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During the last few decades, the remarkable progress in the field of satellite remote
sensing (RS) technology has enabled us to capture coarse, moderate to high-resolution
earth imagery on weekly, daily, and even hourly intervals. This wealth of earth surface data,
if analyzed effectively, can provide significant insights into various geo-spatial processes,
and eventually, can help us in making crucial decisions in a timely manner. Nevertheless,
these RS data, as continuously captured at varying spatial, spectral, and temporal reso-
lutions, are not only voluminous but also acquired heterogeneous data, where diverse
categories of sensors, i.e., optical/microwave were used. Consequently, mining useful
patterns/information from these enormous volumes of heterogeneous unstructured data
requires enhanced data mining techniques exploiting the power of advanced computa-
tional intelligence and high-performance computing paradigms. Moreover, in the context
of resolving urgent issues, such as in environmental nowcasting, a timely analysis of the RS
data requires resource-efficient computation models with real-time processing and online
analysis capabilities [1,2].

With this background in mind, in this Special Issue, we called for high-quality papers
focusing on recent advancements in conventional statistical as well as machine learning
techniques and modern AI (artificial intelligence)-driven technologies for efficient mining
of remote sensing data. This Special Issue also aimed to provide a common platform for
professionals, researchers, and practitioners from heterogeneous communities, including
artificial intelligence, machine learning, geographical information systems, and spatial data
science, to share their views, innovations, research achievements, and solutions to foster
the advancement of intelligent analytics and efficient management of remote sensing data.
Papers were invited to cover the following broad topics:

• Advanced and energy-efficient machine learning models for RS data mining
• Enhanced statistical and scalable computing methods for RS data mining
• Real-time processing and online analytics of RS data
• Real-world applications of RS data mining

After the rigorous review process, a total of five papers have been accepted for publica-
tion in this issue. The selected papers either deal with the core challenges, such as missing
data handling, noisy label distillation, feature-level fusion, etc., in remote sensing data
analyses [3–5], or these highlight on various critical real-world problems, including oil spill
detection [6], and high wind speed inversion [7].

As just mentioned above, missing data is a common problem in the field of remote
sensing data analytics. This primarily occurs due to internal malfunctioning of the satellite
remote sensing devices/sensors or due to the poor atmospheric condition, such as the
presence of thick cloud cover. Remote sensing images with missing information not only
reduce the usability of the data but also may negatively affect the performance of the
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analytical models. The problem appears to be more prominent at the time of analyzing
aerosol optical depth (AOD) from remotely sensed data. AOD is a key parameter reflecting
the characteristics of aerosols, and plays a significant role in predicting the concentration
of pollutants in the atmosphere. However, as highlighted in the work of Chi et al. [3],
the AOD data obtained by satellites are often found to be missing, and thereby, impose
serious research challenges. The existing methods of AOD recovery primarily focus on
to the accuracy of AOD restoration while neglecting the AOD recovery ratio. In order
to solve the issue, Chi et al. [3] have proposed a light gradient boosting-based two-step
model, termed as TWS, that fills the missing AOD data by combining data from multiple
sources and at the same time learning spatio-temporal relationships of AOD. Experimental
evaluation of TWS with respect to recovering AOD from Terra Satellite’s 2018 AOD product
has demonstrated the reliability of TWS method in producing competitive and consistent
performance in AOD restoration. Overall, the work of Chi et al. [3], as included in our
Special Issue, is of great significance in the context of studying the spatial distribution of
atmospheric pollutants and handling missing data in this context.

In spite of the huge availability of remotely sensed data in recent years, the data are
often found to be annotated with noisy labels. Label noise occurs whenever there is a
mismatch between the ground truth label and the observed label. This happens due to
several reasons, including manual labeling error, wrong or misinterpretation of the data,
and so on. Noisy label can lead to serious network over-fitting problem and may negatively
impact on the model performance. Therefore, noisy label distillation plays an important
role in remote sensing image scene classification or segmentation tasks. Traditional models
are typically based on direct fine-tuning and pseudo-labeling approaches, which are not
only inefficient but also, may badly influence the model in other ways. In order to address
such problem, in this Special Issue, Zhang et al. [4] have proposed a novel noisy label
distillation approach grounded on an end-to-end teacher-student framework, which does
not require pre-training on clean or noisy data. Evaluation on benchmark remote sensing
image datasets with injected noise has demonstrated the superiority of the proposed
approach [4] over the state-of-the-art techniques.

Apart from dealing with the core challenges in remote sensing data analytics, another
way of improving the model performance is to fully exploit the increasingly sophisticated
data from multiple sources. For example, the optical remote sensing data provides us
with significantly larger amount of spectral information compared to the images captured
using synthetic aperture radar (SAR), whereas the SAR technology has more penetration
capability and has the advantage of generating images almost in all weather conditions.
Remote sensing image fusion is, thus, important for enhancing the application ability
of remote-sensing images, and accordingly, it has gained immense research attention in
recent years. Incidentally, the remote-sensing image fusion can be performed both at
the pixel-level and at the feature-level. However, in contrast with the pixel-level fusion,
feature-level fusion considers more diverse factors, and thereby, helps to obtain more
macro-level information than that obtained using pixel-level fusion. This Special Issue
includes an interesting article by Kong et al. [5] on feature-level fusion-based classification
of remote sensing images using features extracted from polarized SAR and optical images.
The approach is based on a combination of Random Forest (RF) and Conditional Random
Fields (CRFs). Typically, the model exploits the power of CRF in spatial context feature
modeling and improves the RF-based classification. Experimental evaluation shows the
efficacy of the proposed fusion-based classification approach.

In addition to discussion on the technical challenges being faced during remote sensing
image data processing, this Special Issue also includes papers on some critical applications
of remote sensing data analytics [6,7]. For example, in the fourth article of this Special Issue,
Almulihi et al. [6] have presented the application of SAR Image analysis in oil spill detection.
The proposed approach is based on online extended variational learning of dirichlet process
mixtures of Gamma distributions. The technical novelty lies here in extending the finite
Gamma mixture model that can handle infinite number of mixture components. The
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online learning property of the proposed model makes it more advantageous over the
batch learning-based models at the time of dealing with massive and streaming data.
Empirical study with respect to real-world application of oil spill detection from SAR
images demonstrates the effectiveness of the approach proposed by Almulihi et al. [6].

High wind speed inversion is another critical as well as challenging application of
remote sensing data analytics, which has gained significant research interest in present days.
Wind speed is one of the key sea surface parameters that prominently influence diverse
oceanic applications. The traditional ways of detecting wind speed using remote sensing
imaging technology are often found to be failed when the wind speed is high. The study
made by Zhang et al. [7], as included in this Special Issue, reveals that machine learning
techniques can be effectively employed as the complements of these conventional RS
technology-based models. Experimentations on multi-sourced RS data show that machine
learning schemes of Support Vector Regression (SVR), combined Principal Component
Analysis (PCA) and SVR (PCA-SVR), and Convolutional Neural Network (CNN) can be
certainly useful for improving the accuracy in high wind speed inversion on sea surface,
where CNNs are promising models in this area.

We hope that the readers will become highly benefitted from the insightful discussions
and presentations of our Special Issue papers, as concisely discussed above, and also will
be encouraged to contribute to these rapidly progressing areas.

Funding: This research received no external funding.

Acknowledgments: We would like to thank all authors who have contributed to this volume by
sharing their domain knowledge, research experiences and experimental results.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Aerosol optical depth (AOD) is a key parameter that reflects the characteristics of aerosols,
and is of great help in predicting the concentration of pollutants in the atmosphere. At present,
remote sensing inversion has become an important method for obtaining the AOD on a large scale.
However, AOD data acquired by satellites are often missing, and this has gradually become a popular
topic. In recent years, a large number of AOD recovery algorithms have been proposed. Many AOD
recovery methods are not application-oriented. These methods focus mainly on to the accuracy of
AOD recovery and neglect the AOD recovery ratio. As a result, the AOD recovery accuracy and
recovery ratio cannot be balanced. To solve these problems, a two-step model (TWS) that combines
multisource AOD data and AOD spatiotemporal relationships is proposed. We used the light gradient
boosting (LightGBM) model under the framework of the gradient boosting machine (GBM) to fit
the multisource AOD data to fill in the missing AOD between data sources. Spatial interpolation
and spatiotemporal interpolation methods are limited by buffer factors. We recovered the missing
AOD in a moving window. We used TWS to recover AOD from Terra Satellite’s 2018 AOD product
(MOD AOD). The results show that the MOD AOD, after a 3 × 3 moving window TWS recovery,
was closely related to the AOD of the Aerosol Robotic Network (AERONET) (R = 0.87, RMSE = 0.23).
In addition, the MOD AOD missing rate after a 3 × 3 window TWS recovery was greatly reduced
(from 0.88 to 0.1). In addition, the spatial distribution characteristics of the monthly and annual
averages of the recovered MOD AOD were consistent with the original MOD AOD. The results show
that TWS is reliable. This study provides a new method for the restoration of MOD AOD, and is of
great significance for studying the spatial distribution of atmospheric pollutants.

Keywords: LightGBM; spatiotemporal weight interpolation; AOD recovery; East Asia

1. Introduction

Atmospheric aerosols are a dispersion system of suspended colloids formed by solid or small
particles [1]. With the increase in the number of aerosols emitted by human activities, the scattering
and absorption of solar radiation forms a brighter cloud layer and directly reduces the efficiency
of precipitation [2]. Moreover, the increased number of aerosols changes the structure of the
atmosphere, reduces solar radiation on the surface, increases the heating effect on the atmosphere,
reduces precipitation, and inhibits the removal of pollutants [3]. Additionally, the weak water cycle
brought about by aerosols directly affects the quality and quantity of fresh water [4]. Therefore, it is
crucial to quantitatively measure the aerosol optical depth (AOD). Typically, the definition of AOD is
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the vertical integral of the aerosol extinction coefficient in the atmosphere column, which is used to
describe the aerosol optical properties [5,6].

There are two main methods for obtaining AOD data: ground acquisition and space acquisition.
The Aerosol Robot Network (AERONET) represents the ground observation network, which relies
mainly on a sun spectrophotometer to conduct fully automatic measurements of the AOD at the
instrument deployment site [7,8]. Compared with space acquisition, the AOD obtained by the
ground observation network has higher accuracy. Nevertheless, it is difficult to provide a wide
range of viewing angles for the AOD of ground measurements due to limitations in equipment
deployment and observation ranges [9,10]. Therefore, it is more efficient to use remote sensing for
AOD measurement and inversion on a large scale. The following are some of the remote sensing
inversion products that are commonly used in AOD observations: (1) MODIS sensors on the Terra
and Aqua satellites in polar orbit are used to provide global AOD products (MOD AOD and MYD
AOD) with resolutions of 10 km and 3 km every day through the Dark Target (DT) [11] and Dark
Blue (DB) [12] algorithms [13,14]. (2) MODIS sensors combined with the Multi-Angle Implementation
of Atmospheric Correction (MAIAC) algorithm [15] are used to provide AOD products with a fixed
1-km grid. MAIAC AOD uses time series to detect multiangle surface features to recover Bidirectional
Reflectance Distribution Function (BRDF). Compared with the DT and DB algorithm, it can better
identify AOD information in cloud and snow areas [16,17]. (3) The Advanced Himawari Imager
(AHI) sensor on the Japan Himawari-8 geostationary satellite provides AOD products with a spatial
resolution of 5 km at a spectral wavelength of 500 nm and continuously monitors East Asia at a
maximum interval of 10 min [18,19].

At present, many studies use AOD as an important indicator or parameter for the mapping of
air pollutants (e.g., PM2.5, PM10) [20–22]. Complete and high-precision AOD distribution data will
greatly improve the quality of the mapping of air pollutants. However, uncertainties in cloud detection,
limitations of the AOD inversion algorithm, and sensor degradation are the three main factors that
cause a partial loss of the AOD local data retrieved by satellites [23–25]. For example, the shortcomings
of the DT algorithm and DB algorithm for AOD detection in bright areas, the errors of cloud detection
in some heavily polluted areas and the degradation of other sensors directly affect the detection of dark
pixels in low angle areas, which leads to the loss of AOD data in some areas [26,27]. A study of the
Yangtze River Delta in China found that the missing rate of MOD AOD reached 89.6% between 2014
and 2017 [28]. Because the results of AOD are affected by meteorological conditions, human activities
and vegetation coverage, it is difficult to ensure the accuracy of the AOD restoration [29].

A large quantity of research has focused on how to recover missing information from AOD
data. One approach is through the innovation of the inversion algorithm to reduce the missing AOD.
For example, some researchers use low cloud detection standards or the Dense Dark Vegetation (DDV)
algorithm to improve the AOD inversion accuracy of bright surfaces [30,31]. However, such methods
still cannot overcome the missing AOD data caused by cloud shading [32]. Statistical regression
models such as linear regression [33,34], spatial interpolation and spatiotemporal interpolation [35,36]
are used to fill in the deficiency of the AOD statistical regression models, and it is difficult to analyze
the internal relationships of the global heterogeneity of the AOD data, which results in poor recovery
results. AOD information is filled in by using a machine learning methods such as random forest
(RF) [20] or gradient boosting machine (GBM) [24] to process the multisource data. The strong data
mining ability of the machine learning methods is good for fitting multisource data, and it can achieve
higher precision at the same time [9,37].

In this paper, a two-step model (TWS) is proposed to recover the missing AOD caused by the
presence of clouds of MOD AOD under the premise of ensuring recovery accuracy. Specifically, the first
step of TWS uses a machine learning method to integrate multisource AOD data. The second step uses
the spatio-temporal interpolation and spatial interpolation methods of moving windows to further
fill in the missing MOD AOD. In addition, the second step of TWS uses a local buffer to reduce the
heterogeneity of the AOD caused by time differences. Section 2 of this paper describes the research

6



Remote Sens. 2020, 12, 3786

area and data set, Section 3 shows the methodology of the TWS, Section 4 shows the results of the
model, Section 5 discusses the model and application, and Section 6 presents the conclusions.

2. Materials

2.1. Study Areas

Part of the East Asia region (18–50◦ N, 96–150◦ E) was selected as the study area (Figure 1).
The research area mainly includes regions of China, Mongolia, Japan, the Korean Peninsula, and the
Northeast Pacific. The study area includes countries that contain more than 75% of the population
distribution in East Asia in total (central and eastern China, Korean Peninsula, Japan, Mongolia,
northern Vietnam) and major urban agglomerations (Yangtze River Delta, Pearl River Delta, Seoul City
Cluster, Tokyo City Cluster) [38]. The spatial and temporal distribution characteristics of AOD data are
complicated by the increasing number of human activities [39]. Additionally, a large-scale research
area can reduce the probability of all missing AOD data on a given day and provide enough data for
research. Moreover, a larger study area has more complex land types and other factors, which can
better test the universality of the model.

Figure 1. Distribution of the AERONET sites considered in this paper.

2.2. Datasets

We collected the data from 86 ground AERONET stations in the study area from 31 December
2017, to 1 January 2019 (Figure 1) and the satellite AOD dataset. The satellite data included Terra
and Aqua satellite AOD products (MOD AOD/MYD AOD), MAIAC AOD, and AHI AOD products.
In addition, we included part of the auxiliary data.

2.2.1. AOD Products

We selected the following three AOD products: 1. The “MOD AOD” data were selected from
MODIS Terra, and the “MYD AOD” data were from Aqua Aerosol Collection 6.1, which were
downloaded through Earthdata (https://earthdata.nasa.gov). A total of 16,233 images of MOD AOD
and MYD AOD were selected with a time resolution of one day and the spatial resolution of 3 km [40].
2. More than 19508 MAIAC AOD data were downloaded from Earthdata. We selected the MAIAC
AOD data at the spectral wavelength of 550 nm and then removed invalid AOD based on the guidance
of the filter quality assurance in the user manual (reserve AOD when QA.CloudMask = Clear and
QA.AdjacencyMask = Clear). 3. We selected the Advanced Himawari-8 AOD (AHI AOD), which is
provided by the Japan Meteorological Agency (JMA). AHI AOD data were divided into two levels:
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L2 and L3. The L3 product selected in this research underwent strict cloud screening. Therefore, the L3
product has higher accuracy and reliability than L2 [41]. L3 daily products (averaged from L3 hour
products) have a spatial resolution of 5 km and contain a total of 367 images. AHI AOD date were
obtained from the FTP provided by JMA (ftp.ptree.jaxa.jp).

2.2.2. AERONET Data

AERONET (aeronet.gsfc.nasa.gov) has a time resolution of 15 min. AERONET AOD contains three
quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened and quality controlled), and Level 2.0
(quality-assured). Compared with Level 1.0, the uncertainty of Level 1.5 and Level 2.0 in version 3 is
low [8]. In this paper, the Level 1.5 and Level 2.0 data of version 3 of the AERONET site in 86 research
areas are used as ground truth values for comparison.

2.2.3. Auxiliary Data

The auxiliary data were mainly divided into meteorological, terrain, land data and other types.
The meteorological data were extracted from the Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA2) dataset (https://earthdata.nasa.gov) [42]. The meteorological data
included the temperature (TLML), wind speed (WS), surface roughness (ZM), surface specific humidity
(QSH), and planetary boundary layer height (PBLH). The spatial resolution of the meteorological
data was 0.625◦ × 0.5◦, and the average value of the 9:00–12:00 local time (satellite transit time)
data was calculated as the meteorological data of the day. The terrain data were extracted from
Shuttle Radar Topography Mission (SRTM) data (https://earthdata.nasa.gov) with a spatial resolution
of 90 m. The terrain data included the digital elevation model (DEM), slope, and aspect. The land
data included population data, road density, and Normalized difference vegetation index (NDVI)
composition. The population data were obtained by LandScan (landscan.ornl.gov), which is integrated
by multisource data and released once per year. The spatial resolution of the population data was
approximately 1 km [43]. The road data provided by OpenStreet (www.openstreetmap.org) were mainly
composed of data shared by users, and were therefore free from copyright. The road data were the
vector data format of ESRI (RL). NDVI data use MOD13 A2 16D 1 km spatial resolution (collection 6)
data (https://earthdata.nasa.gov) [44]. Other types included the day of the year (DOY).

3. Methods

Due to aerosol diffusion, AOD inversion algorithm differences, remote sensing image detection
time differences, and differences in multisource AOD data are mainly reflected in the different data
sources, different data detection times, and various data detection positions [10,45,46]. Thus, the life
cycle of aerosols in the troposphere varies from a few days to a few weeks [4,47]. Over a short time,
there is a correlation between different AOD data sources; in addition, there is a correlation between
different AOD data detection times. According to the 2018 statistics of the AOD data in the study area,
the MOD AOD at the same location on the same day is directly related to MYD AOD, MAIAC AOD
and AHI AOD data. The MOD AOD at the same position correlates with that of the adjacent time,
and the specific data are shown in Table 1. The spatial correlation refers to the correlation coefficient
(R) of the effective AOD values of two adjacent pixels. The time correlation refers to the R of the
effective value of the target AOD pixel and the adjacent day AOD pixel.
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Table 1. MOD AOD correlation (spatial correlation, temporal correlation, and correlation of different
AOD data sources).

R

MOD AOD spatial correlation R = 0.92 (n = 13,489,645)
MOD AOD time correlation R = 0.57 (n = 15,895,438)

Time correlation of multisource AOD
data (compared with MOD AOD)

MYD MAIAC AHI

R = 0.56 (n = 7,746,528) R = 0.77 (n = 10,125,868) R = 0.56 (n = 15,256,795)

Note: n represents the number of observations.

This paper proposes a two-step model (TWS) that combines the rich data volume of multisource
data and the inherent spatial-temporal distribution relationships of aerosols to recover missing MOD
AOD. First, we preprocess the multisource data and then use the TWS method to recover the MOD AOD.
1. For the multisource AOD data obtained at the same spatial location on the same day, some sources
have pixel values, and some are missing. The existing data helps to recover some of the missing
MOD AOD values from the other data sources, which is possible due to the complementarity of the
multisource AOD data. The multisource AOD data is fitted and calculated using a machine learning
method, and then the overlapping parts of the multisource AOD data are calculated by a weighted
average to fill in some missing MOD AOD pixels. 2. In the moving window, the missing MOD
AOD can be recovered through space or spatiotemporal relationships. First, we create a moving
window. The corresponding calculation scenario is determined by the number and distribution of
the AOD in the moving window and then combined with the buffer factor to perform the calculation.
Finally, the recovered MOD AOD pixels are obtained by the priority settings of the overlapped pixels
(priority stack). The steps of the specific method are shown in Figure 2.

Figure 2. Flowchart of the proposed TWS model. The recovered AOD represents the final result.
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3.1. Data Preprocessing

First, we create a 3-km spatial resolution grid in the UTM coordinate system. We rebuild the
multisource data according to the grid position (including the AOD data set and auxiliary data).
MAIAC AOD, AHI AOD, meteorological data, terrain data, and land data must be reconstructed
because the spatial resolution is not 3 km. Specifically, MAIAC AOD, terrain data and NDVI must
have their averages calculated in the 3-km grid. We summarize the population data within the 3-km
grid (POP), and the RL data must have the total length of the roads in the grid calculated, which is
assigned to the road length grid (RLG). All of the reproduced information must be resampled due to
pixel position deviation.

3.2. First Step of TWS

GBM uses a gradient descent algorithm to adjust the regression tree of the weak learner’s addiction
model, thereby reducing the loss of the objective function. LightGBM was developed by Microsoft and
uses the GBM framework. LightGBM adds Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB). Compared with GBM, LightGBM can accelerate the calculation speed under
the premise of ensuring accuracy, and has a higher calculation speed for large sample data [48,49].
In this study, MOD AOD was used as the dependent variable; MYD AOD, MAIAC AOD, AHI AOD and
the other auxiliary data were used as independent variables. Three LightGBM models, i.e., MOD-MYD,
MOD-MAIAC and MOD-AHI, were established. Then, the accuracy of the prediction model was
verified by a 10-fold cross-validation method. The data for constructing the LightGBM model were
randomly divided into ten groups. Cyclic verification was performed ten times, and one group was
used for prediction verification, while the remaining nine were used as training samples. The decision
coefficient (R2) was used as an index for model verification. Next, we used the trained model to predict
the missing AOD of MOD AOD where MYD AOD, MAIAC AOD, and AHI AOD were not missing.
After calculating the three LightGBM models, weighted average processing was performed on the
overlapping pixels according to the LightGBM training result R2.

3.3. Second Step of TWS

AOD data has a strong spatial correlation (the R of adjacent MOD AOD is 0.9), but it also has a
certain correlation in time (the R of adjacent time MOD AOD is 0.5). Therefore, when restoring MOD
AOD information, we consider the spatial relationship of AOD and the spatiotemporal relationship.
Moreover, the small moving window could reduce the uncertainty caused by AOD spatial heterogeneity.

3.3.1. Design of Moving Window Size and Selection of Interpolation Mode

Moving windows of different sizes will affect the number of valid MOD AOD pixels. However,
a large moving window will cause serious spatial heterogeneity of MOD AOD, and will also affect
the computing performance of the MOD AOD recovery. In this study, we set the size of the moving
window to 3 × 3 pixels, 7 × 7 pixels, and a self-adaption window (from 3 pixels to 7 pixels) [34].
The self-adaption window is determined by the ratio of the number of valid AOD pixels to the total
number of pixels. The formula is as follows:

Sw = Max
(PVx

PA

)
x ∈ (3, 4, 5, 6, 7) (1)

where Sw represents the size of the self-adaption window; PVx is the number of valid AOD pixels in
the window; and PA is the total number of pixels in the window.

Spatial interpolation and spatiotemporal interpolation methods have good adaptability to recover
the AOD data, which performs a strong correlation in local space and is spatiotemporal. Regardless of
whether it is spatial interpolation or spatiotemporal interpolation, the recovery results of the AOD data
are greatly affected by the distribution and the number of valid AOD data points and the spatiotemporal
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distribution of the AOD data. Therefore, this study designed the following scenarios (taking a 3 × 3
window as an example), as shown in Figure 3: (1). Inverse Distance Weight interpolation (IDW) [50] is a
spatial interpolation method. It was applied when the central MOD AOD was missing in the moving
window. (2). We used region constraints kriging (RC kriging) which involves adding a constraints
factor to the ordinary kriging method. It was applied when five or fewer pixels of MOD AOD were
missing in the moving window. (3). We used spatiotemporal weight interpolation when the number
of missing cells of Day 2 MOD AOD was greater than or equal to 5 and the number of valid AOD
cells of Day 1 or Day 3 MOD AOD was greater than or equal to 5. (4). When there were too few MOD
AOD pixels in the moving window for three consecutive days (Day 2 had no MOD AOD pixels and
the number of valid MOD AOD cells for Days 1 and 3 were fewer than (5), we ignored this part of
the calculation. The change in the window size changed the above rule (the ratio of the number of
AOD pixels to the total number of moving window pixels). For example, when the window was 7 × 7,
the five pixels in condition two increased to 27.

Figure 3. Three scenarios of the second step TWS. Here, n represents the number of missing AOD
pixels in the moving window, and Days 1, 2, and 3 represent three consecutive days (where Days
1 and 3 are disordered). 1—Spatial represents spatial interpolation, including IDW and RC kriging.
2—Spatiotemporal-weight represents spatiotemporal weighted interpolation and lists two examples.
3—Pass indicates that this scenario ignores and does not calculate the AOD in the moving window.

