of a monitored 

elderly person, it was necessary to build profiles of their physical and instrumental ADLs. The 

second research sub-question investigated achieving this goal without a need for labelling 

training data:  

 

How can techniques be developed that automatically learn from the proposed 

data representation to generate models of physical and instrumental ADLs? 

 

This was addressed through the steps shown in Stage 2 of the two monitoring approaches in  

Figure 8.1. An unsupervised technique was presented in Stage 2 of AMP-ADLs to generate a 

model of physical ADLs (see Chapter 4). For each epoch of activity, frequent combinations of 

fuzzy attributes were obtained using a fuzzy association rule mining algorithm. These patterns 

represented frequent physical ADLs of the occupant. These were modelled along with their 

location and time in the antecedent of fuzzy rules. The normal duration of each frequent 

physical ADL was determined and modelled as the consequent of the respective rule. A z-

shaped membership function was generated (using Equation 4.3) to model the duration of each 
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frequent physical ADL. Table 4.5 showed an example of these fuzzy rules. The duration of 

infrequent physical ADLs was automatically modelled using a statistical technique. This 

duration for each monitored location r was shown as 𝐸𝐴𝑟. 

 

A technique was presented in Stage 2 of AMI-ADLs to automatically model the occupant’s 

instrumental ADLs (see Chapter 7). The technique calculated two attributes based on the 

training representations of instrumental ADLs. These attributes were: the daily regularity of 

the occupant’s interactions with HEAs, calculated using Equation 7.1, and the daily frequency 

of using important devices, obtained from Equation 7.4. The values of these attributes were 

determined for all days in the training dataset. Fuzzy sets were defined to model the normal 

variation range of these attributes based on the statistics of the training values. Equations 7.5 

to 7.7 were used to generate fuzzy sets modelling the daily regularity of instrumental ADLs. 

Equations 7.8 to 7.10 were used to generate fuzzy sets modelling the daily frequency of 

instrumental ADLs. A set of fuzzy rules then mapped fuzzy values of these attributes to 

different levels of instrumental ADLs. Examples of these fuzzy rules were shown in Table 7.3.  

 

Research sub-question 3: The last research sub-question focused on detecting abnormalities 

in new data captured from an elderly person’s activities. It aimed to address the question:  

 

How can techniques be developed that detect unexpected patterns and abnormal 

behaviours using the models of physical and instrumental ADLs? 

 

This question was answered by developing the techniques in Stage 3 of the monitoring 

approaches, as shown in  

Figure 8.1. These techniques categorised the similarity of new data related to the monitored 

person’s physical and instrumental ADLs to their respective models of normal behaviours. 

 

The technique in Stage 3 of AMP-ADLs calculated the representation of physical ADLs for 

each new Kinect observation from the occupant’s activities (see Section 4.2.2). If the 

representation corresponded to a frequent physical ADL described by a fuzzy rule, the duration 

of the activity during consecutive observations was evaluated against the consequent of that 

fuzzy rule. An alarm was raised when the occupant’s activity lasted longer than usual duration. 

In case the representation did not correspond to any fuzzy rules, an alarm was raised when this 
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situation lasted longer than a data-driven value. 

 

The technique in Stage 3 of AMI-ADLs incorporated the fuzzy rule set from Stage 2 into a 

fuzzy inference system to categorise the daily level of instrumental ADLs in new data into 

abstract labels such as ’low ‘, ’normal ‘, and ’high ‘. These labels were determined by 

comparing the daily regularity and frequency of the occupant’s interactions with HEAs in new 

data to the developed model of normal behaviours. For each monitoring day, a report was 

generated to inform caregivers about the daily level of instrumental ADLs (see Equation 7.13). 

Detecting abnormalities in instrumental ADLs resulted in labelling days when these were 

observed as ’abnormal’. 

 

No public dataset which supplies continuous power consumption and Kinect data for ADLs 

inside a residential home was available. A continuous dataset of physical and instrumental 

ADLs was collected from a real-life setting to test the effectiveness of the proposed approaches. 

This served as proof of the concept in that it enabled the researcher to evaluate the developed 

techniques using data captured from a real-life setting. 

 

The proposed framework was evaluated in a one-bedroom-apartment as a testbed. This could 

be scaled to monitor larger houses using additional Kinect sensors. In this case each of the 

additional sensors would add its training observations to the training dataset.  

