997 research outputs found

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Ash Tree Identification Based on the Integration of Hyperspectral Imagery and High-density Lidar Data

    Get PDF
    Monitoring and management of ash trees has become particularly important in recent years due to the heightened risk of attack from the invasive pest, the emerald ash borer (EAB). However, distinguishing ash from other deciduous trees can be challenging. Both hyperspectral imagery and Light detection and ranging (LiDAR) data are two valuable data sources that are often used for tree species classification. Hyperspectral imagery measures detailed spectral reflectance related to the biochemical properties of vegetation, while LiDAR data measures the three-dimensional structure of tree crowns related to morphological characteristics. Thus, the accuracy of vegetation classification may be improved by combining both techniques. Therefore, the objective of this research is to integrate hyperspectral imagery and LiDAR data for improving ash tree identification. Specifically, the research aims include: 1) using LiDAR data for individual tree crowns segmentation; 2) using hyperspectral imagery for extraction of relative pure crown spectra; 3) fusing hyperspectral and LiDAR data for ash tree identification. It is expected that the classification accuracy of ash trees will be significantly improved with the integration of hyperspectral and LiDAR techniques. Analysis results suggest that, first, 3D crown structures of individual trees can be reconstructed using a set of generalized geometric models which optimally matched LiDAR-derived raster image, and crown widths can be further estimated using tree height and shape-related parameters as independent variables and ground measurement of crown widths as dependent variables. Second, with constrained linear spectral mixture analysis method, the fractions of all materials within a pixel can be extracted, and relative pure crown-scale spectra can be further calculated using illuminated-leaf fraction as weighting factors for tree species classification. Third, both crown shape index (SI) and coefficient of variation (CV) can be extracted from LiDAR data as invariant variables in tree’s life cycle, and improve ash tree identification by integrating with pixel-weighted crown spectra. Therefore, three major contributions of this research have been made in the field of tree species classification:1) the automatic estimation of individual tree crown width from LiDAR data by combining a generalized geometric model and a regression model, 2) the computation of relative pure crown-scale spectral reflectance using a pixel-weighting algorithm for tree species classification, 3) the fusion of shape-related structural features and pixel-weighted crown-scale spectral features for improving of ash tree identification

    MAPPING FOREST STRUCTURE AND HABITAT CHARACTERISTICS USING LIDAR AND MULTI-SENSOR FUSION

    Get PDF
    This dissertation explored the combined use of lidar and other remote sensing data for improved forest structure and habitat mapping. The objectives were to quantify aboveground biomass and canopy dynamics and map habitat characteristics with lidar and /or fusion approaches. Structural metrics from lidar and spectral characteristics from hyperspectral data were combined for improving biomass estimates in the Sierra Nevada, California. Addition of hyperspectral metrics only marginally improved biomass estimates from lidar, however, predictions from lidar after species stratification of field data improved by 12%. Spatial predictions from lidar after species stratification of hyperspectral data also had lower errors suggesting this could be viable method for mapping biomass at landscape level. A combined analysis of the two datasets further showed that fusion could have considerably more value in understanding ecosystem and habitat characteristics. The second objective was to quantify canopy height and biomass changes in in the Sierra Nevada using lidar data acquired in 1999 and 2008. Direct change detection showed overall statistically significant positive height change at footprint level (ΔRH100 = 0.69 m, +/- 7.94 m). Across the landscape, ~20 % of height and biomass changes were significant with more than 60% being positive, suggesting regeneration from past disturbances and a small net carbon sink. This study added further evidence to the capabilities of waveform lidar in mapping canopy dynamics while highlighting the need for error analysis and rigorous field validation Lastly, fusion applications for habitat mapping were tested with radar, lidar and multispectral data in the Hubbard Brook Experimental Forest, New Hampshire. A suite of metrics from each dataset was used to predict multi-year presence for eight migratory songbirds with data mining methods. Results showed that fusion improved predictions for all datasets, with more than 25% improvement from radar alone. Spatial predictions from fusion were also consistent with known habitat preferences for the birds demonstrating the potential of multi- sensor fusion in mapping habitat characteristics. The main contribution of this research was an improved understanding of lidar and multi-sensor fusion approaches for applications in carbon science and habitat studies

    A Framework for Land Cover Classification Using Discrete Return LiDAR Data: Adopting Pseudo-Waveform and Hierarchical Segmentation

