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ABSTRACT 

This thesis explores a data fusion approach combining hyperspectral, 

LiDAR, and multispectral data to classify tree species in an urban 

environment. The study area is the campus of the University of Northern 

Iowa. 

In order to use the data fusion approach, a wide variety of data was 

incorporated into the classification. These data include: a four-band 

Quickbird image from April 2003 with 0.6m spatial resolution, a 24-band 

AISA hyperspectral image from July 2004 with 2m spatial resolution, a 

63-band AISA Eagle hyperspectral image from October 2006 with lm 

spatial resolution, a high resolution, multiple return LiDAR data set from 

April 2006 with sub-meter posting density, spectrometer data gathered 

in the field, and a database containing the location and type of every tree 

in the study area. 

The elevation data provided by the LiDAR was fused with the imagery 

in eCognition Professional. The LiDAR data was used to refine class rules 

by defining trees as objects with elevation greater than 3 meters. Classes 

included honey locust, white pine, crab apple, sugar maple, white 

spruce, American basswood, pin oak and ash. 

Results indicate fusing LiDAR data with these imageries showed an 

increase in overall classification accuracy for all datasets. Overall 

classification accuracy with the October 2006 hyperspectral data and 



LiDAR was 93%. Increases in overall accuracy ranged from 12 to 24% 

over classifications based on spectral imagery alone. Further, in this 

study, hyperspectral data with higher spatial resolution provided 

increased classification accuracy. 

The limitations of the study included a LiDAR data set that was 

acquired slightly before the leaves had matured. This affected the shape 

and extent of these trees based on their LiDAR returns. The July 2004 

hyperspectral data set was difficult to georectify with its 2m resolution. 

This may have resulted in some minor issues of alignment between the 

LiDAR and the July 2004 hyperspectral data. 

Future directions of the study include developing a classification 

scheme using a Classification And Regression Tree, utilizing all of the 

LiDAR returns in a classification instead of just the first and fourth 

returns, and examining an additional LiDAR-derived data set with 

estimated tree locations. 
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CHAPTER 1 

INTRODUCTION 

1 

Land cover maps are of great importance to natural resources 

managers. These maps are used in both planning and assessment of 

large areas of land. The level of information as well as the accuracy 

provided by these maps can have a large influence on the effectiveness of 

land management decisions (Lennartz & Congalton, 2004). Tree species 

maps are a type of land-cover map that have garnered increasing 

attention from researchers. 

Municipal governments use land cover maps for maintenance, 

management and conservation (Sugumaran, Pavuluri & Zerr, 2003; Jim 

& Lui, 2001). As cities grow rapidly, urban forests can be displaced by 

infrastructure. Cities frequently use land cover products to limit the 

issuance of building permits near areas of protected trees. In addition, as 

populations of major metropolitan areas continues to grow, population 

planners must balance increasing demand for trees for recreational areas 

and urban greenbelts with space for commercial and residential 

construction (Jim & Liu, 2001). County and local officials also utilize 

land cover maps to monitor bird habitats. Some birds prefer certain 

types of trees (W. Newton, personal communication, February 20, 2007). 

As such, there is demand for accurate and up-to-date land cover maps. 



The U.S. Forest service is responsible for national forests and 

grasslands that cover 193 million acres of land (U.S. Forest Service, 

2005). Traditional methods for developing a map of tree species involved 

a forestry worker going out into the field, examining each tree and 

identifying it by its unique characteristics. This method can be time 

consuming and consequently expensive at such a scale. Thus, there is a 

need by professional foresters for time-effective and cost-effective 

methods for tree species identification. 

2 

Recent developments in imaging technology have made remote 

sensing technologies a viable option in forest management. During the 

history of modern remote sensing, more and more platforms have been 

developed to facilitate vegetation classification. Early Landsat imagery 

included an infrared band, which has been widely shown to highlight 

vegetation. This multispectral imagery was the standard in remote 

sensing for many years. Recently, many studies have utilized 

multispectral imagery purchased from private remote sensing companies. 

IKONOS and QuickBird imagery provides very high resolution satellite­

based multispectral imagery. Because this imagery is widely available 

and provides 1 meter spatial resolution, it has been popular with 

researchers. 

When remote sensing data is use to identify tree species, there are 

several factors that affect outcome. These include spectral and spatial 



resolution, seasonal effects, classification algorithm and additional data 

such as soil maps or elevation information. 

Spectral resolution refers to the number of bands that an image has. 

Multispectral scanners typically collect three to seven bands that cover 

the range from visible light to near infrared. Hyperspectral scanners can 

have 30 to more than 200 bands for this same range of wavelengths. 

Higher spectral resolution, or more bands, can provide more spectral 

detail and make it easier to differentiate objects based on spectral 

signatures. 

