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Abstract. A new fused Bayesian maximum entropy–variational analysis 
(BMEVA) method for enhanced radar/synthetic aperture radar (SAR) 
imaging is addressed as required for high-resolution remote sensing (RS) 
imagery. The variational analysis (VA) paradigm is adapted via 
incorporating the image gradient flow norm preservation into the overall 
reconstruction problem to control the geometrical properties of the desired 
solution. The metrics structure in the corresponding image representation 
and solution spaces is adjusted to incorporate the VA image formalism and 
RS model-level considerations; in particular, system calibration data and 
total image gradient flow power constraints. The BMEVA method 
aggregates the image model and system-level considerations into the fused 
SSP reconstruction strategy providing a regularized balance between the 
noise suppression and gained spatial resolution with the VA-controlled 
geometrical properties of the resulting solution. The efficiency of the 
developed enhanced radar imaging approach is illustrated through the 
numerical simulations with the real-world SAR imagery. 

1   Introduction 

The Bayesian approach for high resolution radar image formation is detailed in 
many works; here we refer to [1] – [3] where such approach is adapted to remote 
sensing (RS) applications considered in this paper. Further information theoretic-
based development of the Bayesian imaging paradigm that employs the maximum 
entropy (ME) robust regularization of the nonlinear image reconstruction inverse 
problem was developed recently in [4] – [6] where it was addressed to as the 
Bayesian maximum entropy (BME) method. On the other hand, an alternative 
approach to image enhancement and noise suppression was proposed and detailed 
in [7] – [10] where the variational analysis (VA) paradigm was employed to 
incorporate a priori information regarding the image geometrical properties 



specified by its gradient flow over the image frame, while no particular model of 
the imaging system was employed. In view of this, the VA paradigm may be 
classified as system model-free image enhancement approach [7]-[10]. Some 
second order partial differential equation (PDE) models for specifying the gradient 
flow over the image frame were employed in different VA approaches to 
incorporate the intrinsic image geometry properties into the enhancement 
procedures [7] – [10]. On one hand, a considerable advantage of the VA paradigm 
relates to its flexibility in designing the desirable error metrics in the corresponding 
image representation and reconstruction spaces via defining different variational 
cost functionals and relevant PDE in the overall VA optimization problem [8], 
[10]. On the other hand, the crucial limitation of all VA-based methods lies in their 
descriptive system-model-free deterministic regularization nature because these 
methods do not employ statistical optimization strategies, i.e. do not consider a 
particular RS system model, and do not incorporate image and noise statistics into 
the VA enhancement strategy. In contrast, the BME approach is based on the 
statistical optimization paradigm [4], [5], [11] adapted for a particular RS system 
model and robust a priori information about the statistics of noise and the desired 
image. The latter is associated with the spatial spectrum pattern (SSP) of the 
wavefield backscattered from the probing surface. As the SSP represents the power 
distribution in the RS environment, the power non-negativity constraint is 
incorporated implicitly in the BME strategy but that do not incorporate specific VA 
geometrical properties of the image, e.g. its gradient flow over the scene/frame. In 
view of this, the following problem arises: how to aggregate the statistically 
optimal BME method with the VA formalism for enhanced RS imaging that 
incorporate the advantages of both the VA and the BME approaches? An 
approximation to this problem was initially proposed in [12] where it was 
considered in the context of alleviating the ill-posed nature of the VA techniques 
that employ the anisotropic diffusion RDE as an optimization criterion [7], [8]. In 
this paper, we address a new balanced statistical-regularization fusion paradigm 
that leads to a new method addressed to as the fused Bayesian maximum entropy 
variational analysis (BMEVA) technique. The VA paradigm is adapted via 
incorporating the image gradient norm preservation into the overall reconstruction 
problem to control the geometrical properties of the desired solution.  

