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Abstract: Automatic extraction of buildings in urban and residential scenes has become a subject
of growing interest in the domain of photogrammetry and remote sensing, particularly since the
mid-1990s. Active contour model, colloquially known as snake model, has been studied to extract
buildings from aerial and satellite imagery. However, this task is still very challenging due to the
complexity of building size, shape, and its surrounding environment. This complexity leads to a
major obstacle for carrying out a reliable large-scale building extraction, since the involved prior
information and assumptions on building such as shape, size, and color cannot be generalized
over large areas. This paper presents an efficient snake model to overcome such a challenge, called
Super-Resolution-based Snake Model (SRSM). The SRSM operates on high-resolution Light Detection
and Ranging (LiDAR)-based elevation images—called z-images—generated by a super-resolution
process applied to LiDAR data. The involved balloon force model is also improved to shrink or inflate
adaptively, instead of inflating continuously. This method is applicable for a large scale such as city
scale and even larger, while having a high level of automation and not requiring any prior knowledge
nor training data from the urban scenes (hence unsupervised). It achieves high overall accuracy when
tested on various datasets. For instance, the proposed SRSM yields an average area-based Quality of
86.57% and object-based Quality of 81.60% on the ISPRS Vaihingen benchmark datasets. Compared
to other methods using this benchmark dataset, this level of accuracy is highly desirable even for
a supervised method. Similarly desirable outcomes are obtained when carrying out the proposed
SRSM on the whole City of Quebec (total area of 656 km2), yielding an area-based Quality of 62.37%
and an object-based Quality of 63.21%.

Keywords: building extraction; building footprint extraction; airborne LiDAR; optical imagery; active
contour model; snake model; super-resolution; unsupervised approach; large scale

1. Introduction

1.1. Motivation

Automatic and accurate extraction of building footprints from urban scenes using remote sensing
data has become a subject of growing interest for a wide range of applications, such as urban planning
[1], city digital twin construction [2], census studies [3], and disaster and crisis management, namely
earthquake and flood [4,5].
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This research work presents an effective solution for extracting buildings from urban and
residential environments in a large scale. Such a task plays an important role in the context of
flood risk anticipation, which is asserted with a particular importance in the province of Quebec,
Canada [6]. Such a context requires accurate and regularly updated building footprint location and
boundary, which enable the extraction of further essential structural and occupational characteristics
of buildings (e.g., first floor, basement openings). In addition, the scalability of this solution—i.e., the
ability to maintain its effectiveness when expanding from a local area to a large area [7]—is crucially
important considering the scale of the study (i.e., at the scale of the province of Quebec).

The nature of urban and residential environments can be very complex, where buildings can be
found with various sizes, colors and shapes, within urban areas of different density and vegetation
coverage. Such complexity is problematic for developing a large-scale building extraction solution.
Indeed, a number of studies have been reported over the years with relatively significant results by
assuming building shapes [8–10], enforcing geometrical constraints [11], or limiting on specific urban
areas. However, such assumptions and constraints limit the scalability of the building extraction
method, in particular over large areas composed of numerous and complex structures. Based on these
premises, it is necessary that such a solution is (i) versatile—applicable on different urban scenes
without relying on predefined assumptions, constraints, or prior knowledge about the involved scenes
and buildings; (ii) highly accurate; (iii) and easily scalable over large areas with a relative computational
simplicity. To the best of our knowledge, such a solution has not yet been found.

1.2. Literature Review

A large number of building extraction methods have been reported over the last few decades,
particularly with the emergence of Light Detection and Ranging (LiDAR) systems since the mid-1990s
[12]. However, this task remains very challenging due to various difficulties. For instance, many
works [13–16] have been carried out using aerial and satellite imagery. They face many problems due
to occlusions, poor contrasts, shadows, and disadvantageous image perspectives [17]. Since height
changes allow distinguishing urban objects more effectively than the spectral and textural changes
from optical images, numerous works [18,19] proposed to exploit 3-D information from LiDAR to
extract buildings. However, these methods usually face problems of misclassification of vegetation
as buildings [20]. In addition, the accuracy of extracted boundaries can be compromised due to the
LiDAR point cloud sparsity [21]. Therefore, many researchers have developed a consensus strategy
to use multisource data in order to increase the building detection rate. Hence, a number of studies
[22,23] focusing on the integration of LiDAR and optical imagery data have been reported. They
succeed at improving the building extraction accuracy, compared to the use of individual data source
[24]. However, such an approach of integrating multisource data can be problematic due to data
misalignment [25].

The International Society for Photogrammetry and Remote Sensing (ISPRS) Working Group
II/4 “3D Scene Reconstruction and Analysis” provided a taxonomy for methods submitted to the
urban object detection benchmark test [26], based on their processing strategy. Some of the methods
are categorized as supervised methods requiring training data from LiDAR point cloud or optical
image, such as Niemeyer et al. [27] and Chai [28]. They provided two of the highest accuracy methods
submitted to the ISPRS Vaihingen benchmark. Many other methods are categorized as model-based
methods, as they rely on an explicit model or a set of predefined rules on the appearance of the
buildings in the data. For instance, Bayer et al. [29] proposed a segmentation-based method involving
multiple thresholds applied on the Digital Surface Model (DSM) and Normalized Difference Vegetation
Index (NDVI) to separate buildings and trees. Similarly, Grigillo and Kanjir [30] proposed two versions
of a model-based method based on rule-set classifiers on image pixel colors and NDVI. However, the
selection of such thresholds and rules is strongly scene-dependent.

Active contour model [31], or colloquially known as snake model, is an object boundary extraction
technique widely used in computer vision and image processing [32, Ch. 5]. Snakes or active
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contours are energy-minimizing curves, defined within an image domain, that move under the
influence of internal forces within the curve itself and other external forces. This technique has also
been intensively studied to extract buildings from urban and residential areas. In contrast to other
approaches mentioned above, it provides a building extraction solution without prior knowledge
about the image and the building shapes. Moreover, this technique provides a computational simplicity
and an advantageous flexibility allowing external constraint forces introduced by the user. These
characteristics show that snake model is suitable to be developed into a large-scale solution that fits
our purposes.

1.3. Snake Model-Based Related Works

Guo and Yasuoka [33] used snake model with balloon force to extract buildings using
high-resolution satellite images and height data. Peng et al. [34] focused on improving the stability of
snake convergence on aerial images. Kabolizade et al. [35] proposed a snake model using imagery data
coupled with a DSM generated from LiDAR data. This model involves the minimization of variances
of height and gray level between snake points. Consequently, it requires height information for every
pixel of the image; in other words, the DSM must be of the same size and resolution as the optical
image. Such a requirement is problematic since LiDAR datasets usually have subsampled spatial
resolution compared to the aerial imagery, yet a simple interpolation of height data could be unreliable.
In contrast, Ahmadi et al. [36] proposed a geometrical snake model to detect building boundaries from
aerial images, without height information or manual initial points. However, this model requires a
priori gray levels of buildings and ground and uses them as training data to attract the snakes toward
desired buildings. Consequently, it yields a high number of misdetected buildings when they consist of
untrained color. Additionally, it does not work well with the building roofs having varying gray levels.
Fazan and Dal Poz [37] proposed a method involving exhaustive searches for rectilinear building
corners in the optical images, based on the basic snake model optimized by dynamic programming.
Yet this method depends heavily on initial points to have decent results. Snake models have also been
demonstrated as an efficient tool to refine the public Geographic Information System (GIS) building
footprints [38]. The improved footprints are then fed into Convolutional Neural Networks (CNNs) as
labeled data for the building segmentation.

Our previous work [39] presented an unsupervised and automatic snake model to extract
buildings from optical imagery. It is carried out based on a snake model operating on optical image,
initialized and enhanced by integrating with LiDAR data. This snake model involves a novel external
energy term computed based on the shape similarity between the snake and the projected LiDAR
building boundary. Such an energy term encourages the snake to maintain a shape similar to the
building boundary extracted from LiDAR data, while moving under the attractions of salient features
provided by optical image. In contrast to the snake models mentioned above, this method succeeds at
extracting buildings in various difficult cases, e.g., building roof with similar color to its background,
gable-roof houses, or varying-color roof buildings. Without any human intervention or training data,
it is able to achieve higher accuracy than existing snake models and many existing building extraction
methods such as [25,40,41] on multiple test areas (see [39] for the full assessment). Nevertheless,
similarly to other existing snake models, it still concedes a number of challenges, namely its sensitivity
against image noise and undesired details and the hyperparameter tuning for snake model in a large
scale.

