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1. Introduction 

In this chapter we investigate real-time extensions for evolutionary mobile robot learning. 
The learning performance is measured in navigation experiments of complex environments 
as performed in a Kephera mobile robot simulator (YAKS). All these experiments are done 
in the context of our recently introduced motivation based interface that provides an 
intuitive human-robot communications mechanism (Arredondo et al., 2006). This 
motivation interface has been used in a variety of behavior based navigation and 
environment recognition tasks (Freund et al., 2006). 
Our first heuristic introduces active battery level sensors and recharge zones, which are 
used as soft deadlines to improve robot behavior for reaching survivability in environment 
exploration. Based on our previously defined model, we also propose a hard deadline based 
hybrid controller for a mobile robot, combining behavior-based and mission-oriented 
control mechanisms. 
These methods are implemented and applied in action sequence based environment 
exploration tasks in a YAKS mobile robot simulator. We validate our techniques with 
several sets of configuration parameters on different scenarios. We consider soft-deadlines 
as a dangerous but not critical battery charge level which affect a robot's fitness. Hard-
deadlines are considered as a possible (because of partial knowledge) point where, if the 
robot does not recharge his battery, an unrecoverable final freezing state is possible. Our 
tests include action sequence based environment exploration tasks. These experiments show 
a significant improvement in robot responsiveness regarding survivability and environment 
exploration when using these real-time based methods. 
The rest of the chapter is organized as follows. In Section 2 a description of our soft-
computing based navigation model is given. In Section 3 real-time extensions of our model 
are presented. In Section 4 we show the experimental setup and test results. Finally, in 
Section 5 some conclusions and future work are drawn. 

2. Soft-computing Based Robotic Navigation 

Navigation and environment recognition is something that is taken for granted by most of 
us but as we see when observing an infant this is a difficult task fraught with peril for the 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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inexperienced navigator. Thanks to its tolerance of imprecision and incomplete data, soft-
computing has had much recent success in robotic navigation where other more structured 
or formal methods have not fared so well (Arkin, 1998; Jang et al., 1997; Konolige et al. 1992; 
Goodrige, 1997 ; Kem & Woo, 2005). Fuzzy logic has been a mainstay of several such efforts: 
applying fuzzy rule based method for a hexapod obstacle avoidance (Kem & Woo, 2005), 
using independent distributed fuzzy agents and weighted vector summation via fuzzy 
multiplexers for producing drive and steer commands (Goodrige, 1997), neuro-fuzzy 
controllers for behavior design (Hoffmann, 2000), fuzzy modular motion planning (Al-
Khatib & Saade, 2003), fuzzy integration of groups of behaviors (Izumi & Watanabe, 2000), 
multiple fuzzy agents for behavior fusion (Barberá & Skarmeta, 2002), GA based neuro 
fuzzy reinforcement learning agents (Zhou, 2002), and fuzzy logic integration for robotic 
navigation in challenging terrain (Seraji & Howard, 2002). 
Using fuzzy logic as a motivation toward a variety of useful behaviors is something that has 
not seen wide usage in robotics previously. Toward this goal, we have implemented such 
motivations (e.g. a need, desire or want) as fuzzy fitness functions that serve to influence the 
intensity and direction of robotic behaviors (Arredondo et al., 2006). In general, motivations 
are accepted as involved in the performance of learned behaviors given that a learned 
behavior may not occur unless it's driven by a motivation (Huitt, 2001). Having a variety of 
motivations helps produce diverse behaviors some of which have a high degree of benefit 
(or fitness) for the organism. 
In our experiments, we have used fuzzy membership functions (Fig. l) toward 
implementing a motivation based interface for determining robotic fitness. There are five 
triangular functions used for each of the four motivations in our experiment (Very Low, 
Low, Medium, High, Very High). 
The motivation set (M) considered in this study includes: curiosity (m1), homing (m2), and 
energy (m3). These motivations are used as input settings (between 0 and 1) prior to running 
each experiment. 
During training, a run environment (room) is selected and the GA initial robot population is 
randomly generated. After this, each robot in the population performs its navigation task 
and a set of fitness values corresponding to the performed task are obtained (f1 through f3). 
Finally, robotic fitness is calculated using the fitness values information provided by the 
simulator and the different motivations at the time of exploration (Fig. 2). 
Takagi-Sugeno-Kang (TSK) fuzzy logic model is used, TSK fuzzy logic does not require 
deffuzification as each rule has a crisp output that is aggregated as a weighted average (Jang 
et al., 1997). 
The membership functions used are given in Fig. 1. Sample fuzzy rules (numbers 9 and 10) 
are given as follows: 
 

if (f1 == M) and (f2 == V.L.) and (f3 == V.L.) then 
f[9] = m1f1C[3]+m2f2C[1]+m3f3C[1]  
 

if (f1 == M) and f2 == V.L.) and (f3 == L) then 
f[10] = m1f1C[3]+m2f2C[1]+m3f3C[1] 
 

