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1 Abstract 

The preservation and conservation of cultural heritage assets are elaborate tasks that 

abound with challenges. Geometrical complexity, multiplicity and degradation of 

materials, varying historical construction techniques, and a plethora of other 

intrinsic and extrinsic factors—including environmental pressures and past 

anthropogenic interventions—induce problems for protecting the historic built 

environment, archaeological remains, and antiquities. Therefore, extensive 

knowledge of these parameters is required to ensure the effectiveness of any 

implemented intervention. Thus, the comprehensive documentation and condition 

inspection become necessary to holistically address the state of preservation in 

order to understand the prevailing problems that place cultural heritage assets at 

risk. Furthermore, monitoring the state of preservation through time is fundamental 

for effectively interpreting the occurring degradation phenomena and a powerful 

tool for the decision-making process regarding material heritage protection. 

Systematic nondestructive acquisition and integrated processing of multisource 

scientific data play an essential role in surveying the state of preservation of cultural 

heritage assets. The need for multidisciplinary inspection methodologies has been 

frequently stressed in literature, mainly in application cases of monumental heritage 

and objects of outstanding value presenting extensive degradation. Likewise, the 

non-destructiveness of monitoring methods has often been highlighted as an 

important factor for safeguarding the condition of significantly deteriorated or 

already at-risk assets. Hence, active and passive close-range nondestructive sensing 

techniques and appropriate signal processing methods are regularly used as 

nondestructive sources of multi-disciplinary data useful for inspection and 

monitoring applications. 

Individual close-range sensing methods, including techniques for reality-based 

geometric recording of cultural heritage, are often considered separate practices. 

However, their integration has the potential to improve the documentation of the 

state of preservation, and to support diagnostics, as many evaluation methods can 

act complementarily. It should also be highlighted that imparting spatial properties 

to nondestructive evaluation methods allows for the better interpretation and 

visualization of the state of preservation, while facilitating the spatial fusion of 

multi-sensor data. At the same time, monitoring benefits from geometric recording 
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methods in the sense of acquiring spatial data and utilizing valuable sensing 

metadata derived from the employed measurement instrumentation. 

Recognizing the contribution of implementing multi-sensor approaches for 

non-destructive documentation of cultural heritage structures and objects as part of 

the protection practice, this dissertation presents novel applied geomatics 

methodologies for enhancing the surveying process of cultural heritage, focusing 

on the metric implementation of state-of-the-art non-destructive recording 

techniques and the fusion of acquired multiwavelength data. It seeks to validate 

integrated multi-band recording solutions, which can support the multidisciplinary 

documentation and condition inspection of critical heritage infrastructure and other 

objects of historical significance. Following this rationale, close-range sensing 

techniques are evaluated on their capacity to produce metric, survey-grade results 

for cultural heritage. The novelty of the conducted research stems from the 

innovative integration of reality-based digitization and multiwavelength acquisition 

through 3D scanning, thermography, multispectral imaging, ground-penetrating 

radar, and the utilization of data sources that are traditionally considered qualitative 

to obtain metric/quantitative results. Particular emphasis is given to creating 

reproducible and, as much as possible, practical workflows considering their 

implementability for heritage science. The dissertation aims to shed light on the 

problematics of the individual and integrated use of sensing techniques, 

highlighting metric and radiometric requirements of the data fusion approaches, as 

well as their usefulness to interpret the condition of heritage assets. 

The second chapter of this dissertation delivers a comprehensive overview of 

the contemporary proximal sensing techniques employed for reality capture and 

nondestructive evaluation of heritage assets—including their basic operating 

principles and application scenarios. The third chapter deals with the state of the art 

on data fusion methodologies encountered in recent literature, outlining the 

different levels of integration and the challenges faced. The fourth chapter describes 

a methodology for recording and integrating multispectral terrestrial data and 

utilizing them in combination with image processing techniques to map the 

deterioration of heritage assets. Although the presented workflow is mainly 

evaluated for two-dimensional mapping, an extension to three-dimensional objects 

is also briefly discussed. The fifth chapter addresses a methodology for full three-

dimensional integration of spectral imaging, metric surveying, image-based 

modeling, scanning, and ground-penetrating radar. The latter methodology is 

adapted and validated for both historical objects and structures, considering the 

uniqueness of each case study and the limitations faced. The last chapter of the 

dissertation discusses the results of the diverse case studies and experimentation 

scenarios and describes perspectives and outlooks.  
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2 Introduction and Background 

This chapter covers the theoretical background and technical framework associated 

with the topics of interdisciplinary heritage recording discussed in the thesis. After 

briefly establishing the facets of cultural heritage documentation's contemporary 

importance and contribution to preservation, relevant technological developments, 

and contemporary tendencies are described. Particular attention is given to metrical 

notions, recording principles, application scenarios, and data treatment methods. 

Parts of this chapter’s contents have been published in Adamopoulos and Rinaudo 

(2021c) and Adamopoulos, Patrucco, Volinia et al. (2021). 

2.1 Theoretical Notions 

The significance of documenting tangible cultural heritage, including, but not 

limited to, movable objects and immovable structures, has been recognized over the 

recent decades by many international bodies and agencies and is often highlighted 

by international charters, declarations, resolutions, and other doctrinal texts. Such 

documents stress the need for detailed collaborative documentation as part of the 

study, inspection, and monitoring of heritage and acknowledge that protection must 

consist of a plan of actions based on the fullest possible knowledge of an asset's 

state of preservation, nature, and history. Producing comprehensive documentation 

outcomes denotes immediate benefits in terms of project planning, interdisciplinary 

communication, interpretation, and dissemination of results, but it is also an ethical 

obligation for posterity (De Vos, 2017; Mezzino et al., 2017). 

2.1.1 Heritage Documentation Principles 

Acquisition, elaboration, and management of recorded digital data representing 

material cultural heritage, to be successful, demand interdisciplinary dialogue and 

collaboration. As cultural heritage studies confront complex 'real world' problems, 

the implemented recording practices should cross disciplinary boundaries to create 

new knowledge, achieve a high level of integration and cooperation in order to 

bridge the different viewpoints, and examine accumulated knowledge from the 

perspective of neighboring disciplines (Stock & Burton, 2011). However, 

differences between discrete disciplinary recording practices are existent and 
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understandable (Boochs et al., 2016). The call for "bridging the gap" between 

disciplines involved in the cultural heritage documentation domain has been voiced 

for decades (Letellier, 2001), since appropriate documentation directly reflects on 

the decision-making for preservation actions. CIPA—the International Scientific 

Committee of the International Council on Monuments and Sites (ICOMOS) and 

the International Society of Photogrammetry and Remote Sensing (ISPRS) for 

Heritage Documentation—plays a key role in this effort by promoting 

interdisciplinary collaboration. Integrating the recording, analytical, and data 

management approaches stemming from different disciplines requires collaborative 

efforts at every documentation stage (Hirsenberger et al., 2019). 

Since cultural heritage protection and preservation constitute interdisciplinary 

activities, documentation should also result from the collaboration of professionals 

and people from different fields of expertise and interests. As Letellier (2007) 

describes, heritage data recording and management procedures performed by an 

interdisciplinary team should be guided by a set of principles. The recorded data 

allow for an informed condition inspection, routine management, long-term 

monitoring, and facilitate diagnostic investigation surveys and maintenance. 

Documentation should occur before, during, and after any conservation or other 

intervening action,  when archaeological or historical evidence is revealed, and 

when heritage is at risk of being damaged or otherwise irreversibly altered. 

Everyone involved in the recording process and heritage managers have specific 

responsibilities for assuring the quality, multiformity, conservation, and continuous 

updating of the recorded information and for the creation and sharing of permanent 

records for the heritage assets under threat. Recording heritage information helps 

ensure that any planned interventions respect heritage assets' defined values, 

historical qualities, and material characteristics. Thorough documentation provides 

permanent records of cultural heritage prior to any change, planned or unplanned. 

Analysis of the recorded information should serve as a tool for learning; archiving 

and dissemination should be as comprehensive as possible and reflect the heritage 

asset's significance (Drury & McPherson, 2008). 

Heritage records should include metric, quantitative, and qualitative 

information about the assets, their management, condition, maintenance and 

repairs, and the threats and risks to their safekeeping. Furthermore, careful 

consideration should go into the appropriate scope, level, and methods of recording. 

This entails that the type and workflow of the documentation, as well as the 

techniques and technologies employed, should be appropriate to the nature and 

importance of the heritage asset, the project's needs, the record's purpose, the 

cultural context, and the resources available. Preference should be given to 

nonintrusive techniques. The rationale for the intended scope and the selection of 

the recording methods must be clearly stated, and the materials used for compiling 

final records must be stable. Recording and other heritage information-related 

activities should be undertaken to an appropriate level of detail to provide 
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information for sensitive and cost-effective planning, efficient research, restoration 

work, site management, and creation of permanent records. 

2.1.2 Documentation as Part of Heritage Protection 

The protection of ancient and historic objects, structures, and their remains poses 

an intricate task due to the challenges that the presence of a multiplicity of historical 

materials, adopted construction techniques, and deterioration forms induce. 

Documentation is a fundamental step toward effectively planning the diagnostic 

steps that precede the conservation process. The collection and analysis of recorded 

interdisciplinary information allow for inspecting the state of preservation and 

monitoring historic assets' properties, including the pressures of the environment 

and previous interventions.  

Within the framework set by contemporary heritage conservation ethics (Viñas, 

2002), practical needs arising from sustainable value-based conservation planning 

(Demas, 2000; Mason & Avrami, 2000; Strange & Whitney, 2003), and experience 

gained from decades of observing damages caused to material heritage by 

inappropriate interventions (Palumbo, 2000), derives the stressing need for 

integrated protection. Thus it becomes necessary to design and implement 

interdisciplinary methodologies that will allow decision-making for restoration and 

conservation interventions based on systematic inspection and monitoring (Kioussi 

et al., 2013). These methodologies should be centered on interdisciplinary 

recording, processing, management, and visualization of pertinent information that 

will allow the observation of a monument's characteristics and their change through 

time (Masciotta et al., 2019), while also enabling better supervision and the strategic 

planning and promotion on a larger scale (Kioussi et al., 2011). The complexity of 

collecting and making good use of interdisciplinary information about heritage 

assets stems from the multifarious protection activities and requires adopting multi-

scale and flexible methodologies.  

Documentation is a prerequisite for any investigation aiming to reveal 

information about a heritage asset's state of preservation. The documentation refers 

to every step of the conservation process (Table 2.1Error! Reference source not 

found.), including the anamnesis, diagnosis, and therapy (the application of 

conservation interventions) (Fitzner, 2004). Essentially, documentation serves a 

crucial role in condition inspection and is the first important step towards surveying 

the causes triggering deterioration. It relies on the geometric recording to provide 

the spatial reference upon which interdisciplinary information can be integrated, 

and other metric and quantitative recording techniques to obtain the necessary 

background for further (potentially intrusive) testing. The integrated documentation 

may contain a multitude of information, the main categories being historical, 

archaeological, architectural, geometric, structural, environmental, climatic, and 
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physicochemical regarding the materials' characteristics and their deterioration 

(mineralogical, microstructural, hygrothermal information). 

As the research presented here mainly concerns multisource documentation for 

anamnestic purposes, which can also facilitate data collection for diagnosis, a brief 

analysis on the topic of recording techniques regarding those matters follows in the 

subsequent sections. 

Table 2.1. Approach to material heritage conservation (adapted from Fitzner, 2004) 

APPROACH TO INTEGRATED CONSERVATION OF HERITAGE 

↓  ↓  ↓ 

ANAMNESIS → DIAGNOSIS → THERAPY 

Identification  Materials and properties  Conception, calculation, 

Location and description   Preservation state  and test-application of 

of the asset  Factors and processes   preservation measures 

Art history  of deterioration  Implementation of 

Construction history  Progression of   preservation measures 

Preservation history  deterioration  Quality control 

Case history  Rating of weathering  Monitoring 

↑  ↑  ↑ 

DOCUMENTATION 

2.1.2.1 Documentation within the Scope of Anamnesis 

Anamnesis addresses the compilation, evaluation, and presentation of documents, 

photographs, information, and data for locating, identifying, and describing 

heritage assets and portraying their history. 

The on-site visual identification of materials, deterioration, and earlier 

preservation interventions is a valuable method associated with the anamnesis. 

Observation of visible characteristics on the surfaces of heritage assets related to 

materials, construction techniques, weathering, and physical damage is crucial for 

distinguishing impending risks and planning diagnostic surveys. Certain types of 

weathering and damage can be more common for specific historic materials or 

under specific environmental conditions. Regardless, the visual inspection can 

provide extensive information that can help draw some first conclusions about the 

state of preservation and support configuring the plan of the diagnostical workflow 

(Kapsalas et al., 2007). The resulting information should be recorded systematically 
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and in detail, supported and cross-correlated with information from historical and 

contemporary sources. 

Geometric documentation also has a vital role in the anamnesis, as evident from 

United Nations Educational, Scientific and Cultural Organization (UNESCO, 1972) 

which defines it as: 

• "the action of acquiring, processing, presenting and recording the necessary 

data for the determination of the position and the actual existing form, 

shape, and size of a monument in the three-dimensional space at a particular 

given moment in time; 

• the geometric documentation records the present of the monuments, as this 

has been shaped in the course of time and is the necessary background for 

the studies of their past, as well as the care of their future." 

Traditionally, the scope of the geometric recording is to provide conservation 

specialists with measurements in the form of vector plans, sections or outlines 

plotted on hard copy that let direct use on site. However, the development of new 

approaches, algorithms, and digital techniques in the field of three-dimensional 

(3D) data acquisition, along with robust computational systems and affordable costs 

of the respective sensors, have allowed the efficient usage and dissemination of 

both imagery products and 3D data, usually in the form of 3D models. In addition, 

these advancements have enabled automation, higher speeds, and increased fidelity. 

However, their most important contribution is the possibility of producing 

alternative digital documentation products, like the ones referred to above 

(Georgopoulos, 2018). The choice of suitable recording methods highly depends on 

dimensions, risk of damage or collapse, accessibility, and specified accuracy 

requirements (Böhler, 2006). The difficulty of choosing between geometric 

recording methodologies also lies in the vastly dissimilar characteristics among 

tangible heritage assets (even of the same typology) and their complexity which is 

often a result of significant weathering. Besides, complexity may be one of the most 

critical challenges of heritage documentation, which demands drastically different 

approaches to be adopted depending on the object of study. Furthermore, the object 

can often be strongly associated with the surrounding environment, and thus, 

documentation for anamnesis should also include it. 

The anamnestic stage that precedes diagnosis includes data collection with on-

site methods, apart from the geometric documentation, and takes into account scale 

and complexity. At this stage, documentation should lead to an exhaustive 

description of the characteristics of the cultural heritage asset. For this purpose, 

various non-destructive evaluation (NDE) methods are employed, such as digital 

imaging, endoscopy, thermography, ground-penetrating radar, and ultrasonic 

tomography (Moropoulou et al., 2005). 
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2.1.2.2 Documentation within the Scope of Diagnosis 

The diagnostical study utilizes interdisciplinary information supplied by the 

anamnesis and constitutes the basis for the conception, calculation, and planning of 

conservation interventions. The diagnosis's overall aim is to characterize, quantify, 

interpret, and rate degradation on the historical asset by considering all the 

documented characteristics, the material properties, the factors and mechanisms of 

weathering (Fitzner, 2002). 

The diagnosis's methodological approach includes the analysis of the data 

collected on-site, as well as laboratory tests after minor sampling, and considers the 

different scales of degradation. At this stage, the anamnestic information supports 

the interpretation of analytical investigation results, which leads to the localization 

and detailed description of historic material properties and their alterations, 

characterization, and quantification of weathering characteristics and forms, 

drawing conclusions regarding the alteration inducing factors, thorough assessment 

of previous conservation measures and their compatibility, qualitative evaluation of 

the state of preservation, damage and risk prognosis, and drafting recommendations 

about appropriate measures including their urgency (Genovese, 2005). The 

diagnosis monitors endogenous, environmental, and anthropogenic factors of 

deterioration. 

2.2 Fundamentals of Recording Techniques 

Digital recording for cultural heritage documentation considers many active and 

passive nonintrusive sensing techniques and image processing methods (Tobiasz et 

al., 2019). Despite the commonly practiced separation between geometric recording 

and NDE—due to restrictions imposed by the vastly different instrumentation and 

signal processing methods involved—the data and metadata acquired through 

geometric recording methods can more often than not support non-destructive 

inspection (Chiabrando et al., 2017; Lo Turco et al., 2017). Furthermore, NDE 

techniques can be performed in a metric way as well. Thus, documentation 

techniques should not be separated, as they can both provide rich multipurpose 

anamnestic information if properly implemented. However, this repurposing of 

recorded information requires technical knowledge of the involved sensing 

techniques, from both a spatial and a radiometric aspect, or at least a sense of their 

capabilities and limitations. Therefore it is important to discuss the fundamental 

characteristics of both the reality-capturing and non-destructive evaluation 

technologies before evaluating their alternative uses or integration scenarios.  

Rapid advances in sensor technologies and digital recording techniques have 

provided powerful geometric recording tools in recent years. These technological 

solutions include equipment for data acquisition, such as Global Navigation 

Satellite System (GNSS) receivers, total stations, digital cameras, scanners, etc., the 
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software for processing and managing the recorded data, and, of course, computer 

hardware, for running the software, storing information and presenting them in 

various data types (Georgopoulos & Stathopoulou, 2017). The technological 

developments in image-based and scanning-based 3D reality capturing have 

allowed for affordable, easy-to-use techniques, automatized and accurate software 

solutions (Remondino, 2011).  However, the quality check of captured data and 

deriving metric products should always be prioritized during geometric heritage 

surveys to ensure the validity and suitability of results. Furthermore, the 

combination of digitization methods should always be considered as it can often 

support the results' optimization (Grussenmeyer et al., 2008; Remondino & Rizzi, 

2010). The application of different geomatics techniques interrelates with the 

complexity and size of the heritage asset but actually is determined by numerous 

factors such as portability of available instrumentation, personnel experience, 

budget, accuracy specifications, and the integrability of recording methods 

(Evgenikou & Georgopoulos, 2015; Frisky et al., 2020; Teza et al., 2016). It should 

be mentioned that accuracy specifications vary depending on the stage of recording 

(reconnaissance, preliminary, detailed recording), the scale that records such as 

plans, cross-sections, orthophotos, and maps of materials/deterioration are being 

presented, and the level of detail (LoD) required for spatial information 

management in Geographical Information Systems (GIS) and Building Information 

Modeling (BIM) environments. 

Alongside the advancements in reality capturing, significant technological 

developments have taken place in the field of (historic) materials NDE. Non-

destructive inspection techniques operating at the visible, infrared, gigahertz, and 

terahertz ranges of the electromagnetic spectrum have become versatile and cost-

effective and have been increasingly used in many fields, with innovation and 

development mainly being driven by industry. NDE sensors have different 

advantages and limitations depending on their operating principles and spectral 

range, but nevertheless, the continuous innovation and development of portable and 

compact devices will have a major role for future NDE instruments as these can 

increasingly facilitate the decision making process through agile on-site inspections 

(Wang et al., 2020). Figure 2.1 presents an overview of the investigated recording 

techniques and their operating wavelengths. 
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Figure 2.1. Recording techniques and operating wavelengths. 

2.2.1 Scanning 

Scanning techniques are based on active recording methods; they emit radiation 

through their own source and record the backscatter instead of sensing the reflected 

radiation originating from other sources (Grussenmeyer et al., 2016). Scanning 

sensors are also referred to as range sensors because they can estimate the range or 

depth of points in the 3D space. Depending on their scanning principles, which vary 

significantly, scanning techniques pose different advantages and disadvantages 

(Van Genechten, 2008). They generally enable recording in an accurate and fast 

manner and are relatively easy to use. Terrestrial Laser Scanning (TLS) and 

structured-light scanning (SLS) are the most common active sensing techniques for 

close-range recording heritage applications. 

2.2.1.1 Terrestrial Laser Scanning 

Terrestrial laser scanning describes a variety of range measuring techniques for 

surface scanning based on laser technology. TLS allows the analysis of real-world 

objects through a sampled or dense collection of data about their surfaces (XYZ 

coordinates of numerous points) and possibly about their appearance (color or 

intensity of backscattered energy). In a conventional laser scanning instrument, the 

scanner measures stepwise the surrounding scene with a fast vertical mirror 

rotation, and a slower horizontal instrument rotation. More specifics on the 

scanning mechanism and measuring techniques of TLS can be found in Fröhlich 
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and Mettenleiter (2004), Beraldin et al. (2010), and Petrie and Toth (2018). The 

advantage of TLS stems from the capacity to accurately record large datasets in 

short times, in comparison with other recording techniques. The collected 3D data 

(point clouds) are being used to reconstruct elevation models, 3D models, or to 

produce sections and drawings. TLS sensors are line-of-sight, and therefore 

multiple scans may be required to cover objects, structures, or their remains fully. 

The implementation of TLS means that the captured point clouds do not need to be 

scaled like photogrammetric models. There are three typologies of TLS 

instrumentation more widely used for cultural heritage documentation, operating 

on different recording principles: 

(a) Time-of-Flight (ToF) scanners measure distances by recording the time 

difference between the emitted laser pulse and the received backscatter. 

These devices are characterized by lower acquisition speed and accuracy 

(5–6 mm) but are mainly suited for long-range acquisition. 

(b) Phase Shift (PS) scanners estimate the difference of phase between the 

emitted and backscattered signal (sinusoidal wave patterns) of continuous 

laser pulses. These devices are characterized by short ranges (up to 300 m), 

better accuracy than ToF scanners (2–3 mm), and are thus suited for 

documentation at large scales. 

(c) Triangulation scanners consist of a laser pulse emitting source and an optical 

sensor, which respectively transmit and record laser pulses from two 

different angles and determine the reflection points' positions by solving the 

triangles formed. These devices can be extremely precise, reaching 

accuracies up to fractions of a millimeter, while at the same time, the point 

clouds they produce can be very dense (i.e., up to 0.05 mm). However, their 

range is limited, not exceeding a couple of meters. Although there are such 

triangulation scanners that require to be mounted on a tripod, most of these 

devices are handheld, thus allowing detailed recording of small-sized 

complex objects, such as sculptures. 

Table 2.2 presents a brief comparison between TLS devices available in 2021 

(riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VZ-400i_Datasheet_2020-10-

06.pdf; leica-geosystems.com/datasheet/Leica_ScanStation_P30-

P40_Plant_DS_en.pdf; media.faro.com/Tech-Sheet-FARO-Focus-Laser-Scanners-

ENG.pdf; zf-laser.com/Z-F-IMAGER-R-5016.pdf; konicaminolta.com/vivid-

910_vi-910_instruction_eng.pdf). 

http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VZ-400i_Datasheet_2020-10-06.pdf
http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VZ-400i_Datasheet_2020-10-06.pdf
https://w3.leica-geosystems.com/downloads123/hds/hds/general/brochures-datasheet/Leica_ScanStation_P30-P40_Plant_DS_en.pdf
https://w3.leica-geosystems.com/downloads123/hds/hds/general/brochures-datasheet/Leica_ScanStation_P30-P40_Plant_DS_en.pdf
https://media.faro.com/-/media/Project/FARO/FARO/FARO/Resources/2021/01/15/22/34/Tech-Sheet-FARO-Focus-Laser-Scanners-ENG.pdf
https://media.faro.com/-/media/Project/FARO/FARO/FARO/Resources/2021/01/15/22/34/Tech-Sheet-FARO-Focus-Laser-Scanners-ENG.pdf
https://www.zf-laser.com/Z-F-IMAGER-R-5016.184.0.html?&L=1
https://www.konicaminolta.com/instruments/download/instruction_manual/3d/pdf/vivid-910_vi-910_instruction_eng.pdf
https://www.konicaminolta.com/instruments/download/instruction_manual/3d/pdf/vivid-910_vi-910_instruction_eng.pdf
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Table 2.2. Laser scanners. 

 

    

 

 
RIEGL 

VZ-400i 

Leica 

ScanStation P30 

FARO 

FocusS 150 

Z+F 

IMAGER 5016 

Konica Minolta 

VIVID 910 

Type ToF ToF PS PS Triangulation 

Range 1.5–800 m 0.4–270 m 0.6–150 m 0.3–365 m 0.6–2.5 m 

Accuracy 5 mm 6 mm 3.5 mm 2 mm 0.3–1.8 mm 

Precision 3 mm 2 mm 1 mm 1 mm 8–32 μm 

Weight 9.7 kg 12.25* kg 4.2 kg 7.8 kg 11 kg 

Note: *w/o batteries 

Recording in 3D with TLS presupposes planning the data acquisition campaign 

in terms of identifying the surfaces to be covered, determining the optimal number 

and location of scanning positions and targets, and the management process of the 

point clouds (Barsanti et al., 2014). Optimally placed scanning positions should be 

selected to maximize cover and incidence angles, achieve the required resolution 

specifications while decreasing occlusions, and, if possible, the number of 

scans/scanning time (Metawie & Marzouk, 2020). Targets are positioned in 

overlapping areas to facilitate registration between scans. It is essential to maintain 

a good spatial distribution of scan targets not only on the x-y plane but also at the 

z-direction, to avoid multiplicity of solutions when solving the orientation between 

scans. Depending on the registration method between point clouds from different 

scanning positions, at least four correctly distributed targets at xyz should be 

positioned (Barber et al., 2003). Registration is usually performed through a coarse 

transformation based on common, often artificial, targets followed by a fine cloud-

to-cloud closest neighbor-based registration (Bouaziz et al., 2013; Fabado et al., 

2013; Lachat et al., 2018). 

Regarding cultural heritage documentation, PS scanning devices have 

successfully been used for high-fidelity modeling of numerous geometrically 

complex monuments (Dorninger et al., 2013; Pritchard et al., 2017; Vacca et al., 
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2012). The use of ToF scanning devices has become less frequent, although it is 

preferred for long-range applications such as geoarchaeological investigation of 

historical mines (Kincey et al., 2017), and is also used in applications that require 

acquisition from varying ranges in combination with PS scanners (Guarnieri et al., 

2017; M. Monego et al., 2017, 2019). Nevertheless, the possibility of directly geo-

referencing point clouds through the integration of ToF scanners and GNNS 

measurement systems provides a powerful 3D recording solution (Li et al., 2019). 

Both ToF and PS scanners have been extensively used for deformation monitoring 

of historical structures (Batur et al., 2020; Georgopoulos et al., 2016; Jaafar et al., 

2017; Pesci et al., 2011, 2013). Triangulation scanning has been mainly employed 

in the detailed digitalization of sculptures (Balletti & Ballarin, 2019; Guidi et al., 

2006; Levoy et al., 2000). 

Laser scanning can also be a source of important radiometric data exploitable 

to facilitate non-destructive condition surveying further. Reflectivity values 

recorded by TLS—which express the intensity of the backscattered laser energy—

have been recently explored for mapping the alterations of historical surfaces 

(Armesto-González et al., 2010; González-Jorge et al., 2012; Li & Cheng, 2018; 

Pozo-Antonio et al., 2019; Sánchez-Aparicio et al., 2018; Suchocki, 2020) as well 

as for surface moisture detection (Lerones et al., 2016; Suchocki et al., 2020; 

Suchocki & Katzer, 2018). 

2.2.1.2 Structured-Light Scanning 

Structured-light scanning instrumentation's operating principle is based on the 

projection of particular coded light patterns on the surface of an object and the 

computation of depth information by recording the projected pattern' deformations. 

This technique is based on triangulation but does not require the utilization of a 

laser source. The projected pattern covers either the entire surface of an object or a 

part of it which is captured either by a digital single-lens reflex (SLR) camera or an 

optical machine vision camera. The recorded scene is processed to retrieve the 

position of 3D points. The light patterns can consist of multiple fringes of different 

colors or complex patterns with curves, either time-encoded or space-encoded. SLS 

devices usually have a narrow Field-Of-View (FOV) that ranges from a few 

centimeters to a couple of meters, based on the components of the system and the 

calibration process. Depending on the complexity of the object's surface, its size, 

and the required density or final required accuracy, a considerable number of 

individual scans from various viewing angles may be necessary to completely cover 

the object area and acquire a complete and detailed visual representation. This 

technique may be accompanied by the collection of texture information and can 

lead to impressive results in terms of accuracy and productivity (Pavlidis et al., 

2007). Table 2.3 presents a brief comparison between SLS devices available in the 

market in 2021 (artec3d.com/portable-3d-scanners/specifications; mantis-

vision.com/handheld-3d-scanners; einscan.com/handheld-3d-scanner/einscan-pro-

http://www.artec3d.com/portable-3d-scanners/specifications
https://mantis-vision.com/handheld-3d-scanners
https://mantis-vision.com/handheld-3d-scanners
https://www.einscan.com/handheld-3d-scanner/einscan-pro-hd/einscan-pro-hd-specs
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hd/einscan-pro-hd-specs; creaform3d.com/handyscan-3d-silver-series-

professional-3d/technical-specifications). 

Table 2.3. Structured-light scanners. 

SLS solutions custom-made from off-the-shelf hardware components require 

calibration before every acquisition to determine the extrinsic and intrinsic 

parameters of the projector and the camera in order to achieve optimal metric results 

(Yamazoe et al., 2018). Commercially available SLS systems are often compact, 

easy to deploy, affordable, and easy to calibrate, and for these reasons, they are 

instrumental in dense resolution and high accuracy 3D photorealistic representation 

of archaeological finds on-site or while under restoration (García Molina et al., 

2021; Graciano et al., 2017; McPherron et al., 2009). Comprehensive comparisons 

between widely available SLS handheld systems can be found in Kersten et al. 

(2016), Kersten et al. (2018), and Morena et al. (2018). 

2.2.2 Digital Imaging 

2.2.2.1 Digital Reflex Cameras (Visible Region 400–700 nm) 

The digital still camera (DSC) consists of imaging optics, an image sensor, and a 

signal-processor that receives a signal from the image sensor and generates digital 

data that are compressed and stored on a memory device (Toyoda, 2006). Optical 

 

 
  

 

 

 
Artec3D 

Space Spider 

Artec3D 

Eva 

Mantis Vision 

F6 SMART 

SHINNING 3D 

EinScan Pro HD 

AMETEK 

HandySCAN 3D 

Silver 

Accuracy 

 

0.05 mm 0.1 mm 0.045 mm 0.04 0.04 mm 

Resolution 0.1 mm 0.2 mm 0.2 - 3 mm 0.24 0.1 mm 

Range 0.2 – 0.3 m 0.4 – 1 m 0.5 – 4 m 0.51 – 0.61 m 0.1 – 4 m 

Color Yes Yes Yes Yes No 

Retail price 19,700 13,700 15,000 7,700 19,990 

https://www.einscan.com/handheld-3d-scanner/einscan-pro-hd/einscan-pro-hd-specs
https://www.creaform3d.com/en/handyscan-3d-silver-series-professional-3d/technical-specifications
https://www.creaform3d.com/en/handyscan-3d-silver-series-professional-3d/technical-specifications
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radiation is detected in a DSC by converting the incoming radiation into an 

electrical output signal which is ultimately digitized. The image sensor consists of 

optical photodetectors that can detect incoming electromagnetic radiation. Two 

main focal plane array imaging sensors are used in DSCs: charge-coupled device 

(CCD) and complementary metal-oxide-semiconductor (CMOS). Their spectral 

response is situated from near-ultraviolet (NUV), around 320–370 nm, to about 

1100 nm—the limit of near-infrared (NIR). Regardless of the type, all DSC image 

sensors consist of a 2D-photosite array to generate a digital photograph. The 

radiation-sensitive area of every photosite, in most cases a photodiode or photogate, 

collects the photons during the exposure time. On top of the sensor and below the 

array of micro-lenses that enable the collimation of the incident radiation to the 

photodiode (Holst, 1998; Theuwissen, 1995), manufacturers place a color filter 

array (CFA): a mosaic pattern of thin optical filters that are colored red, green or 

blue (Holst, 1998; Nakamura, 2006). As every pixel will initially have one color 

component (red or green or blue – Figure 2.2. A Bayer color filter array acquires 

Photosite-specific spectral information.), the other two components get interpolated 

from neighboring pixels to create a triplet of integer DNs (Digital Numbers) for 

every pixel. Generally, DSCs use a red-green-blue (RGB) pattern with a repeating 

group of four photodiodes. This arrangement is called a Bayer pattern. Bayer 

patterns typically feature two green filters per group of four enlarging the perceived 

sharpness of the digitally recorded scene (Bayer, 1975; Hunt, 2004). When 

obtaining an off-the-self DSC, the imaging sensor is moreover covered with a 

NUV–NIR blocking/cut-off filter (also called hot-mirror) that allows only visible 

light to pass. By applying this filter, the DSC manufacturer ensures that the sensor’s 

array of photosensitive detectors will generate a photographic signal by mainly 

taking the visible EM radiation into account. 

 

Figure 2.2. A Bayer color filter array acquires Photosite-specific spectral information. 

The detector pitch is a fixed property of a sensor. It is the distance from the 

center of one photosite to the center of the neighboring photosite. Scene sampling 

distance (SSD) is the corresponding distance projected in object space, stating the 

horizontally or vertically measured scene distance between two consecutive sample 



P a g e  | 38 

 

locations. The detector pitch can generate images with various SSDs. Amongst 

other factors, the SSD is determined by the scene’s local topography, the distance 

of the camera to the scene (object distance), and the focal length f of the lens 

(Verhoeven, 2016). Table 2.4 presents a brief comparison of full-frame digital 

cameras available in the market in 2021. 

Table 2.4. Full-frame digital cameras. 

Note: *body weight including batteries; SLR: single lens-reflex 

2.2.2.2 Multispectral Cameras (Near-ultraviolet  to short-wave infrared region 

350–3000 nm) 

Multispectral sensors are passive systems that are able to record data in a small 

number of bands of the electromagnetic spectrum concurrently (Sabins & Ellis, 

2020). The primary problem of these sensors is achieving multispectrality and 

accurate synchronization of all involved elements. Various configurations can be 

utilized to accomplish this (Del Pozo et al., 2017)—on the one hand, implementing 

a single device integrating several lenses (photodetector plus optical filter), where 

each lens records data for the spectral band permitted by its filter. On the other, 

there are single detector instruments utilizing a ring of band-specific filters that 

fixes the required input filter by means of small, rapid rotation. The advantage of 

the latter cameras over the former is the absence of eccentricity between the 

different captures; in this case, the multispectral image is conformed almost 

immediately with no need for parallax correction (distance between the lenses). 

Furthermore, in this case, the geometric corrections and the correction of systematic 

errors are made only for the existing lens, such that time can be saved. By contrast, 

 

    
 

 Canon EOS R5 Canon EOS R6 Nikon Z7 II Nikon D780 Sony a7 III 

Body type 

 

mirrorless mirrorless mirrorless SLR mirrorless 

Resolution 8192×5464 max 5472×3648 max 8256×5504 max 6048×4024 max 6000×4000 max 

Pixels 45 megapixels 20 megapixels 46 megapixels 25 megapixels 24 megapixels 

Sensor size 36×24 mm 36×24 mm 35.9×23.9 mm 35.9×23.9 mm 35.8×23.8 mm 

Pixel pitch 4.39 μm 6.58 μm 4.35 μm 5.94 μm 5.97 μm 

Weight* 738 g 680 g 705 g 840 g 650 g 
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they have the important drawback of not being able to capture the multispectral 

dataset at the exact same moment of time. 