While there is not currently any effective solution regarding the former problem (i.e., snake
sensitivity) when using optical imagery, the latter problem (i.e., hyperparameter tuning) has been
partially addressed by Marcos et al. [42] with a deep learning-based approach. It involves using a
CNN to learn the characteristics of the snake model elements, i.e., parameters and energy terms,
from training optical images and associated ground truth polygons. The CNN-inferred parameters
and energy terms enabled this snake model to achieve higher accuracy compared to other deep
learning-based building extraction methods. However, the main drawback of this method is that it
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involves every image patch—each one containing a building—to have the same size, i.e., 512 × 512
pixels, for both the training dataset and the test dataset. This means that all the concerned buildings
(training and testing) must have similar size in order for the CNN to learn and predict the parameters
and energy terms. In other words, in order to resolve the snake parametrization problem, this approach
proposed by Marcos et al. [42] requires the building size consensus. This requirement affects directly
the method reproducibility on buildings of different sizes. Consequently, such a CNN-based snake
parametrization approach is not scalable for large areas consisting of buildings of various sizes.

1.4. Contribution

The objective of this research work is to develop a large-scale automatic and accurate building
extraction based on snake model, fulfilling the following requirements. Firstly, such an effective snake
model would require an automatic and reliable initialization. Secondly, the snake model should not be
sensitive to noise and details in the image. Thirdly, the snake model parameters should be relevant
when applied to a large extended area with buildings of various shapes, sizes, and colors. While the
first requirement is addressed by using the boundaries preliminarily extracted from LiDAR point
cloud, the second and the third remain very challenging. In this regard, the contributions of this work
are threefold:

• We propose an effective solution to compute the external energy for the snake model—which
is initialized by the LiDAR-based boundaries. Such a solution enables the snake model to be
insensitive to image noise and details, as well as easing the snake model parametrization. In
addition, this snake model involves an improved balloon force that behaves adaptively by either
shrinking or inflating the snake (as opposed to the classic balloon force that always inflates it).

• In order to build a reliable foundation for this novel snake model, a super-resolution process
is proposed to reliably improve the LiDAR point cloud sparsity. Such a sparsity issue has been
problematic to building extraction methods using LiDAR data, including snake models.

• Lastly, we present a comprehensive performance assessment of the proposed SRSM on two
different geographical contexts, namely Europe (with the Vaihingen benchmark dataset) and
North America (with the Quebec City dataset). Such contexts involve various differences in terms
of compactness, density, and regularity of urban areas [43], demonstrating the scalability and
versatility of the proposed method.

Together, these elements constitute a large-scale automatic and unsupervised building extraction
method, which achieves high thematic and geometrical accuracy when tested on various urban scenes.

1.5. Paper Organization

This paper is structured as follows: this section has been devoted to an introduction to the
building extraction research topic, our motivation, and a literature review of the related works. The
contributions of this research work have also been summarized. Section 2 presents the proposed
method. Then, multiple assessments on the performance of the SRSM involving various study areas
and datasets are carried out in Section 3. Next, Section 4 brings the discussions on the relevance of the
proposed SR, then on the SRSM results, and lastly on the impact of the snake model parametrization.
Finally, Section 5 provides conclusions and perspectives of this work.

2. Proposed Method

This paper presents a novel unsupervised building extraction method, built around the
Super-Resolution-based Snake Model (SRSM). Figure 1 depicts the flowchart of the proposed method.
It employs predominantly the LiDAR data, with additional information from the optical image in
order to remove vegetation. First, the SRSM is automatically initialized by the preliminary candidate
building boundaries extracted from the LiDAR point cloud. This extraction process is carried out as
presented in [39]. It relies on an elevation thresholding, a proximity regrouping, and a convex hull
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Figure 1. Flowchart of the proposed building extraction method based on the Super-Resolution-based
Snake Model (SRSM).

detection. The ground elevation value is determined by a DTM, generated using the method proposed
by [44]. This process is also similar to other research works such as [25,45]. Since LiDAR-based building
extraction can be difficult due to nearby vegetation [46], this process also involves a vegetation removal
based on the Normalized Difference Vegetation Index (NDVI) derived from an optical image. As
the two data sources are used jointly, a registration is necessary in order to avoid misalignment
problems. This registration can be carried out a priori (i.e., data acquisition using the same platform) or
a posteriori [47,48]. It aims to estimate the transformation model, allowing reducing the misalignment
between the two datasets. The 3-D building boundary points extracted from the LiDAR point cloud are
denoted by Bi, where i represents the building index. The registration results in a set of transformation
model parameters θ, which is then used for the projection of the 3-D building boundary points Bi onto
the image space, denoted by Pθ(Bi). Then, they are used as initial points (denoted by b0

i ) for the snake
model, as well as to generate the building masks (denoted by Mi) used in the balloon force. The SRSM
operates on high-resolution LiDAR-based z-images generated by a super-resolution process. It also
involves an improved balloon force model based on the building masks Mi. The resulting building
boundary is denoted by bi.

2.1. Mathematical Formulation

An active contour or a snake, is a dynamic curve x(s) = (x(s), y(s)), where s ∈ [0, 1] is the
normalized arc length, defined within an image domain that is deformable under the influence of
internal and external forces. The behaviors of the snake are governed by an energy function defined as
follows,

Esnake =
∫ 1

0
(Eint(x(s)) + Eext(x(s)))ds (1)

with Eint(x(s)) =
1
2

(
α

∣∣∣∣∂x
∂s

∣∣∣∣2 + β

∣∣∣∣∂2x
∂s2

∣∣∣∣2
)

and Eext(x(s)) = Eimg(x(s)) + Econ(x(s))

where Eint and Eext, respectively, represent the internal and external energy terms. The internal energy
term relates to the amount of stretch and curvature of the snake, respectively controlled by weighting
parameters α and β. Small values of α and β, respectively, encourage short and smooth contours and
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vice versa. The external energy Eext is composed of the forces due to the image itself Eimg and other
constraint forces Econ. The external image-based energy Eimg involving salient features of the image,
i.e., lines, edges, and terminations (i.e., line segment end-points, corners) is formulated as follows,

Eimg = wlineEline + wedgeEedge + wtermEterm (2)

where wline, wedge, wterm are the weights of the respective salient features. Mathematical formulation of
these energy terms [31] are provided in Appendix A.

A snake that minimizes Esnake described by Equation (1) must satisfy the following Euler equation,

α× ∂x2

∂s2 + β× ∂x4

∂s4 +∇Eext = 0 (3)

In order to solve Equation (3), the snake is made dynamic by regarding x as a function of time t as well
as of the arc length s. Then, the partial derivative of x with respect to t is then set equal to the left-hand
side of Equation (3), as follows,

∂x
∂t

= −α× ∂x2

∂s2 − β× ∂x4

∂s4 −∇Eext (4)

As x(s, t) stabilizes, the partial derivative term ∂x/∂t vanishes and a solution for Equation (3) is
obtained. A numerical approach for Equation (4) can be carried out by discretizing the equation and
solving the discrete problem iteratively [31].

External constraint forces are added to the snake energy function in order to guide it toward or
away from a particular feature, as well as addressing snake problems such as initialization, convergence,
and robustness against noise. In this regard, Xu and Prince [49] proposed Gradient Vector Flow (GVF)
to improve the traditional snake model by allowing more flexible initialization and encouraging its
convergence to boundary concavities, as well as improving its robustness. GVF field is defined as the
vector field v(x, y) = (u(x, y), v(x, y)) that minimizes the energy functional

EGVF =
∫ ∫

µGVF(u2
x + u2

y + v2
x + v2

y) + |∇ f |2|v−∇ f |2dxdy (5)

with µGVF being a controllable smoothing term and f representing external forces from Equation (3),
i.e., f (x, y) = −Eext. Using [50] the GVF field v can be found by solving

µGVF∇2u− (u− fx)( f 2
x + f 2

y ) = 0

µGVF∇2v− (v− fy)( f 2
x + f 2

y ) = 0
(6)

where ∇2 is the Laplacian operator. The Euler equations (6) can also be solved by regarding u and v as
functions of time,

∂u
∂t

= µGVF∇2u(x, y, t)− [u(x, y, t)− fx(x, y)] · [ fx(x, y)2 + fy(x, y)2]

∂v
∂t

= µGVF∇2v(x, y, t)− [v(x, y, t)− fy(x, y)] · [ fx(x, y)2 + fy(x, y)2]

(7)

Once computed v(x, y) replaces the potential force −∇Eext in the dynamic Equation (4), yielding

∂x
∂t

= −α× ∂x2

∂s2 − β× ∂x4

∂s4 + v (8)

This equation is solved similarly as the traditional snake model, i.e., by discretization and iterative
solution. The parametric curve solving the above dynamic equation is thus called a GVF snake.

Cohen [51] proposed an inflation term as an external force, known as balloon model, as follows,

Fballoon = κ ×~n(s) (9)
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where κ is the magnitude of the force and ~n(s) stands for the normal unitary vector of the curve at
x(s). This model mimics the inflation of a balloon by continuously pushing the snake points outward.
Thus it prevents the snake from shrinking into a single point.

