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ABSTRACT: 

Automatic urban objects extraction from airborne remote sensing data is essential to process and efficiently interpret the vast amount 

of airborne imagery and Lidar data available today. The aim of this study is to propose a new approach for the integration of high-

resolution aerial imagery and Lidar data to improve the accuracy of classification in the city complications. In the proposed method, 

first, the classification of each data is separately performed using Support Vector Machine algorithm. In this case, extracted 

Normalized Digital Surface Model (nDSM) and pulse intensity are used in classification of LiDAR data, and three spectral visible 

bands (Red, Green, Blue) are considered as feature vector for the orthoimage classification. Moreover, combining the extracted 

features of the image and Lidar data another classification is also performed using all the features. The outputs of these classifications 

are integrated in a decision level fusion system according to the their confusion matrices to find the final classification result. The 

proposed method was evaluated using an urban area of Zeebruges, Belgium. The obtained results represented several advantages of 

image fusion with respect to a single shot dataset. With the capabilities of the proposed decision level fusion method, most of the 

object extraction difficulties and uncertainty were decreased and, the overall accuracy and the kappa values were improved 7% and 

10%, respectively. 

1. INTRODUCTION

The performance of land cover classification using LiDAR data 

and Aerial imagery data separately has previously been 

analyzed and it was shown that superior results were achieved 

using LiDAR data (Jakubowski et al., 2013). However, 

simultaneous use of several remote sensing data from different 

sensors or methods of integration may be appropriate. In other 

words, the data obtained from different sources, each with 

aspects of the value that can be used together and are 

complementary (Esteban, Starr et al. 2005). Multiple sensors 

may provide complementary data, and fusion of information of 

different sensors can produce a better understanding of the 

observed site, which is not possible with single sensor (Simone, 

Farina et al. 2002). 

Fusion of multiple data sets can be performed on signal, 

Pixel, feature and decision level (Pohl and Van Genderen 1998). 

In signal level fusion, signals from multiple sensors are 

combined together to create a new signal with a better signal-to-

noise ratio than the input signals. In pixel level fusion, the 

information from different images, pixel by pixel, are merged to 

improve detection of objects in some tasks such as 

segmentation. Feature level fusion consists of merging the 

features extracted from different images. In this level of fusion, 

features are extracted from different sensors and combined to 

create a feature vector for classified using a classifier method 

(Abbasi, Arefi et al. 2015).  

In decision level fusion, different datasets are combined at a 

higher level of integration. In this level of fusion, first the data 

from each single sensor is separately classified, then fusion 

consists of merging the output from the classification(Goebel 

and Yan 2004, Dong, Zhuang et al. 2009, Du, Liu et al. 2013).

Singh and Vogler investigated the impact of urban land use 

litter to detect classes of integration of Landsat imagery and 

lidar data began. By applying the supervised classification 

method showed that most like to merge the two data 

classification accuracy up to 32% compared to the separate use 

of lidar data has increased(Singh, Vogler et al. 2012).  

Kim and colleagues used data integration aerial imagery and 

lidar ground cover gave way to improve classification accuracy. 

(Kim 2016).  Gerke and Xiao proposed a combination of lidar 

and aerial image classification and automatic detection of 

effects used in urban areas. The method combines lidar data and 

aerial image of two dimensional geometry and spectral data liar 

image to extract four classroom buildings, trees, vegetation and 

land without vegetation land was used. The new classification 

method was introduced to the use of geometric and spectral 

information during the process of classification was defined 

(Gerke and Xiao 2013).  

Another method for automatic extraction of buildings using 

lidar integration and optical image was presented by Li Wu. 

This procedure was completely data-driven, and also was 

suitable for any form of buildings(Li, Wu et al. 2013). 

Bigdeli proposed a hyperspectral image classification system to 

integrate multiple fuzzy decision model based on lidar data 
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Decision template (DT. In this way, the characteristics of each 

data source separately extracted and the optimal properties were 

selected among them. Then, each of the data sources was 

classified separately using support vector machine. The output 

of this classification integrated using a Bayesian 

algorithm(Bigdeli, Samadzadegan et al. 2014).  