8.2 Conclusions  

This section presents the findings in regards to the approaches developed for monitoring 

physical and instrumental ADLs.  

 

8.2.1 Findings for monitoring physical ADLs 

Monitoring physical activities can help identify emergency situations that elderly people living 

alone may experience. The literature review in the present study showed that if existing 

approaches are used, labelling training data is inevitable in most of the cases (e.g., S. H. Liu & 

Cheng, 2012). Current research has also shown that these approaches are not robust enough to 

handle fine variations in physical ADLs conducted in real-life settings (e.g., Banerjee et al. 

(2014). Existing fuzzy approaches choose predefined fuzzy sets, use prior knowledge to 

develop fuzzy rules and incorporate outliers in the range of fuzzy attributes. An unsupervised 
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data-driven fuzzy approach, called AMP-ADLs, was presented in Chapter 4.  This improved 

on existing fuzzy monitoring approaches as it could handle fine variations and outliers when 

monitoring physical ADLs. This approach monitored the key aspects of physical ADLs of 

elderly people using depth maps captured from Kinect sensors.  

 

The AMP-ADLs approach learned the subject’s normal behaviour patterns from an unlabelled 

dataset of their physical ADLs. The epochs of activity associated with each monitored location 

were obtained using the mean shift algorithm. Evaluation results verified the higher accuracy 

of this technique in identifying the epochs of activities compared to other techniques (see 

Appendix B). For example, Hsu et al. (2010) and Hoque and Stankovic (2012) proposed using 

Fuzzy C-Means and DBSCAN algorithms to model the time of ADLs when monitoring the 

elderly. When these techniques were applied to the collected dataset, the accuracies obtained 

for Fuzzy C-Means and DBSCAN algorithms were 24% and 31% respectively lower than that 

of the technique used in AMP-ADLs. 

 

For each epoch, the fuzzy rules that modelled the elderly person’s frequent behaviour patterns 

and the normal durations of those patterns were learned based on a fuzzy association rule 

mining algorithm. A situation was identified as an emergency when the occupant’s behaviour 

in new data was recognised as frequent with a longer than usual duration or infrequent with a 

duration exceeding a data-driven value.  

 

Fine variations in the subject’s physical ADLs were handled using fuzzy sets that were defined 

over the depth map attributes. In the prototype version of AMP-ADLs (discussed in Chapter 4) 

a specific number of fuzzy sets were defined over each attribute. This was achieved by applying 

the FCM algorithm on the combined dataset of the attribute from all monitored locations. The 

performance of this technique for defining different numbers of fuzzy sets over each attribute 

was evaluated. It was observed that while this number should be chosen empirically, it has a 

major impact on the sensitivity and specificity of the approach. Increasing this number 

improved the ability of the system to accurately classify more testing scenarios of abnormal 

behaviours while negatively impacting its ability to tolerate fine variations during ADLs. The 

best overall performance was achieved when three fuzzy sets were defined over each attribute 

as the resulting fuzzy rule could correctly classify more testing scenarios of normal and 

abnormal behaviours.  
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Evaluating the performance of AMP-ADLs when using this technique to define fuzzy sets also 

showed that not all frequent behaviour patterns could be modelled accurately by the rule set 

since the fuzzy sets were unable to represent some of the ADLs of the subject. Outliers and 

noisy measurements in data were also included in the range of generated membership functions 

associated with the fuzzy sets. The evaluation also highlighted the effect of the number of 

membership functions, defined over the depth map attributes, on the number of learned fuzzy 

rules. 

 

The study addressed these limitations and refined AMP-ADLs through introducing a novel 

unsupervised membership function generation method called VBMS-RS in Chapter 5. VBMS-

RS automatically learned the number of representative membership functions for an attribute 

from its underlying data distribution and set up parameters associated with each membership 

function excluding outliers in the data. AMP-ADLs was modified to employ VBMS-RS for 

defining fuzzy sets over depth map attributes. For each attribute, the captured dataset from each 

location was processed separately to generate location-specific membership functions. The 

resulting location-specific membership functions were used in the antecedent of fuzzy rules to 

model frequent ADLs in that location. AMP-ADLs shifted from using the combined dataset of 

all monitored locations for parameterising attributes to processing the dataset of each location 

separately.  