Multispectral recording for heritage science and archaeology has been usually 

associated with single-detector instruments capable of recording radiance at 

multiple narrow spectral bands. Multispectral NIR/short-wave infrared (SWIR) 

imaging of antiquities and historical artwork has been explored with sensors that 

employ complementary metal-oxide-semiconductors (CMOS) based on InGaAs 

(indium gallium arsenide, 750–1700 nm) or PtSi (platinum silicide, 750–5000 nm) 

detectors, and NUV imaging with AlGaN (aluminum gallium nitride)-based 

developed since the 1990s (Bendada et al., 2015; Delaney et al., 2016; Fischer & 

Kakoulli, 2006; Liang, 2012). 

Miniaturized multispectral instruments, initially designed for low-altitude 

aerial applications, are the ones recently employed for built heritage inspection. 

These instruments, usually operating at the wavelength range between 400–1100 

nm, involve multi-camera configurations—multiple narrowband detectors (lenses) 

recording at 4–12 different spectral channels. Table 2.5 presents the characteristics 

of some miniaturized multispectral camera options that have been implemented for 

terrestrial applications. 

Table 2.5. Multispectral cameras. 

Make and Model Configuration Spectral Bands Resolution 

Buzzard Six Band 6-camera 
Blue, Green, Red, 

NIR1, NIR2, NIR3 
1280 × 1024 pixels 

MicaSense RedEdge 5-camera 
Blue, Green, Red, Red 

Edge, NIR 
1280 × 960 pixels 

Sal MAIA 9-camera 
VIS, Violet, Blue, 

Green, Red, Red Edge, 

NIR1, NIR 2 

1280 × 960 pixels 

Tetracam ADC-Micro single 3-band camera Green, Red, NIR 2048 × 1536 pixels 

Tetracam μ-MCA 4, 6 or 12-camera user-selectable 1280 × 1024 pixels 

Building materials have specific spectral signatures at different areas of the 

electromagnetic spectrum, which can be obtained under controlled laboratory 

conditions. Defects, deterioration, temperature variations, and moisture content 
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alter their normal and homogeneous spectral behavior. Therefore, recording 

spectral anomalies with multispectral imaging sensors facilitates the identification 

of these characteristics (Del Pozo et al., 2016). However, acquiring useful data of 

these surface alterations on heritage objects and structures poses considerable 

challenges, such as selecting the proper multispectral instruments, radiometrically 

and geometrically calibrating them (Del Pozo, et al., 2014; Guo et al., 2019), and 

identifying those environmental factors that affect the captured reflectance data, 

which makes the use of these technologies not frequent. Notably, Del Pozo et al. 

(2015) report using a Tetracam Mini-MCA6 to obtain multispectral ortho-mosaics 

to map a historical church's altered and unaltered materials and moisture. 

Furthermore, Kolokoussis et al., (2021) report implementing a system combining a 

visual and very near-infrared multispectral camera to map biodeterioration and 

corrosion on four medieval masonry heritage buildings.    

The complementarity of RGB and NIR reflectance photography is often 

considered essential for inspecting damage on historic assets. However, the cost-

to-resolution ratio of multispectral camera systems and the complex processing 

required for the collected data are often considered prohibitive in the heritage 

sector. Thus, the recording of multispectral reflectance data is sometimes simulated 

via modified commercial cameras (Falco, 2009; Verhoeven, 2008). Lerma et al. 

(2012), and Meroño et al. (2015), have used this method to obtain color and very 

near-visible images to identify alterations on historical stone monuments. 

2.2.3 Photogrammetric Techniques 

Modern close-range photogrammetry has evolved from metric cameras to more 

agile and cost-effective solutions. Photogrammetric techniques have substantially 

changed, incorporating high-resolution digital sensor technologies, new computing 

capabilities, multi-image processing techniques (coming from the field of computer 

vision), and even oblique-imagery acquisition (Chiabrando et al., 2015). Close-

range photogrammetry has many uses: visualization, dissemination, preparation of 

models and 3D scenes for virtual and augmented reality applications, definition and 

obtainment of plans and measurements, support of excavation and restoration work, 

facilitation of numerical modeling and condition monitoring (Yilmaz et al., 2007; 

Marín-Buzon et al., 2021). 

2.2.3.1 Digital Close-Range Photogrammetry 2D Applications 

Digital close-range photogrammetry involves many methods whose application 

usually depends on the surface complexity and dimensions of the surveyed object. 

For relatively simple geometries, digital image rectification provides a non-

expensive solution for orthoimage generation. A projective transformation-based 

rectification can be chosen for nearly planar surfaces, while polynomial and 

differential rectification methods can be helpful for more complex surfaces 
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(Hemmleb & Wiedemann, 1997). If the surface can be described as a parametric 

volume, such as a polyhedron, a cylinder, or a cone, the digital rectification can be 

realized with unwrapping techniques (Georgopoulos et al., 2020). 

2.2.3.2 Image-Based 3D Modeling and Rendering 

Ortho-rectification and surface developments are, in most cases, not sufficient for 

the complete geometric recording and photorealistic representation of a heritage 

asset. For this reason, a large number of images have to be simultaneously 

processed to cover it completely, producing homogeneous 3D geometric results and 

ortho-textures. The advancements in dense image matching (Remondino et al., 

2014) and the improvements in camera sensor manufacturing (Markiewicz et al., 

2019) have drastically improved image-based modeling (IBM) and 3D rendering  

solutions. The current approaches are based on computer vision algorithms and are 

generally robust, affordable, and agile, both in terms of implementation and the 

flexibility of scene-sampling distances and other parameters that can be adjusted 

according to requirements (Westoby et al., 2012). These approaches allow the use 

of non-metric and even lower-end sensors, and have widened the scope of 3D 

modeling and rendering applications for cultural heritage because of their increased 

automatization. 

Multi-view IBM refers to digitization approaches for the generation of 3D point 

clouds and models from overlapping images using robust automated algorithms 

(Fonstad et al., 2013). Standard multi-view 3D reconstruction pipelines start with 

the detection and description of features on every image of an image dataset. Then 

follow Structure-from-Motion (SfM) implementations to estimate the camera 

positions and 3D point coordinates in a local coordinate system without a real scale, 

producing a sparse cloud. Subsequently, the 3D point cloud is further densified by 

employing dense image matching algorithms, and most pixels of the scene are 

reconstructed in a procedure typically called Dense Multi-View 3D Reconstruction 

(DMVR). Later the dense point cloud is meshed into a 3D model, usually using 

Delaunay triangulation algorithms, and textured by interpolating color information 

from the imagery dataset. Multi-view IBM approaches do not require implementing 

control points with known coordinates to function. However, the use of control 

points with known coordinates during the orientation improves the accuracy of the 

final results and is mandatory for acquiring measurements or for geo-referencing. 

For applications that do not demand high-accuracy metric products, the 3D models 

can be scaled based on measured reference lengths instead of using measured 

control point networks. 

Multi-view SfM/DMVR-based recording techniques are cost-effective and can 

effectively involve oblique imagery from consumer-grade cameras to produce 

accurate and high-resolution spatial results (Hassani, 2015; Aicardi, 2018). In 

addition, they require low levels of supervision and user expertise. As a result, these 
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techniques have become widely used in heritage science and archaeology. Typical 

applications involve the documentation of archaeological remains (Douglass et al., 

2015; López et al., 2016; McCarthy, 2014; Toprak et al., 2019), architecture (Adami 

et al., 2018; Columbu & Verdiani, 2014; Koutsoudis et al., 2014; Lo Brutto et al., 

2017; Russo et al., 2019; Tucci et al., 2015) and other historical structures 

(Kouimtzoglou et al., 2017; Martínez et al., 2013; Peña-Villasenín et al., 2017), 

sculptures and monuments (Apollonio et al., 2014; Cardaci et al., 2019; Koehl & 

Fuchs, 2019; Girelli et al., 2019; Malik & Guidi, 2018), artifacts (Adamopoulos & 

Rinaudo, 2019; Gil-Melitón & Lerma, 2019; Kingsland, 2020; Santos et al., 2017), 

and virtual restorations or reconstructions (Chen et al., 2018; Fazio & Lo Brutto, 

2020; Stampouloglou et al., 2020; Tsiafaki et al., 2016; Tucci et al., 2017). 

2.2.4 Infrared Thermography 

Infrared thermography is a close-range sensing technique well-established for 

inspection, testing, and monitoring. Infrared thermography is a noncontact and 

noninvasive technique that allows repeatability, prolonged use, and makes possible 

the comparison between areas of the target, and multitemporal application, thus 

presenting many advantages over other NDE technologies (Rosina & Grinzato, 

2001; Moropoulou et al., 2018). Through thermal detectors, it measures levels of 

emitted infrared radiation at the long-wavelength infrared (LWIR) portion (7 μm – 

14 μm) of the electromagnetic spectrum (Modest, 2013). Infrared radiation is 

emitted from all materials, at temperatures above absolute zero (i.e., T > -273.15 

°C), due to their molecules' mobility. This infrared motion increases at higher 

material temperatures and reduces at lower temperatures. The intensity, frequency, 

and wavelength of infrared radiation depend on the temperature and magnitude of 

the source and the material's emissivity (Vollmer & Möllmann, 2018). 

 

Figure 2.3. Detailed representation of the thermal infrared spectrum (Kirimtat & Krejcar, 2018). 

A thermal camera is a device employing a thermal-infrared detector that records 

the radiant energy at the LWIR range, which falls onto the camera lens and converts 
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it to a measurable form (Figure 2.3). Using the radiation detector, the thermal 

camera displays a target's temperature, creating a visual representation, a two-

dimensional thermal image from the detected average of incoming radiative energy 

intensities (Corsi, 2010). There are a few fundamental parameters that affect the 

performance of the thermal camera's sensor and subsequently image quality. They 

are sensor spectral range, or spectral response; spatial resolution, or pixel pitch; 

thermal sensitivity, or equivalent random noise level; intensity resolution, or 

number of intensity levels; scan speed, or update rate of the scanning mechanism 

(Kirimtat & Krejcar, 2018). The spectral range refers to the portion of the infrared 

spectrum in which the camera will be operationally active. Sensitivity is measured 

in Celsius degrees and reflects the minimum detectable temperature difference. 

Inspection-purposed temperature sensors with good sensitivity recognize 

temperature differences of even 0.040 °C (uncooled cameras). The intensity 

resolution is proportional to the number of hues or shades on the thermal camera 

screen. The higher the resolution, the more smoothly temperature changes will 

occur. If a target has sudden temperature changes, it will be due to the target itself 

and not to the camera. Most contemporary thermal imaging devices employ 12–17 

μm pixel-pitch arrays. The spatial resolution of the thermal sensor depends on the 

number of pixels. This is similar to optical digital photography and defines the 

number of independent measurement points (Venkataraman & Raj, 2003). The 

resolution of the thermography cameras is considerably lower than that of the 

visible spectrum cameras, mostly only 160 x 120, 240 x 180, 320 x 240, 464 x 348, 

and up to 1280 x 1024 pixels for high-end instruments (field of view varies from 6° 

to 58°), and their cost is generally higher (Gade & Moeslund, 2014). Recently, more 

affordable thermal camera models have come into the market, including 

smartphone-adjustable low-resolution instruments. However, these inexpensive 

cameras provide lower accuracy, which makes them unusable for some 

applications. Table 2.6 presents some common thermal cameras purposed for 

infrastructure inspection available in the market in 2021 (flir.eu/products/t1020; 

flir.eu/products/t840; flir.eu/products/t540; fluke.com/product/thermal-

cameras/tix580; thermal.com/seek_shotpro_specsheet-1.pdf). 

 

 

 

 

 

 

 

https://www.flir.eu/products/t1020
https://www.flir.eu/products/t840
https://www.flir.eu/products/t540
https://www.fluke.com/en/product/thermal-cameras/tix580
https://www.fluke.com/en/product/thermal-cameras/tix580
https://www.thermal.com/uploads/1/0/1/3/101388544/seek_shotpro_specsheet-1.pdf
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Table 2.6. Thermal cameras for building inspections. 

 

    

 

 FLIR T1020 FLIR T840 FLIR T540 Fluke TiX580 Seek ShotTPRO 

Resolution 1024 × 768 640× 480 464 × 348 640× 480 320 × 240 

FOV1 12 °/28 °/45 °/7 

° 

14 °/24 °/42 ° 14 °/24 °/42 ° 12 °/34 °/48 ° 52 ° 

NETD2 < 20 mK < 30 mK < 50 mK < 50 mK < 70 mK 

Accuracy 2% 2% 2% 2%  

Range 7.5–14 μm 7.5–14 μm 7.5–14 μm 7.5–14 μm 7.5–14 μm 

Note: 1 Field-Of-View, 2 Noise Equivalent Temperature Difference (thermal sensitivity). 

The typical way of displaying thermal images through a device or computer is 

generally either a black-and-white image or a colored image, where each color 

correlates with a temperature range (Figure 2.4). Thermal images are essentially a 

mapping of the distribution of infrared radiation, which originates from the different 

parts of the object. It is also possible to depict isothermal curves, which are lines at 

the boundary between two colors that reflect points with the same temperature. The 

thermal image processing software can provide heat profiles, temperature 

frequency histograms in each area, temperature differences from different images, 

points with maximum and minimum temperatures, as well as magnifications and 

filtering. Nevertheless, thermal infrared images can be difficult to interpret; in 

general, specific training is necessary. 
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Figure 2.4. Image and corresponding thermogram (grey and iron color pallet) of an external façade 

at the Fort of Karababa in Chalkida, Greece. 

To obtain high quality and useful thermographic data, it is usually necessary to 

take into account the prevailing conditions (ambient temperature, relative humidity, 

recording distance, materials emissivity factor) to adjust the camera, eliminating 

the noise errors they cause in measuring the temperature changes of a target's 

surface (Avdelidis & Moropoulou, 2003; Barreira et al., 2021). For this reason, 

infrared thermography should be used in controlled environments. Furthermore, the 

infrared thermal images are, in general, noisy and suffer from a low signal-to-noise 

ratio. Hence, various digital image processing (DIP) techniques are used to enhance 

acquired thermal images. For image enhancement purposes, various point operation 

algorithms like contrast stretching, histogram equalization, etc., can be used 

(Bagavathiappan et al., 2013). The objective of these algorithms is to stretch the 

histogram of an image, which will, in turn, increase the dynamical range of the 

image, thereby enhancing the contrast. Using advanced signal analysis techniques 

like thermographic signal reconstruction (TSR) and principal component analysis 

(PCA), defects of greater depths can be detected with higher thermal contrast. The 

texture analysis-based feature extraction of thermal images has been found to be 

helpful in image classification (Figure 2.5). For detection of hot spots, image 

segmentation and image thresholding are performed. Several segmentation and 

thresholding algorithms are used, and their choices depend on the nature of the 

image and the users' objective (Panella et al., 2020). 

 

Figure 2.5. Thermogram elaboration for an external façade at the Fort of Karababa in Chalkida, 

Greece; (a) Multi-Spectral Dynamic image, (b) first Principal Component, and (c) thermal contours. 

Infrared thermography records the emitted thermal radiation from a surface and 

enables the analysis of surface temperature patterns, revealing existing anomalies. 

In other terms, thermography aims to identify surface and near-surface areas of 

interest by observing local temperature differences using thermal sensors (Bogue, 
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2013). In infrared thermography, two different approaches are employed: active and 

passive (Usamentiaga et al., 2014). In active thermography, the target is subjected 

to thermal stimulation by an external radiation source. The heat propagation 

depends on the materials' thermal properties but also on subsurface irregularities, 

which result in temperature differences on the target's surface. In this scenario, 

measured thermal radiation comes from the thermal response of the target to the 

external excitation. This technique is applied in cases where the target is in thermal 

equilibrium and does not show surface temperature differences or if they are so 

small that they cannot be detected with passive testing (Shepard, 1997). Given the 

ability to control the intensity of the external energy source, the artificial thermal 

excitation can reach deeper into the object, and therefore information can be 

obtained from more internal layers. Active thermography has been implemented for 

the detection of cracks and defects of historic metallic objects and archaeological 

findings (De Capua et al., 2018; Mercuri et al., 2011; Mercuri et al., 2015; Morello 

& De Capua, 2016; Zhang et al., 2016), evaluation of conservation state and 

monitoring of wooden panel paintings (Sfarra et al., 2011, 2012; Yao, 2018), 

marqueterie (Chulkov et al., 2021) and mixed materials objects (Di Tuccio et al., 

2015, Yousefi et al., 2019), frescoes (Bodnar et al., 2012; Cadelano et al., 2015; 

Grinzato, 2012; Sfarra et al., 2014; Yousefi et al., 2019), and mural paintings 

(Kordatos et al., 2013). Successful application of active thermography requires that 

the targeted surface is more or less homogeneous (has a defined high emissivity and 

thus low reflectivity) and that a good knowledge exists about the radiation coming 

from additional sources—direct or indirect (reflected)—and other environmental 

factors which may affect the measurements (Maierhofer et al., 2010; Tavukçuoğlu 

et al., 2010). This suggests inherent difficulties in applying active thermography for 

historic structures, especially for cases of highly deteriorated architectural 

elements, and thus less frequent use. 

Passive thermography measures the thermal radiation emitted from the target's 

surface without external heat stimulation. Passive thermography is a technique 

often employed for building inspections when the measurement of temperature 

differences is a parameter for evaluating the existing structure's state of preservation 

or energy performance (Balaras & Argiriou, 2002). The documentation of irregular 

temperature distributions on a building's façade or structural element may help 

detect potential problems or damages by evaluating surface temperature changes 

compared with assigned reference values (Avdelidis & Moropoulou, 2004; Bisegna 

et al., 2014; Maldague, 2001). Recent critical developments in thermal sensor 

technology, in combination with other advantages stemming from its non-

destructive nature, have led to extensive application in structural surveys of historic 

architecture (Brooke, 2018; Finco et al., 2019; Grinzato et al., 2002; Esteve, 2016; 

Kylili et al., 2014). Applications of passive infrared thermography regarding the 

investigation of historic buildings include identification of the distribution of 

original and replacement materials (Delegou et al., 2019; Lerma et al., 2018; 

Moropoulou et al., 2013), evaluation of the plaster conditions (de Freitas et al., 
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2014; Moral Ruiz et al., 2018; Torres-González et al., 2021; Volinia, 2000), 

assessment of cracks (Briceño et al., 2019; Paoletti et al., 2013), characterization of 

material loss-induced features and other alterations on architectural surfaces 

(Danese et al., 2009; Delegou et al., 2019; Gomes-Heras et al., 2010; İnce et al., 

2018), detection of moisture (Garrido et al., 2019; Grinzato et al., 2010; Lerma et 

al., 2011; Martínez-Garrido et al., 2018), location of hidden defects and subsurface 

construction (Glavaš et al., 2019; Ibarra-Castanedo et al., 2017; Spodek & Rosina, 

2009), as well as evaluation of restoration and consolidation interventions (Alexakis 

et al., 2018; Avdelidis et al., 2003). 

Built heritage passive thermographic applications are frequently implemented 

with independence of geometry in such a way that only the qualitative localization 

of the thermal phenomena is possible, using 2D thermograms. However, the 

importance of geometry in the field of NDE of existing structures is high when 

accurate quantification of investigated alteration-caused thermal anomalies or 

energy audit is required (Cho, 2015; Lagüela et al., 2016). Additionally, the 

acquisition of metric thermal information is a prerequisite for integrating with other 

proximally sensed data. In thermographic surveys, the geometric, and subsequently, 

the topological information is generally neglected for two main reasons: low spatial 

resolution of thermograms and difficulty of thermal sensors' calibration procedures. 

Thermal infrared metric recording of heritage structures has been explored with 

different approaches during the last two decades of research. The implementation 

of photogrammetric techniques has proven to be efficient in providing survey-grade 

thermal data, although at varied costs and complexity of methods involved. 

2.2.4.1 Thermogram Rectification 

Thermographic cameras, such as those used for building inspections (built on solid-

state sensors), can be treated, in principle, as standard photogrammetric cameras. 

As in optical photography, a thermal image is subject to distortion effects (Hess et 

al., 2015). Thus, a correction to the original image is required (rectification) to 

absolve the optical aberrations introduced by the lens of the camera and the 

perspective distortions (González-Jorge et al., 2012; Luhmann et al., 2013; 

Rodríguez-Martín et al., 2016). After the rectification process, distances and areas 

can be measured with a constant scale on the thermal orthoimage (Franzen et al., 

2013). The algorithm of the rectification process is the projective plane 

transformation. 

X=
a0+a1x'+a2y'

c1x'+c2y'+1
 

Y=
b0+b1x'+b2y'

c1x'+c2y'+1
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Where X, Y are the rectified (real) coordinates of a planar element, x′ and y′ are 

the pixel coordinates in the image, and a0, a1, a2, b0, b1, b2, c1, c2 are the 

mathematical coefficients of the projective matrix that encloses rotation, scale, 

translation, and perspective. In order to solve the system of equations, the 

knowledge of the coordinates of 4 points on the object is the only requirement for 

the determination of this projective matrix, as well as the calibration parameters of 

the camera. The geometric calibration for infrared cameras can be achieved with 

calibration targets made with burning lamps, materials of different emissivity, or 

printed patterns and can be more accurately calculated when repeating patterns are 

involved in calculating the distortion errors, instead of the calibration targets' 

corners or edges (Usamentiaga et al., 2017, 2018). 

If the camera position and interior orientation (calibrated focal length, position 

of principal point, coefficients of lens distortion polynomial) are unknown, 

knowledge of the real (X, Y, Z) coordinates of at least 3 points on the object is 

necessary to compute the exterior orientation—the spatial resection of the camera 

position (Hanke & Grussenmeyer, 2002). 

2.2.4.2 Photogrammetry and Infrared Thermography 

The recent research in IBM and the availability of higher resolution thermographic 

cameras have allowed for improvements in 3D modeling and rendering with the use 

of thermal infrared images through the automation of the photogrammetric 

processes of image matching, orientation, dense points' reconstruction, and ortho-

thermography generation. Lagüela et al. (2016) highlighted that certain 

specifications have to be met for the successful generation of 3D point clouds 

directly from thermograms, such as the acquisition of orthogonal and oblique 

images, which will be used for the accurate implementation of the photogrammetric 

principles, maintaining a robust geometry for the reconstruction, and exploitation 

of only the orthogonal images for texturing the 3D results, to avoid the inclination 

and convergence effect.  

2.2.5 Ground-Penetrating Radar 

Ground-penetrating radar (GPR) is a geophysical prospection technique widely 

used for NDE applications. GPR is a noninvasive measurement method that utilizes 

high-frequency (10 – 10,000 MHz) low-power electromagnetic pulse sequences to 

locate subsurface targets and interfaces between materials with different electrical 

and magnetic properties. The possibility of distinguishing between materials and 

mapping interfaces within visually opaque substances or earth material depends 

mainly on the propagation speed of electromagnetic waves and the difference in 

electrical conductivity and permeability between different materials (Daniels, 2005; 

Persico, 2014). GPR's operating principle is based on the generation of short-

duration radio wave pulses by a transmitter, transmitted as wide beams at a speed 
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that depends on the electromagnetic properties of the medium. The electromagnetic 

signal propagates in a medium (such as masonry structures, stone, fresco, or 

subsoil) and, when it encounters an interface between materials with different 

electrical properties, then some of its energy is reflected or diffused back to the 

surface, some is refracted, and the residual energy of the pulse passes through the 

interface to deeper horizons, where this process can be repeated. The part of the 

wave reflected from an interface returns to the surface, where it is detected and 

recorded by the receiver (Daniels, 2004). 

The duration and the waveform of the source pulse generated by the transmitter 

depend on the frequency of the antenna (Annan, 2003). The transmission frequency 

of the antenna affects the spatial resolution both at the longitudinal sense, as well 

as the lateral sense, which depends on the wavelength of the electromagnetic signal. 

Additionally, the operating depth is also affected by the transmission frequency and 

is inversely proportional to the spatial resolution. Specifically, the higher the center 

operating frequency used by the antenna, the shorter and narrower the pulse 

providing higher detection resolution between two points of the medium. However, 

since the attenuation of the electromagnetic signal increases with the frequency, the 

high-frequency waves cannot penetrate to great depths, resulting in a smaller 

operating depth. The opposite happens when a lower center frequency antenna is 

used, where in this case, the penetration depth is greater but with a clear reduction 

in the resolution achieved. Since radars can only measure in fractions of their 

wavelength, an object (or material alteration, or other anomalies) that is smaller 

than a minimum size will simply remain undetected (and undetectable). To be 

detectable, a target should be at least approximately 10%, or greater, of the 

dominant wavelength—a value that presents an estimation of GPR surveying 

accuracy. However, if the target's size is below 10%  of the wavelength is may not 

detectable by a low-frequency antenna even though the radar may be capable of 

achieving the required depth, and it may also remain undetected by a high-

frequency antenna if it lies far from the GPR system (Daniels, 2005; Utsi, 2017, pp. 

13-26). Based on the above, it is understood that the selection of the appropriate 

operating frequency of the antenna depends on the purpose of the investigation and 

the requirements of the respective application of geo-radar inspection (Table 2.7). 

Table 2.7. Depth range of penetration and resolution for different frequencies, in addition to their 

most common applications (Solla et al., 2016). 

Central frequency Depth (m) Resolution (m) Applications 

2 GHz 0.5 0.0125 Concrete, rebar, pavement, cracking, voids 

1 GHz 1.5 0.025 Concrete, rebar, pavement, cracking, voids 

800 MHz 2.5 0.03 Concrete, voids, archaeology 

500 MHz 5 0.05 Voids, archaeology, environmental 

250 MHz 10 0.125 Archaeology, geological, environmental 
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100 MHz 25 0.25 Geological, mining 

50-25 MHz 50 0.5–1 Geological 

The resolution of a GPR system expresses its capacity to distinguish between 

two radar returns that are closely spaced (Figure 2.6). Longitudinal (range or depth) 

resolution is defined as the minimum vertical demarcation that two distinct 

reflective surfaces (or reflectors, or targets) must have in order to be detectable by 

a given antenna, and which is usually considered to be equal to 1/4 of the 

wavelength λ corresponding to the center frequency of the antenna. Specifically, 

the time difference between the two surfaces must be greater than half the pulse 

width W. The range resolution length is expressed as follows: 

Δr ≥
Wv

4
     (2.1) 

Lateral (angular or sideways displacement) resolution is a function of the signal 

propagation speed, the distance of the reflective surfaces from the transmitter and 

receiver antennas, and the pulse width. The lateral resolution length is as follows: 

ΔR ≥√
vrW

2
     (2.2) 

where r is the distance to the reflective surface (Annan, 2009; Everett, 2013; pp. 

239-278). Transect spacing, or the distance between adjacent radar survey lines, 

defines the resolution of the GPR survey at the direction perpendicular to the 

moving direction of the antenna and to the retrieved traces and varies from one GPR 

application to another. Even though for some applications, one or two survey lines 

may provide adequate, complex GPR application scenarios such as historic building 

inspections and archaeometry usually require more survey lines to reduce the 

potential of non-detection and to draw detailed conclusions (Pérez-Gracia et al., 

2010). A helpful rule of thumb for GPR surveys is to allow a spacing between 

successive lines of no more than the width of the antenna being used (Utsi, 2017, 

pp. 73-82). 
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Figure 2.6. The two aspects to GPR resolution (Nobes & Deng, 2019). 

As the, crucial for maintenance and damage repairing, inspection of historic 

buildings and structures must, in many cases, be minimally invasive, making some 

common and useful techniques' application not favorable, GPR has acquired great 

importance as a technique for revealing both historical and structural information 

about monumental heritage (Binda et al., 2003; Deiana, 2019; Işık et al., 2020; 

Lachowicz & Rucka, 2019; Lampropoulos et al., 2017; Leucci et al., 2012; Ludeno 

et al., 2020; Masini et al., 2007; Orlando & Slob, 2009; Pérez-Gracia et al., 2013; 

Pérez-Gracia et al., 2008; Ranalli et al., 2004; Solla et al., 2010). In particular, some 

issues of structural interest are the probable presence of fractures (Labropoulos & 

Moropoulou, 2013; Leucci et al., 2007), voids (Johnston et al., 2018), infiltrations 

of humidity (Leucci et al., 2006), or metallic bars (Masini et al., 2010) due to 

previous restoration works, often not adequately documented. These investigations 

are well-advised, especially if new restoration works are planned (Kanli et al., 2015; 

Rucka et al., 2016). In particular, the nondestructive investigations can provide 

information for addressing the restorations properly and enable one to check the 

success of the restoration works by means of post-intervention monitoring. Some 

issues of historical interest are the presence of tombs, walled rooms, and hidden 

pictures, mosaics, and floors (Pieraccini et al. 2006). In particular, the changes that 

a historic building or structure has undergone through the centuries have not been 

documented in many cases, or, in others, the documents have been lost. In some 

cases, the significance of a retrieved buried target can be both historical and 

structural, as, for example, in the case of a hidden crypt under a church. It is worth 

mentioning that GPR, in combination with other techniques, has also been applied 

for the condition assessment of stone sculptures. However, their geometry, which 

is usually more complex than building elements, imposes considerable challenges 

for geophysical surveying (Kadioglu & Kadioglu, 2010; Sambuelli et al., 2011; 

Dimitriadis et al., 2017; Cozzolino et al., 2020). 

As can be seen from the above, a primary challenge of GPR is the interpretation 

of the collected data, which highly depends on the quality of performed 
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measurements, knowledge of the prospected medium dielectric properties, layering 

of the materials, and suitability of signal processing techniques (Martinho & 

Dionísio, 2014; Nobes & Deng, 2019). An equally important issue for retrieving 

useful information from GPR measurements is the dimensionality of presenting the 

results, with two-dimensional sections and three-dimensional representations being 

the most frequent visualization scenarios for historical building and sculpture state 

of preservation assessment. 

 

Figure 2.7. The portable Ground Penetrating Radar Proceq  GP8000 (proceq.com/fr/produit/radar-

a-penetration-de-sol-portable-proceq-gp8000).  

2.2.5.1 Two-Dimensional GPR Sections 

By performing a horizontal GPR scan along a linear profile on the x-axis, the 

recording of 2D data is obtained, which results from the successive individual one-

dimensional traces retrieved along the path of the antenna. The retrieved data can 

be displayed as a two-dimensional image using a predefined color scale or palette 

(usually grayscale), matching the strength (range) of the recorded signal with a 

specific hue (brightness) of the selected palette (Figure 2.7). This image, also 

referred to as a 2D scan profile or radargram, represents a vertical section in the 

ground or structure where the horizontal axis corresponds to the position of the 

antenna along with the scan, and the vertical axis to the time of the electromagnetic 

wave's dual-path which corresponds to depth. Retrieving this type of result requires 

mechanical equipment with a built-in position encoder, which records the distance 

the antenna traverses along the scan line and the retrieval location of each individual 

trace (Blake, 1995). 

Reflections from small or point scatterers below the ground, building elements, 

or other surfaces appear on the radargram as diffraction hyperbolas (Figure 2.8). 

This is because the electromagnetic waves are transmitted by the monostatic 

antenna in the form of a wide conical beam so that the receiver records the reflected 

signals from an undersurface target, not only when it passes just above the position 

where the target is located but also in multiple scans before and after this position. 

The shape of the retrieved hyperbola depends on the antenna layout, the depth at 

which the point scatterer is located, the speed at which the electromagnetic waves 

propagate, and the scan spacing selected by the operator. At greater depths, the 

https://www.proceq.com/fr/produit/radar-a-penetration-de-sol-portable-proceq-gp8000/
https://www.proceq.com/fr/produit/radar-a-penetration-de-sol-portable-proceq-gp8000/
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hyperbolae are larger because they consist of more scans. In addition, higher 

electromagnetic wave velocities (lower relative dielectric constant) produce wider 

hyperbolae and vice versa. Finally, the shorter the selected interval between scans 

(equivalent to a larger number of scans per unit of horizontal distance), the wider 

the hyperbolae recorded by point scatterers. The reflection always comes from the 

top of the point target, and the maximum (peak) of the recorded hyperbola curve 

corresponds precisely to the position where the target is. Usually, the larger the size 

(diameter) of a point scatterer, the stronger (wider) the hyperbolic reflection 

produced. The brightness or power of a hyperbolic reflection depends on the 

difference in electrical conductivity (and therefore, relative dielectric constant) 

between the medium and the target. As a general rule, the brightness of a reflection 

produced by an interface between two materials with different dielectric properties 

is proportional to the dielectric contrast between the two materials, which means 

that the higher the contrast, the stronger is the reflection produced (Annan, 2009; 

Solla et al., 2016). 

 

Figure 2.8. Two-dimensional visualization of GPR data: lower riverside façade of Castello del 

Valentino in Turin, Italy. 

When scanning with GPR over a continuous boundary layer, the antenna 

receives consecutive reflections from the parts of said boundary, which in the 

retrieved 2D radargram appear in the form of a continuous reflecting layer that 

resembles the boundary layer. When the antenna crosses over an undersurface 

linear target of tubular shape transversely, i.e., perpendicular to the longitudinal 

axis of the target, then the recorded reflection will be hyperbolic, similar to the case 

of diffraction by point scatterers described above. If the antenna moves in parallel, 

i.e., along the target, then the reflection will appear as a continuous straight line, as 

long as the distance of the antenna from the subsurface target remains constant. 

Various subsurface inhomogeneities such as gaps (with air or water) produce strong 
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reflections without a specific shape. Reflection polarity can also provide important 

information when interpreting GPR results. The presence of various subsurface 

discontinuities, such as large air-filled voids or cracks, is detected in the form of 

strong inverted phase reflections with a black-and-white sequence of colors and an 

indeterminate shape. In the case of disintegrated areas with high levels of moisture 

or water-filled voids, then the generated reflections will be strong but will show the 

normal polarity sequence (white-black-white), which is very important for the 

identification and differentiation between specific types of deterioration when 

interpreting radargrams. In addition, these reflections are usually stronger and more 

visible than those mentioned above. This is due to the fact that, for example, if we 

consider a stone or concrete structure, the dielectric contrast between the diffuser 

and water is much higher than the dielectric contrast between concrete and air 

(Linford, 2006; Morris et al., 2019). 

2.2.5.2 Three-Dimensional Visualization of GPR Data 

By collecting multiple parallel 2D sections (time-slice method) or, in other words, 

by performing multiple horizontal scans on a xy axial plane of grid coordinates, a 

three-dimensional data set can be recorded that can be used to construct subsurface 

models (Figure 2.9), thus improving the efficiency and quality of the signal 

interpretation (Nuzzo et al., 2002). 3D data retrieval requires the use of a properly 

designed measurement grid; the dimensions and distance between successive scan 

lines on each axis are user-defined. The way in which scans are performed on the 

grid is usually towards one direction starting from the same straight line ("normal" 

way of scanning), although there may be the possibility of zig-zag measurements, 

in which the direction of the profiles changes alternately. Essentially, with this type 

of GPR scanning, the mapping of a subsurface area of interest is achieved, 

providing information about the location, depth, and orientation of the internal 

reflectors. Today most of the processing software with which the geo-radar systems 

are equipped with provides the possibility of displaying the 3D data in various 

ways, such as in the form of horizontal sections at defined time ranges that 

correspond to depths parallel to the recording level, or isosurfaces—interpolated 

surfaces that represent subsurface points with a constant reflection coefficient or 

amplitude (Leucci, 2019; Lualdi et al., 2003; Novo, 2013; Utsi, 2017, pp. 105-116). 
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Figure 2.9. Three-dimensional visualization of GPR data: lower riverside façade of Castello del 

Valentino in Turin, Italy. 