3.3.2. Buffer Factor

Because the moving window introduced only a small quantity of MOD AOD data, it caused the
prediction value to deviate greatly between the spatial interpolation and spatiotemporal interpolation
of MOD AOD. Therefore, a buffer factor was introduced to correct the deviation. Global Moran’s
I (MoranI) [51] is a statistic for spatial autocorrelation; the larger the MoranI of AOD, the higher
the similarity of the AOD data, which can provide more information for the recovery of AOD gaps.
This approach is applied to calculate the spatial autocorrelation of MOD AOD in the region; the larger
the value of MoranI, the higher the correlation of the MOD AOD data in the region. This study
calculated MoranI in different areas and determined the maximum amount of MoranI in a local area.
The corresponding local area was called the scope window (Figure 4). The mathematical expectation
of the MOD AOD of the scope window served as a buffer factor for the spatial interpolation of the
MOD AOD. Uncertainty in the numeric values of the MOD AOD pixels in the scope window was
prone to occur, and the MOD AOD pixel values were not in a Gaussian distribution. The Spearman
correlation coefficient was introduced as the time buffer factor of the MOD AOD. The mathematical
expectation of the Spearman correlation coefficient for three consecutive days and the MOD AOD of
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the scope window were used as buffer factors for the spatiotemporal interpolation of the MOD AOD.
The formula is as follows:

MoranI =
n
∑n

i=1
∑n

j=1 Gi j(pi−p)(p j−p)∑n
i=1

∑n
j=1 Gi j

∑n
i=1(pi−p)2

Gi j = 1/
√
(ix − jx)

2 +
(
iy − jy

)2

w← Scope Window↔ Max(MoranIw−1, MoranIw, MoranIw+1)

Ew =

(
w∗w∑
i=1

Si

)
/w2

P(Stk,Et2) =

∑n
j=1(Stk−Et2w)(Stk−τt2)√∑n

j=1(Stk−τtk)
2 ∑n

j=1(Stk−τt2)
2
k ∈ (1, 3)

(2)

where MoranI represents the Global Moran’s I. Here, n represents the number of valid pixel AODs;
pi and p j represent the AOD values of the two pixels, I and J; x represents the average value of the AOD
pixels; dis(i, j) represents the spatial distance between the two pixels, I and J; Gi, j represents the inverse
distance weight; Scope Window represents the window that corresponds to the maximum local MoranI,
Scope Window is a square; w represents the number of pixels on one side of the square a Scope Window;
↔ represents iterative search for the Scope Window;← represents obtaining w; Si represents the AOD
value in the Scope Window; Stk represents the AOD value in the Scope Window on day tk; Ew represents
the mathematical expectation of AOD in the Scope Window (buffer factor); and P(Stk,Et2) represents the
Spearman correlation coefficient between day tk and day t2.

Figure 4. Buffer factor calculation flowchart.

3.3.3. Spatial Interpolation Method (IDW and RC Kriging)

Compared with other complicated physical models of AOD recovery, the spatial interpolation
of AOD can quantify the spatial information of the AOD with known spatial positions, which can
easily and effectively predict the missing AOD data over a small range. Moreover, the AOD spatial
interpolation method does not require an excessive number of parameters. Among them, IDW and the
spatial interpolation method are commonly used to predict the missing AOD. Additionally, based on
the best linear unbiased prediction of ordinary kriging interpolation [52], we introduced the buffer
factor for spatial interpolation when predicting the MOD AOD in a moving window, and established
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RC kriging. The buffer factor helps the RC kriging method to better adapt to the stability of mod AOD
in the moving window [53]. The formula is as follows:

Z1 =

 N∑
i=1

N∑
j=1

Gi, j
(
Si, j − Ew

)+ Ew



N∑
i=1

N∑
j=1

,2iג j ×Cov
(
si, j

)
− µ = Cov

(
s j,i

)
N∑

i=1

N∑
j=1

,2iג j = 1

Z2 =

 N∑
i=1

N∑
j=1

,2iג j
(
Si, j − Ew

)+ Ew

(3)

where Z1 and Z2 represent the AOD estimates produced by IDW interpolation and RC Kriging
interpolation, Gi, j represents the inverse distance weight, si, j represents the MOD AOD value at
points I and J, µ represents the Lagrange multiplier, ,2iג j represents the weight, Cov

(
si, j

)
and Cov

(
s j,i

)
represent the covariance of si, j and s j,i, and Ew represents the mathematical expectation in the
Scope Window (buffer factor).

3.3.4. Spatiotemporal Weight Interpolation (STW)

Spatiotemporal interpolation can effectively consider both space and time MOD AOD relationships
and overcome the shortcomings of MOD AOD space interpolation [54]. We quantify the time distance of
one day of MOD AOD as 1 and combine the spatial distance between the MOD AOD pixels to determine
the spatiotemporal distance. The spatiotemporal distance and the buffer factor are used to determine
the spatiotemporal weight of MOD AOD spatiotemporal interpolation. We combine the spatiotemporal
interpolation and spatiotemporal weights to generate spatiotemporal weight interpolation (STW).
In this study, the time of STW used for MOD AOD was set to three days (including the predicted day,
as well as the days before and after the predicted time), to avoid the excessive AOD data noise caused
by a time span that is too long. The specific formula is as follows:

ZST0 =
3∑

tk=1

 Nt∑
j=1

([
Nt∑

i=1

(
,tkiג j

(
Sti, j − Etw

))]
+ Etw

)
tkג = (tk,tk)ג =

N∑
j=1

√
(1− [(P(St1 ,Etk)

+ P(Stk ,Et3))/2])
(

1/dis(tki , tk j)∑N
i=1(1/dis(tki , tk j))

)
k = 2

tkג = (tk,t2)ג =
N∑

j=1

√(P(Stk ,Et2)

2

)2
+

(
1

dis(tki ,tk j)
/∑N

i=1

(
1/dis

(
tki , tk j

)))2
k ∈ (1, 3)

dis(i, j) =
√
(ix − jx)

2 +
(
iy − jy

)2

(4)

where ZST0 represents the estimation of STW. T represents the time of day, t1 is the previous day,
t2 is the day to be calculated, and t3 is the next day. St represents the value of the valid AOD. Etw is
the mathematical expectation in Scope Window within t days (buffer factor), P(τtk,τt2) represents the R
between t2 and tk. tkג represents the time weight of k days (k ∈ (1, 2, 3)). N is the number of pixels in
the moving window, and dis

(
tki, tk j

)
represents the spatial distance between tki and tk j.

3.3.5. Priority Setting of Overlapping Pixels

Because the spatial interpolation of MOD AOD and STW belong to the second step in TWS,
TWS will have overlapping results of MOD AOD recovery with the movement of the window.
Therefore, TWS should set the priority of the MOD AOD recovery results. The priority of the MOD
AOD recovery result was set to IDW > RC Kriging > STW. If the MOD AOD recovery resulted in
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overlap, then the missing values of the MOD AOD were filled according to their priority. Furthermore,
if the recovery results of the MOD AOD overlap in the same method, the average amount of the MOD
AOD recovery results overlap should be calculated as the final result of the MOD AOD. For example,
in the process of moving the window of TWS, RC kriging and STW were used in the two calculations
before and after the predicted time, and the overlapping area of the MOD AOD recovery result should
have used the RC kriging result. If RC kriging was used for both calculations during the window
movement of the TWS, the overlapping area of the MOD AOD recovery results were calculated in the
average value as the final MOD AOD recovery result.

3.3.6. Validation Methodology

A comparison between the MOD AOD recovery results and AERONET data can be used as the
basis for the MOD AOD recovery accuracy [55]. The time resolutions of MOD AOD and AERONET
were different. This research calculated the transit time of the satellite (Terra) (30 min before and after)
and compared the average value of the AERONET data with the MOD AOD data of the location pixels for
the AERONET site [37]. In addition, AERONET collected AOD data of multiple wavelengths, many of
which were slightly different from the MOD AOD wavelength (550nm). Therefore, the AERONET
AOD at 550 nm was interpolated using the Ångström exponent [7]. In addition, both the 551 nm and
560 nm AOD data were used in the AERONET data to evaluate the MOD AOD. The specific calculation
formula is as follows:

τω = βωδ

δ = −
ln(τ1/τ2)
ln(ω1/ω2)

β = τ1(ω1)
δ = τ2(ω2)

δ

(5)

where τ, τ1, and τ2 represent the AOD at wavelengths ω, ω1, and ω2, respectively. Here, δ represents
the Ångström exponent.

The accuracy evaluation indexes include R and RMSE, where RMSE is as shown in Equation (6).

RMSE =

√√√
1
N

N∑
i=1

(τ(MOD AOD)i − τ(AERONET)i)
2 (6)

where τ(MOD AOD) and τ(AERONET) represent the AOD from MOD AOD and
AERONET, respectively.

4. Results

4.1. LightGBM Training and Processing Results

We constructed and trained the three LightGBM models separately and combined them with
10-fold cross-validation; the sample size, R2, and independent input variables are listed in Table 2. Then,
each of the three LightGBM models was used to predict the missing MOD AOD, and we superimposed
the prediction results (where the overlap of the pixels is weighted according to R2); the results for
1 January 2018 are listed in Figure 5.

Table 2. LightGBM results and other variables.

Group Auxiliary Independent Variables n R2

MOD AOD-MYD AOD TLML, SPEED, ZM, QSH, PBLH, NDVI,
POP, RLG, DOY, Slope, Aspect and

Elevation

2,112,108 0.964
MOD AOD-MAIAC AOD 4,226,536 0.975

MOD AOD-AHI AOD 5,784,070 0.956
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Figure 5. MOD AOD is recovered from multisource AOD data and auxiliary data after fitting by
LightGBM (2018.1.1). Here, (a) shows the original MOD AOD data (90% missing AOD); (b) shows the
MOD AOD (56% missing AOD) after AHI AOD, and the auxiliary data were recovered by LightGBM;
(c) shows the MOD AOD after combining MYD AOD and the auxiliary data after LightGBM recovery
(84% missing AOD); (d) shows the MOD AOD (66% missing AOD) after combining MAIAC AOD and
the auxiliary data after LightGBM recovery; (e) shows the result of calculating the weighted average
of the overlapping parts of (b), (c) and (d) (47% missing AOD). The legend is the value range of the
MOD AOD.

In Table 2, it can be seen that all of the auxiliary variables were involved in the training of the three
groups of LightGBM models, and the R2 of the 10-fold cross-validation fitting effect exceeded 0.95.
Additionally, in 1 January 2018, the MOD AOD gap was filled by MYD AOD, MAIAC AOD, and AHI
AOD. Among them, AHI AOD contributed the largest quantity of AOD data. The AOD missing rate
predicted by AHI AOD decreased from 90% to 56%. After calculating the weighted average of the
overlapping parts, the AOD missing rate dropped to 47%.

4.2. Comparison between MOD AOD Recovered by Different Methods and AERONET

We compared the AOD data recovered by different methods with AERONET: 1. The original MOD
AOD data and AERONET. 2. The first step of the TWS (LightGBM) was used to calculate the recovered
AOD and AERONET comparison. 3. Using spatiotemporal kriging interpolation to interpolate the
MOD AOD, we then compared the AOD results with AERONET data. 4. The TWS calculation results
were compared with AERONET. To evaluate the effect of the TWS model more carefully, the accuracy
of the comparison was divided into all of the AOD data parts (including the recovered part of the AOD
and the original MOD AOD part) and a separate AOD recovery part (excluding the original MOD
AOD data), as shown in Figures 6 and 7.
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Figure 6. Comparison of MOD AOD recovered by different methods (including the recovered
MOD AOD and original MOD AOD) and AERONET. (a) Comparison of the original MOD AOD and
AERONET. (b) Comparison of the MOD AOD recovered by LightGBM and AERONET. (c) Comparison of
the MOD AOD recovered by spatiotemporal kriging interpolation and AERONET. (d) Comparison of
the MOD AOD recovered by TWS with AERONET. The solid red line represents the regression line;
the solid black line is the 1:1 line. The color bars represent the density of the points.

Figure 7. Comparison of MOD AOD and AERONET recovered by different methods. (a). Comparison of
the recovered MOD AOD of LightGBM (excluding the original MOD AOD part) and AERONET.
(b). Comparison of the MOD AOD recovered by TWS (excluding the original MOD AOD part)
and AERONET. (c). Comparison of the MOD AOD recovered by TWS (excluding the original MOD
AOD and LightGBM recovered MOD AOD) and AERONET. The solid red line represents the regression
line; the solid black line is the 1:1 line. The colored bars represent the density of the points.
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As shown in Figures 6 and 7, the number of matching points of MOD AOD and AERONET for
reference are 263, the R is 0.83, and the Root Mean Square Error (RMSE) is 0.13. In the comparison of all
of the AOD pixel values, LightGBM has the least number of matching points (n = 876), and although the
number of matching points in the spatiotemporal kriging interpolation is the largest (1587), the quality
according to the R and RMSE (0.59, 0.71) is not as good as that of LightGBM (0.85, 0.24), while TWS
(R = 0.87, RMSE = 0.23) maintains value of the R with LightGBM and the reference and the quality of
RMSE while also obtaining a larger number of matching points (1433). In the comparison of the AOD
recovery part, we computed the results of the TWS recovery after removing MOD AOD (R = 0.87,
RMSE = 0.26) and LightGBM (R = 0.88, RMSE = 0.25), and the R and the indicators of RMSE were
removed from LightGBM MOD AOD (R = 0.86, RMSE = 0.26), which is consistent; the R is consistent
with the reference (the difference in the RMSE index is related to the number and distribution of the
reference samples). It can be seen from the results that TWS not only utilizes the information volume of
the multisource AOD data, but also absorbs the advantages of AOD spatiotemporal information. In the
case of increasing the number of matching points, the R can still maintain a high quality, which indicates
that the TWS is reliable.

To further verify the effectiveness of TWS, we regridded the original MOD AOD by 5 × 5 AOD
pixels size, and set the existing value in the grid center as a forced-missing AOD. Then, we used
3 × 3 grid TWS to regenerate the forced-missing MOD AOD. A validation between the regenerated
MOD AOD and the original effective MOD AOD is shown in Figure 8.

Figure 8. Comparison of the regenerated MOD AOD by 3 × 3 TWS and the original MOD AOD. The
solid red line represents the regression line; the solid black line is the 1:1 line. The colored bars represent
the density of the points.

As shown in Figure 8, the number of regenerated MOD AOD is 2352752. After restoring the
missing AOD by 3 × 3 grid TWS, the validation process results in R = 0.98 and RMSE = 0.05 between
the regenerated MOD AOD and the original effective MOD AOD. These results show that the 3 × 3 grid
TWS also maintains good stability and accuracy in recovering a large number of missing MOD AOD
pixels. This verifies the reliability of the TWS.

4.3. TWS Recovered the Performance with Different Moving Windows

The missing rate for MOD AOD was calculated by the ratio of the MOD AOD pixels and the
total number of pixels in the study area, as shown in Figure 9. The MOD AOD missing rate was
set to between 0 and 1. The recovery of MOD AOD requires higher accuracy and a lower MOD
AOD missing rate to achieve its goal. Although the MOD AOD after the spatiotemporal kriging
interpolation processing had no AOD data missing, the accuracy could not reach the application level.
Therefore, the comparison of the MOD AOD missing rate was conducted in different windows of
the TWS (3 × 3 window, adaptive window and 7 × 7 window). According to the statistics of the
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original MOD AOD data and the MOD AOD results recovered by TWS, the annual average missing
rate of the original MOD AOD exceeded 0.8. After the first step of the TWS LightGBM calculation,
the average annual missing rate of MOD AOD decreased from 0.8 to 0.4, and after 3 × 3 restoration of
the window, the annual average missing rate of MOD AOD decreased from 0.4 to 0.1; additionally,
the result calculated after the 7 × 7 window (0.06) showed the smallest annual average missing rate of
MOD AOD.

Figure 9. Time series plot of daily AOD coverage over study areas in 2018 for MOD, LightGBM, 3 × 3,
self-adaption and 7 × 7. MOD represents the original MOD AOD, LightGBM represents LightGBM
recovered MOD AOD, 3 × 3 represents the 3 × 3 grid moving window TWS recovered MOD AOD,
self-adaption represents the self-adaption moving window TWS recovered MOD AOD, and 7 × 7
represents the 7 × 7 moving window TWS recovered MOD AOD. The numbers in parentheses represent
the average and standard deviation of the empty AOD coverage.

Furthermore, in 2018, the standard deviation of the missing rate of MOD AOD after LightGBM
alone was 0.131. However, the standard deviation of the MOD AOD missing rate of the TWS treatment
was smaller than 0.08, which shows that LightGBM alone relies on only multisource AOD data.
After processing by LightGBM alone, there is still a large quantity of missing AOD data. In contrast,
a complete TWS combined with spatial and spatiotemporal information can reduce the missing rate of
MOD AOD.

According to Table 3 and Figure 10, the missing rate of MOD AOD, R, and the calculation efficiency
all change with changes in the size of the moving window. Among them, the 7 × 7 grid has the
lowest R and the largest RMSE, 0.78 and 0.32, respectively. The adaptive R and RMSE are 0.79 and 0.3,
respectively. The 7 × 7 grid and adaptive R decrease compared to the 3 × 3 window, while the RMSE
increases. The adaptive network’s calculation time of the grid is the largest, i.e., 4.2 times that of the
3 × 3 grid, while the 7 × 7 grid is 2.7 times that of the 3 × 3 grid. The above data show that with the
expansion in the window size, the result R from the recovery of the MOD AOD decreases, while the
RMSE increases. A possible reason for this is that the spatial and temporal variability of the MOD
AOD increases with the size of the moving window. Moreover, the change in the size of the moving
window also significantly affects the amount of calculation.
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Table 3. Performance comparison of 3 different moving windows.

Windows R (Total) Incompleteness (%) Time Ratio (%)

3 × 3 grid 0.85 10 100
7 × 7 grid 0.78 6 225

Self-adaption grid 0.79 8 423

Figure 10. Comparison of TWS recovered MOD AOD (including the recovered MOD AOD and original
MOD AOD) and AERONET in different moving windows. a. Comparison of the 7 × 7 moving window
TWS recovery MOD AOD and AERONET. b Comparison of the self-adaption moving window TWS
recovery MOD AOD and AERONET. The solid red line represents the regression line; the solid black
line is the 1:1 line. The colored bars represent the density of points.

4.4. Analysis of the Spatiotemporal Characteristics of MOD AOD Recovered by TWS

Combining the recovery results of the MOD AOD in the 3 × 3 window of the TWS and the
spatiotemporal kriging interpolation results of the MOD AOD, the annual average results of the MOD
AOD after recovery were calculated and compared with the annual average results of the original
MOD AOD (Figure 11). The following can be found in Figure 11: (1). There were still some gaps in
the annual average map of the original MOD AOD (the position of the red circle 1). Compared with
Figure 1 (land use), the red circle is mainly brighter, bare land, which confirmed that the DT algorithm
and the DB algorithm had poor AOD data inversion in relatively bright areas. The annual average
result of the MOD AOD recovery in the 3 × 3 window of TWS and the annual average result of the
MOD AOD spatiotemporal Kriging interpolation filled the gaps of the AOD data in the red circle
1. (2). The maximum value of the original annual average result of the MOD AOD is too large in
Figure 11 (the maximum AOD value was 3). (3). The maximum value in the annual average result
of MOD AOD in the 3 × 3 window of TWS decreased to 0.64 and the annual average result of the
spatiotemporal kriging interpolation of MOD AOD decreased to 0.82. (4). The average value in the
annual average results of the original MOD AOD, spatiotemporal kriging interpolation and TWS were
0.23, 0.34 and 0.27 respectively. The original MOD AOD data had a large number of missing AOD
pixels (the missing rate in Figure 11a was 2%). There was a lack of sufficient AOD pixels to average the
minimum and maximum values in the original MOD AOD, which ultimately led to the maximum
value in the original MOD AOD annual average result being too large (the maximum AOD value was
3), and the average value in the original MOD AOD annual average result was low (the average AOD
value was 0.23). (5). Comparing red circle 2, the annual average results of the original MOD AOD and
the spatiotemporal Kriging interpolation of the MOD AOD are higher. The annual average results of
the restoration of MOD AOD in the 3 × 3 window of TWS retained the original MOD AOD spatial
characteristics of the annual average results and reduced the annual average of MOD AOD. Moreover,
in the Pacific region, the annual average results of the restoration of the TWS 3 × 3 window MOD AOD
were higher than the original annual average results of the original MOD AOD. In the original annual
average results of the MOD AOD, the reason why the AOD data gap in red circle 1 was filled is that
the 3 × 3 window of the TWS and the spatiotemporal kriging interpolation method filled the AOD
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data gap to a large extent. The reason for this was that the MOD AOD gap was filled, and the MOD
AOD annual average result was more fully calculated. The maximum value of the original MOD AOD
annual average result was reduced. In addition, due to the lack of accurate prediction of local features
by the spatiotemporal kriging interpolation algorithm, the annual average result of the MOD AOD
spatiotemporal kriging interpolation was higher than the average annual result of the restoration of
the TWS 3 × 3 window MOD AOD.

Figure 11. The average annual MOD AOD distribution in 2018. (a). Annual average of the original
MOD AOD (2% missing). (b). The MOD AOD average of the spatiotemporal kriging interpolation
recovery (missing 0). (c). The 3 × 3 moving window TWS recovered the MOD AOD annual average
(missing 0). The red fonts Ave and Max represent the average and maximum values of the AOD annual
average graph, respectively. The white part represents nodata. The color bar represents the MOD
AOD value.

We compared the results of the TWS 3 × 3 window MOD AOD recovery with the original MOD
AOD data by a monthly average (Figure 12). In Figure 12, we marked the missing rate, average and
maximum of the monthly average of the original MOD AOD and the monthly average of TWS AOD
for each month. The monthly average maximum value of TWS AOD was smaller than the original
monthly average maximum value of MOD AOD. The average range of the monthly average results of
TWS AOD (0.17–0.24) was also smaller than the average monthly average results of the original MOD
AOD (0.18–0.36). In addition, the TWS AOD monthly average result also accurately retained the high
value area of the original MOD AOD monthly average result (in the yellow box).

On this basis, in the yellow box area in Figure 12 (112.7◦ E–125.2◦ E, 32.5◦N–42.1◦N), we calculated
the monthly average and maximum AOD values of the original MOD AOD and TWS AOD in this area,
as well as the monthly average AERONET AOD at the same place (Figure 13). In the yellow box area,
the maximum of the monthly average original MOD AOD result was greater than 2. The maximum of
the monthly average TWS AOD result was lower than the maximum of the monthly average original
MOD AOD result. Moreover, the largest average value of the monthly average TWS AOD results
was in June. Specifically, there was an upward trend from January to June and a downward trend
from June to December. In addition, in the yellow box, there are seven AERONET ground stations.
We calculated the monthly average of these stations. The monthly average trend of MOD AOD after
TWS recovery was also consistent with the monthly average AERONET AOD trend. A similar trend
was shown by Song et al. [56] for the North China Plain in 2018.
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Figure 12. Monthly average of the original MOD AOD and 3 × 3 moving window TWS recovered
MOD AOD (each month includes the missing rate of MOD AOD). The red fonts Ave and Max represent
the average and maximum values of the AOD monthly average graph, respectively. The white part
represents no data. The yellow box area represents the sampling area in Figure 13. The color bar
represents the MOD AOD value.
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Figure 13. The broken line represents the monthly average original MOD AOD and the monthly
average MOD AOD restored by TWS, respectively, and the dotted line represents the monthly average
AERONET AOD, with the ordinate on the left. The histogram represents the maximum value (monthly)
of the original MOD AOD and the MOD AOD recovered by TWS, respectively, with the ordinate on the
right. The above data is from the yellow box area of Figure 12.

5. Discussion

5.1. Comparison of TWS and Other MOD AOD Recovery Models

The recovery of missing satellite AOD product data is of great significance to atmospheric
pollution research. Recently, many methods have been used to study the recovery of missing data
from satellite AOD products. This study selected the same approach to recover missing MOD AOD
data and made a comparison in Table 4. The results of the various methods in Table 4 were compared
with AERONET. Based on this comparison, the improvements in R compared to the MOD AOD and
AERONET recovered by the proposed method and the R compared to the original MOD AOD and
AERONET were not obvious (the R of the MOD AOD and AERONET recovered by the TWS recovery
was the highest). In the comparison of the missing rate of MOD AOD, the missing rate of MOD AOD
recovered by TWS was the lowest (0.1). Additionally, in the different methods in Table 4, the missing
rate of the MOD AOD recovered by TWS had the largest decreased missing rate difference compared
to the original MOD AOD (0.78). The improved difference (R) of the 3 × 3 window TWS method was
not significantly different from other methods. However, the decreased missing rate difference (%)
of the 3 × 3 window TWS method was significantly different from other methods. The main reasons
are as follows: (1.) The 3 × 3 window TWS introduced multisource datasets (MYD AOD, MAIAC AOD,
AHI AOD). With TWS, the first step is to use the spatial complement of AOD data sets with different
algorithms and data collection times. The AOD missing rate dropped from 88% to 40%. In Figure 9,
the decreased missing rate difference (%) is 48%. (2.) The second step of the 3 × 3 window TWS is to
make reasonable use of the spatiotemporal relationship of AOD, under the optimization of moving
window and buffer factor. The AOD missing rate decreased from 40% to 10% (the decreased missing
rate difference (%) was 30%). Although the direct comparison of the decreased missing rate difference
had certain limitations, it also showed stability and excellent performance for the TWS.
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Table 4. Comparison of the MOD AOD data recovery methods.

Method Original Missing
Rate (%)

Improved Missing
Rate (%)

Decreased Missing
Rate Difference (%) Original R Improved R Improved

Difference (R) Source

ST-AVM 80 60 20 0.89 0.87 −0.02 [34]
NWRL ~70 ~60 ~10 0.77 0.78 +0.01 [33]

* 89 75 14 0.93 0.91 −0.02 [28]
TWS (3 × 3) 88 10 78 0.83 0.87 +0.04 Our paper

Note: ~ indicates a lack of accurate data in the cited article. * indicates a lack of method name in the cited article.