Spatial resolution can have a significant influence on overall 

accuracy. This form of resolution is a measure of how much ground is 

captured by each pixel. Spatial resolution varies greatly. The MODIS 

satellite provides products with 250m to 1,000m spatial resolution. The 

QuickBird satellite provides spatial resolution of 60cm. The level of 

spatial resolution desired depends on the application. In a study at the 

individual tree level, finer spatial resolution is desirable, while coarser 

resolution would be preferred if the study involves identifying groups of 

trees in a forest. 

Seasonal variations in leaf chlorophyll content can be influential 

depending on the species and the location of the study. If imagery is 

collected at the proper time, researchers may take advantage of the 

reduced chlorophyll production and leaf senescence as fall sets in. 

3 



Certain trees change at different rates, so this can help in the 

identification of species. 

4 

Classification algorithms have a heavy influence on classification 

accuracy, and there is a great deal of variation among them. Traditional 

classification schemes generally involved statistical analysis of individual 

pixels. Non-traditional schemes include Classification And Regression 

Tree (CART), subpixel classification and object-oriented classification. 

Object-oriented classification places pixels into groups which are called 

segments. These are used as the basis for the classification, and it allows 

many more classification rules to be established, such as distance from 

other objects. 

Additional data can also improve classification accuracy. These data 

can include elevation and soil maps. Soil maps can be used to identify 

areas where certain species of trees are more likely to grow, for example. 

In recent years, a range of sensors providing hyperspectral data have 

become popular with researchers who are trying to determine what sorts 

of minerals or particular types of vegetation are on the ground. These 

sensors use many contiguous bands to create very detailed spectral 

profiles. Researchers have found that the increased detail has led to 

increased accuracy in terms of classification. Sensors capable of creating 

hyperspectral imagery are still comparatively rare and the data is not as 

readily available as Landsat imagery, and thus hyperspectral imagery is 
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underrepresented in research of this type. Hyperspectral imagery also 

consumes greater amounts of storage space than do multispectral 

sensors because of greater spectral resolution. This greater spectral 

resolution comes at the expense of spatial resolution. Scanners such as 

NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor 

typically provide imagery with 30 meter spatial resolution and 224 

spectral bands, although lower altitude flights can generate 4 m 

resolution imagery. Hyperion is a space borne hyperspectral sensor. It 

collects 220 bands at 30-meter resolution. As can be seen, there are 

tradeoffs with remote sensing data. If high spatial resolution is desired, 

then spectral resolution must be sacrificed, as is the case with IKONOS 

and QuickBird data. However, if spectral detail is required, then it comes 

at the cost of spatial resolution. 

Additional data such as digital elevation models, soil maps or 

geological information can improve classification accuracy. For example, 

the most recent development in remote sensing is Light Distance and 

Ranging (LiDAR). This is an example of an active sensor, meaning that it 

is not dependent on reflected sunlight as are the multispectral and 

hyperspectral sensors. These sensors provide their own source of energy 

to be reflected. The airborne sensor scans the ground with a laser 

collecting the reflected light. This is translated into highly accurate 

elevation data that is also collected at high horizontal resolution. 
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Researchers have used this data for three major applications: 

topographic applications, measuring vegetation canopy structure 

including crown height, crown width and estimations of trunk diameter 

and prediction of forest stand structure, such as overall biomass (Lefsky, 

Cohen, Parker & Harding, 2002). -

Numerous studies have utilized multispectral imagery to develop tree 

species maps, and there are increasing numbers of studies utilizing 

hyperspectral imagery, although comparatively rare, particularly at the 

individual tree level. Generally, these studies incorporate AVIRIS 

hyperspectral imagery at a 30 meter resolution. This resolution allows 

researchers to identify large areas of a single species of tree, but not 

individual trees. QuickBird multispectral scanners can provide sub­

meter resolution which allows researchers to single out particular trees, 

but they lack the higher spectral detail of hyperspectral scanners, and 

thus classification accuracy suffers. 

Further, the bulk of studies extant incorporate the more traditional 

classification schemes that function only at the pixel level. Studies using 

object-oriented classification are rare, particularly those that use 

hyperspectral imagery. Finally, the vast majority of studies examine 

imagery collected at one date. Very few studies take advantage of the 

phenological leaf changes trees experience every season. 
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This study was focused to consider spectral and spatial resolution, 

seasonal variations, classification algorithms and additional data sources 

for the identification of tree species. The goal of this study is to develop a 

methodology that could be applied to large study areas which would 

allow for the classification of tree at the individual species level. If a 

method can be developed that meets the 80% accuracy typically required 

by forest managers, it would provide an alternative to traditional 

methods that is cost effective and considerably faster (Lennartz & 

Congalton, 2004). 

