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Abstract 

Fuzzy Content Mining for Targeted Advertisement 

By Yezhou Wang 

Content-targeted advertising system is becoming an increasingly important part of 

the funding source of free web services. Highly efficient content analysis is the pivotal 

key of such a system. This project aims to establish a content analysis engine involving 

fuzzy logic that is able to automatically analyze real user-posted Web documents such as 

blog entries. Based on the analysis result, the system matches and retrieves the most 

appropriate Web advertisements.  

The focus and complexity is on how to better estimate and acquire the keywords 

that represent a given Web document. Fuzzy Web mining concept will be applied to 

synthetically consider multiple factors of Web content. A Fuzzy Ranking System is 

established based on certain fuzzy (and some crisp) rules, fuzzy sets, and membership 

functions to get the best candidate keywords. Once it is has obtained the keywords, the 

system will retrieve corresponding advertisements from certain providers through Web 

services as matched advertisements, similarly to retrieving a products list from 

Amazon.com. In 87% of the cases, the results of this system can match the accuracy of 

the Google Adwords system. Furthermore, this expandable system will also be a solid 

base for further research and development on this topic.  
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Keywords 

Content-targeted advertising: Programs automatically find relevant keywords on a web 

page, and then display advertisements based on those keywords [3]. 

Keyword-targeted (Search-targeted) advertising: Keywords extracted from a search 

query are matched against keywords associated with ads provided by advertisers. [2] 

Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approximate 

rather than precisely deduced from classical predicate logic. It can be thought of as the 

application side of fuzzy set theory dealing with well thought out real world expert values 

for a complex problem (Klir 1997). 

1. Introduction 

Since the first Web advertisement appeared on 1994, online advertising has been 

greatly improved to better match potential customer’s personal interests. An approach 

widely accepted is to make online advertisements displayed to the online users relate to 

the Web content that is browsed to maximize the advertising effect. Therefore, how to 

accurately analyze Web-based content (such as an HTML format document) and then 

bring out the most appropriate ads has become a crucial topic. For example, Google (who 

call themselves an advertising company rather than a computer science company) has 

released a competitive content-targeted Web-based application Google Adsense to 

analyze Web content and then retrieve the relevant advertisements for the user who is 

reading the Web page.  
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Figure 1.1: Google AdSense 

 

Figure 2.1 displays a typical UI of Google Adsense on a blog site. Circled on the 

right side, the ads displayed in the Adsense block are related to the Web content that the 

user is browsing, making these ads more effective. But this figure also shows some 

drawbacks of Google Adsense: the ads displayed at that moment made no sense to the 

article. It is because the article was newly posted and Adsense was not able to scan and 

analyze it in real time, causing a response delay. 

This project aims to design a system that provides a content-targeted real-time 

advertising system. This system is not only usable for normal web pages but also works 

properly for a variety of systems such as the popular Drupal-driven content management 

system. This system is able to retrieve and analyze Web content such as blog entries, and 

then extract the best keywords representing the article subject. When a user is browsing a 

blog article, system will display certain ads based on the keywords of that article. 

Amazon Web Service (AWS) is the ads provider for this project. 
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This project consists of three development phases. The first phase builds a Drupal-

driven blog system with appropriate function modules on load. The second phase uses 

fuzzy Web mining to analyze content from the blog system to obtain the best keyword(s) 

that represent the content. The third phase loads a specific interface for sending keywords 

to AWS to retrieve corresponding advertisements.  

2. Drupal CMS Design 

Drupal is a popular open source modular content management system (CMS). Like 

many other modern CMSs, it allows the system users and the administrator to post, 

customize, and manage the content and display of the Web site in an efficient manner. 

Developers world-wide have benefited from its open source strategy and created 

thousands of official or unofficial Drupal modules that tremendously increase the 

functionality of this CMS. Another advantage of using the Drupal system in this project 

is that Drupal is a PHP-based system. As an efficient server-side scripting language, PHP 

is widely used and was also chosen to be the scripting language to implement content-

targeted analysis.  

For best compatibility and generality, Apache 2.2.8 and MySQL 5.0 were chosen to 

be the Web server and database. The entire system is a typical 3-tier Web application: 
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Web server: 
Apache 2.2.8 
 
Web App: 
Drupal 5.2 

 
Database: 
MySQL 
5.0 

 
Client side: 
compatible 
browsers 

 

Figure 2.1: Drupal application web architecture 

 

Based on the basic Drupal 5.2 system, several Drupal-compatible modules have been 

loaded to increase the functionalities of the system, such as Google Adsense module 

mentioned previously to provide the ability to compare results. 