5.2. TWS Recovery MOD AOD Performance Discussion

The MOD AOD after TWS processing can obtain a higher improved R and lower AOD missing
rate because it takes full advantage of the rich data volume of multisource data and the high local
spatiotemporal autocorrelation of the AOD itself. A large amount of research has confirmed that
multisource data can easily introduce data noise. However, based on the data statistics, we chose
LightGBM to build a MOD AOD prediction model, which can make full use of the characteristics
of different AOD data and reduce the data noise. From the comparison between LightGBM and
AERONET, it can be seen that the LightGBM model does not introduce much data noise (all R = 0.85,
R = 0.86 after removing MOD AOD).

Moreover, we developed MOD AOD recovery measures based on moving small windows by
combining MOD AOD spatial data and spatiotemporal data when generating the statistics. The setting
of the small window is used to ensure a high correlation of AOD in the small window. MOD AOD
recovery measures set three MOD AOD recovery modes, and use the adaptive space and spatiotemporal
buffering methods. Different calculation modes were set based on the temporal and spatial distribution
of valid AOD information, to enable the calculation to be more reliable when recovering the AOD value.
In this way, it can avoid the introduction of excessive data noise. The index was used to determine
the local area of the autocorrelation, and the mathematical expectation and R were introduced to
slow down the spatiotemporal difference; then, we determined the spatial and spatiotemporal buffer.
Spatial and spatiotemporal buffering can more accurately improve the R of the moving small windows
to recover the MOD AOD missing data. These settings all ensure the accuracy of the MOD AOD
recovery and reduce the data loss rate of MOD AOD (R = 0.87 compared to MOD AOD and AERONET
in the 3 × 3 window. The average daily loss rate of MOD AOD was 10%, whereas the adaptive window
of the MOD AOD and AERONET comparison was R = 0.79, the average daily missing rate of MOD
AOD was 8%, the window of the 7 × 7 window MOD AOD and AERONET comparison was R = 0.78,
and the average daily missing rate of MOD AOD was 6%). In different applications, different window
sizes can be chosen to meet different needs because the moving window size is variable. For example,
to obtain a lower MOD AOD data loss rate, a larger moving window in TWS can be selected. The 7 × 7
window in the 2018 experiment can limit the average daily loss rate of MOD AOD to 6%. Therefore,
moving the window size can adjust this advantage and make the TWS method more flexible. Moreover,
if the missing MOD AOD data rate is not 0, the iterative approach to the TWS method can be used,
which gradually reduces the missing MOD AOD data rate to 0. Of course, it is also possible to use
spatial interpolation based on the results of MOD AOD processed by TWS to reduce the missing
rate of MOD AOD to 0. Because TWS is based on sufficient data statistics on AOD data and uses
AOD spatial autocorrelation, the TWS method can, in general, be applied to the missing data of AHI
AOD, MAIAC AOD, MYD AOD and other remote sensing products with spatial correlation and time
correlation. Finally, the MOD AOD recovered by TWS cannot be studied and used on a global scale
because the AHI sensor is carried on a geosynchronous orbit satellite.

5.3. TWS Recovery MOD AOD

In the results of MOD AOD recovery in the study area in 2018 (Figure 11), we found that the areas
with higher AOD were mainly concentrated in North China, the Central China Plain, the Yangtze River
Delta and the Sichuan Basin; in northern Vietnam, the Japanese Islands and the Korean Peninsula,
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the AOD was lower (see Figure 12). Because of the dry weather conditions of the Red River Delta,
in addition to local traffic and industrial pollution, there was a relatively obvious pollutant transmission
process, and higher AOD distributions existed in southern China and northern Vietnam in March
and April [57]. Moreover, there was also a higher monthly average value of AOD near the North
China Plain and Shandong Peninsula in China which spread to the sea. Furthermore, in November,
December and January, the pollutant diffusion capacity of North China, the Central China Plain and the
Yangtze River Delta was more obvious during the influence of the winter monsoon [58,59]. Eventually,
the mean monthly AOD of North China, the Central China Plain, the Yangtze River Delta and the East
China Sea increased. Overall, the high AOD area did not cover the Korean Peninsula or the Japanese
Islands. Although some of the pollutants might have reached the Korean Peninsula and the Japanese
Archipelago region through the atmospheric transmission process, most of the pollutant transmission
still stopped in the offshore area of China.

6. Conclusions

A high-precision, low AOD missing rate MOD AOD recovery result is of great help in measuring
the spatial distribution of air pollutants, continuous monitoring, climate change and other related
research. In this paper, the TWS model was constructed by multisource AOD data, LightGBM,
spatial interpolation and STW, which were used for the large-scale recovery of data missing from
MOD AOD. The results show that the TWS model can guarantee the accuracy of the recovered MOD
AOD (R = 0.87). Moreover, compared with other methods, TWS greatly reduces the missing rate of
the MOD AOD data (the missing rate of MOD AOD in the 3 × 3 window dropped from the original
88% to 10%). Moreover, after the missing information is added, the changes in the local AOD start
to show more obvious high and low value details, for example, the AOD average, maximum and
minimum of the original MOD AOD missing area in the AOD annual average map. TWS proves the
spatial complementarity of multisource AOD data and the spatiotemporal relationship of the AOD
data, which is very important when recovering the AOD data. In follow-up research, we will use other
data sets to expand the applicability of the TWS method, for example, using GOES-16 ABI AOD data to
restore AOD on the American continent. Moreover, we will use deep learning to recover areas in which
the loss of AOD spatiotemporal information is severe, for example, in scenario 3 (Pass) in Figure 2,
the moving window has missing AOD information for three consecutive days.
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Abstract: The widespread applications of remote sensing image scene classification-based
Convolutional Neural Networks (CNNs) are severely affected by the lack of large-scale datasets
with clean annotations. Data crawled from the Internet or other sources allows for the most rapid
expansion of existing datasets at a low-cost. However, directly training on such an expanded
dataset can lead to network overfitting to noisy labels. Traditional methods typically divide
this noisy dataset into multiple parts. Each part fine-tunes the network separately to improve
performance further. These approaches are inefficient and sometimes even hurt performance.
To address these problems, this study proposes a novel noisy label distillation method (NLD)
based on the end-to-end teacher-student framework. First, unlike general knowledge distillation
methods, NLD does not require pre-training on clean or noisy data. Second, NLD effectively distills
knowledge from labels across a full range of noise levels for better performance. In addition, NLD can
benefit from a fully clean dataset as a model distillation method to improve the student classifier’s
performance. NLD is evaluated on three remote sensing image datasets, including UC Merced
Land-use, NWPU-RESISC45, AID, in which a variety of noise patterns and noise amounts are injected.
Experimental results show that NLD outperforms widely used directly fine-tuning methods and
remote sensing pseudo-labeling methods.

Keywords: scene classification; teacher-student; noisy labels; knowledge distillation; remote
sensing images

1. Introduction

The optical remote sensing image is a powerful source of geographical information since it
contains complex geometrical structures and spatial patterns. In recent decades, the remote sensing
community has tried to establish an accurate remote sensing image scene classifier. Recent advances in
Convolutional Neural Networks (CNNs) make it possible to identify remote sensing scenes with better
performance [1,2]. However, many real-world applications for earth observation require large-scale
datasets with clean annotations such as ImageNet [3]. It is costly and time-consuming to collect a
large-scale remote sensing dataset with high-quality manual annotations. Lack of annotated data
has become a bottleneck for the development of deep learning methods in remote sensing and Earth
observation. Moreover, the same bottleneck also exists in many other visual tasks.

To tackle the bottleneck, many studies [4] start with leveraging crowd-sourcing platforms,
image search engines, or other automatic labeling methods to collect labeled data for natural
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image scene classification. For example, the Open Images Dataset V4 [5] contains over 30.1 million
image-level labels automatically produced by a classifier and a small percentage of labels are verified
by crowd-sourcing platforms. These methods significantly reduce the cost of data labeling, which is
valuable for applying deep learning in remote sensing image scene classification. The volume of
unlabeled images collected by satellites or drones is growing by a few terabytes each day. Low-cost
annotations could facilitate the use of abundant image resources. Hence, some methods [6] generate
pseudo labels for unlabeled remote sensing images through semi-supervised learning. However,
these labels struggle to provide the same asymptotic properties as supervised learning does in
high-data regimes. The labels produced by these approaches contain varying degrees of error,
i.e., noise, and the performance of classifiers is highly sensitive to massive label noise. Since most of
the automatically generated labels are mismatched, it is challenging for traditional learning methods
to work on such datasets.

Training on noisy labeled datasets become essential and has attracted much attention in recent
years [7–9]. Furthermore, several approaches learning with noisy labels [10–12] have been explored
for remote sensing image analysis tasks. Existing methods based on RGB images with noisy labels
usually make a strong assumption that all labels are noisy. These studies mostly work on robust
algorithms against noisy labels [13], label cleansing methods finding label errors [14] , or combining
them together [15]. It was proven that these classifiers have achieved good accuracy on noisy
CIFAR10/100 datasets. However, it is difficult and impractical to apply these complex methods
to other areas. For remote sensing image scene classification, some of these methods sometimes do
not perform as well as direct training. In real-world applications, datasets usually contain a small
fraction of images with clean annotations and large amounts of images with noisy or missing labels.
In this case, some approaches [16–18] have produced better performance and practicality on large-scale
real-world noisy datasets, such as Clothing1M dataset [8] and Open Images V4 dataset [5]. To the best
of our knowledge, there is no existing work for remote sensing image scene classification with minimal
extra-human supervision.

This work focuses on augmenting existing human-verified labeled datasets with additional noisy
labeled data to improve the performance of remote sensing scene classifiers. A more efficient way
is explored to learn knowledge from massive noise, instead of simply mix all data or fine-tuning
with labeled images. Inspired by Deep Mutual Learning (DML) [19], this paper proposes a novel
noisy label distillation framework called NLD based on teacher-student methodology with a decision
network, as given in Figure 1. First, the student and teacher jointly learn from each other. Pre-training
is no longer a required process. Second, the teacher distills the knowledge learned from noisy data
to facilitate the student to learn from full dataset. NLD can even be applied to completely noise-free
datasets. This means that our method can be used in a wide range of remote sensing applications.
Third, a decision network derived from [20] is introduced, which is easier to optimize in practice
and replace the calculation of the mimicry loss. Considering the lack of public datasets with noisy
annotations for remote sensing image scene classification, experiments are conducted to evaluate
NLD by injecting a series of noises into well-annotated datasets(e.g., UC Merced Land-use [21],
NWPU-RESISC45 [22] and AID [23]).

Our contributions are as follows:

• Noise label is introduced for remote sensing image scene classification with minimal extra-human
supervision. In practical applications, it is possible to label millions of images with noisy labels at
a low-cost.

• A novel and effective end-to-end framework based on teacher-student model namely NLD is
proposed for noisy labels distillation. NLD can effectively boost the performance of remote
sensing scene classifiers with massive noisy annotations.

• NLD is effective on completely clean datasets. Thus, NLD can be further extended to model
distillation for network compression.

30



Remote Sens. 2020, 12, 2376

• Pseudo-labeling methods can automatically generate nearly infinite noisy annotated images
at no additional cost. The network trained by NLD achieves a better performance than other
pseudo-labeling methods.

• Several new practical benchmarks are proposed for remote sensing image scene classification
with different types of noisy labels.

Teacher

Student

consistency decision

prediction

loss

loss

total
loss

extra
noisy dataset

existing 
clean dataset sparse residential

clean label

building

noisy label

Figure 1. A high-level illustration of NLD. The student and teacher mutually learn knowledge of clean
and noisy labels.

This paper is organized as follows: Section 2 introduces the research status and the challenges.
Section 3 describes the overall framework of NLD. Section 4 presents the implementation details of
experiments and analyzes the result. Finally, Section 5 concludes our paper and gives an outlook.

2. Related Works

In this section, we will briefly review existing related works on remote sensing image scene
classification and learning from noisy labels.

2.1. Remote Sensing Image Scene Classification

Remote sensing image scene classification aims to distinguish the semantic category of an image,
which is a fundamental problem for understanding high-level geospatial information. With the
development of deep learning methods, many CNN architectures (e.g., ResNet [24], VGG [25]) have
achieved remarkable performance on many remote sensing public datasets. However, there are
large intra-class variations and small inter-class dissimilarities between different remote sensing
scenes. These problems will decrease the recognition abilities of models for some categories.
To address these challenges, many studies focus on how to learn discriminative feature representations.
Nogueira et al. [2] analyzed the use of different networks in the field of remote sensing. Chaib et al. [1]
proposed an adequate method for feature fusion and introduced discriminant correlation analysis
to represent the fused features. Zhang et al. [26] proposed a newly designed CapsNet to deal with
the remote sensing image scene classification problem. Li et al. [27] proposed a unified feature fusion
framework based on attention mechanism to improve the classification performance.

31



Remote Sens. 2020, 12, 2376

These algorithms are all data-driven algorithms, which means large-scale datasets are required in
practice. To facilitate the application of these methods to more fields that have little data with clean
annotations, NLD can be widely used with various models including the above research.

2.2. Learning from Noisy Labels

Most of methods learning from noisy datasets aim to directly learn without clean labels
available. These approaches usually focus on noise-robust algorithms and label cleansing methods.
Wang et al. [13] proposed symmetric cross entropy (SCE) loss to boost cross-entropy (CE) symmetrically
with a noise-robust counterpart reverse CE. Northcutt et al. [14] proposed confident learning for
characterizing, identifying, and learning with noisy labels. Kim et al. [15] proposed Selective Negative
Learning and Positive Learning (SelNLPL) to filter and learn with noisy data. These methods face the
problem of discriminating difficulty from mismatched labels.

Our approach belongs to a practical stream, assuming that both clean and noisy labels of the
dataset are known [8,28]. This is a more practical scenario, allowing researchers to focus on leveraging
noisy labeled data to enhance existing fully supervised algorithms. Veit et al. [16] proposed a learning
approach for multi-label image classification using clean labeling combined with massive noise labeling.
Hu et al. [18] proposed a method to automatically identify credible annotations in the massive noisy
labels under weakly supervised learning. Many semi-supervised learning algorithms, especially
pseudo-labeling algorithms, can also be categorized into such scenarios [29]. Han et al. [6] proposed
a framework based on deep learning features, self-labeling techniques and decision evaluation
methods under semi-supervision for remote sensing image scene classification and annotating datasets.
The works closer to ours comes from Li et al. [17] and Li et al. [30].To achieve noisy label learning, they
proposed a teacher-student framework, which comes from knowledge distillation [31]. To take full
use of the whole data space, traditional knowledge distillation and many other similar noise-robust
methods use the student model to mimic the large pre-trained teacher model by providing training
experiences. These experiences are called “dark knowledge”.

In practice, a smaller network with the same precision is needed because of the cost, i.e., a student
network. However, due to the existence of noisy labels, even under the guidance or regularization of a
powerful network pre-trained with clean data, small networks are still prone to overfit to noisy labels.
This may even lose the knowledge of the original clean data.

3. Method

3.1. Problem Formulation

Our goal is to train a remote sensing scenes classifier using a dataset with automatically collected
noise labels and a part of human-verified clean labels available. The source of noisy labels may
come from collects from the web or predictions from models trained on clean data or other ways.
Furthermore, the framework can be used for large-scale datasets with fully clean annotations to
improve the performance of networks under traditional supervised learning.

Formally, we define the notations for our study. Let D = Dc
⋃Dn donates the entire large training

dataset, whereDc is the clean subset andDn is the remaining noisy subset. In a single label classification
problem, Dc = {(~xi, yi)| i = 1, 2, · · ·, Nc} and Dn =

{(
~xj, yj

)∣∣ j = 1, 2, · · ·, Nn
}

, which contains Nc and
Nn samples from M classes, respectively; yi ∈ {1, 2, . . . , M} and yj ∈ {1, 2, . . . , M} donate the label
corresponding to image ~xi and ~xj. In this work, the ratio of Dn to Dc is not limited, because NLD can
improve the performance of classifiers in different practical applications.

As shown in Figure 2, NLD is formulated with a cohort of two classifiers g and h. The classifier
g is the large teacher model that is used to distill and transfer the knowledge of noise. In addition,
its backbone is a powerful network such as a ResNet-50 [24]. The student model h is designed to learn
from the clean labels and guided the learning process by the knowledge of noise which is distilled
from the teacher network T. The network S is a network that is same as or shallower than network
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T (e.g., ResNet-34 [24] and VGG-16 [25]). The logits ~r1 for ~xj given by the teacher network T can be
represented as

~r1 = Fn
(
~xj
)

, (1)

where the Fn is a nonlinear transformation in teacher network T. Similarly, the logits ~r2 and ~c1 can be
represented as

~r2 = Fc
(
~xj
)

, (2)

~c1 = Fc (~xi) , (3)

where the Fc is a nonlinear transformation in student network S.
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Figure 2. The overview of the proposed framework to train a remote sensing scenes classifier
from a large dataset Dn with noisy labels and a small dataset Dc with manually verified labels.
The framework consists of teacher network T, student network S, decision network, fully connected
layers, and predictor of softmax. In the training phase, two loss terms Lg and Lh (a CE loss with noisy
labels and a CE loss with clean labels) are minimized jointly. The teacher model T transfers the “dark
knowledge” distilled from noisy subset to the student model S through the decision network. In the
inference phase, a classifier containing the student network S, fully connected layers and softmax can
give the correct predictions.

For classifier g and h, the supervision depends on the source of the training sample. For image ~xj
from the noisy dataset Dn , the classifier g is supervised by the noisy label yj. For sample ~xi from the
clean dataset Dc, supervision comes directly from the verified label yi.

3.2. Noisy Distillation

In contrast to the previous work on teacher-student models including [17,30], we need to pre-train
a teacher model with a small part of or the entire dataset: the teacher model and student model are
trained together to learn latent noisy label distributions to improve the performance of student network
supervised with the clean subset. NLD is motivated by DML which leverages a teacher-student
framework to improve the representation of the network. The details will be analyzed in the later part
of this section.

The student network learns the knowledge of clean data and acquires the distilled knowledge
of the noisy dataset. The teacher takes advantage of powerful deep network architectures to
learn features of noisy labels at various levels of abstraction rather than simply memorizing
these. Besides, noise knowledge is distilled by comparing the outputs of the student and teacher
simultaneously. To that end, the student and teacher model are trained by a mutual learning approach
which originates from knowledge distillation. Noted that NLD is different from DML and other similar
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approaches. To match noisy label distributions, a metric between two branch’s representation vectors
~r1 and ~r2 needs to be defined. As a loss function, Kullback Leibler (KL) Divergence is the most widely
used. The KL distance from ~r1 and ~r2 is computed as

DKL (~r2 ‖ ~r1) =
Nn

∑
i=1

M

∑
m

rm
2
(
~xj
)

log
rm

2
(
~xj
)

rm
1
(
~xj
) , (4)

where the rm
1 is the score of class m in logits ~r1 and the rm

2 is the score of class m in logits ~r2.
According to the formula, KL divergence is asymmetric. Hence, the KL distance between the two

networks is different. One can instead use a symmetric KL-divergence such as

DSKL = DKL (~r2 ‖ ~r1) + DKL (~r1 ‖ ~r2) . (5)

Compared to teacher network T, student network S has similar representation capacities, but it is
harder to learn appropriate parameters. In DML and other similar knowledge distillation algorithms,
both teacher network and student network are trained on clean datasets. These studies expect the
student network to mimic the classification probabilities and feature representations of the teacher
network. The objective functions of the two networks are the same. Therefore, a simple combination
of CE loss and KL divergence can facilitate a better student network from the entire clean dataset.
However, how to combine and optimize these two different kinds of losses will be a difficult problem
in our tasks. Our teacher network T is supervised by noise labels and our student network S is
supervised by clean labels. The student network S should not totally mimic outputs of the teacher
network T. By imitating and comparing, the purpose is to distill the knowledge from the noisy dataset,
which is the intersection of clean student’s features and noisy teacher’s features. In the meanwhile,
as mentioned above, a simple combination of CE loss and KL divergence would work on two networks
identical to each other. Although this can be changed by adding some weights before the combination,
there are too many options for hyper-parameters.

To address these problems, NLD feeds outputs of the two networks simultaneously into a
decision network derived from [20]. The decision network simply consists of fully connected layers
with a single output. In [20], this network is used to measure the similarity between two different
images with siamese network. As discussed above, NLD has different settings from images similarity
measurement methods. Different logits of two same image patches are mapping from different
networks. Furthermore, the similarity of two networks is measured through the decision network.
In addition, the decision network has learnable parameters. Instead of relying on the combination of
different loss functions with hyper-parameters, this can automatically learn weights that fit the noisy
label knowledge distillation. Because the original logits are mapping from the same image, the output
r of decision network is still the original image feature mapping. The probability of class m for sample
~xj given by decision network is computed as

pm
1
(
~xj
)
=

exp (rm)

∑M
m=1 exp (rm)

. (6)

Subsequently, the classifier g is supervised by noisy labels and the classifier h is supervised by
clean labels. In this way, the student network can learn clean knowledge and similar knowledge
between clean labels and noise labels, i.e., noise distillation. At the same time, NLD does not need
a mimicry loss, so training is faster and more flexible than traditional distillation methods. In the
meanwhile, the decision network also increases inference time as it requires combinations of two
vectors. However, our goal is to train a student network guided by the teacher network. Therefore,
only the student network is used for testing, while the decision network is not used.
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3.3. Model Training

In original knowledge distillation and DML, the whole objective function consists of a supervised
loss (e.g., CE loss) and a mimicry loss(e.g., KL divergence). In contrast, CE loss is used as the supervised
loss for classifier g and h, respectively. In addition, they can be rewritten as:

Lg = −
Nn

∑
j=1

yj log (p1), (7)

Lh = −
Nc

∑
i=1

yi log (p2), (8)

where Lg and Lh are the losses for the corresponding classifier g and h, respectively. Given the above
definitions, the overall loss for the proposed model is constructed by two losses as follows:

Ltotal = αLh + βLg, (9)

where α and β denote weight factors that need to be set based on student network, teacher network
and noisy dataset.

Training a network with a noisy dataset can lead the network to memorize these
noises. To avoid the teacher network overfitting on noisy data, which will deteriorate the
performance of noise distillation and may even mislead the student to have exploding gradients,
batch normalization(BN) [32] and dropout layer [33] with a constant probability of 0.6 are applied
between the teacher network and the decision network.

3.4. Extension to Pseudo-Labeling

Semi-supervised learning requires a small amount of manually labeled clean data, which is
consistent with NLD. However, semi-supervised learning datasets usually contain a small amount of
labeled data and a large amount of unlabeled data. Because NLD does not use additional mimicry loss,
unlabeled data cannot be used directly. Pseudo-labeling belongs to the self-learning scenario which is
often used in semi-supervised learning. Under the self-training settings, pseudo-labels are obtained by
predicting unlabeled data through the models trained on labeled data. Some of the pseudo-labels will
be mislabeled. These data with the pseudo-labels can be treated as a large noisy dataset and NLD can
extend to semi-supervised learning.

Following [6], the pseudo-labeling method used is illustrated in Figure 3, which is close to
traditional co-training. Denote the labelled and unlabeled subsets as Dl and Du, where the entire
training dataset is Ds = Dl

⋃Du. First, there are two different classifiers f1 and f2 trained on the small
labeled dataset Dl , respectively. Given a batch of unlabeled images ~x′ ∈ Du, two predictions ỹ1 and ỹ2

are provided by the classifiers f1 and f2. Then, ỹ1 and ỹ2 can be represented as

ỹ1 = f1
(
~x′
)

, (10)

ỹ2 = f2
(
~x′
)

. (11)

Only when ỹ1 = ỹ2, the predictions of the classifiers f1 and f2 will be regarded as the pseudo-label
y′ corresponding to ~x′, and other different results will be discarded. Apparently, this process will
reduce the dataset size from Du, which typically affects the final performance. In fact, it removes low
confidence predictions from pseudo-labels and reduces the noise level of the labels. High-quality
pseudo-labels can improve performance and the robustness of the model. Furthermore, it does not need
to choose a confidence threshold or manual selection. This is a more efficient pseudo-labeling method.
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Figure 3. Illustration of the pseudo-labeling method, which includes two phases: training two classifiers
and pseudo-labeling. (a) Two different classifiers f1 and f2 trained on the small manually labeled
subset Dl , respectively. They provide two views of the data. (b) The trained models can predict labels
on a batch of unlabeled data. When the inferences are the same, the predicted labels will remain as
pseudo-labels for the corresponding images, and the rest will be discarded. LCE donate CE loss. ỹ1 and
ỹ2 represent the predictions of two classifiers, respectively. ~y′ indicates pseudo-labels of the batch of
images ~x′.

4. Experiments

In this section, we explain how to construct the mimic noisy datasets and describe the experimental
details of our comparison with other methods on these datasets and evaluate NLD.

4.1. Datasets and Settings

4.1.1. Datasets

UC Merced Land-use dataset is a classical land-use dataset, which contains 21 different scenes
and 2100 images. Each image has 256× 256 pixels and high-resolution in RGB color space with a
spatial resolution of 0.3 m. They were all manually extracted from the USGS National Map Urban
Area Imagery Collection.

NWPU-RESISC45 dataset has a total number of 45 scene classes and 700 images with a size of
256× 256 for each class. Most of the images are middle to high spatial resolution, which varies from
30 m to 0.2 m. They are all cropped from Google Earth. The dataset takes eight popular classes from
UC Merced Land-use dataset and some widely used scene categories from other datasets and research.

AID is a large-scale aerial image dataset with 30 aerial scene types. The dataset is composed
of 10,000 images which are multi-resolution and multi-source. The size of each image is fixed to be
600× 600. The number of images in each class is imbalanced. This dataset is challenging because of
the large intra-class diversities.

These datasets have many overlapped classes (e.g., sparse residential, medium residential and
dense residential) that can easily confuse non-expert. It is particularly challenging for computer vision
researchers with little geography knowledge to label such a dataset manually. As for crowd-sourcing or
automatic labeling, it will be more prone to make errors. Actually, based on the existing public datasets,
when we need to use them in real-world applications, additional data will be used. Only experts can
avoid label noise, which is expensive.