The values for these fitness criteria are normalized (range from 0 to 1). The criteria and the 
variables that correspond to them are: amount of area explored (f1), proper action 
termination and escape from original neighborhood area (f2), and percent of battery usage 
(f3). These fitness values are calculated after the robot completes each run. The f1 value is 
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determined by considering the percentage area explored relative to the optimum, f2 is 
determined by f2 = 1 —l/L, where l is the final distance to robot's home and L the theoretical 
maximum value. Finally f3 is the estimated total energy consumption of the robot 
considering each step. 
The final fuzzy motivation fitness value (F) is calculated using TSK based fuzzy logic (three 
fuzzy variables with five membership functions each: 35 = 243 different fuzzy rules) as 
shown in Fig. 3 and using the membership functions to compute μ, values. For the 
coefficient array C we used a linear function. 

 
 

 
Figure 1. Fuzzy membership functions 

 

 

 

Figure 2. System overview 
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Figure 3. Fuzzy fitness algorithm 

2.1 Implementation 

The YAKS (Yet Another Khepera Simulator) simulator is the base for our implementation. 
YAKS is a simple open source behavior-based simulator (YAKS) that uses neural networks 
and genetic algorithms to provide a navigation environment for a Khepera robot as seen in 
Fig. 5. Sensors are directly provided into a multilayer neural network in order to drive left 
and right wheel motors (Fig. 4). A simple genetic algorithm is used with 200 members, 100 
generations, mutation of 1%, and elite reproduction. Random noise (5%) is injected into 
sensors to improve realism. The GA provides with a mechanism for updating neural 
network weights used by each robot in the population that is being optimized. An overview 
of our fuzzy fitness implementation is shown in Fig. 6. 
Outputs of the Neural Network are real valued motor commands (Motor_L and Motor_R) 
between 0 and 1 which are discretized into one of four actions (left 30°, right 30°, turn 180°, 
go straight). This follows the Action-based environmental modeling (AEM) search space 
reduction paradigm (Yamada, 2005). 
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Figure 4. Robotic neural network 

 

 

Figure 5. Kephera robot 

3. Real-Time Extensions 

Real-time systems are concerned with real-world applications, where temporal constraints 
are part of system specification imposed by the environment, i.e. firm-deadlines in QOS 
environments, soft-deadlines in non-critical control applications and hard deadlines in 
safety-critical systems. In the last years more research effort have been made applying soft-
computing techniques to real-time control problems (Wang & Lee, 2003; Jha et al., 2005; 
Seraji & Howard, 2002; Maione & Naso, 2003; Ziemke et al., 2005). The main advantage over 
traditional control mechanisms is in the additional robustness regarding lack or poor 
environmental information (if not the problem definition itself) which concerns almost all 
real-time control applications (Sick et al., 1998). 
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Figure 6. Robotic system implementation 

On the other hand, soft-computing based methods are more intuitive than strict formal 
models, soft-computing (e.g. fuzzy logic) aims to gain from operator perceptions and 
through iterative improvements in the associated rule set tries to obtain the capabilities of 
the real expert. However, not much attention has been given to real-time considerations, 
regarding soft or hard deadlines. Some important aspects of real-time must be taken into 
account: how could soft-computing techniques, such as fuzzy logic, neural networks or 
genetic algorithms affect systems responsiveness and survivability? 
In order to introduce our behavior based mobile robot methodology in a real-world 
application, we introduce an active battery sensor to allow for the detection of low battery 
conditions and we also provide various number of recharge zones within different room 
configurations. These real-time extensions must be capable of supporting different sets of 
motivations while also improving survivability and exploration performance. 
Our primary goal consists of full environment exploration considering energy consumption 
and recharge zones. To reach this objective, the robot's behavior must be influenced through 
periodic energy evaluation for recharging the battery before it is be too late. In this approach 
we consider soft-deadlines as a dangerous but not critical battery charge level which affect 
robot's fitness. Hard-deadlines are considered as a possible (because of partial knowledge) 
point where, if the robot does not recharge his battery, an unrecoverable final freezing state 
is possible. Soft vs hard-deadlines force a change in the robot's operation from behavior-
based to mission-oriented (hybrid), which guides the robot using the shortest known path to 
a nearest previously found charging zone. 
During environment exploration, autonomous or semi-autonomous mobile robots are 
confronted with events which could be predictable such as walls and static objects, or 
unpredictable such as moving objects or environmental changes. Some of these events must 
be attended in real-time (responsiveness) to guarantee the robot's integrity (survivability) 
(Kopetz, 1997). 
Traditional control mechanisms are based on reliable real-time systems, i.e. time constraints 
over executions and predictability (Gheith & Schwan, 1993), also known as dependable 
systems (Motet & Geffroy, 2003), e.g. the mars pathfinder or DUSAUV, a semi-autonomous 
underwater vehicle presented in (Li et al., 2005). On the other hand, soft-computing based 
methods have not been widely used in this arena due to their inherent uncertainty. 