 

Figure 2.2: Front page of a Drupal-driven CMS 
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3. Motivation and Fuzzy Logic 

The uncertainty of meaning with natural language is a major focus for content 

analysis. The content-targeted advertising business model raises a big challenge on that 

issue. Traditional ways such as using classic TF-IDF (Term Frequency – Inverse 

Document Frequency) model combined with many other rules are mostly based on pure 

numerical analysis. However, linguistic meanings are usually vague. In many cases, it is 

fairly difficult to use purely crisp words, numbers, or functions to represent vague 

semantic meaning. Instead, fuzzy logic provides the benefits of the Boolean operation 

(using operators such as “AND”, “OR” or “NOT’) while overcoming its drawbacks. 

Documents, queries and their characteristics could easily be viewed as fuzzy granular 

classes of objects with un-sharp boundaries and fuzzy memberships in many concept 

areas. [7] 

Fuzzy set theory was invented by Dr. Lotfi A. Zadeh at UC Berkeley in 1965. 

Different from a normal set, whose elements have clear (crisp) values, a fuzzy set has 

elements with “bivalent” values, meaning that whether each element belongs to this set or 

not is represented by a membership value (degree of truth). A high membership value 

means that that element highly belongs to that set, and vice versa. In other words, fuzzy 

sets are sets of objects with un-sharp boundaries in which membership is a matter of 

degree. [6] The left graph of Figure 3.1 is a normal set representing season change. Each 

season has a crisp value (0 or 1) representing its existence and there is a clear time point 

to switch from the previous season to the next one. After that point, a new season 

suddenly comes into existence. In contrast, the fuzzy set represented by the right graph 
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shows a totally different story. Seasons here do not suddenly come or go but gradually 

show their influences. For example, spring gets its peak value around mid April but 

gradually fades after that. At the same time, summer heat is getting higher. Obviously, 

the representation of a fuzzy set shows a more realistic situation compared to crisp values 

in this case. 

 

Figure 3.1: Crisp Set vs. Fuzzy Set 

 

Membership values are generated by membership function (MF) which defines how 

each input value is mapped to a membership value between 0 and 1. For each element e 

that belongs to a fuzzy set FS, there is a membership function M such that 0 ≤ M(e) ≤ 1. 

Therefore, a fuzzy set can be defined as FS = {e, M(e) | e ∈ E}, where E is the universe 

of discourse whose elements are denoted by e. For example, a membership function 

calculating GPA can be as simple as gpa(g) = {0, if g < 2; (g – 2), if 2 ≤ g < 3; 1, if 3 ≤ g} 

which can be represented by the graph below. 
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Figure 3.2: A membership function 

There are several popular membership functions including triangular (trimf), 

trapezoidal (trapmf) and Gaussian. Because of their smoothness and concise notation, 

Gaussian is chosen to be the membership function in this project. Gaussian function is 

widely used to process input variables and represent the corresponding relevance values.  

Gaussian function: f(x) =  
22 /])([ σμ−− xae

Amplitude a  is the height of the peak, mean μ is the position of the center of the 

peak, and standard deviation σ controls the width of the peak. gaussamp(x, μ, σ, a) will 

be used in the rest of this report to easier demonstrate a Gaussian function. 

 

Figure 3.3: Gaussian curves 
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Multiple membership functions can be combined into a more complex membership 

function using fuzzy set operators such as union, intersection, complement and/or many 

others derived from these basic operators. For example, using union operator, two side-

by-side intersecting single Gaussian “peaks” can be combined to a bimodal McDonald 

“M” looking curve. 

Fuzzy logic is derived from fuzzy set theory to handle those “approximate” factors 

rather than crisp ones. As a logical system, it provides a more semantically sensible 

Boolean method (such as “mostly true but a little false”) to represent membership values. 

It is also easier to understand compared to complex numerical computations. It allows for 

setting membership values to a range, for instance, between 0 and 1.  

Generally, fuzzy logic rules use if/then logic. Depending on different member (input) 

values, linguistically, fuzzy logic rules can use words from “poor” to “fair” to “good”. 

For example, some simple fuzzy logic rules can be 

If service is poor or food is rancid, then tip is cheap 

If service is good, then tip is average 

If service is excellent or food is delicious, then tip is generous 

More rules can be defined as necessary, such as using words like “very good” or 

“very poor”.  