Experiments are conducted on these three datasets. In addition, as shown in Table 1, each dataset
is randomly split into 60% training subset, 20% validation subset and 20% test subset. Because the
existing datasets lack noisy labels, simulated approaches are taken to evaluate NLD. Three different
types of noise are injected into the split training set of all the three datasets separately.
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Table 1. Sample sizes for different datasets.

Datasets Entire Dataset Training Subset Validation Subset Test Subset

UC Merced Land-use 2100 1260 420 420
NWPU-RESISC45 31,500 18,900 6300 6300

AID 10,000 6000 2000 2000

Symmetric noise: The symmetric noise is a type of uniform noise, which is generated by a
random label among the classes to replace the ground-truth label with equal probabilities. This type of
noisy subset represents an almost zero-cost annotation method, which means there are many unlabeled
images, and labels are labeled in a completely random way. Experiments on this noise can prove that,
through NLD, this labeling method is also feasible in some extremely low-cost scenarios.

Asymmetric noise: This type of noise is class dependent noise and it mimics some of the
real-world noise for visually similar and semantically similar categories.

For UC Merced Land-use, to the best of our knowledge, there is no related noise label
mapping method before. After observing the features of images and division of scene classes,
asymmetric noise was generated by mapping chaparral → agricultural, runway ↔ airplane,
tennis court→ baseball diamond, river → beach, mobile home park→ parking lot, f reeway↔ overpass,
sparse residential → buildings, harbor → mobile home park, medium residential ↔ dense residential as
shown in Figure 4.

chaparral agricultural runway airplane tennis court baseball
diamond

river beach mobile
home park

parking lot overpass freeway

sparse 
residential buildings harbor mobile

home park
medium 

residential
dense

residential

Figure 4. Examples of asymmetric noise mapping scenes in the UC Merced Land-use dataset.

For NWPU-RESISC45, baseball diamond → medium residential, beach → river,
dense residential ↔ medium residential, intersection → f reeway, mobile home park ↔
dense residential, overpass ↔ intersection, tennis court → medium residential, runway → f reeway,
thermal power station → cloud, wetland → lake, rectangular f arm land → meadow, church → palace,
commercial area→ dense residential are mapped, following [12]. Figure 5 shows representative images
in this dataset.

For AID, the classes are flipped by mapping bareland↔ desert; center → storage tank; church→
center, storage tank; dense residential ↔ medium residential; industrial → medium residential;
meadow → f arm land; play ground → meadow, school; resort → medium residential; school →
medium residential, play ground; stadium → play ground, following [12]. Figure 6 shows examples
from this dataset.

37



Remote Sens. 2020, 12, 2376

baseball 
diamond

medium
residential

beach river dense
residential

medium
residential

intersection freeway mobile 
home park

dense
residential

overpass intersection

tennis 
court

medium
residential runway freeway thermal 

power station
cloud

wetland lake rectangular 
farm land

meadow church palace

commercial
area

dense
residential

Figure 5. Examples of asymmetric noise mapping scenes in the NWPU-RESISC45 dataset.

bareland desert center storage tank church center

church storage tank dense
residential

medium
residential

industrial medium
residential

meadow farm land play ground meadow play ground school

school
medium 

residential
stadium play ground

Figure 6. Examples of asymmetric noise mapping scenes in the AID dataset.

Pseudo-Labeling noise: Pseudo-labeling methods can assign labels to unlabeled images
automatically, which can reduce costs. However, there are not completely correct pseudo-labels.

38



Remote Sens. 2020, 12, 2376

To ensure a fair comparison, following the idea of SSGA-E [6], the full training set is randomly divided
into six parts and randomly select one of them as a small clean subset. Then, two different classifiers
are trained on the small clean subset and make pseudo labels for the rest of the train set. In SSGA-E [6],
two networks are ResNet-50 and VGG-S [34], respectively. However, VGG-S is rarely used in practice,
which can cause many problems in deployment. As a result, VGG-S is replaced with the VGG-19 [25],
which has lower accuracy but is more widely used. These unlabeled subsets with automatically
generated labels can be viewed as the noisy subset. In addition, since this method does not label
all images, some of the uncertain images are removed from the subset and the noise subset will be
smaller than the original subset. The number of annotations obtained for unlabeled images of different
datasets is listed in Table 2.

Table 2. Number of samples contained in different subsets. The unlabeled subset is 5
6 of the entire

training set. Pseudo-labeled subset is generated in unlabeled subset by the automatic labeling method
trained with the clean labeled subset (i.e., 1

6 of the entire training set) as a clean subset.

Datasets Entire Training Subset Clean Labeled Subset Unlabeled Subset Pseudo-Labeled Subset

UC Merced Land-use 1260 210 1050 859
NWPU-RESISC45 18,900 3150 15,750 13,625

AID 6000 1000 5000 4535

4.1.2. Baselines and Model Variants

To evaluate the performance improvement of NLD, our approach is compared with some
pseudo-labeling methods [6]. Several related baselines are also provided for symmetric noise,
asymmetric noise. In addition, NLD is used as the base model for some other variants to verify
the effectiveness of NLD. The details of the baselines and variants are as follows.

Baseline-Clean: A backbone network of the student model is trained for remote sensing scenes
classification using the clean subset. This can be regarded as the lower bound of NLD. Our method
uses the noisy subset to improve performance on this baseline.

Baseline-Noise: A backbone network of the student model is trained solely on noisy labels from
the training set. This baseline can be viewed as a measurement of the quality of noisy labels.

Baseline-Mix: A backbone network of the student model is trained using a mix of clean and noisy
labels with standard CE loss. This baseline shows the damage caused by noisy subsets.

SCE Loss: Under the supervision of SCE loss, a model is trained on the entire dataset with both
clean and noisy labels. Parameters for SCE are configured as α = 0.1 and β = 1.0.This is a baseline for
a noise-robust method.

Noise model fine-tune with clean labels (Clean-FT): It is a common approach, which uses the
clean subset directly to fine-tune the whole network of Baseline-Noise. This method is prone to overfit
if there are few clean samples.

Noise model fine-tune with mix of clean and noisy labels (Mix-FT): To address the
problem caused by limited clean labels, fine-tuning the Baseline-Noise with mixed data is also a
common approach.

NLD with CE loss (NLD): NLD is trained on both the original clean datasets and different noisy
ratios of datasets. For a completely clean dataset, one image is used as input simultaneously for the
teacher and student, which is close to DML.

4.1.3. Experimental Settings

All experiments are implemented with PyTorch framework [35] and conducted on an NVIDIA
GeForce Titan X GPU. The networks used in our experiments are shown in Table 3. These networks
are all pre-trained on ImageNet. Although VGG architecture has a larger number of parameters and
needs more floating point operations(FLOPs), ResNet architecture has stronger feature representation
capabilities-based residual modules. Therefore, teacher networks in all experiments are ResNet
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architecture. For UC Merced Land-use dataset, it is worth mentioning that SSGA-E [6] uses VGG-S and
VGG-16, but after our experiments, the network with VGG architectures will be over-fitting because
the size of this dataset is small. So the actual network used is modified VGG architectures with BN to
learn this dataset. As a preprocessing step, random flip, random gaussian blur and resize images to
224× 224 are used. For optimization, we use Adam with weight decay of 10−2, batch size of 32 and
initial learning rate of 10−4. The leaning rate will decrease according to the exponential decay with
the multiplicative factor of 0.98 in each epoch. All networks mentioned in Section 4.1.2 are trained for
200 epochs. Besides, for NLD, a batch of images is half clean and half noise. In general, the weight
factors are set to α = 10 and β = 2. For additional experiments, experiments are conducted with more
different factors, losses and networks, which will be detailed in Section 4.6

Table 3. Comparison of various network architecture.

Network Type Million Parameters GFLOPs

ResNet-34 21.819 3.679
ResNet-50 25.578 4.136
VGG-16 138.379 15.608

VGG-16 with BN 138.387 15.662
VGG-19 143.688 19.771

VGG-19 with BN 143.699 19.830

4.2. Results on UC Merced Land-Use

The results on the original UC Merced Land-use without any label noise and the UC Merced
Land-use with symmetric label noise are reported in Table 4. Two confusion matrices for noise-free UC
Merced Land-use are shown in Figures 7 and 8, respectively. It is noticeable that the student network
(ResNet-34) can significantly benefit for NLD when learning from the original noise-free dataset.
Therefore, NLD can also be regarded as a model distillation-like process, without additional data and
pre-trained models. For symmetric noise, this type of noise label is completely random and there is
little correct information for NLD distilling the knowledge in the noisy subset. Our method can still
make better performance and robustness of the student network in most cases. As for Dc : Dn = 8 : 2
and Dc : Dn = 2 : 8 cases, it revealed that when the clean subset Dc or noisy subset Dn is too small (e.g.,
252 samples), clean labels or randomly generated labels are too weak to bootstrap the performance.
Instead of improving performance, other common approaches even hurt the performance. When the
label quality of the noise subset is extremely low, a lot of error guidance will be provided. Specifically,
different fine-tuning methods require a pre-trained model of the noise subset, which may get worse
initialization values than the ImageNet [3] pre-trained model. If the two subsets are mixed, the noise
labels will become adversarial examples, which confuse the network. SCE or other noise-robust
methods can alleviate this problem, but the performance is still far from the method with a small
number of clean labels available.

Table 5 shows the results for asymmetric label noise. This noise is closer to the real scene, similar
to crowd-sourcing labeling or crawling data from Internet. According to the results of Baseline-Noise,
such labels can provide a more valuable pre-trained model than labels with symmetric noise. Clean-FT
and Mix-FT provide clear improvements compared to Baseline-Clean and Baseline-Mix, respectively.
However, for mix-based methods, during training, the learning process of the model on the clean
subset will be continuously misguided by the noise labels. As the noise ratio increases and clean ratio
decreases, less clean data is difficult to fight against more noisy data, the performance of Mix-FT and
SCE Loss is severely impaired. For NLD, the framework can maintain a better performance with fewer
clean labels and more noisy labels. When Dc : Dn goes from 2 : 8 to 8 : 2, the performance of the model
will only decrease by 1.62%. It is particularly noteworthy that when Dc : Dn = 2 : 8, NLD can exceed
6.67% of the Baseline-Clean.
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Figure 7. The confusion matrix of Baseline-Clean with full UC Merced Land-use dataset.

Figure 8. The confusion matrix of NLD with full UC Merced Land-use dataset.
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Table 4. Classification accuracy (%) on the UC Merced Land-use test set for different methods trained
with the original noise-free dataset and symmetric label noise. We report the mean and standard error
across 5 runs.

Methods Network Types

None Symm

Dc : Dn Dc : Dn

10 : 0 8 : 2 6 : 4 4 : 6 2 : 8

Baseline-Clean ResNet-34 98.66± 0.84 98.48± 0.75 96.52± 1.27 94.86± 0.89 89.14± 1.01
Baseline-Noise ResNet-34 - 4.86± 1.65 6.05± 1.86 5.14± 0.76 6.14± 1.23
Baseline-Mix ResNet-34 - 91.98± 1.55 83.66± 1.96 69.67± 2.30 43.10± 2.40
SCE Loss ResNet-34 - 91.09± 0.69 81.43± 1.37 70.86± 3.81 44.67± 2.91
Mix-FT ResNet-34 - 91.95± 1.11 76.81± 2.33 56.19± 1.93 29.90± 1.88
Clean-FT ResNet-34 - 98.38± 0.38 97.29± 0.47 94.14± 0.75 87.10± 1.15
NLD ResNet-50+ResNet-34 99.08± 0.40 98.86± 0.28 97.43± 0.63 95.86± 0.29 89.28± 0.42

Table 5. Classification accuracy (%) on the UC Merced Land-use test set for different methods trained
with asymmetric label noise. We report the mean and standard error across 5 runs.

Methods Network Types

Asym

Dc : Dn

8 : 2 6 : 4 4 : 6 2 : 8

Baseline-Clean ResNet-34 98.14± 0.65 97.09± 0.63 94.62± 1.57 90.71± 1.23
Baseline-Noise ResNet-34 42.67± 0.41 43.53± 0.82 43.95± 0.32 43.23± 0.58
Baseline-Mix ResNet-34 90.76± 0.84 78.95± 2.10 65.57± 1.74 54.29± 1.49
SCE Loss ResNet-34 90.67± 0.73 81.48± 2.53 66.76± 2.91 54.08± 0.50
Mix-FT ResNet-34 89.96± 1.25 79.86± 2.62 67.14± 1.20 54.95± 1.82
Clean-FT ResNet-34 98.33± 0.54 96.62± 1.05 95.57± 0.89 92.67± 1.53
NLD ResNet-50+ResNet-34 99.00± 0.18 97.95± 0.44 97.57± 0.49 97.38± 0.56

4.3. Results on NWPU-RESISC45

In this experiment, NLD is tested on NWPU-RESISC45 with different noisy types. Table 6
summarizes the classification accuracy (%) of ResNet-34 trained with/without NLD. According to
Baseline-Noise, asymmetric noise can provide more correct information due to the larger scale of
NWPU-RESISC45 than UC Merced Land-use. Thus, Clean-FT can benefit from asymmetric noisy
labels. However, the performance of other methods is still compromised by the noise. On the contrary,
NLD has strong robustness and can benefit from different ratios and types of noisy labels. As for the
test set accuracy, NLD has clearly improved the baseline and direct fine-tuning. Figures 9 and 10 show
the confusion matrices of NLD and Baseline-Clean on original NWPU-RESISC45. It can be observed
that NLD improves the performance of the student network as a method of model distillation.

Table 6. Classification accuracy (%) on the NWPU-RESISC45 test set for different methods.

Methods Network Types

None Symm Asym

Dc : Dn Dc : Dn Dc : Dn

10 : 0 6 : 4 4 : 6 4 : 6 2 : 8

Baseline-Clean ResNet-34 94.95 91.89 90.14 90.32 90.05
Baseline-Noise ResNet-34 - 3.59 3.49 65.13 65.08
Mix-FT ResNet-34 - 35.03 21.27 75.97 68.83
Clean-FT ResNet-34 - 87.43 84.46 91.95 91.29
Ours ResNet-50+ResNet-34 95.86 93.79 92.81 95.76 94.59
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Figure 9. The confusion matrix of Baseline-Clean for the NWPU-RESISC45.

Figure 10. The confusion matrix of NLD for the NWPU-RESISC45.
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4.4. Results on AID

Next, the performance of NLD is evaluated on the AID dataset. Table 7 shows the results. As the
classes of AID are imbalanced, it is more challenge using noise labels. It can be observed that all
methods are significantly affected by symmetric noise, especially when the noise rate increases.
In contrast, asymmetric noise can change the imbalance of the data distribution. As a result,
NLD can benefit from asymmetric noisy labels and improve performance. The gap between NLD and
Clean-Baseline became especially apparent when the noise rate increased to larger values. Our method
can be applied to scenarios with more noisy labels. For example, when the asymmetric noise rate
is 2 : 8, NLD obtains 2.3% higher accuracy than Baseline-Clean and 3.35% higher than Clean-FT.
The confusion matrices for the AID dataset with asymmetric noise of Dc : Dn = 2 : 8 are shown in
Figures 11 and 12. The results of NLD are significantly better than Baseline-Clean.

Table 7. Classification accuracy (%) on the AID test set for different methods.

Methods Network Types

None Symm Asym

Dc : Dn Dc : Dn Dc : Dn

10 : 0 6 : 4 4 : 6 4 : 6 2 : 8

Baseline-Clean ResNet-34 96.30 95.70 94.95 95.10 92.95
Baseline-Noise ResNet-34 - 6.85 4.7 59.62 59.57
Mix-FT ResNet-34 - 20.99 11.49 77.71 68.77
Clean-FT ResNet-34 - 83.96 12.39 94.15 91.90
NLD ResNet-50+ResNet-34 96.35 95.70 93.60 95.90 95.25

Figure 11. The confusion matrix of Baseline-Clean for the AID dataset with asymmetric noise of
Dc : Dn = 2 : 8.
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Figure 12. The confusion matrix of NLD for the AID dataset with asymmetric noise of Dc : Dn = 2 : 8.

4.5. Comparison with Pseudo-Labeling

We explore pseudo-labeling in UC Merced Land-use, NWPU-RESISC45 and AID. For all datasets,
one-sixth of the training images per class is randomly selected as labeled, and the rest of images is
treated as unlabeled. Experiments are compared with three pseudo-labeling strategies: (1) traditional
self-training with single network; (2) traditional co-training with two networks respectively; (3)
SSGA-E [6] with three networks.

Tables 8 and 9 shows the result from Han et al. [6], supplemented with our results. NLD
achieves the best overall accuracy in all cases. For the UC Merced Land-use, Resnet34 is more effective
as a student network when there is less unlabeled data. When leveraging entire unlabeled subset,
VGG-16 shows better performance as a student network. With a larger scale of labeled data (e.g.,
NWPU-RESISC45), the improvement of our framework is higher. This confirms that NLD benefits
pseudo-labeling scenarios.

Table 8. The effect of the unlabeled sample ratio on accuracy for the UC Merced Land-use test set
reported by Han et al. [6], supplemented with our results.

Methods Network Types
Unlabeled Samples

210 420 630 840 1050

Self-training [6] VGG-S - 86.14± 1.87
ResNet50 91.57± 2.00

Co-training [6] ResNet50&&VGG-S 89.75± 1.27 91.62± 0.93 92.58± 0.78 93.42± 1.32 93.75± 1.42
SSGA-E [6] ResNet50&&VGG-S+VGG16 91.42± 0.95 92.68± 0.87 93.56± 1.42 94.21± 1.18 94.52± 1.38

NLD ResNet50&&VGG-19+ResNet50+VGG16 91.48± 0.80 92.10± 0.52 92.67± 0.74 93.00± 0.82 95.15± 0.85
NLD ResNet50&&VGG-19+ResNet50+ResNet34 93.43± 0.55 94.19± 0.71 94.81± 0.46 94.52± 0.87 93.86± 0.99
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Table 9. Comparison with results on the NWPU-RESISC45 and AID test set reported by Han et al. [6].

Methods Network Types
Dataset

NWPU-RESISC45 AID

Self-training [6]
VGG-S 81.46 86.02

ResNet-50 85.82 89.38

Co-training [6] ResNet-50&&VGG-S 87.25 90.87
SSGA-E [6] ResNet-50&&VGG-S+VGG-16 88.60 91.35

NLD ResNet-50&&VGG-19+ResNet-50+VGG16 91.35 92.65

4.6. Additional Experiments

In this section, we study the importance of hyper-parameters and investigate the effect of changing
components to provide additional insight into NLD.

Table 10 presents the following four experiments on UC Merced Land-use: (a) NLD with the
weight factors α = 10 and β = 2. (b) NLD with the weight factors α = 2 and β = 10. (c) Using two
same networks as student and teacher, respectively. (d) For the noisy teacher network, CE loss is
replaced by SCE loss.

Table 10. Classification accuracy (%) on the UC Merced Land-use test set after changing each module
from our model.

Network Types

Loss None Symm Asym

α β
Dc : Dn Dc : Dn Dc : Dn

10 : 0 6 : 4 4 : 6 4 : 6 2 : 8

ResNet-50+ResNet-34 10CE 2CE 99.08± 0.40 97.43± 0.63 95.86± 0.29 97.57± 0.49 97.38± 0.56
ResNet-50+ResNet-34 2CE 10CE 99.10± 0.31 95.33± 0.52 92.00± 0.80 98.71± 0.27 97.76± 0.71
ResNet-34+ResNet-34 10CE 2CE 98.00± 0.44 97.48± 0.68 95.29± 0.66 97.05± 1.05 97.33± 0.41
ResNet-50+ResNet-34 10CE 2SCE 99.14± 0.12 95.62± 0.75 93.28± 0.82 98.43± 0.24 98.00± 0.44

Hyper-parameters: From Table 10, hyper-parameters settings have a significant effect on the
performance of NLD. As α decreases and β increases, the student network learns more information
from noise distillation. Since the information in symmetric noise labels is limited, a larger β cannot
make the teacher network to distill more knowledge. In such cases, the network performance can be
degraded by incorrect guidance. Similarly, asymmetric noise labels have more correct information.
So a larger β can enhance the teacher’s ability to distill the right instruction to the student. In the
absence of noisy labels, the effect of factors is not significant. This result thus suggests that appropriate
factors are needed to select based on the quality of the noise labels in practice.

Distillation with the same network: As shown in Table 10, we perform experiments for
ResNet-34 as a teacher and a student. In general, the first thing to notice is that the teacher network with
a smaller capacity can also benefit the student network. However, for noise-free scenarios, it cannot
take effect because the teacher and student have the same input and architecture and it is difficult to
get extra knowledge. Moreover, a larger standard deviation for most results implies worse robustness.
Therefore, a large teacher network is still a better option. In some low-cost scenarios, it is also possible
to choose a small teacher network.

Training teacher with different loss: SCE can supervise the network to learn more information
in the noisy labels (i.e., more errors in symmetric noise or more correctness in asymmetric noise).
For fully clean data, there is little additional benefit from SCE. Such a property produces the results in
Table 10. Therefore, for most real applications, SCE should be used instead of CE for the teacher to
achieve a better performance of NLD.
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5. Conclusions

This work proposes an efficient framework named NLD to address the noisy label problem for
remote sensing image scene classification. NLD can distill the knowledge from different types of
noise to improve performance of networks. Teacher networks can avoid overfitting into the noise
through consistent decisions with student networks. The decision network is introduced to replace KL
divergence. It is different from previous methods for distillation. The proposed NLD framework is
end-to-end and does not require a pre-training process besides ImageNet. Thus, NLD is more practical
and easier to deploy.

NLD can fully leverage the information contained in the noisy labels to improve the performance
of network trained on the clean labels. Experiments are conducted on UC Merced Land-use,
NWPU-RESISC45 and AID with different noise types. NLD improves over the baseline and direct
fine-tuning. It can also be easily extended to pseudo-labeling. NLD performs significantly better than
SSGA-E and other methods. For completely clean datasets, NLD can also improve accuracy as a model
distillation-like process.

Future work will explore real-world noise datasets. More data with noisy labels can be collected
from search engines and google earth, etc. Furthermore, mixing multiple existing public datasets as a
clean dataset is also a worthwhile experiment. Our goal is to apply NLD to real scenarios.
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Abstract: In terms of land cover classification, optical images have been proven to have good
classification performance. Synthetic Aperture Radar (SAR) has the characteristics of working all-
time and all-weather. It has more significant advantages over optical images for the recognition of
some scenes, such as water bodies. One of the current challenges is how to fuse the benefits of both
to obtain more powerful classification capabilities. This study proposes a classification model based
on random forest with the conditional random fields (CRF) for feature-level fusion classification
using features extracted from polarized SAR and optical images. In this paper, feature importance is
introduced as a weight in the pairwise potential function of the CRF to improve the correction rate
of misclassified points. The results show that the dataset combining the two provides significant
improvements in feature identification when compared to the dataset using optical or polarized SAR
image features alone. Among the four classification models used, the random forest-importance_
conditional random fields (RF-Im_CRF) model developed in this paper obtained the best overall
accuracy (OA) and Kappa coefficient, validating the effectiveness of the method.

Keywords: polarized SAR; optical image; random forest; conditional random fields; feature-level fusion

1. Introduction

The impact of urban development on the Earth’s environment is enormous, leaving
an ever-changing imprint on its surface. This situation calls for a compulsory requirement
to map the land cover and review land-use patterns of our dynamic eco-system time [1].
Polarized Synthetic Aperture Radar (SAR) and optical image have gained many appli-
cations in land cover classifications [2–5]. Since the two have entirely different physical
properties, this makes them have distinct advantages in classification. For example, the
optical images are susceptible to differences in the vegetation spectrum and are, therefore,
often used to detect pest and disease problems [6]. SAR images offer high accuracy and
purity in detecting water areas, but extracting sharp edges is still a challenge [7]. Therefore,
how to fully utilize the advantages of both is one of the major topics currently faced.

Data fusion is a way to take full advantage of multiple sources of data. The data
fusion stages (pixel-level, feature-level, and decision-level) determine the data fusion tech-
niques [8]. Feature-level fusion consists of two critical processes: image feature extraction
and feature merging. In this regard, Aswatha et al. [1] used multimodal information from
multispectral images and polarized SAR data to classify land cover into seven classes
in an unsupervised manner. Su [9] extracted the backward scattering features and grey-
level co-occurrence matrix (GLCM) features obtained from the Pauli decomposition and
H/A/alpha decomposition of polarized SAR images, the spectral features, and GLCM fea-
tures of multispectral images, and used a support vector machine (SVM) for classification.
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This fusion method effectively improves the classification accuracy and the pepper noise
is reduced.

Land cover classification is one of the critical applications of remote sensing images.
The traditional land cover classification method is divided into two steps: feature extraction
and classifier training [10].

The feature extraction for optical images is based on spectral and textural features. A
textural feature is a comprehensive reflection of the image greyscale statistical information,
spatial distribution information, and structural information. Commonly used textural
feature classification algorithms include a local binary pattern (LBP) [11], GLCM [12],
etc. Polarized SAR feature extraction is based on polarized target decomposition, which
aims to decode the scattering mechanism of the feature under a reasonable physical con-
straint model [13], such as Freeman-Durden decomposition [14], Yamaguchi decomposi-
tion [15], etc.

Machine learning has achieved considerable progress in classification and regression
tasks. Commonly used machine learning is SVM, decision tree, random forest, etc. In the
current research, SVM has been used extensively. For example, Attarchi [16] used SVM to
classify polarized SAR data and its GLCM features for the detection of impervious surfaces.
While SVM classifies samples by finding hyperplanes, decision trees classify samples by
selecting the optimal components and dividing the subset into the corresponding leaf
nodes based on the features. Phartiyal et al. [17] used an evolutionary genetic algorithm to
optimize the empirical model to maximize the classification performance. They constructed
a decision tree based on the best class boundary and obtained satisfactory classification
results. Random forest is an ensemble learning model based on decision trees, which
obtains the final results by combining and analysing multiple decision trees [18]. Du
et al. [19] extracted the polarization and texture features of the fully polarized SAR images
for random forest and rotation forest classifiers. The experiment finally verified that random
forest is better than Wishart and SVM classifiers, and it is less accurate than rotation forest
but faster.