2.2.6 Mapping of Deterioration 

Mapping does not constitute a sensing technique but can support the application of 

close-range sensing techniques for the condition inspection of heritage assets and 

depends on data recorded with various sensing techniques. Mapping is nevertheless 

recognized widely as a valuable non-destructive method useful for supporting 

preservation work, as it can be applied to all historic materials at different scales. It 

registers information about the surface patterns of structures and objects that can be 

later analyzed through computational systems. Mapping the materials and 

alterations of cultural heritage assets is frequently performed as a manual process 

that uses as background color photos. 

Mapping stone antiquities and, in general, historical objects has seldom been 

performed digitally. Recently, after the introduction of laser scanning and multi-

view dense reconstruction, direct mapping of sculptures’ deterioration on high-

resolution 3D models has been explored with specialized software (Ansel et al., 

2016; Kozub & Kozub, 2016; Siedler & Vetter, 2015) and programs for editing 3D 

models (Pfeuffer et al., 2018) through the segmentation of areas showing different 

damage levels. 

Mapping of architectural façades and other elements of historic structures is a 

common practice for cleaning and restoration works. It facilitates the description, 

registration, and quantification of the, often overlapping, multitude of surface 

patterns on historic structures. When performed in a digital, computerized manner, 
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it produces spatial information, entities with geometric attributes that can be 

correlated, compared, used to produce statistical information, and allow for the 

annotation of semantic data about the characteristics of materials and their decay. 

Traditionally, surface mapping is a technique manually performed inside computer-

aided design (CAD) or GIS environments by describing the shape of surface 

patterns and organizing them into thematic layers (Brunetaud et al., 2012; Fitzner 

& Heinrichs, 2001; Inkpen et al., 2008; Janvier-Badosa et al., 2013, 2016; Mileto 

et al., 2015). An alternative way of mapping deterioration is the visualization of 

damage levels/indexes, which can be either accomplished directly or indirectly by 

analyzing the mapped deterioration patterns (Delgado Rodrigues, 2015; Fitzner et 

al., 2003; Franković et al., 2015; Germinario et al., 2020; Gizzi et al., 2016; 

Heinrichs, 2008; Heinrichs & Fitzner, 2011; Puy-Alquiza et al., 2021; Randazzo et 

al., 2020). The additional spatial annotation of lithotypes facilitates the association 

between materials and alteration (Adamopoulos et al., 2017; Delegou et al., 2013; 

Franković et al., 2015; Germinario et al., 2020; Gizzi et al., 2016; Gulotta & 

Toniolo, 2019; Hatir et al., 2019; Iandelli et al., 2021; İnce et al., 2018; Martínez-

Martínez et al., 2017; McCabe et al., 2007; Puy-Alquiza et al., 2021). Mapping 

supports the interpretation of weathering phenomena when combined with data 

from non-destructive testing (Adamopoulos et al., 2017; Delegou et al., 2013; 

Fitzner et al., 2003; Heinrichs & Fitzner, 2011; İnce et al., 2018; Kilic, 2015; 

Martínez-Martínez et al., 2017; Silveira da Costa et al., 2021), laboratory 

mineralogical, chemical and physical characterization (Adamopoulos et al., 2017; 

Iandelli et al, 2021; Lazzerini et al., 2016; Martínez-Martínez et al., 2017; Puy-

Alquiza et al., 2021), and environmental measurements (Adamopoulos et al., 2017; 

Gizzi et al., 2016; Gutiérrez-Carrillo; Heinrichs, 2008; Martínez-Martínez et al., 

2017; Silveira da Costa et al., 2021). Mapping is typically a photo-based approach 

where a color photo, an orthorectified image, or an orthoimage-mosaic is used as a 

base map for designing the geometrical shape of surface patterns. The metric 

(accuracy, scale-dependent spatial resolution) and chromatic quality of this 

background are essential for identifying deterioration (Silveira da Costa et al., 2021; 

Thornbush & Viles, 2007). Thus, acquiring suitable images is crucial for successful 

deterioration mapping. However, not only true color images have been considered 

as base maps, but also images captured at portions of the electromagnetic spectrum 

beyond the visible. 
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3 Related Work 

This chapter delivers an overview of recent developments and contemporary trends 

in close-range sensing data fusion techniques regarding heritage documentation 

applications. The discussed data types refer to multi-wavelength 2D and 3D 

information sourced through the non-destructive recording techniques described in 

the previous chapter. Different levels and techniques of data fusion are being 

reviewed. Particularly, the implications of integrating heterogeneous cultural 

heritage sensed data (oriented towards inspection and condition monitoring) and 

their complementarity are highlighted to identify topics of interest, noteworthy 

application scenarios, and research gaps. Particular emphasis is given to integrating 

data from metric surveying and recording techniques that are traditionally non-

metric. In addition, the state-of-the-art of automated/semi-automated methods for 

extracting thematic information about the surface condition of tangible cultural 

heritage from integrated multisource data is also discussed. The readers should note 

that the majority of this chapter’s contents have been published in Adamopoulos 

(2021), Adamopoulos, Patrucco et al. (2021), Adamopoulos and Rinaudo (2019; 

2021c), and Adamopoulos, Volinia et al. (2020). 

3.1  Data Fusion 

As a general multidisciplinary approach, the term data fusion implies integrating 

data from different sources to enhance their potential value and interpretability and 

allow the generation of high-quality visual representations. Sensor fusion, data 

integration, and information fusion are similar terms often referring to the same 

concept. However, in the framework of this thesis, sensor fusion methods are 

referred to only as those employing simultaneous data acquisition with multi-sensor 

configurations, to distinguish them from data fusion approaches performed at a 

post-acquisition processing stage. Data fusion methods are referred to as those 

integrating non-simultaneously acquired data from one or multiple sources, 

including active, passive, and mixed sensor recording techniques. 

Data fusion approaches are notably beneficial for inspecting and monitoring 

cultural heritage assets’ condition. They significantly improve multidisciplinary 

holistic documentation, enhance the properties of recorded data, enable integrated 

analysis, and help minimize the misinterpretations caused by cross-examining 
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multisource information, which may lead to a false understanding of the state of 

preservation. Data fusion approaches are most often categorized depending on the 

data processing stage at which fusion occurs (Klein, 2004). Ramos & Remondino 

(2015) proposed an expanded classification of data fusion processes considering 

aspects such as purpose, data format, and dimensionality. 

The task of integrating heterogeneous sensing data depends on aspects such as 

spatial resolution, spectral resolution, and positional accuracy. Integrative 

geometric recording approaches and especially those involving ranging and 

photogrammetric data, are a widely discussed topic of data fusion for both historical 

architectures (Bevilacqua et al., 2018; Klapa et al., 2017; Murtiyoso et al., 2018) 

and antiquities (Akca et al., 2006; Serna et al., 2015). However, fusion procedures 

with data traditionally considered as non-metric or information recorded at beyond-

visible wavelengths are less frequently discussed. The near-visible spectral images’ 

similarities with color images allow for the high-resolution texturing of historical 

assets' 3D representations and the direct implementation of IBM-driven processing, 

thus facilitating integration with other data sources. The problematics of integrating 

thermograms with metric data come from their inherent differences compared with 

visible-spectrum images and concern both spatial (low-resolution) and radiometric 

(different observable features) characteristics. Methodologies for thermal and 

geometric data fusion often depend on sensor registration (optical and thermal 

camera or laser scanner and thermal camera), product registration (thermogram and 

point cloud or thermogram and 3D mesh), or hybrid photogrammetric techniques. 

Implementing one of these data fusion techniques largely depends on the scale of 

the survey and the available equipment and can produce thermal-textured 3D point 

clouds or meshes. Data collected with non-destructive methods using microwave 

and ultrasound radiation-based methods can also be integrated when the position of 

utilized antennae is estimated or tracked, thus allowing the referencing into a given 

coordinate system; however, this type of fusion refers mainly to information 

visualization and not integrated use. 

3.1.1 Integration between Photogrammetric and Ranging 

Techniques 

The primary goal of heritage geometric recording is the generation of complete, 

accurate, and photorealistic 3D representations and 2D metric derivatives, such as 

orthoimage-mosaics and vector drawings. As discussed in Chapter 2, there is a wide 

range of active and passive sensors and advanced techniques for geometric 

recording, producing different data types. Integrative IBM and TLS approaches are 

the standard procedure for modeling ancient and historical structures (and their 

remains) and ensure that predefined density, accuracy, and texture-resolution 

specifications are met (Alshawabkeh, 2020; Chiabrando et al., 2019; Fassi et al., 

2011; Nex & Rinaudo, 2011). Fusion approaches introduced for multisource point 
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cloud (3D-to-3D) integration include manual registration via annotation of common 

features (Muñumer & Lerma, 2015), spatial information system-based registration 

(von Schwerin et al., 2013), ICP-based registration (Altuntas at al., 2016; Jo & 

Hong, 2019; Shanoer & Abed, 2018), feature-based registration (Bastonero et al., 

2014; Tombari & Remondino, 2013), registration based on intensity image and 

range image matching (Altuntas, 2014), and georeferencing-based registration 

(Murtiyoso et al., 2018; Scaioni, 2005). With the rapid increase in the 

implementation of unmanned aerial systems (UAS) for cultural heritage, IBM has 

recently introduced fascinating integrative approaches on the convergence of TLS 

and low-altitude aerial photogrammetry (Jo & Hong, 2019; Liang et al., 2018; Ulvi, 

2021; Xu et al., 2014). Fusion between photogrammetric and (triangulation or 

structured-light) scanning data is also applicable for sculptures and small objects 

and can facilitate replication and inspection (Hayes et al., 2015; Liu et al., 2012; 

Serna et al., 2015). 

3.1.2 Multispectral Data  

For multi-sensor recording (and for some designs of integrated devices), it is 

expected that the images from different spectral channels need to be shifted or 

spatially re-scaled to be registered (2D-to-2D fusion) in order to form an aligned 

image cube (Liang, 2012). Several algorithms exist associated with image 

registration (Zitová & Flusser, 2003). Image registration involving only linear shifts 

is relatively simple and can be calculated by performing cross-correlation. Spatial 

image scaling involving re-sampling could result in some loss of information; 

therefore, it is best to design the system's optics to avoid scaling of the images. 

High-resolution imaging of large objects inevitably involves mosaicking of images. 

Therefore, adjacent images must be taken with sufficient overlap to allow automatic 

image registration. When the shifts are linear, a simple cross-correlation algorithm 

can be used for image registration. As regards architectural heritage applications, 

the issue of registering images collected in different spectra has often been 

addressed through the manual identification of common features (Lerma et al., 

2011, 2012). 

One prevalent form of multispectral data fusion for built heritage monitoring 

involves multi-sensor acquisition. IBM and TLS-produced ortho-mosaics 

referenced at the same coordinate system can be treated as multispectral images. 

Conde et al. (2016), Del Pozo et al. (2016), and Sánchez-Aparicio et al. (2016) 

experimented with fusing data from terrestrial scanners operating at different 

wavelengths, multispectral and commercial digital cameras to produce 

multispectral ortho-mosaics for detecting pathologies on constructions. 

Three-dimensional digitization is seldom used in combination with single-

band, multiband, and multispectral recording in the near-visible spectra (NUV, 

NIR, and SWIR), despite the proven advantages of such integration for 
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conservation and archaeology (Simon Chane, Mansouri, et al., 2013). Registration 

between near-visible and 3D data has been performed with different methods. A 

few 3D/near-visible integrated recording devices have been reported for 

applications regarding cultural heritage objects over the past years, but not solely. 

A popular approach has been the coupling of a structured light projector and a 

monochromatic CCD-based camera to capture both reflectance and geometrical 

information, employing multiple narrow-band interference filters (Haladová et al., 

2015; Mączkowski et al., 2016; Mansouri et al., 2007; Sitnik et al., 2010; Zhang et 

al., 2016). Rosenberg et al. (2020) has proposed an alternative approach by 

developing a multimodal system combining multiple band-specific light projectors 

and imaging sensors. Brusko et al. (2006) has developed a prototype instrument 

integrating a commercial image spectrograph and a time-of-flight range-finder to 

study planar objects. Surroundings are scanned horizontally and vertically using a 

rotating stage and a rotating mirror, respectively. The calibration is performed by 

calculating the correspondence parameters between projected spots from the laser 

device and their multispectral image datasets. 

Selecting different sensors for the 3D digitization and the multispectral 

recording is often the preferred approach for cultural heritage because it absolves 

the user from complicated calibration procedures. However, when performing 2D-

to-3D registration, the relative orientation of the camera to the 3D data becomes a 

trivial issue and has to be performed for every view. The traditional approach of 

identifying homologous points to retrieve the unknown intrinsic and extrinsic 

camera parameters is very much dependent on their number and distribution and 

may prove problematic for non-planar surfaces (Kedzierski et al., 2017). Pelagotti 

et al. (2009) proposed the generation of depth maps from 3D models, producing 

intrinsic mapping between their pixels and corresponding vertices of the models, 

and registered those depth maps with texture from spectral images based on the 

mutual information. Simon Chane, Schütze, et al. (2013) have performed 

photogrammetric tracking of a pre-calibrated multispectral camera and a fringe 

projection system used on the same scene for 3D digitization to calculate their 

relative position and project the multispectral data on the 3D, achieving an accuracy 

of better than half an image pixel. Nocerino et al. (2018) and Zainuddin et al. (2019) 

have used photogrammetrically oriented multispectral and ultraviolet datasets, 

respectively, for texturing scanning-produced models. 

It should be emphasized that the decreasing cost of multispectral cameras for 

terrestrial applications, and the availability of high-resolution modified consumer-

grade cameras, have widened the application of SfM/DMVR-based software to 

automatically generate 3D models with beyond-visible texture (Grifoni et al., 2018; 

Mathys et al., 2019; Webb et al., 2018). The applications combining technical 

photography with shape reconstruction approaches range currently from enhancing 

surface features to condition diagnostics. These approaches expunge the need for 

employing additional sensors (to capture the 3D shape), texture registration 
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algorithms, and calibration procedures. However, the automatization and, therefore, 

simplification of the near-visible IBM process has also led to studies that do not 

report on the spatial or radiometric quality of the results (Grifoni et al., 2020; 

Lanteri et al., 2019; Lanteri & Agresti, 2017; Pamart et al., 2017). 

3.1.3 Thermographic Data  

The registration between orthorectified infrared thermal and visible-spectrum 

images/image-mosaics is usually performed for cultural heritage applications 

through manual identification of common points distinguishable in both spectra 

(characteristic points or, more commonly, carefully placed special targets with 

different reflectance characteristics) to define the necessary transformative relation 

(Bitelli et al., 2021; Rizzi et al., 2007). Furthermore, the most frequently applied 

approach for the fusion of thermal and metric data of historic architecture has been 

the integration of thermograms and metric 3D products, collected with individual 

proximal sensing techniques. This process often refers to the co-registration of point 

clouds (or derivative 3D products) captured by TLS—which contain metric spatial 

information—and thermograms, and has been considered the most cost-effective 

approach, especially when the complete thermographic mapping of a historic 

structure or building element is required. Estimating the geometric relation between 

a metric entity and a thermogram (the relative position and orientation matrix) is 

realized by defining common features, which allows for the accurate projection of 

the thermal intensities onto the point cloud/model to create a thermal texture. 

Due to the inherently different characteristics between thermal and visible-

spectrum images and limitations imposed by low spatial resolution (Mizginov & 

Kniaz, 2019), research on thermographic mapping for cultural heritage assets has 

mainly concentrated on workflows reconstructing the 3D shape from RGB images 

and applying the texture from registered thermal infrared images, and hybrid 

workflows which apply the photogrammetric principles on both RGB and thermal 

infrared images and use only the latter for texturing. González-Aguilera et al. 

(2013), Dlesk et al. (2018), and Patrucco et al. (2020) performed image-based 

modeling using thermal infrared images captured with NEC TH9260, FLIR E95, 

and FLIR SC660 thermal cameras, respectively, to reconstruct digitally and to 

inspect built heritage. Other approaches have taken advantage of both the optical 

and thermal sensors integrated into the thermographic cameras. Macher et al. (2019) 

used the RGB images from a thermal camera to create an internal space's point 

cloud and superimposed the thermal images on the RGB images for the purpose of 

coloring the point cloud with thermal data. Then they used the thermal product to 

transfer the information of the thermal intensities to a laser-scanned point cloud 

with BIM enrichment purposes. Previtali et al. (2013) developed a hybrid approach 

to compute photogrammetrically the orientation of both thermal and RGB images 

together in a combined bundle adjustment, improving the reconstruction accuracies 
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and mapped the infrared images on 3D models of building façades. More complex 

thermal modeling methodologies have included the reconstruction of 3D point 

clouds from RGB images and precise registration of the thermal image sequences 

using geometric constraints and feature matching. Hoegner and Stilla (2018) 

included a priori knowledge of the existing mesh into the estimation of the camera 

orientations and then extracted the thermal 3D point cloud directly from the thermal 

images. Dino et al. (2020) used a cascade method to identify potential matches 

between thermal and RGB images and removed those incorrect using a RANdom 

Sample Consensus (RANSAC) version. After a multi-view image-based 

reconstruction, they performed plane fitting to define the reconstructed walls' 

geometry to apply the thermal texture. 

The first approaches for thermal texturing via 2D-to-3D registration were 

developed on a manual basis. This method was implemented by Spanò et al. (2005) 

to study the surfaces of the Church of the Beata Vergine dei dolori in Villastellone 

(Italy), Zalama et al. (2011) to perform an analysis of humidity, microorganisms, 

and stained-glass window breaks for the Church of Santa Maria in Palencia (Spain), 

Costanzo et al. (2015) to detect thermal anomalies and to improve the knowledge 

on the health state of a masonry building at the St. Augustine Monumental 

Compound in Cosenza (Italy), and Mileto et al. (2015), to localize stone 

deterioration and humidity at the Castle of Monzón in Huesca (Spain). Manual 

product registration has the significant drawback that enough feature 

correspondences may not be visible on the thermal imagery to perform the 

necessary matching. More advanced approaches have been devised to perform 

automatic registration by identifying correspondences between features on the 2D 

thermal images and features on 3D metric products. Lagüela et al. (2013) performed 

Line Segment Detection on thermal images and then classified and intersected the 

detected horizontal and vertical lines to compute intersection points, corresponding 

primarily to corners. They used curvature analysis to extract 3D features from a 

TLS point cloud and computed each image's orientation with respect to the point 

cloud through an iterative process using RANSAC and the collinearity equations. 

González-Aguilera et al. (2012) generated and radiometrically improved range 

images from a TLS point cloud. Using the Harris operator for feature extraction and 

subsequently hierarchical image matching between thermal and visible range 

images with constraints based on epipolar geometry, they performed the spatial 

resection of the thermographic cameras, supported by statistical tests. After the 

thermographic images' robust orientation, they obtained a thermographic dense 

surface model by a pair-wise matching process supported by the semi-global 

matching technique and applying a projective equation. 

Methodologies for simultaneous measurement of high-density thermal and 3D 

metric data have also been recently developed to facilitate massive and more agile 

thermographic modeling. Commercial integrated or custom-made multi-sensor 

instrumentation has been employed in this direction, requiring co-registration 



P a g e  | 84 

 

between different sensors used during the acquisition. Sensor co-registration 

parameters consist of the vector of differences in the sensors' position and the 

rotation angles between them and are necessary to transform and integrate 

measurements into the same coordinate system. In general, sensor co-registration 

that includes thermal cameras is not common due to thermal infrared measurements' 

requirements regarding the angle and distance of acquisition (Coret et al., 2004). 

Alba et al. (2011) set up a bi-camera system coupling an AVIO thermocamera and 

a Nikon RGB camera and used the latter imaging sensor to create a 

photogrammetric network for multi-view image-based 3D recording, strengthened 

with additional camera stations. Then the photogrammetric and TLS-produced 

point clouds were registered, and the thermal intensities were mapped on building 

models. Borrmann et al. (2013) used a pre-calibrated robotic moving system 

combining an Optris PI 160 thermocamera, a Riegl VZ-400 laser scanner, and a 

Logitech QuickCam Pro 9000 webcam mounted on a modified VolksBot RT 3 

platform to perform simultaneous metric and thermal acquisition. Merchán et al. 

(2018) developed a hybrid scanning system employing a Riegl VZ-400 scanner, a 

Nikon D90 RGB camera, and a FLIR AX5 thermal camera. The hybrid sensor was 

calibrated with the help of targets incorporating both optical and thermal reflectance 

discriminants, distributed over a wide area of the scene, and tested in Adán et al. 

(2021). Yang et al. (2018) used two iPhone SE smartphones and a FLIR ONE 

camera for iOS sturdily placed on a tripod. They utilized the Normalized Cross-

Correlation (NCC) technique to register the optical images of the thermographic 

camera attached to one smartphone, with the optical images captured with the other 

smartphone camera, in order to project the thermal images on the 3D model 

produced with a multi-view stereo-based approach. Finally, Lin et al. (2019) used 

independent datasets of RGB and thermal images to generate point clouds. They 

utilized the Fast Point Feature Histogram feature as initial correspondence between 

the point clouds, reciprocity test to find the mutual nearest correspondences, tuple 

test to verify the compatibility of the correspondences to remove the outliers from 

the correspondence set, and Fast Global Registration (FGR) and RANSAC to 

estimate the coarse alignment. After determining the best thermal-RGB image pairs 

based on the lowest Euclidean distance, they used radiation-invariant feature 

transform (RIFT), normalized barycentric coordinate system, and RANSAC to 

extract reliable matches. Afterward, they performed a fine registration by mono-

plotting the RGB images, followed by image resectioning of the thermal images. 

Finally, they proposed a global image pose refinement approach to minimize 

temperature disagreements from different images of the same points eliminating 

blur effects. 

3.1.4 Penetrating Radar Data 

Not unlike thermograms, GPR data are more challenging to interpret and have 

lower resolution compared with TLS and close-range photogrammetry, and thus are 
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usually acquired and used independently (Cozzolino et al., 2019; Pérez et al., 2018). 

The expected level of integration between geometric and geophysical data for 

architectural heritage non-destructive investigations is frequently the registration of 

GPR slices or surfaces interpolated from 3D grid-organized GPR measurements 

and metric products computed with methods for reality capturing (Biscarini et al., 

2020; De Giorgi et al., 2021). When historical structures' surfaces with relatively 

flat geometries are investigated, the integration in 3D space is, according to the 

bibliography, achieved through measuring the 3D positioning of control points 

(usually the start and end-point) of the scan lines (Agrafiotis et al., 2017; Ercoli et 

al., 2016; Puente et al., 2015; Solla et al., 2020). Apart from registration, the 

availability of a dense geometric 3D model or point cloud can also assist the spatial 

correction of GRP data collected for structures with more complex geometries, the 

most common example being historic bridges (Arias et al., 2007; Fauchard et al., 

2013; Lubowiecka et al., 2009, 2011; Mills & Chandler, 2007; Pérez-Gracia et al., 

2011; Riveiro et al., 2012; Solla, Caamaño, et al., 2012; Solla, Lorenzo, et al., 2012; 

Stavroulaki et al., 2016). Geophysical exploration of columns may require only a 

simplified knowledge of the geometrical shapes ((Santos-Asssunçao, Pérez-Gracia, 

Caselles, et al., 2014; Santos-Assunçao, Pérez-Gracia, Gonzalez, et al., 2014)). The 

integration of positioning systems, laser scanning, and GPR presents exciting 

potential for integrated surface and subsurface mapping but is subject to significant 

limitations (Merkle et al., 2020). 

3.2 Integrated Processing and Pixel-Level 

Fusion of Multi-Sensor Data 

As previously described, cohesive condition inspection and state-of-preservation 

monitoring require extensive knowledge of the advantages and limitations of each 

individual close-range sensing technique. However, the complementarity of 

multisource data and the challenges occurring from their integrated use for cultural 

heritage applications should also be considered. 

Scanning and IBM can satisfy the 3D reality-based modeling needs for 

inspection, multitemporal monitoring, and additionally building information 

modeling (BIM) in the case of structures (Rocha et al., 2019; Alshawabkeh et al., 

2021). These techniques employ mobile instrumentation, which makes them easily 

adaptable for complicated acquisition scenarios, and can reach millimetric accuracy 

of extracted features; however, they cannot provide any subsurface information. 

Conditionally, TLS can be applied for surface defect and moisture detection, subject 

to sensor calibration and knowledge of the material’s emissivity at the laser 

instrument’s operating band. Furthermore, the integration between scanning and 

image-based methods emphasizes the complementarity of geometric and color 

information (Tucci et al., 2017a; Liu et al., 2012; Percy et al., 2015; Lerma et al., 
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2015; Tucci et al., 2017b; Sahin & Mengüç, 2019), enabling surface feature 

extraction regarding deterioration and physical defects. 

Thermographic evaluation is appropriate for surface and very near-surface 

detection and feature extraction of defects or moisture but is less mobile than 

IBM/TLS and requires knowledge of the ambient and material influence on LWIR 

radiance measurements. However, the integration of thermography with metric 

surveying allows the quantification of extracted thermal features and their 

correlation in 3D space to address potential sources of moisture or subsurface 

radiant sources and to calculate envelopes for sustainable conservation in the case 

of historic buildings. In addition, the resolution of thermographic results can be 

significantly improved through pan-sharpening, super-resolution enhancement, or 

hybrid color-thermal IBM. 

Multispectral imaging offers solutions for pattern extraction concerning the 

surface alteration of historical materials and moisture—especially the combination 

with learning-based digital image segmentation results in the rapid mapping of the 

surface conditions. However, challenges occur in implementing multi-sensor 

instrumentation due to increased cost, reduced mobility, calibration needs, and 

sensor fusion requirements. 

GPR introduces one of the most promising monitoring technologies due to its 

ability to identify the material depth and locate discontinuities between materials 

due to their different dielectric properties. The fusion of GPR measurements with 

geometric data enables spatial correction for structures of complex geometry but 

simultaneously facilitates better 3D visualization of the prospection results and 

increases the accuracy of locating material discontinuities defects in 3D. 

Furthermore, 3D modeling and GPR integration support truthful numerical 

modeling and parametrization for structural health analysis. 

In the sense of pixel-level fusion, data fusion for built heritage is scarcely being 

applied through the quantization of multitemporal or multispectral images to 

increase interpretation by utilizing clustering classification or principal component 

analysis (Lerma et al., 2011). On the other hand, integrated management of non-

destructively recorded data through Geographic Information Systems (GIS) is a 

more common approach that allows geo-processing analysis for thematic pathology 

representation.  

The reciprocity of mapping and infrared spectral imaging, especially 

thermography, has often been considered essential for detecting weathering on 

historic structures (Barbosa et al., 2021; İnce et al., 2018; Jo & Lee, 2014; Kilic, 

2015; Mileto et al., 2015; Napolitano et al., 2020). The additional inclusion of NIR 

reflectance images enhances the identifiability of deterioration, mainly when there 

is a presence of vegetation and biogenic crusts, which pathology exhibits vastly 

different near-infrared reflectance characteristics compared to healthy historical 
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construction materials (Armesto-González et al., 2010; Lerma et al., 2012). 

However, the decision to include recorded data from multiple spectral bands comes 

with the realization that suitable sensing techniques have to be selected. 

3.3 Automated Mapping of Deterioration 

The progress in automated mapping for cultural heritage is directed on condition 

inspection of historic structures and has primarily concentrated on identifying and 

classifying the building elements, materials, and additionally deterioration as a 

binary concept—considering the presence and absence of deterioration solely on 

images. The segmentation algorithms that have been considered are mainly based 

on dimensionality reduction, unsupervised clustering, and deep learning 

approaches, occasionally considering spectral bands in the infrared range. The need 

for more efficient inspection (Dias et al., 2021) and intelligent identification of 

conservation needs (Marzouk et al., 2020) has led to the adoption of image 

processing approaches to generate the thematic data needed for deterioration 

mapping. Digital image processing (DIP) refers to the manipulation of the digital 

images to extract features and recognize patterns, which, after having acquired the 

suitable base maps, can be performed with techniques as simple as thresholding, 

edge detection, or information reduction to obtain the required results (Cossu & 

Chiappini, 2004; Moropoulou et al., 2013; Vázquez et al., 2011). However, these 

approaches still largely depend on the human factor since many parameters have to 

be tuned differently for each application, and deterioration patterns often have to be 

identified and extracted one at a time. 

The current rise of deep learning-based pattern recognition has delivered 

powerful tools for fully automated detection of deterioration (often through 

convolutional neural networks), even when a plethora of surface patterns can be 

observed (Hatir et al., 2020; Hatir & İnce, 2021; Mansuri & Patel, 2021; Pathak, 

2021). Nevertheless, deep-learning implementations require large image datasets to 

be efficiently trained, which is often impractical for conservation applications. They 

may also underperform considering the uniqueness of each heritage asset, many of 

which present a unique mixture of historical materials. Therefore, other more easily 

executed supervised learning-based approaches are sometimes considered for 

deterioration detection through classification and regression. 

Multiband image segmentation for heritage conservation purposes has been 

applied via a range of clustering algorithms, some of the most common being maxi-

mum-likelihood, minimum-distance, and k-means (Del Pozo et al., 2016; Grilli & 

Remondino, 2019; Lerma, 2001, 2005; Sánchez & Quirós, 2017). However, the 

relevant works aim at segmenting the materials and elements of historical façades, 

and when deterioration is considered, it is determined as present or absent. 

Specifically, most identified relevant works consider the altered and unaltered areas 
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of a historical material as two categories rather than identifying the different 

deterioration typologies. 
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4 Semi-Automated Deterioration 

Mapping using Close-Range 

Multispectral Data 

The methodology described in this section has been developed with the aim to 

automate the process of documenting the existing conditions of historic surfaces 

subject to deterioration. The developed mapping procedure delves into the fields of 

sensing, imaging science, and pattern recognition to deliver an accurate approach 

for efficiently classifying surface deterioration patterns (identified through other 

techniques), applicable for both historic structures and antiquities. Hence, this 

section explains in detail the research design for a mapping methodology based on 

multispectral data recording and processing, including the techniques followed for 

close-range reflectance data acquisition, preliminary treatment, fusion, and 

supervised classification. Furthermore, in this section, significant emphasis is given 

to evaluating various multispectral image composites to improve the thematic 

accuracy of the segmentation, simultaneously considering—for the first time—

reflectance images captured at the visible, NIR, LWIR, and NUV spectra. The 

outlined procedure intends to address heritage assets of varying complexity and 

multiplicity of deterioration patterns but mainly confronts the mapping problem as 

a 2D approach because of the inherent usefulness of 2D thematic mapping products 

for actions pertinent to support heritage protection and their more straightforward 

translation to semantic entities. 

The novelty of the proposed methodology lies in the implementation of a 

single-sensor low-cost approach for recording the multispectral data at the near-

visible spectra differentiating from most relevant work, which applies multi-camera 

recording or uses different LiDAR instruments to acquire narrowband reflectance 

data. It is evident that these multi-sensor approaches induce high costs, while the 

proposed methodology is considerably more affordable and flexible. Additionally, 

there is a crucial advantage over the employment of miniaturized multispectral 

sensors in terms of spatial resolution and ease of application. Another innovative 

aspect of the proposed methodology is the implementation of learning-based 

supervised algorithms to automate the supervised segmentation process. Moreover, 

the application case studies considered for this methodology concerned historical 
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surfaces presenting multiple decay patterns (often heavily deteriorated), in contrast 

with other relevant image-based application scenarios found in recent literature, 

which mainly consider the alteration or not of the historical materials, and not the 

multiplicity of decay forms. The design and application of the described methods 

used for semi-automated deterioration mapping have been previously outlined in 

Adamopoulos (2021), Adamopoulos & Rinaudo (2021a), Adamopoulos & Rinaudo 

(2021b), and Adamopoulos, Rinaudo, & Adamopoulou (2021). 

4.1 Methodological Approach 

The designing of the methodological workflow considered the potential usefulness 

of the complementarity of multispectral data, passively captured at and near the 

visible spectrum, for the digital mapping of historic surfaces’ preservation state. Its 

rationale was set on the identified lack of practical image-based methods for 

automatic condition mapping, especially regarding severely degraded historical 

surfaces. The proposed workflow aims to be flexible in terms of adopting easy-to-

implement close-range sensing technologies for data recording and free and open-

sourced software (FOSS) tools for image processing. DIP techniques are adopted 

for the classification of deterioration patterns. The process of mapping the 

significantly weathered historic surfaces is carried out through supervised-learning-

based models, which use as input representative patches of the already identified 

deterioration categories. Unsupervised data reduction methods, such as clustering, 

are also considered to tackle problems encountered due to overlap between multiple 

deterioration forms. This methodological workflow primarily addresses historical 

surfaces that are relatively planar or that can be sufficiently described as an 

assortment of parallel two-dimensional planes. Different multispectral image 

compositions are involved in line with the scope of this research. 

Figure 4.1 depicts the overall research design for the 2D deterioration mapping 

approach. An essential parameter for ensuring the accuracy and interpretability of 

the surface classification is the quality of input spectral intensity data, meaning the 

acquired raw images, which are later used for semi-automated pattern recognition. 

Therefore, the workflow starts with capturing appropriate radiance images and then 

continues with their radiometric correction and integration. The multispectral 

composites are digitally synthesized from the band-specific data and then 

segmented into deterioration categories after visual identification on-site. The 

output maps of the deterioration classification procedure can be transferred to an 

environment appropriate for spatial information management, semantic annotation, 

and further processing. The principle of using low-cost instrumentation and 

software is followed during every step of the process, as it is a crucial factor for 

heritage non-destructive inspection. 
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Figure 4.1. Semi-automated deterioration mapping methodology. 

4.1.1 Multispectral Data Acquisition 

The proposed workflow propounds—as an alternative to the use of multispectral 

sensors—implementing modified CMOS-based digital SLR cameras in order to 

allow the acquisition of high-resolution spectral radiance images. This decision 

comes with the drawbacks of sacrificing the narrowness of spectral sensitivity and 

reducing the number of spectral channels, but nevertheless grants higher versatility 

and decreases the cost of the required instrumentation (Verhoeven, 2008; Webb et 

al., 2018). 