2   Problem Statement 

Following [1], [3], [4] we define the model of the observation wavefield u by 
specifying the stochastic equation of observation (EO) of an operator form  

u=Se+n;  e∈E;  u,n∈U;  S:E→U, (1) 

in Hilbert signal spaces E and U with the metrics structures induced by the inner 
products, [u1, u2]U and [e1, e2]E, respectively, where the Gaussian zero-mean random 
fields e, n, and u correspond to the initial coherent backscattered field, noise and 



observed wavefield, respectively. Next, taking into account the experiment design 
(ED) theory-based projection formalism [4], [5] we proceed from the operator form 
EO (1) to its conventional finite-dimensional vector form, 

U=SE+N , (2) 

where E, N and U define the zero-mean vectors composed of the coefficients Ek , 
Nm , and Um of the numerical approximations (sample decomposition [4]) of the 
relevant operator-form EO (1), i.e. E represents the K-D vector composed with the 
coefficients {Ek=[e,gk]E, k=1,…,K} of the K-D approximation, 
e(K)(r)=(PE(K)e)(r)=∑Ekgk(r), of the initial backscattered wavefield e(r) distributed 
over the RS scene (image frame) R∍r [4], and PE(K) is a projector onto the K-D 
signal approximation subspace E(K)=PE(K)E=Span{gk} spanned by some properly 
chosen set of K basis functions {gk(r)} [5], [11]. The M-by-K matrix S that 
approximates the signal formation operator (SFO) in (2) is given now by [4]  

Smk=[Sgk,ϕm]U;  m=1,…,M;  k=1,…,K , (3) 

where the set of the base functions {ϕm(y)} that span the finite-dimensional spatial 
observation subspace U(M)=PU(M)U=Span{ϕm} defines the corresponding projector 

PU(M) induced by these array spatial response characteristics {ϕm(y)} [11].  
The ED aspects of the SSP estimation inverse problem involving the analysis of 

how to choose (finely adjust) the basis functions {gk(r)} that span the signal 
representation subspace E(K)=PE(K)E=Span{gk} for a given observation subspace 
U(M)=Span{ϕm} were investigated in more details in the previous studies [5], [14]. 
Here, we employ the pixel-format basis [5], [11] and the ED considerations 
regarding the metrics structure in the solution space defined by the inner product  

||B||2B(K)=[B,MB] , (4) 

where matrix M is referred to as the metrics inducing operator [4], [5]. Hence, the 
selection of M provides additional geometrical degrees of freedom of the problem 
model. In this study, we incorporate the model of M that corresponds to a matrix-
form approximation of the Tikhonov’s stabilizer of the second order that was 
numerically designed in [4]. 

The RS imaging problem under consideration is to find an BMEVA-optimal 
estimate )(ˆ rB  of the SSP B(r) distributed over the scene (image frame) R∍r by 
processing whatever values of the discrete measurements U of the data signals (2) 
are available that incorporates also non-trivial image model information into the 
estimation strategy. Thus, the purpose of our study is to develop a generalization of 
the BME estimator [4], [5] adapted for the high-resolution SSP reconstruction 
problem that aggregates the prior image model considerations induced by the 
adopted metrics structure (4) in the image representation and solution spaces with 
geometrical considerations invoked from the VA formalism [7], [10].  



3   Generalized BME Estimator for SSP 

The objective of a statistical BME estimator is to obtain a unique and stable 
estimate B̂  by processing the measurement data U in an optimum fashion, 
“optimum” being considered in a sense of the Bayes minimum risk strategy [4], 
[13]. Note that the ill-posed nature of such inverse problem results in the ill-
conditioned SFO [3], [11]. The ME principle [13] provides the well-grounded way 
to alleviate the problem ill-poseness. According to the ME paradigm [13], the 
whole image is viewed as a composition of a great amount of elementary discrete 
speckles (pixels) with the elementary “pixel brightness” normalized to the 
elementary unit of the adopted image representation scale, e.g. 256 grades of gray 
in the conventional gray-scale image formats [6], [11]. Following the ME approach 
developed in [4], the a priori probability density function (pdf) p(B) of the discrete-
form image B is to be defined via maximization of the entropy of the image 
probability that satisfies also the constraints imposed by the prior knowledge [5]. 
The vector B is viewed as an element of the nonnegative set BC of the K-D vector 
space BC∍B with the squared norm induced by the inner product (4). In addition, 
the physical factors of the experiment can be generalized via imposing the 
physically obvious ED constraint that bounds the average squared norm of the SSP  
by some preserved constant total power E0, i.e.  