 

Evaluations in Chapter 5 showed that the application of VBMS-RS improved AMP-ADLs. The 

rule set obtained from the output of this technique could accurately classify more scenarios of 

normal and abnormal behaviours with fewer rules when compared to the rule sets obtained 

from other membership function generating techniques including the one used in the prototype 

version of AMP-ADLs. It was observed that membership functions generated by other 

techniques to parameterise an attribute supported a wider range outside the boundary of 

component distributions. This resulted in the sensor data of abnormal situations receiving a 

positive membership degree from those MFs and being classified as normal. 

 

Location-specific triangular and trapezoidal membership functions were generated by all 

membership function generating techniques. Evaluating the accuracy of the resulting rule sets 

showed that the rule set resulting from using triangular membership functions via VBMS-RS 

could better represent ADLs performed in each location and could tolerate slight posture 

variations during ADLs.  
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Evaluations in Chapter 5 also compared the performance of AMP-ADLs for monitoring 

physical ADLs with the performance of two other unsupervised fuzzy approaches presented by 

Seki (2009) and Brulin et al. (2012). The results of this comparison indicated that the AMP-

ADLs method significantly outperforms these approaches. 

 

8.2.2 Findings for monitoring instrumental ADLs 

Instrumental ADLs can also be monitored to identify long-term changes in elderly people’s 

health. Many approaches have proposed the monitoring of instrumental ADLs based on elderly 

people’s usage of HEAs. Most of these approaches need a network of power sensors, a labelled 

dataset or prior knowledge about the characteristics of HEAs to estimate their usage (e.g., 

Wilson et al. (2015). The approach presented in this study was named AMI-ADLs. It could 

monitor the usage events of HEAs based on an unlabelled training dataset of the house 

composite power signals and the occupant’s physical locations without any prior knowledge 

of the HEAs. The house composite power consumption was captured by one power sensor and 

the occupant’s locations were obtained by a few Kinect sensors. 

 

AMI-ADLs involved three stages. In the first stage the time of the subject’s interactions with 

each appliance was identified in the training dataset. An approach called AIPIA was introduced 

for this aim. This approach used several pre-processing operations to initially remove noise 

from the Kinect depth maps and the house power consumption signals. Figures 6.2 and 6.4 

showed the examples of the pre-processed data. The occupant’s physical locations and power 

signatures were then extracted from the training dataset. The examples of these were shown in 

Tables 6.1 and 6.2, respectively. A novel clustering technique was introduced to separately 

group the occupant’s locations and specific power signatures (see Figure 6.5). Post-processing 

operations were then carried out to remove power signatures automatically generated by HEAs. 

AIPIA then associated the groups of power signatures with the groups of the occupant’s 

physical locations to obtain an association rule set. This rule set was used to identify the 

occupant’s interactions with each appliance in the new data and label them with activity labels.  

 

The collected dataset from the testbed was used to evaluate AIPIA. The results confirmed the 

effectiveness of its clustering techniques which could accurately identify the groups of the 

occupant’s physical locations and power signatures belonging to most of HEAs. The evaluation 
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results also demonstrated the effectiveness of AIPIA in distinguishing power signatures 

generated automatically by self-regulated devices from those generated as a result of the 

occupant’s instrumental ADLs. Evaluating the overall performance of AIPIA showed an 

average classification accuracy of more than 85.3% for correctly identifying an elderly person’s 

interactions with different HEAs. It was observed that when the occupant’s interactions with 

HEAs were identified based on using only power consumption data, the accuracy reduced to 

75.1%. 

 

The daily frequency and regularity of the identified interactions with important HEAs were 

modelled in the second stage of AMI-ADLs. This was achieved through developing a set of 

fuzzy rules, the parameters of which were learned from the training data. In the third stage of 

AMI-ADLs, a fuzzy inference system employed the set of fuzzy rules to determine the 

frequency and regularity of appliance usage during a monitoring day. These were used to label 

the activity level of the occupant as ’veryLow‘, ’low‘, ’normal‘, ’high‘, and ’veryHigh’. 

 

The results of validating AMI-ADLs in Chapter 7 demonstrated the ability of this approach to 

identify simulated upward and downward deviations from normal behaviours. The experiments 

in that chapter further demonstrated the robustness of AMI-ADLs in regards to errors in 

identifying instrumental ADLs as it could effectively classify normal and abnormal behaviour 

patterns despite errors in the list of the used HEAs. 

