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Abstract— The application of robotics and autonomous 

systems in space has increased dramatically. The ongoing Mars 

rover mission involving the Curiosity rover, along with the 

success of its predecessors, is a key milestone that showcases the 

existing capabilities of robotic technology. Nevertheless, there has 

still been a heavy reliance on human tele-operators to drive these 

systems. Reducing the reliance on human experts for navigational 

tasks on Mars remains a major challenge due to the harsh and 

complex nature of the Martian terrains. The development of a 

truly autonomous rover system with the capability to be 

effectively navigated in such environments requires intelligent 

and adaptive methods fitting for a system with limited resources. 

This paper surveys a representative selection of work applicable 

to autonomous planetary rover navigation, discussing some 

ongoing challenges and promising future research directions 

from the perspectives of the authors.  

Keywords—planetary rovers, space robotics, machine 

intelligence, navigation algorithms, autonomous systems 

I.  INTRODUCTION 

The rapid development of mobile robotics and other space 

technology has enabled the exploration of the unknown beyond 

Earth. Particularly notable achievements in planetary 

exploration include the successful deployment of several Mars 

rovers, namely Sojourner, Spirit and Opportunity, and the 

Curiosity rover [1]. These missions aimed to explore the 

surface and geology of Mars to discover the history of the 

planet’s water activity, determine the geological processes that 
shaped the landscape, and assess the habitability of the 

environment, and much more [2][3]. The success of these 

missions were considerable feats that demonstrate the benefits 

that can be derived from the deployment of autonomous 

wheeled mobile robots to assist and support human activities. 

However, while the performances of these rovers are nothing 

short of impressive, there is still large room for improvement.  

 Developing rover systems capable of exploring the Martian 

environment fully autonomously is an ongoing challenge. 

Traditional navigation techniques developed for very particular 

scenarios on Earth are simply inadequate for dealing with the 

harsh and challenging environment of Mars. Rather, more 

generalized, adaptive and intelligent methods are needed to 

deal with the interactions with unknown landscapes robustly 

and autonomously. With regard to intelligent methods under 

consideration in this survey, we refer to a series of soft 

computing techniques that can be roughly divided into the 

following categories: neural networks, fuzzy logic, 

probabilistic methods, evolutionary algorithms (which include 

genetic algorithm, ant colony optimization and particle swarm 

optimization) and hybrid methods. In addition to this, recent 

developments in cognitive robotics are also drawing interest in 

the field of navigation, where self-learning capabilities provide 

robots with an ability to adapt to unseen scenarios. 

From literature review, we have found some relevant work 

that begins to offer viable solutions to the problem of 

navigation on Mars. However, such research efforts are 

scattered among the widespread research on mobile robotics. 

The authors in [4] and [5] survey techniques for terrain 

classification and characterization that demonstrate potential 

for planetary rover applications. However, to our knowledge, 

no existing work surveys adaptive and intelligent navigation 

methods for the broader problem of planetary exploration. To 

address this gap, this survey paper brings together a 

representative selection of work in intelligent and adaptive 

navigation that show potential for use in planetary exploration 

and gives our perspectives on the promising future directions 

for the development of more intelligent and autonomous 

planetary rovers. Thus this paper is organized as follows. 

Section II provides a scope description of various tasks 

involved in navigation, while section III introduces the 

capabilities of existing Mars rovers and the difficulties faced 

during operation on Mars. In section IV we review a selection 

of relevant work that is representative of the current state of 

research. Section V concludes the paper with a discussion of 

the implications of current methods to the future of planetary 

rovers. 

II. PLANETARY ROVER NAVIGATION OVERVIEW 

The term navigation encapsulates a number of different tasks 

required of a robotic system. This can be broken up into path 
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Fig. 1.  A general overview of rover navigation system 

planning, obstacle avoidance, localization and terrain 

traversability analysis, etc. Indeed, there are additional tasks 

performed by robots that relate to navigation, such as trajectory 

tracking control, dynamic target tracking and object 

recognition, but we do not cover these aspects in this paper due 

to page limit. Fig. 1 illustrates the general architecture for the 

autonomous navigation of a rover system.  