∫ =
C

Edp
B

BBMBB, 0)(][  , (5) 

which specifies the calibration constraint for the SSP reconstruction. Thus, the a 
priori pdf p(B) is to be found as a solution to the Lagrange entropy maximization 
problem with the Lagrange multipliers α, and λ and is specified as follows [4] 
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for B∈BC, and p(B)=0 otherwise. Routinely following the variational scheme 
detailed in [4] we obtain the solution to (6) that yields the Gibbs-type a priori pdf 

}],[α)α(lnexp{)α|( ∑ −−= MBBBp  , (7) 

where ∑(α) represents the so-called Boltzmann statistical sum [4], in which the 
normalization parameter α must be adjusted to satisfy the calibration constraint (5).  

Next, we define the log-likelihood function of the desired vector B [4] given the 
Gaussian measurements U specified by the EO (2) 
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Using (7) and (8), the BME strategy for SSP reconstruction can be stated now as 
the following nonlinear optimization problem [15] 

)}α|(ln)Λ({minargˆ
α,

BU|BB
B

p−−=  . (9) 

The optimization problem (9) is structurally similar to one considered in [4]. 
The modifications incorporated in this particular study include the redefined 
metrics structure (4) and boundary constraint (6). Thus, following the approach 
developed in [4], the desired solution to (9) in a form of the nonlinear procedure is 

])ˆ()ˆ([)ˆ(ˆ BZBVBWB −=  . (10) 

Here, diag)}ˆ()ˆ({)ˆ( BFUUBFBV ++=  represents a vector that has a statistical 
meaning of a sufficient statistics (SS) for the SSP estimator, operator 

1111 ))ˆ()(ˆ()ˆ( −+−−−++= NN RSBSDRSIBDBF  is referred to as the SS formation 

operator, the vector diag)}ˆ()ˆ({)ˆ( BFRBFBZ N
+=  represents the shift (bias) vector, 

and 12 ))ˆ(α2)ˆ(()ˆ( −+= MBDBTBW  has the statistical meaning of a solution 
dependent (i.e., adaptive) regularizing window operator with the stabilizer 

}})ˆ()ˆ(diag{{)ˆ( diagSBFBFSBT ++= . Adaptation is to be performed over both the 

current SSP estimate, B̂ , and the normalization constant α adjusted to satisfy the 
calibration constraint (5). 

4   VA Formalism for SSP Enhancement 

The goal of adapting the VA formalism is to enhance the overall quality of the 
SSP reconstructed via the BMEVA procedure (10). The VA purpose is to perform 
the simultaneous extraction and synthesis of the geometrical image model 
information from a sequence of the evolutionary innovated image reconstructions 
(the frames in the VA terminology [10]) via incorporating the additional quality 
control  functional (termed the VA energy function) into the overall BMEVA fusion 
strategy. The fusion process is dynamic with the fusion rate driven by some 
anisotropic diffusion gain function [7], [10] dictated by enhancement goals.  