Questions that this study will answer include: What accuracy can 

hyperspectral imagery in combination with object-oriented classification 

provide when classifying trees at the species level? What benefits are 

gained, in terms of classification accuracy, by incorporating multiple 

images collected at different times of the year? What contributions to 

overall accuracy can elevation data, such as LiDAR, provide? And finally, 

can individual tree species be accurately mapped using remotely sensed 

imagery? 

The next section provides a brief literature review of studies utilizing 

a range of data types and classification algorithms to identify trees at a 

species level. 



CHAPTER 2 

LITERATURE REVIEW 

There is considerable literature regarding the classification of tree 

species utilizing airborne or spaceborne imagery using numerous 

classification methods. As the variety of literature may suggest, no 

consensus has been reached as to what methodology or type of imagery 

is superior. 

Studies can vary in terms of spatial resolution, spectral resolution, 

the season in which the data are collected, classification algorithm and 

additional data such as elevation provided by a three-dimensional 

sensor. 

8 

This review of literature will first examine multispectral studies 

beginning with basic Landsat studies and concluding with the high­

resolution satellite-based platforms like QuickBird and IKONOS. Then 

hyperspectral studies will be reviewed. The effects of seasonal variations 

on classification will be examined, as will some of the classification 

schemes used to improve overall accuracy. Following this, the review will 

turn to LiDAR applications in tree species identification. Finally, 

integrated approaches, which incorporate a wide array of applications, 

will be examined. 

With the exception of LiDAR, all of these methods rely on the 

variations among each tree's spectral signature. Variations in these 
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signatures are caused by a number of factors. The basic components 

affecting a tree's signature are the stem (branches), leaf and litter of the 

trees. An additional factor is the structure of the canopy itself. Among 

trees, it is generally found that there is less reflectance in the visible 

portion of the spectrum and greater reflectance in the near infrared 

(Asner, 1998). Further, variation among species of trees is greatest in the 

short wave infrared, which spans 1500-1900 nanometers, while these 

differences are less noticeable in the visible spectrum (Asner, 1998). 

The stable reflective properties of leaves are "due to biochemical 

characteristics resulting from the presence of biologically active 

pigments" (Asner, 1998, p. 240). These reflective properties result in 

distinctive features, which most tree species share. There are absorption 

features at 450 and 680 nm, which are the result of chlorophyll. The 

jumps in reflectance and transmittance in the near infrared are caused 

by increased photon scattering at the air-cell interface with spongy 

mesophyll (Asner, 1998). 

Another factor in determining reflectance is the Leaf Area Index (LAI). 

In general, canopy LAI is responsible for changes in the Near Infrared 

(NIR) and small variations in the visible spectrum. Leaf angle also causes 

a shift in the green peak and the 695-700 nm red edge (Asner, 1998). 

Decreased leaf angle also led to increased NIR reflectance. 
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The next portion of the review will present examples of multispectral 

data used in tree species identification. 

Multispectral 

Multispectral data refers to a remotely sensed image that typically 

contains four bands - blue, green, red and infrared. It is important to 

realize that this data is non-contiguous, meaning that there are portions 

of the spectrum that are not represented in the spectral profile. These 

portions of the spectral profile may contain absorption features or peaks, 

such as those mentioned in the preceding section. However, among the 

different types of data represented in this literature review, this type of 

data generally has the highest spatial resolution. 

Meyer, Staenz and ltten (1996) were among the early researchers in 

remote sensing tree species identification. They used color infrared film 

to image two areas of the Swiss Plateau. Their system was more hands­

on than current methods. After scanning the film into three bands, tree 

crowns were manually digitized in ESRI ARC/INFO. They created five 

classes for four tree species (pine, spruce, fir and beech). There were two 

classes for pine trees - one for healthy pines and one for diseased pines. 

These were classified using a parellepiped method. They found they were 

able to classify trees with 80% accuracy. 



11 

Huguenin, Karaska, Van Blaricom and Jensen (1997) studied two 

different tree species in Georgia and South Carolina. Cypress and Tupelo 

trees were studied utilizing Landsat TM (Thematic Mapper) imagery in an 

effort to develop a method of locating wetland areas for more effective 

land management. 

Because of the large pixel size and questionable results obtained with 

traditional classification methods, the researchers used subpixel 

classification. This method provided 91 % accuracy classifying Tupelo 

trees and 89% accuracy with cypress trees. Additionally, when field work 

was done to verify the classification, it was found that the trees were 

identified correctly if they were in stands alone or if they were in mixed 

stands. The best traditional classifier, minimum distance, was 18% less 

accurate for cypress and 6% less accurate for tupelo. Additionally, the 

subpixel classifier was able to identify cypress trees when they were 

heavily mixed with other species. The traditional classifiers were unable 

to do this. 

