1,465 research outputs found

    Adaptive and intelligent navigation of autonomous planetary rovers - A survey

    Get PDF
    The application of robotics and autonomous systems in space has increased dramatically. The ongoing Mars rover mission involving the Curiosity rover, along with the success of its predecessors, is a key milestone that showcases the existing capabilities of robotic technology. Nevertheless, there has still been a heavy reliance on human tele-operators to drive these systems. Reducing the reliance on human experts for navigational tasks on Mars remains a major challenge due to the harsh and complex nature of the Martian terrains. The development of a truly autonomous rover system with the capability to be effectively navigated in such environments requires intelligent and adaptive methods fitting for a system with limited resources. This paper surveys a representative selection of work applicable to autonomous planetary rover navigation, discussing some ongoing challenges and promising future research directions from the perspectives of the authors

    Autonomous navigation of a wheeled mobile robot in farm settings

    Get PDF
    This research is mainly about autonomously navigation of an agricultural wheeled mobile robot in an unstructured outdoor setting. This project has four distinct phases defined as: (i) Navigation and control of a wheeled mobile robot for a point-to-point motion. (ii) Navigation and control of a wheeled mobile robot in following a given path (path following problem). (iii) Navigation and control of a mobile robot, keeping a constant proximity distance with the given paths or plant rows (proximity-following). (iv) Navigation of the mobile robot in rut following in farm fields. A rut is a long deep track formed by the repeated passage of wheeled vehicles in soft terrains such as mud, sand, and snow. To develop reliable navigation approaches to fulfill each part of this project, three main steps are accomplished: literature review, modeling and computer simulation of wheeled mobile robots, and actual experimental tests in outdoor settings. First, point-to-point motion planning of a mobile robot is studied; a fuzzy-logic based (FLB) approach is proposed for real-time autonomous path planning of the robot in unstructured environment. Simulation and experimental evaluations shows that FLB approach is able to cope with different dynamic and unforeseen situations by tuning a safety margin. Comparison of FLB results with vector field histogram (VFH) and preference-based fuzzy (PBF) approaches, reveals that FLB approach produces shorter and smoother paths toward the goal in almost all of the test cases examined. Then, a novel human-inspired method (HIM) is introduced. HIM is inspired by human behavior in navigation from one point to a specified goal point. A human-like reasoning ability about the situations to reach a predefined goal point while avoiding any static, moving and unforeseen obstacles are given to the robot by HIM. Comparison of HIM results with FLB suggests that HIM is more efficient and effective than FLB. Afterward, navigation strategies are built up for path following, rut following, and proximity-following control of a wheeled mobile robot in outdoor (farm) settings and off-road terrains. The proposed system is composed of different modules which are: sensor data analysis, obstacle detection, obstacle avoidance, goal seeking, and path tracking. The capabilities of the proposed navigation strategies are evaluated in variety of field experiments; the results show that the proposed approach is able to detect and follow rows of bushes robustly. This action is used for spraying plant rows in farm field. Finally, obstacle detection and obstacle avoidance modules are developed in navigation system. These modules enables the robot to detect holes or ground depressions (negative obstacles), that are inherent parts of farm settings, and also over ground level obstacles (positive obstacles) in real-time at a safe distance from the robot. Experimental tests are carried out on two mobile robots (PowerBot and Grizzly) in outdoor and real farm fields. Grizzly utilizes a 3D-laser range-finder to detect objects and perceive the environment, and a RTK-DGPS unit for localization. PowerBot uses sonar sensors and a laser range-finder for obstacle detection. The experiments demonstrate the capability of the proposed technique in successfully detecting and avoiding different types of obstacles both positive and negative in variety of scenarios

    Intelligent approaches in locomotion - a review

    Get PDF

    Optimization approaches for robot trajectory planning

    Full text link
    [EN] The development of optimal trajectory planning algorithms for autonomous robots is a key issue in order to efficiently perform the robot tasks. This problem is hampered by the complex environment regarding the kinematics and dynamics of robots with several arms and/or degrees of freedom (dof), the design of collision-free trajectories and the physical limitations of the robots. This paper presents a review about the existing robot motion planning techniques and discusses their pros and cons regarding completeness, optimality, efficiency, accuracy, smoothness, stability, safety and scalability.Llopis-Albert, C.; Rubio, F.; Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences. 5(1):1-16. doi:10.4995/muse.2018.9867SWORD1165

    Design Issues for Hexapod Walking Robots

    Get PDF
    Hexapod walking robots have attracted considerable attention for several decades. Many studies have been carried out in research centers, universities and industries. However, only in the recent past have efficient walking machines been conceived, designed and built with performances that can be suitable for practical applications. This paper gives an overview of the state of the art on hexapod walking robots by referring both to the early design solutions and the most recent achievements. Careful attention is given to the main design issues and constraints that influence the technical feasibility and operation performance. A design procedure is outlined in order to systematically design a hexapod walking robot. In particular, the proposed design procedure takes into account the main features, such as mechanical structure and leg configuration, actuating and driving systems, payload, motion conditions, and walking gait. A case study is described in order to show the effectiveness and feasibility of the proposed design procedure

    Intelligent Robotics Navigation System: Problems, Methods, and Algorithm

    Get PDF
    This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Robotic Technologies for High-Throughput Plant Phenotyping: Contemporary Reviews and Future Perspectives

    Get PDF
    Phenotyping plants is an essential component of any effort to develop new crop varieties. As plant breeders seek to increase crop productivity and produce more food for the future, the amount of phenotype information they require will also increase. Traditional plant phenotyping relying on manual measurement is laborious, time-consuming, error-prone, and costly. Plant phenotyping robots have emerged as a high-throughput technology to measure morphological, chemical and physiological properties of large number of plants. Several robotic systems have been developed to fulfill different phenotyping missions. In particular, robotic phenotyping has the potential to enable efficient monitoring of changes in plant traits over time in both controlled environments and in the field. The operation of these robots can be challenging as a result of the dynamic nature of plants and the agricultural environments. Here we discuss developments in phenotyping robots, and the challenges which have been overcome and others which remain outstanding. In addition, some perspective applications of the phenotyping robots are also presented. We optimistically anticipate that autonomous and robotic systems will make great leaps forward in the next 10 years to advance the plant phenotyping research into a new era
    • …
    corecore