2.2. Proposed Z-Image-Based Energy Term

Despite the recent developments, the existing snake models still struggle to yield a satisfactory
reproducibility in complex environments. Such low reproducibility stems from a number of reasons.
For instance, these environments can be composed of complex structures such as multiplanar roof
buildings which can also be shadowed or occluded by trees. For a multiplanar roof building, different
roof planes can have different shades, causing ridge lines (i.e., the intersection lines between the
different planes) exhibiting high-gradient values in the image-based energy term. In addition, the
performance of the snake model on optical images can be affected by image small details, namely
roof objects (like chimneys, attic windows), cars, trees, etc. There are also possible null-valued pixels
on the orthoimage. Consequently, if a building involves these unwanted elements, then the snake
model would be drawn toward them. Hence, the resulting performance on delineating such a building
would decrease significantly. Fortunately, these problems relate directly to the use of the optical image.
Therefore, we propose to operate the snake model on the z-image derived from LiDAR data. This
approach allows the snake model to focus only on the most salient features in a z-image, i.e., height
changes involving off-terrain objects such as buildings and trees.

2.2.1. Generation of Z-Image by the Super-Resolution of LiDAR Data

The accuracy of a building extraction method using LiDAR data is usually compromised by the
sparsity problem [21]. Therefore, we propose a process dedicated to the projection and propagation of
LiDAR data onto the image space in order to augment its spatial resolution. Such a process is called
super-resolution (SR), and it is illustrated by the flowchart in Figure 2. It consists in generating a
z-image that contains the altitude values derived from the LiDAR 3-D point cloud. Such an image has
the same size and resolution as the optical image. The inputs of the SR process are the LiDAR point
cloud, a set of transformation model parameters, the frame of reference, and the size of the optical
image. The LiDAR 3-D point cloud is denoted by ψ ∈ Rm×3 where m is the number of points. Each
point has three spatial coordinates (x, y, z). We also use ψz ∈ Rm for the column of altitude values.
The z-image is denoted by φ ∈ Rnx×ny , where nx and ny are, respectively, the number of rows and
columns. During the SR process, φ is vectorized into a column vector of n = nx × ny elements. The set
of transformation model parameters θ results from the registration [48]. It aims to define the projection
of 3-D points onto the image space.

LiDAR point cloud ψ

Transf. model θ

3-D projection
Sparse

z-image φΩ∗
Value propagation z-image φ

Figure 2. Overview of the super-resolution process, generating a high-resolution Light Detection and
Ranging (LiDAR)-based z-image.

(a) Projection of LiDAR 3-D points

The first step of the SR process consists in projecting the LiDAR 3-D points onto the z-image space
using the transformation model parameters θ. As the LiDAR point cloud is subsampled compared to
the optical image, such a projection leads to a sparsity effect on the z-image φ. Here, we use Ω∗ and
Ω to denote, respectively, the subset of the pixel indices in the z-image φ, having or not a projected
altitude value. In other words, φΩ∗ denotes the sparse z-image or the subvector containing the pixels of
projected altitude value, whereas φΩ denotes the subvector containing the null pixels. The dimensions
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of φΩ∗ and φΩ, respectively, are m× 1 and (n−m)× 1. As such, φ = φΩ∪Ω∗ is the vector containing
all pixels, i.e., the whole z-image. The projection is mathematically presented as follows,

φΩ∗ = Pθ(ψ
z) (10)

where Pθ is the 3-D projection associated with the transformation model parameters θ. The x- and
y-coordinates of the LiDAR 3-D points are used to locate the pixels in the z-image associated with such
points. Next, the projected values indexed by Ω∗ will be propagated to their neighboring pixels (which
are indexed by Ω).

(b) Propagation of the projected values

Our SR approach is inspired by the work of Castorena et al. [52] on the fusion of terrestrial LiDAR
data with optical imagery. It involves reconstructing a sparse depth map by minimizing the sum of its
squared directional gradients (SSDGs). This approach relies on hypothetical characteristics of a depth
map, which involve the magnitude and occurrence of depth discontinuities inside the depth map to be
minimized. In an airborne nadir view context, their method shows good performance in propagating
elevation values across homogeneous regions. However, in elevation-discontinued transitioning
regions, e.g., near the edges of a building, the propagated elevation values would be gradually
flattened as a result of the minimized SSDGs. In other words, such hypothetical characteristics are
not suitable in this context, where the off-terrain objects like trees and buildings always exhibit strong
elevation discontinuities. Such discontinuities should be preserved during the value propagation
process. Thus, an l1-norm term is added in our minimization approach. This preservation allows the
resulting z-image to exhibit elevation changes as tight as possible compared to the scene reality.

The propagation of the projected values is carried out through the minimization of a cost function
F (φ), defined by Equation (11). It is composed of the SSDGs and a l1-norm term of the z-image φ,
subjecting to the values previously projected from the point cloud (i.e., described by Equation (10)).

φ̂ = arg min
φ


fSSDG(φ)︷ ︸︸ ︷

‖∇xφ‖2
2 +

∥∥∇yφ
∥∥2

2 +λ ‖φ‖1︸ ︷︷ ︸
F (φ)

 , subject to φΩ∗ = Pθ(ψ
z) (11)

where ‖·‖p stands for the lp-norm,∇x and∇y, respectively, represent the directional gradient operators
along the x-axis and y-axis. The parameter λ > 0 controls the amount of the l1-regularization.

(c) Propagation implementation

The minimization of the cost function described in Equation (11) is carried out using the Fast
Iterative Shrinkage-Thresholding algorithm (FISTA) [53]. Its computational efficiency is adequate
for solving large-scale problems, with a convergence rate of O(1/k2), where k is the iteration
counter. FISTA is significantly faster than standard gradient-based methods such as Iterative
Shrinkage-Thresholding algorithms (ISTA). Full details on the implementation of the proposed SR
process can be found in [48].

The convergence rate of the SR is illustrated in Figure 3. Figure 3a depicts the differences between
the estimated z-images at consecutive iterations, i.e.,

∥∥∥φ(k+1) − φ(k)
∥∥∥

2
. The cost values F (φ(k)) through

iterations are shown in Figure 3b. One can observe that the z-image has nearly converged into a stable
solution after approximately four hundred iterations. Figure 4 shows the outcomes of the projection
and the propagation of altitude values from the LiDAR data onto the optical image space. The value
projection outcome is depicted by the sparse z-image φΩ∗ (Figure 4a), whereas the value propagation
outcome is shown by the dense z-image φ (Figure 4b). The pixel color of the sparse and dense z-images
represents the surface elevation in meters. Figure 4c shows the reference optical image on the same
urban scene, in order to assess visually the quality of the super-resolved z-image. It can be noted that



Remote Sens. 2020, 12, 1702 9 of 29

0 100 200 300 400 500 600 700 800 900 1000

iteration k

10
4

10
5

F
{

(k
) }

First iteration without

null-valued pixels

(a) Difference
∥∥∥φ(k+1) − φ(k)

∥∥∥
2

0 100 200 300 400 500 600 700 800 900 1000

iteration k

0

10

20

30

40

50

60

||
(k

) -
(k

-1
) ||

2

First iteration without

null-valued pixels

(b) Cost function valueF (φ(k)) (in logarithmic scale)

Figure 3. (a) Difference
∥∥∥φ(k+1) − φ(k)

∥∥∥
2

and (b) cost function value F (φ(k)) displayed as a function of
iterations, from the SR process of generating z-image φ. The vertical red-dashed lines represent the first
iteration where every pixel of the estimate z-image is filled.
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Figure 4. Examples of super-resolution outcome. (a) The sparse z-image φΩ∗ from the projection; (b)
The dense z-image φ from the whole SR process; (c) The reference optical image of the same scene for
visual comparison.

the elevation of buildings and other objects (e.g., trees, cars, etc.) are well presented on the dense
z-image (Figure 4b) and correspond to the information in the optical image. The proposed SR process
is shown to achieve the purpose of augmenting the spatial resolution of the LiDAR point cloud. An
assessment of the SR performance will be presented in Subsection 3.3.

2.2.2. The Z-Image Based Energy Term

Figure 5 depicts a comparison between the use of the z-image φ and the optical image (denoted
by I) of a multiplanar roof building with several roof objects and nearby cars. Figure 5a reveals the
LiDAR point cloud overlain on the optical image of the exemplified building. Figure 5b and 5c show,
respectively, the z-image and the energy term computed from the z-image. Then, the optical image
and the associated energy term are depicted, respectively, in Figure 5d and 5e. In Figure 5c and 5e,
the grayscale reflects the value of the energy term Eimg. The dark pixels represent the low-energy
pixels, whereas the bright pixels are the high-energy ones. By design, a snake is attracted to the dark
pixels and will iteratively move toward them. Comparing the two energy terms (Figure 5c and 5e),
it can be noted that the sources of attraction for the snake models, i.e., the dark pixels in the energy
term, provided by the z-image are more relevant than the ones from the optical image. Indeed, the
dark pixels from the energy term computed from the z-image Eimg(φ) (Figure 5c) are found mainly
at the edges of the building, with a few exceptions caused by the nearby trees. There exists also one
particular aberration which is circled in red on Figure 5c. It is caused by an absence of LiDAR points in
this small region, as highlighted in the red circle in Figure 5a.