Carleer and Wolff (2004) attempted an analysis of tree species in a 

Belgian forest using a high resolution IKONOS image. Their classification 

of the image was broken down into 10 groups (7 tree classes and 3 

miscellaneous classes). Their results were quite good with an overall 

accuracy of 86%. There was some confusion between some classes, oak 

and old beech, for example. This was attributed to the similarity of the 



spectra. Conifers also remained troubling even though researchers 

isolated them and performed an unsupervised classification on them. 
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The layers utilized in this classification were the blue, green, red and 

near infrared IKONOS layers, PCA layers and a Normalized Difference 

Vegetation Index (NDVI) layer. A three-pixel by three-pixel mean filter 

was applied to all of these layers. This filter smoothed the image, but also 

"increased the separability of the classes by introducing variability'' 

(Carleer & Wolff, 2004). While this was effective in reducing variability 

which is a source of classification error, it introduced mixed pixels, 

which can also lead to error. The solution suggested by Carleer and Wolff 

is to apply the mean filter by region. Despite the error introduced by the 

filter, results were still superior compared to the non-filter outcome. 

Without the filter, the accuracy fell from 86% to 79%. 

The pixel averaging filter would seem to be an important component 

of species analysis. Variation among trees in a species or even within 

portions of a tree is a serious concern. Variation within a species was a 

concern of Okina, Roberts, Murray and Okin (2001) as well. 

The results obtained by Kristof, Csato and Ritter (2002) support the 

use of a filter although one was not applied in their research. They used 

1 meter panchromatic and 4 meter multispectral IKONOS imagery of a 

forest in Hungary. These were resolution merged into a 1 meter 

multispectral image. Their initial results were not particularly strong. 
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"It is also important to note that high spatial resolution doesn't 

facilitate spectral-based classification. Medium-resolution satellite 

images, such as SPOT HRVIR or Landsat TM, have the advantage of 'self­

calculating' mean spectral values" (Kristof et al., 2002, p. 5). Larger pixel 

size means that a pixel may represent an entire tree which eliminates 

variations among branches. Additionally, they mention how high 

resolution imagery may present bright and dark sides of tree crowns and 

confuse most classifiers. A solution they found was the segmentation of 

their imagery. Traditional classifiers yield 31 % accuracy while an object­

oriented approach boosted that accuracy to 74% (Kristof et al., 2002). 

More studies indicate that high spatial resolution does not lead to 

successful species classification. Much of the innovation with this 

research lies in grouping pixels that represent a single object. 

"Simple pixel-based analyses are no longer applicable because of the 

difficulty of classifying high-resolution data where each pixel is related 

not to the character of an object or an area as a whole, but to 

components of it" (Ehlers, Gabler & Janowsky, 2003, p. 316). 

Ehlers et al. (2003) incorporated Geographic Information Systems 

technology into their research. This German group was attempting to 

classify species and land cover using 3-D aerial imagery with 15 cm 

resolution. The multispectral data actually lacked a red band because 

the sensor was originally designed for another mission so one was 
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interpolated from neighboring bands. This shortcoming was offset by the 

3-D data. This allowed them to separate shrubs from trees by classifying 

some data by height. Data were separated into vegetative, non-vegetative 

and shadows. Within the vegetation class, there were short and tall 

vegetation. The objects in the image were classified within these groups. 

GIS was then used to recombine these layers into a single land cover 

map based on some simple rules. The results from this classification 

were very good. The goal of this research was to produce new land cover 

maps for an area around the Elbe River. Previous land cover maps were 

simple man-made maps with comparatively little detail. The land cover 

maps created contained much more detail than previous maps. Land 

cover classes were classified with 95% accuracy (Ehlers et al., 2003). 

Lennartz and Congalton (2004) used high spatial resolution imagery 

(QuickBird multispectral) to identify tree species in forests in the 

northeast. Their subject area was two large forest reserves in 

southeastern New Hampshire, one privately owned and one part of a 

public reserve. Data consisted of the four bands of a QuickBird image 

from September 2001. In addition to these four bands, several additional 

layers of data were derived from this data including several NDVI indices, 

principal component analyses, and other vegetation indices that were not 

specifically detailed. 
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Classifications were performed using per-pixel and per-object 

methods using eCognition™. Using per-pixel classification, accuracy was 

calculated to be 17%. Using per-object classification, the accuracy was 

listed at 31%. 

Explanations listed for these disappointing results were basically that 

it was difficult to find a training area that contained an example of a 

particular tree species. More frequently, the species were intermingled. 

Future research in the project includes "gathering spatially precise 

training areas and emphasizing a more rigorous accuracy assessment'' 

(Lennartz & Congalton, 2004). 