In image processing, conditional random fields (CRF) have unique advantages in
expressing the spatial context and the posterior probability modelling [20]. Zhong et al. [21]
proposed the spatial-spectral-emissivity land-cover classification based on the conditional
random fields (SSECRF) algorithm, which integrates the spatial-spectral feature set and
emissivity by constructing the SSECRF energy function to obtain better classification
results. CRF allows for the processing of target classes in conjunction with neighbourhood
information, effectively improving the image purity of the classification results, which is
missing from machine learning.

This article proposes an RF-Im_CRF classification model to improve the accuracy
of the random forest classifier in feature-level fusion classification. The model first ex-
tracts the spectral and GLCM features of optical images, the Freeman decomposition, and
Polarization Signature Correlation Feature (PSCF) features of polarized SAR. Then, the
model assembled them into a random forest training dataset. Afterward, the random forest
classifier results are input into the Im_CRF model, which uses the feature importance from
the random forest as the weight information in the pairwise potential function to improve
feature classification accuracy.

2. Materials
2.1. Study Site

The location selected for this study is in Nanjing and its surrounding area, which is
located in Jiangsu Province in Eastern China. Figure 1 shows the optical and polarized
SAR false-colour images of the study area. The false-colour image is generated based on
the Pauli decomposition. The images are 1500 × 1500 pixels in size, which include river,
buildings, vegetation, and roads. The image resolution is 8 metres, so the total size of the
study area is about 169 km2. The architective area occupies the majority of the image, the
vegetation area is relatively concentrated, and there is a small amount of vegetation within
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the building space. The cultivated area is concentrated in the northern part of the river. A
clear colour difference can be observed in the optical image between the dense vegetation
area and the cultivated area. The colour of the river part is not sufficiently uniform, which
is similar to the farmland in some areas. In contrast, the river area of the SAR false-colour
image is different from other regions. Therefore, it can be seen that polarized SAR has
apparent advantages in identifying river categories.
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Figure 1. Study area. (a) The optical image. (b) The polarized SAR false-colour image.

The dataset used for research is the polarized SAR data collected by the RADARSAT-2
satellite, which has four polarization states: HH, VV, HV, and VH. This data was acquired
on 19 April 2011 at a resolution of 8 m. The optical image resolution is 5 m, and the
acquisition time is April 2017. Due to the relatively low resolution and the fact that the
acquisition time falls within the same month, the variation in ground objects is within
manageable limits. In the ENVI software, the optical image was down-sampled to a
resolution of 8 m, and the polarized SAR image has undergone preprocessing such as
multi-looking and noise reduction. The two images were calibrated in the same geographic
coordinate system.

2.2. Sampling Point Selection

The sampling point coordinates in the experiment were taken with the optical image
as a reference. Overall, five land cover categories were considered, namely Water, Building,
High vegetation, Low vegetation, and Road. The high vegetation is dominated by tall
forests and the low vegetation is dominated by agricultural land. Since the image resolution
is 8 m, this prevents some narrow roads from being clearly represented, especially for
SAR images. This paper, therefore, chose to sample roads with larger width, such as
motorways and arterial roads. Because of the massive amount of source image data, it is
not easy to classify the entire image finely. Therefore, the training samples chosen for this
experiment are 100 per class, and the test samples are 150 for each category, as shown in
Table 1. The totals of training samples and test samples are 500 and 750, respectively, with
no duplicate points.
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Table 1. Sample label type and quantity.

Label Category Train Number Test Number

Water 100 150
High vegetation 100 150

Building 100 150
Low vegetation 100 150

Road 100 150

Total 500 750

3. Characteristic Data Acquisition
3.1. Polarization Feature Extraction

For the extraction of polarized SAR image features, this experiment selected two
polarization feature extraction methods known as the Freeman-Durden decomposition and
the PSCF.

3.1.1. Freeman-Durden Decomposition

The Freeman-Durden polarization decomposition method is based on the fundamental
principle of radar scattering, which decomposes the SAR cross-covariance matrix into
canopy scattering (or volume scattering), odd bounce scattering (or surface scattering),
and double-bounce scattering (or dihedral scattering). The detailed description of the
modelling process for the composite scattering model can be found in Reference [22]. This
model can acquire the characteristic parameters related to the three scattering mechanisms
and the corresponding weight coefficients.

The power corresponding to the three scattering mechanisms are Ps, Pd, and Pv, where
Ps corresponds to the power of surface scattering, Pd represents the power of dihedral
scattering, and Pv represents the power of volume scattering. Then, the Freeman feature
vector of the target points can be established.

XFreeman = [xPd
i , xPs

i , xPv
i ]

T
(1)

3.1.2. Polarization Signature Correlation Feature (PSCF)

Radar polarization signatures (PSs) can effectively characterize the scattering be-
haviour of the research object, so it has the potential to distinguish the types of ground
objects. This feature is usually a three-dimensional representation of the backscattering
behaviour of a target or land cover. In the expression of PSs, the x-axis and y-axis represent
the ellipse angle and azimuth angle, respectively, and the z-axis represents the received
backscattering power coefficient. The value range of the azimuth angle (ψ) is −90 to 90
degrees, and the value range of the ellipse angle (χ) is −45 to 45 degrees. The following
formula gives the PSs.

σ
(
χiψiχjψj

)
=

4π

k2




1
cos 2χi cos 2ψi
cos 2χi sin 2ψi

sin 2χi


(K)




1
cos 2χj cos 2ψj
cos 2χj sin 2ψj

sin 2χj


 (2)

Among them, σ represents the backscattering coefficient or received power, the sub-
scripts i and j mean the transmitting and receiving units, respectively, and K is the Ken-
naugh matrix [23]. k is the wave number of the illuminating wave.

The co-polarized signatures are obtained by transmitting and receiving combination
ψi = ψj, χi = χj, and the cross-polarized signatures are obtained by ψi = 90+ ψj, χi = −χj.
The ellipse angle defines the polarization behaviour (linear polarization, circular polariza-
tion, or elliptical polarization), and the azimuth angle defines the polarization states, that
is, horizontal or vertical polarization [24]. In the current research, the characteristics of
co-polarized and cross-polarized signatures have been fully considered and utilized.
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Since surface objects generally exhibit a complex scattering response, the polarization
signatures of standard targets must be used as a reference for classification. Therefore, PSs
have been calculated for flat plate (FP), horizontal dipole (HD), vertical dipole (VD), and a
dihedral angle (Di) in the standard targets. The formulae for the generation of the standard
target PSs are given in Reference [25].

Therefore, the PSCF uses the radar polarization signatures of the four standard scatter-
ers (FP, HD, HD, and VD) as a reference to calculate the relevance between the polarization
characteristics of the target points and the above four standard targets. This can be a
reference to distinguish between different categories. The correlation coefficient formula is
as follows.

CC =
Sxy

SxSy
(3)

where x and y are the polarized characteristics of the target points and the standard targets,
respectively. Sx is the standard deviation of x, Sy is the standard deviation of y, and Sxy is
the covariance between x and y. CC is the correlation coefficient between x and y.

This paper refers to Reference [17] to obtain the PSCF solution and establish the
feature correlation coefficients between a single target and four standard targets, which
are Corr_co_Di, Corr_co_FP, Corr_co_HD, Corr_co_VD, Corr_cross_Di, Corr_ cross _FP,
Corr_ cross_HD, and Corr_ cross _VD. Among them, the co is for the co-polarization while
the cross is for cross-polarization. Thus, the PSCF feature vector of the target point is
established as:

XPSCF = [xcorr_co_Di
i , xcorr_co_FP

i , xcorr_co_HD
i , xcorr_co_VD

i ,

xcorr_cross_Di
i , xcorr_cross_FP

i , xcorr_cross_HD
i , xcorr_cross_VD

i ]T
(4)

3.2. Optical Image Feature Extraction
3.2.1. Spectral Information Extraction

Compared with multispectral images, the optical image does not have rich spectral
information, but it is also sufficient to identify information with significant spectral dif-
ferences. This optical image can be divided into three bands: red, green, and blue, so the
spectral feature information is shown as follows.

XSpectral = [xr
i , xg

i , xb
i ]

T
(5)

3.2.2. Grey-Level Co-Occurrence Matrix (GLCM)

The textural feature is a visual feature that does not depend on brightness and colour,
reflecting similar information of adjacent pixels in the image. It reflects the internal char-
acteristics shared by the surface of the object. It contains essential information about the
surface structure of the object and the relationship to its neighbours.

GLCM is a commonly used method for extracting texture information with good
discrimination ability. Its principle is to convert the specified spatial relationship in the
image into texture information based on the greyscale value. The texture features obtained
by GLCM are helpful to distinguish objects with similar spectral characteristics.

In this paper, three features are chosen to describe the spatial relationships of images:
contrast, dissimilarity, and energy. Contrast and dissimilarity can measure the local varia-
tion and reflect the sharpness of the image and the depth of the texture. The energy is the
sum of the squares of element values of the GLCM, demonstrating the uniformity of the
image greyscale distribution and the texture thickness. The GLCM feature information is
expressed as follows.

XGLCM = [xcontrast
i , xdissimiliraty

i , xenergy
i ]

T
(6)
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4. Random Forest-Importance_Conditional Random Forest (RF-Im_CRF) Model

Figure 2 is the flowchart of applying the RF-Im_CRF model to the feature-level fusion
of polarized SAR and optical images. After extracting the features of the two images, the
random forest is first used for classification. Then, the classification results and feature
importance of the random forest are combined with the CRF. The classification results are
taken as the unary potential function and the feature importance is taken as the weight of
the pairwise potential function to improve the classification accuracy.
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4.1. Random Forest

Random forests construct mutually independent decision trees in which each gen-
erates a training set by bootstrap resampling. M rounds were randomly selected from
the original training set with N samples to obtain M training sets. Some samples may
be chosen multiple times under self-service resampling, while some samples may not
be drawn. Then M decision trees are developed according to these training sets. In the
decision-making stage, the classification results are obtained by taking the mode, or the
regression results, by taking the average value. The random forest can process large data
sets with high efficiency and precision, filter explanatory variables by itself, and get the
mutual influence and importance ranking of variables.

The Gini index, or Gini impurity, indicates the probability that a randomly selected
sample in the sample set will be misclassified. At each node in the binary tree T of
the random forest, the optimal segmentation is sought according to the Gini index i(τ),
which divides the sub-node data set. Random forest follows the principle of Gini gain
maximization when selecting features for nodes [26]. Let pk be the probability of node τ
being divided into child nodes τk, k = 1, 2. Then the Gini index is:

i(τ) =
2

∑
k=1

pk(1− pk) = 1−
2

∑
k=1

p2
k (7)
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The Gini gain ∆i generated by splitting the sample through a certain threshold and
sending it to two child nodes τ1 and τ2, which is defined as:

∆i(τ) = i(τ)− p1i(τ1)− p2i(τ2) (8)

Since the decision tree selects features that can maximize the Gini gain of the node
when generating nodes, the feature importance can be reflected by the sample division of
the nodes. However, random forest introduces the double randomness of data samples
and input features during a training process, which may cause important features with
high discrimination being used to divide nodes less frequently than features with low
discrimination. Therefore, the importance of features cannot be measured simply by the
number of times used as segmentation attributes [27,28].

4.2. Conditional Random Fields

The CRF model simulates the local neighbourhood interaction between random
variables in the unified probability framework. Given the observed image data, the model
directly models the posterior probability of the label as a Gibbs distribution.

The general form of the CRF model is:

P(Y|X) =
1

Z(X)
exp



−


∑

i∈V
Φ%i(yi, xi, w) + β ∑

(i,j)∈E
Φ%ij

(
yi, yj, xi, xj, v

)




 (9)

Among them, V is for the set of data points and E is for the set of point neighbours.
xi, yi represents the observation variable of the i-th point in the data and its class label

variable, respectively. X is the sequence of observations, X = [x1, . . . , xi, . . . , xN ]. Y is the
sequence of tags corresponding to X, Y = (y1, . . . , yi, . . . , yC), where C is the number of
categories. P(Y|X) is the probability of the label sequence Y under the given observa-

tion sequence X. Z(X) is the normalization constant, Z(X) = ∑
Y

exp
{
− ∑

c∈C
Φ%c(yc, x)

}
;

Φ%i(·) is the unary potential function, which represents the probability of the observed
variable xi taking the label yi. Φij(·) is the pairwise potential function, which means the
correlation between the variable xi and its neighbouring variables xj and the correlation
between the labels. w, v, respectively, represents the parameters of the correlation potential
function and the interaction potential function. β is to adjust the weight of the two potential
function terms, which determines the degree of influence of the pairwise function on the
unray potential function. In this article, to simplify the implementation of CRF, β is set to a
constant 1.

Then the corresponding Gibbs energy is defined as:

E(Y|X) = − log P(Y|X)− log(Z(X)) = ∑
c∈C

Φ%(yc, x)

= ∑
i∈V

Φ%i(yi, xi, w) + β ∑
(i,j)∈E

Φ%ij
(
yi, yj, xi, xj, v

) (10)

According to the Bayesian Maximum Posterior (MAP) rule, image classification aims
to find the label Y that maximizes the posterior probability P(Y|X). Therefore, the CRF’s
MAP mark xMAP can be obtained by the following formula.

YMAP = arg max
y

P(Y|X) = arg min
y

E(Y|X) (11)

It can be seen that finding the maximum value of the posterior probability P(Y|X) is
equivalent to finding the minimum value of the energy function E(Y|X). Therefore, the opti-
mization algorithm finds the most probable label by finding the minimum energy solution.
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4.3. RF-Im_CRF Model
4.3.1. Establishment of Potential Functions

In this paper, the unary potential function Φ%i is defined based on the classification
results of the random forest classifier. For variables xi and its label yi, when yi = k, ∀k ∈ K
(K is the label set), then Equation (12) is:

P(yi = k|xi) =
1
M

M

∑
m=1

δ[Tm(xi, θm) = k] (12)

M is the total number of decision trees. θm is the independent and identically dis-
tributed parameter vector describing the m-th decision tree. Then, P(yi = k|xi) represents
the probability that the target is of class k.

The CRF unary potential function is defined as:

Φ%i(yi, xi) = −logP(yi|xi) (13)

Pairwise potential function Φ%ij
(
yi, yj, xi, xj, v

)
, also called the smoothness term,

encourages adjacent pixels of the image to use the same label. This article uses an improved
contrast-sensitive Potts model that introduces the feature importance ηk to define the
pairwise potential function.

Φ%ij
(
yi, yj, xi, xj

)
=

{
0 i f yi = yj

gij(S) otherwise
(14)

gij(S) = dist(i, j)−1exp

(
−

N

∑
k=1

ηkγk ‖ Xk
i − Xk

j ‖ 2

)
(15)

Among them, gij simulates the spatial interaction of adjacent pixels xi and xj, which
is used to measure the feature difference between neighbours. dist(i, j) is the Euclidean
distance between adjacent pixels, Xk

i and Xk
j represent the feature vector between points

i and j. k represents the category of the feature vector, namely, k = 1, 2, 3, 4, which, re-
spectively, represents the feature vector XFreeman, XPSCF, XSpectral , XGLCM. γk is set to be
the mean square error of feature vectors between adjacent pixels in the image, denoted

as γk =
(

2
〈∣∣∣
∣∣∣Xk

i − Xk
j

∣∣∣
∣∣∣2
〉)−1

, which 〈·〉 represents the mean value of the neighbour-
hood. The parameter ηk is the feature importance in the classification process, obtained by
random forest.

4.3.2. Feature Importance

In this paper, the statistic Imi is used as a feature importance measurement based on
the Gini index, representing the average change in the Gini index of the i-th feature in the
node division of all decision trees. The importance of feature xi on node n is the change in
the Gini index that the sample on the node τ is divided into child nodes τ1 and τ2 in which:

Imi,m,n = i(τ)− i(τ1)− i(τ2) (16)

where n = 1, . . . , N, which represents the node index in one decision tree, and m = 1, . . . , M,
which represents the decision tree index in the random forest. Therefore, the feature xi
has N nodes in the m-th decision tree as the attribute of node division. Then the feature
importance xi on this decision tree can be expressed as:

Imi,m =
N

∑
n=1

Imi,m,n (17)

58



Remote Sens. 2021, 13, 1323

The feature importance xi in the entire random forest is:

Imi =
1
M

M

∑
m=1

Imi,m (18)

The sum of the feature importance of each feature is 1.
For parameter ηk, Freeman decomposition, PSCF features, spectral features, and

GLCM features are regarded as four various feature components. Then, taking spectral
features as an example, the feature importance of this characteristic component is:

ηSpectral = Imr + Img + Imb (19)

The four feature components extracted in this paper have different value ranges
and number of elements. Since the normalization of features does not affect the random
forest results, they are not normalized in feature extraction. However, in the CRF, this
difference in the value range affects the pairwise potential function. Therefore, it needs
to be divided into four parts to avoid the features with a small value range in which they
do not work as well as they should. Since the importance of each feature is different, the
higher the importance of the feature, the greater the influence on classification. Therefore,
the parameters ηk can further strengthen the feature difference between neighbours and
improve classification accuracy.

5. Experiment and Analysis
5.1. Multi-Source Data Comparative Classification Experiment

First, to verify the advantages of image fusion in image classification, this paper
used the random forest to perform classification experiments on optical image data and
polarized SAR data. The optical image data contains a feature vector consisting of spectral
and GLCM information, and the polarized SAR data includes a feature vector consisting of
Freeman and PSCF information. The number of decision trees in the random forest was
set to 100. This value ensures that the results of the random forest will be optimal and
fluctuate within a range of values. The experimental results are shown as follows.

For classification tasks, the classification results can intuitively and clearly reflect the
disparity between different features or different classification methods, especially when
the distinction is significant. Figure 3 shows the classification results obtained by adopting
different feature vectors. It can be seen that the characteristics of the optical image can
better distinguish the difference between high and low vegetation due to the apparent
differences in spectra. However, the reliance on spectral features also makes many errors
in the identification of waters. Since the water surface tends to be specularly reflective, the
backscatter from the water surface is almost zero, resulting in high accuracy of SAR image
classification in waters. At the same time, the working frequency band of RADARSAT-2 is
C-band, which has certain penetrability, making it difficult to distinguish the characteristic
difference between high and low vegetation, thus, presenting a mixed phenomenon of
dark green and light green. This penetrability is also reflected in the ability of the polarized
SAR data to detect folds in the hills and present similar features to buildings, leading to
misinterpretations. Optical image features have certain advantages in terms of buildings,
and it is difficult for both sides to get ideal results on the road.

The visual effect of the classification that combines polarized SAR and optical image
features is significantly improved. The water area as well as high and low vegetation are
well inherited. Simultaneously, compared with the former two, the salt and pepper noise
in the construction area has been significantly reduced. The large area of misjudgment
is also hard to see, and the display effect of the road is improved. This indicates that the
characteristics of polarized SAR and optical images both play a specific role in classification.
Due to the similarity of the narrow river sections to the backscattering of the road, this
caused the SAR data to misinterpret at the river in the southwest region of the image. This
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situation is also shown in Figure 3c. This indicates that the features of the optical images are
still difficult to correct for the high misclassification of SAR images in this particular scene.
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From the experimental results, it can be seen that the integrated polarized SAR and
optical image fusion classification performance is significantly improved compared with
the image classification performance of the single source. However, there are still many
noise points, which affect the smoothness of the classification result. The RF-Im_CRF model
proposed in this paper will improve the classification results aiming at this phenomenon.

5.2. Comparison of RF-Im_CRF Model Experiment Results
5.2.1. Analysis of Classified Image Results

To verify the effectiveness of the algorithm in this paper, the experimental data were
classified using SVM based on Poly kernel function, RF, RF-CRF without feature importance
as weights [21], and the RF-Im_CRF models, respectively. The experimental data is the
feature vector composed of the four features in Chapter 3 of the article. The results are
shown in Figure 4.

It can be seen that the SVM has the worst classification effect. SVM is an independent
classifier, so it follows one rule when classifying. Random forests, on the other hand, rely
on multiple mutually independent decision trees acting together, each with a different
classification threshold. This means that the misclassification results of a single decision
tree are corrected by the action of other decision trees. As a result, random forests give
better results.

Compared with the random forest classifier, the RF-CRF model significantly improves
image smoothness, since the CRF eliminates most salt and pepper noise. The differences
between the RF-CRF and RF-Im_CRF models are difficult to see. Therefore, this paper
extracted three scenes in the image for comparison to show the performance gap between
the two models. The reference data are the optical image and the real classification results
based on the optical image.

As shown in Figure 5, when compared with the RF-CRF model, the RF-Im_CRF model
can further reduce the salt and pepper noise in the image, and the smoothness can be
further improved. Since parking lots are set up around some large buildings, the classifier
will be difficult to balance between roads and buildings. Some open places such as sports
fields and squares as well as roads have more white blocks in area 1, which represent the
road. Area 2 has lower category complexity and better homogeneity of vegetation, so there
is less variation in the effects of classification. There are narrow roads in area 3, which were
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not sampled as samples during the sampling process, since it hardly distinguished with
low contrast between neighbours in the SAR image. Therefore, it is misclassified as low
vegetation in the classification result. The small white areas in the river are the ships sailing
on the river in the SAR image. The RF-Im_CRF model is better than the RF-CRF model
in identifying the riverbank portion on the left side, showing a relatively complete low
vegetation zone.
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The display of the classification results shows that, when compared with the RF-CRF
model, the RF-Im_CRF further improves the classification accuracy, resulting in less noisy
images and a further increase in purity. This is because the value range of various features
is diverse. For example, the value range of the spectral feature is between 0–255, while the
value range of PSCF is between -1 and 1. The feature difference is calculated in the unit of
a feature component in CRF, which helps reduce the overall influence of features with a
wide value range. Simultaneously, after adding feature importance as weights, the impact
of features with high importance on feature differences between neighbours is enhanced.
Therefore, the RF-Im_CRF model can classify ground objects more accurately.
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5.2.2. Classification Data Analysis

This paper quantified the classification effectiveness of the classification model through
Overall Accuracy (OA) and a Kappa coefficient, and analysed various classification cases
using precision and recall.

When the training set is the same, the SVM produce the same results in multiple
experiments. In contrast, the random forest has a certain degree of randomness. Even
though the training set is the same, the results obtained during each training set are
different. Therefore, we used the same dataset for ten consecutive tests on the random
forest model to get the average of the results. In each experiment, the RF, RF-CRF, and RF-
Im_CRF models use the same RF model results, which are only different in the subsequent
processing. The RF model was built on Scikit-learn package using Python [29]. In each
experiment, this paper extracted the feature importance and the probability of each class
of all points. At the end, the evaluation index, such as OA and Kappa coefficients, were
obtained for each model based on classification results.

The OA, Kappa values, and their 95% confidence interval are shown in Table 2.

Table 2. The average of OA and Kappa.

SVM RF RF-CRF RF-Im_CRF

OA 79% 88.0% 91.6% 94.0%
95% confidence interval [85.88%,90.4%] [90.22%,93.02%] [93.52%,94.54%]

Kappa 0.74 0.85 0.89 0.91
95% confidence interval [0.834,0.866] [0.879,0.905] [0.902,0.918]

With the same test data and constant parameters, the results of the SVM are always
consistent and, therefore, there are no confidence intervals. In terms of a quantitative
data comparison, the RF-Im_CRF model proposed in this paper has the best classification
accuracy with an average OA of 94.0%, and the 95% confidence interval is [93.52%,94.54%].
The Kappa coefficient is 0.91 with the 95% confidence interval of [0.902,0.918]. Compared
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with SVM, RF, and RF-CRF, OA increased by 15%, 6%, and 2.4%, respectively, and clas-
sification reliability increased by 17%, 6%, and 2%, respectively. The reason is that SVM
and RF classify single pixels, which are inevitably misclassified even with the inclusion
of textural information. CRF can use neighbourhood information to correct misclassified
pixels, thereby, improving the classification accuracy. The comparison of the above results
shows that the RF-Im_CRF model can further significantly reduce the noise generated in the
random forest classification and improve the smoothness of images due to the correction
capability of Im_CRF.

In order to analyse the classification accuracy relationship between each category, we
give the experimental result data obtained in a single experiment, as shown in Table 3. In
the absence of CRF, the 95% confidence interval of each class of random forest is basically
between [A + 2%, A− 2%]. Where A represents the classification accuracy of each category.
The Bootstrap Resampling method of the random forest causes each decision tree to use a
different training subset, which leads to differences in classification performance across
the trees. With a large number of decision trees, the random forest itself is more accurate
than the SVM method, but it inevitably generates randomness, which results in slightly
different classification results for each category. The number of test sets for each category
is 150, which means that there are three different classification results for this category in
the two experiments, and there will be a 2% difference.The classification effect is further
improved by the CRF, resulting in a 95% confidence interval between [A + 1%, A− 1%].

Table 3. Comparison of results of different classifiers.

Model Water High Building Low Road

Precision (%) 87 85 72 79 74
Recall (%) 77 88 84 84 63

F1-score (%) 82 86 78 81 70

RF
Precision (%) 98 92 79 85 78

Recall (%) 95 93 91 81 72
F1-score (%) 96 92 85 83 75

RF-CRF
Precision (%) 99 96 80 90 82

Recall (%) 95 95 93 88 75
F1-score (%) 97 95 86 89 78

RF-Im_CRF
Precision (%) 100 97 84 93 88

Recall (%) 95 96 97 89 84
F1-score (%) 97 96 90 91 86

It can be seen that the four models are more accurate in classifying water, high
vegetation, and low vegetation than buildings and roads. The reason is that buildings
have high complexity in both spectrum and structural characteristics, while roads are more
challenging to identify due to low image resolution, a narrow area, and a susceptibity to
factors, such as street trees. Among the two, roads are the most difficult to identify and the
most error-prone category. This is because roads are mostly between buildings including
the boundary between the road and the building that will blur the road with low image
resolution. Moreover, the backscattering characteristics of buildings in SAR image can
obscure the road to a certain extent, which has a negative impact on classification and
makes roads more likely to be misclassified as buildings. At the same time, in the mixed
area of multi-category features, low-resolution images significantly increase the complexity
of categories, which makes the boundaries between categories difficult to distinguish.
Therefore, how to effectively select feature quantities or improve image resolution to
enhance the classification effect of buildings and roads, and make more precise distinctions
to mixed regions will become the following research focus.