The entire process architecture of mapping the member inputs to outputs using fuzzy 

logic is the fuzzy inference system (FIS). The fuzzy inference process comprises of five 

parts: 1.) fuzzification of the input variables, 2.) application of the fuzzy operator in the 
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antecedent, 3.) implication from the antecedent to the consequent, 4.) aggregation of the 

consequents across the rules, and 5.) defuzzification. [MathWorks] It takes member 

inputs from all fuzzy sets matters into consideration. Compared to a serial numerical 

process, fuzzy logic can handle all inputs in parallel and then better consider them 

together. This is exactly what this project focus on. In chapter 4.3.3, this FIS process will 

be applied and discussed in detail. 

 

Figure 3.4: FIS process 

4. Content-targeted Analysis 

Different from a keyword-targeted advertising system, which is based on specific 

keywords directly provided (searched) by users, a content-targeted system relies on 

matching ads and its associated keywords to the text of a Web page [1]. The goal of a 

content-targeted system is to extract the best keywords that represent the main subject of 

a blog article, news page, or email page, for instance. These keywords will then be 
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transferred to an advertising system to match appropriate ads and display them at a 

certain place of the Web page. As viewed by the content readers, the ads are related to the 

Web content they read (and interested in usually). In a typical commercial model, any 

click-through of these ads will bring revenue to the web content providers. By providing 

the most relevant ads on their Web page, Web content providers can squeeze more 

revenue from their Web content. 

The entire content analysis and ads matching process consists of three major phases.  

1. Content gathering and filtering  

2. Ads candidates (keywords) choosing 

3. Implementation of fuzzy ranking 

4. Ads Retrieval 

 

Figure 4.1 System Architecture Model 
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4.1 Content gathering and filtering 

Content gathering and filtering is the first step of the content-targeted analysis 

process. The main purpose of this operation is to collect all useful information from 

target Web page for further processing. The script language PHP is a good solution for 

this purpose. A PHP application can take input from a file or data stream containing 

targeted content, implement data processes, and finally output a data stream. 

The plain text data directly grabbed from a Web page usually contains everything in 

the page including effective content and non-content information such as HTML tags and 

Javascript code. Some proper filtering methods should be implemented to filter out non-

content code but keep the rest intact. Based on different targets, many different methods 

have been introduced to help filter Web-based content; some are famous such as 

Bayesian email filtering. For Web page filtering purpose in this project, a reasonable way 

is to use regular expression which can be implemented by PHP to identify different parts 

of target data. The simple script below as an example replaces all tags represented by 

variable $tag with a blank (" "). 

$tags = "<.?p.?>|<.?br.?.?/?>|\(|\)|,|:|\.|;|\'|\"|{|}|&|-|\*|". 

"[[:space:]](to|in|of|on|up|is|by|or|we|me|us|it|at|as|an|and|but|not|the|for|i

ts|was|has|have|were|been|when|than|this|that|they|what|their|which|where)[[:sp

ace:]]"; 

if (eregi($tags, $text)) { 

  $text = strtolower(trim(eregi_replace($tags, ' ', $text))); 

} 

In addition to the regular expression method, more system-specified filtering 

schemes can be used to optimize the filtering effect. With this in mind, we can be 

 - 16 - 



relatively more effective and intuitive to filter out useless code by understanding the 

structure of the targeted system. For instance, Drupal CMS has its specific HTML 

division (<div> in HTML) distribution style which is helpful for locating the main 

content.  

Here below is the major process to get the page content and start filtering. 

/*1.) grabbing page content from blog page*/ 

$oriContent = file_get_contents("http://127.0.0.1/drupal/?q=node/$nid"); 

… … 

 

/*2.) getting target content division*/ 

$arrContent = split('<div class="content">', $arrContent[1]); 

$arrContent = split('</div>', $arrContent[1]); 

$text = $arrContent[0]; 

… … 

 

/*3.) split content into word level and save into an array*/ 

$arrContent = split(' ', $oriContent); 

… … 

 

/*4.) create regular expression template and do further filtering*/ 

… … 

4.2 Candidate Select 

4.2.1 Select mode 

Many previous published approaches estimated the ad relevance based on co-

occurrence of the same words or phrases within the page and within the ads (or keywords 
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binding to the ads). [4] Comparing to strategies that only count on individual words, 

considering multiple words (as a phrase) has significant advantage on accuracy. For 

example, a page talking about new operation system “Windows Vista” may have high 

term frequency (TF) on the word “vista”. If the analysis is based on individual word, the 

ads triggered by this “vista” may include travel or vista point information. In contrast, if 

the word “vista” is considered to be part of “windows vista”, there will be a much lower 

chance to make such a mistake when matching ads. 