Kosaka, Akiyama, Tsai and Kojima (2005) attempted to classify tree 

species using high resolution data. This data consisted of QuickBird 

imagery of Norikura Mountains in the Japan Alps. This data includes the 

60cm panchromatic and 2.4m multispectral images. Prior to 

classification the data was radiometrically corrected to eliminate the 

topographic effect. This was done by averaging a 13 by 13 pixel area and 

normalizing the rest of the data to that reference area. 

Hajek (2005) performed research on a mountainous area in the Czech 

Republic. Using eCognition™, he conducted an object-oriented 

classification on a QuickBird satellite image. Among the unique methods 

he incorporated, Hajek expanded his feature space, meaning that he 

derived more bands of data from the existing data. A principal 



component was derived as well as several averages both in 3x3 and 5x5 

kernel sizes to remove variations in single trees as Kristof et al. (2002) 

found. Haralick texture measures were also derived as were Intensity­

Hue-Saturation transforms and edge detection transforms. 

16 

Hajek conducted several segmentations before obtaining his finished 

product. The first segmentation simply divided the like pixels into 

groups. This was then used in a segmentation-based classification, 

which resulted in a basic land cover map. This map was then re­

imported as a thematic vector layer. A finer segmentation was conducted 

again at a much finer scale on the Forest segments. This segmentation 

was utilized for the finer work of his research. 

Hajek (2005) used a hierarchy of three levels. The first level was basic 

- forest, field and urban. The second level divided the forest level into 

dense, sparse and clear cut. The final level specified trees by the four 

species of the area -Fagus, Pi.cea, Larix and Betula (Hajek, 2005). 

Classification was conducted using fuzzy logic to derive rules which were 

used to define the classification. They included shape, mean layer values, 

relative border to neighbor objects and relative area of sub-objects 

(Hajek, 2005). 

Results of this study were mixed. The classification of the pinea and 

larix conifers had accuracy greater than 90%. The fagus class attained 

approximately 70% accuracy. There were difficulties that arose from the 



17 

confusion between the picea class and shadows. Likewise there was 

confusion between betula and a class of trees with sparse leaf cover. One 

of the benefits of this particular method of classification was· that the 

classification rules can be easily converted for use on other datasets. 

(Hajek, 2005). 

Hyperspectral 

Hyperspectral data contains much more information per unit of area 

than does a more traditional multispectral scanner. This is achieved by 

dividing the visible and near infrared portions of the spectrum into more 

bands that cover smaller sections of the spectrum. With multispectral 

imagery, the spectral profile of an object is a line created by three or four 

points. With hyperspectral imagery, the line is defined by between 30 

points with an AISA sensor to more than 200 with an AVIRIS or Hyperion 

sensor. This creates a spectral signature with more detail, and these 

details can be used to distinguish one object from another. 

Thenkabial, Enclona, Ashton, Legg and De Dieu (2004) compared 

three satellite-based sensors - the Hyperion hyperspectral scanner, 

IKONOS, LandSat ETM plus - and ALI, a multispectral scanner. This 

study was conducted in an African rainforest. The motivation for this 

study was to determine how to best utilize these new developments in 

remote sensing. They would determine this by attempting to develop a 

method of estimating forest biomass and classify the forest. 



An additional goal of this research was to determine the optimal 

hyperspectral bands for tree species identification and biomass 

estimation. The researchers felt optimizing bands would reduce the 

dimensionality and volume of the data sets, which would allow them to 

apply traditional methods of classification (Thenkabial et al., 2004). 

The researchers felt they had a good sampling of the available 

sensors. IKONOS represents hyperspatial data as it provides 1-4 m 

spatial resolution in four bands while Hyperion provides hyperspectral 

data in 220 discrete bands with 30m resolution. 
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The research areas were divided into 30m x 30m plots (the resolution 

of three of the four sensors). Each plot was divided into an area with 

homogenous features. In all, there were 102 areas from which samples 

were gathered. Of these, 65 were common to images from all the sensors. 

The remaining plots were either outside of one of the boundaries of an 

image, obscured by clouds or part of another land use/land cover (LULC) 

class. In each plot, the six most common species of trees and shrubs 

were recorded as was the percent of the area covered by canopy and the 

LULC classification. The three major LULC classes were primary forest, 

secondary forest and fallow. 

Four IKONOS, nine ALI and six non-thermal ETM+ and 157 Hyperion 

bands were used for classification. Bands in the range of 427.55 nm to 

925.85 nm from the visible and near-infrared (VNIR) sensors; and 932.72 



nm to 2395.53 nm from the SWIR sensors were found to be unique and 

relatively noise-free. 
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Ultimately, it was determined that the Hyperion was better suited to 

determining both biomass and classifying the land cover. It was 45-52% 

more accurate across individual classes than multispectral data in 

classification, and it explained 36-83% of the variability in biomass. 