As previously mentioned in subchapter 2.2.2.2, multispectral imaging in the 

350–1100 nm range can be simulated via modified commercial cameras (and 

frequently with multi-sensor approaches). Commercial off-the-shelf (COTS) digital 

camera detectors are generally sensitive in a portion of the electromagnetic range 

up to 1100 nm, which is partially cut off by an internal blocking filter. By removing 

the internal near-infrared cut-off filter, a charge-coupled device (CCD) or a 

complementary metal-oxide-semiconductor (CMOS)-based camera can be used as 

an affordable and easy-to-acquire alternative for multispectral capturing. In such a 

way, narrowband or wideband externally placed filters capture radiance data at the 

very near-ultraviolet, visible, and near-infrared range. At the same time, the camera 

retains user-friendly features and interfaces to a wide variety of photographic 

accessories and software interfaces. The acquisition with a modified digital camera 

follows different approaches depending on the use of the radiance images. For 

example, suppose the object of study is investigated with a single-multispectral 

rectified image approach. In that case, the spectral images should be acquired as 

parallel as possible to the architectural surfaces to avoid occlusions and with large 

focal lengths to avoid significant distortions that can affect image quality during the 

resampling phase of distortion correction. Furthermore, the images should be 

acquired under homogeneous illumination to improve their radiometric potential 

and with a steady tripod, thus preventing image blur. Either the measurement of a 
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network of control points well distributed over the investigated historical surface or 

the placement of calibrated scales should take place before image acquisition. 

The use of thermal cameras, common for building inspections, is additionally 

considered for recording radiance data at the LWIR range, providing an additional 

spectral band for the produced multispectral composites. Emphasis is yet again 

given to lower-end instruments, which reduce the cost and the complexity of 

implementation. Nevertheless, this introduces additional processing steps, as the 

significantly low spatial resolution of mobile, low-cost thermal cameras 

necessitates the resolution enhancement of acquired thermograms to match the 

spatial resolution of other spectral bands. 

4.1.2 Multispectral Data Pre-Processing 

Preliminary treatment of the images acquired with a modified digital SLR camera 

at multiple electromagnetic spectrum bands involves adjusting recorded radiance 

values, geometric correction, and preparation of the multispectral image composites 

for automated pattern segmentation. First, the acquired raw images are 

radiometrically corrected because various noise sources influence the actual 

reflectance values. The noise model of the imaging sensor (Tsin et al., 2001; Liu et 

al., 2008; Zheng et al., 2009) can be estimated as: 

 𝐼 =  𝑓(𝐿 + 𝑁𝑣)  +  𝑁𝑏 (1) 

where I are the recorded values of the raw digital images, L is the digital level of 

the radiance component, Nv is the digital level of the vignetting noise, Nb is the 

digital level of the optical system’s background noise, and f(·) is the radiometric 

function carried out to obtain the full resolution image that depends on the Bayer 

filter. The digital files acquired with the camera are downloaded in the RawDigger 

1.4.4 (LibRaw, LLC) software where, after having been corrected by the sensor’s 

background noise (Nb), the color filter array (debayering) conversion is reversed, to 

acquire raw digital images. The raw images are then corrected from the vignetting 

effect (Nv). An automatic flat field correction may also be applied to remove any 

remaining ambiental effects. The next step of pre-processing is transforming the L 

values of the raw radiance images into reflectance values. The transformation 

equation (Del Pozo et al., 2016), which can occur after calibrating the camera with 

a vicarious radiance-based method, is: 

 𝜌 =
𝑐0𝜆 + 𝑐1𝜆 + 𝐿/𝐹𝑣𝜆

𝛦𝜆
∙ 𝜋 (2) 
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where c0λ and c1λ, offset and gain, are the calibration coefficients of each camera 

band, Fvλ is the shutter opening time factor, and Eλ is the solar irradiance at the 

ground level. 

The spectral reflectance images are undistorted in the Fiji image processing 

package—a distribution of ImageJ2  (Rueden et al., 2017)—and then each image is 

orthorectified with an affine transform in the HyperCube image analysis software 

(https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-

View/Article/610433/hypercube) depending on available measured coordinates. 

Figure 4.2 showcases a schematic representation of the pre-processing stages taking 

place prior to any multispectral composition and segmentation of the deterioration 

patterns. 

The addition of a thermal-infrared image into the data stack consisting of the 

corrected reflectance images to simulate a multispectral image cube presupposes 

that the thermal-infrared image should be of the same spatial resolution as the other 

reflectance images. Therefore, pre-processing of the low-resolution thermal data 

involves the creation of a high-resolution image from a set of low-resolution burst 

mode images. For this purpose, the inverse distance weighting method (Shepard, 

1968) is used, predicting the high-resolution pixel values from sets of pixels in the 

low-resolution burst mode thermal-infrared images. 

In order to form a multispectral image cube, registration of multiple single-

band reflectance images is also performed in HyperCube. Alternatively, non-

rectified images are registered using a projective transformation, nearest-neighbor 

interpolation, and resampled with the same scene sampling distance. The synthesis 

of the multispectral composites considers the same principle of using low-cost 

equipment, and thus all considered composites consist of a number of bands (3 

channels) that will allow segmentation to be performed in the Fiji image processing 

package or other freeware—avoiding the use of commercial specialized spatial 

analysis software. 
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Figure 4.2. Schematic representation of pre-processing procedures for the spectral images. 
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4.1.3 Segmentation of Deterioration Patterns 

The methodology tested for semi-automated thematic deterioration mapping 

considers that different approaches could be followed to classify surface patterns, 

depending on the complexity of observable surface deterioration. Thus, a choice of 

distinct digital image processing tools is considered depending on the multiplicity 

of deterioration forms. The ICOMOS ISCS: Illustrated glossary on stone 

deterioration patterns (2008) has been followed as a guide to identifying individual 

degradation patterns during visual inspection. Historic surfaces presenting few and 

easily distinguishable patterns can be mapped with unsupervised segmentation 

techniques (such as thresholding and clustering). Nevertheless, a supervised 

machine learning-based approach is proposed as it can use as input the areas-

regions of interest (ROIs) detected through visual inspection or analytical testing of 

the historical materials and their alteration. 

The proposed supervised segmentation procedure for classifying the 

deterioration patterns is performed via the Trainable WeKa Segmentation 3D 

plugin (Arganda-Carreras et al., 2017) of ImageJ2. The machine learning-based 

image segmentation techniques follow decision tree (Quinlan, 1993), ensemble 

learning (Breiman, 2001), and regression approaches. Specifically, the Random 

Tree, Random Forest, Fast Random Forest, LogitBoost, and j48 classifiers are 

employed. The supervised approach presupposes the annotation of image regions 

of interest (ROIs), corresponding to each semantic deterioration category to be 

segmented, which will train the algorithmic model to provide a semantic 

classification of the entire image. 

The decision tree model is a machine learning algorithm that can be used for 

both supervised classification and regression problems. A decision tree simply 

consists of a series of sequential decisions made to reach a specific result of distinct 

data classes. The classes are mutually exclusive and represented by specific 

attributes. The learning input, which consists of sets of pixels belonging to known 

classes, assists the accurate classification of annotated pixels and not annotated 

pixels. Each node of the decision tree decides an outcome based on the attribute 

values and leads either to another node, using an appropriate subtree, or to a leaf, 

which gives the predicted class of the pixel (Quinlan, 1996). The Random Tree 

classifier is based on a decision tree learning method. Single decision trees are easy 

to conceptualize but usually suffer from high variance, making them not 

competitive in terms of accuracy. 

A random forest classifier combines ensemble classification machine learning 

algorithms and decision trees. Each tree classifier is independently generated from 

the input training data using a random sample like in bagging. When growing a tree, 

the best possible split is computed for a random subset, instead of always computing 

the best split for each node. In this way, tree diversity is generated using two ways 
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of randomization. Aggregating predictions make the class prediction of the 

ensemble. Random forest generally overcomes the accuracy limitations of single 

decision trees (Breiman, 2001; Zhao & Zhang, 2008). 

LogitBoost is a boosting algorithm that performs classification using a 

regression scheme as the base learner and can handle multi-class problems. It can 

be seen as a convex optimization; it applies the cost function of logistic regression 

on a generalized additive  model. This classifier determines the appropriate number 

of iterations by performing efficient internal cross-validation (Friedman et al., 

2000). 

 The J48 is another classifier that produces a decision tree generated by the C4.5 

algorithm by Quinlan (1993). It is also known as a statistical classifier. 

4.1.4 Accuracy Metrics-Segmentation Evaluation 

The performance of the machine learning classification implementations and 

different multispectral combinations is quantitatively evaluated using manually 

produced degradation maps as the ground truth. Different parameters are used to 

assess the classification efficiency of the intelligent feature extraction techniques 

based on accuracy metrics common for thematic mapping. More specifically, the 

evaluation relies on the precision (fraction of appropriate classification among the 

classified instances) and F1-score (harmonic mean of precision and sensitivity) 

calculated for each class (Equations 3,4) and on the overall accuracy (Equation 5)—

useful to estimate the overall performance of the classifiers. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁) + (𝐹𝑃 + 𝐹𝑁)
 (5) 

where, for each class, the TP (true positive), FP (false positive), and FN (false 

negative) come from an error matrix (Table 4.1), a square array of numbers which 

express the number of pixels assigned to a particular class in one classification 

relative to the number of pixels assigned to a particular class in the reference data 

(Congalton & Green, 2019; Das, 2021). 
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Table 4.1. The Error matrix. 

  PREDICTED VALUES 

  POSITIVE NEGATIVE 

A
C

T
U

A
L

 V
A

L
U

E
S

 

POSITIVE TP FN 

NEGATIVE FP TN 

Note: TP True Positive; FP False Positive; FN False Negative; TN True Negative. 

4.2 Experimental Results 

The experimental part of this chapter reports on the implementation of the 

methodology presented in 4.1, demonstrating how it was adapted for different 

scenarios of cultural heritage documentation and inspection. The description of the 

multispectral recording and deterioration mapping precedes a brief mention of the 

instrumentation used. Detailed accuracy statistics for produced thematic maps 

could be calculated for the case studies where reference maps were available. 

Close-range multispectral datasets, purposed for deterioration mapping, were 

taken with an EOS Rebel SL1 (Canon Inc., Tokyo, Japan) digital SLR camera with 

an EF-S 18-55mm f/3.5-5.6 IS II lens. The internal hot mirror filter of the SL1 

camera had been removed. Low-cost external filters were employed with the 

camera to allow radiance imaging at different spectral bands of the 400–1100 nm 

range. Additionally, the  FLIR ONE Pro (Teledyne FLIR LLC, Wilsonville, OR, 

USA) thermographic camera (attached to a smartphone) was employed for a few 

case studies to evaluate the proposed methodology’s performance when including 

data acquired at the LWIR band. 

4.2.1 Historical Structures 

4.2.1.1 Karababa Fortress 

This first historical structure (Figure 4.3), selected as a case study for the application 

of the semi-automated deterioration mapping workflow, due to its current state of 
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preservation, was a masonry fortification in Chalcis (Euboea, Greece). The Fort of 

Karababa is an Ottoman fortress constructed in 1684 on the homonymous hill which 

dominates the Boeotian coast across the city of Chalcis. The construction of the 

fortress was part of the effort to protect the city of Chalcis from impending Venetian 

attacks (Mamaloukos, 2020). The architectural style of the fortress is more 

European than Turkish. It is oblong in plan, with a rampart on the north side, three 

bastions, and a large tower. 

 

Figure 4.3. Fort of Karababa, bird's-eye view. 

Several parts of the fortification walls have ancient spolia built-in, while some 

parts are preserved in poor condition. The weathered masonry surfaces selected for 

evaluating the methodology are presented in Figure 4.4. They are on the north side, 

and for abbreviation purposes, they have been named A, B, C, and D, starting with 

the westernmost (on the west bastion). 

Spectral radiance images were acquired as parallel as possible to the 

architectural surfaces to avoid occlusions and with large focal lengths to avoid large 

distortions that could affect image quality during the resampling phase of distortion 

correction. Three filters were employed to allow RGB, UV, and NIR photo 

shooting. Furthermore, the images were acquired under homogeneous illumination 

conditions and without shadows. The thermographic images were acquired in sets 

of burst images to increase their spatial resolution digitally. 
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Figure 4.4. Fort of Karababa north side, façades selected for evaluating the mapping methodology; 

from upper left, clockwise: A (westernmost), B, C and D (eastermost). 

The captured raw NIR and UV images were converted to radiance and then to 

reflectance images, based on the pixel values of a reference surface collected with 

a spectroradiometer. Visible-spectrum images were RGB calibrated based on the 

pixel values of a reference photographic color-balance target. The resulting band-

specific reflectance images were then undistorted. 

Multispectral image composites were constructed by performing combinations 

between different spectra, a procedure presented in Table 4.2. The corrected 

spectral reflectance images were resampled to match the resolution of all bands, 

and the sky and ground were trimmed from all multispectral composites to reduce 

the chance of potential misclassifications. 

Table 4.2. Composition of multispectral images-Karababa Fortress. 

Multispectral image Red band Green band Blue band 

G-B-NUV green blue ultraviolet  

R-G-B red green blue 

NIR-R-G near infra-red red green 

TIR-NIR-R thermal infra-red near infra-red red 

NIR-M-UV near infra-red RGB monochromatic ultraviolet 
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Figure 4.5. Multispectral data preparation for façade D, Fort of Karababa. Note: UV Ultraviolet; R 

Red; B Blue; G Green; NIR Near Infra-Red; TIR Thermal Infra-Red; M Monochromatic color image. 

After the composition of multispectral images was completed (Figure 4.5), 80 

classifications were performed. The observed categories of deterioration were 

vegetation, moss, black crusts, lichens, missing material (including loss of 

components, large cracks, and windows), and dampness. These constituted all the 

categories of surface pathology that altered the surface reflectance characteristics 

of the masonry façades. The classification results are presented in Figures 4.6–4.9. 
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Figure 4.6. Thematic deterioration mapping of façade A, Fort of Karababa. 
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Figure 4.7. Thematic deterioration mapping of façade B, Fort of Karababa. 



P a g e  | 112 

 

 

Figure 4.8. Thematic deterioration mapping of façade C, Fort of Karababa. 
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Figure 4.9. Thematic deterioration mapping of façade D, Fort of Karababa. 

The comparisons aiming to evaluate thematic mapping accuracy were 

performed using manually produced full reference maps and not sampled patch 

areas. Overall accuracy statistics calculated from the confusion matrixes are 

presented in Table 4.3. The precision and F1-score results are presented in detail in 

Tables 4.4–4.7. 

Based on the calculated statistics, the results for façade A were deemed of low 

classification accuracy. However, deterioration maps produced for the rest of the 



P a g e  | 114 

 

studied historical architectural surfaces were of generally high thematic accuracy, 

especially for classifications performed via ensemble learning algorithmic 

implementations. Furthermore, the inclusion of different spectral bands improved 

the classification potential (subject to different present categories of deterioration). 

The low-quality classification (38 < overall accuracy% < 56) of multispectral image 

composites for façade A can be attributed to the poor preservation condition, high 

level of biogenic deterioration characterizing almost the entire architectural surface, 

and extensive overlap among different surface patterns—particularly between moss 

and other deterioration. The thematic reference maps consider only one type of 

deterioration category for each image pixel, the most dominant one in the area that 

this pixel represents, which is clearly observable by visual inspection. Considering 

an equal scale of representation, the semi-automated classification depends on the 

reflectance values (at the employed spectra) for that same area. When a pixel 

represents a real-life area of the historical surface where multiple deterioration 

forms are present, the perceived radiometric signature is altered and consists of a 

combination of the radiometric signatures of the different deterioration forms, 

which hinders categorization into a single class. Therefore, the categorization of 

pixels into different classes through DIP can only be accurate when each of them 

presents a distinct radiometric reflectance value, characteristic of one specific 

deterioration form. However, this façade presented in many areas overlaps between 

moss and lichens, meaning pixels with multiple radiometric signatures combined, 

which explains the low precision and F1-score values for these categories of 

deterioration, despite the high values observed for the rest of the deterioration 

categories. Misclassifications could also be observed between the healthy materials' 

surfaces and patterns caused by lichens. Additionally, dampness at varying levels 

was present throughout the façade's surface, which complicated the process. 

Nevertheless, classifications performed for the other three façades, where the 

segregation among different deterioration forms was more clearly distinguishable, 

were of significantly higher quality (up to 86.8 overall accuracy%). Therefore, the 

mapping results of façade A were not considered to extract further conclusions. 
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Table 4.3. Overall accuracy statistics by image and classifier. 

 A B C D 

 Overall Accuracy (%) 

G-B-UV  

LogitBoost 51.9 82.1 66.9 76.8 

Random Tree 41.6 71.0 66.3 66.7 

Random Forest 51.7 84.9 69.9 78.1 

Fast Random Forest 51.4 84.6 70.2 79.8 

R-G-B     

LogitBoost 50.7 77.3 67.9 78.5 

Random Tree 52.5 73.7 63.7 74.3 

Random Forest 56.0 84.4 69.8 81.9 

Fast Random Forest 55.6 84.4 69.9 83.1 

NIR-R-G     

LogitBoost 44.8 80.4 71.3 80.1 

Random Tree 49.6 72.6 71.0 77.4 

Random Forest 50.5 85.4 75.8 83.8 

Fast Random Forest 51.5 86.3 79.0 84.6 

TIR-NIR-R     

LogitBoost 48.8 74.6 76.3 58.4 

Random Tree 38.4 64.9 71.3 50.9 

Random Forest 49.8 76.8 76.3 57.3 

Fast Random Forest 46.3 78.5 77.7 58.4 

NIR-M-UV     

LogitBoost 49.0 83.2 71.6 75.3 

Random Tree 37.5 75.4 66.8 66.6 

Random Forest 44.1 85.5 69.3 77.0 

Fast Random Forest 44.4 86.8 69.8 78.2 

Note: UV Ultraviolet; R Red; B Blue; G Green; NIR Near Infra-Red; TIR Thermal 

Infra-Red; M Monochromatic color image. 
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Table 4.4. Accuracy statistics calculated for façade A, Fort of Karababa. 

 
leafy 

vegetation 

no 

deterioration 
black crusts lichens 

missing 

material 
moss 

G-B-UV 

LB 25.4 37.1 96.0 53.2 93.3 66.2 17.3 29.4 98.8 95.8 98.8 95.8 

RT 13.2 21.8 96.2 53.9 91.4 49.6 15.0 25.3 94.0 94.9 94.0 94.9 

RF 23.2 35.2 96.4 56.9 93.9 64.1 18.1 30.4 98.5 95.9 98.5 95.9 

FRF 26.5 38.4 95.5 53.3 93.6 65.1 16.5 28.2 99.1 95.1 99.1 95.1 

R-G-B 

LB 29.5 38.4 94.5 48.5 83.7 65.5 17.7 29.2 96.8 91.9 96.8 91.9 

RT 18.7 28.3 90.7 57.4 87.5 67.7 15.2 24.9 92.9 85.3 92.9 85.3 

RF 41.6 49.3 90.3 61.4 93.0 67.2 19.2 31.8 97.6 96.7 97.6 96.7 

FRF 38.0 46.1 93.4 57.9 92.8 69.1 17.6 29.8 97.2 96.6 97.2 96.6 

NIR-R-G 

LB 35.8 48.7 97.1 37.6 84.9 59.8 15.5 26.5 99.1 92.8 99.1 92.8 

RT 15.1 25.2 87.5 61.5 82.0 56.6 21.4 32.7 97.7 95.9 97.7 95.9 

RF 29.6 43.6 97.8 58.4 94.4 59.5 18.3 30.6 99.5 97.3 99.5 97.3 

FRF 29.4 43.6 95.7 57.8 95.1 61.2 17.2 29.3 99.8 97.3 99.8 97.3 

TIR-NIR-R 

LB 16.9 27.7 64.0 58.8 78.1 47.8 30.7 45.2 20.4 31.5 20.4 31.5 

RT 6.7 12.0 61.8 53.9 69.5 38.5 16.6 24.5 37.8 45.2 37.8 45.2 

RF 19.6 31.5 64.4 58.3 75.2 50.3 25.8 39.2 73.4 71.1 73.4 71.1 

FRF 9.9 17.6 63.2 58.1 77.4 43.2 29.3 43.5 33.9 45.0 33.9 45.0 

NIR-M-UV 

LB 16.1 27.0 97.4 41.5 83.8 66.4 16.9 28.4 99.6 90.7 99.6 90.7 

RT 3.6 6.9 95.3 61.5 87.9 31.1 24.6 36.8 99.1 94.4 99.1 94.4 

RF 10.6 18.9 96.7 59.9 93.2 45.1 20.6 33.8 99.7 94.9 99.7 94.9 

FRF 9.9 17.8 96.5 57.1 93.4 45.3 18.3 30.8 99.8 94.1 99.8 94.1 

 
precisi

on 

F1-

score 

precisi

on 

F1-

score 

precisi

on 

F1-

score 

precisi

on 

F1-

score 

precisi

on 

F1-

score 

precisi

on 

F1-

score 

Note: LB LogitBoost; RT Random Tree; RF Random Forest; FRF Fast Random Forest. 
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Table 4.5. Accuracy statistics calculated for façade B, Fort of Karababa. 

 leafy vegetation no deterioration black crusts missing material dampness 

G-B-UV 

LB 44.4 60.3 87.5 82.1 56.7 60.4 39.0 53.4 91.7 90.4 

RT 28.7 42.6 80.1 77.0 46.1 48.3 6.8 12.3 86.0 79.1 

RF 46.3 61.4 86.3 87.0 75.5 64.1 37.8 53.2 89.8 91.7 

FRF 41.8 55.8 85.3 87.7 81.8 60.2 45.4 60.5 88.5 91.0 

R-G-B 

LB 27.7 42.6 85.8 80.4 49.9 51.2 26.0 39.5 87.6 88.5 

RT 27.9 42.0 77.7 78.6 57.0 53.0 13.8 23.5 85.4 81.3 

RF 39.0 54.6 87.4 87.5 74.7 64.3 40.8 56.0 89.2 90.3 

FRF 40.5 55.0 85.5 88.0 83.0 58.6 45.7 60.7 87.8 90.0 

NIR-R-G 

LB 41.4 57.5 87.0 81.2 51.4 56.6 31.4 45.0 91.4 92.1 

RT 26.6 40.1 79.0 77.4 50.8 45.7 11.6 20.2 83.4 81.5 

RF 48.6 63.9 88.0 87.3 76.7 67.9 28.6 43.2 89.8 91.6 

FRF 54.3 68.0 86.4 88.3 84.6 64.8 43.1 58.0 89.6 92.2 

TIR-NIR-R 

LB 38.9 55.0 77.5 71.4 45.4 52.3 34.5 48.4 90.5 89.6 

RT 16.2 27.3 77.2 59.3 39.5 51.2 10.0 17.7 91.8 85.7 

RF 31.1 46.5 80.4 75.1 51.0 58.4 39.9 52.9 92.5 90.0 

FRF 32.2 47.6 79.8 77.6 56.0 61.0 43.8 55.4 93.4 89.6 

NIR-M-UV 

LB 40.5 56.5 88.9 83.9 59.3 63.8 35.1 48.4 92.6 92.5 

RT 17.6 29.4 82.9 78.6 59.8 59.1 15.9 26.8 90.0 86.5 

RF 38.9 55.0 87.6 87.5 76.3 70.2 26.6 41.0 92.9 92.2 

FRF 44.5 59.3 87.3 88.6 84.5 69.4 43.0 58.1 90.9 92.4 

 precision F1-score precision F1-score precision F1-score precision F1-score precision F1-score 

Note: LB LogitBoost; RT Random Tree; RF Random Forest; FRF Fast Random Forest. 
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Table 4.6. Accuracy statistics calculated for façade C, Fort of Karababa. 

 leafy vegetation no deterioration black crusts lichens 

G-B-UV 

LB 52.2 62.0 66.4 75.7 92.8 69.0 30.0 41.9 

RT 47.7 60.2 66.2 70.8 90.3 72.0 30.5 43.0 

RF 47.4 61.6 66.8 75.0 93.5 73.6 38.2 50.8 

FRF 47.2 61.0 62.5 72.5 93.4 73.9 46.3 56.0 

R-G-B 

LB 42.1 56.4 64.2 72.5 91.4 72.4 36.1 46.3 

RT 39.6 54.8 64.2 69.5 89.6 68.5 29.9 42.1 

RF 47.7 62.0 64.3 73.5 92.9 73.5 41.2 52.1 

FRF 50.4 63.8 59.1 70.2 92.8 73.2 51.0 57.1 

NIR-R-G 

LB 55.3 65.1 65.3 72.7 92.1 77.2 40.2 51.5 

RT 47.9 60.8 70.5 74.2 88.3 77.0 36.4 47.7 

RF 43.3 58.0 75.4 78.7 92.4 82.1 43.4 54.6 

FRF 43.5 57.9 74.7 78.3 89.9 85.9 63.3 62.0 

TIR-NIR-R 

LB 37.1 45.5 80.3 82.5 92.6 83.5 36.2 47.3 

RT 32.8 43.8 83.3 84.7 91.0 75.8 28.8 41.0 

RF 37.6 49.8 90.0 84.9 93.5 83.8 33.1 46.9 

FRF 37.2 47.2 89.2 86.6 92.8 84.1 35.8 49.3 

NIR-M-UV 

LB 49.3 55.6 68.2 74.5 92.7 77.6 40.5 51.7 

RT 36.4 48.3 66.7 70.2 89.8 74.7 29.2 39.4 

RF 39.6 54.1 65.5 72.4 93.9 74.9 39.3 51.8 

FRF 42.0 55.8 59.3 69.2 93.7 75.5 53.0 58.9 

 precision F1-score precision F1-score precision F1-score precision F1-score 

Note: LB LogitBoost; RT Random Tree; RF Random Forest; FRF Fast Random Forest. 
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Table 4.7. Accuracy statistics calculated for façade D, Fort of Karababa. 

 
leafy 

vegetation 

no 

deterioration 
black crusts 

missing 

material 
plant dampness 

G-B-UV 

LB 21.1 34.9 90.1 78.6 32.1 43.3 31.7 47.0 68.5 38.0 89.2 88.7 

RT 26.6 40.8 88.7 78.3 23.0 33.8 25.9 40.1 70.1 37.4 89.4 86.6 

RF 64.4 78.4 89.2 79.3 38.9 54.4 28.5 43.8 53.8 36.7 91.9 91.5 

FRF 67.7 80.7 88.1 80.2 44.0 58.7 31.1 46.9 54.7 36.8 91.5 91.6 

R-G-B 

LB 29.5 45.3 78.8 77.8 29.3 41.7 29.9 45.2 67.4 37.8 90.6 83.9 

RT 11.4 19.9 76.7 73.1 19.8 29.9 22.2 35.5 63.8 38.2 84.1 74.1 

RF 52.6 68.2 79.6 76.3 34.7 50.2 27.7 42.6 57.1 37.3 90.0 85.1 

FRF 61.4 74.6 78.3 76.0 44.6 58.2 27.0 42.0 53.4 36.5 88.4 86.0 

NIR-R-G 

LB 21.6 35.4 91.8 75.2 26.8 37.1 30.7 46.1 72.4 38.3 87.3 88.4 

RT 24.1 38.7 92.3 74.5 23.9 36.0 8.1 14.7 67.7 38.4 88.4 84.7 

RF 47.3 63.7 89.9 78.1 32.1 46.7 25.2 39.7 63.4 38.2 92.1 91.1 

FRF 47.3 63.1 88.5 78.9 37.2 51.8 29.4 45.1 57.3 37.4 91.9 91.3 

TIR-NIR-R 

LB 18.6 31.3 54.9 61.1 25.6 38.8 25.2 39.3 49.9 34.6 83.3 62.9 

RT 8.5 15.5 53.8 56.2 18.2 28.7 24.6 37.8 28.4 28.6 80.2 57.1 

RF 21.4 35.0 50.7 57.9 31.3 45.7 31.4 46.8 38.5 32.7 80.9 61.1 

FRF 23.8 37.9 48.8 56.2 40.7 54.2 33.4 49.3 37.4 32.3 78.7 62.6 

NIR-M-UV 

LB 24.0 38.5 80.7 72.6 23.5 32.0 26.9 41.2 68.8 38.0 86.5 85.1 

RT 13.1 22.7 78.9 70.6 20.2 30.5 13.2 22.8 56.6 35.6 82.2 75.2 

RF 36.0 52.4 80.1 73.8 36.7 52.1 25.1 39.7 59.4 37.7 87.4 84.5 

FRF 43.9 59.3 78.9 73.8 42.4 56.4 25.7 40.5 54.1 36.7 86.7 85.1 
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Note: LB LogitBoost; RT Random Tree; RF Random Forest; FRF Fast Random Forest. 

The inclusion of the NIR spectral band in the multispectral composites fairly 

improved the classification results for all deterioration forms. The segmentation of 

a NIR-R-G multispectral image and the Fast Random Forest classifier proved to be 

the most consistent solution overall (79.8 < overall accuracy%). Figure 4.10 

presents a side-by-side comparison between the reference maps and the NIR-R-G 

composites segmented with the Fast Random Forest classifier. Using the UV 

reflectance data generally did not provide significant improvement to the quality of 
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the classifications. Including the TIR band also did not improve the deterioration 

patterns' classification. Furthermore, the fusion of visible with thermal data 

significantly decreased the accuracy of detecting deterioration when dampness was 

present, even though the thermograms can help distinguish the areas of dampness 

as shown in Figure 4.11. 

 

Figure 4.10. Reference deterioration maps (left) and corresponding deterioration maps produced 

with a NIR-R-G multispectral image using the Fast Random Forest classifier (right). 
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Figure 4.11. Thermograms of façades B (left) and D (right). 

According to the overall accuracy results, the Fast Random Forest classifier 

was the most accurate learning-based method for deterioration classification for all 

multispectral images, not including the TIR band (69.9% < overall accuracy < 

86.8%).On the other hand, implementing the Random Tree classifier resulted in 

more inconsistent and less accurate classifications (63.7% < overall accuracy < 

77.4%). Furthermore, LogitBoost outperformed the Random Tree classifier. 

According to the precision and F1-score values, moss and lichens were the most 

misclassified of the surface patterns, even though both random forest approaches 

improved their classification. The results prove that the distinction among non-

deteriorated material, dampness, and black crusts/discoloration and plants is much 

more easily detectable (and therefore classifiable) than biogenic colonization of any 

form. Therefore, surface alterations of the historical materials—which alter the 

reflectance characteristics—can be more accurately mapped using multispectral 

images in comparison with the deterioration forms that completely cover them as 

an additional layer. The segmentation of multispectral composites (synthesized 

with visible and NIR spectrum images), with classifiers combining random trees 

and ensemble learning, performed exceptionally well even where a high number of 

surface patterns were present. It should be highlighted that the accuracy evaluation 

considered some level of bias since the manually produced reference thematic maps 

cannot consider the overlapping surface patterns. 

The investigated semi-automated methodology has the limitation that it can 

map only the pathologies that have been previously recognized through visual 

inspection (or analytical techniques) because appropriate regions of interest have to 

be annotated to train the intelligent algorithms. However, a crucial advantage is that 

it produces easily interpretable mapping results, contrary to unsupervised methods 

where each mapped pattern class has to be a posteriori assigned to a deterioration 

category. Furthermore, there is a clear advantage over deep learning-based methods 

that require large image datasets for rapid monitoring purposes of monumental 

heritage structures. 
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4.2.1.2 Temple of Apollo Epikourios 

This second historical structure selected as a case study for applying the semi-

automated deterioration mapping workflow, the Temple of Apollo Epikourios 

(Figure 4.12), is one of the best-preserved monuments of classical antiquity, an 

imposing monument of ancient Greek architecture. The temple is positioned at the 

archaeological site of Bassae (Messenia, Greece) and has been inscribed on the 

UNESCO World Heritage List since 1986. It was constructed toward the end of the 

5th century BC in the rocky heights of the Arcadian mountains, mostly of local 

limestone. The classical temple was founded on bedrock, on a specially built 

terrace. It is the only known temple that combines elements of all three architectural 

orders of antiquity. The temple is Doric, peripteral, and distyle in antis, with 

pronaos, cella, adyton, and opisthodomos. A Doric frieze of undecorated metopes 

and triglyphs ran along the outer facades. Parts of the temple were excavated and 

restored in 1902–1906. The Ministry of Culture has overseen the conservation of 

the monument since 1982. A temporary shelter, erected in 1987, is covering the 

monument to protect it against the region’s harsh weather conditions and against 

acid rain (Vikatou, 2021; Papadopoulos & Savvatianou, 2014). 

 

Figure 4.12. The Temple of Apollo Epikourios at Bassae. 

For this case study, spectral images at the visible and NIR spectra were acquired 

for a few architectural surfaces characteristic of the observable deterioration 

patterns. After the radiometric adjustment and rectification of the collected raw 

data, the corrected spectral reflectance images were resampled to match the 



P a g e  | 123 

 

resolution of all bands, and the unwanted areas were trimmed from all multispectral 

composites to reduce the chance of potential misclassifications. Two composite 

images were synthesized, an R-G-B and a NIR-R-G image, which were evaluated 

together with a NIR reflectance monochromatic image. The semi-automated 

thematic mapping of deterioration was assessed for patches of images, producing 

higher accuracy results for the NIR images than the two multispectral composites. 

This could be justified by the more homogeneous radiometry of the NIR reflectance 

images since the original historical materials and previous restoration materials 

presented similar reflectance characteristics at the near-infrared spectrum (Figure 

4.13). Additionally, the image segmentation procedure based on the supervised 

learning-based approach could not produce representations of the overlapping 

deterioration patterns observed. Therefore, it was decided to apply unsupervised 

classification based on multiple data reduction techniques on the rectified NIR 

reflectance image of each investigated architectural surface, in order to avoid 

misclassification of decay forms and to produce a different thematic mapping for 

each type of decay.  

 

Figure 4.13. Color (left) and near-infrared reflectance (right) images of the same column captured 

at the Temple of Apollo Epikourios at Bassae, from further and closer range. 

The architectural surfaces of the monument had been mostly cleaned, and 

therefore, the observable categories of degradation were only loss of material, 
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cracks, and discoloration. After generating the NIR reflectance orthoimages, binary 

images representing these different deterioration categories were produced. 

Thresholding was applied for identifying discoloration after flat-field correction, 

which eliminated any remaining inhomogeneous illumination problems. Edge 

detection and afterward binarization was performed on the first principal 

component of the images to detect cracks. Finally, histogram equalization and 

thresholding were performed to identify the loss of material. The visualization and 

management of the overlapping thematic mapping results were performed in the 

FOSS GIS environment QGIS Desktop 3.18.2. Figure 4.14 presents the generation 

of the binarized category-specific deterioration results for an architectural surface 

and the production of thematic layers in the FOSS GIS environment. The thematic 

maps produced for investigated characteristic surfaces are presented in Figure 4.15 

and Figure 4.16. 
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Figure 4.14. Generation of thematic map layers (right) in QGIS using features extracted from 

rectified near-infrared reflectance images (left) for the Temple of Apollo Epikourios. 
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Figure 4.15. Degradation maps and corresponding images for characteristic areas of walls at the 

Temple of Apollo Epikourios. 
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Figure 4.16. Degradation maps and corresponding images for characteristic areas of columns at 

the Temple of Apollo Epikourios. 
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4.2.1.3 Temple of Athena and Zeus Soter 

The Temple of Athena and Zeus Soter is the most notable excavated monument of 

the ancient city of Phigalia (Ilia, Greece). It is located on the hill “Kourdoumbouli” 

at the southwest end of the Agora of the ancient city. It is a rectangular temple with 

pronaos and cella. The life of the temple spans from the 4th century BC until the 

Roman Era, while there must also have been an Archaic phase. It was constructed 

of large stone blocks according to the irregular isodomic system and is preserved 

up to a height of three building blocks (Figure 4.17). The stone cubic pedestal of 

the worshiping statue was found in the cella, while there was a table for offerings 

in front of it. The large number of inscriptions found inside the temple testifies to 

its political significance for the city of Phigalia (Sgouropoulou, 2021). 