On the other hand, the dark pixels from the optical image-based energy term Eimg(I) (Figure
5e) stem from many undesirable artifacts, namely cars, attic windows, and chimneys found on this
building roof. They are highlighted by the red circles on Figure 5e. By comparing Figure 5c and 5e,
it can be noted that some of these artifacts do not exist or are much less visible on the z-image—due
to their low elevation variations compared to the building-to-ground ones. In addition, the effect of
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(a) LiDAR+image (b) z-image φ (c) Eimg(φ) (d) Optical image I (e) Eimg(I)
Figure 5. Comparison between the energy terms computed from the z-image and from the optical
image. (a) LiDAR 3-D point cloud overlain on the optical image for visual comparison; (b) z-image; (c)
Eimg computed from the z-image; (d) optical image; (e) Eimg computed from the optical image.

shadow casting over a corner of the building—circled in green on Figure 5e—is also problematic to a
building boundary extraction. Such an effect and problem do not exist in the z-image. We can also
remark that this multiplanar roof building exhibits many ridge lines which also produce low values in
the energy term. In reality, they are not false non-building details like trees or cars, but when focusing
on the extraction of the building boundaries, they can be considered undesirable. These premises show
that it is more relevant to carry out the snake model on the z-image than on the optical image.

2.3. Improved Balloon Force

As aforementioned, the classical balloon force is conceived to constantly push the snake outward
based on its local curvature (Equation (9)). Such behavior becomes less relevant when addressing
buildings with complex shape. Therefore, we propose to adapt the balloon force to push outward
at some particular region and shrink inward at some others. Such adaptation is explained in the
following. Using the 3-D building boundaries preliminarily extracted from LiDAR point cloud, a set of
building masks Mi can be created. Such masks are generated by projecting the 3-D building boundaries
onto the image space and then determining the enclosed region inside the projected boundaries. Then,
the adapted behavior is carried out through a signed magnitude matrix computed using the mask Mi,
as defined in Equation (12).

Ki(x, y) =

{
κ, if (x, y) ∈ Mi
−κ, if (x, y) /∈ Mi

(12)

with (x, y) being the coordinates of a point on the snake and κ being the force magnitude weight. As a
result, the improved balloon force for a building i is given as in Equation (13),

F∗balloon, i = Ki(x, y)×~n(x, y) (13)

where~n stands for the normal vector of the curve at (x, y).
Figure 6 depicts a schematic representation illustrating the proposed adaptation. It demonstrates

how the snake behaves differently (i.e., either inflating or shrinking) based on its relation with the
given LiDAR-based building mask. With the LiDAR-based building masks Mi represented by the blue
rectangle, the balloon force behavior (represented by the red arrows) is improved to shrink or inflate at
different snake points.
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(a) (b)
Figure 6. Illustration of the balloon force on a rectangle building. (a) Original balloon force inflating
continuously; (b) Improved balloon force behaviors, adjusted based on the snake local curvature and
its relation to the LiDAR-based building mask (blue rectangle). The red arrows represent the balloon
force applied to the snake points, moving from the current iteration (solid line) to the next one (dashed
line).

3. Experimental Results

In this section, multiple performance evaluations are carried out. First, we introduce the building
extraction accuracy metrics as well as the study areas and the datasets used in this work. Then, the
performance of the SR process is evaluated. Next, a visual assessment between the snake models is
also carried out. Lastly, the proposed SRSM is evaluated on various urban and residential scenes.

3.1. Building Extraction Accuracy Metrics

Multiple accuracy assessments, thematically and geometrically, are proposed to evaluate the
performance of a building extraction method based on the ground truth boundaries.

3.1.1. Thematic Accuracy Metrics

Based on the evaluation methodology described by Rutzinger et al. [54], three metrics, namely
Quality (Q), Completeness (Cp), and Correctness (Cr), are measured per-object and per-area.
Particularly, the per-object evaluation involves either all objects regardless of their area or only
the objects with an area larger than 50 m2. The three metrics are computed based on the count
of true positive (TP), false positive (FP), and false negative (FN) elements between the extracted and
the reference building boundaries from the ground truth. These elements (TP, FP, FN) are defined
differently if the evaluation is carried out per-object or per-area.

For the per-object evaluation, an extracted building is counted as a TP if at least 50% of its
area coincides with its ground truth. On the other hand, a FP is an extracted building without a
corresponding building in the ground truth or if the coincided area with the ground truth is less than
50%. Whereas a FN means the proposed approach fails to extract a building existing in the ground
truth. The corresponding Cp, Cr, Q metrics are then computed using Equation (14).

Cp =
TP

TP + FN
, Cr =

TP
TP + FP

, Q =
TP

TP + FP + FN
(14)

For the per-area evaluation, such metrics are computed using the count of pixels on the image.
The area-based Quality Q is equal to the Intersection over Union (IoU) metric, which measures the
ratio between the intersection area over the union area of the extracted building boundary E and the
corresponding ground-truth R (Equation (15)). It reflects the overall accuracy of the building extraction
method according to the ground truth. The Completeness Cp measures the fraction of relevant
identified building pixels over the total number of actual building pixels, whereas the Correctness Cr
computes the fraction of relevant identified building pixels among all identified pixels.

Cp =
#(E ∩ R)

#(R)
, Cr =

#(E ∩ R)
#(E)

, Q =
#(E ∩ R)
#(E ∪ R)

(15)
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where #(·) denotes the number of pixels inside the given region. All three metrics Cp, Cr, and Q reach
their best value at 100% and worst at 0%.

3.1.2. Geometrical Accuracy Metrics

The geometrical accuracy of the method can also be evaluated by measuring the root-mean-square
error (RMSE) of distances from extracted building outlines to the reference outlines, without
considering points with distance greater than three meters. Such a threshold is defined by the
assessment methodology [26]. A smaller distance indicates a better geometrical accuracy.

3.2. Study Areas and Involved Datasets

3.2.1. Vaihingen Dataset

The proposed building extraction method is tested using the ISPRS benchmark dataset on
Vaihingen, Germany [55]. The test aims to demonstrate its effectiveness on complex environments and
to compare it with other methods. The ISPRS Vaihingen benchmark dataset involves three test areas
consisting of buildings with diversified characteristics. In these test areas, the ground truth boundaries
consisting of roof outline polygons were generated based on manual stereo plotting, with an associated
planimetric accuracy of approximately 10 cm [26]. The columns two and three of the Table 1 describe
the involved LiDAR and optical imagery datasets on these areas. Concerning the LiDAR data, we only
use the data from one strip for each area. The orthoimage was generated based on the DSM derived
from the LiDAR data. As a result, the misalignment between them is relatively small (i.e., less than 30
cm).

Table 1. Description of the ISPRS Vaihingen benchmark dataset and the Quebec City dataset.

Vaihingen Quebec City
Specifications Optical image LiDAR Optical image LiDAR

Spectral resolution NIR, R, G 1064 nm R, G, B 1064 nm

Spatial resolution 9 cm 50 cm 15 cm 35.4 cm
(point density) - (4 pts/m2) - (8 pts/m2)

Acquisition time July–August 2008 August 21, 2008 June 2016 May 2017

Geometry/Properties Orthorectified Mostly single-return Orthorectified Multireturn (4)
Georeferenced Unclassified Georeferenced Classified

Relative misalignment Less than 30 cm 1.05 m (before registration),
0.35 m (after registration [48])

3.2.2. Quebec City Dataset

Besides the assessments on the Vaihingen dataset representing a European urban context, we
additionally conduct a performance assessment in another geographic context, namely North America.
In this regard, the method is carried out on the urban areas of Quebec City, QC, Canada. They cover a
total area of 656 square kilometers. The whole area is divided into tiles of 1 km × 1 km, as shown in
Figure 7, for the sake of processing time and memory constraints. The involved LiDAR and optical
imagery datasets are described in column four and five of Table 1. The ground truth boundaries of
buildings in the whole test area are provided and updated monthly by the City of Quebec, named
Empreintes des bâtiments [56]. The ground truth dataset used in this work was downloaded on March
4th, 2019.

In March 2019, Microsoft released an open Canada building footprint dataset (consisting of twelve
million buildings) collaborating with Statistics Canada [57]. The dataset covers all the Quebec City
territory with more than two hundred thousand building footprints. This work is carried out using a
deep neural network, of which the foundation is the ResNet-34 [58]. The training set consists of three
million labeled Bing images. In this paper, we conduct an individual performance assessment using
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Source: Esri,
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Figure 7. Quebec City dataset coverage visualized with ERSI ArcGIS Online World Imagery basemap
(Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES Airbus DS, USDA, USGS, AeroGRID,
IGN, and the GIS User Community).

the mentioned ground truth building boundaries in Quebec City, in order to compare with the SRSM
results.