www.intechopen.com



Applying Real-Time Survivability Considerations in Evolutionary Behavior 
Learning by a Mobile Robot 

 

191 

In order to introduce real-time considerations into our behavior-based mobile robot for a 
real-world application, we extend our model by using temporal constraints during the 
navigation test-phase. The constraints considered include energy consumption and finite 
battery charge capacity. 
In our approach soft-deadlines dynamically affects the robots navigation. This could 
influence behaviors to avoid highly energy consuming actions and could guide the robot's 
movement to a recharging zone as necessary. 
When a critical battery level is reached, the previously defined method is no longer useful. 
A responsive real-time method is needed to, if possible, guarantee survivability (Kopetz, 
1997). Strictly speaking, we can't guarantee survivability because of the robots partial 
knowledge of the world map which, initially, has no recharge zones mapped (we do not 
consider the starting point as a recharging zone). Nevertheless, because of the off-line robot 
training-phase, we expect that the trained robot (e.g. NN) will be capable of finding 
charging zones. Using the charge zone information obtained on-line, the robot applies real-
time based navigation. We establish a hard-deadline as the point of the robot's 
unrecoverable final freezing state. Before reaching this deadline (with a 10% safety margin) 
the robot's operation mode changes from behavior-based to mission oriented, following the 
shortest path to the nearest previously found charging zone (Tompkins et al., 2006). 

4. Experimental Evaluation 

The major purpose of the experiments reported in this section is to study the influence of 
our real-time extensions over the robot's behavior, considering survivability and exploration 
capability. 
We have designed four different rooms (environments) for the robot to navigate in. We 
denote these rooms as: S-ROOM (the simplest), L-ROOM, T-ROOM and H-ROOM (most complex). 
Walls are represented by lines and we designate up to three charging zones (see circles in 
Fig. 7). The starting zones for each room will be the lower left corner (quarter circles in Fig. 
7). 
We will denote by NRT the behavior-based algorithm which operates the robot without any 
real-time considerations, i.e. the battery level has no influence over robot's behavior but, if it 
comes near to a charging zone the battery level is updated to his maximum capacity. The 
main characteristics of NRT are: 

• the battery level has no influence on the robot during training phase and, 

• there is no input neuron connected to the battery sensor. 

 
 a) S-ROOM b) L-ROOM c) T-ROOM d) H-ROOM 
Figure 7. Experiment rooms layout with starting and recharging zones 
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We denote by SRT the algorithm which operates the robot with soft-real time considerations, 
influencing his behavior to avoid a dangerous battery level. This algorithm differs from NRT 
mainly by 

• battery level influences robot's fitness evaluation used by the GA and, 

• a new input neuron is connected to a battery level sensor. 
Finally, we denote by HRT the hybrid algorithm which operates the robot with hard-real 
time considerations, i.e., the same as SRT incorporating critical battery level sensing, and also 
having the capacity to change the robot's normal operation to mission oriented, 
guaranteeing his survivability (if at least one charging zone was previously found). 

4.1 Experimental Setup 

As mentioned before, the experiments are performed using a modified version of YAKS. 
This simulation system has several different elements including: the robot simulator, neural 
networks, GA, and fuzzy logic based fitness. 
Khepera Robot For these simulations, a Khepera robot was chosen. The robot configuration 
has two DC motors and eight (six front and two back) infrared proximity sensors used to 
detect nearby obstacles. These sensors provide 10 bit output values (with 5% random noise), 
which allow the robot to know in approximate form the distance to local obstacles. The 
YAKS simulator provides the readings for the robot sensors according to the robot position 
and the map (room) it is in. The simulator also has information for the different areas that 
the robot visits and the various obstacles (walls) or zones (home, charging zones) detected in 
the room. In order to navigate, the robot executes up to 1000 steps in each simulation, but 
not every step produces forward motion as some only rotate the robot. If the robot has no 
more energy, it freezes and the simulation stops. 
Artificial Neural Network The original neural network (NN) used has eight input neurons 
connected to the infrared sensors, five neurons in the hidden layer and two output neurons 
directly connected to the motors that produce the robot movement. Additionally, in our 
real-time extensions we introduce another input neuron connected to the battery sensor 
(activated by SRT and HRT). 
Genetic Algorithm A GA is used to find an optimal configuration of weights for the neural 
network. Each individual in the GA represents a NN which is evolving with the passing of 
different generations. The GA uses the following parameters: 