 

Contrary to other monitoring approaches that work with the installation of many sensors (e.g., 

the approach in Cho et al. (2010)), the AMI-ADLs method monitors the performance of 

instrumental ADLs using a power meter in the main electrical panel and a few Kinect depth 

sensors. The AMI-ADLs approach is also an improvement on those proposed by Noury et al. 

(2011) and Wilson et al. (2015) as it does not need a labelled dataset of home power 

consumption or prior knowledge about the characteristics of HEAs to estimate their usage. 

 

To the best of the researcher’s knowledge, no existing approach has used unlabelled data from 

a combination of Kinect sensors and a single power meter to automatically monitor the 

instrumental ADLs of the elderly. Section 7.4 discussed the fact that this presents a challenge 

in making quantitative performance comparisons between AMI-ADLs and other approaches 

for monitoring instrumental ADLs. The promising results reported in this study will serve as 

an impetus for further research on the use of a power sensor together with Kinect depth cameras 
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to monitor ADLs in an unsupervised manner. A direct quantitative comparison of the 

performance of different approaches will then be possible.  

8.3 Limitations 

There are a number of limitations associated with the work presented in this study: 

 

 The system can only monitor an individual, as it assumes that there is a single occupant 

in the home and stops monitoring if multiple persons are detected.  

 

 In case the monitored individual changes their behaviour patterns after the training 

dataset is recorded (e.g. if there is a change in the locations of furniture and the addition 

or removal of HEAs), the current version of the system cannot automatically re-train 

itself to incorporate new modifications; thus, a new training dataset must be collected 

and the system must be re-trained.  

 

 The system is not able to identify any abnormal behaviour when the individual is not 

detected by any Kinect sensors. This is due to the system’s inability to monitor the 

duration of the individual’s absence. Therefore, on such occasions no alarm is raised. 

 

 The current version of the system does not take into account normal changes of the 

behaviour patterns on weekends in comparison with those during weekdays. The 

monitored individual may also change the pattern and times of ADLs due to 

circumstances such as climate and seasons. Addressing these would require the 

development of separate models of normal behaviours for different times of the week 

and year. 

8.4 Future directions 

 A relevant focus for future research is the techniques to update an existing monitoring 

rule set in an incremental fashion to accommodate new normal behaviour patterns and 

modifications in the monitored home. It is not uncommon for a person to change the 

placement of furniture in their home or the location where they perform ADLs. Data 

relevant to new behaviour patterns might become available well after the training 
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period. An incremental learning technique can be investigated to update an existing 

fuzzy rule set which is used to monitor activities with new data. In this way, the system 

will adapt itself once a new normal behaviour pattern was identified.  

 

 The proposed monitoring framework could be extended to make it applicable in 

dwellings occupied by more than one person through identifying them from Kinect 

data. An example of such a technique is presented in P. Das, Sadhu, Konar, Lekova, 

and Nagar (2015). 

 

 Techniques to automatically determine the thresholds associated with the data mining 

approaches in Chapters 4 and 6 could be further investigated. The threshold values for 

minsup in Chapter 4 and min_conf in Chapter 6 are determined experimentally. A data-

driven approach could be investigated to derive these values automatically from the 

frequency distribution of behaviour patterns.  
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APPENDIX A – EXTRACTING DEPTH MAP ATTRIBUTES 

AND SELECTING FEATURES  

This appendix first explores different types of image features used by existing studies for 

describing the posture of people during ADLs. This is followed an explanation of the 

calculation of commonly used features. The process of feature selection procedure to find the 

most suitable feature subset is also presented. The appendix is concluded by showing the 

results. 

 

Image features for describing ADLs 

The first step of camera-based approaches for monitoring and classification of activities the 

binary mask of the person (i.e. silhouette) is the segmented from video images or depth maps. 

Several features are used subsequently to describe body postures related to ADLs. A list of 

such features is shown in Table A.1. Most approaches have used the horizontal and vertical 

coordinates of the person’s centre of gravity, denoted by Cx and Cy respectively. The aspect 

ratio (denoted as AR) of the minimum bounding rectangle (MBR) for the detected person and 

the orientation of the body (𝜃) are amongst other prominent features.  

 

A number of proposed approaches have employed other types of features as shown in Table 

A.1. Some techniques have estimated the 3D location of specific skeleton joints of the subject 

to model and monitor ADLs. Eccentricity of the segmented silhouette has been also used which 

is calculated as the ratio of the major and minor axis of the ellipse fitting the silhouette (Y. Liu 

et al., 2012).    