Okin e_t al. (2001) discussed the practical limitations of hyperspectral 

data and its classification. Their research focused on classifying 

vegetation and soil types in arid and semi-arid regions. Classification was 

performed on an AVIRIS image of the California desert utilizing spectral 

libraries. The classification method utilized was Multiple Endmember 

Spectral Mixture Analysis. 

Among the conclusions they reached was the importance of spectrally 

determinate and indeterminate vegetation. Spectrally determinate was 

defined as any vegetation with high spectral contrast. A green lawn is 

spectrally determinate because it has a strong red edge and deep 

absorption bands (Okin et al. 2001). Conversely, spectrally indeterminate 

vegetation does not have high contrast. This is particularly true of plants 

that are native to arid regions. 

Their research also seems to indicate that the use of spectral libraries 

may not be ideally suited to the classification of vegetation species. In 

particular, plants of arid regions tend to vary in terms of spectral 
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signature a great deal from plant to plant. The phenology of the plants 

changes rapidly in response to a small amount of water, so a single type 

of vegetation may have a comparatively wide range of spectra. This led 

them to conclude that their vegetation type results were not reliable 

without a detailed knowledge of the location and type of each plant which 

defeats the purpose of remote sensing. Their results for species type 

identification were not strong. A small degree of uncertainty in vegetation 

type endmembers led to 30% error in modeling. The researchers were 

much more comfortable with results obtained for vegetation cover. Much 

stronger results were also obtained for soil type analysis. 

"We have found that the vegetation signature is by and large too faint 

amid a dominant, bright soil background to yield reliable and useful 

information" (Okin et al., 2001, p. 224). 

Cochrane's (2000) research on species identification in the Brazilian 

rainforest deals with the concerns raised by species variability. Previous 

research had indicated that there could be considerable variation caused 

by pollution, position in the tree and age of the leaf, for example. In his 

research Cochrane collected multiple samples within a species of tree, 

some from different parts of the same tree, others from different trees. 

Using a hand held spectrometer, he measured the spectral responses of 

each leaf. 
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His research indicated that there was indeed variation among trees of 

the same species within a forest of a couple hundred hectares. 

Additionally, he noted samples in which the spectra exhibited "extreme 

variation" (Cochrane, 2000). These variations were caused by a fairly 

small number of factors including leaf angle and crown structure. 

This study may have been more applicable had it dealt with average 

spectral response of the entire tree. However, his results do seem to 

indicate that a tree of the same species may vary in spectra according to 

factors associated with location. Cochrane believes that classification of 

trees is possible with hyperspectral data, but it will require either further 

analysis following the classification or spectral shape filtering. 

le Maire, Francios and Dufrene (2004) researched methodologies for 

differentiating tree species. In particular, they review various ratios and 

band combinations that have been implemented by other researchers. 

This was done by creating a database of 53 leaves that had been 

randomly sampled. Using this database, they compared all leaf 

chlorophyll indices published from 1973-2000 (le Maire et al.). They 

compared the results of each of these indices against actual chlorophyll 

values and plotted the results based on their accuracy. The final results 

of this research were that a simple difference ratio provided the most 

accurate chlorophyll estimates. Several of these indices may be 
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applicable to this research such as NDVI and greenness ratios as well as 

traditional chlorophyll ratios. 

Many hyperspectral scanners do not provide high resolution data. 

Conversely, high spatial resolution data provides at most three bands of 

information and, in some cases, only one. As Greiwe and Ehlers (2004) 

mention, fewer bands of data often result in classification errors. While 

hyperspectral data can improve classification accuracy, it does not 

provide the spatial accuracy required for certain applications (in their 

case, urban land use mapping). 

Greiwe and Ehlers (2004) used the same high resolution sensor that 

Ehlers et al. used in combination with 128 bands of HyMap data to 

classify the city of Osnabrueck in Germany. The high resolution data 

came from the High Resolution Stereo Camera airborne sensor. These 

provided 0.125m resolution. This image was segmented and then these 

segments were applied to the hyperspectral data. Additionally, prior to 

final classification, Spectral Angle Mapper (SAM) tools were used to 

determine the most appropriate pixels for each class. The SAM tools 

allowed them to select pixels that were representative of their entire class 

and this accounted for a 20% increase in accuracy. Using this 

methodology, they achieved 73% overall accuracy. 

Boyd, Foody and Ripple (2002) explored different vegetation indices in 

their attempts to classify coniferous species in Oregon. For this project, 



an AVHRR data set of a region in the Cascade Mountains was used. 