Path planning consists of finding a feasible path from a 

starting pose to a final destination in an optimal manner. Path 

planning methods can be divided into two classes: global path 

planning and local path planning. Global path planning seeks to 

find a high-level path based on some a priori knowledge of the 

environment, and is effective for generating optimal high level 

path plans for a rover to execute. However, they are generally 

inadequate for handling dynamic/unknown environments. On 

the other hand, local path planning relies on sensory 

information to ensure global plans are executed accurately and 

potential collisions are prevented. While it benefits from 

requiring no priori knowledge of the environment, a local 

planner is generally insufficient for generating an optimal path 

to a goal. Many recent approaches to path planning incorporate 

both global and local path planning for more robust and 

optimal navigation performance [6]. 

Obstacle avoidance involves the detection and avoidance of 

objects/hazards that obstruct the robot as it performs a given 

task. This requires the use of sensory information from on-

board (and sometimes external) sensors, such as vision systems 

and laser scanners, to detect dangerous features in the robot’s 
vicinity. Many solutions have been proposed for dealing with 

unknown but static obstacles. However, considerable 

challenges still exist for cluttered environments or where 

obstacles are dynamic. This is further complicated by errors 

and uncertainty associated with sensory devices. Currently, 

these are commonly addressed by consolidating information 

from multiple sensors through data fusion.  

Localization addresses the problem of identifying the 

location of the robot within its environment. Approaches to 

localization include relative methods, which track the robot’s 
motion from a reference point, and absolute methods which 

employ the use of GPS. However, both of these solutions suffer 

from errors and inaccuracies which must be compensated for. 

Hence, an assessment of local landmarks is frequently 

consolidated with sensors to provide more accurate estimations 

of the robot’s location. This becomes increasingly difficult with 
harsher environments, where GPS signals are absent and 

landmarks are not known a priori. An extended activity of 

localization is Simultaneous Localization and Mapping 

(SLAM) [7]. This is a process that deals with mapping an 

unknown environment using a robot while at the same time 

tracking its own location within it. This map can them be used 

for navigation. Various sensors may be used to achieve this, 

such as cameras, laser rangefinders and sonar sensors.  

Terrain traversability analysis is a necessary aspect of 

navigation for applications in unstructured and difficult terrain. 

In these environments, robots commonly encounter areas that 

are impassable due to the nature of wheel-terrain interaction. 

Thus, an important step in navigating through these 

environments is to classify the type of terrain (e.g. soil/grass) 

and to characterize their properties to assess the traversability 

and identify the mechanical properties of the surfaces.  

III. COMMON CHALLENGES 

The most recently deployed Curiosity rover on the surface 

of Mars has three primary modes of navigation. These are: 

blind-drive, hazard avoidance, and visual odometry [1]. In 

blind-drive mode, human operators on Earth use information 

from local images to identify a safe path for the rover. 

Commands are sent to drive the rover along this path as far as 

the operator has deemed safe. The rover tracks the distance 

travelled through wheel odometry. This mode of operation 

 



offers the highest traversal speed as the rover does not need to 

assess the safety of the path. However, the length of the safe 

path planned by human experts is limited by the amount of 

terrain information that is assessable from local images. In 

hazard avoidance mode, the rover autonomously chooses a path 

to follow such that hazards are avoided. To achieve this, the 

rover stops at regular intervals to assess the local terrain 

through images captured with its body-mounted hazard 

avoidance stereo cameras. The rover then updates its path 

based on any detected hazards. Similarly for visual odometry 

navigation [8], the rover periodically stops to check for 

slippage. Images are acquired from the mast-mounted 

navigation cameras at each instance and compared with 

previous images. Similar features are identified and matched to 

determine the distance travelled. This enables the rover to 

determine whether it is stuck and can prevent further negative 

actions from taking place.  