 

A study by Brulin et al. (2012) employed the ratio of the distance between the centre of gravity 

of the person and the bottom side of the MBR to detect falls. Another technique by  Seki (2009) 

used the area of the detected silhouette in the image for describing ADLs. Banerjee et al. (2014) 

developed a 3-D model of the person, named “voxel person”, and employed Zernike moments 

(with order m = 2, 3, and 4 and angular dependence n = 0, 1 and 2, respectively) to describe 

ADLs. Projection histograms, as the total numbers of foreground pixels projected along 

horizontal and vertical directions were also taken into account for the classification of different 

postures (e.g. sitting, lying down, and standing) as shown in Table A.1 (Cucchiara, Prati, & 

Vezzani, 2007). The procedure for calculation of the most commonly used features is explained 
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in more detail in the following section. 

 

Table A.1. Feature extracted from the silhouette of a detected body (Brulin et al., 2012) 

Method 

Image descriptors used 

AR of MBR or 

axes ration of the 

fitted ellipse 

𝜃 
Centre of 

gravity 
Other descriptors 

Banerjee et al. (2014)    Zernike Moments 

Brulin et al. (2012) * * *  

Yu, Rhuma, Naqvi, Wang, and 

Chambers (2012) 
*   Projection histogram 

Lee and Chung (2012) * * *  

Seki (2009)  * * 
Area of the silhouette in 

the image 

Zambanini, Machajdik, and 

Kampel (2010a) 
* *  

Motion Speed during 

consecutive frames 

Mastorakis and Makris (2014) *   
Deviation of MBR during 

consecutive frames 

Makantasis, Protopapadakis, 

Doulamis, Grammatikopoulos, 

and Stentoumis (2012) 

* *   

Xiang et al. (2015) *    

Y. Liu et al. (2012)    
Locations of skeleton 

joints 

Bian, Hou, Chau, and 

Magnenat-Thalmann (2015) 
   

Locations of skeleton 

joints 

 

Calculating features 

Given the MBR obtained for the segmented silhouette of a person, AR of the MBR is obtained 

as: 

𝐴𝑅 = 
ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑀𝐵𝑅

𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 the 𝑀𝐵𝑅
 

 

Cx, Cy and 𝜃 are obtained via the calculation of geometric moments for the silhouette of the 

person. Geometric moments are used in image processing to describe the shape of objects (Teh 

& Chin, 1988). The (𝑝 +  𝑞)𝑡ℎ order of geometric moments, denoted as 𝑚𝑝𝑞, for a grey-level 

image 𝑓(𝑥, 𝑦) is calculated as Equation A.1. 

 

𝑚𝑝𝑞 =∬ 𝑥𝑝𝑦𝑞
∞

−∞

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

  (A.1) 

In the case of calculating geometric moments for a binary image (e.g. the subject’s silhouette), 
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the double integral in Equation A.1 changes to summations, and the grey value function 𝑓(𝑥, 𝑦) 

becomes: 

𝑓(𝑥, 𝑦) =   {
1, (x, y)  ∈ the  silhouette
0,                             therwise 

. 

 

Thus, Equation A.1 becomes Equation A.2.  

 

𝑚𝑝𝑞 =∑∑ 𝑖𝑝𝑗𝑞
𝑀

𝑗=1

𝑁

𝑖=1

 

 (A.2) 

where N and M are the size of the binary silhouette with respect to the vertical and horizontal 

axes, respectively. By using the first and zero-order geometrical moments, coordinates for the 

centre of the gravity of the silhouette are calculated via Equation A.3. 

 

C𝑥 =
𝜇10
𝜇00

  C𝑦 =
𝜇01
𝜇00

 

 (A.3) 

The orientation of the person is obtained as the angle between the major axis of the ellipse 

fitted to the person’ silhouette and the horizontal axis x. This is calculated via using the first- 

and second-order geometrical moments (see Equation A.4) expressed in degrees, ranging from 

0 to 90.   

𝜃 = |tan−1
2𝜇11

(𝜇20 − 𝜇02)
| 

   (A.4) 

The area of the silhouette in an image is obtained as the zero-order geometrical moment (i.e. 

𝜇00).  