It should be noted that this assessment does not only allow evaluating the performance of the
proposed SRSM on such a large dataset, but it also serves as an example demonstrating the scale
of the study—i.e., the Quebec province, in which other cities and large areas should not cause any
adaptability problem on such an unsupervised method.

3.3. Performance Evaluation of the Super-Resolution

Besides the visual assessment provided in 2.2.1, the performance of the proposed SR process
is also quantitatively evaluated. We compare it with other conventional 2-D interpolation methods,
namely nearest neighbor (NN), bilinear, and natural interpolation [59]. This evaluation and comparison
are depicted by Figure 8. The four methods are examined on a real LiDAR point cloud with an average
density of 3.8 points/m2 (Figure 8a). Such point cloud is then subsampled by a chosen factor, namely
2, 4, and 8, yielding a subsampled point cloud which serves as an input for these SR/interpolation
methods. These experimented factors are chosen based on the proportion between the respective
spatial resolution of the datasets (cf. Table 1). For example, Figure 8b depicts the 3-D point cloud
subsampled by a factor of 2. Based on the sparse DSM generated from this subsampled point cloud
(Figure 8c), each interpolation method generates a DSM having the spatial resolution equal to that
of the subsampled LiDAR point cloud times the upscaling factor—in other words, equivalent to the
spatial resolution of the original point cloud. The resulting interpolated DSM provided by each method
(e.g., Figure 8d or 8e) is compared with the DSM generated from the full-resolution LiDAR point cloud,
which is considered as the ground truth for the assessment (Figure 8f).

In order to evaluate the quality of these interpolation and SR methods—i.e., the closeness
between the interpolated image and the ground truth image—we measure the following metrics:
root-mean-square error (RMSE), structural similarity (SSIM) [60], and the peak signal-to-noise ratio
(PSNR). SSIM and PSNR are two widely used objective metrics for evaluating image super-resolution
quality [61]. Their mathematical explanations can be found in Appendix B. Table 2 summarizes the
quality measurements of each interpolation method for all three upscaling factors, i.e., ×2,×4 and ×8.

Overall, compared to the other methods, the proposed SR process yields better results, i.e., smaller
RMSE, higher SSIM and PSNR. However, it yields a disadvantageous SSIM compared to the natural
interpolation and the bilinear interpolation, in the ×4 and ×8 upscaling. Considering the RMSE, one
can remark that the improvement in the case of ×2 upscaling between the proposed SR and the others
is only marginal (i.e., 1.96 compared to 2.00-2.18). In contrast, in the ×4 and ×8 upscaling, this margin
of RMSE improvement becomes more significant. Similar remarks can be made when considering
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(a) Original 3-D point cloud (b) Subsampled 3-D point cloud

(c) Sparse DSM (d) NN (e) Proposed SR (f) Ground truth
Figure 8. Illustration of the conducted assessment. (a) The original LiDAR 3-D point cloud; (b) the
subsampled 3-D point cloud (by a factor of 2); (c) sparse DSM generated from (b); (d) result of the NN
interpolation; (e) result of the proposed SR; (f) the ground truth DSM generated from (a).

Table 2. Performance evaluation of the SR process. The best result for each upscaling factor and each
metric (i.e., the smallest value for RMSE and the greatest for SSIM and PSNR) is highlighted, whereas
the second best is underlined.

×2 ×4 ×8

Method RMSE SSIM PSNR (dB) RMSE SSIM PSNR (dB) RMSE SSIM PSNR (dB)

NN 2.18 0.40 -6.76 2.47 0.30 -7.85 3.08 0.18 -9.76
Bilinear 2.08 0.37 -6.36 2.41 0.34 -7.65 4.39 0.24 -12.86
Natural 2.00 0.40 -6.03 2.34 0.36 -7.40 4.33 0.25 -12.74

Proposed SR 1.96 0.40 -5.83 2.04 0.33 -6.21 2.80 0.19 -8.94

the PSNR. These improved quality measures show that the proposed SR is more reliable compared
to the conventional interpolation methods. This quantitative assessment and the visual assessment
(previously presented in 2.2.1) have demonstrated the relevance of the proposed SR method. It is
deemed to fit the purpose to be used in the proposed SRSM.

3.4. Comparison between Snake Models

We also perform an assessment on the performance of the proposed SRSM and compare it with
other existing snake models previously mentioned in Subsection 1.3. They are carried out on the
gable-roof building previously discussed in Subsection 2.2 and displayed in Figure 5. First, the
ground truth building region is overlaid by a transparent green area, while the surrounding ground
is displayed in transparent red color, as in Figure 9b. These overlaying colors allow assessing the
building extraction more straightforwardly. Figure 9c presents the result of snake models on the
exemplified building. Four snake models are compared, namely basic snake with GVF, snake model
of Guo and Yasuoka [33], snake model of Kabolizade et al. [35], and the proposed SRSM. They all are
unsupervised snake models, which are substantially different from each other. In addition, they are
not constrained to one particular range of building sizes. These also are the reasons why the snake
model-based methods [36,37,42] are not involved in this comparison. The snake parameters are set
as follows, α = β = 0.2, balloon force magnitude κ = 0.1, and image-based energy term weights
wline = 0.04, wedge = 2, wterm = 0.01.

Here, all concerned snake models are initialized by the same LiDAR-based building boundary.
These initial points are already an improvement compared to the ones proposed in the respective
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(a) (b) (c)
Figure 9. Visual assessment of the proposed snake model on a gable-roof and complex shaped building.
(a) Reference optical image of the considered building with the initial points in magenta (i.e., Pθ(Bi)).
(b) The building with the ground truth region (in transparent green) and a modified ground truth
boundary (in blue); (c) Visual comparison of performance among the snake models.

snake model. However, one can remark in Figure 9c that the other snake models (i.e., the basic
snake, the snake model of Guo and Yasuoka [33], and the snake model of Kabolizade et al. [35]) have
problems approaching the true edges of the building. On the other hand, the proposed SRSM, under
the influence of salient features of the z-image, converges very well towards the edges and the corners.
As we previously stated in 2.2, this exemplified building involves many challenging regions. One
of them is the building corner under shadow (circled in green in Figure 5e), which is now shown in
the left subfigure in Figure 9c. Another difficult region is found with many nearby cars (circled in
red in Figure 5e). It is now zoomed in the bottom-right subfigure in Figure 9c. It is shown that, on
these two corner regions, all three of the previous snake models yield poor results. In contrast, the
proposed SRSM approaches very well the ground truth boundary. This visual assessment shows that
the z-image-based snake model yields much more accurate building boundary compared to other
existing snake models.

Table 3. Quantitative results of snake models on the considered building. The best result for each
metric (i.e., the smallest value for RMSE and the greatest for Quality Q) is highlighted.

Benchmark ground truth Modified ground truth
Model Q RMSE (m) Q RMSE (m)

Basic snake model 76.92 % 2.05 74.36 % 2.21

Guo and Yasuoka [33] 77.38 % 1.90 78.15 % 1.92

Kabolizade et al. [35] 79.66 % 2.08 76.01 % 2.36

SRSM 86.25 % 1.80 95.57 % 1.75

Table 3 summarizes the quantitative results of the compared snake models, based on the
area-based Quality and RMSE metrics. First of all, one can remark that, in general, the resulting
Quality and RSME from all snake models are relatively high (more than 70%). This stems from the
benefit of using the LiDAR-based building boundary as initial points. Then, the quantitative results
also show the relevance of the proposed snake models, compared to other snake models. However,
the margin of gain between them according to these values—i.e., a maximum Quality gain of 9.33%
between the basic and the SRSM—is not as high as expected, given the clear advantage drawn from
the visual assessment from Figure 9c.
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One can also remark that the snake models were not able to extract two particular parts of the
building (highlighted by yellow-dashed circles in Figure 9b) because they do not exhibit significant
elevation change or color change from the surrounding ground (cf. Figure 5). On one hand, the inability
of the SRSM stems from the absence of elevation changes. On the other hand, the other snake models
are unable to extract these parts because of the absence of color changes. We are convinced that these
undetected parts can be the reason for the low margin between the snake models mentioned above.
Therefore, we also conduct another evaluation of all four snake models with a modified version of the
ground truth building boundary, in which the two undetected parts are removed. Such a modified
ground truth boundary aims to provide the unbiased reference for the snake models. In Figure 9b, this
modified ground truth boundary is depicted in blue outlines. The columns 4 and 5 of Table 3 reveal the
involved comparison based on this modified ground truth. As expected, the new margin between the
proposed snake model and the others is now much larger, i.e., a margin of 21.21% of Quality between
the basic snake model and the proposed SRSM. It is coherent with the inference drawn from the visual
assessment (Figure 9c). This comparison has shown that the proposed SRSM yields better accuracy
than the other snake models. In the next two subsections, the overall performance of the SRSM on
different datasets will be assessed.