Gilani, proposed a graph based algorithm for combination of 

multispectral images and airborne data lidar. The results showed 

enhancement in performance and improvement in the accuracy 

of the reconstruction and building recognition process(Gilani, 

Awrangjeb et al. 2015).Rastiveis Presented a Decision level 

fusion of lidar data and aerial color imagery based on Bayesian 

theory for urban area classification. This classification is 

performed in three different strategies: (1) using merely LiDAR 

data, (2) using merely image data, and (3) using all extracted 

features from LiDAR and image. The results of these classifiers 

were integrated in a decision level fusion based on Naïve Bayes 

algorithm (Rastiveis, 2015). 

For the abovementioned researches, therefore, using color 

imagery with lidar data together in decision level of fusion may 

improve accuracy of classification in urban areas. In this study, 

we proposed a new decision level fusion of lidar data and 

orthophoto to improve the classification results. For this 

purpose, the paper will go on with describing the details of the 

proposed method. After that the study area would be introduced 

and, then, obtained results from the implementation of this 

method will presented.  

2. PROPOSED METHOD 

In this paper, an automatic object extraction system based on 

the integration of high resolution aerial orthophoto and LiDAR 

data is provided. Figure 1 shows the flowchart of the proposed 

algorithm.  

 
Figure 1.Flowchart of the proposed method for automatic object 

extraction from LiDAR data and orthophoto 

As shown in Figure 1, after extracting proper features, both 

input data are classified through support vector machine 

classifier. Integrating all the extracted fetures from both sensors, 

another another classification are performed. Finally, according 

to the output from each of the classification and their error 

matrices, the results are integrated in a decision level fusion 

system to obtain the final classification result. The details of the 

proposed method are described in the following sections.   

2.1 Data Preparation 

In this step, as can be seen from Figure 1, different features are 

extracted from Lidar and ortho image data. These features must 

contain useful information to improve accuracy of classification 

process.  

Intensity of Lidar as the primary attribute from lidar data 

recorded the reflectance on the surveyed area (Axelsson 1999). 

It is useful to discriminate asphalt areas from grassland or 

buildings in classification process (Buján, González‐Ferreiro et 

al. 2012). Therefore, the intensity and is used as a feature in the 

classification of Lidar data. Besides, Normalized Digital 

Surface Model (nDSM) is extracted using LiDAR raw points 

cloud through Equation 1. 

nDSM= DSM – DTM               (1) 

 

It should be noted that to simplify the fusion process the data set 

should have the same spatial resolutions. Therefore, a irregular 

format of the nDSM and the Intensity of LiDAR data are 

generated using interpolation techniques with the same 

resolution of the orthophoto.  

From the orthophoto, three visible channels of Red, Green and 

Blue were considered as feature vector for the classification 

process.  

Although different features may be used in classification 

process, however, increasing the number of features results 

more complexity in computations. Therefore, the most easy-

access features for both data set are considered.  

 

2.2 SVM Classification  

There are a lot of classification algorithm that have been 

introduced during the last decades. In this paper, Support Vector 

Machine (SVM) classification algorithm is used to classify the 

data sets. Support vector machine is a machine learning method 

that is widely used for data analyzing and pattern recognition. 

The algorithm was invented by Vladimir Vapnik and the current 

standard incarnation was proposed by Corinna Cortes and 

Vladimir Vapnik. Classifying data has been one of the major 

parts in machine learning. The idea of support vector machine is 

to create a hyper plane between data sets to indicate which class 

it belongs to. The challenge is to train the machine to 

understand structure from data and mapping with the right class 

label, for the best result, the hyper plane has the largest distance 

to the nearest training data points of any class(Pal 2006). In this 

step, both data sets are classified using the aforementioned 

feature vectors.   

4.2 Feature Level Fusion 

In the orthophoto classification dataset, building was difficult to 

extract appropriately due to the similar spectral features with 

roads. But if only with orthophoto, it was not able to provide 

sufficient information. Meanwhile, in the lidar classification 

dataset, water and grass extraction also met problem caused by 

lidar data acquisition. Therefore, by integrating lidar and 

orthophoto, the problems could mitigate and the results of 

classification could be improved. 

Here, all layers used in the previous classifications are 

integrated together as the input data of another SVM process. 

Orthophoto, including  three spectral bands Red, Green, and 

Blue, and lidar derived Intensity image and nDSM image are 

employed in the classification process. 