There are five major coniferous species of trees prevalent in this area. 
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The researchers explored three basic means of classification -

vegetation indices, multiple regression, and neural networks. Vegetation 

indices included six common ratios selected on the basis of their ability 

to use all of the data that AVHRR provides. The regressions were 

conducted in an attempt to determine correlations between the bands 

and the land cover. Three different types of neural networks were used to 

classify this data - the multi-layer perceptron, radial basis function, and 

generalized regression neural networks. It was this method that the 

researchers preferred. It allowed them to analyze data without making 

assumptions about it (Boyd et al., 2002). 

Xiao, Ustin and McPherson (2004) used hyperspectral AVIRIS data to 

identify tree types for urban mapping. Their study area was the city of 

Modesto, California. Spectral reflectance is affected by pigment, internal 

leaf structure, water composition and tree architecture (Xiao et al., 

2004). Their data indicated that conifers tend to have lower reflectance 

values than do broadleaf deciduous trees. They further found that 

spectra tend to vary not only in magnitude but also in profile. In general, 

they found that the data provided by the AVIRIS sensor was suitable for 

tree species mapping. 
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Clark, Roberts and Clark (2005) used HYperspectral Digital 

Collection Experiment (HYDICE) data as well as laboratory spectrometer 

samples to study trees in Costa Rica. The laboratory spectrometer data 

allowed them to classify species with 100% accuracy. Classification of 

the airborne hyperspectral data ranged from 88 to 92% using maximum 

likelihood classification. 

Bunting, P. and Lucas, R. (2006) used hyperspectral data in an 

object-oriented classification scheme to outline tree crowns in a diverse 

forest structure with trees of varying ages and sizes. This data would 

serve as a beginning step for further analysis. 

Zhang, Rivard, Sanchez-Azofeifa, and Castro-Esau (2006) used 

HYDICE data to study variations among tree species and within tree 

crowns in Costa Rica. Although they were able to separate several 

species of trees, they found that it may be impractical to attempt to 

identify large numbers of tree species using hyperspectral data alone due 

to some overlap in spectral signatures. They suggest that the addition of 

LiDAR data may increase overall classification accuracy. Additionally, 

they suggest that knowledge of tree phenology may be helpful in 

improving classification accuracy. 

Seasonal Variations 

Researchers have taken advantage of the differences in the rate at 

which trees blossom or their leaves senesce. In the fall, it is often easy to 
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notice that leaves of certain types of trees change before others, or that 

some trees have leaves that simply turn brown while other turn to bright 

shades of red. 

Sugumaran et al. (2003) conducted a study in which imagery 

collected in April, August, September, and November was utilized in the 

classification of trees in Columbia, Missouri. Classifications were 

performed using each image and a traditional maximum likelihood 

classifier and CART. The results obtained from the September image 

were the most useful in classifying trees. Key, Warner, McGraw and 

Fajvan (2001) found that images collected during the fall provided the 

best overall results in their study. They found that spring images 

collected immediately after leaf out was second best. Results obtained by 

Birky (2001) agree with this finding. It was found that trees are generally 

less productive during periods of extreme heat or moisture stress. They 

further found that productivity, as measured by the normalized 

difference vegetation index, remains high through the fall. Variations are 

less likely to occur among plants if they are stressed during the summer 

months. Spanner, Pierce, Running, and Peterson (1990) also attributed 

some of these variations to the changes in overall image makeup as well 

as solar zenith angle. 
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Classification Algorithms 

Classification is largely a matter of statistical analysis. There are 

many, many ways to perform this analysis. As remote sensing imaging 

technology has advanced, the methods for analyzing that data have 

advanced as well. The vast majority of classification schemes perform 

there analysis on each pixel without regard for neighboring pixels. A 

recent development in classification technology called object oriented 

classification groups pixels together in an effort to mimic the way the 

human mind identifies objects. These groups can be classified in relation 

to neighboring groups. 

Sugmaran et al. (2003) compared the maximum likelihood and CART 

methods for identifying trees. Hajek (2005) used object-oriented 

classification of trees in a mountainous region of the Czech Republic. 

Accuracies obtained for the coniferous classes exceeded 90%. However, 

other classes in the classification were approximately 70%. Lennartz and 

Congalton (2004) used object-oriented classification to classify trees in 

the northeastern United States with QuickBird data after obtaining poor 

results with traditional per-pixel classifications. Overall classification 

accuracy with traditional methods was 17%. Using object-oriented 

classification, accuracy increased to 31 %. Ehlers et al. (2003) used 

geographic information systems to incorporate elevation data into a 

classification of land cover in Germany. Accuracy for several classes 
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exceeded 90%. Kristof et al. (2002) used object-oriented classification 

after obtaining poor results using traditional classification. Overall 

accuracy rose from 31% using traditional classifiers to 74% using object 

oriented. Kristof et al. (2002) concluded that high resolution imagery 

provides too much detail for traditional classifiers. Huguenin et al. ( 1997) 

used subpixel classification because they were using imagery with 1 Sm 

spatial resolution. Using this method, they improved their accuracy by 

18% in one class and 6% in the other. 

