183 research outputs found

    AUTOMATIC BUILDING EXTRACTION USING LiDAR AND AERIAL PHOTOGRAPHS

    Get PDF
    ABSTRACT This paper presents an automatic building extraction approach using LiDAR data and aerial photographs from a multi-sensor system positioned at the same platform. The automatic building extraction approach consists of segmentation, analysis and classification steps based on object-based image analysis. The chessboard, contrast split and multi-resolution segmentation methods were used in the segmentation step. The determined object primitives in segmentation, such as scale parameter, shape, completeness, brightness, and statistical parameters, were used to determine threshold values for classification in the analysis step. The rule-based classification was carried out with defined decision rules based on determined object primitives and fuzzy rules. In this  study, hierarchical classification was preferred. First, the vegetation and ground classes were generated; the building class was then extracted. The NDVI, slope and Hough images were generated and used to avoid confusing the building class with other classes. The intensity images generated from the LiDAR data and morphological operations were utilized to improve the accuracy of the building class. The proposed approach achieved an overall accuracy of approximately 93% for the target class in a suburban neighborhood, which was the study area. Moreover, completeness (96.73%) and correctness (95.02%) analyses were performed by comparing the automatically extracted buildings and reference data.

    Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study

    Get PDF
    A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified

    An automatic building extraction and regularisation technique using LiDAR point cloud data and orthoimage

    Get PDF
    The development of robust and accurate methods for automatic building detection and regularisation using multisource data continues to be a challenge due to point cloud sparsity, high spectral variability, urban objects differences, surrounding complexity, and data misalignment. To address these challenges, constraints on object's size, height, area, and orientation are generally benefited which adversely affect the detection performance. Often the buildings either small in size, under shadows or partly occluded are ousted during elimination of superfluous objects. To overcome the limitations, a methodology is developed to extract and regularise the buildings using features from point cloud and orthoimagery. The building delineation process is carried out by identifying the candidate building regions and segmenting them into grids. Vegetation elimination, building detection and extraction of their partially occluded parts are achieved by synthesising the point cloud and image data. Finally, the detected buildings are regularised by exploiting the image lines in the building regularisation process. Detection and regularisation processes have been evaluated using the ISPRS benchmark and four Australian data sets which differ in point density (1 to 29 points/m2), building sizes, shadows, terrain, and vegetation. Results indicate that there is 83% to 93% per-area completeness with the correctness of above 95%, demonstrating the robustness of the approach. The absence of over- and many-to-many segmentation errors in the ISPRS data set indicate that the technique has higher per-object accuracy. While compared with six existing similar methods, the proposed detection and regularisation approach performs significantly better on more complex data sets (Australian) in contrast to the ISPRS benchmark, where it does better or equal to the counterparts. © 2016 by the authors

    Operational Pipeline for Large-scale 3D Reconstruction of Buildings from Satellite Images

    Get PDF
    International audienceAutomatic 3D reconstruction of urban scenes from stereo pairs of satellite images remains a popular yet challenging research topic, driven by numerous applications such as telecommunications and defense. The quality of reconstruction results depends particularly on the quality of the available stereo pair. In this paper, we propose an operational pipeline for large-scale 3D reconstruction of buildings from stereo satellite images. The proposed chain uses U-net to extract contour polygons of buildings, and the combination of optimization and computational geometry techniques to reconstruct a digital terrain model and a digital height model, and to correctly estimate the position of building footprints. The pipeline has proven to be efficient for 3D building reconstruction , even if the close-to-nadir image is not available

    Integration of LIDAR and IFSAR for mapping

    Get PDF
    LiDAR and IfSAR data is now widely used for a number of applications, particularly those needing a digital elevation model. The data is often complementary to other data such as aerial imagery and high resolution satellite data. This paper will review the current data sources and the products and then look at the ways in which the data can be integrated for particular applications. The main platforms for LiDAR are either helicopter or fixed wing aircraft, often operating at low altitudes, a digital camera is frequently included on the platform, there is an interest in using other sensors such as 3 line cameras of hyperspectral scanners. IfSAR is used from satellite platforms, or from aircraft, the latter are more compatible with LiDAR for integration. The paper will examine the advantages and disadvantages of LiDAR and IfSAR for DEM generation and discuss the issues which still need to be dealt with. Examples of applications will be given and particularly those involving the integration of different types of data. Examples will be given from various sources and future trends examined

    Deep Learning Approach for Building Detection Using LiDAR-Orthophoto Fusion

    Full text link
    © 2018 Faten Hamed Nahhas et al. This paper reports on a building detection approach based on deep learning (DL) using the fusion of Light Detection and Ranging (LiDAR) data and orthophotos. The proposed method utilized object-based analysis to create objects, a feature-level fusion, an autoencoder-based dimensionality reduction to transform low-level features into compressed features, and a convolutional neural network (CNN) to transform compressed features into high-level features, which were used to classify objects into buildings and background. The proposed architecture was optimized for the grid search method, and its sensitivity to hyperparameters was analyzed and discussed. The proposed model was evaluated on two datasets selected from an urban area with different building types. Results show that the dimensionality reduction by the autoencoder approach from 21 features to 10 features can improve detection accuracy from 86.06% to 86.19% in the working area and from 77.92% to 78.26% in the testing area. The sensitivity analysis also shows that the selection of the hyperparameter values of the model significantly affects detection accuracy. The best hyperparameters of the model are 128 filters in the CNN model, the Adamax optimizer, 10 units in the fully connected layer of the CNN model, a batch size of 8, and a dropout of 0.2. These hyperparameters are critical to improving the generalization capacity of the model. Furthermore, comparison experiments with the support vector machine (SVM) show that the proposed model with or without dimensionality reduction outperforms the SVM models in the working area. However, the SVM model achieves better accuracy in the testing area than the proposed model without dimensionality reduction. This study generally shows that the use of an autoencoder in DL models can improve the accuracy of building recognition in fused LiDAR-orthophoto data

    Super-resolution-based snake model—an unsupervised method for large-scale building extraction using airborne LiDAR Data and optical image

    Get PDF
    Automatic extraction of buildings in urban and residential scenes has become a subject of growing interest in the domain of photogrammetry and remote sensing, particularly since the mid-1990s. Active contour model, colloquially known as snake model, has been studied to extract buildings from aerial and satellite imagery. However, this task is still very challenging due to the complexity of building size, shape, and its surrounding environment. This complexity leads to a major obstacle for carrying out a reliable large-scale building extraction, since the involved prior information and assumptions on building such as shape, size, and color cannot be generalized over large areas. This paper presents an efficient snake model to overcome such a challenge, called Super-Resolution-based Snake Model (SRSM). The SRSM operates on high-resolution Light Detection and Ranging (LiDAR)-based elevation images—called z-images—generated by a super-resolution process applied to LiDAR data. The involved balloon force model is also improved to shrink or inflate adaptively, instead of inflating continuously. This method is applicable for a large scale such as city scale and even larger, while having a high level of automation and not requiring any prior knowledge nor training data from the urban scenes (hence unsupervised). It achieves high overall accuracy when tested on various datasets. For instance, the proposed SRSM yields an average area-based Quality of 86.57% and object-based Quality of 81.60% on the ISPRS Vaihingen benchmark datasets. Compared to other methods using this benchmark dataset, this level of accuracy is highly desirable even for a supervised method. Similarly desirable outcomes are obtained when carrying out the proposed SRSM on the whole City of Quebec (total area of 656 km2), yielding an area-based Quality of 62.37% and an object-based Quality of 63.21%
    corecore