For the sake of bringing in the most relevant advertisements, there is no need to find 

out or consider every possible phrase in an article. Instead, the focus can be put on those 

with high TF values. Start with each high-TF individual words, combine it with the word 

before it and then the word after it distinctively to see if there is a phrase match 

(including partly match) compared to a certain “phrase pool”. If the result is positive, the 

system can do a further try that extend one more word toward the direction of the 

previous match. A high bound can be set up such as five words at most. With longer 

phrase matches, higher accuracy is expected in most cases. As a result, the strategy is to 

treat phrases instead of individual words as raw advertisement candidates and perform 

further analysis on the local server to decide the best candidates. 

4.2.2 Yahoo Term Extraction implementation 

Yahoo Term Extraction (YTE) is a Web application that can perform similarly to 

what was described in the end of the previous section. YTE accepts an entire text and 

does a real time analysis and then returns mostly meaningful phrases, although a small 

number will not make sense or even be correct words. Based on the inverse checking, 
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most phrases returned by YTE contain at least one word having a top-ten TF value. Like 

many other popular Web services, YTE accepts REST (Representational State Transfer) 

technology as a way to submit the original document content and then returned the result.  

There are five parameters in a YTE REST query. When constructing an YTE query, 

we need to provide at least two parameters: the appID and the context (document). The 

YTE web service will then send the response (a list of extracted words) in one of three 

formats: XML, json or Serialized PHP. In this project, we use PHP “curl” to post the 

request and receive the result in the Serialized PHP format. (“curl” is a library that allows 

you to connect and communicate to many different types of servers with many different 

types of protocols. It currently supports the http, https, ftp, gopher, telnet, dict, file, and 

ldap protocols.) 

/*get document content from content array*/ 

$fcontext = implode(" ", $arrWord); 

 

/*Yahoo term extraction web service*/ 

$url = "http://search.yahooapis.com/ContentAnalysisService/V1/termExtraction"; 

$appID = 'cCPf5tfV34EABQtj85ZJeHFT.5UXibp0Vs1CIo33DQ_UsDQayaUVUzVU5SFTePkM_nc-'; 

 

/*curl session*/ 

$ch = curl_init(); 

curl_setopt($ch, CURLOPT_URL, $url);  

curl_setopt($ch, CURLOPT_POST, 1); 

curl_setopt($ch, CURLOPT_POSTFIELDS, 

"appid=$appID&output=php&context=$fcontext"); 

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);  //RETURN THE CONTENTS OF THE CALL 

$response = curl_exec($ch); 
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curl_close ($ch); 

 

According to the YTE specification, adding a “query” which consists of the 

keywords representing the “main idea” of a document will be helpful. Unlike many other 

Web pages each of which has a META tag containing several keywords representing the 

main topic, a Drupal blog entry has no META tags in the HTML script. The only place 

outside the main text that may contain the main idea of the document is the article title, 

which will be used as the YTE query parameter. Once getting the result returned by 

Yahoo, the system converts it to an internal array. Here below displays a sample array 

converted from Serialized PHP format. 

Array ( [0] => ford escape hybrid [1] => hillary rodham clinton [2] => barack 

obama [3] => chrysler 300c [4] => ford executive [5] => bill ford [6] => 

presidential hopefuls [7] => apparently [8] => presidential candidate [9] => 

chairman bill [10] => executive chairman [11] => automakers [12] => early june 

[13] => hemi [14] => hypocritical [15] => john edwards ) 

 

Although YTE returns keywords extracted from an article, it neither provides 

information of how it generates the keyword list nor the order of the keywords 

importance (rank). Without a preview of the document, it is still quite difficult to 

accurately summarize the main idea of this document only using the keywords listed 

above, let alone matching the most appropriate ads. However, considering the semantic 

meanings a YTE result brings in, we can consider YTE phrases as raw candidates for ads 

retrieval. 

 - 20 - 



4.2.3 Post-processing 

As mentioned previously, some YTE phrases are not returned in the correct form. 

For instance, duplicated meanings is a relatively major problem, such as returning 

“google” and “google inc” at same time or “affordable health care” and “quality 

affordable health care” at same time. Some other problems include incomplete phrases 

such as “s market”, or the wrong word such as “inroad”, etc. The function of post-

processing is to eliminate or correct these kinds of problems and errors, and to release the 

candidates in a more correct and clearer formation for further processing to discover 

which candidates have the highest ranking. 