While Curiosity and its predecessors have demonstrated 

success in navigating the Martian terrain, there are still a 

number of key challenges that exist for planetary rover 

navigation. The mobile nature of the rovers means that on-

board resources are limited. The heavy reliance on imagery for 

hazard avoidance and visual odometry requires the robot to 

stop periodically, which is inefficient and restricts the speed of 

operation [9][10]. Conversely, the need for human intelligence 

to plan safe paths in blind-drive mode is also restricting due to 

the limited availability of communications and significant 

communication delays. Consequently, an area for improvement 

to the system includes the enhancement of autonomous 

behavior without the use of computationally expensive 

approaches. Certainly, by providing the rover with greater 

goal/path selection capability, human involvement can be 

significantly reduced in the navigational loop.   

Another significant challenge that existing rovers have been 

faced with is their interactions with hazardous terrains [11]. 

Mars rovers are required to operate in various unprepared 

terrains with differing properties. For example, rovers can 

experience high levels of slippage on particularly steep slopes 

[12], or dangerous levels of sinkage on terrain with insufficient 

mechanical strength [10]. Some of these properties are difficult 

to identify at a distance from visual observations alone. In more 

extreme cases, it is not until the rover has entered a hazardous 

region that it was able to classify the terrain. One consequence 

of this is difficulty in performing trajectory tracking on high-

slip surfaces [13]. Since the complex wheel-terrain interaction 

effects are not precisely known, it can be difficult to model 

such effects accurately. Methods for effective trajectory 

tracking control where high-accuracy dynamic models of the 

rover-terrain interaction are not fully known are therefore 

desirable. Perhaps an even more favorable outcome than this 

would be to avoid difficult terrain altogether, where possible. 

Applying terrain classification and characterization information 

to online planning activities would therefore be necessary, but 

proves to be a challenge due to computational demand [14].  

SLAM, a key activity in any navigational task in unknown 

environments, is similarly problematic on Mars. Rovers suffer 

from high slip ratios due to the combined effects of terrain 

geometry and mechanical properties, resulting in severe dead 

reckoning errors. When coupled with the absence of GPS, 

traditional methods for SLAM are simply inadequate. Visual 

SLAM has drawn attention for general applications in recent 

years, but it is nevertheless computationally expensive. 

Furthermore, while visual localization is particularly suited to 

feature-rich environments, it is inadequate for featureless 

landscapes. This problem is significantly elevated when 

simultaneous considerations are given to terrain traversability 

analysis. As the research community addresses challenges 

relating to real-time terrain traversability analysis, it is clear to 

see that there is still a long way to go before a truly effective 

simultaneous terrain characterization and classification, 

localization and mapping solution can be realized together with 

an effective path planning mechanism [15].   

While we have not exhaustively described all the problems 

encountered in Mars exploration missions, it is sufficient to see 

that adaptive and intelligent approaches to navigation are 

necessary to overcome hurdles facing robotic exploration. 

Indeed, currently deployed rovers lack learning capabilities, a 

feature of growing interest in the field of robotics.  

IV. NAVIGATION OF AUTONOMOUS PLANETARY ROVERS 

A. Path Planning  

In recent years, there has been a rapid growth in the 

exploration of evolutionary and swarm algorithms for solving 

the problem of path planning due to their suitability for 

handling large, complex environments. Traditional methods are 

computationally expensive when exploring a fine-grid map, 

and generally require re-planning a path from scratch when a 

new obstruction is detected. Stochastic methods therefore 

enable more efficient path planning in such scenarios. Particle 

swarm optimization (PSO) has been demonstrated successfully 

for both global and local path planning in [16]. Here in 

particular, the authors described a method for realizing online 

path planning, enabling a robot to modify its motion in real 

time within unpredictable and/or unknown environments. 