In our particular study, we limit ourselves with the control of the spatial gradient 
flow functional that results in the following VA energy minimization problem [10] 

( ) ( )
)(

2 min|,)(|ρ)(
r

rrrr
BRVA dBBE →∇= ∫ , (11) 

where T)//( yx ∂∂∂∂=∇ defines the spatial differential operator [11] in the 
Cartesian coordinate system r=(x,y)T∈R that when applied to the SSP B(r) returns 



its gradient distribution )(rB∇  over the image frame R. Following the 
conventional definition for the VA energy function proposed in [7], [8] we adopt 
here the Lorentzian model of the error functional )(⋅2ρ  in (11), i.e. 
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which does not have an explicit dependence on the SSP B(r), and where σ  is a 
normalizing constant. With the Lorentzian error functional (12), the variational 
procedure 0))(( =rBEVAδ  leads to the following Euler-Lagrange PDE as the VA 
optimization criterion [10] 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
∇⎟⎟⎠

⎞
⎜⎜⎝

⎛ ∇+⋅∇=
∂

∂
−

),(
2

|),(|1),(
1

2

2
tBtB

t
tB rrr

σ
 , (13) 

where t represents the evolution time translated into the iteration step number in the 
numerical reformulation of the PDE. The (13) defines the so-called Perona-Malik 
anisotropic diffusion equation [7]. It is a nonlinear PDE that has no analytic 
solution. Hence, the VA problem (11) can be solved only numerically employing 
some efficient iterative techniques [11], [12]. We next have to proceed with the 
fusion of the VA optimization problem (11) with the generalized BME strategy (9).   

5   BMEVA Method and Numerical Implementation Technique 

In the proposed BMEVA method, we aggregate the VA and BME approaches in 
the fused strategy 

}||||)α|(ln)({minargˆ 2

|α
LBMEVA p BBU|BB

B
∇+−Λ−= γ

γ,
, (14) 

where B∇  defines the numerical (pixel-format) approximation to the gradient 
vector,  2|||| LB∇  represents the numerical approximation to the VA energy function 
(11) with the adopted Lorentzian error functional (12), and γ  is referred to as the 
regularization parameter that balances the VA and BME criterions in the fused 
BMEVA strategy. In fact, the (14) is an NP-hard optimization problem [11], i.e. ill-
posed in a computational sense [8], [11]. This problem has no analytic solution in 
polynomial time [8], hence, it must be solved numerically employing some 
practically reasonable regularization [11] to alleviate its ill-poseness.  Here, we 
adopt the robust regularization approach based on the logarithm series tools [8]. 
Pursuing such technique, we first, substitute 2|||| LB∇  in (14) by its second-order 
logarithm series approximation 
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where 

( ) LLLQ τ21 +=      and      2σ81τ −=  , (16) 

are the composed VA-regularized weighting matrix and the relaxation parameter, 
respectively, and the matrix L represents the numerical approximation [11] to the 
Laplacian second-order spatial differential operator 2∇ . With the approximations 
(15), (16) the strategy (14) can be transformed into 

]},[)α|(ln)({minargˆ
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QBBBU|BB
B

γ
γ

+−Λ−= pBMEVA
,
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Due to the performed robust regularization, the modified strategy (17) relates 
now to a convex-type optimization problem [8], [11], thus, it can be solved 
numerically in a polynomial time [8]. The variational technique [4], [5] applied to 
the problem (17) yields the following numerical variational equation for the 
desired SSP  

0QBMBDVZTB =++−+ γ2α2 2  . (18) 

Last, solving routinely (18) with respect to B and exposing the dependence of 
T(B), D(B), V(B), and Z(B) on the solution B̂ we obtain the desired BMEVA 
estimator 

])ˆ()ˆ()[ˆ(ˆ BZBVBWB −=  , (19) 

where 
12 )2)ˆ(α2)ˆ(()ˆ( −++= QMBDBTBW γ  , (20) 

represents the adaptively regularized VA-balanced nonlinear spatial window 
operator. The derived BMEVA estimator (19), (20) can be converted into an 
efficient iterative algorithm using the Seidel fixed-point iteration method [11]. 
Pursuing such the approach [11], we refer to the SSP estimate on the right-hand 
side in (19) as the current estimate )(ˆ tB at the tth iteration step, and associate the 
entire right-hand side of (19) with the rule for forming the estimate )1(ˆ +tB  for the 
next iteration step (t+1) that yields 