4.3 Attributes of Candidate 

In order to rank these generated ads candidates (YTE phrases), the system performs a 

fuzzy ranking analysis involving several “characteristic” factors of these candidates. 

Major factors considered include term frequency, title overlap and optional META 

information, which are also the major parameters of fuzzy rules. 

4.3.1 Term Frequency 

TF-IDF is a weight often used in information retrieval and text mining fields. It is a 

statistical measure used to evaluate how important a word is to a document in a document 

collection. The TF value of a word simply denotes the number of times that word appears 

in a given document. Usually, a high TF value shows a more important position the word 

holds in a document (since the word shows more frequently). The IDF value is to 

measure a general importance of a term in an entire document corpus by checking its 
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“rarity” compared to other words in the entire documents corpus. If a word is rare, the 

word will have high IDF value and vice versa. Therefore, if a keyword appears frequently 

in a given document (means higher TF value) but appears infrequently in the overall 

document collection (means higher IDF value), this keyword owns high overall TF-IDF 

weight.  

 

Figure 4.1: TF-IDF 

 

Figure 4.1 display the TF-IDF function where ni,j is the number of occurrences of the 

considered term in document dj, and the denominator is the number of occurrences of all 

terms in document dj. | D | is the total number of documents in the corpus. And 

 is the number of documents where the term ti appears (that is 

). 

Up to the end of CS298, the IDF value is not being used. The major reason is that it 

is very difficult to get an appropriate (large and typical enough) document corpus. The 

ideal corpus for IDF should be all the documents on the WWW. For major search engines 

like Yahoo or Google, since huge amount of Web pages have been crawled and cached, 

they may have a document corpus relatively close (but still not equal) to the ideal 

definition. This can hardly be done in this project. If the document collection is too small, 

it will not be representative to show how unique a certain keyword is, making its IDF 

value inaccurate and harmful rather than helpful.  
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An alternative design for using IDF can be implemented in recent future is to define 

all posted documents on an entire blog system as the document corpus. A more unique 

meaning a word has in the blog system, a higher IDF weight it has within the restricted 

domain. As more and more blog entries are posted and the document corpus gets larger 

and larger, the accuracy of the IDF value of a particular word keeps improving. 

In contrast, TF can be attained easily by using a PHP script to collect all words 

within a given document and then calculate the frequency of each distinctive one by 

using a loop operation.  

 

… … 

Table 4.1: Term frequency sample 

 

All the distinctive words acquired will be stored into a backend database with their 

TF values for future process and usage. 
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4.3.2 Title overlap 

The definition of title overlap is how many words in a candidate phrase appears in 

the article title. If more words of a candidate phrase appear in the article title, the title 

overlap value of the candidate phrase is higher and vice versa. 

 

Table 4.2: Title Overlap 

 

For the article “Obama and Clinton clash in testy debate”, the candidate phrases 

“hillary clinton” and “barack obama” both have an overlap value of 0.5, meaning that 

half of the phrase appears in the article title. In contrast, another phrase such as “health 

insurance” scores zero (0.00) because neither “health” nor “insurance” appears in the title. 

4.3.3 META information and location 

Besides two major attributes discussed above, there are some other optional 

attributes that can be considered if the targeted objects are located on a platform other 

than Drupal being used in this project. 

Keyword META is a common HTML tag which holds the information about a Web 

page in some non-Drupal system. It may contain the keywords representing the main 
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subject of a Web document (as defined by a page builder). For instance, the keyword 

META of a database provider looks like 

<META name="keywords" content="enterprise, applications, software, database, 

middleware, fusions, business, Oracle"> 

Under such a case, a new attribute of candidate “meta overlap” can be built to 

measure the overlap situation of candidate to the MEAT keywords. It is pretty similar to 

the definition of title overlap described in last section. 

Similarly, a “heading overlap” can also be defined if there is an overlap situation 

happens between the candidates and the headings of an article. The headings are shorter 

than a sentence and usually each one occupies an entire line to indicate the meaning of 

next section. For example, the “NEW MECHANISMS” in the following news is a 

heading: 

 

There are still some challenges blocking using heading information to regular 

candidate attribute. Two major problems are the uncertainty of a heading content (a 

heading is sometimes is a slogan or a quoted people speech) and the uncertainty of the 

location of a heading (how to make sure some words shorter than a sentence is a heading 
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but not, for example, an explanation to a figure). This is a research and implementation 

direction in future to further improve the attribute design of candidates. 