For this case study, the use of both visible and NIR-spectrum images was opted 

due to the existence of biological colonization (moss, lichens, biogenic crusts, 

vegetation), benefiting from the dissimilar reflectance characteristics that it presents 

at different wavelengths (Figure 4.18). Orthoimage mosaics were generated using 

an SfM/DMVR approach for parts of the cella and the cubic stone pedestal with the 

RGB and NIR-reflectance images. Then, they were blended to create pseudo-color 

orthoimage mosaics (using the Green, Red, and NIR bands) in the HyperCube 

software. Next, the resulting base maps were segmented to the areas presenting 

different degradation forms following a k-means unsupervised clustering approach 

with centroids initialized using the k-means++ algorithm. Finally, the classified 

images were digitized, and the degradation was semantically annotated in QGIS to 

the corresponding thematic layers (Figures 4.19–4.23). A map of damage categories 

regarding the Temple of Athena and Zeus Soter remains could also be produced. 

Figure 4.24 additionally provides statistics on the coverage of the historical stone 

surfaces by various degradation forms. Both investigated surfaces were, in their 

entirety, covered by biogenic material or discolored. 

 

Figure 4.17. Remains of the ancient Temple of Athena and Zeus Sotiros; (b) the investigated (west) 

side of the stone cubic pedestal of the worshiping statue; (c) the investigated (north) side of the cella 

wall. 
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Figure 4.18. Color and near-infrared images captured at the Temple of Athena and Zeus Sotiros. 

 

Figure 4.19. Orthoimage mosaic, cella wall remains at the Temple of Athena and Zeus Sotiros. 

 

Figure 4.20. Degradation map, cella wall remains at the Temple of Athena and Zeus Sotiros. 
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Figure 4.21. Damage index map, cella wall remains at the Temple of Athena and Zeus Sotiros. 

 

Figure 4.22. Orthoimage mosaic, cubic stone pedestal at the Temple of Athena and Zeus Sotiros. 

 

Figure 4.23. Degradation map, cubic stone pedestal at the Temple of Athena and Zeus Sotiros. 

 

Figure 4.24.  Degradation pattern statistics for the investigated surfaces at the remains of the Temple 

of Athena and Zeus Sotiros; cella wall (left) and cubic stone pedestal (right). 
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4.2.1.4 Archaeological Site of Lepreum 

The ancient Lepreum constituted one of the most important cities of Elis’s Trifylia. 

Lepreum had two citadels, the prehistoric acropolis on the naturally fortified hill of 

Agios Dimitrios, east of the modern village, and the acropolis of the historical 

period to its north. The peripteral temple of Demeter is the most important 

monument in the Classical acropolis. The historical city extended up to the 

prehistoric acropolis. The remains of the Classical and Hellenistic acropolis (Figure 

4.25), particularly the well-preserved enceinte of isodomic and polygonal masonry 

with its square towers, show that the city thrived during these periods. Inside the 

enceinte are several buildings, including the Classical Doric peripteral temple of 

Demeter, mentioned by Pausanias (Antonopoulos, 2021). 

 

Figure 4.25. Ancient walls at the archaeological site of Lepreum. 

For this case study, photogrammetric approaches were followed using 

multiband datasets (examples of reflectance images shown in Figure 17), as 

described in Figure 4.26, to generate the necessary base maps for the mapping 

process. The thermal orthoimage mosaic was produced following a hybrid approach 

exploiting both the visible and thermal images captured by the FLIR One Pro 

camera (Figure 4.27). The false-color multiband image mosaic composed of three 

single-band mosaics (RGB, NIR, and TIR) was classified to create the thematic 

map (true-color image shown in Figure 4.28 and final degradation pam inFigure 

4.29). Statistics were again calculated for the coverage of the historic surface by 

various degradation forms (Figure 4.30), while the damage map (Figure 4.31) 

considered the presence of vegetation, moss, and bio-colonization. Additionally, 

the historical surface was almost entirely covered by biogenic material or discolored 

in this case study. 
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Figure 4.26. Reflectance images captured at the archaeological site of Lepreum: (from left to right) 

true color, near-infrared, and thermal infrared. 

 

Figure 4.27. Thermal orthoimage mosaic of an ancient wall at the archaeological site of Lepreum. 

 

Figure 4.28. Orthomosaic of an ancient wall at the archaeological site of Lepreum. 
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Figure 4.29. Degradation map of an ancient wall at the archaeological site of Lepreum. 

 

Figure 4.30. Degradation pattern statistics for the investigated surface of the wall at the 

archaeological site of Lepreum. 

 

Figure 4.31. Damage index map, of an ancient wall at the archaeological site of Lepreum. 
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4.2.2 Historical Objects 

4.2.2.1 Stone Stelae 

The antiquities involved in this study were eight inscribed and uninscribed stone 

stelae from the Archaeological Museum of Eretria (Euboea, Greece). The 

instrumentation used for the dual-band image acquisition included the modified 

Canon Rebel-SL1 digital camera (with a resolution of 5184 × 3456 pixels) with an 

external NIR-pass filter and a smartphone employing a Sony IMX600 sensor (with 

a resolution of 3648 × 2736 pixels, at RAW capturing mode) with LEICA optics 

for color imaging. The NIR and VIS images were recorded, exported, and pre-

processed as described in section  4.1.2, considering a 1:2 scale, and a NIR-R-G 

multispectral image composite was generated. 

The main identified categories of deterioration on the stelae were moss-lichens, 

discoloration, crusts, and black crusts (Figure 4.32) and were therefore selected as 

classes for the DIP-based classification, along with an additional class for relatively 

healthy marble surfaces. Given the manual nature of selecting the classification 

classes and annotating the sample regions for training the classifiers, four different 

classifiers were trained to allow comparisons. All classifiers used for deterioration 

mapping were based on a decision tree learning method. The evaluated in ImageJ 

classifiers were the Random Tree, Random Forrest, Fast Random Forrest, and j48. 

The machine learning techniques were tested for four stelae, and then the trained 

classifiers were applied to the other four, which presented similar deterioration 

patterns. 

To evaluate the classification results, reference maps were constructed. R-G-B 

images were also involved in the evaluation to estimate the contribution of 

introducing near infrared-spectrum data for improving the classification. Error 

matrixes were calculated as an accuracy metric to compare performances. Table 4.8 

reports the accuracy performance of the tested classifiers run on R-G-B and NIR-

R-G images. 
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Table 4.8. Accuracy results for different classifiers. 

 
M.E. 18084 M.E. 980 M.E. 1357 M.E. 1131 

 

RGB 

0.73 0.78 0.83 0.90 j48 

0.71 0.77 0.82 0.95 RT 

0.75 0.81 0.84 0.94 RF 

0.76 0.82 0.84 0.97 FRF 

NIRRG 

0.74 0.79 0.84 0.94 j48 

0.81 0.85 0.86 0.94 RT 

0.79 0.81 0.85 0.95 RF 

0.78 0.85 0.86 0.98 FRF 

Note: RT Random Tree; RF Random Forest; FRF Fast Random Forest. 

 

Figure 4.32. Stelae at the Archaeological Museum of Eretria. 
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All experimentations generated results with over 70% overall accuracy. Among 

them, consistently high accuracy results were achieved with the Random Tree 

implementation for the more decayed stelae and with the Fast Random Forest for 

the less decayed stelae. Figures 4.33 and 4.34 present the comparison between 

reference maps and generated results. The ability of the random forest method to 

tackle problems in decision tree learning, such as learning unusual irregular patterns 

and overfitting training data, by assigning random subsets of the training and from 

them random input feature subsets, facilitated better accuracies when the distinction 

between pathologies and cleaned/cleaner surface was clearer. However, when there 

was overlap between degradation forms or small enclaves of moss-lichens pixels 

were present inside discolored areas, the decision tree method, which uses all 

features of interest for the training, proved more efficient. 

It should be highlighted that the complexity of the stelae’s surface degradation 

can contribute to the misclassification of pixels. This becomes apparent from the 

higher accuracy values observed for Stelae M.E. 980 and M.E. 1131. The reference 

data consider the predominant form of degradation present at each part of the 

marbles’ surface, but, in fact, the different degradation forms can be overlapping, 

which means that these data are not perfect. Therefore, classifiers assume the 

reference data correct, but there is an uncertainty present, which rises as the number 

of degradation categories increases. This reflects on the misclassified pixels, which 

may not always be assigned to an incorrect class, but on a lesser dominant 

degradation category at a particular region of interest. 

Additionally, inhomogeneous reflectance caused by features induced due to 

material loss—on the micro and macro scale (i.e., erosion, pitting, missing parts)—

can affect the performance of the classification and can usually not be mapped as 

they are overlapping and often caused by weathering phenomena such as biological 

colonization (Urzi, 2004). 

It is evident from error matrixes Table 4.9 and Table 4.10, that when multiple 

degradation forms were present, the most common misclassification was between 

moss-lichens and discoloration, but also clean surface and discoloration when 

discoloration was not very intense (considering the dual-band Random Tree 

approach as the most accurate for stelae 18084 and 1357). 

Including the near-infrared data generally improved accuracy slightly, and 

particularly for the more decayed stelae, which can be explained by the vastly 

different reflectance characteristics of the biodegraded areas at the NIR spectrum. 

 

 



P a g e  | 137 

 
Table 4.9. Error Matrix; degradation mapping of stela M.E. 18084 through the Random Tree-based 

ML approach. 

 

Table 4.10. Error Matrix; degradation mapping of stela M.E. 1357 through the Random Tree-based 

ML approach. 
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Figure 4.33. Classification results stelae M.E. 18084 and M.E. 980 
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Figure 4.34. Classification results stelae M.E. 1357 and M.E. 1131 

The trained and tested classifiers were applied to the image composites of the 

other four stelae to complete the degradation mapping (Figure 4.35). 
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Figure 4.35. Degradation mapping of stelae using the trained classifiers and the NIRRG composites. 

The investigated semi-automated mapping workflow proved to performed well 

for different case studies of stone stelae that presented dissimilar surface pathology. 

For practical reasons, some of the steps followed in this case study may be skipped. 

If, for example, the camera sensor cannot be geometrically or radiometrically 

calibrated, the proposed approach can still produce degradation maps useful for 

conservation purposes. Including NIR images in the approach proved to increase 

the accuracy of the results for some cases, especially when biodeterioration was 

present; however, including only the true color images still provided high-accuracy 

results. Therefore, an unmodified camera can also be used to provide the necessary 

input for ML-based segmentation. 

A critical issue observed in this case study stems from the complexity of the 

mapped surfaces. Overlapping of degradation forms can cause some 

misclassifications, while more easily definable deterioration patterns can produce 

higher accuracy results. The subjective visual identification between less and more 

degraded surfaces that present the same pathology can also affect the approach’s 

performance. Features causes by material loss cannot be easily detected if they are 

not the cause for other degradation patterns (such as moss caused by concentrated 

moisture in the created cavities). 
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4.2.2.2 Stone Sculptures—Extension to 3D Geometry 

This case study discusses applying the semi-automatic mapping workflow for 3D 

digitization and visualization of the state of preservation of heavily degraded stone 

objects, through the case study of a bust of Franz Joseph I of Austria from the 

Accademia Carrara di Bergamo (Figure 4.36). 

The object's geometric recording was performed with a structured-light system 

and digital photogrammetric approaches to obtain diverse data types. Imagery for 

SfM/DMVR approach-based reconstruction was robustly captured with the 

modified Rebel SL1 camera. A UV-NIR-cut external filter was used for the color 

images, and a NIR-pass filter (700–1400 nm) was used to capture near-infrared 

reflectance images. 

Post-processing of the produced 3D point clouds, application of different 

visualization techniques, and segmentation of the 3D models based on RGB and 

near-infrared textures were performed in CloudCompare, as well as the metric 

validation of the photogrammetric results. The classification of images and models' 

textures was implemented in MATLAB through K-means clustering-based image 

segmentation, using k-means++ algorithm for cluster center initialization. The 

number of clusters was chosen by roughly identifying the number of present 

deterioration patterns, according to the 'Illustrated glossary on stone deterioration 

patterns' and by considering that at least one cluster should correspond to the 

healthy materials' surface. 

 

Figure 4.36. A view of the bust of Franz Joseph I. 

The 3D models generated with image-based approaches from RGB and NIR 

imagery were metrically validated by comparing them to the ground-truth model 
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produced with SLS. In both cases, mean Hausdorff distances estimated with the 

appropriate measurement tool in CloudCompare ranged below 1 mm. Furthermore, 

the two models had remarkably similar density and surface characteristics, and the 

distances calculated between the two surfaces were, on average, less than 0.5 mm. 

Shading of meshes' surfaces was based on approximate normal rendering with 

the Eye-Dome Lighting (EDL) shader, approximate ambient occlusion rendering 

with the Screen space ambient occlusion (SSAO) shader, and applying Sobel 

filtering over anisotropic diffusion filtered images to obtain gradient maps of the 

surface. The results, shown in Figure 4.37, and particularly rendering according to 

SSAO and gradient vectors gave more interpretable visualizations of the surface's 

characteristics. 

 

Figure 4.37. Visualizations of digital model in CloudCompare with approximated normal rendering 

using SSAO shader (left) and Sobel filter-based solution (right). 

Photogrammetrically-produced models are illustrated in Figure 4.38. After 

transferring the NIR intensities from the texture mosaic image file to the model's 

surface triangles, a direct segmentation of the weathering stages was achieved by 

directly segmenting in 3D according to the grayscale values. This segmentation had 

good correspondence with the real-life situation of degradation, as seen in Figure 

4.39. Furthermore, the segmented surfaces area could be measured, which has 

significant value for the conservation interventions' efficient planning. 
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Figure 4.38. Digital models produced with image-based techniques: untextured (left), textured with 

RGB imagery (center), and with NIR imagery (right). 

 

Figure 4.39. Direct 3D segmentation of the model based on NIR texture to visualize stone 

weathering stages (darkest tone translates to a higher level of weathering). 

The detailed classification of the deterioration patterns in 3D was implemented 

with two different techniques. The first included exporting RGB and NIR 2D ortho-

mosaics of the bust's surface, blending them to create a multispectral pseudo-

colored image, then classifying it with an unsupervised method, and finally back-

projecting the 2D classification results onto the 3D object. The second technique 

was based on the NIR texture's direct unsupervised classification (Figure 4.40). 

Results from the first implementation were more easily interpretable as specific 

segmented areas had an apparent correspondence to a particular type of 

deterioration. However, the projection of the classified ortho-mosaic onto the model 

created few gaps in the textured product due to the occlusions caused by complex 
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geometry. Multiple partial classified ortho-mosaics on convenient planes would be 

needed to cover the full object and avoid the occlusions as much as possible. The 

second technique provided a classification covering the complete object without 

occlusion problems. However, in this case, results were not as easily interpretable 

because of errors created during the classification—due to areas that presented the 

same decay patterns but were unconnected on the texture image. 

 

Figure 4.40. 3D classification of deterioration using the near-infrared texture. Blue-colored areas 

correspond to healthier material, while green corresponds to biodeterioration and black crusts, and 

orange to stone patina. 
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5 Close-Range Inspection via 

Integrated Metric 3D Surveying and 

Multiwavelength Recording 

The designing of the integrated workflow presented in this chapter has taken into 

account the lack of 3D approaches for inspecting and monitoring cultural heritage 

assets' preservation state and the potential advantages of fusing metric 3D surveying 

and multi-wavelength close-range data through novel approaches. Therefore, it 

aims to address the appropriate recording strategies, which implement passive and 

active close-range sensing techniques (optical, thermal, laser-based, and microwave 

radiation-based) and enable the fusion and the integrated visualization of 

multiwavelength data. In other words, this workflow combines geometric 

measurement and non-destructive recording for condition inspection, while paying 

attention to essential metric and radiometric aspects of the individual sensing 

methods, which facilitate integration. Parts of this chapters’ contents have been 

previously published in Adamopoulos, Bovero et al. (2020), Adamopoulos, 

Colombero, et al. (2021), Adamopoulos & Rinaudo (2020a), Adamopoulos & 

Rinaudo (2020b), Adamopoulos, Rinaudo & Ardissono (2021), Adamopoulos, 

Rinaudo & Bovero (2019), Adamopoulos, Volinia et al. (2020). 

The designed workflow starts by collecting spectral radiance images at the 

visible and near-infrared spectra, thermograms, ground-penetrating radar data, and 

3D point clouds. Measuring a carefully designed network of points, radiometric 

data corrections, photogrammetric processing, and various data transformations 

allow for generating referenced multispectral orthophoto-mosaics (or surface 

developments) and amplitude slices. Then fusion and further processing of the final 

derivatives at the pixel level takes place. The general methodology is summarized 

in Figure 5.1.  Similarly, at the final stages of integrated multiwavelength 

surveying, instead of 2D products registered in 3D space, full 3D integration can 

occur between models with infrared texture and iso-surfaces produced by ground-

penetrating radar amplitudes. 
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Figure 5.1. Integrated multi-sensor and multi-wavelength recording methodology. 

5.1 Data Acquisition and Preparation 

5.1.1 Multiband Imaging and IBM 

The proposed workflow implements modified CMOS-based digital SLR cameras 

to capture the required high-resolution spectral radiance images at the NUV, VIS, 

and NIR spectra. Because orthoimage-mosaics and 3D model textures are to be 

produced through a standard IBM workflow, the image acquisition should follow 

the rules provided by the software manufacturers. General photo-shooting 

guidelines for cultural heritage photogrammetric applications indicate that 

occlusions should be avoided, and each photo should effectively use the frame size. 

Large overlaps are required, and every surface of the object should be depicted in 

at least three images. Shadows and blinks should be avoided. A network of points 

should be established for control and accuracy checks, and measured. Images 

should be saved in RAW format to maintain all the necessary radiometric 

characteristics and should be high-quality. Consistent illumination is required, and 

a standardized color chart should be used in each frame sequence. The scene SSD 

should be selected according to the scale requirements, and it should be at least two 

to three times smaller than the spatial resolution expected on the final orthoimage-

mosaics and mesh textures. 

Multi-view IBM can be conducted with various software (commercial, free and 

open-source) to obtain orthoimage mosaics and textured 3D models of the 

investigated historic surfaces at the NUV, VIS, and NIR spectra. The SfM/DMVR 

approach has been followed for all applications, although different feature 

description, image-matching, reconstruction, meshing, and texturing algorithms 

have been considered and tested. Therefore, extensive metric comparisons have 

been conducted to validate the selected photogrammetric software’s 
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implementability and accuracy with beyond-visible images due to the metric nature 

of all experimentations. 

5.1.2 Thermography and IBM 

A hybrid photogrammetry-driven approach involving both color and thermal-

infrared images is introduced, tackling the problems induced to thermographic 3D 

modeling/thermal mapping by the inherent technical characteristics of thermal-

infrared sensors and the restrictions of thermographic acquisition for cultural 

heritage. The proposed approach employs: (a) acquisition of datasets appropriate 

for photogrammetric digitization purposes, (b) calibration of thermal and optical 

sensors, (c) image-based recording techniques, and (d) adaptive texture mapping. 

The implemented thermographic modeling workflow is briefly sketched in Figure 

5.2. 

 

Figure 5.2. Thermographic mapping method. 

The developed method employs two instruments. Acquisition employs a high-

definition thermographic camera and takes advantage of the integral optoelectronic 

RGB and thermal sensors. As the RGB sensor’s images from the thermographic 

camera are purposed for direct photogrammetric processing, and with the intention 

of acquiring high-resolution thermal textured products, a dense and robust geometry 

with proper overlaps is maintained during the image acquisition phase. During 

capturing, it is also essential to take into account that the spatial resolution of the 

thermal textures should match the resolution of the GPR data, which depends on 

the utilized equipment. The thermal image datasets are acquired in (overlapping) 
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strips, which consist of images captured from the same distance of the object, with 

a similar angle between the camera's optical axis and the plane of the object. 

However, the dataset's geometry still depends largely on the planarity of the façade, 

architectural component, or structure. Capturing additional oblique images 

facilitates the accurate implementation of the photogrammetric principles. The 

second sensor, employed for optical image acquisition, is a high-resolution RGB 

camera. The captured color images are used to improve the geometry of the 

photogrammetric sequences and acquire more accurate orientation results for the 

thermographic camera poses. Low-cost targets identifiable in the visible and 

thermal infrared spectra are placed in the scene to be used as control points with 

known coordinates during photogrammetric reconstruction and to facilitate RGB 

and TIR image registration. Images acquired with the optoelectronic (RGB) and 

thermal sensors of the thermographic camera are exported at the same resolution, 

to simplify the image registration and texturing phases at a later stage. 

The thermal sensor of the thermographic camera is calibrated using a target 

made of materials with different reflectance at the LWIR range. The calibration, 

which estimates the values of intrinsic parameters, extrinsic parameters, and 

distortion coefficients, is computed in a two-step process: (1) solving for the 

parameters in a closed form, assuming lens distortion as zero, and (2) using the 

closed-form solution as the initial estimate of the intrinsic and extrinsic to estimate 

all parameters—including the distortion coefficients—with nonlinear least-squares 

minimization (Levenberg–Marquardt algorithm). The camera parameters are then 

used to undistort the thermal images, which are exported with the same resolution 

as the original ones. The calibration takes place before any other processing of the 

images, as most photogrammetric software cannot estimate the intrinsic camera 

parameters of the thermal sensors (self-calibration). The optical sensor of the 

thermographic camera is also calibrated with the same approach. 

The two sets of estimated parameters about the internal geometry of the 

thermographic camera are used to undistort both RGB and TIR images collected 

with the integral sensors of the instrument. For each acquisition strip, one pair of 

undistorted RGB and TIR images is used to calculate the geometric relation 

between them, as the acquisition geometry remains unchanged throughout every 

strip. By manually identifying at least four common points on both images, a 

projective transformation can be calculated to warp the thermal image to match the 

system of the RGB image (2D registration). This procedure enables the accurate 

thermal texture mapping of the metric products by replacing the oriented optical 

images from the thermographic camera with the corresponding corrected thermal 

ones. The selected points should be on the flatter area of the object and, as much as 

possible, on the same plane to avoid inaccuracies in the transformation. The use of 

more than four points allows for the calculation of errors for the projective 

transform. In addition, the existence of targets easily detectable on the thermal 

images facilitates manual matching in case common features cannot be identified. 
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Each thermal image of the strip is transformed using the calculated projection 

parameters, and the same procedure is repeated for all acquired image strips. 

An IBM 3D reconstruction pipeline is consequently followed. The geometry of 

the surveyed historic surface is reconstructed with an SfM/DMVR algorithmic 

implementation, using the dataset containing RGB images from the two optical 

cameras. In this way, both accurate external orientation information is obtained for 

the RGB sensor of the thermographic camera, and a sparse reconstruction of the 

scene is created. The orientation parameters of the two cameras are then optimized 

using points with measured coordinates. The produced 3D point cloud is then 

densified on a DMVR procedure, excluding the low-resolution images from the TIR 

instrument's optoelectronic sensor to reduce noise. Finally, the dense point cloud is 

meshed into a 3D model, using Delaunay triangulation. If necessary, the surface is 

smoothed or otherwise optimized with denoising techniques. 

For the final step of the 3D temperature mapping, the high-resolution RGB 

images previously used to generate the dense geometry are not used. Instead, during 

the process of texture mapping, the RGB images from the thermographic camera 

are replaced with the same-resolution undistorted and geometrically corrected TIR 

images, maintaining the estimated orientation from the SfM phase, to apply thermal 

texture accurately. The texture is applied with an orthophoto adaptive algorithm so 

that for each part of the model's surface, only the most parallel images are used for 

texturing, avoiding the inclination and convergence effects. When pixel values from 

multiple overlapping pixels are used to texture a single triangle of the model, these 

values are averaged to improve the visual result of the textured product. An ortho-

texture can be generated using the 3D model and the oriented thermal image dataset. 

It should be highlighted that the production of the thermal orthoimage-mosaics 

and textures can also be performed with low-cost thermographic cameras. 

However, in this case, because of the very low spatial resolution the thermographic 

camera can acquire the thermal data should be recorded as sets of burst images to 

increase their spatial resolution later digitally. 

5.1.3 Scanning 

In the framework of the proposed workflow, scanning acts complementarily to the 

implemented multi-sensor approach. Scanning can either substitute image-based 

3D reconstruction of the surveyed heritage asset or capture NIR reflectance data, 

replacing the use of a modified camera, if the laser sensor operates in the near-

infrared spectrum. 

The stations for terrestrial scanning of historical and ancient buildings or their 

remains are selected to acquire homogeneously dense point clouds (in order to 

avoid resampling that may eliminate necessary details), without occlusions, and 
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with large overlaps, which could facilitate accurate registration. Then, the scans are 

denoized, and the laser scanning intensities are rigorously corrected. The final point 

clouds can either be transformed into 3D models textured with the corrected 

scanning intensities, or intensity orthoimages can be produced after calculating the 

necessary transformation planes. Similarly, dense point clouds are acquired through 

structured light scanning or triangulation scanning performed in a homogeneous 

way for the various antiquities and historical objects. However, to the extent of the 

author’s knowledge, there is no software accompanying a structured light or 

triangulation scanner that allows exporting scanning intensities. Therefore, portable 

scanners can be used only to digitize the geometrical shape of antiquities and 

historical objects, not their surface reflectance characteristics. 

5.1.4 Ground-Penetrating Radar 

The GPR profiles are collected along horizontal parallel profiles with the same 

vertical spacing between them, in order to produce homogeneous data. A wheel 

encoder is used to track the positioning of the antenna along the moving direction 

for each GPR profile acquired. Each profile's starting and ending point is measured 

with a total station to obtain the same reference as the photogrammetric and laser 

scanning data. The GPR raw data are processed to obtain radargrams and then 

amplitude slices in 3D space, adopting standard processing steps. The obtained 

radargrams can also produce 3D amplitude ‘point clouds’ (points iso-spaced in the 

three axes)  that could be visualized or used to compute isosurfaces. 

5.2 Data Fusion 

The process of integrating the metric multiwavelength surveying results is at this 

stage facilitated by the relative spatial reference acquired through the measurement 

of an established point network, which allows their co-registration. Pseudocolored 

orthoimage-mosaic composites can be generated using different multispectral 

combinations. The true color and near-infrared mosaics are resampled to match the 

spatial resolution achieved at the long-wavelength infrared and millimeter ranges. 

The spatial reference of the mosaics is maintained while combining the different 

bands. Radargrams are easily co-registered with the pseudocolored orthoimage-

mosaics since their relative position is known. 

The band-specific textures of 3D models require more complicated processing 

to be transformed into multiband textures. First, the band-specific textures (RGB, 

NIR, and TIR) are exported separately from the photogrammetric software. Then 

they can be blended together and reinserted into the photogrammetric software. 

However, in order to do so, the UV texture mapping of the textures for each band 

should be performed in the same way, meaning that every texture patch has the 

exact same image coordinates at the image file of every band. If this condition is 
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not true, using software such as Blender, each band-specific texture should be 

manually described in the same way for all surfaces of the object to allow 

integration into a multiband texture. The same process is followed if the NIR texture 

has been produced using laser scanning data. Due to their known relative position, 

iso-volumes from GPR amplitudes are easy to integrate into the multiband textured 

3D models. 

At the pixel level, for the multiband orthoimage-mosaic composites and 

multiband textures, data fusion is achieved through quantization techniques (such 

as principal component analysis) or wavelet decomposition, resulting in more 

interpretable results which can correspond to different levels of surface weathering 

or suspected defects. 

5.3 Equipment 

The implementation of the workflow described in section 5.1 included topographic 

instruments, digital COTS and modified SLR cameras for multispectral acquisition, 

photographic accessories, thermographic cameras, scanners, GPR instrumentation, 

and processing software. The specifications of the utilized instrumentation are 

presented in Tables 5.1–5.6Table 5.6. 

Table 5.1. Digital SLR cameras. 

 

  
 

Make and model Canon EOS 5DS R 
Canon EOS 1200D 

/EOS Rebel T5 

Huawei P30 (Sony 

Exmor RS IMX600y) 

Resolution 8688 × 5792 pixels 5184 × 3456 pixels 7296 × 5472 pixels 

Sensor size 36.00 × 24.00 mm 22.3 x 14.9 mm 7.6 × 5.7 mm 

Pixel pitch 4.14 μm 4.30 μm 1.01 μm 

Lenses 
Canon EF 24–105 mm 

f/4L IS USM 

Canon EF-S 18–55 mm 

IS II 

Leica 5.6 mm  f/1.8 

integrated 
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Table 5.2. Modified digital SLR cameras. 

 

  

Make and model Nikon Xnite D810 
Canon EOS Rebel SL1 

/EOS 100D 

Resolution 7360 × 4912 pixels 5184 × 3456 pixels 

Sensor size 35.9 × 24 mm 22.3 x 14.9 mm 

Pixel pitch 4.88 μm 4.30 μm 

Lenses 
Nikon AF-S NIKKOR 

24mm f/1.8G ED 

Canon EF-S 18–55 mm 

IS II 

External filters 
Hoya Infrared (R72), 

PECA 916 

LifePixel Standard 

Infrared, ZWB1 U-340 

Modifier MaxMax LDP LifePixel 

Table 5.3. Thermographic cameras. 

 

 

 

 

Make and model FLIR T1030sc FLIR SC660 FLIR ONE Pro 

Spectral range 7.5–14 μm 7.5–13 μm 8–14 μm 

Resolution 1024 × 768 pixels 640 × 480 pixels 160 × 120 pixels 

Pixel pitch 17 μm 17 μm 12 μm 

FOV 1 12°/28°/45° 12°/24°/45° 43° ± 1° 

NETD 2 < 20 mK at 30°C < 30 mK at 30°C < 70 mK 

Accuracy ± 1% ± 2% ± 5% 

Note: 1 Field-Of-View, 2 Noise Equivalent Temperature Difference (thermal sensitivity). 
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Table 5.4. Scanners. 

 

  
 

Make and model FARO Focus3D X 330 FARO Freestyle3D STONEX F6 SR 

Type 
Phase shift-based laser 

scanner 

Handheld structured-

light scanner 

Handheld structured-

light scanner 

Point density 0.009° step size ≤ 0.2 mm at 0.5 m 0.3° step size 

Depth of field 0.6–330 m 0.3–0.8 m 0.25–0.5 m 

Speed up to 976,000 pts/sec up to 88,000 pts/sec up to 640,000 pts/sec 

Ranging/depth error ± 2 mm ± 0.5 mm ± 0.09 mm 

Noise level 0.3 mm at 25 m 0.4 mm at 0.5 m 0.25 mm at 0.25 m 

Table 5.5. Geodetic total station. 

 

 
Make and model GeoMax Zoom30  

Angle standard deviation 3ʺ 

Distance measurement accuracy on reflector 2 mm + 2 ppm 

Reflectorless distance measurement accuracy 3 mm + 2 ppm 
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Table 5.6. Ground-penetrating radar.  

 

 

Make IDS GeoRadar 

Positioning Survey wheel 

Scan rate 127 scans/sec 

Antenna unit Aladdin 

Number of channels 2 

Antenna center frequency 2 GHz 

Antenna polarization Horizontal and vertical 

Control unit K2 

 

5.4 Metric Validation 

This section describes the metric evaluation performed before the implementation 

with case studies, which led to vital decisions about the use of specific close-range 

sensing techniques and processing software. 

5.4.1 Historic Structures 

5.4.1.1 Multispectral 3D Modeling 

The object of study for this test was part of a façade at the monumental complex of 

the Reggia di Venaria in Turin, Italy, located in the former 18th-century stables and 

horse-riding school, designed by Benedetto Alfieri and restored in 2005 to host "La 

Venaria Reale" Conservation and Restoration Center (approx. 2.5m x 4.6m). 

Due to the specific interest in testing and evaluating techniques that differed 

from established practices on heritage spectral imaging and modeling, the 

comparability of results was considered for planning the acquisition of datasets for 

image-based approaches with the low-cost sensors. In other words, instead of 

following a standard workflow for capturing the image datasets to be processed 
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with SfM/DMVR approach photogrammetric software, it was attempted to keep as 

many capturing conditions constant as possible for all sensors and spectra, for every 

case study. Thus, during the production of the 3D meshes, the main parameters that 

would vary (and therefore be compared) would only be the different wavelengths 

captured and different processing software. More specifically, an effort was made 

to keep internal and external parameters similar amongst camera sensors and 

spectra and constant during data acquisition, furthermore, taking into consideration 

scene sampling distances–spatial density of data. In all cases, custom white balance 

was applied, and no additional photographic equipment was used. In particular, to 

collect consistent data, thermal images were acquired in short periods under stable 

climatic conditions while maintaining the same minimum-maximum temperatures 

of the visualization scale. During thermal infrared photo shooting, optical images 

of the same scenes were also stored. All photo acquisition conditions are 

summarized in table 5.7. A set of 18 control and check points was measured with 

the GeoMax Zoom30 3”, producing 5-6 mm accuracy at x, 2-3 mm at y, and 4-5 

mm at z-axis. 

Table 5.7. Details of image datasets for the façade at Venaria Reale. 

camera  f [mm]  distance 

[m]  

GSD 

[mm]  

spectrum  no. 

images  

f-stop  exposure 

[s]  

ISO  

1200D  18  1.50  0.36  VIS  55  11  1/15  200  

SL1  18  1.50  0.36  full  55  11  1/15  200  

SL1  18  1.50  0.36  NIR 55  11  1/5  200  

SL1  18  1.50  0.36  UV 55  11  1/5  200  

P30  5.6  2.00  0.35  VIS  55  1.8  1/500  200  

FLIR  1.5  1.75  1.55  VIS  110  -  -  -  

FLIR  -  -  -  TIR 110  -  -  -  

The software employed for SfM image-based modeling included commercial 

solutions Agisoft Metashape Standard (AM), 3D Flow Zephyr Lite (FZ), and a 

pipeline combining open/ free tools: VisualSfM (VSfM), CMVS and MeshLab. 

A standard semi-automatic photogrammetric procedure for large-scale heritage 

documentation was followed for all datasets, maintaining the same processing 

parameters in each software and as similar as possible between software, to be able 

to compare not only the quality and accuracy of produced clouds and models, but 

additionally algorithms used, processing times and volumes of produced data. 

An overview of the processing parameters is presented in the following table 

(table 5.8). For the first two objects scaling was performed using multiple scales; 

for OBJ3, referencing was performed using 9 points with known coordinates at a 

local x,y,z system as control points and 9 for later check. For texture generation, a 

16,384 x 16,384 resolution JPEG format was chosen in Metashape, Zephyr, and 

MeshLab with mosaicking blend type. 
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Table 5.8. SfM/DMVR processing parameters 

                                 Agisoft Metashape 3DFlow Zephyr 

PARAMETERS    

Matching & Alignment    

Key point density  high  high  

Pair preselection  unordered  unordered  

Key point limits  50 K  50 K  

Tie points limits  accurate  accurate  

Dense Matching    

Masking  no  no  

Point density  high  medium  

Depth filtering  moderate  moderate  

Mesh Generation    

Max faces number  10 M  10 M  

Interpolation  disabled  disabled  

AM was able to reconstruct the scene entirely with similar results for the 

reprojection errors, the density of tie points and densified clouds, and the time 

needed for each processing step of the photogrammetric procedure of all datasets, 

barring for total time of P30 dataset processing. Control and check points RMSE 

for 3D coordinates remained below 2 mm for all spectral imagery captured by the 

two digital SLRs and below 4 mm for both the data captured by the Huawei P30 

camera and the visible sensor of the FLIR One Pro thermal camera. All those errors 

were lower than the accuracy of performed topographic measurements. Although, 

the imagery from the latter sensor was included in the photogrammetric procedure 

only to be able to use the computed orientations to texture with thermal data the 

high-quality 3D mesh produced by the EOS 1200D VIS image dataset. This was 

performed without optically calibrating the IRC sensor, considering that any 

distortions would be insignificant on the approximately 5 cm GDS thermal images. 