])ˆ()ˆ()[ˆ(ˆ )()()()1( tttt BZBVBWB −=+ . (21) 

Due to the performed regularized windowing (20), the iterative algorithm (21) 
converges in a polynomial time [8] regardless of the choice of the balance factor γ  
within the prescribed normalization interval, 10 ≤≤ γ .  Note, that in the 



simulations reported in the next resuming section, forty iterations were sufficient to 
provide the 1% convergence error rate, (i.e. ( 1) ( ) 2 2ˆ|| || 10 40t t t+ −− ≤ ∀ >B B ) of the 
developed iterative BMEVA algorithm (21) for all considered simulation 
scenarios. 

6   Simulations and Discussions 

In the simulations, we considered the SAR with partially (fractionally) synthesized 
aperture as an RS imaging system [6], [14]. The SFO was factorized along two 
axes in the image frame: the azimuth (horizontal axis) and the range (vertical axis). 
Following the common practically motivated technical considerations [3], [6], [14] 
we modeled a triangular shape of the SAR range ambiguity function (AF) of 3 
pixels width of the 256-by-256 frame pixel format, and two side-looking SAR 
azimuth AFs for two typical scenarios of fractionally synthesized apertures: (i) 
azimuth AF of a Gaussian shape of 5 pixels width at 0.5 of its maximum level 
associated with the first system model and (ii) azimuth AF of a |sinc|2 shape of 7 
pixels width at the zero crossing level associated with the second system model, 
respectively. In the simulations, the developed BMEVA method was implemented 
iteratively  (21) and compared with the conventional matched spatial filtering 
(MSF) low-resolution image formation method [2], [3] and the previously 
proposed high-resolution BME and VA approaches to illustrate the advantages of 
the fused strategy. The results of the simulation experiment indicative of the 
reconstruction quality are reported in Figures 1 thru 4 for two different RS scenes 
borrowed from the real-world RS imagery of the Metropolitan area of Guadalajara 
city, Mexico [16]. Figures 1.a. thru 4.a show the original super-high resolution test 
scenes (not observable in the simulation experiments with partially synthesized 
SAR system models). Figures 1.b thru 4.b present the results of SSP imaging with 
the conventional MSF algorithm [2]. Figures 1.c thru 4.c present the SSP frame 
enhanced with the VA method [7]. Figures 1.d thru 4.d show the images 
reconstructed with the BME method [6]. Figures 1.e thru 4.e show the images 
reconstructed applying the proposed BMEVA technique for the equally balanced 
criterions in the fused strategy, i.e. γ=1 [15]. Finally, figures 1.f thru 4.f present the 
BMEVA reconstruction results for experimentally adjusted balance factor γ=0.25 
[15]. Finally, the quantitative performance enhancement metrics evaluated as the 
improvement in the output signal to noise ratio (IOSNR) [4] were calculated for 
the simulations with different input SNRs (µ) and the resulting IOSNRs are 
reported in Tables 1 and 2. The qualitative simulation results presented in Figures 1 
thru 4 and corresponding quantitative performance metrics reported in Tables 1 
and 2 manifest the considerably enhanced reconstruction performances achieved 
with the proposed BMEVA method in comparison with the previously developed 
BME and VA approaches that do not employ the fusion strategy. 
 



   
a. Original super-high 

resolution scene 
b. Image formed with the 

MSF method  
c. Image post-processed  

with the VA method 

   
d. SSP reconstructed with 

the BME method 
e. SSP reconstructed with 
the BMEVA method (γ=1) 

f. SSP reconstructed with  
BMEVA method (γ=0.25) 

Fig. 1. Simulation results for the first scene: first system model 
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resolution scene 
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MSF method 
c. Image post-processed  

with the VA method 

   
d. SSP reconstructed with 

the BME method 
e. SSP reconstructed with 
the BMEVA method (γ=1) 

f. SSP reconstructed with  
BMEVA method (γ=0.25) 