In terms of the model’s operational efficiency, since the model proposed in this work
needs to use neighbourhood information, this means that neighbourhood pixels must be
classified as well. On the contrary, the original random forest classifier does not need to
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classify neighbourhood pixels. Therefore, the computational amount in the calculation
process for this model is significantly higher than the one required for simpler classifiers,
such as SVM or random forest. The evaluation of computing efficiency and the possible
improvements of the algorithm from the computational point-of-view are in progress and
will be the subject of the follow-up work.

5.2.3. Analysis of Feature Importance

This article also extracted the feature importance of each feature vector in the above
ten experiments and took the average to get the results shown below.

As shown in Tables 4 and 5 and Figure 6, the feature importance of Freeman decom-
position and spectral features are higher than others in the random forest classification. For
the individual feature vectors, the volume scattering component in Freeman decomposition
has the highest feature importance, which is followed by the blue component of spectral
features. Nevertheless, the difference between the components of the spectral characteris-
tics is not significant. This is because the volume scattering component is generally higher
in the Freeman decomposition than the surface scattering and dihedral scattering for all
targets except water. In water targets, these three components are small, and the scattering
properties of road targets are similar to water under ideal conditions. Therefore, the volume
scattering component has a good basis for judging the water area or road. Therefore, the
body scattering has the highest feature importance. The recognition rate is not as ideal in
water areas because of the complex and narrow environment in which roads are located.
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Table 4. Feature importance of four characteristic components.

Feature Freeman Spectral GLCM PSCF

η (%) 33.78 30.03 13.44 22.72
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Table 5. Feature importance of each feature.

Class Pd Ps Pv R G B G1 G2 G3 P1 P2 P3 P4 P5 P6 P7 P8

Im
(%) 7.35 5.91 20.53 8.94 9.15 11.96 3.11 2.84 7.49 3.93 2.93 2.14 2.01 3.95 2.30 2.74 2.74

G1 = contrast, G-2 = dissimilarity, G3 = energy, P1 = Corr_co_Di, P2 = Corr_co_FP, P3 = Corr_co_HD, P4 = Corr_co_VD, P5 = Corr_cross_Di,
P6 = Corr_cross_ FP, P7 = Corr_cross_ HD, P8 = Corr_cross_VD.

Except for energy, the GLCM and PSCF have similar proportions, while PSCF com-
ponents are higher, so the η value is relatively high. The feature importance reflects the
contribution degree of each feature in the classification. The randomness of random forest
also impacts the feature importance. Therefore, the 95% confidence interval of four charac-
teristic components is between [A−1%, A+1%]. Using such a contribution degree as the
weight in the CRF pairwise potential function clarifies the spatial relationship between the
target and the neighbourhood and improves classification accuracy.

6. Conclusions

Relying on the unique advantages of CRF in spatial context feature modelling and
classification, this paper established a pixel-based RF-Im_CRF model for classification
based on various feature information, such as spectrum, texture, and polarization. The
experiments and analyses were carried out using polarized SAR and optical images of
Nanjing area as data. The results show that the fusion of multi-source image data improves
the classification accuracy. The RF-Im_CRF model with multiple features proposed in this
paper further improves the classification accuracy to more than 94%, which increases by
6% when compared with the random forest classifier. Therefore, the RF-Im_CRF model has
good performance in the fusion classification of polarized SAR and optical images and can
be used as a fusion classification method for heterogeneous images.
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Abstract: In this paper, we propose a Dirichlet process (DP) mixture model of Gamma distributions,
which is an extension of the finite Gamma mixture model to the infinite case. In particular, we propose
a novel online nonparametric Bayesian analysis method based on the infinite Gamma mixture model
where the determination of the number of clusters is bypassed via an infinite number of mixture
components. The proposed model is learned via an online extended variational Bayesian inference
approach in a flexible way where the priors of model’s parameters are selected appropriately and
the posteriors are approximated effectively in a closed form. The online setting has the advantage to
allow data instances to be treated in a sequential manner, which is more attractive than batch learning
especially when dealing with massive and streaming data. We demonstrated the performance and
merits of the proposed statistical framework with a challenging real-world application namely oil
spill detection in synthetic aperture radar (SAR) images.

Keywords: Dirichlet process; infinite mixture models; Gamma distribution; variational inference;
online setting; oil spill detection; synthetic aperture radar images

1. Introduction

The use of statistical machine learning has proliferated in many fields, especially
to solve a broad range of problems ranging from signal processing, speech recognition,
to geosciences and remote sensing where strong models are needed to apply statistical
methodology. In the case of geosciences and remote sensing, for instance, statistical
machine learning techniques have been deployed successfully in a variety of problems
and applications in many parts of the earth system and beyond [1]. In particular, images
modeling (e.g., SAR images) has received much attention due to its importance and
applications in real world nature tasks related to land, climate, disturbance attribution,
vegetation dynamics, urbanization, etc.

Among the probabilistic generative models, the so-named finite mixtures have been
successfully applied due to their capability to represent large-scale complex probability
densities and to offer a principled way for analyzing missing data [2,3]. Mixture models
provide, in general, a formal approach to unsupervised learning and allow, in particular,
to select the optimal number of clusters for a given dataset. This fact has been largely de-
tailed in the literature (see, for example, [4,5]). This growing interest has led to developing
several fascinating and flexible mixture models such as Gaussian-based mixture models
(GMM) which have became popular even though they are not the most appropriate for
fitting complex non-Gaussian shapes [6,7]. To deal with conventional GMM limitations,
many other alternatives, such as Gamma (GaMM) mixtures [8–11], have shown to perform
significantly better than GMM [12] thanks to its compact analytical form which is able to
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cover long-tailed distributions and to approximate data with outliers. Thus, motivated by
the flexibility and good performance obtained with Gamma distribution, we will focus
here on investigating Gamma-based mixture model for SAR images classification. We
are mainly motivated by the excellent results that Gamma mixture has provided, thanks
to its flexibility, for SAR images analysis in many applications such as target detection
and discrimination, target recognition and surface classification, oil spill detection, noise
reduction, etc. [10]. In this paper, we will focus mainly on oil spill detection

The most challenging problem within finite mixture models is the estimation of the
number of clusters that best describes the data without over- or under-fitting [13,14]. In the
statistical learning context, this problem is solved using frequentist approach (i.e., maxi-
mum likelihood (ML)) within some criteria (ex. Akaike’s Information Criterion, Minimum
Description Length, Minimum Message Length, etc) [15,16]. It is noteworthy that the
evaluation of these criteria for many clusters using ML method is very costly in terms of
calculation. In addition, all parameters are supposed fixed and the inference process is
based mainly on the likelihood of data which leads to convergence isssues. An alternative
way to tackle the issue of selecting accurately the number of clusters is via nonparametric
Bayesian inference using for instance Dirichlet process (DP) [17]. In this case, the number of
clusters may increase as more data are observed. This property makes DP extremely useful
in exploratory data analysis. Thus, the assumption of an infinite number of components
allows to avoid the problems of over- and under-fitting. Dirichlet processes (DP) mixtures
have become a popular choice for various machine learning applications thanks to effective
sampling techniques such as Markov chain Monte Carlo (MCMC) [18,19]. Despite the fact
that MCMC yields good performance, it is frequently limited to small-scale problems and
computationally intensive [20].

An interesting alternative, to both frequentist and Bayesian methods, which has pro-
vided promising performance, is variational Bayes learning [15,21]. Variational inference
has the advantage to find optimal approximate posterior distributions by minimizing
Kullback–Leibler (KL) divergence, or as maximizing evidence lower bound. Recently,
an extended variational inference (EVI) was proposed [8] and has shown to be efficient for
minimizing the KL divergence and for tackling the estimation problem. In this work, we
go a step further by developing an infinite mixture model based on Gamma distribution
via Dirichlet process prior, and then we propose to exploit the merits found recently by the
extended variational framework [8] to learn the developed mixture model (InGaMM-eV)
in an online manner. Furthermore, it is possible to estimate all parameters in closed forms.
Moreover, compared to batch algorithms, online learning is more effective and helpful
especially when processing big and streaming data [22] which can be crucial in SAR images
analysis to allow continuous monitoring of the earth’s surface. It is noteworthy also that
many SAR satellite missions have accumulated repeated observations over the last decades
and processing these data in an online manner could offer ease of use and solutions to
some challenging problems (e.g., change detection [23]). Thus, an effective online extended
variational framework of Dirichlet process mixtures of Gamma distributions is developed
using stick-breaking representation. As a result, the number of clusters is selected appro-
priately, the model’s parameters are learned in a closed form, and the issue of under-fitting
is solved by deriving a model with an unlimited complexity.

The rest of this manuscript is presented as follows. We review some relevant works
related to oil spill detection in Section 2. The details of extending the finite Gamma mixture
to infinite case are given in Section 3. The principles of our implemented nonparametric
variational learning algorithm of infinite Gamma mixture are provided in Sections 4 and 5.
Section 6 is devoted to discuss the results obtained from experiments. Finally, the paper is
concluded with some future works.

2. Related Research Work

Oil pollution is a major ocean disaster and environmental threat to coastal ecosys-
tems which has been recently highlighted by several tankers accidents around the world.
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Accidents on offshore oil platforms, refineries, and pipeline can cause serious oil spills.
However, these accidents represent only 5% of the total oil pollution worldwide, and 95%
are caused by illegal discharges by ships that prefer to dispose, cheaply, of oil residues
in their tanks (according to many studies such as the European Space Agency) [24–26].
Oil pollution may result from several sources such as industrial discharges, oil produc-
tion, natural oil seepage, and urban runoff. Natural slicks are of bacterial or biological
decomposition or geological origin. Oil spills can devastate naval life as well as harm
humans and animals by reducing dramatically air-sea exchanges processes, such as surface
evaporation. Oil spills are then of great public, political and scientific concern. Therefore,
there is an urgent need to monitor and detect oil spills on ocean so as to facilitate govern-
ment decision making. The detection of these oil spills is considered an important and
challenging problem to effectively conduct countermeasures. An effective approach is the
use of satellites which provide radar images of the sea surface (500× 500 km2 in a single
image). Satellites radar images supply an occasion to monitor coastal waters day and night,
regardless of weather conditions allowing an early warning of oil spills. Moreover, satellite
detection is well adapted to this kind of problems by producing images of difficult access
areas [24]. Among different satellite imagery technologies, active microwave sensors such
as synthetic aperture radar (SAR), has been frequently investigated for remote sensing of
oil pollution [27]. The synthetic aperture radar emits and receives radio wave in order to
acquire a representation of the target scene. Detecting oil spill in SAR images (as shown
in Figure 1) is very complex procedure that involves many steps [26].

Figure 1. SAR image obtained by the European Remote Sensing satellite ERS-2 on April 1997 over
the South China Sea (left image) and SAR image obtained by the ERS-1 satellite on May 1994 over
Pacific Ocean east of Taiwan (right image). These images (area: 100 km × 100 km) showing an oil
spill [28].

For several decades, extensive works have been provided [27,29,30] to distinguish oil
slicks from natural biogenic slicks via analyzing satellite radar images. Most of conventional
oil slick (or dark objects) detection procedures are carried out in three steps: (1) a pre-
segmentation of dark spot, (2) the extraction of dark spot feature, and (3) a classification
step of these dark spots. Some early and recent review articles summarize different oil
slick detection methods [26,28,31]. These reviews state that most methods are based on
using statistical patterns to discriminate between oil slicks and look-alikes under varying
conditions. They conclude also that the automatic and accurate discrimination between
oil spills and look-alikes is a challenging problem and need more investigations in the
future. On the other side, a lot of efforts have been devoted to apply classic classifiers and
descriptive statistical approaches learned from training data [25,30,32–34]. These works
rely on highly trained human operators to asses and verify each region in a given SAR
image. In [33], authors proposed a one-class based approach for image classification to
detect oil-spill. First of all, a preprocessing step is used to identify related areas to oil spills.
A feature selection step to select relevant features is also performed given that the contrast
between spill’s region and the surrounding regions depends on the type and amount
of oil and other environmental factors (i.e., wave height, wind speed, and sea). Finally,
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a one-class classifier is used to detect oil spills. A geometric level-set based segmentation
method of oil spills and illegal oil discharges was developed in [35]. According to this
work the regions in SAR images can be classified into pure oil spills or look-alikes on
the basis of the following measurements: orientation, area, shape complexity, perimeter,
eccentricity, and mean border gradient. In [36], a region-based method was also proposed.
It involves both conventional detection theory and image segmentation techniques (such
as N-nearest-neighbor) to have more accurate results. In [37], authors developed an
adaptive thresholding-based algorithm to classify each slick as oil or look-alike. Here,
involved features are derived from shape (slick complexity, width, area, moment), slick
surroundings, contrast (slick local contrast, border gradient, smoothness contrast), and slick
homogeneity. Their algorithms have been trained on two datasets, namely Radarsat and
Envisat Advanced Synthetic Aperture Radar (ASAR) images. Fuzzy classifiers have been
also used in [38] to identify all possible oil spills (dark patterns) in SAR images. A set of
operations based on the fuzzy theory are used to establish the likeness of each candidate to
be an oil spill or not. In the last few years, artificial neural network algorithms have been
broadly applied in the context of remote sensing image segmentation and classification.
Indeed, authors in [39–43] proposed different neural network-based methods (like CNN
and Deep NN) in order to improve oil spill detection and classification. Some other notable
interesting CNN-based oil spill detection and classification frameworks include the works
in [44,45].

While considerable progress has been made in this field over the past few years,
designing more robust tools still needs wide amounts of specialized knowledge and manual
work. The goal here is to propose a method based on a nonparametric Bayesian model
(infinite model) as well as to learn it using variational inference. Our main contributions
are summarized as follow: First, we start by extending the finite Gamma mixture to the
infinite case via a nonparametric Dirichlet process prior such that the problem of selecting
the suitable number of clusters is solved fashionably. Then, we investigate the developed
approach for remote sensing image classification. Indeed, after extracting effective features
as in [46], we shall focus on modelling and classifying oil spills and other similar sea
surface features using the infinite mixture model. The merits of our approach have been
demonstrated using real datasets.

3. Statistical Model Specification

In this section, we present our developed variational learning approach based on the
infinite Gamma mixture model.

3.1. Finite Gamma Mixture Model

Let’s denote by Y our observed data such as Y = {~Y1, . . . ,~YN}, where each ~Yi =
(Yi1, Yi2, . . . , YiD) is a D -dimensional positive vector. These feature vectors are supposed
to be drawn from a mixture of Gamma distributions with parameter Θ. Let M denotes
the number of mixture’s components. ~Yi (i = 1, . . . , N) are independent and identically
distributed (iid). The density function of multi-dimensional Gamma distribution is defined
as follows:

p(~Yi | θ) =
D

∏
d=1

(βd)
αdYαd−1

id e−βdYid

Γ(αd)
(1)

where θ = {αd, βd} is the set of parameters of the distribution such that αd denotes the
shape and βd the location parameter. Here, Γ(.) is the Gamma function which is given as:
Γ(x) =

∫ ∞
0 sx−1e−sds.

Suppose that the D-dimensional random vector ~Yi (observed data) is drawn from a
finite mixture of Gamma (GaMM) distributions and consisting of M components which is
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established to model the data with different shapes. The probability density function (pdf)
of a GaMM is then given as:

p(~Y | Θ) = p(~Y |~α,~β, ~π) =
N

∏
i=1

M

∑
j=1

πj p(~Yi | θj) (2)

where Θ = {θ1, θ2, . . . , θM, π1, . . . , πM}. The parameters of the jth mixture component is
represented by θj = {αj, β j}. πj is the vector of the mixing weights subject to 0 6 πj 6 1,
and ∑M

j=1 πj = 1.

3.2. Infinite Gamma Mixture Model

The Dirichlet process (DP) is a stochastic process with a positive scaling factor and base
distribution used in Bayesian nonparametric models of data, notably in infinite mixture
models. The DP is an effective concept for various applications (for more details please refer
to [47]). In this section we address the issue of assuming an infinite number of components.
In order to solve properly this problem which is important for well describing the observed
data without over- or under-fitting, we propose a Dirichlet process mixture of Gamma
distributions. In other words, we construct our infinite model by following the principle
of Dirichlet process (DP) through stick-breaking representation [48,49]. Thus, the number
of components is intended to be infinite. In this case, let’s denote G a Dirichlet process
distributed with a base distribution H and a concentration parameter ψ. The construction
of G ∼ DP(ψ, H) is defined as

λ ∼ Beta(1, ψ)

Ωj ∼ H

πj = λj

j−1

∏
s=1

(1− λs)

G =
∞

∑
j=1

πjδΩj

(3)

where δΩj represents the Dirac delta measure centred at Ωj. The proportions πj are
determined by cutting a unit length stick, regularly, into an infinite number of pieces such
that ∑∞

j=1 πj = 1 and ψ is a real number. Consequently, the infinite mixture model of
Gamma distributions Y is expressed as

p(Y | Θ) = p(Y |~α,~β, ~π) =
N

∏
i=1

∞

∑
j=1

πj p(~Yi | θj) (4)

Subsequently, a latent variable Zi = (Zi1, Zi2, . . .) is introduced for observed data Y . These
latent membership vectors are used to point out if the vector ~Yi belongs to component j
(Zij = 1) or not (Zij = 0). Now, the complete-data likelihood is expressed as

p(Y , Z |~α,~β, ~π) =
N

∏
i=1

∞

∏
j=1

π
zij
j

(
p(~Yi | αj, β j)

)zij
(5)

According to the stick-breaking construction of DP (see Equation (3)), πj can be expressed
as a function of λj and after replacement, we have the following:

p(Z | ~λ) =
N

∏
i=1

∞

∏
j=1

[
λj

j−1

∏
s=1

(1− λs)

]zij

(6)
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The resulting complete-likelihood of the infinite Gamma mixture is finally expressed as
(including latent variables):

p(Y , Z |~α,~β, ~π) =
N

∏
i=1

∞

∏
j=1

[
λj

j−1

∏
s=1

(1− λs)

]zij(
p(~Yi | αj, β j)

)zij
(7)

4. Batch Variational Bayesian Learning

It is noteworthy that, when dealing with intractable models, variational inference is
presented as a powerful deterministic alternative to approximate posteriors and likelihoods.
In this section, we propose to develop a variational learning method to approximate
inference for the DP, where the truncated stick-breaking construction [50] is applied to
derive an approximate posterior and to estimate the model parameters. On the other side,
we proceed by determining an approximation Q(Θ) for true posterior p(Θ | Y) such that
Θ = {Z, α, β}. After that, we use the well-known KL divergence in order to reduce the
difference between Q(Θ) and p(Θ | Y):

KL(Q || P) =
∫

Q(Θ) ln
(

p(Θ | Y)
Q(Θ)

)
dΘ (8)

KL(Q || P) = ln(p(Y)−L(Q) (9)

L(Q) =
∫

Q(Θ) ln
(

p(Y , Θ)

Q(Θ)

)
dΘ (10)

KL divergence attains value of zero if we have Q(Θ) = p(Θ | Y) (since As KL(Q || P) ≥ 0).
From Equation (9), it is possible to deduce that L(Q) ≤ lnp(Y) and so L(Q) is a lower
bound to lnp(Y). However, it is difficult to solve the true posterior which cannot be directly
estimated because of the complexity of calculation. We get around this matter by taking
into account a restricted family of Q(Θ) that can be calculated [21]. In particular, the mean
field theory [51] is adopted to factorize Q(Θ) into different tractable distributions such that
Q(Θ) = ∏i=1 Qi(Θi). To maximize L(Q), we apply variational methodology with respect
to each Qi(Θi). Then, the optimal form of Qi(Θi) denoted by Qs(Θs) is given as

lnQs(Θs) = 〈ln(p(Y , Θ)〉j 6=s + const (11)

where 〈.〉j 6=s is the expectation value of Q, with respect to all Qi(Θi) excluding that case
of j = s. It is noted that we have to take into account the truncation of the stick-breaking
representation [49] to take advantage of the bound. Therefore, we take λM = 1 and πj = 0
when j > M which leads to ∑M

j=1 πj = 1.

4.1. Prior Distributions for Parameters

To complete the probabilistic formulation, we have to place proper conjugate priors
over the parameters λ, α and β. In particular, the Beta distribution is selected for the
parameter λ (referring to Equation (3)) as follow

p(λ | ψ) =
∞

∏
j=1

Beta(1, ψj) =
∞

∏
j=1

ψj(1− λj)
ψj−1 (12)

Here, the hyperparameters of the Beta distribution is denoted by ψ = (ψ1, ψ1, . . . ) [52].
Moreover, it is possible to assign a conjugate Gamma prior to ψ:

p(ψ) = G(ψ | a, b) =
∞

∏
j=1

b
aj
j

Γ(aj)
ψaj−1e−bjψj (13)
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For α and β, a prior Gamma distribution is imposed for them as suggested in [8] which is
reasonable given that α and β are positives and also Gamma density is assumed to be too
flexible and simple distribution to be selected as prior.

p(~α) = G(~α | ~u,~v) =
∞

∏
j=1

D

∏
d=1
G(αjd | ujd, vjd) (14)

p(~β) = G(~β |~s,~t) =
∞

∏
j=1

D

∏
d=1
G(β jd | sjd, tjd) (15)

Following the graphical model in Figure 1, the resulting joint distribution is expressed as

p(Y , Θ) = p(Y ,Z |~α,~β)p(Z | ~λ)p(~λ | ~ψ)p(~ψ)p(~α)p(~β)

=
N

∏
i=1

∞

∏
j=1

[
λj

j−1

∏
s=1

(1− λs)

]zij(
p(~Yi | αj, β j)

)zij

×
∞

∏
j=1

ψj(1− λj)
ψj−1

×
∞

∏
j=1

b
aj
j

Γ(aj)
ψaj−1e−bjψj

×
∞

∏
j=1

D

∏
d=1
G(αjd | ujd, vjd)

×
∞

∏
j=1

D

∏
d=1
G(β jd | sjd, tjd)

(16)

4.2. Learning Algorithm

As explained at the beginning, the objective of this work is to approximate the true
posterior p(Θ | Y) with a new tractable approximation denoted by Q(Θ). Furthermore,
the optimal solution of variational learning is reached while maximizing the lower bound
w.r.t Θ = {Z, λ, α, β}. The factorization of Q(Θ) (while taking into account the truncation
M) leads to following parametric form which optimal solution is presented in Appendix A:

Q(Θ) =

[
N

∏
i=1

M

∏
j=1

Q(Zij)

][
M

∏
j=1

Q(λj)Q(ψj)

][
M

∏
j=1

D

∏
d=1

Q(αjd)Q(β jd)

]
(17)

Once the optimal variational factors are in hand, the calculation of the lower bound
L(Q) is then straightforward. Figure 2 presents a graphical model of the proposed infinite
Gamma mixture model (inGaMM). Random variables are denoted by circles and hyperpa-
rameters are represented by rounded boxes. Then, the different steps of the implemented
method are summarized in Algorithm 1.
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Figure 2. Graphical model of the developed variational infinite inGaMM. Random variables are
denoted by circles and hyperparameters are represented by rounded boxes . Y is observed variable,
Z is latent variable, large boxes are used for repeated process and the arrows show the conditional
dependence between variables.

Algorithm 1: Batch variational learning approach for the inGaMM

1 Choose initial truncation for M.
2 Set initial values for hyperparameters u, v, s, t, a, b, c, d.
3 Initialize rij via k-means algorithm.
4 repeat
5 Variational E-step :
6 Estimate the expected values according to Equations (A5), (A9), (A12),

and (A15).
7 Variational M-step :
8 Update the variational solution for the factor Q(Z) using Equation (A1).
9 Update the variational solution for the factor Q(ψ) using Equation (A6).

10 Update the variational solution for the factor Q(λ) using Equation (A7).
11 Update the variational solution for the factor Q(α) using Equation (A10).
12 Update the variational solution for the factor Q(β) using Equation (A13).
13 until Until convergence is reached
14 Calculate the expected value of λj using Equation (A9). Then estimate the mixing

coefficients according to Equation (3).
15 Return the optimal number of components Mopt by eliminating the components

with small mixing coefficients close to 0.

5. Online Variational Bayesian Learning

Early warning and immediate detection of oil spills has many advantages such as
immediate response and reducing damage to the environment. The development of real-
time monitoring and detection system is of great importance in order to minimize the
volume of oil spilled. To address this problem, we propose to develop an online learning
approach which is being commonly used in many other areas especially when data points
are continuously arriving over time [53]. The online setting is particularly useful for
incrementally training the system by feeding instances of data sequentially. It also has the
benefit of making the learning process easier and faster than batch mode.