 

Feature selection 

A wide range of attributes have been proposed to characterise and model body postures during 

ADLs as shown in Table A.1. Using the combination of all attributes in order to characterise 

ADLs has an increasing impact on the complexity of a classification model. Some of these 

attributes might be either redundant or irrelevant to the task of this study, and can thus be 

removed without causing much loss of information. A feature selection procedure was 

performed to evaluate the effectiveness of different subsets of attributes to reduce the 
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dimensionality of data and the processing complexity of the developed model. The flowchart 

for this procedure is shown in Figure A.1. It involved two major components: (1) a search 

technique for generating feature subsets and (2) an evaluation technique which gave a score to 

each feature subset. The adopted algorithm for the first component was the brute-search 

approach which outputs all feature subsets to find the one with the highest score. A predictive 

model was used for the second component to estimate the score of a given subset as the error 

rate of classifying unseen data.  

 

Generate a new subset 

of attributes

Calculate the score for 

the subset

All subsets 

evaluated?

End

Set of all 

attributes

Yes

No

Output the subset 

with the highest 

score

Start

 

Figure A.1. The flowchart for the feature selection algorithm carried out in this study 

 

Given a labelled dataset of all features, the dataset was first divided into a training set and a 

test set. Different subsets of features were extracted from the training data and used to train 
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predictive models. The classification rate of those models were evaluated on the unseen test 

data to give a classification score to each subset of features.  

 

A Naive Bayes classifier was adopted as the predictive model since it is particularly suited 

when the dimensionality of the input is high and often outperforms more sophisticated 

supervised classification techniques (Ribeiro & Santos-Victor, 2005). This classifier models 

the distribution of the training data as a mixture of Gaussians, estimated using the EM 

algorithm (Bilmes, 1998). The likelihood for each class of activity to the unseen testing data is 

calculated using a Bayesian likelihood function and the testing data is then labelled with the 

activity with maximum likelihood.  

 

A labelled dataset was collected during an experiment in which various activities were 

performed in the living room area of the testbed and a static Kinect camera captured 

observations associated with activities. The list of activities performed included (1) standing in 

a particular location as a habit, (2) sitting on the sofa (3) lying on the sofa, (4) sitting behind 

the computer desk, (5) sitting on the floor and (6) lying on the floor. Each activity was 

performed 10 times with slight variations in order to capture the variability in the attributes for 

each activity. For example, in one instance for sitting on the sofa, the occupant was talking on 

the phone whereas in the other instance, he was reading a book. Kinect observations captured 

for this experiment were labelled manually with their respective activities. Each observation in 

the dataset thereby belonged to one of the six classes of activities. Table A.2 shows the number 

of observations per activity, and Figure A.2 shows example colour images and their respective 

binary mask of the person for different activities.   

 

Table A.1. The number of Kinect observations per activity captured for the feature selection 

experiment 

Index Activity Number of observations 

1 Standing 50 

2 Sitting on the sofa 62 

3 Lying on the sofa 45 

4 Sitting behind the computer desk 50 

5 Sitting on the floor 42 

6 Lying on the floor 49 
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(a) 

   
(b) 

   
(c) 

   
(d) 

   
(e) 

Figure A.2 (a)-(c) Example observations of different postures with their binary mask of the person. (a) 

Sitting behind a computer desk, (b) standing by the window, (c) sitting on the sofa, (d) sleeping on the 

sofa, and (e) lying on the floor.  
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Different attributes from the collected labelled dataset, were extracted and incorporated in the 

feature selection procedure to find the most informative set as shown in Table A.3.   

 

Table A.3. The list of features extracted for the feature selection procedure 

Index Attribute Description 

1 Cx The horizontal coordinate for centre of gravity 

2 Cy The vertical coordinate for centre of gravity 

3 X Coordinate of the heap centre joint on the X axis 

4 Y Coordinate of the heap centre joint on the Y axis 

5 Z Coordinate of the heap centre joint on the Z axis 

6 AR Aspect ratio of MBR 

7 𝜃 Orientation of the body 

8 Area Number of pixels in the silhouette  

9 Depth Mean Mean of depth values associated with the silhouette of the subject 

10 Depth Var variance of depth values associated with the silhouette of the subject 

11 Solidity The ratio of the major to the minor axes of the fitted ellipes 

12 Z(2,0) Zernike moment with m=2 and n=0 in Equation 

13 Z(3,1) Zernike moment with m=3 and n=1 in Equation 

14 Z(4,2) Zernike moment with m=4 and n=2 in Equation 

15 ∆ AR Deviation of MBR during consecutive frames 

16 MS Motion speed during consecutive frames 

 

A three-fold cross validation was performed to evaluate each subset of features. For each fold 

two-thirds of the observations in the dataset were used as a training set and the accuracy of the 

developed model was evaluated based on the remaining one-third of the observations. This 

process was repeated three times for each feature subset so that a third of the dataset was used 

once as the test set. The classification accuracy obtained from the three folds were averaged 

and used as the classification score of the feature subset. 