3.5. Performance on ISPRS Vaihingen Dataset

The three test areas of the ISPRS Vaihingen dataset are shown by Figure 10. Area 1 (Figure 10a)
is situated in the center of the city and characterized by dense construction consisting of historic
buildings with rather complex shapes. Area 2 (Figure 10b) is composed of high-rise residential
buildings surrounded by trees. Lastly, Area 3 (Figure 10c) is residential with detached houses and
many surrounding trees. The results of SRSM are also depicted in Figure 10a, 10b, and 10c in green.
Then, Figure 10d, 10e, and 10f illustrate the area-based accuracy assessment, denoting TP (in yellow),
FP (in red), and FN (in blue) pixels. Overall, the proposed method yields a very high accuracy, reflected
by a very high number of TPs on all three areas. However, a number of unresolved problems can be
remarked in Figure 10. Firstly, many FP pixels can still be noted in all three areas. They relate to the
problem of shadowed tree regions near buildings. Such tree regions are circled in green in Figure 10d,
10e and 10f. An example of this problem is from Area 2, which is shown by Figure 11a. Secondly,
several small buildings from all three areas have not been detected.

Table 4 summarizes the area-based accuracy assessment result on all three test areas. In averaging
on three areas, the proposed SRSM achieves a Quality of 86.57%, a Completeness of 91.63%, and a
Correctness of 93.99%. The last column of Table 4 shows the resulting geometrical accuracy of the
SRSM. It can be noted that the RMSE on Area 3 is much lower than the other areas. This is due to the
fact that Area 3 is composed of mostly rectangular buildings and it is less complex than the other areas.

Table 4. Area-based accuracy of the SRSM on the ISPRS Vaihingen benchmark dataset and geometrical
accuracy of the SRSM after the polygonization.

Area Cp Cr Q RMSE

1 90.42 % 94.20 % 85.65 % 1.24
2 93.47 % 94.75 % 88.87 % 1.11
3 91.00 % 93.02 % 85.18 % 0.92

Average 91.63 % 93.99 % 86.57 % 1.09

Table 5 presents the resulting object-based accuracy of the SRSM. Columns two to four show the
accuracy metrics on all objects, whereas columns five to seven provide the metrics when considering
only objects with an area larger than 50 m2. The differences between these two results reflect the
aforementioned problem of undetected small buildings.
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(a) Area 1 (with 37 buildings) (b) Area 2 (with 14 buildings) (c) Area 3 (with 56 buildings)

(d) (e) (f)
Figure 10. Area-based assessment on test areas in ISPRS Vaihingen benchmark dataset. (a–c) Areas 1–3,
with the SRSM results in green outlines; (d–f) SRSM results on Areas 1–3 with respect to their ground
truth. Yellow, red, and blue pixels, respectively, represent the TP, FP, and FN pixels.

(a) (b) (c)
Figure 11. Examples of the problems unresolved by the SRSM. (a) Shadowed vegetation next to a
building; (b) The roof of a basement covered by vegetation which is of similar elevation with its
surrounding area; (c) The building in Area 3 with very few LiDAR returns.

Table 5. Object-based accuracy of the SRSM on the ISPRS Vaihingen benchmark dataset for all buildings
(columns 2 to 4) and for buildings with an area larger than 50 square meters (columns 5 to 7).

Area Cp Cr Q Cp50 Cr50 Q50

1 83.78 % 100 % 83.78 % 100 % 100 % 100 %
2 78.57 % 100 % 78.57 % 100 % 100 % 100 %
3 83.93 % 97.92 % 82.46 % 97.30 % 100 % 97.30 %

Average 82.09 % 99.31 % 81.60 % 99.10 % 100 % 99.10 %

In addition, several buildings have only been partially extracted, due to the fact that the
non-extracted parts have very similar elevation to their surrounding area. Particularly, one of these
building parts (circled in magenta in Figure 10e), in reality, is the roof of a basement covered by
vegetation in Area 2, as shown in Figure 11b. This part has not been extracted by any existing building
extraction methods submitted to this benchmark [26]. In Area 3, there is also one building (circled
in cyan in Figure 10f) that is very poorly extracted. This problem is caused by the incompleteness of
LiDAR data on this building, as shown in Figure 11c.
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The resulting accuracy of the SRSM is then compared with other works submitted to the ISPRS
Vaihingen benchmark portal [62]. As of 26 January 2020, there were 42 submitted methods. Four
histograms are shown by Figure 12, summarizing the resulting accuracy of these methods averaged
on the three areas. Each histogram shows the distribution of methods according to the area-based
Quality (Figure 12a), object-based Quality (Figure 12b), object-based Quality for objects larger than
50 m2 (Figure 12c), and RMSE (Figure 12d). All four histograms are presented with their bins sorted
in an increasing quality order, i.e., any particular bin involves a higher quality (i.e., higher Quality
percentage and lower RMSE) than the bins on its left. Through these histograms, one can remark on
the developed consensus on results of the state-of-the-art methods. For instance, from Figure 12a, it is
shown that the majority of the methods (i.e., approximately 62% or 26/42 methods) yield an area-based
Quality ranging from 82.5% to 89.8%. On the other hand, 64% of the methods yield an object-based
Quality ranging from 73.8% to 87.2% (Figure 12b). For object-based Quality for buildings larger than
50 m2 (Figure 12c), a result greater than 97.6% is desirable, considering that 62% of the methods are
capable of yielding such an outcome.

(a) Area-based Quality (b) Object-based Quality

(c) Object-based Quality (larger than 50 m2) (d) RMSE
Figure 12. Submitted methods to the ISPRS Vaihingen benchmark dataset, by counting the number
of methods divided by the resulting accuracy. (a) Area-based Quality; (b) Object-based Quality; (c)
Object-based Quality (larger than 50 m2); (d) RMSE.

As a fully unsupervised and automatic building extraction method, our method yields very high
accuracy. Indeed, considering the resulting average area-based and object-based Quality, respectively
86.57% and 81.60%, our method is placed among the top 20% of all benchmark methods, i.e., the 10th

or 9th among 42 methods. These results are highly desirable compared to other existing methods.
It is also worth noting that many among the top-accuracy methods are supervised or model-based
methods [26]. Indeed, the supervised methods proposed by Niemeyer et al. [27] and Chai [28] result in
area-based Quality of, respectively, 87.8% and 89.7%. The model-based methods proposed by Bayer
et al. [29] yield an area-based Quality of 89.8%, and the two versions of a method by Grigillo and Kanjir
[30] yield an area-based Quality of 89.4% and 89.7%. In addition, considering the object-based Quality
for buildings with an area larger than 50 m2, our method is placed 12th among 42 methods. However,
considering the RMSE (Figure 12d), our method yields a result (averaging 1.09 m) among the highest
RMSE, in other words, the least desirable. Future works will concentrate on improving such accuracy.

The proposed SRSM also faces several problems when performed on the ISPRS Vaihingen
benchmark dataset, such as the problem of nearby shadowed vegetation shown in Figure 11a. Grigillo
and Kanjir [30] proposed to solve such a problem with the rule-set classifiers on image pixel colors
and NDVI. However, this approach involves multiple manually selected thresholds which require a
high level of supervision. There also exists other classification approaches (in order to better classify
shadowed trees from buildings) involving graph-cut-based method [63]. However, such method may
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require a high amount of a priori information or user inputs in order to yield accurate results [32].
Therefore, by opting for such mentioned approaches, the level of supervision of the building extraction
method should be reconsidered.

3.6. Performance on Quebec City

In order to test the performance and applicability of the proposed SRSM on a large scale, we carry
it out on the Quebec City dataset. Many areas in Quebec City are composed of different types of urban,
residential, and industrial scenes. Two of these typical scenes are shown in Figure 13. They are also
representative of the North American context. Based on a visual assessment, the SRSM succeeds at
delineating the building boundaries accurately on the two exemplified scenes. Typically, the size of
the buildings shown in both scenes varies greatly from small to very large buildings. One can remark
that many buildings that have similar color as their background (i.e., parking lots, open areas, etc.) are
also well delineated. Other optical image-related problems such as roof objects and nearby cars are
also avoided. This re-emphasizes the benefits of using the z-images encoding LiDAR elevation data
instead of the optical images. In addition, similar to the Vaihingen datasets (particularly Area 1 and 2),
the shape of buildings presented in these two examples—also verified across the whole Quebec City
area—can be very complex. These three factors related to the scene complexity—i.e., varying building
size, color, and shape—can be problematic to other methods, whereas the proposed SRSM is able to
overcome such complexity.