Another notable strength of stochastic methods is their 

adaptability for hybrid methods. Tusi and Chung [17] combines 

the artificial bee colony algorithm (ABC) with the rapidly-

exploring random tree (RRT) to compensate for the drawbacks 

of the two individual methods. This led to an approach with 

faster convergence, improved stability and enhanced ability to 

avoid entrapment in local minima. Evolutionary and swarm 

algorithms have also been combined with fuzzy systems and 

neural networks (these are further discussed below). Algabri 

[18] presented a comparison of four hybrid methods (namely 

manual fuzzy, genetic algorithm-based fuzzy, PSO-based 

fuzzy, and neuro-fuzzy) to assess the performance of these 

methods relative to each other. The author notes that these 

methods outperform each other for different aspects and no one 

method is necessarily superior overall for general applications.  

Fuzzy rule sets have been used to address uncertainty in 

navigation by emulating human reasoning with linguistic terms. 



Fuzzy systems for navigation have evolved considerably since 

its appearance in early works [19], and recently authors have 

attempted to improve their robustness through the use of fuzzy-

hybrid methods. In [20], a dual rule-based fuzzy path planner is 

presented. Multi-objective stochastic optimization methods are 

used to scale the parameters in the fuzzification and 

defuzzification process such that the planned path is 

time/energy optimal, safe and smooth. Type-2 fuzzy sets [21] 

have also begun to appear in robot navigation. These systems 

have improved capability to handle uncertainty and imprecision 

through the use of upper/lower membership functions to model 

uncertainty in the degree of membership. Its application in path 

planning of mobile robots has been demonstrated in [22]. 

Neural networks have also appeared prominently in mobile 

robot literature since the late 1990s [23]. Continued research 

efforts dedicated to this field has led to new classes of neural 

networks that demonstrate effective performance in navigation 

compared with other techniques. The work in [24] investigated 

the performance of a mobile robot using wavelet neural 

network for navigation. Experimental results showed that this 

class of neural networks can improve the speed of training and 

convergence while exhibiting good robustness attributes. Luo 

et al. [25] addressed the problem of multi-goal motion planning 

and map building in unknown environments through the use of 

a Hopfield neural network (HNN). Their approach combines 

the D*-Lite algorithm and vector field histogram for global and 

local path planning capabilities together with the HNN to 

realize multiple navigation objectives. This work demonstrates 

the feasibility of implementing neural networks to perform 

multiple tasks concurrently in real-time. 

Most recently a number of novel learning-based hybrid 

algorithms have been trialed for path planning applications. A 

cognitive learning-based algorithm is presented in [26]. Here an 

extreme learning machine (ELM), which consists of a single 

hidden layer neural network that does not require adjustment of 

weights, is combined with reinforcement Q-learning [27] to 

enable online self-learning. This proposed algorithm 

demonstrates good generalization performance and fast 

learning speeds necessary for real-time applications in 

diverse/unknown environments. Other reinforcement learning 

(RL) methods have also been proposed, such as in [28], where 

a fuzzy logic controller is integrated with heuristic dynamic 

programming based on a method called Dyna planning. Dyna 

was proposed by Sutton in 1991 as an artificial intelligence 

architecture which combines learning, planning and reactive 

execution [29]. The authors in [28] compared their approach 

with other RL methods and concluded that this algorithm is 

capable of generating faster near-optimal paths with high 

stability, but at the expense of high computational cost. 

Additionally, a key advantage of the Dyna approach is its 

scalability into multi-robot systems. However, currently this 

has only been tested in a maze-like environment and further 

work is required to extend this to outdoor terrain. Yu et al. [30] 

addressed path planning in outdoor environments also using 

ELM. Based on ridge regression (RR) theory, the proposed 

algorithm determines an optimal path based on distance and 

takes into consideration dynamic environments. Comparisons 

with classic support vector machine (SVM) and ELM 

approaches demonstrate that the RR ELM has better 

generalization performance, smoothness and speed. 