However, the optical sensor of FLIR One Pro was calibrated with the Single 

Camera Calibrator App of MATLAB. FZ was also able to fully reconstruct the 

facade producing similar volumes for point clouds and meshes for the datasets from 

all sensors and spectra. However, tie point count together with reprojection errors 

were higher for the Huawei P30 imagery, and additionally, double the processing 

time was needed for the full 3D reconstruction from that dataset. In all cases, xyz 

RMSEs for the facade with FZ were smaller than 2.5 mm. VSfM was able to 

reconstruct only parts of the facade, nevertheless in great detail. 

Both Agisoft Metashape and 3DFlow Zephyr produced high-to-very high-

quality 3D meshes and texturing results for all sensors and spectra. Furthermore, 

P30 imagery produced a very low amount of noise, but for all comparisons with the 

SL1 VIS data, mean distances were < 1 mm for both software and RMS < 4 mm 

for AMP, < 6 mm for FZ, which correspond to approximately 2‰ of the smaller 

dimension of the reconstructed object and, additionally, are lower than the accuracy 

of the ground control points used for referencing the scene. 
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Table 5.9. Geometric comparisons (mean and RMS distances measured in mm). 

1200D  P30  SL1 full  SL1 UV  SL1 

NIR 

AM  -0.572 

/3.589  

0.284 

/2.206  

-0.946 

/2.053  

0.116 

/2.190  

FZ  -0.020 

/3.882  

-0.284 

/5.128  

0.307 

/4.129  

0.085 

/4.323  

Models produced from digital SLR and mobile phone camera image datasets 

had similar levels of roughness, high preservation of surface details on the final 

mesh, and sharp textures. Moreover, on UV and NIR models of the façade, areas of 

high moisture content, delamination and decay were easily distinguishable. The 

high accuracy 3D model with the low-resolution thermal texture produced could 

also assist in a more abstract identification of the areas with high surface humidity. 
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Figure 5.3. Textured 3D models of the façade at Venaria Reale. 

The results produced by combining SFM/DMVR pipelines and spectral 

imaging (Figure 5.3) proved that combination's feasibility for historic building 

recording. As anticipated, conditions of data acquisition and characteristics of the 

case studies have an even greater effect on the implemented photogrammetric 

pipelines and the 3D results produced than when applying standard optical 

photogrammetric approaches for large-scale heritage applications. Especially, 

sharpness, radiometric uniformity, and overlaps of the photos are some of the 
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parameters that impact the quality of spectral meshes' quality. When modified to 

allow multiband capturing, the internal alterations of a low-cost digital SLR, mainly 

regarding focusing, are significant. Even though Metashape was able to reconstruct 

all datasets for the case study involved fully, other software did not succeed to do 

so (despite the use of similar algorithms by Zephyr). In conclusion, the use of the 

low-cost equipment implemented here proves promising, considering the very high-

quality meshes and textures produced by the cellphone camera, the ability to 

distinguish colorings, delaminations, decay, and moisture from the digital SLR non-

VIS meshes, and moisture content from the model produced with thermal textures 

(from FLIR One). 

5.4.1.2 Thermographic 3D Modeling 

The test study for this evaluation was part of the front façade at Castello del 

Valentino palace in Turin. The thermal imagery was densely captured with the 

T1030sc camera (Figure 5.4), maintaining approximately a 90% side overlap and a 

70% overlap between the image strips, over a part of the main façade measuring 14 

× 7.5 m2. All thermal imagery captured for this work's purposes was recorded 

passively, without artificial heating, and thus captures long-infrared signatures 

derived from the predominating environmental conditions. RGB images were also 

captured from the same positions through the optoelectronic sensor of the FLIR 

instrument. Forty-two RGB and IRT image pairs were collected from an average 

distance of 11.6 m. An additional 72 RGB image dataset was captured with the SL1, 

resulting in a combined optical dataset of 144 images. Twenty pre-signalized and 

feature points were measured with the TST, scattered over the study area, with a 

resulting accuracy of half a centimeter at the x and y-axis, and the z-axis. 

 

Figure 5.4. Visualization of the thermal image acquisition geometry. 

The resulting total Root-Mean-Square Error (RMSE) for the control points on 

the reconstructed façade was 9 mm, and for the check points 7 mm. A high-

resolution 3D model was produced (Figure 5.5), consisting of approximately 10 

million triangles with an average edge size of 2 mm, while the spatial resolution of 

the thermal data was approximately 6 mm. Thus, the model was reduced to having 
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a dense cloud grid of 10 mm so that metric and thermal data would have compatible 

resolutions.  

No significant problems were observed with the stitching of the thermal texture 

apart from the small arches' occluded cornices above the large windows and the 

floral decorative sculptures with the irregular geometry (Figure 5.6). The model 

was used for visual inspection, and it was further processed to create a one cm-

resolution thermal orthophoto-mosaic, a product easily exploitable for quantitative 

thermal analyses and other visual analytics. Although no significant degradation 

was observed due to frequent restoration interventions, the plaster integration could 

be observed in many areas with this approach, along with the underlying structure 

and, in specific areas, the remaining moisture. 

 

Figure 5.5. View of the façade's model with thermal texture. 

 

Figure 5.6. Close-up view of occluded areas with blurred thermal texture. 
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The workflow applied for the 3D thermographic modeling was assessed during 

the IRT image-correction, geometry reconstruction, and texture mapping phases in 

the interest of providing a detailed metric and visual evaluation for the complete 

methodology. In addition, a comparative analysis between the methods described 

in section 5.1.2 and other cost-effective techniques, which have also been adopted 

for thermal 3D mapping, was also carried out. 

As previously discussed, during the matching phase, between RGB and IRT 

images, selecting at least four corresponding features is required to estimate the 

transformation parameters to project the thermal data into the optical imagery 

correctly. By including more than four features, an error of the transform was 

calculated, which was approximately equal to 1.5 pixels on the image plane (for all 

strips), meaning less than 9 mm RMSE in the transformation of the IRT images, on 

the surface of the architectural façade. More tests applied by measuring the 

difference of corresponding points in RGB-IRT image pairs, which were not 

included in the initial calculations of the transform, showed similar errors. 

To perform metric comparisons about the façade's reconstructed geometry, the 

surface was additionally reconstructed according to two different scenarios. In the 

first scenario, the uncalibrated thermal images were used directly for the point cloud 

and 3D model generation inside the photogrammetric software. The second 

scenario concerned the use of the low-resolution RGB images, derived from the 

optical sensor of the FLIR T1030sc thermo-camera, as the photogrammetric block 

to generate the metric 3D products. As presented in table 5.10, the investigated 

methodology significantly improved the reconstruction density, accuracy, and 

surface quality. Results from the reconstruction using only the SL1 images are also 

presented in the same table as reference values. Figures 5.7 and 5.8 further 

showcase how the lower-resolution RGB images and the IRT have affected the 

reconstruction. The mean distance between the model produced from the SL1 

images and the T1030sc RGB images was 3.2 cm, and the standard deviation was 

3.3 cm. The same values regarding the distance between the model produced from 

the SL1 images and the T1030sc RGB images were 5.8 cm and 5.4 cm, respectively, 

meaning observable geometric errors on the model. The 3D model produced by 

thermal imagery had significant discrepancies within the areas lacking 

photogrammetric control points and at the edges of the façade. 
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Table 5.10. Comparison between photogrammetric reconstructions from different datasets 

Imagery Dataset  
RMSE*-Control 

Points (cm) 

RMSE*-Check 

Points (cm) 

Point Cloud Density 

(millions of points) 

thermal images-FLIR 

T1030sc 
1.0 1.8 1 

optical images-FLIR 

T1030sc 
1.8 2.8 1 

optical images-FLIR 

T1030sc and Canon Rebel-

SL1 

0.9 0.7 11 

optical images Canon 

Rebel-SL1 
0.4 0.4 10 

Note–*: Root-Mean-Square Error  

 

Figure 5.7. Façade models produced by Canon Rebel-SL1 and FLIR T1030sc optical imagery (top), 

FLIR T1030sc optical imagery (middle), and FLIR T1030sc thermal-infrared imagery (bottom). 
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Figure 5.8. Absolute distances between reference model produced by Canon Rebel-SL1 optical 

imagery and FLIR T1030sc optical imagery (top), and FLIR T1030sc thermal-infrared imagery 

(bottom). 

In order to obtain comparative results for the thermal textures of the created 3D 

models, the model generated by the FLIR T1030sc optical imagery was textured by 

replacing the RGB images with the corresponding IRT images, thus maintaining 

the position, orientation, and calibration parameters of the original images, without 

applying any additional correction. In addition to that, the 3D model generated by 

the FLIR T1030sc thermal imagery was textured without any intervention, applying 

the self-calibration and orientation parameters estimated during the sparse 

reconstruction phase in the photogrammetric software. The results are shown in 

Figure 5.8, where overlays of the thermal orthophoto-mosaics on the RGB 

orthophoto-mosaics are provided to visualize any spatial error between the two 

types of textured products. As is evident, the implementation of the integrated 

workflow was extraordinarily successful in this aspect. The ortho-product of 

directly involving the thermal imagery in the photogrammetric process resulted in 

remarkably similar, visually, results despite the geometric inaccuracies described 

above. However, the mapping result involving 3D reconstruction from the FLIR 

T1030sc camera's RGB sensor had evident flaws. 
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Figure 5.9. Thermal orthophoto-mosaics of the façade (left column) and overlay on RGB mosaic 

(right column)—produced with the proposed workflow (top), produced using imagery from both 

thermal and optical sensors of the thermo-camera (middle), and using only thermal imagery 

(bottom). 

The investigated thermal 3D modeling procedure was also implemented 

employing the FLIR SC660 IRT camera (640×480 spatial resolution), with the 

intention of testing applicability with lower-cost sensors. In this instance, the 

matching errors on the RGB-IRT image-pairs were approximately 2 pixels (2 cm), 

the image-based reconstruction RMSEs combining optical imagery from the 

REBELl-SL1 camera were 4 mm for the control pints and 4 mm for the check 

points, and similarly to the previous case, there were no visible texturing problems. 

The apparent difference was the spatial resolution of thermal texture (1 cm), which 

meant that at least 2–3 cm per pixel should be shown in the final thermal 

orthophoto-mosaic, considering the metric accuracy. A comparison between partial 

thermal orthophoto-mosaics is presented with Figure 5.10, while Figure 5.11 shows 

the full thermal-orthophoto-mosaic produced with imagery from the FLIR T1030sc. 

Although similar radiometric differences could be observed, the mapping result 

from the lower-resolution FLIR appears more blurred, and faint traces of the 

texture-stitching procedure can be observed. However, the results of employing a 

medium-resolution camera, more common for general building inspections, 

showcase an essential potential of involving low-cost IRT sensors for 

thermographic 3D modeling. 
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Figure 5.10. Comparison between orthophoto-mosaic for part of the façade produced with the 

discussed workflow using the sc1030 camera (left) and the 660SC camera (right). 

 

Figure 5.11. Thermal orthophoto-mosaic produced with FLIR 660SC imagery. 

An essential advantage of the presented workflow is that it can easily be 

adapted for the thermal evaluation of façades and flat architectural elements, and 

geometrically more complex building elements. As an example, Figure 5.12 shows 

the results of applying the workflow for a part of a column on the main façade of 

the Castle of Valentino. 
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Figure 5.12. View of the final 3D thermal model of a column's base, where the position of 

restoration materials can be observed. 

Since original temperature values are maintained when mapping the 3D model 

or when generating the thermal orthophoto-mosaics, the temperature can be easily 

measured at specific points on the final textured products (on the surface of a 

material). By identifying the gray-intensity values and adjusting them according to 

the minimum and maximum temperature of the thermal reference scale, 

temperature values and local differences can be easily estimated (the same applies 

when other color palettes have been used for the thermal textures instead of 

grayscale). The gray intensities can be measured in any image processing software. 

Some image processing software (for example, ImageJ) also allows for selecting an 

area about which statistics can be presented regarding the color values—minimum, 

maximum, mean, standard deviation—which can also be translated to temperature 

values following the same correction procedure. Figure 5.13 illustrates the 

measurement of gray values, which, when corrected according to the temperature 

range, show a local mean temperature of 17.0 °C, local minimum temperature of 

16.9 °C, and maximum temperature of 17.3 °C. 
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Figure 5.13. Measurement of thermal intensity values in ImageJ. 

5.4.2 Historic Objects 

5.4.2.1 Scanning and IBM at the visible spectrum 

The test objects for this evaluation (presented with figure 5.14) were: 

• a copy of Early Cycladic II Spedos-variety marble figurine, dimensions: 4cm 

x 4cm x 16cm 

• a Roman column capital replica, dimensions: 45cm x 45cm x 45cm 

• a bust of Francis Joseph I of Austria from the Accademia Carrara di Bergamo 

(Province of Bergamo, Lombardy, Italy), dimensions: 40cm x 50cm x 90cm, 

and 

• a small 19th-century religious stone sculpture of Christ Crucified from Castello 

di Casotto (Province of Cuneo, Piedmont, Italy), dimensions: 31cm x 22cm x 

5cm. 

 

 

Figure 5.14. Case studies (from left to right): Cycladic figurine copy, Roman capital replica, stone 

bust of Francis Joseph I of Austria, and small sculpture of Christ Crucified. 

5.3.2.1.1 IBM 

The instrumentation used for the collection of imagery consisted of the full-frame 

Canon EOS 5DS R camera, the Canon EOS 1200D camera, and the Huawei P30 

smartphone. 
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Imagery for the figurine copy and the small sculpture was acquired using a 

turntable; artificial targets were placed around the objects to scale the scenes. A 

tripod was utilized to stabilize the cameras avoiding micro-blur. Regarding the case 

studies of larger dimensions, images were acquired obliquely with significant 

overlaps; an invar scale bar was also photographed in the scene for scaling. Despite 

the different resolutions of the imaging sensors, it was attempted to maintain similar 

object sampling distances by considering the distance from the object and available 

focal lengths to acquire comparable data. Depth-of-Field (DoF) was calculated 

during acquisition, as sharpness was also considered. The characteristics of the 

datasets are summarized in table 5.11. The last two datasets captured only the upper 

part of the sculpture.  

Table 5.11. Characteristics of imagery datasets. 

Note: * signifies average values. 

 

The photogrammetric software solutions employed for the SfM–MVS 

approach image-based modeling included: 

• Agisoft Metashape Professional 1.5.1 (3499$) 

• 3DFlow Zephyr Aerial 4.519 (4329$) 

• Pix4Dmodel 4.5.3 (49$/ month) 

• Autodesk ReCap Photo 19.3.1.4 (web-based; ReCap Pro 54$/ month) 

Dataset Object 
Camera 

model 

Mega- 

pixels 

f 

[mm

] 

Distanc

e [m] 

No. of 

images 
f-stop 

Exposu

re [s] 
ISO 

1 
figurine 

copy 

EOS 5DS 

R 
52 24 0.25 50 f/7.1 1/20 200 

2 
figurine 

copy 

EOS 

1200D 
18 18 0.20 50 f/8 1/20 200 

3 
figurine 

copy 

Exmor RS 

IMX650 
40 5.6 0.25 50 f/8 1/20 200 

4 
capital 

replica 

EOS 5DS 

R 
52 35 0.88* 50 f/7.1 1/40 200 

5 
capital 

replica 

EOS 

1200D 
18 18 0.69* 50 f/8 1/40 200 

6 stone bust 
EOS 

1200D 
18 18 0.90* 50 f/16 1/60 100 

7 
small 

sculpture 

EOS 

1200D 
18 18 0.38 142 f/16 1/15 100 

8 
small 

sculpture 

EOS 

1200D 
18 55 0.27 60 f/16 1/15 100 

9 
small 

sculpture 

Exmor RS 

IMX650 
40 5.6 0.12 60 f/1.8 1/50 100 
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• Regard3D 1.0.0. (free and open-source) which employs a K-GRraph 

matching algorithm and implements the Multi-View Environment for 

dense scene reconstruction 

• a pipeline combining VisualSFM—a GPU-based bundler for SfM, 

CMVS for MVS dense scene reconstruction, and MeshLab for Screened 

Poisson Surface Reconstruction and mesh color-texturing. 

The image-based processing solutions are herein referred to with the 

abbreviations AMP, FZA, P4D, ARP, VCM, and R3D, respectively. For the 

datasets' photogrammetric processing, a customized laptop was used, with a 6-core 

Intel i7-8750H CPU at 2.2 GHz (Max 4.1 GHz), 32 GB RAM, and NVIDIA 

GeForce RTX 2070 GPU.  

To effectively evaluate the performance of the software implemented and the 

effects of utilizing different imaging sensors, similar parameters, when applicable, 

were selected for all the image-based modeling workflows, as summarized in table 

5.12. Standard semi-automatic digitization approaches were implemented in all 

cases, starting with the reconstruction of a sparse cloud, then densifying it after 

estimating depth maps, creating a mesh with the use of triangulation algorithms, 

and finally texturing the generated mesh with orthophoto adaptive approaches. No 

manual removal of noise was performed, apart from deleting the scene and other 

components unconnected to the object, selected by component size. 

Concerning the implemented algorithms, it should be highlighted that the free 

software VisualSFM utilizes scale-invariant feature transform (SIFT)-based 

detection and description, while Regard3D uses A-KAZE and LIOP (Local 

Intensity Order Patterns) for this purpose; in contrast, 3DFlow Zephyr uses a 

modified Difference-of-Gaussian (DoG) detector. Furthermore, both Metashape 

and Zephyr perform global bundle adjustment, however, VisualSFM and R3D 

implement Incremental SfM. Also, while all other software utilized Poisson Surface 

Reconstruction to generate the triangulated mesh, in FZA, an edge-preserving 

algorithmic approach was selected to compare results.  

Masking of the background on the images was performed in all commercial 

software, barring RCP that does not allow the user to intervene in any processing 

step. In P4D, the application of annotations takes place only after an initial full 

scene reconstruction, if images are correctly aligned, meaning that for the case 

study of the capital, an extra 1:03:56 was required for the EOS 5DSR dataset, and 

an extra 0:37:41 was required for the EOS 1200D dataset, for the first dense cloud 

and textured mesh reconstruction, additionally of what is reported below. 

The dense point clouds deriving from free reconstruction pipelines—where 

there was no option for masking unwanted areas of the imagery—were cleaned 

automatically using Statistical Outlier Removal (SOR) to efficiently remove noise, 

before mesh generation. A maximum octree depth of 13, limited surface 
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interpolation, and specific limits for the number of triangular faces were selected in 

those solutions that allowed customization of the parameters for the 3D mesh 

generation step. Mesh texturing was performed without color or exposure-

balancing the imagery, and without averaging values from multiple images, 

creating single-image file textures. 

Table 5.12. Processing parameters of image-based photogrammetric modeling. 

Reconstruction Step Parameter Value 

Feature detection and 

matching - alignment 

Key point density high (50K) 

Tie point density high (50K) 

Pair preselection higher matches 

Camera model fitting refine 

Dense 

Matching 

Point density high 

Depth filtering moderate 

Mesh 

Generation 

Max number of faces 5M (10M for capital replica) 

Surface interpolation limited 

Texture 

Generation 

Texture size 8,192 x 8,192 pixels 

Color balancing disabled 

For the figurine case study, only AMP and FZA were able to fully reconstruct 

the scene correctly from datasets 1 (EOS 5DS R), 2 (EOS 1200D), and 3 (Exmor 

RS IMX650). FZA required significantly more processing time, producing 

generally sparser results. Similar re-projection errors were observed. P4D was not 

successful in reconstructing the object from any dataset, and RCP results included 

partial reconstructions with noise and fictitious surfaces (figure 5.14). VCM 

pipeline entirely reconstructed the scene from dataset 1 (figurine, EOS 5DS R), but 

a small amount of noise remained after triangulation, affecting the final mesh, and 

the texturing results were problematic. Furthermore, the VCM pipeline was not able 

to reconstruct the object from dataset 2 (figurine, EOS 1200D) and resulted in an 

incomplete point cloud with a lot of noise for dataset 3 (figurine, Exmor RS 

IMX650; see figure 5.15). R3D resulted in dense point clouds that included a big 

percentage of noise for dataset 1 (figurine, EOS 5DS R) and 3 (figurine, Exmor RS 

IMX650; see figure 5.15), which was not possible to be removed automatically (or 

manually) and therefore were not exploited further to construct 3D meshes. Results 

from SfM–MVS photogrammetric processing are listed in table 5.13. 

 

Figure 5.15. Examples of partial and noise-containing reconstructions (from left to right): dataset 1 

RCP, dataset 1 R3D, dataset 3 VCM, dataset 3 R3D. 
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Table 5.13. Photogrammetric results, datasets 1–3. 

  Dataset 1 Dataset 2 Dataset 3 

 Software AMP FZA AMP FZA AMP FZA 

Sparse 

Cloud 

Images Aligned 50 50 50 50 50 42 

Matching time 

[hh:mm:ss] 
00:00:40 00:02:48 00:00:18 00:01:40 00:00:41 00:05:34 

Alignment time 

[hh:mm:ss] 
00:00:19 00:01:11 00:00:06 00:00:20 00:00:10 00:00:34 

Tie points [1,000 

points] 
98 24 29 19 77 27 

Projections [1,000 

points] 
321 136 92 91 212 118 

Adjustment error 

[pixels] 
0.49 0.79 0.54 0.46 0.65 0.72 

Resolution [mm/pixel] 0.05 0.05 0.06 0.06 0.04 0.04 

Dense Cloud 

Processing time 

[hh:mm:ss] 
00:10:31 01:16:39 00:04:31 00:24:03 00:09:09 00:46:40 

Point count [1,000 

points] 
1,832 591 1,169 370 2,414 3,920 

Triangle 

Mesh 

Processing time 

[hh:mm:ss] 
00:00:21 00:00:08 00:00:16 00:00:47 00:00:30 00:00:10 

Faces [1,000 triangles] 4,482 1,168 2,846 737 5,000 1,551 

Vertices [1,000 points] 2,246 589 1,427 369 2,514 783 

Texture 
Processing time 

[hh:mm:ss] 
00:04:07 00:04:01 00:02:46 00:01:25 00:05:49 00:02:32 

 Total time [hh:mm:ss] 00:15:58 01:24:47 00:07:57 00:28:15 00:16:19 00:55:30 

 

For the capital case study, all software solutions could fully reconstruct the 

scene correctly (Table 5.14). Processing times were comparable between 

commercial software. P4D produced the densest sparse cloud results, and AMP the 

densest dense point cloud results. Notably, the camera auto-calibration parameters, 

extracted from the commercial software, were interchangeable upon changing their 

format. 

Similarly, the object was reconstructed with all photogrammetric solutions 

from the obliquely acquired dataset 6 (bust; EOS 1200D). However, RCP 

seemingly created a few double surfaces and misaligned different planes of the 

object's surface. Processing times between open software and AMP were 

comparable, while FZA required significantly more time to process the dataset in 

this case. The meshes created with the open-source software had some holes at the 

lower and upper parts. R3D generated a very dense point cloud, but a high number 

of duplicate points resulted in a low-resolution mesh (Table 5.15). Texturing results 

were similar. 
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Table 5.14. Photogrammetric results, datasets 4 and 5. 

  Dataset 4 Dataset 5 

 Software AMP FZA P4D AMP FZA P4D 

Sparse 

Cloud 

Images Aligned 50 50 50 50 50 50 

Matching time 

[hh:mm:ss] 
00:01:05 00:10:14 0:00:51 00:01:04 00:09:23 00:00:49 

Alignment time 

[hh:mm:ss] 
00:00:33 00:01:02 0:02:53 00:00:21 00:00:27 0:01:50 

Tie points [1,000 

points] 
197 78 1,262 102 52 547 

Projections [1,000 

points] 
535 361 2,697 258 247 1,126 

Adjustment error 

[pixels] 
0.98 1.44 0.17 0.69 0.94 0.11 

Resolution [mm/pixel] 0.08 0.09 0.08 0.16 0.16 0.16 

Dense Cloud 

Processing time 

[hh:mm:ss] 
00:23:15 01:44:35 00:11:35 00:07:51 00:31:01 00:03:15 

Point count [1,000] 43,611 2,168 12,032 10,941 1,811 3,742 

Manual denoizing no no no no no no 

Triangle 

Mesh 

Processing time 

[hh:mm:ss] 
00:36:40 00:00:27 00:07:20 00:03:44 00:00:21 00:00:44 

Faces [1,000 triangles] 10,000 4,245 10,000 9,995 3,587 10,000 

Vertices [1,000 points] 7,739 2,935 7,445 5,507 2,293 6,773 

Texture 
Processing time 

[hh:mm:ss] 
00:36:16 00:07:00 00:35:40 00:11:35 00:04:36 00:10:02 

 Total time [hh:mm:ss] 01:37:49 02:03:18 0:58:19 00:24:35 00:45:48 00:16:40 

 

Table 5.15. Photogrammetric results, dataset 6. 

  Dataset 6 

 Software VCM R3D RCP AMP FZA 

Sparse Cloud 

Images Aligned 50 48 50 50 50 

Matching time 

[hh:mm:ss] 
00:02:19 00:03:36  00:00:36 00:00:59 

Alignment time 

[hh:mm:ss] 
00:01:03 00:00:30  00:00:13 00:17:34 

Tie points [1,000 

points] 
23 143  59 48 

Projections [1,000 

points] 
75 498  156 205 

Adjustment error 

[pixels] 
1.30 0.17  0.52 0.60 

Dense Cloud 
Processing time 

[hh:mm:ss] 
00:11:39 00:23:01  00:05:37 00:22:22 
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Point count [1,000 

points] 
1,582 11,786  9,880 2,666 

Triangle Mesh 

Processing time 

[hh:mm:ss] 
00:06:05 00:01:02  00:06:31 00:02:01 

Faces [1,000 triangles] 1,451 252 1,003 5,000 3,737 

Vertices [1,000 points] 726 127 1,848 2,500 1,873 

Texture 
Processing time 

[hh:mm:ss] 
00:01:52 00:00:48  00:03:10 00:03:54 

 Total time [hh:mm:ss] 0:22:58 0:28:57  0:16:07 0:46:50 

 

Table 5.16. Photogrammetric results, datasets 7–9. 

  Dataset 7 Dataset 8 Dataset 9 

 Software AMP FZA AMP FZA VCM AMP FZA 

Sparse 

Cloud 

Images Aligned 142 69 60 60 60 60 23 

Matching time 

[hh:mm:ss] 
00:01:05 00:03:40 00:01:55 0:01:39 00:01:22 00:01:38 0:02:58 

Alignment time 

[hh:mm:ss] 
0:00:24 00:09:05 00:01:19 00:46:48 00:01:28 00:00:55 0:28:02 

Tie points 

[1,000 points] 
89 36 420 132 54 88 34 

Projections 

[1,000 points] 
273 154 1,270 803 253 242 127 

Adjustment 

error [pixels] 
0.52 0.52 0.35 0.47 1.02 1.15 1.43 

Resolution 

[mm/pixel] 
0.09 0.09 0.02 0.02 0.02 0.02 0.2 

Dense 

Cloud 

Processing time 

[hh:mm:ss] 
00:23:10 00:55:20 00:14:27 00:42:16 00:15:43 00:25:30 00:25:06 

Point count 

[1,000 points] 
2,058 4,211 9,980 3,958 1,764 11,325 1,720 

Triangle 

Mesh 

Processing time 

[hh:mm:ss] 
00:01:23 00:02:30 00:02:58 00:03:34 00:06:03 00:05:32 00:01:13 

Faces [1,000 

triangles] 
4,846 4,605 5,000 4,839 3,864 5,000 2,061 

Vertices [1,000 

points] 
2,424 2,312 2,563 2,500 1,935 2,504 1,055 

Texture 
Processing time 

[hh:mm:ss] 
00:09:25 00:18:25 00:03:59 00:09:50 00:09:47 00:04:09 00:02:51 

 
Total time 

[hh:mm:ss] 
0:35:27 1:29:00 0:24:38 1:44:07 0:34:23 0:37:44 1:00:10 

The object in dataset 7 (small sculpture, EOS 1200D, f=18 mm) was fully 

digitized using AMP, while FZA produced sparser results because not all images 

of the scene were oriented, despite the significantly longer processing time required. 

All software produced dense results from dataset 8 (small sculpture, EOS 1200D, 

f=55 mm), fully reconstructing the scene; AMP generated the densest 3D point 
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cloud with the lowest reconstruction error, and FZA required the most time for 

processing. From dataset 9 (small sculpture, Exmor RS IMX650), the complete 

scene was retrievable only by using VisualSFM. Both RCP and FZA generated 

partial models (figure 5.16), while AMP produced a very noisy surface. Regard3D 

failed to generate any mesh from datasets 7–9. Results from SfM–MVS 

photogrammetric processing of these datasets are listed in table 5.18.  

 

Figure 5.16. Partial meshes generated with RCP (left) and FZA (right) from dataset 9. 

5.3.2.1.2 Scanning 

For the objects' scanning sessions, a FARO Focus3D X 330 was used along with 

two portable handheld near-infrared structure light scanners: the FARO 

Freestyle3D, and the STONEX F6 SR, recently evaluated for the digitization of 

heritage objects. 

 Scans were performed under homogeneous light conditions in circular 

patterns, planned to cover the complete geometry of the objects and eliminate 

occlusions as much as possible. The scanning distances were approximately 0.4–1 

m, translating to 0.2–0.4 mm resolution point cloud densities according to 

manufacturers' specifications for all scanners. The case study of the capital replica 

required eight separate scans to be performed to fully capture the object's 3D surface 

with the Focus3D X 330 and to ascertain the registration of all partial scans in one 

scene. 

Scanned point cloud manipulation was performed with the software provided 

or suggested by manufacturers. Registration, denoising, and decimation were 

performed with Autodesk ReCap Pro 5.0.4.17 for raw scans from FARO scanners 

and with Mantis Vision Echo 2.3.1 for raw scans from the STONEX scanner. The 

3D meshing was performed in MeshLab with similar parameters as used for the 

photogrammetric point clouds. 

For the figurine copy case study, no model was constructed since the Focus 3D 

X 330 scanner did not provide results with enough density, and the handheld 
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scanners resulted in point clouds not correctly registered, with large amounts of 

noise which could not be removed either manually or automatically. For the capital 

replica case study FARO Focus3D X 330 and SF6 SR produced dense results, with 

some holes remaining in the first case due to occlusions. Freestyle3D produced a 

very noisy and sparse cloud. These scanning results are listed in detail in table 5.17. 

Scanning-based models were also produced for the stone bust after merging 8 

partial overlapping surface models captured with the FS SR (14 million points), and 

for one side of the small sculpture (383 thousand point); all other digitization by 

scanning failed because partially scanned scenes could not be registered. 

Table 5.17. Scanning results, capital replica. 

 STONEX 

F6 SR 

FARO 

Focus3D X 330 

FARO 

Freestyle 

Acquisition duration 

[mm:ss] 
02:16 90:56 10:40 

Registration 

duration [mm:ss] 
05:08 14:35 --- 

Denoising duration 

[mm:ss] 
24:15 2:26 00:02 

Meshing duration 

[mm:ss] 
01:23 04:01 01:27 

Cloud points 

[1,000] 
20,928 1,289 435 

Mesh triangles 

[1,000] 
6,350 6,488 1,951 

5.3.2.1.3 Comparisons and Evaluation 

The assessment of the quality of produced meshes considered completeness, 

preservation of the surface detail, noise, roughness, and additionally visual fidelity 

of texture quality for photogrammetric models. Models from the scanners had no 

observable noise. However, the surface produced with F6 SR was oversimplified, 

proving that the Mantis Echo Vision eliminated some of the surface details, despite 

the fact that low values for noise filtering had been selected; distances ranged below 

2 mm (figure 5.17). 
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Figure 5.17. Scanning results. Untextured Stonex F6 SR mesh (left), untextured FARO Focus 3D 

X 330 mesh (center), and scalar field mapping of Hausdorff distances; maximum visualized distance 

1 cm. 

For the photogrammetric datasets 1, 2, and 3, AMP and FZA produced very 

consistent results of similar detail and roughness. The models produced from 

dataset 1 (EOS 5DS R, figurine copy) were of remarkably high texture quality 

(figure 5.18). The models from dataset 3 (Exmor RS IMS 650, figurine copy) 

contained an amount of noise (figure 5.19). The calculated absolute distances 

between all models for those datasets were smaller than 0.5 mm (one standard 

deviation), which was roughly 0.3% of the objects' size, with mean distances being 

lower than 0.3 mm (table 5.18). 

For dataset 4 (capital replica, EOS 5DS R), models from AMP and VCM had 

more holes. Models from P4D and RCP were smoother. The other models contained 

a small amount of noise on flatter surfaces, and P4D seemed to oversimplify the 

surface details. Furthermore, the free software models had a small amount of 

remaining noise at the edges (figure 5.20). All commercial software produced 

similar textures. The calculated absolute distances between photogrammetric 

models for dataset 4 were smaller than 1.5 mm (one standard deviation), roughly 

0.4 % of the objects' dimensions, except for the model from P4D, about which the 

calculated distances to other models were larger than 2 mm (one standard deviation) 

as displayed in table 5.19. A mapping of the geometric differences is also presented 

with figure 5.21. 

Regarding dataset 6 (capital replica, EOS 1200D), all models contained an 

amount of surface noise, ranging from low to medium levels, with the VCM 

pipeline being the one that resulted in higher level of preservation of surface detail 

and lower roughness levels. P4D and R3D meshes were the noisiest (figure 5.22). 

Overall, texture quality between the commercial software was similar and better 

than of that produced by free reconstruction pipelines (figure 5.23). The calculated 

absolute distances between photogrammetric models (vertices of final mesh) for 

dataset 5 was smaller than 2.5 mm (one standard deviation—σ), roughly 0.6% of 

the objects' dimensions, except for the model from P4D, where higher values were 

observed (table 5.20). 
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Table 5.18. Hausdorff distances between photogrammetric models for the figurine copy case study 

– Datasets 1-3 (distances in mm). 

 Dataset 2 AMP Dataset 3 AMP Dataset 1 FZA Dataset 2 FZA Dataset 3 FZA 

dataset 

1 AMP 
0.15 0.11 0.17 0.14 0.21 0.29 0.16 0.15 0.19 0.18 

dataset 

2 AMP 
  0.19 0.16 0.23 0.28 0.21 0.18 0.18 0.14 

dataset 

3 AMP 
    0.18 0.17 0.17 0.14 0.15 0.10 

dataset 

1 FZA 
      0.20 0.20 0.17 0.16 

dataset 

2 FZA 
        0.16 0.10 

 
Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Table 5.19. Hausdorff distances between photogrammetric models for the capital replica case study 

– Dataset 4 (distances in mm). 