    Get PDF
    Acquiring current, accurate land-use information is critical for monitoring and understanding the impact of anthropogenic activities on natural environments.Remote sensing technologies are of increasing importance because of their capability to acquire information for large areas in a timely manner, enabling decision makers to be more effective in complex environments. Although optical imagery has demonstrated to be successful for land cover classification, active sensors, such as light detection and ranging (LiDAR), have distinct capabilities that can be exploited to improve classification results. However, utilization of LiDAR data for land cover classification has not been fully exploited. Moreover, spatial-spectral classification has recently gained significant attention since classification accuracy can be improved by extracting additional information from the neighboring pixels. Although spatial information has been widely used for spectral data, less attention has been given to LiDARdata. In this work, a new framework for land cover classification using discrete return LiDAR data is proposed. Pseudo-waveforms are generated from the LiDAR data and processed by hierarchical segmentation. Spatial featuresare extracted in a region-based way using a new unsupervised strategy for multiple pruning of the segmentation hierarchy. The proposed framework is validated experimentally on a real dataset acquired in an urban area. Better classification results are exhibited by the proposed framework compared to the cases in which basic LiDAR products such as digital surface model and intensity image are used. Moreover, the proposed region-based feature extraction strategy results in improved classification accuracies in comparison with a more traditional window-based approach

    Tree species identification in an urban environment using a data fusion approach

    Get PDF
    This thesis explores a data fusion approach combining hyperspectral, LiDAR, and multispectral data to classify tree species in an urban environment. The study area is the campus of the University of Northern Iowa. In order to use the data fusion approach, a wide variety of data was incorporated into the classification. These data include: a four-band Quickbird image from April 2003 with 0.6m spatial resolution, a 24-band AISA hyperspectral image from July 2004 with 2m spatial resolution, a 63-band AISA Eagle hyperspectral image from October 2006 with lm spatial resolution, a high resolution, multiple return LiDAR data set from April 2006 with sub-meter posting density, spectrometer data gathered in the field, and a database containing the location and type of every tree in the study area. The elevation data provided by the LiDAR was fused with the imagery in eCognition Professional. The LiDAR data was used to refine class rules by defining trees as objects with elevation greater than 3 meters. Classes included honey locust, white pine, crab apple, sugar maple, white spruce, American basswood, pin oak and ash. Results indicate fusing LiDAR data with these imageries showed an increase in overall classification accuracy for all datasets. Overall classification accuracy with the October 2006 hyperspectral data and LiDAR was 93%. Increases in overall accuracy ranged from 12 to 24% over classifications based on spectral imagery alone. Further, in this study, hyperspectral data with higher spatial resolution provided increased classification accuracy. The limitations of the study included a LiDAR data set that was acquired slightly before the leaves had matured. This affected the shape and extent of these trees based on their LiDAR returns. The July 2004 hyperspectral data set was difficult to georectify with its 2m resolution. This may have resulted in some minor issues of alignment between the LiDAR and the July 2004 hyperspectral data. Future directions of the study include developing a classification scheme using a Classification And Regression Tree, utilizing all of the LiDAR returns in a classification instead of just the first and fourth returns, and examining an additional LiDAR-derived data set with estimated tree locations

    Classification of Expansive Grassland Species in Different Growth Stages Based on Hyperspectral and LiDAR Data

    Get PDF
    Expansive species classification with remote sensing techniques offers great support for botanical field works aimed at detection of their distribution within areas of conservation value and assessment of the threat caused to natural habitats. Large number of spectral bands and high spatial resolution allows for identification of particular species. LiDAR (Light Detection and Ranging) data provide information about areas such as vegetation structure. Because the species differ in terms of features during the growing season, it is important to know when their spectral responses are unique in the background of the surrounding vegetation. The aim of the study was to identify two expansive grass species: Molinia caerulea and Calamagrostis epigejos in the Natura 2000 area in Poland depending on the period and dataset used. Field work was carried out during late spring, summer and early autumn, in parallel with remote sensing data acquisition. Airborne 1-m resolution HySpex images and LiDAR data were used. HySpex images were corrected geometrically and atmospherically before Minimum Noise Fraction (MNF) transformation and vegetation indices calculation. Based on a LiDAR point cloud generated Canopy Height Model, vegetation structure from discrete and full-waveform data and topographic indexes were generated. Classifications were performed using a Random Forest algorithm. The results show post-classification maps and their accuracies: Kappa value and F1 score being the harmonic mean of producer (PA) and user (UA) accuracy, calculated iteratively. Based on these accuracies and botanical knowledge, it was possible to assess the best identification date and dataset used for analysing both species. For M. caerulea the highest median Kappa was 0.85 (F1 = 0.89) in August and for C. epigejos 0.65 (F1 = 0.73) in September. For both species, adding discrete or full-waveform LiDAR data improved the results. We conclude that hyperspectral (HS) and LiDAR airborne data could be useful to id

    Airborne and Terrestrial Laser Scanning Data for the Assessment of Standing and Lying Deadwood: Current Situation and New Perspectives