In what follows, we extend the batch variational method (presented in previous
section) for unsupervised SAR images classification to an online setting. This process
requires updating the model’s parameters incrementally without degrading its efficiency
and flexibility. To determine the lower bound, we suppose that we have at time t a fixed
set of observed data. At time t + 1, a new SAR image YN+1 comes out and is added to the
dataset, hence, the mixtures’ parameters have to be updated accordingly. Thus, in online
setting, the lower bound at time t is expressed as in [54]:

Lt(Q) =
N
t

t

∑
i=1

∫
Q(Ω)dΩ ∑

Zi

ln

[
p(~Yi, ~Zi | Ω)

Q(~Zi)

]
+
∫

Q(Ω)ln
[

p(Ω)

Q(Ω)

]
dΩ (18)
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where Ω = {α, β}.
Let’s suppose that we already observed {~Y1, . . . ,~Y(t−1)} and then a new data point ~Yt

is coming. Therefore, Lt(Q) is maximized w.r.t Q(~Zt), such that Q(α), Q(λ) and Q(β) are
set to Qt−1(α), Qt−1(λ) and Qt−1(β), respectively. We adopt a truncation technique with
value M which gives [49]:

Q(~Zt) =
M

∏
j=1

r
Ztj
tj (19)

rtj =
ρtj

∑M
j=1 ρtj

(20)

Then, Lt(Q) is maximized w.r.t Q(α), Q(λ) and Q(β) while keeping Q(~Zt) fixed.

Q(t)(~α) =
M

∏
j=1

D

∏
d=1
G(α(t)jd | u∗(t)jd , v∗(t)jd ) (21)

Q(t)(~β) =
M

∏
j=1

D

∏
d=1
G(β

(t)
jd | s∗(t)jd , t∗(t)jd ) (22)

Q(t)(λ) =
M

∏
j=1

Beta(λ(t)
j | c(t)j , d(t)j ) (23)

where

u∗(t)jd = u∗(t−1)
jd + ρt∆u∗(t)jd

v∗(t)jd = v∗(t−1)
jd + ρt∆v∗(t)jd

s∗(t)jd = s∗(t−1)
jd + ρt∆s∗(t)jd

t∗(t)jd = t∗(t−1)
jd + ρt∆t∗(t)jd

c∗(t)jd = c∗(t−1)
jd + ρt∆c∗(t)jd

d∗(t)jd = d∗(t−1)
jd + ρt∆d∗(t)jd

(24)

∆ is the natural gradient of each hyperparameter in the previous equation. ρt denotes the
learning rate [55] expressed by following equation:

ρt = (η0 + t)−ε (25)

where ε ∈ [0.5, 1] and η ≥ 0. This helps to guarantee convergence [55]. Please note that
the expectation in the above mentioned equations are obtained with same manner as for
the case of batch setting in the previous section and as in [56]. Since the online learning
framework can be considered as a stochastic approximation algorithm, the convergence
is ensured as prove in [53]. The proposed and developed online variational algorithm is
presented in Algorithm 2.
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Algorithm 2: Proposed online algorithm for inGaMM

1 Select initial truncation level M.
2 Set initial values for hyperparameters
3 Initialize rtj via k-means algorithm.
4 repeat
5 Variational E-step :
6 Update the variational solution for Equation (19).
7 Variational M-step :
8 Compute the learning rate using Equation (25).
9 Calculate the hyperparameters using Equation (24).

10 Update the variational solutions for all factors Q(t)(α), Q(t)(β) and Q(t)(λ)
using Equations (21)–(23).

11 Repeat the variational E-step and V-step until new data is observed
12 until for t = 1 to N

6. Experimental Results
6.1. Data Sets

The main objective of this section is to investigate our developed online extended
variational learning framework of Dirichlet process mixture of Gamma distributions to
detect oil spills in several SAR images. The second objective is to compare the performance
of the proposed statistical framework with other methods from the state-of-art. First,
it should be noted that one of the challenges is the lack of already common data sets
for oil spill detection and this problem has been addressed by many relevant research
communities such as [57,58]. Very limited data sets have been proposed in the literature,
and therefore, it is too difficult to compare between published results since each method
uses different data sets with different settings. In this work, we are essentially concerned
with two challenging SAR databases. The first data set is the SAR images containing oil
spills collected via the European Space Agency (ESA) database [40] which is composed
of 1112 images with 5 different classes: Land, Look-alike, oil-spill, ships, and sea surface.
The second one is a labelled SAR dataset taken from Sentinel-1 wave mode (TenGeoP-
SARwv) [59] which includes 40,553 images with 10 different geophysical phenomena such
as Pure Ocean Waves (F), Wind Streaks (G), Micro Convective Cells (H), Rain Cells (I),
Biological Slicks (J), Sea Ice (K), Iceberg (L), Low Wind Area (M), Atmospheric Front (N),
and Oceanic Front (O). Figures 3 and 4 show examples of images from these two datasets,
respectively. For experiments, we randomly select half of the dataset as the training set
and the rest for testing. In order to quantify how well SAR images are classified, we report
the results in terms of average accuracy metric and false positive rate (FPR).

Modeling and classifying SAR requires powerful statistical models to represent their
content (ex. color, texture). In this work we shall focus on the problem of SAR images
modeling and classification via extracting local features that describe accurately input
images. Indeed, feature extraction step is a part of the dimensionality reduction process
that has been broadly studied in the past. It has an important role in many computer vision
applications since it helps identifying the most discriminating characteristics, reducing
ambiguity and enhancing the performance. However, the presence of speckle noise in
synthetic aperture radar (SAR) images, as well as low-resolution between regions (surfaces)
and poor contrast, make extracting relevant features too difficult. Thus, if the representative
features are well extracted, then we can correctly interpret and classify images. Extracting
local features from grey-scale images is a well-studied step in the fields of image processing
and computer vision and various comparative measures have been studied for many
years. The study of prior techniques is not within the scope of this paper. However, we
suggest applying two successful methods of features extraction. The first one is based
on imageNet pretrained deep learning model (resnet50) [60]. The flowchart diagram
for extracting features using resnet50 is given in Figure 5. For each SAR image in the
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flowchart, we first apply different image processing operations like adjusting contrast
value, thresholding, object edge detection by blurring noise and small objects. After this
step, based on the number of detected dark spots, we extract different features including
geometrical characteristics and texture of the object. Finally, we store the extracted features
for the model evaluation. In the second approach, we extract a number of features based
on geometrical characteristics, physical behavior, and those related to oil spill context of
the dark formations as described in [61]. After extracting features, we applied principal
component analysis (PCA) to reduce dimensionality of extracted datasets features.

(a) Oil Spill (b) Look-alike

(c) Land (d) Ship

Figure 3. Dataset-1: Samples of SAR images from the European Space Agency (ESA) dataset [40]. (a) OilSpill, (b) Look-alike,
(c) Land, (d) Ship.

6.2. Results and Discussion

Next, we apply our online extended variational algorithm (Section 5) over the extracted
features. Thus, each image is represented by an infinite Gamma mixture model. We average
the results over 30 runs to evaluate and compute the final performance. Tables 1 and 2
show the average classification accuracy and false positive rate (FPR) of our InGaMM-
eV model. They are obtained with different classes in both datasets and by using two
features extraction methods. Indeed, we considered a first experiment where the goal
was to distinguish between oil spills versus the rest and a second one where the goal is
to categorize some classes from each data set (4 categories are taken from the first data
set and 9 from the second one). The testing data is assumed to arrive sequentially in an
online mode.
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(a) Pure Ocean Waves (F) (b) Wind Streaks (G)

(c) Micro-Convective Cells (H) (d) Rain Cells (I)

(e) Biological Slicks (J) (f) Sea Ice (K)

(g) Iceberg (L) (h) Low Wind Area (M)

(i) Atmospheric Front (N) (j) Oceanic Front (O)

Figure 4. Dataset-2: Samples of SAR images from Sentinel-1 wave mode (TenGeoP-SARwv)
dataset [59]. (a) Pure Ocean Waves, (b) Wind Streaks, (c) Micro-Convective Cells, (d) Rain Cells, (e) Bi-
ological Slicks, (f) Sea Ice, (g) Iceberg, (h) Low Wind Area, (i) Atmospheric Front, (j) Oceanic Front.
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Figure 5. Flowchart diagram for extracting features using first feature extraction approach (ImageNet
pretrained (resnet50) features).

Figures 6 and 7 present the confusion matrices for SAR images classification computed
by the proposed InGaMM-eV using the two features extraction methods, respectively. It
is noted that these matrices are used to describe the performance of the proposed model
since they record true positives, false positives and false negatives. In fact, each matrix
summarizes the prediction results on a classification problem and it offers a clear idea of
what the proposed model is working correctly and what kinds of errors it commits. Each
entry of index (u, v) represents the number of images in class u that are affected to class
v. According to these results, the average classification accuracy is very promising and is
equal to 90.57% (error rate of 9%) for the first dataset and 95.16% (error rate of 4%) for the
second dataset.

Table 1. Results for both dataset with different number of classes using first feature extraction
approach (ImageNet pretrained (resnet50) features).

Datasets No of Class Accuracy (%) FPR

ESA-SAR dataset 2 97.96 0.02
ESA-SAR dataset 4 90.57 0.09
Sentinel-1 wave mode SAR dataset 2 94.53 0.05
Sentinel-1 wave mode SAR dataset 9 95.16 0.04

Table 2. Results for both dataset with different number of classes using second feature extraction
approach (Dark spots, geometrical, physical, and characteristics features).

Datasets No of Class Accuracy (%) FPR

ESA-SAR dataset 2 89.94 0.09
ESA-SAR dataset 4 85.13 0.12
Sentinel-1 wave mode SAR dataset 2 88.68 0.11
Sentinel-1 wave mode SAR dataset 9 82.22 0.14

Figures 6 and 7 present additional results obtained by changing the way visual fea-
tures are extracted as well as the number of classes. Indeed, for the case of ESA-SAR
dataset, InGaMM-eV provides high average accuracy of 97.96% using imageNet pretrained
deep learning model (resnet50), and 89.94% using Dark spots, geometrical, physical char-
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acteristics features. In both cases, the false positive rate is very low. For Sentinel-1 wave
mode SAR dataset, the average accuracy to classify SAR images is 95.16% using resnet50,
which is better than the second method for extracting features (only 88.68%). According to
these results, we notice that the overall average classification accuracy is very encouraging,
taking into account the complexity of treated images. It is noteworthy that, due to low
resolution of images in the second dataset (Sentinel-1 wave mode), it was very difficult to
extract features using the second feature extraction method (i.e., detecting dark objects).
Thus, we have low accuracy than expected for this dataset.

Figure 6. Average rounded confusion matrix (in terms of percentage) for SAR classification using
InGaMM-eV for ESA-SAR dataset.

Figure 7. Average rounded confusion matrix (in terms of percentage) for SAR classification using
InGaMM-eV for Sentinel-1 wave mode SAR dataset.

In this experiment, our second goal is also to demonstrate the advantages of using
extended variational framework over the maximum likelihood (via EM-algorithm), as well
as the merits of infinite mixture model over its finite counterpart. Therefore, we compared
the classification results using the following mixture models: InGaMM-eV (our infinite
Gamma model using extended variational inference), GaMM-eV (finite Gamma model
using extended variational learning), GaMM-EM (finite Gamma mixture model using
expectation maximization learning), InGMM-eV (infinite Gaussian model using extended
variational learning), and GMM-EM (finite Gaussian mixture model using expectation
maximization learning). The average performances of all tested learning approaches, using
the two features extraction methods, are depicted in Tables 3 and 4. We can see clearly
that the extended variational approach provides better results than the EM. Furthermore,
the merits of using a Dirichlet process mixtures of Gamma distributions (i.e. infinite
mixture model ) over a finite mixture model is clear by noting that better result was found
with the infinite mixtures. In particular, in Table 3, the InGaMM-eV (90.05%) outperforms
GaMM-eV (88.33%) in terms of classification accuracy rate for both datasets. On the other
side, it is worth mentioning that our approach provides better results than the implemented
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frameworks based on Gaussian mixtures. We can then deduce that the infinite Gamma
model has better modeling and classification capability than the Gaussian when dealing
with SAR images analysis.

Table 3. Overall oil spill detection rate of different models for 2 datasets using the first feature extraction approach (ImageNet
pretrained (resnet50) features) .

Dataset InGaMM-eV (Our Approach) GaMM-eV GaMM-EM InGMM-eV GMM-EM

ESA-SAR 90.05 88.33 86.07 83.21 83.11

Sentinel-1 wave SAR 91.12 89.40 87.02 84.14 83.99

Table 4. Overall oil spill detection rate of different models for 2 datasets using the second feature extraction approach (Dark
spots, geometrical, physical, and characteristics features).

Dataset InGaMM-eV (Our Approach) GaMM-eV GaMM-EM InGMM-eV GMM-EM

ESA-SAR 88.18 87.09 85.11 82.13 82.01

Sentinel-1 wave SAR 89.12 88.11 86.00 83.77 83.07

Next, The proposed learning approach (InGaMM-eV) is compared with some methods
from the literature and the comparative study is presented in Table 5. As we can see,
the proposed online algorithm performs better than other algorithms. Accordingly, it is
important to emphasize the advantage of our developed extended variational formalism
for infinite Gamma mixture, which can provide interesting results. It is also important
to underline the merit of the online learning process, which is able to maintain high
performance of oil spill prediction as well as handling data faster as they arrived. Moreover,
it has the capacity to update the model incrementally without the need for retraining.
All these results confirm that the proposed infinite Gamma mixture using the extended
variational learning mode is a better choice thanks to the flexibility of the infinite Gamma
mixture over the finite models. All these benefits make it more appropriate especially for
SAR images classification especially in the case or large scale data sets.

Table 5. Comparative study between different methods from the literature on two datasets.

Method Dataset Feature Selection Accuracy

InGaMM-eV (our approach) ESA-SAR ImageNet pretrained (resnet50) 97.96%
InGaMM-eV (our approach) ESA-SAR Dark spots, geometrical, physical features 89.94%
Fuzzy classification [62] ESA-SAR Georeference, Land masking, and Filtering 88%

InGaMM-eV (our approach) Sentinel-1 SAR ImageNet pretrained (resnet50) 94.53%
InGaMM-eV (our approach) Sentinel-1 SAR Dark spots, geometrical, physical features 88.68%
Convolutional neural network Sentinel-1 SAR Inception v3 CNN 93%
Articial neural network [34] Sentinel-1 SAR Dark spot, shape features 87%
Method in [63] Sentinel-1 SAR Dark spot features 81%
Method in [64] Sentinel-1 SAR Dark spot, shape features 82.61%

7. Conclusions

In this paper an effective online nonparametric Bayesian analysis method based on
Dirichlet process mixture of Gamma distributions (i.e., infinite Gamma mixture model)
is developed to deal with the challenging problem of oil spill detection in SAR images.
The Gamma distribution is considered because of its flexibility for semi-bounded data
modelling. This framework is learned using an extended version of conventional vari-
ational inference in a flexible way which has certain advantages such as approximating
the posteriors effectively in a closed form, easy assessment of convergence and easy opti-
mization by offering a trade-off between frequentist techniques and MCMC-based ones.

81



Remote Sens. 2021, 13, 2991

An important property of our approach is that it does not need the specification of the
number of mixture components in advance. The proposed online algorithm has also the
benefit to allow data instances to be treated in a sequential manner, which is more attractive
than batch learning especially when dealing with massive and streaming data. Through
the challenging application of oil spill detection in SAR images, we have demonstrated
the performance of our statistical framework, which is able to provide very encouraging
results in terms of SAR images modeling and classification capabilities. As future work,
we plan to integrate a feature selection mechanism into the proposed framework in order
to improve more the classification accuracy. It is our hope that many other real-world
applications related to image processing and machine learning can be addressed via our
developed framework.
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Appendix A

(1) Optimal solution to Q(Z).

Q(Z) =
N

∏
i=1

M

∏
j=1

r
Zij
ij (A1)

where the responsibility rij can be calculated as:

rij =
ρij

∑M
j=1 ρij

(A2)

such that:

ln(ρij) = ln(πj) +
D

∑
d=1

[Pjd + (〈αjd〉 − 1)ln(yjd)− 〈αjd〉〈β jd〉yjd] (A3)

and

Pjd = α∗jdln(α∗jd)− α∗jd − ln(α∗jd)− ln(Γ(α∗jd)) + 〈ln(αjd)〉+ 〈αjd〉+ 〈αjd〉〈ln(β jd)〉 (A4)

where 〈.〉 refers to an expectation w.r.t. the corresponding factor and α∗jd is any feasi-
ble point.

The expectation of Zij is determined as:

〈Zij〉 = rij (A5)
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(2) Optimal solution to Q(ψ) and Q(λ).

Q(ψ) =
M

∏
j=1
G(ψj | aj, bj) (A6)

Q(λ) =
M

∏
j=1

Beta(λj | cj, dj) (A7)

a∗j = aj + 1

b∗j = bj − 〈ln(1− λj)〉

c∗j = 1 +
N

∑
i=1
〈Zij〉

d∗j = 〈ψj〉+
N

∑
i=1

M

∑
s=j+1

〈Zis〉

(A8)

From the previous equations, we obtain the following expectations:

〈ln(λj)〉 = Ψ(c∗j )−Ψ(c∗j + d∗j )

〈ln(1− λj)〉 = Ψ(d∗j )−Ψ(c∗j + d∗j )

〈ln(ψj)〉 =
a∗j
b∗j

〈λj〉 =
cj

cj + dj

(A9)

where Ψ is Digamma function.
(3) Optimal solution toQ(~α).

Q(~α) =
M

∏
j=1

D

∏
d=1
G(αjd | u∗jd, v∗jd) (A10)

where

u∗jd = ujd +
N

∑
i=1
〈zij〉

v∗jd = vjd −
N

∑
i=1

[Sjd + ln(yid)− 〈β jd〉yid]〈zij〉

Sjd = 1 + ln(α∗jd)−
1

α∗jd
−Ψ(α∗jd) + 〈ln(β jd)〉

(A11)

From the previous equations, we obtain the following expectations:

〈αjd〉 =
u∗jd
v∗jd

〈ln(αjd)〉 = Ψ(u∗jd)− ln(v∗jd)

(A12)

(4) Optimal solution to Q(~β).

Q(~β) =
M

∏
j=1

D

∏
d=1
G(β jd | s∗jd, t∗jd) (A13)
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where

s∗jd = sjd + 〈αjd〉
N

∑
i=1
〈zij〉

t∗jd = tjd + 〈αjd〉
N

∑
i=1
〈zij〉yid

(A14)

From the previous equations, we obtain the following expectations:

〈β jd〉 =
s∗jd
t∗jd

〈ln(β jd)〉 = Ψ(s∗jd)− ln(t∗jd)

(A15)
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Abstract: In response to the deficiency of the detection capability of traditional remote sensing
means (scatterometer, microwave radiometer, etc.) for high wind speed above 25 m/s, this paper
proposes a GNSS-R technique combined with a machine learning method to invert high wind speed
at sea surface. The L1-level satellite-based data from the Cyclone Global Navigation Satellite System
(CYGNSS), together with the European Centre for Medium-Range Weather Forecasts (ECMWF)
and the National Centers for Environmental Prediction (NCEP) data, constitute the original sample
set, which is processed and trained with Support Vector Regression (SVR), the combination of
Principal Component Analysis (PCA) and SVR (PCA-SVR), and Convolutional Neural Network
(CNN) methods, respectively, to finally construct a sea surface high wind speed inversion model. The
three models for high wind speed inversion are certified by the test data collected during Typhoon
Bavi in 2020. The results show that all three machine learning models can be used for high wind
speed inversion on sea surface, among which the CNN method has the highest inversion accuracy
with a mean absolute error of 2.71 m/s and a root mean square error of 3.80 m/s. The experimental
results largely meet the operational requirements for high wind speed inversion accuracy.

Keywords: GNSS-R; CYGNSS; high wind speed inversion; SVR; PCA-SVR; CNN

1. Introduction

As one of the most serious natural disasters in the world, typhoons are a top priority
for scientific research because of their suddenness and destructive power, which bring
huge economic losses to human society. Remote sensing technology provides a huge
development space for typhoon monitoring and prediction. All microwave remote sensing
instruments are struggling to provide reliable high wind speed measurements above
25 m/s. However, few studies have been obtained up to now [1–5]. The Global Navigation
Satellite System reflection (GNSS-R) technology uses satellite signals reflected from the
Earth’s surface to obtain information of surface characteristics such as sea surface wind
speed, so it can be provided with all-weather detection capability [6–11]. The main purpose
of the Cyclone Global Navigation Satellite System (CYGNSS), launched by the United
States in 2016, is to monitor tropical cyclones. It measures sea surface winds in and near
the eyewalls of tropical cyclones, typhoons, and hurricanes frequently throughout their life
cycle and the data collected can be used to invert wind speeds [12].

Many methods can be used to inverse wind speed. For example, a GNSS-R wind
speed inversion method is to extract DDM observables reflecting the wind speed from the
delay-Doppler map (DDM) and then build the Geophysical Model Function (GMF) model
for wind speed inversion. Some other studies use the matched filter method between
simulated DDMs and measured DDMs to inverse wind speed. In addition, the machine
learning method is also suitable for wind speed inversion.
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In 2014, Clarizia et al. [6] extracted five DDM observables from the United Kingdom
disaster monitor constellation (UK-DMC) satellite, namely Delay-Doppler Map Average
(DDMA), Delay-Doppler Map Variance (DDMV), Allan DDM Variance (ADDMV), Leading
Edge Slope (LES), and Trailing Edge Slope (TES). Different GMF models were established
by comparing the five observables with the buoy wind speed provided by the National
Data Buoy Center (NDBC). Then, the reverse wind speeds, using each of these GMFs,
were combined into a minimum variance estimator. The root mean square error (RMSE)
obtained for wind speeds less than 10 m/s was 1.65 m/s. In 2016, Rodriguez et al. [13]
used a generalized observable to determine the coefficients of linear combination by the
maximum signal-to-noise ratio (MSNR), the minimum variance of the wind speed (MVU),
and principal component analysis (PCA). Then, the three wind speed values were compared
with the CYGNSS baseline L2 observables. The results show that PCA performs best, but
the overall RMS was greater than 4 m/s when the wind speed was greater than 20 m/s. In
2018, Christopher S. Ruf et al. [9] used the observable DDMA and LES from CYGNSS L1
level data to establish the Fully Developed Seas (FDS) GMF and Young Seas/Limited Fetch
(YSLF) GMF for different incidence angles at different seas. The knowledge of wind speed
inversion algorithm required to establish FDS GMF model comes from [7]. The reference
wind speed used to train the FDS GMF were the 10 m-referenced ocean surface wind speeds
provided by the ECMWF and the GDAS. The YSLF GMF model was established using the
wind speed collected by the stepped frequency microwave radiometer (SFMR) on NOAA
P-3 hurricane hunter aircraft. The FDS GMF model was suitable for low-to-moderate
wind speeds. On the contrary, the YSLF GMF model was more sensitive to hurricanes. By
using FDS GMF to invert wind speed below 20 m/s and comparing with the European
Centre for Medium-Range Weather Forecasts (ECMWF), the overall RMSE was about
2 m/s. In addition, compared with SFMR aircraft data, when the wind speed was greater
than 20 m/s, the RMSE of the YSLF GMF model inversion wind speed was about 6.5 m/s.
In addition, the samples for wind speeds greater than 20 m/s tested numbered only 674.

In 2017, F.Said [14] et al. proposed a method to inverse the maximum hurricane wind
speed using the simulated power-versus-delay waveform data of CYGNSS. The CYGNSS
end-to-end simulator (E2ES) [7] was used to produce the reference simulated waveforms.
The specific process was to compare the simulated waveform with the reference waveform
generated over a set of synthetic Willoughby storms with known maximum wind speed
(Vmax) through the matched filter, and output the Vmax corresponding to the reference
waveform. The Vmax was the retrieved wind speed. Comparing the retrieved Vmax values
of 552 hurricane events with the hurricane weather research and forecasting model (HWRF)
Vmax and the Best Track for Vmax, the overall bias of wind speed less than 40 m/s was
greater than 11 m/s, and the overall bias of wind speed greater than 40 m/s was less than
3 m/s. However, the samples of hurricane wind speed studied were not enough. In 2019,
Al-Khaldi, M [15] et al. extended the simulation study of [14] to the use of CYGNSS full
DDM. A matched filter approach between normalized simulated DDMs and measured
DDMs was applied to inverse storm parameters. The Vmax estimates were inversed by
using the data during Hurricane Irma. Compared with the reported National Hurricane
Center Best Track forecasts, the RMSE was 6.89 m/s. In 2021, the same team including Al-
Khaldi, M [16] carried out a progress update and error analysis on the research performed
by [15]. They continued to use the CYGNSS full DDM and proposed to use the synthetic
storm model to retrieve wind speed on the basis of [15]. The synthetic storm model
included the Willoughby model and Generalized Asymmetric Holland Model (GAHM).
The success of inversion was due to the combination of the GAHM model suitable for
storms with low levels of development and the Willoughby model suitable for storms
with higher levels. The inversion Vmax was obtained by combining the results of the two
models. Compared with the Best Track forecasts, the RMSE was 6.05 m/s. The RMSE was
partially improved by comparison with the reference [15]. The effects of measurement
delay extent on inverse error were also analyzed.

88



Remote Sens. 2021, 13, 3324

In 2019, Chong Wu et al. [17] used a back propagation (BP) neural network to invert
the wind speed from 0 to 30 m/s, based mainly on the DDM data from CYGNSS. The
DDM Observables included DDMA, LES, and Bistatic Radar Cross Section (BRCS). The
paper used the CYGNSS L2 wind speed data as the reference wind speed. The Pearson
correlation coefficient of the inverse wind speed and the CYGNSS wind speed data product
was 0.958, the RMSE was 1.86 m/s, and the mean relative error was 2.66%. The feasibility
and effectiveness of wind speed inversion using neural network based on DDM was
demonstrated. However, the amount of data for wind speeds greater than 20 m/s in the
paper was small and the applicability of the neural network for high wind speed data
cannot be confirmed. In the same year, Han Gao et al. [18] used eight observables in
CYGNSS L1 data (DDMA, LES, TES, specular reflection point position, satellite altitude
angle, Scatter Area, delay-Doppler correlation power mean, and Effective Area) to train
the model with a BP neural network, and then compared the reverse wind speed with the
wind speed data provided by ECMWF. When the wind speed was less than 20 m/s, the
RMSE was 1.21 m/s, and the RMSE in the wind speed range of 20~45 m/s was 2.54 m/s.
However, this paper only had 4761 wind speed data above 20 m/s, which was not enough
for high wind speed training.