Lidar point 

cloud 

Aerial ortho 

photo 

Feature Extraction 
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5.2 Decision Level Fusion 

SVM classifiers are separately applied to each data. Then results 

of single classifiers are fused through a multiple classifier 

system classifier fusion is successfully applied on various types 

of data to improve single classification results. Classifier fusion 

can improve classification accuracy  in comparison to a single 

classifier by combining results of classification algorithms on 

different data sets. The possible ways of integrating the outputs 

of classifiers in a decidedly fusion depend on what information 

can be obtained from the discrete members. In our proposed 

method, based on classification results in three lidar data, 

orthophoto and integration features, overall accuracy and 

omission, commision error for each class final image is created 

from the classification. 

Finally, combining the previous classification results, the final 

classification are obtained. In this case, decision for each pixel 

are made according to the results of the overall classification 

from ortho photo,  lidar data and the feature level fusion results.  

So that, first all pixels that the three classifications were agree 

about belonging them to the same class are remaind without 

changing. The pixels that the classifications were disagree were 

labeled with regard to the overall accuracy and omission, 

commission error is a class act. In this case, the priority of a 

class in the final image is selected based on the lowest error rate 

or highest overall accuracy. Thus, all the pixels are checked and 

a decision is made on each. 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this study, the standard data set from IEEE data fusion 

contest 2015 were used. The details of the data set are described 

in the following section. After that the obtained results from 

testing the algorithm using this data set are presented.  

3.1 Data Set  

The imaging data were acquired on March 13, 2011, using an 

airborne platform flying at the altitude of 300 m over the urban 

and the harbor areas of Zeebruges. The data were collected 

simultaneously and were georeferenced to WGS-84(IEEE, 

2015). 

The point density for the LiDAR sensor was approximately 65 

points/m², which is related to point spacing of approximately 10 

cm. Both the 3D point clouds and the resulting digital surface 

model (DSM) are provided. The color orthophotos were taken at 

nadir and have a spatial resolution of approximately 5 cm 

(IEEE, 2015). The ground truth of this data set five different 

land cover classes; in our proposed method these classes are 

Building, Grassland, Ground, Car and Tree. These features from 

LiDAR data, orthoimage and Ground trouth are displayed in 

Figure 2 (a-c). 

 

 

                (a)                  (b) 

 

              (c)                 (d) 

 

                                  ( e) 

Figure 2. Applied data sets a) orthophoto, b) Lidar derived 

DSM, c) Ground trouth, d) Lidar pulse Intensity, e) nDSM 

 

3.2 Results and Experiment 

In the first step of the proposed method, feature spaces on 

orthophoto and Lidar data produced independently. Generate 

regular Lidar data with 5 cm spatial resolution, intensity image 

and nDSM. These features from LiDAR data are displayed in 

Figure 2(d-e). In the next step, classification based on SVM is 

applied on orthophoto and Lidar data. This step by selecting the 

appropriate training and set dependent parameters were 

implemented. Five classes of "Buildings", "Cars, "Grass", 

"Ground" and "Tree" were considered. The main function of 

radial is the kernel used. Gamma parameter 1, parameter 100 

penalty for lidar data and ortho photo by 0.333 and 100 has been 

set. In Figure 3 the outputs of the classifications are shown. 

After separately classifiying the orthophoto and the Lidar data, 

another classification based on fusing five extracted features 

were performed. Figure 4 represented the output of this 

classification. Also, figure 5 shows the output of the weighted 

majority voting method on these three categories. This method 

uses the correctness of each class as a weight in decision 

making. The Error matrix of each category in Table 1 to 5 is 

shown. The final classification was made from the decision 

level fusion method which is shown in Figure 6. 
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 (a) 

     (b)   

Figure 3. The output of the SVM classification,(a) orthophoto, 

(b) lidar data.

Figure 4. The output of the SVM classification from feature 

level fusion.

Figure 5. The output of the weighted majority voting 

classification.

Figure 6. The output of the final classification using Decision 

Level Fusion. 