Table 6 summarizes the area-based and object-based accuracy yielded by the Microsoft open
Canada building footprints and the proposed SRSM. It can be noted that the Completeness and
Correctness yielded by the two methods are quite different. These differences mainly stem from the
fact that the two methods were carried out using different data sources with different characteristics.
However, based on the resulting Quality values reflecting the overall accuracy, it can be noted that the
SRSM provides a competitive outcome compared to the Microsoft method. Indeed, the Quality margins
between the SRSM and the Microsoft method are well balanced. The SRSM yields a 6.65% higher
object-based Quality, while in contrast, the Microsoft method provides a 7.40% higher area-based
Quality. On the one hand, the difference of the area-based Quality stems from the fact that the
resulting footprints from SRSM have the tendency to be slightly “rounded” around the building
corners. Whereas the Microsoft footprints were generated (with their own polygonization method)
without such a problem. On the other hand, the SRSM with the advantage of the z-images encoding
elevation data allows one to detect the buildings more precisely, hence yielding the higher object-based
Quality. Nevertheless, it is always worth noting that such competitive accuracy is produced by an
unsupervised approach, compared to the heavily supervised approach from Microsoft which was
trained on three million labeled images. The complete dataset of extracted building boundaries in
Quebec City by the SRSM as well as the high-resolution version of Figure 13, are made publicly
available at https://github.com/nthuy190991/SRSM_QuebecCity_building_extraction.

Table 6. Area-based and object-based accuracy of the SRSM on the Quebec City dataset, compared
with the Microsoft open Canada building footprints.

Area-Based accuracy Object-Based accuracy
Method Cp Cr Q Cp Cr Q

Microsoft building footprints 77.42 % 87.61 % 69.77 % 59.01 % 93.16 % 56.56 %
SRSM footprints 82.32 % 72.02 % 62.37 % 74.25 % 80.95 % 63.21 %

The outcomes of the SRSM on the Quebec City dataset are relevant, visually and quantitatively.
However, there still remain two issues. Firstly, from a practical perspective, the SRSM was carried
out separately on tiles (Figure 7) for the sake of processing time and memory constraint. Then, the
tile-based results were combined in QGIS. Such a step is crucial for the buildings located in the
transitioning areas between two neighboring tiles. Several of those buildings can be identified near

https://github.com/nthuy190991/SRSM_QuebecCity_building_extraction
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(a) (b)

(c) (d)
Figure 13. SRSM results (in red outlines) on typical urban and residential areas in Quebec City and the
corresponding ground truth. Each example covers a 1 km ×1 km area.

the borders of the tiles shown in Figure 13. Secondly, the SRSM is unable to separate connected or
nearby buildings with similar height. Given the z-images involves only elevation information, such a
separation task can be difficult. Therefore, we shall investigate the usefulness of other information
for such a task. Overall, these two issues can affect unfavorably the resulting accuracy of the SRSM.
Future efforts will concentrate on addressing these two issues to improve the SRSM results.

4. Discussions

In this section, three discussions are addressed: (i) on the relevance of the proposed SR, (ii) on the
SRSM results, and (iii) on the impact of the snake model parametrization.

4.1. Relevance of the Super-Resolution

As suggested by the name of the proposed method (i.e., SRSM), the SR process plays a critical
role. However, such a process is not only relevant for snake models. Indeed, the need and potential of
such a process to enhance the spatial resolution of LiDAR data is high. For instance, in the topic of
building extraction, several methods [16,38] proposed to replace the blue channel of RGB images with
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a normalized DSM (nDSM). Such a composite image—i.e., red, green, and nDSM—is then fed into
deep neural networks for extracting buildings. However, these approaches did not account for the
fact that the two input images—the RGB image and the nDSM—usually have different resolutions,
hence an SR was not proposed. On the other hand, the SR process could resolve one of the problems
of the snake model proposed by Kabolizade et al. [35] (cf. Subsection 1.3). A super-resolved DSM
could improve the height variance-based external energy term proposed in their work. However, it
is worth-noting that the main drawback of their snake model is still the use of optical image as the
target image, i.e., for computing the Eimg. In other topics, the study of SR applied to LiDAR depth
measurements is also very active. Indeed, a reliable SR would benefit many applications, such as
calibration for autonomous driving [52] or land cover classification [64].

4.2. Discussion on the SRSM Resulting Footprints

The accuracy level of the SRSM results carried out on the Vaihingen dataset and the Quebec
City dataset have been shown—through multiple assessments and comparisons—to be desirable. It
has achieved our objectives for a large-scale high-accuracy building extraction method, without any
assumptions on the building characteristics nor any training data. However, two important aspects
concerning the building footprints provided by the proposed method should be discussed. First, it
can be noted from the results in Vaihingen (Figure 10) and Quebec City (Figure 13) that the resulting
snakes have the tendency to be slightly “rounded” around building corners. Such a problem can be
addressed with an efficient polygonization method. However, such a step can be quite challenging
considering the complexity of building shape on the two study areas.

The second aspect worth mentioning involves the acquisition time difference between the LiDAR
data, the optical image data, and the reference ground truth boundaries. On the one hand, considering
a benchmark dataset like the ISPRS Vaihingen dataset, such an aspect is minimal since the data were
acquired almost concurrently (cf. Table 1). In addition, the Vaihingen ground truth building boundaries
were prepared using the same data. On the other hand, considering the large scale of Quebec City,
such a temporal aspect is much more complicated. Firstly, the LiDAR data were acquired one year
after the optical images. Secondly, the Empreintes des bâtiments dataset consisting of the ground truth
building boundaries was produced using multiple different sources and updated monthly. Thirdly,
the comparative Microsoft results were carried out using Bing Imagery data. Since Bing Imagery is a
composite of multiple sources, we are unable to determine the exact dates for individual pieces of data
[57]. Such temporal difference and uncertainty can affect the building extraction accuracy. This issue
requires a dedicated study in order to account for all of the involved factors.

4.3. Impacts of Snake Parametrization

A snake model involves a number of parameters, such as α, β, κ (the balloon force magnitude),
µGVF (the GVF smoothing parameter), etc. In the existing models [34–36], these parameters have been
set empirically in order to extract buildings effectively. The snake parametrization becomes extremely
difficult over a large extended area. However, some parameters are more important than others. In
this regard, Marcos et al. [42] partially addressed such a problem with a CNN-based approach. It
involves learning the characteristics of the most important elements of the snake model, namely the
snake internal energy term weights (α and β), the image-based energy term (Eimg), and the balloon
force (Fballoon). Additionally, they asserted that one scalar value of β for all parts of a building can lead
to problems of oversmoothing at building corners and undersmoothing at other regions. To avoid such
a problem, they proposed a local penalization approach, by assigning a different β penalization to
each pixel depending on whether the pixels are near the building edges or corners, whereas α remains
scalar for every pixel.

In this discussion, let us analyze the relevance of such a parametrization approach and compare it
with our fixed parametrization for the SRSM. The characteristics of the CNN-inferred energy terms
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and parameters differ with respect to the features from the optical image (e.g., building corners, edges,
etc.), as summarized by Table 7.

Table 7. Characteristics of the Convolutional Neural Network (CNN)-inferred balloon force term
Fballoon, image-based energy term Eimg, and snake curvature weight β among the optical image
features (resulted by [42]). Eimg can have either positive or negative values, whereas Fballoon ≥ 0 and
β ≥ 0.

CNN-Inferred energy terms and parameter
Feature Fballoon Eimg β

Corner very positive very negative almost 0

Edge very positive negative very positive

Inside boundary positive positive low but positive

Outside boundary 0 positive low but positive

Firstly, concerning the balloon force, the second column of Table 7 shows the characteristics of
the balloon force inferred by the CNN. If a snake is initialized inside a building boundary, the balloon
force—being positive—will inflate it outward until it reaches the building corners and edges. Then, the
balloon force sharply drops to zero and remains zero right outside the building boundary, which means
that the snake is not allowed to inflate anymore. However, if the snake is provided with initial points
outside the building boundary, the balloon force—being null-valued—is unable to shrink inward to
approach the building true boundaries. Such behavior is not optimal. In contrast, the approach to
generate Fballoon proposed in this paper based on the LiDAR-based building mask is more relevant.
It allows the snake to be shrunk or inflated adaptively, regardless of where it is initialized, without
relying on any learning process.

Secondly, we address the image-based energy term Eimg. The characteristics of the CNN-inferred
image-based energy term Eimg are revealed in Table 7. However, they are similar to those exhibited by
the traditional snake model mathematical approach (cf. Equation (2)). Such a similarity is illustrated
by Figure 14. The energy term Eimg of a rectangular building (Figure 14a) is mathematically computed
and shown in Figure 14b. As illustrated, the building edges and corners exhibit negative to very
negative values, whereas the pixels inside and outside of the building exhibit positive values. Such
characteristics among building features are analogous to the CNN-based approach. Therefore, in the
proposed SRSM, the energy term Eimg is retained as in the traditional snake model. The sole change
is that the target image is the z-image instead of the optical image. Such a change is relevant as the
z-image-based energy term provides more desirable features—i.e., height changes instead of color
changes.

(a) (b)
Figure 14. Image-based energy term Eimg of a rectangular building with a color-consistent roof.