4.4 Fuzzy Inference System Process 

The function of a fuzzy ranking system can be represented as a fuzzy inference 

system introduced in Chapter 3. It takes all input fuzzy sets into consideration using 

certain fuzzy rules to determine the final relevance degrees. The fuzzy sets are those 

attributes of an article including TF, title overlap and others maybe considered mentioned 

in Section 4.3.3. 

4.4.1 Fuzzy Rules 

The first step to build a fuzzy ranking system is to build fuzzy logic rules. Since fuzzy 

logic handles reasoning and results in a more approximate way rather than traditional 

crisp logic (“predicate logic”), fuzzy rules also looks more at the approximate side. Four 

rules handle possible situations in our content analysis process.  

• If TF is high, the relevance is high. If combined TF weight of the individual words of 

an YTE phrase is high, then the relevance of this phrase is high. 

• If TF is low, the relevance is low. If combined TF weight of the individual words of 

an YTE phrase is low, then the relevance of this phrase is low. 

• If overlap is high, the relevance is high. If more words contained in a phrase appear in 

an article, then the relevance of this phrase is high. 

• If overlap is low, the relevance is low. If fewer or no words contained in a phrase 

appear in an article, then the relevance of this phrase is low. 
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The first two fuzzy rules are implemented on every distinctive word within an article, 

storing every word with its TF weight in as described in the previous process. According 

to the scale of each TF weight, all TF values are scaled into a (0, 10] range with the 

highest TF defined as 10. For example, if the highest TF value 16 is scaled to 10, then a 

TF value 8 will be 5. These scaled values are the fuzzy set member inputs and ready to be 

operated by membership function. The TF membership functions are defined using 

Gaussian function and each of which represents a corresponding fuzzy rule. 

• High set: gaussamp(x, 10, 2, 1); factor: 10 

This function represents the fuzzy rule “if TF is high, the relevance is high”. 

• Low set: gaussamp(x, 0, 2.35, 1); factor: 1 

This function represents the fuzzy rule “if TF is low, the relevance is low”. 

 

Figure 4.2: Gaussian curve of TF 

 

For title overlap, the Gaussian function are defined as 
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• High set: gaussamp(x, 10, 0.24, 1); factor: 1 

This function represents the fuzzy rule “if overlap is high, the relevance is high”. 

• Low set: gaussamp(x, 0, 0.27, 1); factor: 0.1 

This function represents the fuzzy rule “if overlap is low, the relevance is low”. 

 

Figure 4.3: Gaussian curve of overlap 

 

The factor parameter controls the weight (or say, “importance”) of different rule and 

involved fuzzy set. For instance, “High TF” is 10 times important than “High Overlap” 

because the former’s factor (10) is 10 times larger than the latter’s (1). This is discussed 

in next two sections. Besides, if there are other overlaps involved such as heading overlap, 

it should also be defined at this stage. 

4.4.2 Implication and Aggregation 

While some researches tend to use graph tools (such as Fuzzy Logic Toolbox™ from 

MathWorks™) to handle the fuzzy operator, implication method, and aggregation 
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process, this project uses a more straightforward numerical way to combine multiple 

fuzzy rule outputs and get the final results. 

The output of any fuzzy rule is the product of the output of the membership function 

and the factor. For example, inputting a scaled TF value 5.882 into the “High TF” 

membership function will generate a value 0.12 as the result of fuzzification. At the same 

time, the “Low TF” membership function will generate a value 0.044 as the result of 

fuzzification. Since “High TF” has a set factor 10, the fuzzified output 0.12 will be 

enlarged for 10 times to 1.2; since the “Low TF” has a set factor 1, the output 0.044 

keeps the value. Similar operation is also applied to the title overlap rules.  

Once having the high and low TF membership value, a fuzzy TF value is able to be 

generated by combining the high TF set with the low TF with factor involved: 

Fuzzy TF value = (Low TF × Low TF factor) + (High TF × High TF factor) 

                                Low TF + High TF 

Using this function, both high set and low set rules are considered and they influence 

the fuzzy output value according to their factors. For the example above, the fuzzy TF 

value will be  

(0.044 × 1 + 0.12 × 10) / (0.044 +0.12) = 7.585 

 

A glimpse on PHP code (briefed): 

/* 1.) Normalize all TF into a (0, 10] range and then  

2.) calculate TF HIGH and TF LOW membership function and then  

3.) calculate the fuzzy value of TF*/ 

 

for ($i=0; $i<count($arrFreq); $i++) { 
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/* some code here*/ 