Class building grass ground car tree 

Building 896509 51260 331296 6696 11641 

Grass 8333 475196 62784 105 47055 

Ground 400187 10999 1344542 8911 2219 

Car 25818 821 20305 31651 3 

Tree 16559 97998 47727 4 63315 

OverallAccuracy 70.95 KappaCoefficient 0.55 

Table 1. Confusion Matrix from SVM classifiers orthophoto. 
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Class building grass ground car tree 

Building 1234290 10019 58201 0 7917 

Grass 19887 400345 169546 4347 20771 

Ground 63382 167759 1475474 15333 38177 

Car 7860 14631 22701 22872 8414 

Tree 21987 43520 80732 4815 48954 

OverallAccuracy 80.31 KappaCoefficient 0.70 

 

Table 2. Confusion Matrix from SVM classifiers lidar. 

 

Class building grass ground car tree 

Building 1247403 7841 59441 137 4886 

Grass 15225 477671 153113 97 35297 

Ground 66546 89490 1515177 11872 10657 

Car 6189 4151 28576 35228 411 

Tree 12043 57121 50347 33 72982 

OverallAccuracy 84.51 KappaCoefficient 0.76 

 

Table 3 Confusion Matrix from SVM classifiers feature level. 

 

Class building grass ground car tree 

Building 1237916 1762 52120 24 1787 

Grass 8333 475196 62784 105 47055 

Ground 87532 64805 1580796 9943 15028 

Car 3676 1418 24605 37152 160 

Tree 3874 20747 19256 3 47841 

OverallAccuracy 87.28 KappaCoefficient 0.79 

 

Table 4. Confusion Matrix from SVM classifiers decision. 

 

Class building grass ground car tree 

Building 1249625 11741 64437 150 7395 

Grass 6255 466702 82446 43 31717 

Ground 78101 116290 1605405 12747 18209 

Car 5683 2296 22612 34426 255 

Tree 7742 39245 31754 1 66657 

OverallAccuracy 86.39 KappaCoefficient 0.78 

 

Table 5. Confusion Matrix from Weighted majority voting. 

 

In Tables 6 (a-b) user and producer accuracies of each category 

for all performed classifications are shown, and Figure 7 

depicted the resulted overall accuracy and kappa coefficient. 

 

 orthophoto lidar feature decision WMV 

Class U.A U.A U.A U.A U.A 

Building 69.1 94.1 94.5 95.6 93.7 

Grass 80 65.1 70.1 80.0 79.4 

Ground 76 83.8 89.4 89.9 87.6 

Car 40.2 29.9 47.2 55.4 52.7 

Tree 28.0 24.4 37.9 52.1 45.8 

(a) 

 orthophoto lidar feature decision WMV 

Class P.A P.A P.A P.A P.A 

Building 66.5 91.6 92.5 91.8 92.7 

Grass 74.6 62.9 75 74.6 73.3 

Ground 74.4 81.6 83.8 87.4 88.8 

Car 66.8 48.2 74.3 78.4 72.6 

Tree 50.9 39.4 58.7 38.5 53.6 

(b) 

Table 6. The resulted user and producer accuracies of all 

classes. a) UserAccuracy , b)ProducerAccuracy  

 

 

         Figure 7. Comparison between classification results 

As can be seen from Figure 7, the decision level fusion 

improved the kappa coefficient and overall accuracy of the three 

previous classifications. Also, it can be observed from Table 5 

that the Buildings and the Ground classes, in relation to other 

classes, have been classified more accurately. Accuracy grass 

class in the other photo is higher of the other data. The building 

class in the lidar data and accuracy class of ground and tree in 

the feature fusion image data had the maximum accuracy in 

separately classification of the datasets. With the capabilities of 

the proposed decision level fusion method, most of the object 
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extraction difficulties and uncertainty were decreased and, the 

overall accuracy and the kappa values were improved 7% and 

10%, respectively. 

4. CONCLUSION

In this paper, a new decision level fusion approach for the 

integration of high-resolution aerial imagery and Lidar data to 

improve the accuracy of classification in the city complications 

was proposed. The overall accuracy of the classification 

complications urban area in five different classes, for 

orthophoto 70.95%, 80.31% for lidar data, 84.51% at feature 

level and for the final image of integration in decision level 

87.28% were obtained. The obtained results showed 7% and 

10% improvement in the overall accuracy and the kappa values, 

respectively. the weighted majority voting is a fusion method at 

the decision level.  also  the results are compared with that 

method. Although the results were promising, however, more 

tests considereing different data ses, features, number of classes 

are suggested.  
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