Fig. 2. Simulation results for the second scene: first system model 
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resolution scene 
b. Image formed with the 

MSF method 
c. Image post-processed  

with the VA method 

   
d. SSP reconstructed with 

the BME method 
e. SSP reconstructed with 
the BMEVA method (γ=1) 

f. SSP reconstructed with  
BMEVA method (γ=0.25) 

Fig. 3. Simulation results for the first scene: second system model 

   
a. Original super-high   

resolution scene 
b. Image formed with the 

MSF method 
c. Image post-processed  

with the VA method 

   
d. SSP reconstructed with 

the BME method 
e. SSP reconstructed with 
the BMEVA method (γ=1) 

f. SSP reconstructed with 
BMEVA method (γ=0.25) 

Fig. 4. Simulation results for the second scene: second system model 



Table 1. IOSNR values [dB] provided with different reconstruction methods. Results are 
reported for different SNR µ for the first test scenes and two different simulated SAR 
systems  

 

SNR 
[dB] 

IOSNR [dB] 
 System 1 

IOSNR [dB] 
 System 2 

Reconstruction Method Reconstruction Method 

µ VA BME BMEVA 
(γ=1) 

BMEVA 
(γ=0.25) VA BME BMEVA 

(γ=1) 
BMEVA 
(γ=0.25) 

10 0.811 3.671 4.551 4.898 2.012 6.208 8.581 9.021 
15 0.813 3.641 4.606 4.900 2.009 6.232 8.667 9.141 
20 0.812 3.629 4.673 4.906 1.999 6.264 8.628 8.968 
25 0.815 3.626 4.669 4.901 2.012 6.319 8.704 8.970 
30 0.813 3.627 4.643 4.912 2.011 6.350 8.739 9.067 
 
Table 2. IOSNR values provided with different reconstruction methods. Results are 

reported for different SNRs for the second test scenes and two different simulated SAR 
systems 

 

SNR 
[dB] 

IOSNR [dB] 
 System 1 

IOSNR [dB] 
 System 2 

Reconstruction Method Reconstruction Method 

µ VA BME BMEVA 
(γ=1) 

BMEVA 
(γ=0.25) VA BME BMEVA 

(γ=1) 
BMEVA 
(γ=0.25) 

10 0.726 3.220 7.630 7.871 1.923 4.402 10.761 11.301 
15 0.728 3.849 7.638 7.880 1.913 4.812 10.783 11.356 
20 0.728 4.933 7.652 7.977 1.947 5.445 10.796 11.354 
25 0.725 5.930 7.669 7.981 1.921 6.393 10.843 11.356 
30 0.725 6.932 7.685 7.980 1.923 7.434 10.802 11.422 
 
Qualitatively, the enhancement results in better detailed inhomogeneous regions 

with better preserved edges between the homogeneous zones. Also, the imaging 
artifacts typical to the reconstructions performed with the inversion techniques are 
considerably suppressed. The achieved enhancement effects can be explained as a 
result of incorporating the balanced control of the adaptive regularization with 
preservation of the image geometrical features performed with the BMEVA 
technique 

7   Concluding Remarks 

In summary, we may conclude that the proposed BMEVA method provides the 
considerably improved image reconstruction achieved due to performing the 
adaptive (i.e. nonlinear) regularized windowing in the flat regions with enhanced 
preservation of the edge features.  



The new approach incorporates also some adjustable parameters viewed as the 
regularization degrees of freedom. Those are invoked from the BME and VA 
methods. The BMEVA method aggregates the image model and system-level 
considerations into the fused SSP reconstruction strategy providing a regularized 
balance between the noise suppression and gained spatial resolution with the VA-
controlled geometrical properties of the resulting solution. The reported 
simulations demonstrate the efficiency of the developed method.  
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