B. Obstacle Avoidance 

Much attention has been given to the use of neural networks 

to perform obstacle and hazard avoidance. A neural-based 

autonomous navigation algorithm is presented in [31] for 

wheeled mobile robots operating in unknown and unstructured 

environments. By using a single diagonal recurrent neural 

network (RNN) to optimize the output of a supporting reactive 

navigation algorithm, the proposed approach enables real-time 

obstacle avoidance while minimizing the length of the path 

taken to reach a target, despite having no a priori knowledge of 

the environment. The network is trained in a two-step 

supervised off-line learning and online weight-adjustment 

process, providing it with good generalization performance and 

guaranteed convergence. Likewise, the authors in [32] 

presented a hybrid approach to obstacle avoidance, which 

incorporates a neural network to navigate through cluttered 

dynamic environments. Using perceived information about the 

environment across six segments of the robot’s field of view, 
the neural network determines the safest direction to maneuver 

past obstacles while maintaining a desired traversal direction.  

A number of authors have also addressed problems arising 

from the presence of uncertainties by integrating fuzzy logic 

methods with neural networks. Noisy sensory information is 

treated using fuzzy rules before being fed into a neural network 

in [33]. When compared with a purely neural-based model, the 

proposed method proved to be superior both in terms of 

obstacle avoidance success rate and the smoothness of 

navigation. The use of fuzzy logic for the treatment of 

uncertainties also benefits from fast computation and easy 

interpretation. The adaptability of fuzzy logic to dynamic and 

unstructured environments are further improved upon in [34], 

where the authors investigated the use of interval type-2 fuzzy 

sets to handle greater levels of uncertainties. This is combined 

with a neural network such that the process of fuzzification is 

handled in the input layer of the neural network. The neural 

network then deals with the actual obstacle avoidance task. 

Simulations and experiments verified that the algorithm 

achieved smooth motion during obstacle avoidance and 

demonstrated good position stabilization.  

Additionally, learning-based fuzzy and neural network 

approaches have recently been appearing in literature with 

some proven success. Duguleana and Mogan [35] proposed a 

Q-learning and neural network algorithm for static and 

dynamic obstacle avoidance. Motivated by the high 

computational time of traditional methods, their work enables 

the effective navigation of a mobile robot with adjustable 

speeds while avoiding local minima. Furthermore, the hybrid 

nature of their solution eliminates the drawbacks of Q-learning 

while retaining the essence of its use in navigation (that is to 

find optimal paths without previous knowledge of the 

environment). However, in their study, the authors assumed 



that all dynamic parameters are known at any time instant, 

which is often not true in real scenarios. The use of Q-learning 

to provide robots with self-learning capabilities have also 

appeared in other works. In [36], Q-learning was used with an 

unsupervised, weightless neural network algorithm for 

identifying, differentiating and classifying obstacles. With this 

algorithm, a robot is capable of maneuvering through obstacles 

by self-learning from experience, much like how a human 

learns. This proposed method illustrates how learning 

techniques can be used to overcome problems associated with 

traditional artificial intelligence methods, namely their 

thorough training requirements and difficulty with handling 

new, unseen scenarios. The use of operant learning (OL) (based 

on animal learning) combined with a probabilistic fuzzy 

controller is proposed in [37]. The authors address the 

difficulty of maintaining correctness, consistency and 

completeness of a fuzzy rule base by employing OL to tune 

fuzzy set parameters, while uncertainty is handled by 

probabilistic terms. Indeed, simulation results demonstrate that 

the system behavior resembles that of animal learning. 

Consequently, failures and collisions can occur during early 

stages of navigation but reduces significantly over time.  

Initial studies into cognition-inspired approaches have also 

begun to surface within the research community. The work in 

[38] introduces the concept of fuzzy cognitive maps (FCM) for 

a knowledge-based navigation system. By modelling decision-

making tasks through heuristic knowledge that link navigation 

concepts and causal relationships together, the system becomes 

able to adapt to changes in the environment and successfully 

avoid obstacles. While this method is still in its infancy, initial 

results provide a glimpse of its future potential for more 

autonomous navigation applications. Likewise, the feasibility 

of a cognitive development learning model, implemented 

through a neural network, for autonomous navigation has been 

investigated [39]. The author presented a dynamically adjusted 

neural network, whereby neurons were added or removed such 

that the biological behavior of living organisms are imitated, to 

enable the robot to learn from its interaction with an 

environment. The experimental results, tested on a robotic fish 

in water, are promising. However, the author reported signs of 

slight jitter, which implies a sub-optimal trajectory. Certainly, 

further investigations will be necessary to better understand the 

performance of this approach, but much like the work in [38], it 

demonstrates potential for autonomous navigation in complex 

environments.   