 

The best score was obtained for feature selection of the subset of {CX, Cy, AR, O} with a 

classification error rate of 6.25%. The scatter plot matrix for this subset with each row 

containing the scatter plots of one attribute against the columns of the other is shown in Figure 

A.3. Data points with different colours represent different class of activities.  
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Figure A.3. The scatter plot matrix for the selected subset of attributes 

  



 

281 

 

APPENDIX B – COMPARING THE PERFORMANCE OF 

CLUSTERING TECHNIQUES IN IDENTIFYING EPOCHS OF 

ACTIVITIES 

Many clustering techniques have been used in different studies to estimate epochs of activities 

base on the timestamps of sensor data. The use of GMMs was suggested by Cardinaux et al. 

(2008) to model the time and duration of normal behaviour patterns. GMMs were estimated 

via using the Expectation Maximization algorithm (Duda et al., 2012). Noury et al. (2011) used 

the k-means algorithm to estimate epochs of activities via clustering the time of electrical 

events detected on the power line. The fuzzy c-means clustering algorithm was used by Hsu et 

al. (2010) to model the time of ADLs for monitoring the elderly. Hoque and Stankovic (2012) 

employed DBSCAN, which is a density based clustering algorithm to group the starting times 

of ADLs.  

 

An experiment was conducted to compare the performance of the mean shift algorithm with 

the abovementioned clustering techniques in identifying epochs of activities. The training 

Kinect depth maps collected from the testbed were used in this experiment. The ground truth 

for epochs of activities was obtained based on the daily schedule followed by the researcher to 

simulate activities. Most of clustering techniques mentioned above needed the number of 

clusters in advance. This number for the dataset of each monitored location was determined as 

the number of peaks in the histogram of the time of observations. The bin size of the histogram 

was determined using the plug-in rule (see Section 3.6.3). The number of peaks in the 

histogram was detected using the MATLAB findpeaks function, which defines a peak as a 

sample larger than its two neighbours.  

 

The time points associated with the centres of the detected clusters from each clustering 

technique were arranged in an ascending order, and their temporal order was used to label 

clusters with epochs (i.e. Epoch 1, Epoch 2, etc.). For example, if two clusters were detected 

for the living room area with the cluster centres of 08:00 AM and 18:00 PM, observations 

associated with the first cluster were labelled as belonging to Epoch 1 and those associated 

with the second cluster were labelled as Epoch 2. The qualitative comparison of the results of 

the clustering techniques is first described through showing epochs estimated by each 

technique. This is followed by a quantitative comparison of the accuracy of clustering 

techniques.  



 

282 

 

 

For the kitchen dataset, five peaks were detected using the MATLAB findpeaks function. The 

results of different techniques for this dataset are shown in Figure B.1. In each part of this 

figure, the same colour rectangles from the ground truth shown in Figure 4.12 (a) are used to 

label epochs. The distribution of observations for Epoch 1 and Epoch 2 in the kitchen dataset 

are almost separate (Figure 4.12 (a)). All techniques could identify these two epochs correctly 

as the black and green rectangles in different parts of Figure B.1 cover almost the same period. 

Since the distribution of Epoch 3 (shown within the blue rectangle in Figure 4.12 (a)) is 

immediately followed by the smaller distribution of Epoch 4 (shown within the purple 

rectangle), techniques other than the mean shift algorithm could not separate Epoch 3 and 

Epoch 4 accurately. For example, using FCM and GMM, most of the observations for Epoch 

4 have been grouped in the same cluster as those for Epoch 3. Note that DBSCAN generated 

less accurate results, as shown in Figure B.1 (d). While epochs 1 and 2 have been estimated 

correctly, all activities between 10:00 AM and 20:00 PM have been clustered by DBSCAN as 

belonging to Epoch 3. The reason is that DBSCNS generally clusters all data points located in 

a certain proximity to each other as belonging to the same group. As there was no gap in the 

time of observations between 10:00 AM and 20:00 PM in the kitchen dataset, all the data points 

belonging to this range were clustered together. The mean shift algorithm yielded better results 

since the time spans of the estimated epochs are very similar to those shown for the ground 

truth as shown in  Figure B.1 (e).  