• Population size: 200 

• Crossover operator: random crossover 

• Selection method: elite strategy selection 

• Mutation rate: 1% 

• Generations: 100 
For each room (see Fig. 7) we trained a robot up to 400 steps, considering only 
configurations with 2 or 3 charging zones, i.e. shutting down zone 3 for 2-zones simulations. 
Startup battery level allows the robot to finish this training phase without recharging 
requirements. 
Finally, we tested our algorithms in each room up to 1000 steps, using the previously 
trained NN for each respective room. The startup battery level was set to 80 (less than 50% 
of it's capacity), which was insufficient to realize the whole test without recharging. 
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4.2 Experimental Results 

 

 a) S- ROOM 2 charge zones b) S- ROOM 3 charge zones 

 

 c) H- ROOM 2 charge zones d) H- ROOM 3 charge zones 
Figure 8. Exploration behaviour 

We chose the S-ROOM and H-ROOM to show results for a simple and complex room 
respectively, which are representative behaviors of our approach. 
In Fig. 8 we show the robot's exploration behavior for selected rooms. Each curve in the 
graph shows the average value of 10 executions of the same experiment (deviation between 
experiment iterations was very small, justifying only 10 executions). Let surv()i the 
survivability of the experiment instance i of algorithm , we define surv() as the 
survivability of an experiment applying algorithm  as the worst case survivability instance 
of an experiment, i.e. 

 surv() =    min   [surv()i] (1) 
i=l,...,10 

Please note that the end of each curve in Fig. 8 denotes the survivability of the respective 
algorithm (for better readability, we mark NRT survivability with a vertical line). Reaching 
step 1000 (the maximum duration of our experiments) means that the robot using the 
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algorithm survives the navigation experiment. Finally, in Fig. 9 we show a representative 
robot's battery level. Monitoring was made during test phase in a H-ROOM with 3 charging 
zones. 

 

 a) S- ROOM 3 charge zones b) H- ROOM 2 charge zones 
Figure 9. Battery Behaviour 

4.3    Discussion 

The results of our experiments are summarized below: 
Survivability: As shown in Fig. 8, SRT and HRT algorithms give better reliability of 
completing missions than the NRT method, independently of the rooms (environments) we 
use for testing (see Fig. 7). As expected, if fewer charging zones are provided, NRT has a less 
reliable conduct. Please note that as shown in Fig. 9, NRT is also prone to battery depletion 
risk and does not survive in any case. 
When varying the room complexity, i.e. 8(b) and 8(d), real-time considerations have 
significant impact. Using SRT, a purely behavior-based driven robot (with the additional 
neuron and motivation), improves it's performance. The SRT method does not guarantee 
Survivability since without changing the robot operation from behavior based to mission 
oriented the robot is prone to dying even with a greater number of recharge zones (as seen 
in 8(d)). Finally, we conclude that despite the uncertainty introduced by soft-computing 
methods, HRT (e.g. the hybrid algorithm), in general is the best and safest robot control 
method from a real-time point of view. 
Exploration Environment: As can be seen in Fig. 8 safer behaviors means slower 
exploration rates (more conservative), up to 12% slower in our experiments. When 
comparing NRT with SRT, the exploration rates are almost equal in simple environments. In 
more complex rooms, SRT exploration is slower than NRT (due to battery observance). 
However, because of SRT having better survivability on the whole it's performance wins 
over NRT. If we compare NRT with HRT, exploration performance also favors NRT, wich 
could be explained given HRT conservative battery management (see Fig. 9). 
Given 2 charge zones, HRT behaves differently in environments of varying complexity (up to 
25%) which could be attributed to the complexity of the returning path to the nearest 
charging zone and loosing steps in further exploration. This phenomena becomes less 
notorious when increasing the number of charging zones (more options for recharge). 
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5. Conclusions and Future Work 

In this work we investigate real-time adaptive extensions of our fuzzy logic based approach 
for providing biologically based motivations to be used in evolutionary mobile robot 
learning. We introduce active battery level sensors and recharge zones to improve robot's 
Survivability in environment exploration. In order to achieve this goal, we propose an 
improvement of our previously defined model (e.g. SRT), as well as a hybrid controller for a 
mobile robot (e.g. HRT), combining behavior-based and mission-oriented control 
mechanisms. 
These methods are implemented and tested in action sequence based environment 
exploration tasks in a Khepera mobile robot simulator. Experimental results shows that the 
hybrid method is in general, the best/safest robot control method from a real-time point of 
view. Also, our preliminary results shows a significant improvement on robot's survivability 
by having minor changes in the robot's motivations and NN. 
Currently we are implementing a real robot for environment exploration to validate our 
model moving from simulation to experimentation. We are also introducing dynamic 
motivations schedules toward robotic behavior enhancement. Improving the dependability 
of HRT, we want to extend this control algorithm to safety-critical domains. 
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