 

/* normalize TF values into (0, 10] range*/ 

$arrFreq[$i]['normalized'] = ($arrFreq[$i]['num']/$max) * 10; 

 

/* for each word, get its TF LOW and TF HIGH membership (Gaussian) function 

output*/ 

$arrFreq[$i]['low'] = exp(-0.5*(pow($arrFreq[$i]['normalized']/2.35, 2))); 

$arrFreq[$i]['high'] = exp(-0.5*(pow(($arrFreq[$i]['normalized']-10)/2, 

2))); 

/* calculate the fuzzy value of TF*/ 

$arrFreq[$i]['fuzzified'] = ($arrFreq[$i]['low'] * 1 + $arrFreq[$i]['high'] 

* 10) / ($arrFreq[$i]['low'] + $arrFreq[$i]['high']); 

/* rest code here*/ 

} 

The title overlap fuzzy value can be obtained in a similar way and it is not necessary 

to do normalization (because the input value is already within a range [0, 1]). The 

modification can be done on the Gaussian function side to make it fit this overlap input 

range, making the title overlap membership functions have much smaller “width” setting. 

The code below only displays the different part of title overlap from the TF side. 

/* Calculate Overlap fuzzy value*/ 

$arrKeyRanked[$i]['low'] = exp(-0.5*(pow($arrKeyRanked[$i]['inTitle']/0.24, 

2))); 

$arrKeyRanked[$i]['high'] = exp(-0.5*(pow(($arrKeyRanked[$i]['inTitle']-

1)/0.26, 2))); 

$arrKeyRanked[$i]['inTitlefuzz'] = ($arrKeyRanked[$i]['low'] * 0.1 + 

$arrKeyRanked[$i]['high'] * 1) / ($arrKeyRanked[$i]['low'] + 

$arrKeyRanked[$i]['high']); 

 - 30 - 



Here the factor for title overlap is designed to be 1/10 weight of TF. This value is 

designed mostly empirically. The first reason is that the title overlap attribute is not as 

important as TF attribute since the latter is a more “panorama” view to the entire article. 

Another reason is that the overlap value will be used as a factor in a future multiplication 

so that it should not be set too high. With the 1-high and 0.1-low setting, the highest 

value will be 1 (means 100% increase when used as a multiplication factor).  

As an example, if half of a phrase appears in the article title, the “inTitle” input value 

is 0.5. Based on the Gaussian functions above, the Low overlap fuzzy value will be 0.044 

and the High overlap fuzzy value will be 0.458. And the overall overlap fuzzy value is 

(0.114 × 0.1 + 0.18 × 1) / (0.044 +0.458) * 100% = 65.074% 

 

Because decisions are based on the outputs of all fuzzy rules implemented in a FIS, 

these rules (and their outputs) must be aggregated in some manner in order to make a 

decision. The previous processes generated two fuzzy values, the TF fuzzy value and the 

title overlap value. The former denotes the membership degree of each individual word 

contained in a candidate phrase and the latter denotes the “degree of relationship” 

between a candidate phrase and the article title. 

Since the title overlap is a more “phrase-level” attribute and the phrase itself is built 

by individual words, the aggregation method is designed as a 2-phase process. First to 

aggregate individual TF value together to get a base value for each phrase, and then 

adjust the baseline phrase value by aggregating the overlap value.  

The first TF aggregation is designed as 

Phrase base value = ∑ square(TF of each word) / ∑ (TF of each word) 
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Using this function, every word within a phrase will be considered. Obviously, those 

words having high TF values will have stronger influence than those with low TF values 

because they are all squared. This could assure that a phrase containing high-TF word 

will be considered more important. On the other hand low-TF words would balance the 

high-TF. It is especially effective when only one word within a phrase has a high TF 

value but all others’ are low. Suppose three words “health”, “insurance” and “care” have 

TF membership value 9, 7, 2 respectively. They are contained in two phrases “health 

insurance” and “health care”. Using the TF aggregation method, the base value of phrase 

“health insurance” will be (92 + 72)/(9 + 7) = 8.125 but the base value of “health care” 

will be (92 + 22)/(9 + 2) = 7.72. Semantically saying, the “health case” is less 

important than “health insurance” at this process moment. 