In 2020, Jennifer et al. [10] proposed the Artificial Neural Network (ANN) inversion
algorithm for wind speed inversion based on CYGNSS satellite data. In this paper, six
characteristic parameters (DDMA, LES, Incidence Angle, Range Corrected Gain (RCG) [7],
and Latitude and Longitude of the specular point acquisition.) were used to train ANN
model, and CYGNSS L2 wind speed data was used as the reference wind speed. The RMSD
of wind speed inversion error for the range of 0~32 m/s was 1.51 m/s. However, the wind
speeds in the paper mainly focus on 0–20 m/s, and there was not enough research on wind
speeds above 20 m/s, thus good inversion results cannot be obtained for tropical storms. In
the same year, Sja Wang [19] performed a comparison between neural network and machine
learning methods using Tech Demo Sat-1 (TDS-1) satellite DDM map data and ECMWF
data for wind speeds in the 3–18 m/s interval. It was verified that the inversion effect of the
neural network model had a significant advantage with a 20% performance improvement.

In 2020, Cardellach et al. [20] combined CYGNSS uncalibrated Level-1 bin original
observation count with ECMWF/C3S ERA5 reanalysis dataset to obtain specular reflection
point wind speed. The study covered hurricane season data for 2018 and 2019. The
inversion was carried out by a variational technique based on physical forward model.
The inverse wind speed was compared with the background model, other spaceborne
sensors, such as NASA Soil Moisture Active Passive (SMAP), ESA Soil Moisture and Ocean
Salinity (SMOS), EUMETSAT Advanced Scatterometer on board METOP (ASCAT) A/B,
and other organizations’ CYGNSS inverse wind speed. The research showed that this
method had the ability to infer wind speed (including hurricane winds). The inverse wind
speed was the most consistent with NOAA inversion [21], but the lowest correlation was
found between inversion and the official products that were obtained with the YSLF GMF,
and the dispersion reached 9.9 m/s. The author expected that this method will work at
moderate wind speed, but this method had the possibility of underestimating wind speed.

According to the above research results, it can be found that machine learning has
been widely used in the inversion of sea surface wind speed in the field of remote sensing
at present; however, relevant studies for high wind speed greater than 20 m/s are relatively
lacking [22].

In this paper, we put forward a high wind speed inversion model for CYGNSS data
based on machine learning methods for inversion of typhoons. The datasets consist of
the CYGNSS measured L1 data published by the National Aeronautics and Space Admin-
istration (NASA) and the reanalyzed wind speed datasets of the ECMWF and National
Centers for Environmental Prediction (NCEP). Three methods, Support Vector Regression
(SVR), the combination of PCA and SVR (PCA-SVR), and Convolutional Neural Networks
(CNN), are used to train the wind speed data above 20 m/s. Due to the uneven distribution
of samples, the under-sampling method is used to extract data for training. The three
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models obtained after training are used to inverse the high wind speed during the typhoon
Bavi life cycle typhoon in 2020. Compared with the wind speed from ECMWF/NCEP, the
inversion results are used to study the performance of the three models.

2. Materials and Methods
2.1. Data Source
2.1.1. CYGNSS

The CYGNSS satellites are a constellation of eight low Earth orbit (LEO) microsatellites
launched in 2016. Each satellite is equipped with a right-hand-circular polarization (RHCP)
antenna to receive direct signals from the transmitting satellite and two left-hand-circular
polarization (LHCP) antennas to receive reflected signals from reflective surfaces such as
the sea surface. The specular reflection points collected by the CYGNSS satellite cover ap-
proximately±40◦ latitude zone in the global area, and the longitude zone is completely cov-
ered. CYGNSS seeks to improve weather prediction capabilities by studying the interaction
between ocean surface properties, humid atmospheric thermodynamics, radiation, and con-
vective dynamics associated with tropical cyclones [7,9,12,14–16,20]. CYGNSS data is en-
capsulated by NASA in netCDF file format, and this paper used version 2.1 of the CYGNSS
Level 1 data (available online at https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V2.1,
accessed on 8 April 2021), which is the result of the power expression transformed by L0
level DDM [10].

2.1.2. Mean Sea Level Pressure

Mean sea level (MSL) pressure is an important factor affecting typhoon status and its
path [23]. This paper uses the MSL pressure reanalysis data product provided by ECMWF’s
official website. The MSL pressure reanalysis dataset calculates the atmospheric pressure
on the Earth’s surface, including all land, ocean, and inland water, and then adjusts the
surface atmospheric pressure height to the height of mean sea level. The spatial resolution
of MSL pressure dataset is 0.5◦, and the temporal resolution is 1 h.

2.1.3. Global Wind Speed Data

This paper used two different global reanalysis wind speed datasets: ECMWF re-
analysis dataset and NCEP reanalysis dataset, mainly to study wind speed data at the
10 m-referenced ocean surface wind speed (u10), using UTC time. ECMWF regularly uses
its forecasting models and data assimilation system to reanalyze archived observations and
further create global reanalysis datasets describing the recent history of the atmosphere,
land, and ocean. The datasets provide sea surface wind speed at a spatial and temporal
resolution of 1 h, 0.5◦. NCEP adopts a state-of-the-art global data assimilation system and
a comprehensive database to quality control and assimilate observations from various
sources (ground, ships, radio soundings, wind balloons, aircraft, satellites, etc.) to obtain
reanalysis datasets. The datasets provide sea surface wind speed with a temporal and
spatial resolution of 1 h, 0.2◦. Further using the time, latitude, and longitude of the ob-
served data provided by CYGNSS, the reanalysis datasets are passed through spatial linear
interpolation with temporal linear interpolation to obtain the corresponding wind speed in
time and space. This paper combined the wind speed reanalysis datasets of ECMWF and
NCEP. The data from ECMWF alone were used when the wind speed is less than 20 m/s,
and the data from NCEP are used when the wind speed was greater than 20 m/s [9,24,25].
Finally, the wind speed dataset was composed into new datasets according to this criterion,
and the new datasets were used as the true wind speed for training and testing.

2.2. Machine Learning Methods

Three methods, SVR, PCA-SVR, and CNN, were used to train the data to obtain three
models; the following sections briefly outline the principles of each method.
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2.2.1. SVR

SVR can improve the generalization ability of model by seeking structural risk mini-
mization, so as to achieve the minimum empirical risk and confidence interval. Using fewer
samples can also obtain good statistical rules. The input data is normalized before the SVR
training to prevent training imbalance caused by feature anomalies. Additionally, normal-
ization can also improve the computational speed. The SVR algorithm first symmetrically
maps the input data X into a multidimensional space in a nonlinear way and then performs
linear programming in that space. The selection of parameters of SVR generally includes
three elements: The first is the selection of kernel function, here the radial basis function
(RBF) with better smoothing performance is chosen; the second parameter is the selection
of penalty factor C; the third parameter is the selection of kernel coefficient gamma value.
In order to avoid overfitting and underfitting, this paper uses the grid search method to
perform parameter search for C and gamma values when training the model [26,27]. In
order to improve the rate of parameter search, the grid search method is adjusted as follows.
Firstly, by finding the optimal parameters in a wide range roughly, and then by setting a
smaller step size to search again according to this optimal parameter taking range.

The goal of SVR can be formalized as:

Min
1
2
‖ω‖2 + C

n

∑
i=1

(ξi + ξi
∗)

s.t. yi −ωφ(x)− b ≤ ε+ ξi ξi ≥ 0 (1)

ωφ(x) + b− yi ≤ ε+ ξi
∗ ξi
∗ ≥ 0

i = 1, 2, . . . , n

where ω is the normal vector, which determines the direction of the hyperplane. n is
the number of samples, C > 0 is the penalty parameter, ε is the error sensitivity index,
and ξi and ξi

∗ are slack variables. By using the dual principle and introducing Lagrange
multipliers, the above formula is solved:

f(x) =
n

∑
i=1

(βi
∗ − βi)K

(
xi, xj

)
+ b (2)

where βi
∗ and βi are the Lagrange multipliers, K

(
xi, xj

)
is the radial basis function, and b

is the threshold. Equation (2) is a kernel function introduced by the nonlinear SVR to deal
with dimensional catastrophes [28].

The preprocessed training data were trained by SVR method, and the gamma value of
the model was determined to be 72.50 and C was 0.09 by grid search.

2.2.2. PCA-SVR

Since the number of features tends to increase the model training time, PCA was
used here to reduce the dimensionality of SVR input by secondary integration of multidi-
mensional feature covariates in order to reduce the model training time and improve the
independence of feature covariates. PCA, as a technique of data dimensionality reduction,
can project the original features to the dimension with the maximum amount of projected
information as much as possible and ensure the minimum loss of information after dimen-
sionality reduction without affecting the final model prediction results, the processed data
are then fed into the SVR for data prediction [29,30].

In the PCA-SVR prediction model, a total of 27 influencing factors were used as input
data in this paper. The input training set was processed by PCA to obtain the principal
components PC1, PC2, . . . , and PCk (k ≤ 27) for model prediction, and it was found
that the cumulative contribution of the first 13 principal components reached more than
85%, which could replace all feature covariates for model training, so k was 13. Then, the
dimensionality reduction data was input into SVR, and the gamma value of the model was
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determined to be 32.50 and C was 0.37 using the grid search method. Figure 1 shows the
structure of the PCA-SVR model.
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When the wind speed modeling is completed and enters the wind speed inversion
stage, the feature parameters of the CYGNSS test set are normalized and directly multiplied
with the corresponding feature vectors to obtain the principal component parameters. Then,
the trained model is used for high wind speed inversion and the inversion accuracy of the
inverse wind speed is calculated.

2.2.3. CNN

A CNN is a feed-forward neural network that performs well on image, audio, and
text data. It is easy to update the data model by a back propagation algorithm. The
CNN architecture (i.e., the number of layers and their structure) can be applied to a wide
range of problems, while the hidden layers also reduce the algorithm’s reliance on feature
engineering. A CNN is suitable for training with large amounts of data and is capable
of solving complex nonlinear problems. The complete neural network structure includes
input layer, convolution layer, Relu activation function, pooling layer, fully connected layer,
and output layer [19,31]. The optimizer uses adaptive moment estimation (Adam) gradient
descent algorithm instead of stochastic gradient descent (SGD) because Adam is able to
adjust the learning rate of each parameter, making the parameters smooth for extracting
data features. A total of Xn samples are trained and the inversed wind speed values W
are output.

After a large amount of data validation, this paper finally determined the number
of convolutional layers to be 3, no pooling layer was set, the convolutional kernel size
was 3 × 1, dropout was 0.3, the number of convolutional kernels in each layer was 32,
batch-size was 1000, and epochs were 2000. Figure 2 shows the structure of the CNN model
used in this paper.
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2.3. High Wind Speed Inversion Process
2.3.1. Data Processing Flow

The process of high wind speed inversion in this paper can be briefly summa-
rized into four parts: (i) determining the satellite data as well as wind speed data used;
(ii) preprocessing and normalizing data; (iii) training the processed data with the three
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machine learning methods described above; (iv) using test data to inverse wind speed and
analyzing performance of inversion wind speed. The specific wind speed inversion process
is shown in Figure 3.
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2.3.2. Data Pre-Processing

In order to obtain good results, any data derived from a remote sensing satellite
for Earth observation needs to undergo rigorous data pre-processing. The datasets were
processed according to the following criteria:

(1) CYGNSS data quality control (QC) flags.
(2) Positive values for both CYGNSS observations and wind speed matching data.
(3) The RCG of the observations is greater than 10, with the RCG defined and described

in [7].
(4) The incidence angle of the satellite antenna is less than 60◦.
(5) The specular reflection point is at sea.

Because the occurrence time of each typhoon was not continuous, the CYGNSS
data used in this paper was intermittent in time. CYGNSS data from 30 June 2018 to
3 July, 27 September 2018 to 30 September, 1 January 2019 to 3 January, 3 August 2019 to
8 August, 6 October 2019 to 12 October, 24 October 2019 to 25 October, 30 October 2019,
4 November 2019 to 7 November, 2 August 2020 to 4 August, 10 August 2020 to 11 August
and 3 September 2020 were used as the train data (Figure 3), and the reanalysis wind
speed datasets of ECMWF and NCEP in the corresponding time were used as the true
wind speed data (Figure 3). Figure 4a,b respectively show the number of original samples
and the corresponding number of final training samples for each wind speed range. The
number of original samples means the data number after filtering the data according to
the preprocessing criteria, and the number of final training samples means the training
set data (including training data and validation data) number for Machine Leaning after
under-sampling original samples.
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Figure 4. (a) Original training samples histogram; (b) Final training samples histogram.

From Figure 4a, we can see that the wind speed samples were concentrated between
20~30 m/s, the number of wind speed samples larger than 30 m/s and 20~30 m/s was
seriously unbalanced, the imbalance of the number of samples easily led to the bias of the
trained model, which did not have generalization. Therefore, the under-sampling method
was used for random sampling to remove some majority samples from the training set,
and in order to ensure that there were enough samples for training and that the amount of
data for each type of wind speed interval was similar. Finally, when the ratio of samples
between 20~30 m/s interval and more than 30 m/s interval was 1:1, a total of 20,648 final
training samples were used for training. The specific samples are shown in Figure 4b.
Subsequent model training and data research were based on this basis.

2.3.3. Feature Parameter Selection

After data pre-processing, it could be found that the L1 level data products of CYGNSS
included many satellite observables, such as DDMA, LES, etc., which are characteristic
values depending on wind speed as well as sea surface roughness. Due to the high wind
speed measurement environment, especially typhoons, the sensitivity of the characteristic
parameters of the two-dimensional delay-Doppler power waveform of the GNSS reflection
signal to wind speed decreases, causing an increase in the wind speed measurement error.
To reduce the performance error of CYGNSS in detecting typhoons, more characteristic
parameters of CYGNSS L1 datasets were extracted to optimize the accuracy of the wind
measurement model.

In this paper, 27 eigenvalues related to sea surface wind speed were used, specifically:
Pseudo Random Noise (PRN) satellite number, DDMA, LES, antenna gain, distance from
transmitter to specular reflection point, distance from receiver to specular reflection point,
specular reflection point (longitude, latitude, time, and elevation angle), QC Flag, Signal-
to-Noise Ratio (SNR), GNSS-R satellite position in ECEF, GNSS satellite position in ECEF,
BRCS’s DDM (specular delay line and Doppler column), BRCS’s DDM (peak delay line
and peak Doppler column), vehicle’s specular delay, corrected DDM instrument specular
delay, the direct signal code phase, and MSL pressure.

3. Results and Discussion
3.1. Typhoon Validation Data

To analyze the feasibility of the three methods for wind speed inversion, the data of the
Typhoon Bavi event in August 2020 were studied here. The reflected signal data collected
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by CYGNSS during Typhoon Bavi in the western Pacific Ocean during 2020.8.22~2020.8.26
were processed as test data (Figure 3). The reanalysis typhoon data released by ECMWF
and NCEP were used as the true wind speed for the evaluation of wind measurement
accuracy. Only wind speed data above 20 m/s during Typhoon Bavi were inversed here,
because the training set in the Machine Learning method only includes data samples
with wind speed greater than 20 m/s, as shown in Figure 4. A total of 7389 samples
were available for the experiment over the four days. This subsection provides a detailed
analysis of the CYGNSS satellite flight tracks and the corresponding true wind speeds
during Typhoon Bavi.

Figure 5a shows the location of region for performance evaluation, and Figure 5b
shows Typhoon Bavi (2020.8.22~2020.8.26) moving track map and daily area of interest.
The CYGNSS data during 2020.8.22~2020.8.26 was first preprocessed for data, and then
analyzed specifically according to time after obtaining analyzable data. Typhoon Bavi
occurred in the western Pacific Ocean. The typhoon hourly track data used in this study
was collected by Department of Water Resources of Zhejiang Province (http://typhoon.
zjwater.gov.cn/, accessed on 20 June 2021). In addition, it was combined with the data
distribution of CYGNSS to determine the specific typhoon area. Since there was no data
in the region after preprocessing on 22 August 2020, this paper mainly studied the data
from 23 August 2020 to 26 August 2020. In Figure 5b, the five pointed star represents the
starting position of the typhoon, and the dotted box represents each divided typhoon area.
Table 1 shows the specific selection range of each regional division.
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Figure 5. (a) Location of the region for performance evaluation (world map: preview number: GS (2016) 1563); (b) Typhoon
Bavi (2020.8.22~2020.8.26) moving track map and daily interested area.

Table 1. 2020.8.22~2020.8.26 typhoon area latitude and longitude selection range.

Date Longitude Range (◦) Latitude Range (◦)

8.22 120◦~127◦ 22◦~30◦

8.23 122.5◦~129.5◦ 23◦~31◦

8.24 122◦~129◦ 24◦~32◦

8.25 121.5◦~128.5◦ 27◦~35◦

8.26 121◦~128◦ 30◦~38◦

This paper mainly focused on the data with wind speed above 20 m/s. The proportion
of samples has been determined in Section 2.3.2. Two measurement standards were used
to compare the performance of three models: 1. Mean absolute error (MAE); 2. Root Mean
Square Error (RMSE); and 3. Correlation Coefficient.
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3.2. Analysis of Overall Inversion Results

The overall performance of the three trained models was investigated for all data
during the typhoon, and Figure 6 shows the scatter plots of the true and inverse wind
speed for all data during the typhoon for the three models. Table 2 shows the specific
performance analysis of the three models.
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Table 2. Model performance analysis (Correl. Coef. represents the correlation coefficient).

Performance
(m/s)

Overall Interval 20~30 m/s Above 30 m/s

SVR PCA-
SVR CNN SVR PCA-

SVR CNN SVR PCA-
SVR CNN

MAE 4.10 3.85 2.71 3.66 3.32 2.10 8.44 9.08 8.52
RMSE 5.48 5.10 3.80 4.88 4.17 2.64 9.51 10.50 9.22
Correl.
Coef. 0.40 0.41 0.55 0.20 0.24 0.25 0.28 0.19 0.32
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Firstly, it can be demonstrated from the scatter plot in Figure 6 that all three methods
could be used to inverse the wind speed. In Figure 6, it was obvious that the SVR model
inversion results had the greatest dispersion, and the inversion results reached a minimum
of 10 m/s. The PCA-SVR model after adding data downscaling was partially improved for
the problem of data divergence, but there was still a bias. The true wind speed of 20 m/s
inversed the results around 35 m/s. While the CNN model had the most concentrated
scattered data, the minimum inverse wind speed was about 15 m/s. The inversion results
for the wind speed dataset around 20 m/s converged significantly and the outcomes
were better than the other two methods. In general, the CNN method showed good
inversion performance.

The performance of each of the three models was analyzed in three data intervals:
(i) overall; (ii) 20~30 m/s; and (iii) above 30 m/s. From Table 2, except for the MAE value
of CNN above 30 m/s, which was slightly inferior to SVR, all the error results indicated
that CNN had the best performance. PCA-SVR was the second and SVR was the worst.
Especially in the three data intervals, the correlation coefficients of CNN model were
the highest. Further analysis showed that the MAE of CNN in the overall interval was
improved by 33.90%, RMSE by 30.66% and correlation coefficient by 37.50% over SVR.

However, when the typhoon wind speed was greater than 30 m/s, the deviations of
the wind speed values obtained from all three model inversions were all large, possibly
because of the lack of higher wind speed train data (>40 m/s), as in Figure 4b, which leads
to large bias in the inversion of typhoon data higher than 30 m/s.

3.3. Analysis of Daily Inversion Results by CNN Models

It was known from the analysis in Section 3.2 that the CNN model produced better
wind speed inversion results for the overall data during typhoons. Considering the large
variation of daily climatic environment and other factors during typhoons, which may
affect the results of daily data collection from satellites for the same sea area, the CNN
model was used for specific analysis of daily data. Figure 7 shows the daily CYGNSS
satellite flight track and corresponding CNN wind speed, while Figure 8 corresponds to
the absolute value of wind speed inversion (daily true wind speed minus the CNN model
inverse wind speed). Table 3 shows the daily data performance results of the CNN model.
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speed value, Unit: m/s.
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Table 3. CNN model daily data performance analysis results.

Date Aug. 23 Aug. 24 Aug. 25 Aug. 26

MAE (m/s) 2.33 2.29 4.18 4.21
RMSE (m/s) 2.95 2.92 5.70 5.25

It can be seen from Figure 7 that the CNN model could be used to inverse the typhoon
wind speed, and the inverse wind speed can reach up to 55 m/s. Figure 8 and Table 3
show that the inversion results for 23 and 24 August 2020 were smaller errors compared
to the last two days. The reason was that the true wind speeds of the first two days were
mostly less than 30 m/s. The true wind speed of the data on 25 and 26 August 2020 was
up to 45 m/s, and there were more data in the interval of 30 m/s to 45 m/s, so the CNN
inversion results showed relatively large errors. This conclusion coincides with the results
in Table 2.

The above contents have verified the accuracy of the model. Next, the comparison
between the inverse wind speed and the typhoon track data was discussed. Table 4 shows
the results of the comparison between CNN inverse wind speed, true wind speed (ECMWF
and NCEP reanalysis wind speed data), and Beaufort scale of typhoon track data (from
Department of Water Resources of Zhejiang Province). The approximate wind speed is
similar to Best Track data. The CYGNSS samples here should meet less than spatial ± 0.5◦

and temporal ± 0.5 h from the typhoon track data. The five datasets satisfied the above
conditions.

Table 4. Comparison results of wind speed data from Department of Water Resources of Zhejiang Province.

Beaufort Scale
(Approximate Wind

Speed)

11
(30 m/s)

12
(33 m/s)

12
(38 m/s)

14
(42 m/s)

14
(42 m/s)

Date Aug. 24 Aug. 24 Aug. 25 Aug. 25 Aug. 26
True wind speed (m/s) 20.07 20.01 24.99 33.66 34.00
CNN wind speed (m/s) 19.24 22.88 27.47 28.94 24.78
Distance from the center

of the typhoon track (km) 56.54 26.03 57.60 50.91 66.91

In Table 4, comparing with CNN wind speed and Typhoon track data, the first column
result had the smallest deviation, and the fifth column result was the worst. It shows the
greater wind speed level, the worse error is obtained. It is the same result as Tables 2
and 3, the reason has been analyzed before. However, in this paper, the true wind speed
(ECMWF and NCEP reanalysis wind speed data) was used as the training benchmark of
CNN model. As can be seen from Table 4, compared with the approximate wind speed
(from Department of Water Resources of Zhejiang Province) during the typhoon, the true
wind speed was actually underestimated, and the inversion performance of CNN model
was limited by the true wind speed.

4. Conclusions

In response to the limitations of environmental conditions during typhoons, the high
cost of collecting typhoon wind speed data leads to difficulties in obtaining training samples
for high wind speeds. DDM observables such as DDMA and LES can change with the
change of wind speed. Some traditional sea surface high wind speed inversion methods
use a single DDM-derived observable (DDMA or LES), the incidence angle of specular
reflection, and the significant wave height as parameters to establish GMF models with
wind speed for wind speed inversion, which cannot fully explore the hidden features in
the data. This limits the accuracy of high wind speed inversion. In order to use multi-
dimensional data features to fully exploit the data during typhoons and improve the
accuracy of the inversion of typhoon wind speeds in the sea area and the performance
of real-time monitoring, this paper proposed a CYGNSS inversion method for high wind
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speed on the sea surface based on machine learning. Firstly, CYGNSS satellite data and
true wind speed data from ECMWF and NCEP were used to construct the original datasets,
and then three machine learning methods, SVR, PCA-SVR, and CNN, were used to train
the data greater than 20 m/s during the typhoon. To avoid bias of the models, the under-
sampling method was adopted to control the number of samples. Lastly, the trained models
were used for the inversion of Typhoon Bavi from 23 to 26 August 2020. The following
conclusions could be drawn from the experimental results.

(1) All three models can be used to inverse the sea surface high wind speed from CYGNSS
data. SVR can effectively solve the regression problem of high-dimensional character-
istics, so the 27-dimensional characteristic parameters can be finally regressed to the
wind speed value. Due to the large samples and high mapping dimension of kernel
function, the calculation is too large, so PCA is used to reduce the dimension of data,
which can speed up the training speed and obtain better wind speed inversion results.

(2) The CNN method can map arbitrarily complex nonlinear relationships and extract
hidden deep-level features in the data. Even better, it also has the characteristics of
strong robustness and self-learning capability. From an overall perspective, better
results were obtained by using the CNN model for sea surface high wind speed
inversion. The MAE of CNN was 2.71 m/s and RMSE was 3.8 m/s. Compared with
the SVR model, the MAE of CNN was improved by 33.90% and RMSE improved by
30.66%. However, the inversion results of the three models for wind speeds above
30 m/s had large deviations. The reason for this error may be related to the lack of
high wind speed data.

(3) The daily data inversion results during the typhoon show that CNN can be applied
to the high wind speed inversion when the daily climate environment and other
factors change greatly during the typhoon. Compared with the wind speed data at
the typhoon center point provided by the Department of Water Resources of Zhejiang
Province, it can be found that the higher the wind level, the larger the error between
the true wind speed and the CNN inversion wind speed value near the typhoon center
point. This error was caused by using underestimated true wind speeds (ECMWF
and NCEP reanalysis wind speed data) to train the CNN model.

The difficulty of high wind speed inversion is the lack of higher wind speed samples,
especially more than 40 m/s data, which leads to insufficient model training. Except for
this, the selection of true wind speed during typhoons for training is also the key to the
performance of the inversion. In the future, with the increasing amount of higher wind
speed data and the use of more accurate model winds such as HWRF, GPS Dropsondes,
and SFMR during typhoons, the accuracy of the obtained model will be improved and the
error of typhoon inversion will be reduced. Eventually, the real-time prediction capability
of typhoons will be realized.
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