C. Terrain Traversability Analysis 

Truly autonomous rover navigation cannot be realized on 

environments such as the surface of Mars without first enabling 

the system to obtain, understand and use terrain information in 

real time. Wheel sinkage has been identified as a good indicator 

of the mechanical properties of outdoor terrain [40]. 

Nevertheless, this method alone does not prevent a rover 

system from entering hazardous regions entirely. To tackle this 

open problem, a number of authors have proposed vision-based 

machine learning techniques to estimate traversable regions in 

distant terrain. The same authors in [40] developed a classifier 

framework whereby information from proprioceptive sensors 

are used to classify the terrain traversed at a particular time 

instant [41]. The results of this classification, along with visual 

information of the classified terrain, are then used to train a 

separate vision-based classifier to enable classification of more 

distant terrain. The process of classification is mainly 

performed using SVMs. In a similar fashion, Otsu et al. [42] 

proposed the use of both vibration-based and visual-based 

classifiers to operate concurrently. Information obtained from 

the two sensors is used firstly to classify the terrain using 

SVMs, and secondly to re-train each other’s classifier outputs. 

This approach enables a greater degree of training from a 

sparse dataset and has been validated on Martian-like terrain.  

In [43], an adaptive feature selection approach to terrain 

classification, based on the Random Forest method, was 

presented. Using a self-supervised learning framework to train 

a visual classifier, key feature information is extracted from 

images to identify color characteristics, texture information and 

geometric features associated with the terrain. It was concluded 

from experimental results that this framework provides good 

real-time performance. Yet from past experience, it has already 

been understood that such observations alone are insufficient 

for robust and accurate assessment of terrain mechanical 

properties. Fujita and Ichimura addressed this problem in [44], 

where they devised a framework for the classification of non-

geometric terrain properties based on Dynamic Texture 

analysis. A sequence of images of moving scenes is analyzed to 

identify soils types and to estimate the rover velocities relative 

to the terrain, from which the level of slippage can be derived 

approximately. An additional benefit of this approach is 

robustness to time-changing features such as lighting 

conditions, texture and physical configurations of the terrain.  

The application of neural networks for terrain traversability 

analysis has also been promising. Notably, a variety of RNN 

architectures for visual classification were investigated in [45]. 

In this work, a visual feature progression technique was utilized 

to perform mutations, such as scaling and blurring, on feature 

image patches to generate a sequence of feature vectors. 

Classification of these feature vectors were then performed 

using RNN. The authors compared these results with that of 

Random Forest-based methods and highlighted the superior 

performance of the RNN approach. Likewise, in [46] the 

suitability of RNN for vibration-based classification of terrains 

was studied. The authors combined this with Sequence 

Boundary Dropout, a regularization technique, to enlarge the 

training set and improve generalization. The authors discuss the 

strengths of neural networks when compared with traditional 

classification techniques, commenting that neural networks 

classify “in the time domain without any explicit feature 
computation” [46]. Indeed, the performance of RNNs were 

verified in experiments, proving successful in a test to identify 

samples from among 14 terrain classes in real-time.  

Most recently, a novel software, Soil Property and Object 

Classification (SPOC), was developed from deep learning 

methods [47]. Using visual images of Martian terrain captured 

both on-ground and in-orbit, a deep convolutional neural 



network (CNN) was employed to classify terrain types and 

features. While this software required training using data 

provided by human experts, it was successfully applied to two 

Mars rover missions: landing site analysis for Mars 2020 Rover 

mission; and slip prediction modelling using data captured with 

the Curiosity rover. Currently this software is used 

independently for off-line terrain traversability analysis. 