 FZA P4D RCP VCM R3D 

AMP 0.66 0.45 0.75 1.30 0.76 0.59 0.69 0.54 0.80 0.57 

FZA   0.80 1.50 0.72 0.78 0.72 0.71 0.79 0.68 

P4D     0.95 2.14 0.94 1.06 0.96 1.07 

RCP       0.80 0.67 0.82 0.64 

VCM         0.60 0.59 

 
Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

 

Table 5.20. Hausdorff distances between photogrammetric models for the capital replica case study 

– Dataset 5 (distances in mm). 

 FZA P4D RCP VCM R3D 

AMP 0.60 0.45 0.68 0.81 0.72 0.99 0.50 0.50 5.45 3.33 

FZA   0.94 1.06 1.04 1.23 0.73 0.68 5.37 3.23 

P4D     1.07 1.51 0.90 0.95 5.48 3.22 

RCP       1.05 1.51 5.55 3.23 

VCM         5.37 3.26 

 
Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 
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Figure 5.18. Textured photogrammetric meshes of the figurine copy, (from left to right) dataset 1 

AMP, dataset 1 FZA, dataset 2 AMP, dataset 2 FZA, dataset 3 AMP, dataset 3 FZA. 

 

Figure 5.19. Untextured photogrammetric meshes of the figurine copy, (from left to right) dataset 

1 AMP, dataset 1 FZA, dataset 2 AMP, dataset 2 FZA, dataset 3 AMP, dataset 3 FZA. 

 

Figure 5.20. Untextured photogrammetric meshes from dataset 4, (from left to right) AMP, FZA, 

P4D, RCP, VCM. 

 

Figure 5.21. Scalar field mapping of Hausdorff distances for dataset 4 between RCP SfM–MVS 

mesh and: AMP mesh (left), FZA (center), and P4D mesh (right); maximum visualized distance 1 

cm. 
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Figure 5.22. Textured photogrammetric meshes of the capital replica from dataset 5, (from left to 

right) AMP, VCM, R3D. 

 

Figure 5.23. Untextured photogrammetric meshes of the capital replica from dataset 5, (from left to 

right, and from top to bottom): AMP, FZA, P4D, RCP, VCM, R3D. 

Concerning dataset 6 (stone bust, EOS 1200D), FZA, RCP, and VCM-

generated meshes were those more similar to the scanned mesh, and between them, 

in terms of surface detail and surface roughness (figures 5.24, 5.25). However, as 

mentioned above, the RCP mesh had duplicate surfaces, and the FZA-produced 

mesh had a few holes on the top of the head where there was a smaller overlap 

between images. The AMP-produced mesh was also similar to the scanned one on 

the flatter surfaces, but on edges and 'fabric' folds a significant amount of noise 

remained. The textures were similar and differentiated only because of the small 

surface anomalies present at the web-based and open-source software produced 

meshes. Calculated surface differences are presented in figure 5.26. Differences 

between the AMP-generated model and the other models were the smallest (table 

5.21), while differences between AMP-FZA models ranged below 1.4 mm (1 σ). 
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Figure 5.24. Untextured meshes of the stone bust from dataset 6 (from left to right, and from top to 

bottom): F6 SR, AMP, FZA, RCP, VCM, R3D. 

 

Figure 5.25. Detail from untextured photogrammetric meshes of the stone bust from dataset 6 (from 

left to right): F6 SR, FZA, RCP. 

 

Figure 5.26. Scalar field mapping of Hausdorff distances for dataset 6 between AMP SfM–MVS 

mesh and: FZA mesh (left), RCP (center) and VCM mesh (right); maximum visualized distance 1 

cm. 
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Table 5.21. Hausdorff distances between photogrammetric models for the stone bust case study – 

Dataset 6 (distances in mm). 

 FZA RCP VCM R3D 

AMP 0.82 0.58 1.28 0.89 0.69 0.82 1.03 1.31 

FZA   1.21 1.31 1.00 1.15 1.11 1.37 

RCP     1.44 1.19 1.68 1.5 

VCM       1.21 1.36 

 
Mean 

abs. 
Std. dev 

Mean 

abs. 
Std. dev 

Mean 

abs. 
Std. dev 

Mean 

abs. 
Std. dev 

 

The only fully reconstructed mesh for dataset 7 from AMP had smoothed-out 

surface features. All reconstructed models from dataset 8 had similar characteristics 

(figure 5.27). Some double surfaces could again be observed on the surface 

produced with RCP. Surprisingly, the generated surface with better-preserved 

surface features, was the one produced from dataset 9 (small sculpture, Exmor RS 

IMX650) with the pipeline implementing VisualSFM, CMVS, and MeshLab 

(figure 5.28). The differences observed between the meshes generated from dataset 

7 ranged below 1 mm (1 σ), while the differences between models from dataset 8 

ranged below 0.7 mm (1 σ), which are both considerable taking into consideration 

that the resolutions of these datasets were 0.09 mm and 0.02 mm, respectively. 

Significantly the surface deviation between the dataset 9 VisualSFM model and the 

high-resolution Metashape model from dataset 8 was below 0.5 mm (1 σ). Some of 

the measured distances are presented in table 5.22. 

Table 5.22. Hausdorff distances between photogrammetric models for the small sculpture case study 

– Datasets 7–9 (distances in mm). 

 AMP-dataset 7 FZA-dataset 7 AMP-dataset 8 VCM-dataset 9 

AMP-dataset 8 0.70 1.45 0.81 1.53 0.24 0.48 0.28 0.86 

 
mean 

abs. 
std. dev. 

mean 

abs. 
std. dev. 

mean 

abs. 
std. dev. 

mean 

abs. 
std. dev. 
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Figure 5.27. Untextured meshes of the small sculpture, (from left to right, and from top to bottom): 

F6 SR, AMP-dataset 7, AMP-dataset 8, FZA-dataset 7, FZA-dataset 8, and RCP-dataset 8. 

 

Figure 5.28. VCM-produced mesh from dataset 9 (smartphone camera). 

5.3.2.1.4. Further Metric Comparisons 

For the capital replica case study, more geometric assessments could be performed, 

comparing scanning meshes, assumed as ground truth, to the photogrammetric 

models. Calculation of distances was performed in Cloud Compare, with the Cloud-

to-Cloud distance tool on final meshes' vertices, after Fine Registration (ICP) was 

employed. The Hausdorff distances between scanning and photogrammetric 

meshes ranged below 3 mm (one standard deviation) for dataset 4, except for the 

P4D model, and below 3.5 mm (one standard deviation) for dataset 5, except for 
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the R3D model, which contained a great magnitude of noise. The results are 

presented in detail in tables 5.23 and 5.24. The main differences between models 

produced with photogrammetric and scanning techniques were observed at parts of 

the capital replica that occluded due to its complicated geometry. 

Table 5.23. Hausdorff distances between 3D scanning and photogrammetric models from dataset 4 

(distances in mm). 

 AMP FZA P4D RCP VCM R3D 

3D X 

330 

0.84 2.18 1.01 1.57 1.32 2.14 1.17 1.69 1.21 1.79 1.01 1.04 

F6 SR 1.72 1.75 1.23 1.40 1.23 1.43 1.48 1.61 1.21 1.39 1.17 1.35 

 
Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Table 5.24. Hausdorff distances between 3D scanning and photogrammetric models from dataset 5 

(distances in mm). 

For the stone bust, further geometric assessments could also be performed, 

comparing photogrammetrically produced surfaces with the scanned model. 

Accuracies considering as ground truth the scanned F6 SR model are presented in 

table 5.25 and visualized in figure 5.29. The AMP and FZA models were more 

metrically accurate, considering that surfaces deviated below 1.3 mm (1 σ) from the 

ground truth model, only 3 ‰ of the object's smallest dimension. Mean distances 

and their standard deviation for the models produced from non-commercial 

software ranged at about 1 mm. 

Table 5.25. Hausdorff distances between 3D scanning and photogrammetric models from dataset 6 

(distances in mm). 

 AMP FZA P4D RCP VCM R3D 

3D X 

330 
1.46 1.96 1.29 1.90 1.37 2.16 1.42 2.04 1.25 2.09 5.75 3.30 

F6 SR 1.53 2.16 1.54 1.41 1.22 1.43 1.51 1.69 1.31 1.44 6.22 3.33 

 
Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

 AMP FZA RCP VCM R3D 

F6 SR 0.63 0.73 0.66 0.65 1.22 1.00 0.75 0.92 1.11 1.38 

 
Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 

Mean 

abs. 

Std. 

dev 
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Figure 5.29. Scalar field mapping of Hausdorff distances between dataset 8 photogrammetric 

models and the scanned F6 SR model showing surface deviation from AMP (upper left), FZA (upper 

right), RCP (lower left), and VCM (lower right); maximum visualized distance 1 cm. 

5.3.2.1.5. Discussion 

The presented metric tests on heritage objects carried out a selective comparison of 

state-of-the-art SfM and MVS image-based modeling solutions of different costs 

and portable scanners for small-scale heritage digitization. As expected, challenges 

occur from the different nature of heritage objects, with geometry, surface features, 

and texture playing an important role on the decision-making for acquisition and 

processing workflows. 

Photogrammetric results are affected by the type of camera sensor, sampling 

distance, and coverage of the object on the image space. For complex, featureless, 

or very small case studies, only the expensive commercial solutions appear to be 

able to fully reconstruct the photogrammetric scene, proving that perhaps the more 

cost-effective solutions are better suited for static scenes, or when the background 

is homogeneous and of vastly different color than the object, so that it can be 

recognized as background by the utilized software. 
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For the photogrammetric reconstruction from the datasets of the capital replica 

and the stone bust, almost all workflows produced similar results. However, some 

persistent noise problems can be attributed to oblique images and thus can be 

tackled by acquiring more rigid, dense, and light-consistent imagery datasets. 

Although AMP, FZA, and RCP proved to be the more efficient solutions, it 

should be stated that RCP offers no adjustable parameters and a limitation of 100 

images per project, which is an important problem for real-case heritage digitization 

applications. Furthermore, AMP offers only a few adjustable parameters, with no 

details being available on the algorithmic approaches it exploits. On the other hand, 

FZA allows every parameter on the digital reconstruction workflow course to be 

customizable. Despite default options resulting in noisy results -relative to FZA- an 

expert can identify how to optimize its implementation for heritage purposes. 

Especially the implementation of an edge-preserving meshing algorithm, that also 

limits the interpolation of the dense point cloud in 3DFlow Zephyr, allows the 

generation of high-quality surfaces, preserving detail similar to the handheld 

scanners. P4D, a software mainly oriented towards long-range applications and 

flatter geometries, did not provide satisfactory results. The main problem with the 

free solutions was surface noise (due to capturing conditions) which cannon easily 

be filtered in post-production. 

Image-based methods tackled occlusions caused by complex geometries, but 

other problematic surfaces may require various combinations of documentation 

techniques. Furthermore, the textures produced from scanning techniques were not 

of adequate quality. Thus, meshes produced in this manner need to be textured with 

other methods, ranging from simple image-to-mesh registration, co-registration 

with photogrammetric models, and integrating sensors for multiple data 

acquisitions. Differences between Focus3D X 330 and Stonex F6 SR results can be 

attributed to the fact that the first one is oriented mainly towards architectural 

documentation and other construction applications. 

Using a mobile phone camera for photogrammetric purposes also seemed 

promising, not affecting the metric properties of the results but having a visible 

effect on the generated noise levels. Although, despite the high resolution and 

quality of the mobile camera sensor, texture results were of lesser quality than 

textures produced from datasets of high-resolution digital SLR cameras. Thus, more 

experiments need to be conducted to evaluate the radiometric capacity of 

smartphone cameras for high fidelity texturing of heritage models. To conclude, 

smartphone cameras and web-based solutions provide an exciting potential for 

applications where metric quality is not the primary concern, such as rapid 

recording, dissemination for education, or promotion of cultural heritage for 

touristic purposes. 
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5.5 Experimental Results 

5.5.1 Stone Sculptures 

This case study combined NIR reflectance imaging performed with a modified 

commercial camera, image-based multi-view 3D modeling, and 3D mapping 

techniques. The aim was to explore a reproducible, rapid, and easily implementable 

method for inspecting stone sculptures. Towards this direction, NIR spectral models 

were produced using two algorithmic implementations, and their metric quality was 

evaluated. The geometric results are further discussed compared to models 

produced by RGB images. Then the produced high-quality NIR models are used to 

implement different mapping techniques based on classification and segmentation 

approaches, exploiting the high-resolution NIR reflectance intensities to produce 

different visualizations. Afterward, the 3D digital visualization results are discussed 

on their capacity to accurately represent the weathering levels on historical stone 

sculptures. Finally, aiming to evaluate the applicability of the suggested method on 

different scales, it is demonstrated for two case studies of different dimensions. 

5.5.1.1 Materials and Methods 

The suggested approach was evaluated on different scales, with two different case 

studies of historical stone sculptures exposed to external environmental conditions 

being involved. The first one was a 17th-century marble statue (approx. height of 

1.75 m) from the Fountain of Hercules at the Reggia di Venaria Reale near Turin. 

The Palace of Venaria was one of the Residences of the Royal House of Savoy, 

included in the UNESCO World Heritage List in 1997. Musei Reali Torino owns 

the statue. The second case study was a small 19th-century religious stone sculpture 

of Christ crucified (approx. dimensions 31 cm × 22 cm) from Castello di Casotto 

(Garessio, Province of Cuneo, Piedmont) owned by Regione Piemonte. The Casotto 

Castle was originally a Carthusian monastery, later acquired by the Savoy and 

transformed into a castle and hunting lodge by Carlo Alberto (30). 
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Figure 5.30 Images of the case studies; statue from the Fountain of Hercules (left) and small stone 

sculpture of Christ Crucified (right) 

The images were captured with the Canon Rebel SL1 converted camera for this 

experimentation. NIR image acquisition was performed with the implementation of 

a near-infrared-pass filter (700–1400 nm), and VIS image acquisition was 

performed with the implementation of a UV-NIR-cut filter. Additionally, a Canon 

EF-S 18–55 mm f/4–5.6 IS II zoom lens was used. The camera was mounted on a 

tripod during all acquisition scenarios to avoid micro-movement effects. An x∙rite 

ColorChecker® Classic target with 24 colors was used for color correction, 

utilizing middle gray for visible white balancing. Post-capturing photo-editing 

operations were performed in Adobe Lightroom Classic. The raw NIR radiance 

images were radiometrically corrected and subsequently transformed into 

reflectance images, as described in section 4.1.2. 

Multi-view image-based 3D reconstructions were conducted with Agisoft 

Metashape Professional (AMP) 1.5.1 and with 3DFlow Zephyr Aerial (FZA) 4.519. 

Both software is based on Structure-from-Motion (SfM), and Multiple-View-Stereo 

(MVS) approaches. AMP employs scale-invariant feature transform (SIFT)-like 

detection and description, then calculates approximate relative camera location and 

uses Global bundle adjustment to refine them, a type of MVS disparity calculation 

for dense reconstruction and Screened Poisson surface reconstruction. FZA 

employs a modified Difference-of-Gaussian (DoG) detector, a combination of 

Approximate Nearest Neighbor Searching, M-estimator Sample Consensus, and 

Geometric Robust Information Criterion for matching, then hierarchical SfM and 

Incremental adjustment, dense MVS reconstruction with fast visibility integration, 

tight disparity bounding and finally meshing with an edge-preserving algorithmic 

approach was selected to differentiate from AMP. To be able to compare the 

performance between the two different algorithmic implementations with NIR 

datasets, it was attempted to employ similar photogrammetric reconstruction 

parameters inside both software, when applicable.  

Metrical comparisons and manipulation of the final textured models were 

performed with the open-source software Cloud Compare. Segmentation of the NIR 
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textured models to create 3D thematic mapping was performed in free and open-

source software MeshLab. Finally, the 3D visualizations were realized in the free 

software Cloud Compare. All image-based processing was performed with the same 

laptop, with a Hexa-core Intel i7-8750H CPU at 2.2 GHz (Max 4.1 GHz), 32 GB 

RAM, and an NVIDIA GeForce RTX2070 GPU. 

5.5.1.2 Application 

The dense capturing of the images was planned according to the software manuals 

and considering relevant works with similar algorithmic implementations. Rigid 

imagery datasets were acquired for both case studies, with large overlaps (over 

80%) from close ranges (Figure 5.31). The internal and external capturing 

parameters were maintained constant, as well as the ground sampling distances 

(GSD) between the NIR and VIS spectra, to increase the comparability of the final 

3D models. In this way, both the metric evaluations and the assessment of 

SfM/DMVR-based reconstruction performance from NIR images were facilitated. 

 

Figure 5.31. Image capturing scenarios; statue from the Fountain of Hercules (left) and small stone 

sculpture of Christ Crucified (right) 

Low ISO values were used to prevent sensor luminance noise, simultaneously 

maintaining the exposure durations under the clipping limit value. The images were 

captured in Canon’s raw image format (.cr2) to avoid the loss of valuable intensity 

data. In both spectra, datasets of 180 and 142 images were selected for each object. 

The capturing conditions used to collect the datasets are summarized in Table 5.26. 

It should be highlighted that artificial lighting was not used for the first case study, 

as it resulted in extremely variable light conditions. The image acquisition was 

complex due to the geometry of the sculpture and the non-uniform illumination by 

various light sources inside the conservation labs where it was hosted. Also, it was 

impossible to implement the same camera positions for VIS and NIR imaging, but 

a constant distance from the object was marked and maintained, and similar angles 

between each position were kept. For the case study of the Crist Crucified sculpture, 

a ring flash was used to eliminate all shadows in a more controlled environment. 

The images of different spectra were captured from the same positions. 

Additionally, for this case study, a turntable was utilized during acquisition. The 
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object was rotated four times to capture different but overlapping sides. Scaling for 

the first case study was performed using an invar scale bar of 1.000165m (±15 nm). 

Additionally, small paper targets were placed at the base and the body of the marble 

statue to assist the orientation between the 3D models. The scaling of the second 

case study was performed by using as reference the measured dimensions of the 

wooden cross (precision of measuring ±0.25 mm) 

Table 5.26 Characteristics of the imagery datasets 

Case 

study 

f 

[mm] 

Distance 

[cm] 

GSD 

[mm] 

Spectrum 

 

f-stop 

 

Exposure 

[s] 

ISO 

 

1 18.0 98 0.22 VIS f/11 1/2 200 

1 18.0 98 0.22 NIR f/11 5 200 

2 18.0 38 0.09 VIS f/16 1/15 100 

2 18.0 38 0.09 NIR f/16 1/15 100 

Before processing, raw VIS images of the marble statue were digitally 

manipulated to soften the highlights and the shadows, as this was later resulting in 

high surface noise on the 3D models, paying attention to not eliminating the surface 

features useful for image-based modeling. NIR images were exported in a single-

band format. In addition to that, all the implemented images were masked 

accordingly in both software, to exclude the unwanted areas of each scene, and out-

of-focus areas, to increase the quality of imagery, therefore reducing noise levels 

and processing times. 

Multi-view image reconstructions with NIR and VIS imagery followed a 

standard semi-automatic SfM/DMVR pipeline, similar in both software despite the 

significant differences in algorithmic implementations. Similar reconstruction 

parameters were used between them, regarding volumes and quality of processing 

outputs (max. of 10M triangles for the meshes). The 3D models were constructed 

in a four-step procedure. The first step referred to the sparse reconstruction of each 

object, with a concurrent estimated calculation of the cameras’ relative orientation, 

and autocalibration with SfM approaches. For this step, the chosen accuracy and 

density parameters were the highest available in both software. According to re-

projection errors, the sparse point clouds were filtered from noise and local cluster 

distances with statistical filtering. For the second step, results were densified by 

employing MVS stereo-matching algorithms. The third step comprised of meshing 

the dense point clouds into triangular surfaces (Delaunay algorithm). The generated 

meshes were subsequently cleaned from small unconnected components and spikes. 

The final step involved the application of texture mapping to acquire single-file 

high-resolution textures from the original images. Given the high quality of original 

imagery, color balancing and blending between images were constrained 

significantly to reduce the possibility of radiometric errors. When choosing the 

resolution of textures, sampling distances were considered to be at least two or three 

times higher than the original pixel sizes. Between each stage of the reconstructions, 
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thorough visual checks were performed to determine quality, and then denoizing 

procedures were followed, identically for all the produced dense results, not to 

reduce comparability. 

The 3D mapping was accomplished with two alternative procedures to enhance 

NIR modeling results toward an accurate visualization of the surface pathology. It 

was performed based on the hypothesis that the NIR reflectance intensities 

corresponded to the level of weathering since it was discovered that the natural 

patina of the stone was mostly invisible in the near-infrared spectrum and that the 

dominant deterioration pattern for both case studies was biological, while no 

physical damages were observable.  

The first 3D mapping approach was to assume that the reflectance intensities 

were already a precise, detailed representation of the weathering levels. Although 

to increase interpretability, NIR textures were reduced to 3-bit grayscale. In this 

way, pseudocolored mappings of the levels of weathering were generated, which 

were then re-projected onto the final meshes. 

For the second 3D mapping approach, after exhaustive tests to decide the 

optimal number of levels of deterioration that should be visualized, the 3D NIR 

textured models were ultimately classified according to 6 distinct classes/levels of 

weathering. The number of thematic mapping classes was selected to make more 

interpretable the distinguishably different levels of weathering between the case 

studies and the not so distinct levels of weathering for each case study separately. 

The created thematic layers corresponded to levels of surface decay ranging from 

low (almost healthy stone) to very high (substantial surface biodeterioration and 

thick deposits). In order to apply this type of mapping, intensity information was 

transferred from the single-image textures to the triangles of the meshes and then 

used the colorized mesh to perform segmentation based on the color. Subsequently, 

the respective 3D sub-models were colored with different hues, and the surface 

areas were calculated. For better visualization results, artificial lighting according 

to the normals of the 3D meshes was also applied. 

5.5.1.3 Results and Discussion 

In order to thoroughly assess the image-based modeling results, their densities, 

reconstruction errors, and processing durations were recorded in detail for both 

software. The photogrammetric results are presented in Table 5.27. In addition, the 

preservation of surface detail on the final 3D models and the levels of generated 

noise were also assessed. 
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Table 5.27 Image-based reconstruction results 

 Statue from the fountain of Hercules Sculpture of Crist Crucified 

 VIS AMP NIR AMP VIS FZA NIR FZA 

VIS 

AMP 

NIR 

AMP VIS FZA NIR FZA 

Aligned images 180 180 176 180 142 142 70 140 

Matching time 00:05:16 00:04:24 02:24:36 00:51:47 00:01:05 00:01:25 00:12:11 00:07:06 

Alignment time 00:05:33 00:03:39 00:18:24 00:13:52 00:00:24 00:00:34 00:00:51 00:01:00 

Tie points 454,192 426,852 258,384 177,250 89,440 53,780 35,861 42,321 

Point projections 1,434,286 1,365,710 1,743,280 1,192,860 273,196 139,401 154,077 207,060 

Reprojection 

errors 0.65 0.80 1.01 1.11 0.52 0.68 0.52 0.80 

Densification 
time 01:43:36 02:17:14 02:06:24 03:09:11 00:23:10 00:24:13 00:55:20 02:31:58 

Dense cloud 

points 14,676,050 15,719,040 5,580,119 4,916,655 2,058,186 2,033,498 4,210,383 4,343,056 

Meshing time 00:08:35 00:09:07 00:05:23 00:03:50 00:01:23 00:01:34 00:02:30 00:05:40 

Mesh vertices 5,000,615 5,000,615 3,693,700 3,244,014 2,424,234 2,355,906 2,312,486 2,316,916 

Mesh triangles 10,000,000 10,000,000 7,375,384 6,473,051 4,845,581 4,707,857 4,604,754 4,623,336 

Texturing time 00:10:29 00:10:43 00:24:37 00:13:20 00:09:25 00:06:05 00:18:25 00:08:57 

Total processing 

time 02:13:29 02:45:07 05:19:24 04:32:00 00:35:27 00:33:51 01:29:17 02:54:41 

Geometric comparisons were performed amongst the models derived from 

different software and spectra, computing Hausdorff distances between the vertices 

of the final meshes. This task was executed in Cloud Compare with the Cloud-to-

Cloud tool, after using an Iterative Closest Point (ICP) algorithm to perform fine 

registration. Additionally, it was decided to compare with meshes produced with a 

STONEX F6 SR structured light scanner, which were down-sampled to match the 

density of the models produced with image-based techniques. 

For the case study of the marble statue from the fountain of Hercules, image-

based modeling resulted in full reconstructions of the object for both VIS and NIR 

datasets. Point clouds from both spectra were of similar volume, although FZA 

produced denser results than AMP. The re-projection errors of the reconstruction 

were also slightly higher for FZA. Despite the fact that the use of NIR images did 

not seem to influence the processing times, the NIR-produced meshes contained 

low levels of surface noise, concentrated in the areas where shadows could not be 

eliminated. It should be highlighted that NIR digitization resulted in the same level 

of surface detail preservation as VIS digitization (see Figure 5.32). Hausdorff 

distances between vertices of the final meshes for VIS and NIR reconstructions 

showed differences of 0.72 ± 0.58 mm for AMP and 0.73 ± 0.74 mm for FZA. In 

both cases, the differences with the mesh produced from the F6 SR scanner were in 

the range of 0.8 ± 0.7 mm. Textures were of the same quality. The NIR model 

finally selected for 3D mapping was the one from AMP because of the lower surface 

noise.  
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Figure 5.32 Photogrammetric models, statue from the Fountain of Hercules (from left to right): 

AMP VIS, AMP NIR, FZA VIS, FZA NIR 

For the case study of the stone sculpture of Crist Crucified, FZA was not able 

to reconstruct the object from all images for the VIS scenario (images from two out 

of four circular capturing patterns were oriented), but the problem was overcome 

with NIR imagery. However, this cannot be attributed to the different features 

visible on the NIR images, but rather to the employed software's algorithmic 

implementations. In this case, all the scenarios produced dense results of similar 

volume. Similar processing times were observed for VIS and NIR modeling, and 

similar to the last case study, slightly higher reconstruction errors. Furthermore, 

there was significant observable surface noise in both NIR models, but the level of 

surface detail preserved was identical to the VIS ones (see Figure 5.33). Hausdorff 

distances between vertices of the final meshes for VIS and NIR reconstructions 

showed differences of 0.39 ± 0.25 mm for AMP and 0.29 ± 0.41 mm for FZA. 

Textures were of the same very high quality. The NIR mesh that was finally selected 

to apply 3D mapping was the one from AMP because of the visibly lower surface 

noise. In both cases, the distances between the photogrammetric models and the 

meshes produced from the F6 SR scanner ranged below 0.70 mm. 



P a g e  | 195 

 

 

Figure 5.33 Photogrammetric models, sculpture of Crist Crucified (from left to right): AMP VIS, 

AMP NIR, FZA VIS, FZA NIR 

As expected, the mapping results produced with the NIR models have a good 

correspondence with the real-life situation about the state of weathering. The 

suggested 3D image-based approaches are significantly more accurate than manual 

mapping by hand or by 2D CAD and GIS systems and allowed to map in three-

dimensions details of up to sub-millimetric detail. They gave valuable first insight 

on the overall assessment of the surface weathering, which could not be achieved 

with a VIS textured model, because of the misinterpretations caused by the natural 

patina. The 3D segmentation performed on the models based on the NIR reflectance 

also allowed to record the area and percentage of each level of weathering and to 

compare the case studies involved (see Table 5.28). 

Table 5.28 Areas of 3D surface weathering in comparison 

Statue of Hercules  Sculpture of Christ 

Area (m2) Area (%) Level of weathering (color) Area (%) Area (m2) 

0.048718 2.28 very-high (red) 0.00 0.000000 

0.672628 31.41 high (orange) 0.00 0.000000 

0.860497 40.19 medium-to-high (light orange) 1.15 0.003707 

0.432027 20.18 medium (yellow) 5.27 0.017002 

0.120743 5.64 medium-to-low (light green) 93.58 0.301840 

0.006489 0.30 low (green) 0.00 0.000030 

 

In the case of the application for the statue from the fountain of Hercules, and 

despite the problems created to 3D mapping by the remaining shadows in the 

occluded areas, the circular forms of the biodegradation patterns were easily 

distinguishable in both protected and unprotected areas of the surface. Notably, 

significant weathering is present at shallow cavities and cracks whose origin is 

either due to the construction techniques or because of physical damage induced 

over time. Extensive high levels of deterioration are evident on almost the entire 

surface of the statue (see Figure 5.34), as 73.88% of the surface was characterized 

by medium-to-high to very-high levels of deterioration according to our approach. 

Only 0.30 % was characterized by low levels of weathering. The observed high 
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levels of bio-decay can be largely attributed to the characteristics of the external 

environment where the marble statue was positioned. The proximity of the 

sculpture to a water fountain, in combination with rain and moisture, favors the 

action of biological agents, which was not the case for the second heritage object 

under study. For the first case study, the thematic 3D segmentation and 

visualization approach produced more comprehensive results than the direct use of 

the NIR reflectance values.  

 

Fig. 5.34 Visualization of the levels of weathering for the statue of Hercules Fountain with high-

resolution NIR texture (left), 3-bit NIR texture (center) and 3D thematic mapping after segmentation 

of the 3D model (right) 

Unlike the previous example, 3D mapping after segmentation of the small 

sculpture of Christ Crucified showed relatively low levels of deterioration on the 

surface (see Figure 5.35), as 93.58% of the total surface classified as medium-to-

low or low deteriorated according to our approach. This result can be supported by 

the fact that the object was preserved in much better surrounding conditions that 

statue from the Fountain of Hercules that was long exposed to high moisture 

conditions. Only 5.27% of the total surface was classified as medium deteriorated 

and 1.15% as medium-to-high; these areas were concentrated on cavities around 
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the hair, thorny wreath, and chest. For this case study, the visualization with the 

reduced NIR texture provided more comprehensive results towards the assessment 

of the state of preservation. 

 

Fig. 5.35 Visualization of the levels of weathering for the sculpture of Christ Crucified with high-

resolution NIR texture (left), 3-bit NIR texture (center) and 3D thematic mapping after segmentation 

of the 3D model (right) 

5.5.2 Wooden Sculptures 

This case study combined near-infrared reflectance and ultraviolet fluorescence 

(UVF) photography performed with modified camera sensors, ΙΒΜ, and 

triangulation scanning. The objective was to explore the direct implementation of 

multiband 3D photogrammetric modeling, the optimal integration among the 

techniques, and the metric validity of application for objects of archaeological 

significance. Towards this direction, NIR and UVF 3D models of a wooden 

sculpture were produced, utilizing various algorithmic implementations to process 

the spectral image datasets. Additional experimentation with VIS reflectance 

datasets assisted the evaluation. 

5.5.2.1   Materials and Methods 

To evaluate the suggested multiband 3D modeling approach, an Egyptian wooden 

sculpture dating back to the New Kingdom (1550–1069 B.C.E.) was used as a case 
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study, which belongs to the Egyptian Museum of Turin (Inventory Number Cat. 

745). The Cat. 745 statuette represents Hapy, god of the Nile flood, or a more 

generic fecundity figure. 

Two Nikon Xnite D810 DSLR cameras were used, one unmodified for VIS 

imaging, and one modified with a Hoya Infrared filter (R72) suitable for detecting 

electromagnetic radiation in the range 780-950 nm and coupled with a PECA 916 

filter for UVF. 

For color and NIR imaging, the lighting was produced with 2 Ianiro Varibeam 

Halogen 800W lamps positioned left and right of the object (looking at it) with an 

of 30 ° with respect to the surface. Image datasets could not include the same 

orientations because different cameras were used for VIS and NIR. An x∙rite 

ColorChecker® Classic with 24 colors was used as a color and scale reference. The 

camera was fixed on a customized metallic structure to ensure stabilization. A 

remote controller was used for focusing to reduce micro-movements and micro-

blur effect during capturing. The ISO was set to 100 to minimize noise, exposure 

to 1.6 sec, and f-number to f/16 for the needed DoF. The resulting VIS DoF was 

0.44 m, and thus the focusing area was placed on the main body of the statue for 

the vertical images and for the horizontal close-ups on the closest plane. The DoF 

for the NIR images was significantly smaller while keeping the same capturing 

distance, and images were topically not as sharp as VIS images. The white circle 

area was an effect of the lenses used, and therefore image coverage of the object 

was chosen to avoid overlapping of the white circle on NIR images with the object. 

Images were exported in 100% quality JPEG format at original dimensions. From 

each dataset, a final selection of 100 images was made. 

The UV lighting was realized with 2 Labino® UV spot lamps with UV light 

MPXL and UV FLOODLIGHT with the following characteristics: emission peak 

at 365 nm wavelength, approximate distribution angle of 3.5°, and irradiation 4500 

μW/cm2 at 38 cm away from the surface. The UV light was induced in a room with 

no visible light leaks. The camera was again fixed on a customized metallic 

structure to ensure stabilization. For every image, after the turntable was turned a 

fixed number of degrees and the automatic focusing was performed, the visible light 

sources were turned off, and the statue was “painted” by UV light by moving the 

UV sources in order to cover entirely the side of the object captured by the camera, 

as the statue's dimensions did not allow it to be fully illuminated at all times. ISO 

was set to 100 to minimize noise, exposure to 10 sec, and f-number to f/16 for the 

needed DoF. Images were exported in 100% quality JPEG format at original 

dimensions. In Adobe Lightroom, the temperature was pushed to 15000 °K to avoid 

remaining leaks of the blue spectrum. 
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Figure 5.36. Images of the wooden statuette. 

Multi-view image reconstructions with VIS, NIR, and UVF images followed a 

standard semi-automatic SfM/DMVR pipeline. Agisoft Metashape Pro (AMP), 

3DFlow Zephyr Aerial (FZA), Autodesk Recap Photo (ARP), and a workflow 

combining VSfM, CMVS, and MeshLab (VCM) 

5.5.2.2 Application 

Tables 5.29–5.32 report on the photogrammetric application. A dataset that 

included both VIS and NIR images was also considered to check if the 

reconstruction would improve. 
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Near infrared reflectance 

image, Nikon D810 + Hoya 

R72 filter 

Ultraviolet fluorescence 
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916 filter 
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Table 5.29. Image-based modeling with visible reflectance images. 