    Get PDF
    LiDAR technology is finding uses in the forest sector, not only for surveys in producing forests but also as a tool to gain a deeper understanding of the importance of the three-dimensional component of forest environments. Developments of platforms and sensors in the last decades have highlighted the capacity of this technology to catch relevant details, even at finer scales. This drives its usage towards more ecological topics and applications for forest management. In recent years, nature protection policies have been focusing on deadwood as a key element for the health of forest ecosystems and wide-scale assessments are necessary for the planning process on a landscape scale. Initial studies showed promising results in the identification of bigger deadwood components (e.g., snags, logs, stumps), employing data not specifically collected for the purpose. Nevertheless, many efforts should still be made to transfer the available methodologies to an operational level. Newly available platforms (e.g., Mobile Laser Scanner) and sensors (e.g., Multispectral Laser Scanner) might provide new opportunities for this field of study in the near future

    Exploring Data Mining Techniques for Tree Species Classification Using Co-Registered LiDAR and Hyperspectral Data

    Full text link
    NASA Goddard’s LiDAR, Hyperspectral, and Thermal imager provides co-registered remote sensing data on experimental forests. Data mining methods were used to achieve a final tree species classification accuracy of 68% using a combined LiDAR and hyperspectral dataset, and show promise for addressing deforestation and carbon sequestration on a species-specific level

    Regional scale dryland vegetation classification with an integrated lidar-hyperspectral approach

    Get PDF
    The sparse canopy cover and large contribution of bright background soil, along with the heterogeneous vegetation types in close proximity, are common challenges for mapping dryland vegetation with remote sensing. Consequently, the results of a single classification algorithm or one type of sensor to characterize dryland vegetation typically show low accuracy and lack robustness. In our study, we improved classification accuracy in a semi-arid ecosystem based on the use of vegetation optical (hyperspectral) and structural (lidar) information combined with the environmental characteristics of the landscape. To accomplish this goal, we used both spectral angle mapper (SAM) and multiple endmember spectral mixture analysis (MESMA) for optical vegetation classification. Lidar-derived maximum vegetation height and delineated riparian zones were then used to modify the optical classification. Incorporating the lidar information into the classification scheme increased the overall accuracy from 60% to 89%. Canopy structure can have a strong influence on spectral variability and the lidar provided complementary information for SAM’s sensitivity to shape but not magnitude of the spectra. Similar approaches to map large regions of drylands with low uncertainty may be readily implemented with unmixing algorithms applied to upcoming space-based imaging spectroscopy and lidar. This study advances our understanding of the nuances associated with mapping xeric and mesic regions, and highlights the importance of incorporating complementary algorithms and sensors to accurately characterize the heterogeneity of dryland ecosystems

    Distinguishing forest types in restored tropical landscapes with UAV-borne LIDAR

    Get PDF
    Forest landscape restoration is a global priority to mitigate negative effects of climate change, conserve biodiversity, and ensure future sustainability of forests, with international pledges concentrated in tropical forest regions. To hold restoration efforts accountable and monitor their outcomes, traditional strategies for monitoring tree cover increase by field surveys are falling short, because they are labor-intensive and costly. Meanwhile remote sensing approaches have not been able to distinguish different forest types that result from utilizing different restoration approaches (conservation versus production focus). Unoccupied Aerial Vehicles (UAV) with light detection and ranging (LiDAR) sensors can observe forests` vertical and horizontal structural variation, which has the potential to distinguish forest types. In this study, we explored this potential of UAV-borne LiDAR to distinguish forest types in landscapes under restoration in southeastern Brazil by using a supervised classification method. The study area encompassed 150 forest plots with six forest types divided in two forest groups: conservation (remnant forests, natural regrowth, and active restoration plantings) and production (monoculture, mixed, and abandoned plantations) forests. UAV-borne LiDAR data was used to extract several Canopy Height Model (CHM), voxel, and point cloud statistic based metrics at a high resolution for analysis. Using a random forest classification model we could successfully classify conservation and production forests (90% accuracy). Classification of the entire set of six types was less accurate (62%) and the confusion matrix showed a divide between conservation and production types. Understory Leaf Area Index (LAI) and the variation in vegetation density in the upper half of the canopy were the most important classification metrics. In particular, LAI understory showed the most variation, and may help advance ecological understanding in restoration. The difference in classification success underlines the difficulty of distinguishing individual forest types that are very similar in management, regeneration dynamics, and structure. In a restoration context, we showed the ability of UAV-borne LiDAR to identify complex forest structures at a plot scale and identify groups and types widely distributed across different restored landscapes with medium to high accuracy. Future research may explore a fusion of UAV-borne LiDAR with optical sensors , include successional stages in the analyses to further characterize , distinguish forest types and their contributions to landscape restoration
    • …
    corecore