However, its exemplary performance highlights the potential of 

intelligent techniques for realizing autonomous, real-time 

terrain classification for planetary rovers.  

D. Localization 

Many authors have addressed the problem of localization in 

challenging environments. A hybrid approach called R-SLAM, 

which combines both feature and grid-based methods for the 

generation of consistent and high resolution maps, is presented 

in [48]. The work is motivated by a need to overcome both 

systematic and non-systematic odometry errors (due to uneven 

surfaces and wheel slip etc.) and addresses the challenge of 

GPS-denied environments. The hybrid nature of this approach 

restricts the use of feature-based localization, which reduces 

computational load. In [49], Havangi investigated the 

performance of intelligent FastSLAM, which improves upon 

the original FastSLAM algorithm [50], through the inclusion of 

soft computing methods. In particular, an evolutionary filter 

search is applied for best pose estimation; while a fuzzy 

unscented Kalman filter handles feature location estimation. 

Experimental results show that this variation of FastSLAM 

reduces the problem of performance degradation over time as a 

result of unknown statistical noise. The application of fuzzy 

logic to localization was further extended in [51], where a 

neuro-fuzzy system was developed for the purpose of slip 

compensation. This architecture enables the system to build a 

model capable of learning slip dynamics, which is then utilized 

for wheel slip compensation. Through its self-calibrating 

mechanism enabled by the neural-based implementation, the 

algorithm demonstrates robustness to terrain variations while 

improving computational efficiency.  

Aside from neuro-fuzzy architectures, (deep) CNNs have 

also been implemented with the demonstrated success for 

various visual localization solutions. The effectiveness of 

CNNs for handling certain aspects of change in an environment 

was demonstrated in [52], where it is used for long-term 

localization applications in environments experience seasonal 

change. Meanwhile, a set of spatial vocabulary was developed 

from the ontology of space and used to identify features based 

on CNN implementation in [53]. Both of these works 

demonstrate potential in the use of CNNs for effective 

generalized localization performance. However, this is subject 

to the availability of diverse training data. Nevertheless, there is 

a good indication that CNN methods enable localization 

performance on par with or better than other existing methods.   

Bajpai et al. [54] specifically addressed the problem of 

SLAM for planetary rovers using a biologically-inspired 

approach. Here a hybrid visual saliency model is developed to 

enable semantic feature detection using monocular images, 

which, as a result, reduces the complexity of the system. Three 

point-based feature techniques were tested within the system 

architecture to identify the potential effectiveness of the hybrid 

saliency model. Experimentation on challenging real-world 

datasets indicated that this solution outperforms visual 

odometry localization approaches while exhibiting robust and 

lightweight properties.  

V. DISCUSSION AND FUTURE DIRECTIONS 

It is becoming more widely recognized that as mobile 

robots venture into more complex and harsh environments, 

traditional approaches to performing navigational tasks are 

insufficient. In our survey of emerging solutions to autonomous 

navigation, it is clear that adaptive, intelligent and more 

generalized methods play a pivotal role in equipping planetary 

rovers with the necessary capabilities to interact with the 

environment in a truly autonomous way.  

  From surveying the literature, it can be observed that the 

advancement of machine learning methods have enabled good 

terrain traversability analysis possibilities that do not rely on 

human expertise. The development of SPOC is a key milestone 

that demonstrates the potential of applying deep learning to 

perform autonomous terrain classification. Though it is still a 

challenge, with such a feature rover systems would be able to 

perform accurate and adaptive self-learning through terrain 

classification. Furthermore, given the consequences of 

encountering critical situations, the capabilities of SPOC could 

be further extended to include the characterization of terrain 

mechanical properties. This will involve the utilization of 

knowledge gained from the progress achieved by past works 

exploring the use of proprioceptive sensors in addition to visual 

information. Looking even further ahead, it will be a necessary 

task for the rover to incorporate terrain information obtained 

autonomously and apply it to other activities such as path 

planning, localization and trajectory tracking control. For the 

case of path planning, it is naturally desirable to avoid hazards 

such as regions of high slippage and/or sinkage risk, and rocky 

surfaces that can damage rover wheels. Similarly, a good 

estimate of wheel slippage will improve the performance of 

localization and trajectory tracking capabilities. It has already 

been noted that the rover is limited in its computational 

capacity. As a result, achieving these goals come with the 

additional challenge of using computationally efficient methods 

to carry out multiple tasks concurrently. The study of learning-

based methods and other neural networks techniques [25] will 

undoubtedly contribute significantly to realizing these needs. 