Lastly, concerning the snake curvature weight β, we retain the use of a fixed scalar β in our
method. The immediate reason is that without a training phase, the generation of a different β value
for each pixel is difficult, or even virtually impossible. In addition, as we changed the target image of
the snake model, the needed dynamics for β should also change. Since the only sources of attraction
for the snake model are now the height changes from off-terrain objects, the snake curvature does
not need to be different pixel to pixel. The snake should be able to correct itself from such sources
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of attraction. A comparison is conducted to confirm whether using the CNN-inferred pixel-wise β

would bring a real benefit compared with a fixed scalar β. As such, the SRSM is experimented with
where the value of α and β are, either inferred from CNN as in [42] or set to fixed scalar values. Such a
comparison is carried out on seven buildings in the proximity of Area 1 (ISPRS benchmark dataset)
selected by Marcos et al. [42]. One of these buildings is exemplified in Figure 15. The optical image and
the initial points for SRSM in blue are revealed in Figure 15a, whereas the z-image is shown in Figure
15b. These initial points were used in the work of Marcos et al. [42] and also in this comparison. The
SRSM carried out with the CNN-inferred α and β results in the building boundary in green (Figure
15a). The CNN-inferred value of α is 0.767, whereas the image of β values (each pixel with a different β

value) is shown by Figure 15c. Then, the SRSM carried out using the scalar α and β—both set equal to
0.2—yields the red building boundary (Figure 15a). The two snakes in red and in green are shown to
be similar. Quantitatively, the area-based Quality provided by the CNN-based approach on all seven
buildings averages 73.62%, whereas the fixed scalar parametrization approach yields 72.03%. By visual
and quantitative assessment, it is shown that the CNN-inferred approach as well as the pixel-wise β

does not bring a practical benefit to our SRSM.

(a) Snake results (b) z-image (c) CNN-inferred β

Figure 15. Comparison between the use of the CNN-inferred α and β and the fixed scalar values.
(a) Snake results parametrized by CNN-inferred values compared with fixed scalar values; (b) The
z-image used in the snake model; (c) The pixel-wise β resulted from CNN [42].

In summary, the proposed SRSM succeeds in providing a relevant solution, regarding all three
main aspects of the snake parameterization. Indeed, since almost every building exhibits a strong
elevation variation with respect to its surrounding area, the characteristics of building appearances on
their respective z-image should all be similar. As a result, the proposed SRSM can be generalized with
the same set of influential parameters on buildings of various size and shape as well as in complex
environments.

5. Conclusions

In this paper, we proposed and evaluated an unsupervised and automatic building extraction
method dedicated to a large-scale urban scene. This method is built around an efficient snake model,
named SRSM. First, a preliminary extraction of building boundaries from the LiDAR point cloud
is carried out. These boundaries are used as initial points for the SRSM as well as in the improved
balloon force. Second, in order to resolve the sparsity problem related to the LiDAR data spatial
resolution compared to an optical imagery dataset [21], we propose a super-resolution process. Such a
process is devoted to the projection and propagation of LiDAR data onto the image space, enabling
the augmentation of its spatial resolution. Then, the snake model is carried out based on the resulting
z-images. Such z-images encoding LiDAR elevation data are highly beneficial since the height changes
provide a more reliable cue for extracting buildings than the spectral and textural changes provided by
the optical images. In addition to such a benefit, the useful elevation data are now provided with high
spatial resolution. Third, the balloon force is improved to behave more adaptively compared to the
classical balloon force.
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By using the z-image, a number of typical problems related to the optical image have also been
addressed. Until now, all of the existing snake models have conceded the sensitivity problem against
image noises and details, such as roof objects and nearby cars and trees. Such scene elements prompt
undesired sources of attraction, causing the snake model to be unable to converge toward the true
building edges. Operating on the z-image which only exhibits significant height changes, the SRSM
is provided with relevant sources of attraction. In addition, such a fundamental replacement—i.e.
using, the z-image instead of the optical image—also affects the parametrization of the snake model.
Indeed, the need for a hyperparameter tuning, e.g., by a deep learning approach [42], becomes less
substantial. Thus, the SRSM is parametrized with fixed scalar values. By the virtue of the proposed
improvements, such static parametrization does not restrain the applicability and scalability of the
z-image-based snake model over large extended area. A comprehensive comparison and discussion of
this parametrization with the deep learning approach by [42] has also been carried out in this paper.

Concerning the performance assessment, the SRSM is tested in two different geographical contexts,
namely Europe (with the Vaihingen benchmark dataset) and North America (with the Quebec City
dataset). The two contexts involve various differences in terms of compactness, density, and regularity
of urban areas [43]. The proposed SRSM yields very high accuracy on the ISPRS Vaihingen benchmark
dataset, namely 86.57% of area-based Quality and 81.60% of object-based Quality. These values show
that the SRSM is highly desirable, especially as a fully unsupervised method, as opposed to many
other high-accuracy methods. Concerning the Quebec City dataset with the total area of 656 km2,
the SRSM succeeds at providing a relatively high accuracy, namely area-based Quality of 62.37% and
object-based Quality of 63.21%. Such an accuracy level on this dataset may seem less desirable than the
one on the Vaihingen dataset mentioned above. However, it can be well expected on such a large-scale
dataset, with various types of complex residential, urban, and industrial scenes. Indeed, compared to
the building footprints produced by Microsoft by a deep neural network approach, our unsupervised
method succeeds at providing a competitive accuracy level. The two geographical contexts also
show the very high capacity of the SRSM for extending over very large and complex areas. With the
proposed SRSM, this study has achieved our objectives for a scalable, versatile, and accurate building
extraction solution. Indeed, in the context of the flood risk assessment in the province of Quebec, such
a method—capable of yielding accurate building footprint boundaries and locations in such a large
scale—enables us to achieve subsequent critical tasks, namely the extraction of building structural and
occupational characteristics. Future works will focus on improving the resulting geometrical accuracy,
as well as on several remaining problems such as shadowed vegetation and misdetection of small
buildings.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
DSM Digital Surface Model
DTM Digital Terrain Model
FCN Fully Convolutional Neural Network
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
GVF Gradient Vector Flow
ISTA Iterative Shrinkage-Thresholding Algorithm
LiDAR Light Detection And Ranging
NDVI Normalized Difference Vegetation Index
RMSE Root Mean Square Error
SSDG Sum of squared directional gradients
SR Super-resolution
SRSM Super-resolution-based Snake Model

Appendix A External Image-Based Energy Term of Snake Model

The line functional is defined based on the intensity of the image I(x, y), with a filter for smoothing
or noise reduction, such as Gaussian filter:

Eline = Gσ(x, y) ∗ I(x, y) (A1)

The edge functional is based on the image gradient, which attracts the snake to move towards the
edges with high gradient value.

Eedge = − |∇ [Gσ(x, y) ∗ I(x, y)]|2 (A2)

where Gσ(x, y) is a two-dimensional Gaussian function with a standard deviation σ and ∗ denotes the
2-D convolution operator.

Curvature of level lines in a slightly smoothed image can be used to detect corners and line
segment terminations in an image. Using this method, let C(x, y) = Gσ ∗ I(x, y) be the smoothed
image. With an angle θ = tan−1(Cy/Cx), the unit vectors which are along and perpendicular to the
gradient direction are:

n = (cos θ, sin θ), n⊥ = (− sin θ, cos θ) (A3)

The termination functional of energy is defined as:

Eterm =
∂θ

∂n⊥
=

∂2C/∂n2
⊥

∂C/∂n
=

CyyC2
x − 2CxyCxCy + CxxC2

y

(C2
x + C2

y)
3/2 (A4)

Appendix B Super-Solution Quality Metrics

Given the super-resolved image I and the reference image R, the Structural Similarity (SSIM)
quality assessment index is based on the computation of three terms, namely the luminance term, the
contrast term, and the structural term.

SSIM(I, R) = [l(I, R)]γ · [c(I, R)]δ · [s(I, R)]ε (A5)

where
l(X, Y) =

2µXµY + C1

µ2
X + µ2

Y + C1
, c(X, Y) =

2σXσY + C2

σ2
X + σ2

Y + C2
, s(X, Y) =

σXY + C3

σXσY + C3
(A6)

with µX , µY, σX , σY, and σXY respectively are the local means, standard deviations, and cross-covariance
for images X and Y. The parameters for SSIM index are set as follows, γ = δ = ε = 1; and
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C1 = (0.01× L)2, C2 = (0.03× L)2, C3 = C2/2, where L = 2#bits per pixels − 1 denotes the dynamic
range value of the images. With these parameters, the SSIM index (A5) is simplified into,

SSIM(I, R) =
2µIµR + C1

µ2
I + µ2

R + C1
· 2σI,R + C2

σ2
I + σ2

R + C2
(A7)

Another metric for evaluating a method of super-resolution of image is Peak Signal-to-Noise
Ratio (PSNR) in decibels, which is defined by Equation (A8).

PSNR(I, R) = 10× log10

(
peak_val2

MSE(I, R)

)
(A8)

where peak_val is the maximum possible value of the images, and MSE is the mean square error
between I and R.
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