 

The results of using different clustering techniques for the living room dataset are shown in 

Figure B.2. From the ground truth for epochs associated with this location (shown in Figure 

4.12 (b)), it is observed that the distribution of this dataset has four distinct peaks each 

corresponding to an epoch. With the exception of the mean shift algorithm, all other techniques 

clustered observations for Epoch 1 and Epoch 2 as belonging to the same epoch as shown in 

Figure B.2. This is because those techniques aim to partition the data into clusters in a way that 

minimises a distance metric amongst data points assigned to the same cluster. As component 

distributions belonging to Epoch 1 and Epoch 2 overlap, choosing one cluster centre to 

represent all data points for Epoch 1 and Epoch 2 optimised the distance criterion for those 

techniques. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

(e) 
Figure B.1. Results of applying different clustering techniques for estimating epochs of activities for 

the kitchen dataset. Results generated by (a) FCM, (b) GMM, (c) k-means, (d) DBSCANS, and (e) 

mean shift. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure B.2 Results of applying different clustering techniques for estimating epochs of activities for 

the living room dataset (a) FCM, (b) GMM, (c) k-means, (d) DBSCANS, and (e) mean shift 
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One conclusion to draw from the diagrams in Figure B.2 is that, when compared to other 

techniques, the epochs from the mean shift algorithm are more similar to those obtained from 

the ground truth. This is logical since mean shift tends to group all observations belonging to 

the same peak in a mixture of data distribution as belonging to the same cluster. The living 

room area was occupied during specific periods in a daily routine to perform specific ADLs. 

The time spent in this area for each ADL caused a peak in the distribution of time of 

observations, and those peaks were correctly identified as different epochs by the mean shift 

algorithm. 

 

While the diagrams shown in Figure B.1 and Figure B.2 indicate that the results obtained from 

the mean shift algorithm are more accurate, they do not present any quantitative evidence of 

the relative accuracies of the clustering techniques. The observations in the training dataset for 

each location were labelled with their corresponding epochs, obtained from the ground truth. 

The mean square error (MSE) of the results from each clustering technique relative to the 

ground truth was calculated. This measure of error was employed to estimate the classification 

accuracy of each clustering technique, as shown in Table B.1. For the kitchen dataset, the 

DBSCANS, FCM and GMM algorithms resulted in average accuracies of 35%, 53% and 72%, 

respectively. This was mainly because these techniques labelled many observations between 

15:00 PM and 17:00 PM as incorrectly belonging to Epoch 4. K-means resulted in a higher 

performance as it could correctly estimate more epochs. The best result for the kitchen dataset 

was obtained using Mean Shift algorithm with 99% accuracy, whereas the least accurate results 

were yielded by DBSCANS which failed to identify epochs 3 and 4. This was due to the fact 

that Mean Shift aims to identify locations for local maxima of the data distribution as epochs, 

whereas DBSCANS considers data points as a cluster if located within a certain proximity to 

each other. GMM resulted in an accuracy of 82%.  

 

It can be observed that the highest accuracy for the living room dataset belongs to the mean 

shift algorithm followed by k-means. As expected, DBSCANS grouped many observations for 

different epochs as belonging to the same cluster, resulting in an accuracy of 32%. 

 

For the dining room and bedroom datasets, all techniques achieved a high accuracy rate of 

around 100%. Data distributions associated with epochs for these datasets were well separated, 

and thus all techniques could identify the data points associated with an epoch as a separate 

cluster.  
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Table B.1 The classification results of clustering techniques for different locations. 

Clustering technique Kitchen Dining room Living room Bedroom Average 

K-means 72% 100% 85% 100% 89.2% 

Fuzzy C-means 53% 100% 42% 100% 74% 

GMM 82% 99% 38% 100% 80% 

Mean shift 99% 100% 92% 100% 98% 

DBSCAN 35% 100% 32% 100% 66.7% 
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