 VSfM+CMVS+MeshLab Agisoft 

Metashape Pro 

3DFlow Zephyr 

Aerial 

Autodesk Recap 

Photo 

PARAMETERS     

Matching+Alignment     

Keypoint density  high high  

Pair preselection  generic circular  

Key point limit  50,000 high  

Tie point density  5,000 5,000  

Camera model fitting  adaptive adaptive  

Dense Matching     

Masks/Annotations  yes yes  

Point density  high high  

Depth filtering  moderate default  

Mesh Generation     

Max number of faces  5,000,000 5,000,000  

Interpolation  disabled   

Texture Generation     

Max octree depth 14 - 14  

Texture size 8,192 8,192 8,192  

Color balancing enabled enabled default  

RESULTS     

Sparse Cloud     

Images Aligned 100/100 100/100 100/100 100/100 

Matching time 0:01:21 0:06:19 0:03:02  

Alignment time 0:01:01 0:00:05 0:12:29  

Tie points 26,978 41,416 64,784  

Projections 129,007 197,154 433,168  

Repr. error [pixels]  0.542 0.873  

Ground-res [mm/pix]  0.093 0.094  

Dense Cloud     

Processing time 0:25:17 0:40:39 01:25:54  

Point count 3,917,997 8,718,541 2,813,797 605,118 

Mesh     

Processing time  00:02:42 00:00:38  

Face count  4,940,090 5,582,910 1,117,071 

Quality  high very high high 

Texture     

Processing time  00:14:46 00:13:21  

Quality  very high very high very high 

     

Total processing time 0:27:39 1:04:31 1:55:24 04:05:00 



P a g e  | 201 

 
Table 5.30. Image-based modeling with near-infrared reflectance images. 

 

VSfM+CMVS+MeshLab 
Agisoft 

Metashape Pro 

3DFlow Zephyr 

Aerial 

Autodesk Recap 

Photo 

PARAMETERS     

Matching+Alignment     

Keypoint density  high high  

Pair preselection  generic circular  

Key point limit  50,000 high  

Tie point density  5,000 5,000  

Camera model fitting  adaptive adaptive  

Dense Matching     

Masks/Annotations  yes yes  

Point density  high high  

Depth filtering  moderate default  

Mesh Generation     

Max number of faces  5,000,000 5,000,000  

Interpolation  disabled   

Texture Generation     

Max octree depth 14 - 14  

Texture size 8,192 8,192 8,192  

Color balancing enabled enabled default  

RESULTS     

Sparse Cloud 
    

Images Aligned 100/100 100/100 99/100 100/100 

Matching time 0:01:13 0:05:50 0:03:24  

Alignment time 0:01:01 0:00:12 0:12:27  

Tie points 21,760 63,440 71,321  

Projections 111,397 295,319 478,838  

repr. error [pixels]  0.630 0.843  

Ground-res [mm/pix]  0.097 0.097  

Dense Cloud 
    

Processing time 0:26:39 0:46:43 01:21:00  

Point count 3,758,790 7,995,464 2,053,831 504,853 

Mesh     

Processing time  00:04:30 00:00:26  

Face count  5,000,000 4,065,162 925,900 

Quality  high high high 

Texture     

Processing time  00:31:02 00:09:24  

Quality  very high very high very high 

     

Total processing time 0:28:53 1:28:17 1:46:41 3:00:00 
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Table 5.31. Image-based modeling with visible and near-infrared reflectance images. 

 

VSfM+CMVS+MeshLab 
Agisoft 

Metashape Pro 

3DFlow Zephyr 

Aerial 

Autodesk Recap 

Photo 

PARAMETERS     

Matching+Alignment     

Keypoint density  high high  

Pair preselection  generic circular  

Key point limit  50,000 high  

Tie point density  5,000 5,000  

Camera model fitting  adaptive adaptive  

Dense Matching     

Masks/Annotations  yes yes  

Point density  high high  

Depth filtering  moderate default  

Mesh Generation     

Max number of faces  5,000,000 5,000,000  

Interpolation  disabled   

Texture Generation     

Max octree depth 14 - 14  

Texture size 8,192 8,192 8,192  

Color balancing enabled enabled default  

RESULTS     

Sparse Cloud     

Images Aligned 100/100 (50+50) 100/100 (50+50) 94/100 (50+44) 100/100 (50+50) 

Matching time 0:01:07 0:03:55 0:03:04  

Alignment time 0:00:55 0:00:10 0:13:44  

Tie points 22,456 79,490 76,327  

Projections 87,157 271,061 337,515  

repr. error [pixels]  0.593 0.881  

Ground-res [mm/pix]  0.098 0.096  

Dense Cloud     

Processing time 0:33:50 0:37:58 01:24:47  

Point count 3,990,793 8,433,079 2,503,588 586,196 

Mesh     

Processing time  0:02:43 00:00:34  

Face count  4,984,640 4,988,565 1,076,754 

Quality  high high high 

Texture     

Processing time  0:48:01 00:08:26  

Quality  very high very high very high 

     

Total processing time 0:35:52 1:32:47 1:50:35 3:35:00 
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Table 5.32. Image-based modeling with ultraviolet fluorescence images. 

 

VSfM+CMVS+MeshLab 
Agisoft 

Metashape Pro 

3DFlow Zephyr 

Aerial 

Autodesk Recap 

Photo 

PARAMETERS     

Matching+Alignment     

Keypoint density  high high  

Pair preselection  generic circular  

Key point limit  50,000 high  

Tie point density  5,000 5,000  

Camera model fitting  adaptive adaptive  

Dense Matching     

Masks/Annotations  yes yes  

Point density  high high  

Depth filtering  moderate default  

Mesh Generation     

Max number of faces  5,000,000 5,000,000  

Interpolation  disabled   

Texture Generation     

Max octree depth 14 - 14  

Texture size 8,192 8,192 8,192  

Color balancing enabled enabled default  

RESULTS     

Sparse Cloud     

Images Aligned 40/40 40/40 31/40 40/40 

Matching time 0:00:12 0:00:30 0:01:04  

Alignment time 0:00:32 0:00:03 0:13:51  

Tie points 8,032 55,617 27,071  

Projections 23,660 151,632 109,758  

RMS repr. error 

[pixels] 
 0.575 0.790  

Ground-res [mm/pix]  0.099 0.097  

Dense Cloud     

Processing time 0:10:55 0:05:43 00:27:57  

Point count 1,641,267 7,723,984 2,470,189 566,730 

Mesh     

Processing time  00:02:40 00:00:20  

Face count  5,120,180 493,907 1,024,035 

Quality  high medium high 

Texture     

Processing time  00:05:38 00:06:25  

Quality  high high high 

     

Total process. time 0:11:39 0:14:34 0:49:37 0:50:00 
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5.5.2.3 Results and Discussion 

All three commercial software produced similar results in terms of visual fidelity, 

with FZA producing slightly higher surface detail. The software produced very 

different volumes of results with relatively comparable total processing times. All 

meshes and textures produced were high-resolution, and even the UVF 3D model 

was efficiently similar to the others, despite the availability of a much smaller 

dataset. Point clouds produced with CMVS could not be cleaned from noize. 

Mean distances between software remained ≤0.25 mm and ≤0.75 mm RMS, 

except for RMS of the Hausdorff distances for the UVF spectral meshes (Table 

5.32), proving the difficulty of the contemporary SfM/DMVR-approach based 

software to directly 3D reconstruct scenes from ultraviolet images comparing to 

true color images. 

Table 5.33. Mean/RMS Hausdorff distances [mm] between photogrammetric meshes—comparison 

of reconstruction with different software. 

 VCM-AMP VCM-FZA VCM-ARP AMP-FZA AMP-ARP FZA-ARP 

UVF 0.07/1.02 0.19/1.34 0.25/1.22 0.10/0.71 0.20/1.54 0.16/1.64 

VIS 0.00/0.30 0.01/0.31 0.04/0.45 0.01/0.37 0.02/0.28 0.05/0.30 

VIS&NIR 0.02/0.36 0.06/0.54 0.05/0.63 0.01/0.37 0.03/0.36 0.03/0.35 

NIR 0.07/0.62 0.14/0.66 0.25/0.69 0.03/0.37 0.02/0.40 0.08/0.30 

Mean distances between datasets remained ≤0.30 mm and ≤0.60 mm RMS 

highlighting how similar the results from direct 3D modeling from UV, VIS, and 

NIR spectra can be with optimal photo-acquisition conditions (Table 5.34). The 

highest distances were observed for the free VSfM-CMVS-Meshlab processing 

pipeline because not all noise could be removed. 

Table 5.34. Mean/RMS Hausdorff distances [mm] between photogrammetric meshes—comparison 

of reconstruction from different datasets. 

 VIS-VIS&NIR VIS-NIR UVF-VIS UVF-NIR 

VCM 0.27/0.24 0.24/0.37 0.25/0.25 0.27/0.51 

AMP 0.05/0.22 0.08/0.28 0.05/0.58 0.01/0.60 

FZA 0.05/0.20 0.03/0.30 0.02/0.48 0.00/0.36 

ARP 0.01/0.21 0.01/0.23 0.02/0.27 0.01/0.29 

Scanning of the wooden statuette was performed with two scanners 

implementing different technologies: 

a. Handheld scanner STONEX F6 

› Measurement method: structured infrared light 
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› XY point density: 5 mrad (2.5 mm at min distance) 

› Distance Range: 0.5-4.0 m, Scan Range: 0.5-7.0 m 

› Accuracy XYZ: ±0.1%-0.2% (approximately 1mm at 0.5 m distance), 

Precision: Up to 0.5 mm at a range of ≤1 m 

› Acquisition duration: 4 mins (1,005 frames) 

› Workflow performed in Mantis Vision – Echo software after recording: (1) 

Sequential Registration and Global registration; (2) Noise removal: Moving Least 

Squares (r = 40) + Statistical Outlier Removal (outlier coeff = 4); (3)Spawn mesh 

The final mesh was produced in Geomagic Wrap after the removal of 

unwanted parts. The mesh had 10,300 triangles (not including the bottom of the 

base). No extra post-processing was required to remove noise or fill holes. 

b. Non-contact digitizer VIVID 9i - Konica Minolta 

› Measurement method: triangulation 

› Light-Receiver lens: MIDDLE: Focal distance f = 14 mm 

› Distance Range: 0.5-2.5 m, Scan Range: 0.5-1.0 m 

› Accuracy XYZ: ± 0.20 mm at 1 m distance, Precision (Z, σ): 0.048 mm 

› Acquisition duration: approximately 1.5 hrs 

Four individual scans were performed, 2 with the statuette standing and 2 in 

a horizontal position. Each scan consisted of up to 15 separate scenes that were 

oriented inside the sub-scans’ projects upon acquisition, using three manually 

selected common points with each time the previous scene was captured. This pre-

registration was executed inside the ‘Polygon Editing Tool’ software 

accompanying the scanner. For every scene, the scanner was repositioned, and auto-

focusing was implemented again. After each scan was completed, the mesh results 

were exported for each scene separately in a .vvd file format. The final mesh 

produced in Geomagic Wrap after the manual alignment and global registration of 

the separate scenes, removal of duplicate faces, and closing of the holes, had 1,790 

thousand triangles. The distance between the produced point clouds from 

structured-light and triangulation scanning was mean 0.64 mm and RMS 0.90 mm. 

Considering as ground truth the mesh produced by the VIVID 9i 

triangulation scanner, as more precise and more accurate than the handheld laser 

scanner model, metric assessments were performed to ascertain the validity of 

direct 3D modeling with the multi-spectral data on the Egyptian statuette, by 

carrying out Hausdorff distance tests between the 3D models (Table 5.35). 



P a g e  | 206 

 
Table 5.35. Mean/RMS Hausdorff distances [mm] between spectral photogrammetric models and 

Konica Minolta mesh. 

 AMP FZA ARP 
 

VIS 0.03/0.36 0.02/0.34 0.05/0.40 VIS 

VIS-NIR 0.01/0.43 0.02/0.30 0.06/0.50 VIS-NIR 

NIR 0.07/0.40 0.03/0.40 0.07/0.50 NIR 

UV 0.07/0.48 0.03/0.30 0.03/0.61 UV 

In all cases, more than 95% of the sampled vertices and faces were closer than 

0.6 mm from the ground truth model, where 0.6 was the expected accuracy, 

meaning 2-3 times the 0.2 mm accuracy of the VIVID 9i. Conclusively, all spectral 

and multi-spectral datasets were deemed sufficient for the direct modeling 

approach. Figures 5.37–5.39 present comparisons between the photogrammetric 

models. 
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Figure 5.37. Comparison of color, near-infrared reflectance, and ultraviolet fluorescence models for 

the Egyptian statuette—front side. 
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Figure 5.38. Comparison of color, near-infrared reflectance, and ultraviolet fluorescence models for 

the Egyptian statuette—back side. 
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Figure 5.39. Comparison of color, near-infrared reflectance, and ultraviolet fluorescence models for 

the Egyptian statuette—back side detail. 

In the context of this case study, the conclusion was that the only useful level 

of integration for similar archaeological objects would be the fast generation of a 

3D mesh via triangulation scanning, and the production of different texture files 

through photogrammetric processing from reflectance and fluorescence images at 

various spectra. 
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5.5.3 Castello Del Valentino 

The Castello del Valentino is a suburban mansion and riverside royal residence 

already existing in the sixteenth century when it was bought by Emanuele Filiberto 

di Savoia. It belongs to the site “Residences of Royal House of Savoy”, inscribed 

in the UNESCO World Heritage List in 1997. The castle is located on the left bank 

of river Po in Turin (Piedmont region, Italy). The castle has been subjected to 

numerous extensions, alterations, transformations, and restoration works 

throughout the last centuries. The overall condition of the front (west) façade (figure 

5.40) is visibly better conserved compared with the riverside (east) façade (figure 

5.41), where several altered surfaces are visible predominantly in the lower parts of 

the façade, which can be partly attributed to the effects of moisture. 

 

Figure 5.40.  Castello del Valentino main (west) façade (modified from 

https://castellodelvalentino.polito.it). The preliminary surveys are indicated in red, and the detailed 

surveys in yellow color. 
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Figure 5.41. Castello del Valentino riverside (east) façade. The preliminary surveys are indicated 

in red and the detailed surveys in yellow color. 

5.5.3.1 Materials and Methods 

As explained earlier in this chapter, the integrated documentation considers the 

acquisition of multidisciplinary data collected with a multi-sensor and 

multiwavelength approach. The recorded data are summarized in Figure 5.42. 

 

 

Figure 5.42. Scheme of recorded data. 
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Topographic measurements were performed with the GeoMax Zoom PRO 3″ 

reflectorless total station. The TLS surveys were carried out with the FARO 

Focus3D X 330 phase-shift scanner. The camera used for VIS and NIR reflectance 

imaging was the Canon EOS Rebel SL1. A Canon EF-S 18–55 mm f/3.5–5.6 IS II 

lens was used to acquire all the optical images by attaching two external VIS and 

NIR-pass filters. The camera used for TIR imaging was the FLIR T1030sc. The 

system utilized for the ground-penetrating radar surveys was composed of an 

Aladdin 2-GHz IDS antenna box and an IDS K2 control unit. 

5.5.3.2 Preliminary Surveys 

The first phase of the surveys involved TLS range data acquisitions at the lower 

areas of the riverside façade and the main part of the east façade. The stations were 

placed to acquire homogeneously dense point clouds without occlusions, and thus 

two scans were performed on the east façade and six on the west, with large 

overlaps, which could facilitate accurate registration. The scans were used to 

generate general plans and low-resolution models of architectural surfaces after 

registering, denoising, and subsampling the 3D point clouds. Furthermore, the near-

infrared scanning intensities were corrected and exploited to create rapidly and cost-

efficiently a representation of weathering stages (figure 5.43), since the majority of 

the observed surface deterioration patterns belonged to a single typology—grey 

biogenic crusts. 

The second phase referred to the preliminary recording of many architectural 

elements by multiband imaging. VIS and NIR images were collected as parallel as 

possible to the surfaces of interest—avoiding any large deformation—and from 

consistent positions. Each element was captured in a single image frame for this 

scenario, retaining homogeneous spatial resolution for all the acquired imagery at 

approximately 5 mm. Image quality was validated by calculating background noise 

and vignetting levels—systematic errors caused by camera electronics. 

Uncompressed raw image data were exported with the RawDigger software, and 

visible-spectrum images were color-balanced. 
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Figure 5.43. View of point-cloud pseudocolored with architectural surfaces’ weathering indices 

(lower riverside façade) 

Thermal-infrared images for preliminary recording were also collected as 

parallel as possible to the surfaces of interest, with approximately half the spatial 

resolution of the optical images, but capturing multiple images for every recorded 

element. Therefore, after applying the same temperature scales on the thermograms 

(ThermaCAM software), higher resolution TIR images were generated (same 

spatial resolution with optical imagery), by interpolating information from each 

quadruplet of images acquired at the same position.  

All images were subsequently undistorted (utilizing parameters calculated by 

calibrating the involved sensors), then rectified by picking points that were either 

measured directly with the total station or indirectly by TLS, and finally merged 

with the HyperCube software to create multiband images. The multiband imaging 

data were analyzed by data reduction, decomposition, and compression methods to 

create 2D image visualizations that could be more easily interpretable. Figure 5.44 

shows the results of one of the preliminarily surveyed areas on the main façade, 

where slight plaster detachments and a few surface cracks are visible through the 

elaboration of the multiband composites. Figure 5.45 shows another surveyed area 

on the riverside façade where extensive detachments, cracking, and biogenic crusts 

can be observed. 
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Figure 5.44. Castello del Valentino west façade multiband results: (a) cropped VIS image; (b) TIR-

NIR-red false-color composite; (c,d) principal component analysis–first and second component; 

(e,f) Fourier transform. 

 

Figure 5.45. Castello del Valentino riverside façade multiband results: (a) cropped VIS image; (b) 

TIR-NIR-red false-color composite; (c,d) principal component analysis–first and second 

component; (e) Fourier transform; (f) quantized image. 
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Wide-scale representations and 2D preliminary surveys led to identifying areas 

of interest for in-depth investigations by integrating higher resolution data and the 

elaborated GPR measurements. These two areas presented significant radiometric 

anomalies in the multiband analysis results (Figure 5.46). 

 

Figure 5.46. East façade (left), and main façade left column (right) anomalies were observed by 

thermographic imaging and principal component analysis of the multiband data (first components). 

5.5.3.3 Detailed Surveys 

The areas identified to conduct further integrated documentation campaigns were a 

0.6 × 3.8 m2 planar surface on the lower riverside façade and the main façade’s left 

column. 

Imagery for photogrammetric processing was densely collected (> 80% 

bidirectional overlap) for both the planar and cylindrical geometries. For this 

scenario, a VIS and NIR spatial resolution of at most 1.5 mm was achieved to 

produce high-resolution mesh textures and orthophotos. Thermal images for high-

resolution mesh texturing and ortho-mosaic production were also rigidly collected 

from a close range to match the optical imagery’s spatial resolution as possible. The 

distances of photo shooting also considered the spatial resolution of the ground-

penetrating radar. A standard semi-automated methodology based on structure-

from-motion (SfM) and multi-view stereo (MVS) algorithms was followed in 

Agisoft Metashape with the EOS Rebel SL1 photos, using as reference measured 

coordinates of placed targets or points picked from the point clouds, achieving 

similar accuracy of approximately 5 mm for both spectra and surveyed areas. To 

tackle the problems of 3D modeling with the low-resolution thermal images, the 

hybrid photogrammetry-driven approach involving both optical and TIR images 

from the T1030sc was employed. The resulting accuracy was similar to that of the 
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high-resolution image datasets while maintaining a low noise level on the point 

clouds and models. 

The GPR profiles were collected along horizontal profiles with a vertical 

spacing of 5 cm. In addition, the profiles followed a circular pattern for the column. 

A wheel encoder was used to track the positioning of the antenna along the moving 

direction for each GPR profile that was acquired. Each profile's starting and ending 

points were also measured with the total station to obtain the same reference as the 

photogrammetric data. The GPR data were processed with the ReflexW software, 

adopting standard processing steps. The obtained radargrams produced 3D 

amplitude ‘point clouds’ that could then be visualized and were also used for 

computing isosurfaces of specific amplitude values 

The multi-sensor results were integrated using the orthoimage-mosaics of 

visible, NIR, and TIR spectra to create pseudo-colored ortho-visualizations, which 

could be processed with the same approaches as the preliminary surveys, but also 

had spatial reference. This elaboration allowed the relative referencing between 

radar data (parallel and perpendicular to recorded surfaces), range information, and 

the other image-based derivatives (Figures 5.47, 5.48). Additionally, the cylindrical 

surface of the column could be developed—after calculating the average diameter 

from the TLS point cloud—to create a planar result, instead of using only ortho-

projections of every side of the column (Figure 5.49). This type of visualization 

made interpreting the results easier by facilitating better integration of 

photogrammetric and GPR data. 

 

Figure 5.47. Registering of a thermal orthophoto-mosaic and GPR slices with CloudCompare. 
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Figure 5.48. Interdisciplinary interpretation of multiband results (from top to bottom): orthophoto-

mosaic, false color TIR-NIR-red composite photo-mosaic, map of surface alterations, and GPR slice 

parallel to the wall at 6 cm depth (riverside façade). 

 

Figure 5.49. NIR developed photogrammetry-produced orthophoto of the lower left column and 

GPR slice of the column at h = 0.619 m from the floor (main façade). 
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A significant correlation was observed for the riverside façade between 

material loss, higher GPR reflection amplitudes, and surface thermal minima, which 

could be interpreted as high moisture content from water that had permeated the 

damaged structure’s surface layers (Figures 5.50–5.54). The pixel-level fusion of 

the thermal orthoimage-mosaic and a GPR rarargram (by averaging the two images) 

was essential in identifying the potential concentrations of moisture. 

 

 

Figure 5.51. Multi-wavelength referenced orthoimage-mosaics and horizontal perpendicular 

radargrams, façade. 

Figure 5.50. Multi-wavelength referenced orthoimage-mosaics and parallel radargrams, façade. 
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Figure 5.52. Processing of multi-wavelength results, identification of defects, and correlation with 

radargram, façade. 

 

Figure 5.53. Multi-wavelength referenced orthoimage-mosaics and vertical perpendicular 

radargrams, façade. 

 

Figure 5.54. Fusion of thermal infrared orthoimage-mosaic and radargram at 6cm depth, façade. 
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Regarding the column, the anomalies detected by on-site inspection, multiband 

imagery elaboration, and locating extreme amplitude values overlapped, which led 

to the assumption that the identified volumes with heterogeneous radiometric 

characteristics corresponded to replacement material (mortar) originating from 

previous interventions (Figure 5.56 and Figure 5.57). 

 

Figure 5.55. Multi-wavelength referenced orthoimage-mosaics and radargrams, front column. 

 

Figure 5.56. Multi-wavelength developed orthoimage-mosaics and developed radargrams, front 

column. 
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6 Conclusions 

6.1 Semi-Automatic Mapping of Deterioration 

with Multispectral Data for Building 

Facades 

The novel methodology proposed for the automatic classification of damage on 

built cultural heritage used photographic equipment for multispectral data 

acquisition and supervised machine learning-based image segmentation to map 

deterioration patterns. It was confirmed that including near-infrared reflectance 

intensities in the employed methods improved the classification of alterations on 

the historic façades. This conclusion agrees with the relevant work conducted with 

terrestrial LiDAR instrumentation and unsupervised segmentation algorithms. 

The segmentation of multispectral composites (synthesized with visible and 

near-infrared reflectance images), with classifiers combining random trees and 

ensemble learning, performed particularly well even where a high number of 

surface patterns were present. However, the coexistence of different overlapping 

categories of biogenic colonization complicated the mapping procedure 

significantly. It should be highlighted that the accuracy evaluation considered some 

level of bias since the manually produced reference thematic maps cannot consider 

the overlapping surface patterns. 

The proposed methodology has the limitation that it can map only the 

pathologies that have been previously recognized through visual inspection (or 

analytical techniques) because regions of interest have to be annotated to train the 

intelligent algorithms. However, a crucial advantage is that it produces easily 

interpretable mapping results, contrary to unsupervised methods where each 

mapped pattern class has to be a posteriori assigned to a deterioration category. 

Furthermore, there is a clear advantage over deep learning-based methods that 

require large image datasets for rapid monitoring purposes of monumental heritage 

structures. The direct outlook of the proposed framework is the combination with 

3D recording technologies to enhance the capability of detecting the geo-metrical 

altering (material loss) of the historic structures and their building elements. 
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6.2 Combination of Semi-Automatic Mapping 

and GIS for the Archaeological Sites of 

Peloponnese 

The development of an appropriate methodology for the implementation of close-

range sensing technologies and FOSS GIS for stone degradation mapping has been 

outlined and tested on weathered ancient remains. Affordable, accessible 

instrumentation is employed, which adds to the practicality and flexibility of the 

methodology. However, implementing low-cost sensor technology implies that the 

collected data should be thoroughly checked and comprehensively corrected. The 

quality verification of the base maps used for mapping purposes is essential to the 

accuracy of results purposed for thematic visualization and spatial analysis. 

Multiband reflectance imaging demonstrates a necessary non-destructive 

approach to enriching the thematic mapping process. The plethora of degradation 

forms, as showcased, presents distinct reflectance characteristics when imaged at 

different ranges of the electromagnetic spectrum. Mainly, stone patterns caused by 

biogenic factors present a unique spectral footprint in the infrared range. Thus, 

involving infrared images for the detection and mapping of degradation enhances 

the identification capacity for surface patterns such as vegetation, moss, and various 

biogenic crusts. Nevertheless, when mapping stone that presents less complex 

surface characteristics, the combination of images captured at multiple spectra may 

not be necessary, speeding up the mapping process. The application performed at 

the Temple of Apollo Epikourios presents such a case, where only images captured 

in the near-infrared spectrum were used as base maps since they maximized the 

reflectance contrast among observable degradation characteristics and minimized 

the contract between original and restoration materials that should not be 

distinguished. Furthermore, for this case study, a single-image approach could be 

followed due to the narrow extent of the investigated areas. 

Photogrammetric techniques, applied for the generation of high-resolution 

orthoimage-mosaics from image datasets, are essential for producing the 

background for mapping extensive stone surfaces. Their application proved useful 

when large multiband datasets needed to be integrated to produce base maps in a 

cost-effective way. Spectral orthoimage-mosaics can more easily be fused together 

than individual photos. Additionally, the prospect of involving metric data 

introduces a spatial reference to the thematic maps, which allows for subsequent 

spatial analyses to be performed. 

Processing rectified images and orthoimage-mosaics for extraction of the 

degraded stone surface features (pattern recognition) has often been performed 

manually. In the developed methodology, unsupervised clustering-based 
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segmentation has been performed, which speeds up the process but requires the 

interpretation of the different patterns after they have been segmented on the 

images. Implementation at the Temple of Athena and Dios Sotiros, and the 

archaeological site of Lepreum showed that this method is very effective when a 

large number of degradation forms are present but underperforms when there is 

overlap between different weathering damages. Additionally, this method of 

extracting surface patterns cannot detect at the same time features induced by 

material loss. The combined use of accurate range/depth data and multiband data 

should be researched in this direction. The proposed methodology also offers a 

more simplistic alternative for cases of stone monuments where there is an absence 

of extensive biodegradation, based mainly on image histogram manipulation and 

edge detection. 

Transferring the thematic data extracted from rectified images and multiband 

ortho-mosaics to a GIS environment offers many advantages. This work presented 

that the visualization of thematic degradation results becomes more effective 

through a spatial information management environment and also that damage index 

maps and statistical results can be easily extracted through the heritage GIS 

implementation. This approach helps with the weathering interpretation and 

subsequently can assist conservation measures. The damage categories can be 

qualitatively and/or quantitatively defined. The potential availability of descriptive 

and qualitative information from other on-site investigation techniques and 

historical documentation can enhance the results. 

6.3 Two-Dimensional Decay Mapping of 

Ancient Stelae 

The integrated multispectral approach allows the detailed 2D mapping of 

degradation caused by weathering on stelae and other stone antiquities. Forms of 

degradation are identified by visual inspection and then automatically annotated 

through a supervised machine learning-based approach, applied to images 

combining spatially and radiometrically corrected data collected at the visible and 

near-infrared spectrum. The methodology employs affordable equipment and few 

processing steps that do not require particular training or specialist software. This 

process speeds up the documentation steps that are usually conducted manually 

before conservation treatment of the stone surfaces and facilitates decisions 

regarding the required cleaning techniques. The proposed method can potentially 

assist in the identification of areas for sampling and, subsequently, the in-depth 

investigations through laboratory testing. An interesting perspective would be 

integrating with other mapping and non-destructive on-site monitoring techniques. 

The designed methodology is very adaptable, as it performed well for different case 

studies of stone stelae that presented dissimilar surface pathology. For practical 
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reasons, some of the steps followed in this work may be skipped. If, for example, 

the camera sensor cannot be geometrically or radiometrically calibrated, the 

proposed approach can still produce degradation maps useful for conservation 

purposes. Including NIR images in the approach proved to increase the accuracy of 

the results for some cases, especially when biodeterioration was present; however, 

including only the true color images still provided high-accuracy results. Therefore, 

an unmodified camera can also be used to provide the necessary input for ML-based 

segmentation. 

To conclude, a critical issue observed in this work stems from the complexity 

of the mapped surfaces. Overlapping of degradation forms can cause some 

misclassifications, while more easily definable deterioration patterns can produce 

higher accuracy results. The subjective visual identification between less and more 

degraded surfaces that present the same pathology can also affect the approach’s 

performance. Features caused by material loss cannot be easily detected if they are 

not the cause of other degradation patterns (such as moss caused by concentrated 

moisture in the created cavities), and thus combining 3D approaches could be 

helpful in that direction. 

6.4 Three-Dimensional Modeling and Decay 

Mapping of Historical Objects 

Through the case studies of stone and wooden statues, novel approaches for 

multiband texture generation and 3D mapping were demonstrated, combining 

contemporary image-based 3D reconstruction software, near-infrared and 

ultraviolet imaging from modified cameras, and 3D mapping techniques. High-

resolution 3D models of sculptures with different dimensions from beyond-visible 

imagery were constructed and proved their metric validity by performing extensive 

comparisons with models from visible imagery. Then the capacity of the most 

detailed band-specific models to evaluate the state of preservation of the historical 

surfaces proving the feasibility of the combined approach, was evaluated. The 

suggested decay mapping method has the advantages of being low-cost, rapid, easy 

to implement, and adjustable for different cases of heritage applications, compared 

to traditional methods for manual decay mapping. It has the additional advantage 

of combining the thematic information produced with the three-dimensional 

topology of the object, making possible accurate measurements and planning 

further scientific investigations and conservation interventions. The investigated 

method cannot replace extensive diagnostical investigations but can support them 

in order to reduce time and costs. 

Regarding the metric aspect of the study, it should be underlined that 

Metashape Professional generally provided less noisy meshes from the near-

infrared and ultraviolet datasets than 3DFlow Zephyr Aerial and resulted in slightly 
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smaller statistical reconstruction errors. Although results from both software were 

practically identical for conservation studies of a millimeter accuracy, even 

considering the metric results produced with visible imagery. As for the 3D 

mapping results, it was observed that reducing the information on the near-infrared 

textures gave a significant boost in the observation of different levels of weathering. 

Even more, carefully selecting the number of the levels of decay that should be 

visualized for an accurate representation of the pathology, and segmenting the 

models according to near-infrared reflectance to produce thematic 3D mapping 

results, enhanced the ability to interpret the deterioration patterns and enabled 

measurement for each segmented part of the surface. 

6.5 Multi-Sensor Data 3D Integration at the 

Castello del Valentino 

The combination of metric data with multi-wavelength results derived by laser 

scanning, imaging, thermography, and GPR surveys enhances the richness of 

recorded information for historical architecture and adds to data validity, integrated 

processing, and facilitates interdisciplinary interpretation. These non-destructive 

methods are complementary and can produce documentation content for vastly 

different typologies of building elements. However, as they operate at different 

wavelengths, they also collect data at different depths and possess distinct spatial 

characteristics. Thus, defining the parameters of acquisition in detail, such as spatial 

resolution, accuracy, and metric implications of their fusion, is crucial to reassure 

the quality of their integration, which can assist further diagnostic steps and 

conservation-related decisions. 

Knowledge of heritage building surfaces’ defects and previous interventions is 

of paramount importance for diagnosis, and the first step to achieving it is 

interdisciplinary documentation. In this study, the documentation workflow started 

from collecting high-accuracy topographic measurements, point clouds, images, 

and thermograms. By methodically capturing, correcting, and rectifying imagery 

and artificially enhancing the spatial resolution of the close-range thermograms, 

multiband image composites were created to perform preliminary investigations of 

various buildings’ elements. Their 2D elaboration helped the documentation of 

weathering, cracks, and healthy surfaces, the localization of previously restored 

parts, and the identification of areas of interest for more detailed surveys. 

Additionally, TLS data exploitation produced visualizations of the façades’ 

geometry and weathering indices in a rapid way. 

To conduct detailed documentation surveys, densely captured image datasets 

were processed through SfM/DMVR-based photogrammetric approaches creating 

multiband high-resolution orthomosaics and textured models. These were enhanced 

by radargrams, grid data, and isosurfaces of amplitude values from GPR 



P a g e  | 226 

 

measurements. Although the accuracy and resolution of GPR may have been of 

double to triple values compared to the other close-range sensing techniques, the 

significance of providing depth information in a non-destructive way became 

apparent. The fusion of all involved techniques gave a clearer picture of the nature 

of surface thermal anomalies, the effect of surface weathering, and the 3D volume 

of restoration materials. However, it should be mentioned that integrated processing 

of the heterogeneous data will require downscaling of the photogrammetric results 

to match the GPR properties and is a point of the authors’ future research. 

The major challenge faced in order to guarantee the integrability of the 

multisource data was ensuring that during acquisition, their metric parameters and 

relative position were known. Since sufficient surface features cannot always be 

identified in thermograms, placing special reflective targets proved essential for 

thermographic recording. Regarding the GPR measurements, having already 

established a grid of the antenna’s movements with known position parameters 

helped the registration with other data. A crucial advantage of cross-examining the 

multiband data was that certain misinterpretations were avoided. For example, it 

could be determined whether certain reflectance anomalies in the infrared spectrum 

were caused by dark crusts or moisture concentration. 

It should be highlighted that the approach that integrated multiband 

orthomosaics/developments and GPR slices parallel to the investigated surfaces 

proves the most promising. This approach not only allows for the straightforward 

integration between the spatially referenced heterogeneous measurements but can 

potentially provide an easier transition to semantic annotations and conservation-

oriented building information modeling. 

6.6 General Outlooks and Perspectives 

The novel aspects of this dissertation can be briefly summarized as follows: 

✓ introduction of established photographic and NDT methods into innovative 

methodologies for heritage inspection 

✓ recording of accurate qualitative spectral data without multi-lidar 

approaches, or expensive multispectral sensors 

✓ production of accurate approaches for decay mapping through multi-

wavelength recording, data integration, and learning-based segmentation 

algorithms 

✓ evaluation of metric 3D modeling  with reflectance and fluorescence images 

✓ registration/co-referencing and pixel-level integration of optical, thermal 

orthophoto-mosaics, and radargrams  

✓ implementation of multidisciplinary documentation workflows having full 

knowledge of the metric and radiometric properties of all data and metadata 
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✓ identification of the optimal level of integration between geomatics and 

close-range sensing techniques for cultural heritage. 

Finally, some perspectives for future research have been identified: 

✓ integration of close-range inspection via integrated metric 3D surveying and 

multiwavelength recording into Heritage Building Information Modeling 

(HBIM) for architectural monuments and historical infrastructure 

✓ integration of the proposed workflows with other techniques for 

archaeological objects (X-ray fluorescence, ultrasonic pulse velocity 

testing, Surface roughness measurement) 

✓ application of the evaluated methods in order to identify areas of interest for 

sampling and minor destructive testing techniques 

✓ the aerial perspective–implementation with sensors mounted on drones. 
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