681 research outputs found

    Fusion of Bayesian Maximum Entropy Spectral Estimation and Variational Analysis Methods for Enhanced Radar Imaging

    Get PDF
    A new fused Bayesian maximum entropy–variational analysis (BMEVA) method for enhanced radar/synthetic aperture radar (SAR) imaging is addressed as required for high-resolution remote sensing (RS) imagery. The variational analysis (VA) paradigm is adapted via incorporating the image gradient flow norm preservation into the overall reconstruction problem to control the geometrical properties of the desired solution. The metrics structure in the corresponding image representation and solution spaces is adjusted to incorporate the VA image formalism and RS model-level considerations; in particular, system calibration data and total image gradient flow power constraints. The BMEVA method aggregates the image model and system-level considerations into the fused SSP reconstruction strategy providing a regularized balance between the noise suppression and gained spatial resolution with the VA-controlled geometrical properties of the resulting solution. The efficiency of the developed enhanced radar imaging approach is illustrated through the numerical simulations with the real-world SAR imagery.Cinvesta

    Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

    Get PDF
    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations

    A New Wave in Robotics: Survey on Recent mmWave Radar Applications in Robotics

    Full text link
    We survey the current state of millimeterwave (mmWave) radar applications in robotics with a focus on unique capabilities, and discuss future opportunities based on the state of the art. Frequency Modulated Continuous Wave (FMCW) mmWave radars operating in the 76--81GHz range are an appealing alternative to lidars, cameras and other sensors operating in the near visual spectrum. Radar has been made more widely available in new packaging classes, more convenient for robotics and its longer wavelengths have the ability to bypass visual clutter such as fog, dust, and smoke. We begin by covering radar principles as they relate to robotics. We then review the relevant new research across a broad spectrum of robotics applications beginning with motion estimation, localization, and mapping. We then cover object detection and classification, and then close with an analysis of current datasets and calibration techniques that provide entry points into radar research.Comment: 19 Pages, 11 Figures, 2 Tables, TRO Submission pendin

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements

    Get PDF
    This book is a reprint of the Special Issue entitled "Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements" that was published in Remote Sensing, MDPI. It provides insights into both core technical challenges and some selected critical applications of satellite remote sensing image analytics

    Alphabet-based Multisensory Data Fusion and Classification using Factor Graphs

    Get PDF
    The way of multisensory data integration is a crucial step of any data fusion method. Different physical types of sensors (optic, thermal, acoustic, or radar) with different resolutions, and different types of GIS digital data (elevation, vector map) require a proper method for data integration. Incommensurability of the data may not allow to use conventional statistical methods for fusion and processing of the data. A correct and established way of multisensory data integration is required to deal with such incommensurable data as the employment of an inappropriate methodology may lead to errors in the fusion process. To perform a proper multisensory data fusion several strategies were developed (Bayesian, linear (log linear) opinion pool, neural networks, fuzzy logic approaches). Employment of these approaches is motivated by weighted consensus theory, which lead to fusion processes that are correctly performed for the variety of data properties

    Deep Learning based data-fusion methods for remote sensing applications

    Get PDF
    In the last years, an increasing number of remote sensing sensors have been launched to orbit around the Earth, with a continuously growing production of massive data, that are useful for a large number of monitoring applications, especially for the monitoring task. Despite modern optical sensors provide rich spectral information about Earth's surface, at very high resolution, they are weather-sensitive. On the other hand, SAR images are always available also in presence of clouds and are almost weather-insensitive, as well as daynight available, but they do not provide a rich spectral information and are severely affected by speckle "noise" that make difficult the information extraction. For the above reasons it is worth and challenging to fuse data provided by different sources and/or acquired at different times, in order to leverage on their diversity and complementarity to retrieve the target information. Motivated by the success of the employment of Deep Learning methods in many image processing tasks, in this thesis it has been faced different typical remote sensing data-fusion problems by means of suitably designed Convolutional Neural Networks
    • …
    corecore