The next stage is to adjust the baseline value by aggregating with the title overlap 

value. The aggressive design idea here is to dramatically increase the weight of phrases 

having high number of word members which appears in the article title. Multiplication is 

the way to achieve this goal. The final phrase weight equals the phrase baseline weight 

multiplied by the title overlap value. For instance, assume the phrase “health insurance” 

has a TF weight 8.125 as described above and the word “insurance” appears in the article 

title (which results in a 65.074% title overlap value). Then the final crisp weight of 

“health insurance” is 8.125 * 1.65074 = 13.412 (rounded) 

Every candidate phrase will get an aggregated final weight after the entire process. It 

may be represented in a table below: 
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Table 4.3: Candidates weight table 

 

The “TF fuzzified” column denotes the aggregated baseline value of each candidate 

and the “Overlap fuzzified” column denotes the title overlap value. These two values are 

multiplied to get the final weight as a crisp value. 

4.5 Ads Retrieval 

The current scheme is to use the top two ads candidates as the final ads keywords. 

Their weight proportion decides the final ads distribution.  

In the Drupal system, a new block called “Amazon Ads” is created to retrieve ads 

using keywords from Amazon Web Service (AWS). Similar to Yahoo Term Extraction, 

Amazon also accepts REST to receive the ads query and return the ads in XML format. 

Sample code to query Amazon ads follows. Request keywords are saved in array 

$keyword. 

$request= 

       "http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService" 

     . "&AWSAccessKeyId=" . Access_Key_ID&Operation=" . $Operation 

     . "&Version=" . $Version. "&SearchIndex=" . "Books" 

     . "&Keywords=" . $keywords[0] . "&ResponseGroup=" . $ResponseGroup; 
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For receiving the ads, the system needs to convert XML format to an object and 

display the advertisement. 

echo "<table cellpadding=5>"; 

for ($i=0; $i<$proWeight_1; $i++) { 

$item = $parsed_xml_1->Items->Item[$i]; 

echo "<tr><td><a href=\"".$item->DetailPageURL."\" target=\"_blank\"><img 

src=".$item->MediumImage->URL."></a></td>"; 

echo "<td><a href=\"".$item->DetailPageURL."\" target=\"_blank\">".$item-

>ItemAttributes->Title."</a></td></tr>"; 

echo "</table>"; 

 

Figure 4.4: Ads generated 

5. System Demo and Evaluation 

The keyword analysis process discussed in the previous chapters can be seamlessly 

integrated into drupal CMS. Currently, there are two ways to implement the analysis 

process. One is a step-by-step manual operation to better understand the keyword 
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analysis and ads generation process, and the other is a one-click operation for faster and 

more convenient experiment. 

5.1 Step-by-Step Ads Generation 

Here below is the front page of the test system, which consists of three columns: ads 

analysis block at left, content block at middle and Google Adsense at right (as 

comparison). The default ads (for the user who has not selected a blog post and is on the 

main page or configuration pages) are related to the keywords “alumni”, which is the 

default keyword of this system. Once the user clicks a blog topic, the system will show 

the content-targeted ads based on the blog post user choose. 

 

Figure 5.1: System main page 

 

An ads analysis process starts from adding a new blog post. In the following case, a 

new post about AOL shutting down Netscape is posted. By modifying the Drupal core 

function (“node.module”), the keyword and ads analysis process can be integrated into 

the blog post submission process, which is a native function/operation of Drupal system. 
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A system under this configuration looks like figure below: the ads generator links 

disappears. The system directly displays the generated ads. 

After inputting new blog post content, user simply clicks “Submit” button: 

 

Figure 5.2 New content submission 

 

The system will automatically go through the entire keyword analysis and ads 

retrieving process, and then display the corresponding ads based on the top keywords. In 

this case, the top two are “mozilla” and “raskin”. 
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Figure 5.3: Newly posted content with generated ads 

5.2 Performance Evaluation 

The directly comparable system is Google Adwords. It provides the similar ability 

that analyzes the result of a given Web page and returns a keyword pool containing the 

keywords representing the subject. 

 

Figure 5.4: Google Adwords 

After comparing 100 articles so far across technology, business, politics, 

entertainment and sport categories, there is an average 87% probability that all the top 
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four keywords generated by this CS298 project system match up the result from Google 

Adwords. Also, though it is subjective, many keywords showing up as top four but not in 

Adword result are actually strong keywords representing the major content of article. 

Another evaluation manner which will be held in near future is to organize real person 

with appropriate knowledge backgrounds to justify the accuracy of the keywords and ads 

generated. Their feedback will be classified into different level such as “great” or 

“mediocre”. Combined with the comparison result with Google Adwords, a better 

evaluation result can be obtained. 
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