3,683 research outputs found

    Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China

    Full text link
    © 2018 Elsevier B.V. With atmospheric environmental pollution becoming increasingly serious, developing an early warning system for air quality forecasting is vital to monitoring and controlling air quality. However, considering the large fluctuations in the concentration of pollutants, most previous studies have focused on enhancing accuracy, while few have addressed the stability and uncertainty analysis, which may lead to insufficient results. Therefore, a novel early warning system based on fuzzy time series was successfully developed that includes three modules: deterministic prediction module, uncertainty analysis module, and assessment module. In this system, a hybrid model combining the fuzzy time series forecasting technique and data reprocessing approaches was constructed to forecast the major air pollutants. Moreover, an uncertainty analysis was generated to further analyze and explore the uncertainties involved in future air quality forecasting. Finally, an assessment module proved the effectiveness of the developed model. The experimental results reveal that the proposed model outperforms the comparison models and baselines, and both the accuracy and the stability of the developed system are remarkable. Therefore, fuzzy logic is a better option in air quality forecasting and the developed system will be a useful tool for analyzing and monitoring air pollution

    Infering Air Quality from Traffic Data using Transferable Neural Network Models

    Get PDF
    This work presents a neural network based model for inferring air quality from traffic measurements. It is important to obtain information on air quality in urban environments in order to meet legislative and policy requirements. Measurement equipment tends to be expensive to purchase and maintain. Therefore, a model based approach capable of accurate determination of pollution levels is highly beneficial. The objective of this study was to develop a neural network model to accurately infer pollution levels from existing data sources in Leicester, UK. Neural Networks are models made of several highly interconnected processing elements. These elements process information by their dynamic state response to inputs. Problems which were not solvable by traditional algorithmic approaches frequently can be solved using neural networks. This paper shows that using a simple neural network with traffic and meteorological data as inputs, the air quality can be estimated with a good level of generalisation and in near real-time. By applying these models to links rather than nodes, this methodology can directly be used to inform traffic engineers and direct traffic management decisions towards enhancing local air quality and traffic management simultaneously.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Urban Air Pollution Forecasting Using Artificial Intelligence-Based Tools

    Get PDF

    Air pollution forecasts: An overview

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    Artificial Neural Network to predict mean monthly total ozone in Arosa, Switzerland

    Full text link
    Present study deals with the mean monthly total ozone time series over Arosa, Switzerland. The study period is 1932-1971. First of all, the total ozone time series has been identified as a complex system and then Artificial Neural Networks models in the form of Multilayer Perceptron with back propagation learning have been developed. The models are Single-hidden-layer and Two-hidden-layer Perceptrons with sigmoid activation function. After sequential learning with learning rate 0.9 the peak total ozone period (February-May) concentrations of mean monthly total ozone have been predicted by the two neural net models. After training and validation, both of the models are found skillful. But, Two-hidden-layer Perceptron is found to be more adroit in predicting the mean monthly total ozone concentrations over the aforesaid period.Comment: 22 pages, 14 figure

    Multiwavelength fiber laser based on bidirectional lyot filter in conjunction with intensity dependent loss mechanism

    Get PDF
    We experimentally demonstrate a multiwavelength fiber laser (MWFL) based on bidirectional Lyot filter. A semiconductor optical amplifier (SOA) is used as the gain medium, while its combination with polarization controllers (PCs) and polarization beam combiner (PBC) induces intensity dependent loss (IDL) mechanism. The IDL mechanism acts as an intensity equalizer to flatten the multiwavelength spectrum, which can be obtained at a certain polarization state. Using different ratio of optical splitter has affected to multiwavelength flatness degradation. Subsequently, when we removed a polarizer in the setup, the extinction ratio (ER) is decreased. Ultimately, with two segments of polarization maintaining fiber (PMF), two channel spacings can be achieved due to splicing shift of 0° and 90°

    Developing an early-warning system for air quality prediction and assessment of cities in China

    Full text link
    © 2017 Elsevier Ltd Air quality has received continuous attention from both environmental managers and citizens. Accordingly, early-warning systems for air pollution are very useful tools to avoid negative health effects and develop effective prevention programs. However, developing robust early-warning systems is very challenging, as well as necessary. This paper develops a reliable and effective early-warning system that consists of air quality prediction and assessment modules. In the prediction module, a hybrid forecasting method is developed for predicting pollutant concentrations that effectively estimates future air quality conditions. In developing this proposed model, we suggest the use of a back propagation neural network algorithm, combined with a probabilistic parameter model and data preprocessing techniques, to address the uncertainties involved in future air quality prediction. Meanwhile, a pre-analysis is implemented, primarily by using optimized distribution functions to examine and analyze statistical characteristics and emission behaviors of air pollutants. The second method, which is developed as part of the second module, is based on fuzzy set theory and the Analytic Hierarchy Process, and it performs air quality assessments to provide a clear and intelligible description of air quality conditions. Using data from the Ministry of Environmental Protection of China and six stages of air quality classification levels, specifically good, moderate, lightly polluted, moderately polluted, heavily polluted and severely polluted, two cities in China, Chengdu and Hangzhou, are used as illustrative examples to verify the effectiveness of the developed early-warning system. The results demonstrate that the proposed methods are effective and reliable for use by environmental supervisors in air pollution monitoring and management

    A Review of 21st-Century Studies

    Get PDF
    PM10 prediction has attracted special legislative and scientific attention due to its harmful effects on human health. Statistical techniques have the potential for high-accuracy PM10 prediction and accordingly, previous studies on statistical methods for temporal, spatial and spatio-temporal prediction of PM10 are reviewed and discussed in this paper. A review of previous studies demonstrates that Support Vector Machines, Artificial Neural Networks and hybrid techniques show promise for suitable temporal PM10 prediction. A review of the spatial predictions of PM10 shows that the LUR (Land Use Regression) approach has been successfully utilized for spatial prediction of PM10 in urban areas. Of the six introduced approaches for spatio-temporal prediction of PM10, only one approach is suitable for high-resolved prediction (Spatial resolution < 100 m; Temporal resolution ¤ 24 h). In this approach, based upon the LUR modeling method, short-term dynamic input variables are employed as explanatory variables alongside typical non-dynamic input variables in a non- linear modeling procedure
    • …
    corecore