From the perspective of autonomous path planning and 

reactive navigation, there will be significantly more issues to 

address as terrain information is included into the loop in real-

time. The compromise of planning energy-efficient [55] yet 

safe (low-risk) paths while avoiding obstacles and minimizing 

path distance will be an interesting multi-objective optimization 

problem [20]. This complexity scales further when planning 

paths such that areas with a higher likelihood of supporting 

more accurate localization (feature-rich regions, for example) 

are also considered. The concept of path planning based on 



reducing localization error has been explored by Inoue et al. 

[15] using only traditional methods. Thus, the minimization of 

localization error in path planning using more intelligent and 

adaptive techniques is an open area for investigation. From our 

survey we have also observed a growing trend in the use of 

hybrid methods to enhance the navigational competency of 

rovers. There is little doubt that by integrating compatible 

solutions together, drawbacks that existed in the use of 

individual methods may be eliminated. The performance of 

these architectures is promising as it has been discovered that 

these systems perform notably well in certain aspects. Yet there 

are no signs of a globally best approach emerging. 

Development of hybrid methods will thus involve the 

consideration of priorities/objectives relating to other aspects 

such as generalization performance, computational efficiency, 

robustness to unseen scenarios and uncertainty handling.  

Some of the latest research efforts have begun to shed light 

on the appropriateness of neurobiologically-inspired learning-

based methods for autonomous navigation. While current 

research awareness of this area is still in its infancy, authors 

investigating these approaches have already demonstrated a 

glimpse of the feasibility of such solutions. Two particularly 

notable advantages of learning-based systems are the 

elimination of long training times and associated training data 

and their ability to adapt to unseen scenarios. These will indeed 

be important traits for a system intended to explore the deep 

unknown. However, these systems too come with their own 

drawbacks. That is, they are prone to fail (e.g. collide with 

obstacles) during initial operation. While this is certainly an 

undesirable effect, the growth of hybrid solutions may enable a 

separate system to take over during initial operation as the 

learning algorithm develops an optimal behavior. Ultimately, 

the current awareness of neurobiologically-inspired methods is 

still lacking as many approaches have yet to be thoroughly 

tested or extended to real applications. Nevertheless, techniques 

such as deep learning and cognitive decision-making models 

will continue to draw increasing interest among the research 

community over the next decade.  

VI. CONCLUSION 

The upcoming planned deployment of the Mars 2020 rover 

will likely see another breakthrough of robotic technology for 

space exploration. The exploration of such a distant 

environment will be an incredible challenge for years to come. 

With heavy limitations on resources such as power and 

communications, there has never been a greater need for truly 

autonomous exploration systems. Indeed, we do not foresee 

human operators being completely removed from the loop in 

exploration missions anytime soon. The wide access to human 

expertise and unprecedented simulation software on Earth will 

still be necessary to assist a rover in critical situations. 

However, the current demand for intensive human labor to 

perform more standard navigation tasks may certainly be 

reduced through the development of a truly autonomous 

navigation system. With this in mind, this paper gives a survey 

of recent advances in the application of intelligent algorithms 

and frameworks for planetary rover navigation. The main 

objective of this paper is to review a selection of work that 

represents the current state of research in the field. While 

literature has not been exhaustively surveyed, key 

achievements and their relevance to addressing common 

challenges in planetary exploration have been discussed and 

some future directions on the development of autonomous 

planetary rovers have been speculated and described based on 

the state of the art review.  
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