LiDAR 

Light Detection and Ranging is a relatively new technology. It is also 

commonly called an airborne laser scanner or a laser altimeter. It 

involves the laser pulses emitted from an airborne platform. The time it 

takes for the pulse to return to the platform is used to compute the 

distance the beam has traveled. This is then used to create a high­

vertical accuracy map of the terrain. Uses of LiDAR data for vegetation 

analysis include calculating above ground biomass, stem counts and 

crown widths (Van Aardt & Wynne, 2004) and it can also be used to 

complement the spectral data in a classification. 

Haala and Brenner ( 1999) used laser altimeter data to extract 

features in an urban environment. They first created a Digital Surface 

Model (DSM). A DSM differs from a Digital Terrain Model in that the 

surface includes buildings and trees, whereas the terrain simply refers to 



the surface of the earth. In extracting building and tree forms, the DSM 

is preferred. This was complemented with high resolution color infrared 

imagery to extract buildings, trees and streets. This is a common 

application of LiDAR data. Sohn and Dowman (2007) developed an 

automated methodology for extracting building footprints from LiDAR 

and IKONOS multispectral imagery. 
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Van Aardt and Wynne (2004) used Lidar and hyperspectral AISA data 

to classify tree species in Virginia. In this case, the AISA data were 

collected in 16 bands at 1 meter resolution. In particular, they 

investigated the segmentation process in eCognition™ quite thoroughly. 

They found that classification using the 720nm band and LIDAR to 

perform the multiresolution segmentation was the best. This was 

achieved by comparing variances within each segment to variations from 

segment to segment. They found that this method could provide accurate 

results. One of the benefits of creating the hierarchical classification 

rules using the eCognition™ software is that these rules can then be 

applied to larger parcels of forest (Van Aardt & Wynne, 2004). 

Holmgren and Persson (2004) developed a method of identifying 

spruce and pine trees using a LiDAR dataset. Using data collected over a 

Norwegian forest, they were able to correctly classify spruce and pine 

trees with 95% accuracy. The researchers generally found that spruce 

trees were more conical in shape than pine trees. Pine trees were more 



often mis-classified, however they felt this may have been influenced by 

the neighboring trees and the competition for sunlight. 

Collins, Parker and Evans {2004) used LiDAR and very high 

resolution multispectral imagery to map tree species in a wildlife refuge 

in Mississippi. Classification was performed in eCognition™ utilizing 

training samples as well as the hierarchical classification tools provided 

by eCognition™. Four tree species classes were identified with a 72% 

accuracy rate. 
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Chen, Vierling, Rowell and DeFelice {2004) used LiDAR and 

mutlispectral IKONOS imagery to estimate pine tree coverage in a forest. 

One of the principal discoveries of their study was that LiDAR may be an 

effective method of estimating Leaf Area Index. This was one of Asner's 

{1998) primary influences on vegetation reflectance. Chen et al. {2004) 

reasoned this is logical because leaf area index and LiDAR are dependent 

on the amount of light that passes through the canopy. 

Much of the current research with LiDAR explores its usefulness in 

estimating physical characteristics of trees. Nresset and Gobakken {2005) 

estimated heights, basal areas and volumes of spruce and pine trees; 

Roberts et al. {2005) used LiDAR to estimate leaf area index in loblolly 

pines; Solberg, Naesset and Bolandasa {2006) developed a methodology 

to segment individual trees and used these segments to estimate heights 

and crown diameters; Bortolot {2006) used LiDAR to define tree clusters 
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and used these clusters (rather than individual tree segments) to 

estimate density and biomass, and Rowell, Seielstad, Vierling, Queen and 

Sheppherd (2006) segmented LiDAR canopy data to determine tree stem 

locations. 

While multispectral imagery provides high spatial resolution, it does 

not appear to provide spectacular results. Hajek (2005) was able to 

obtain very good results in some classes, while obtaining poor results in 

others. Huguenin et al. ( 1997) were able to successfully classify only two 

species. Hyperspectral imagery, however, provides more spectral detail 

that can be used to separate many more species. Xiao et al. (2004) used 

AVIRIS hyperspectral imagery to identify a wide variety of species in an 

urban setting. LiDAR can also be used to improve classification accuracy. 

Collins et al. (2004) used LiDAR and high resolution imagery to classify 

tree species, as did Van Aardt and Wynne (2004). Further, when dealing 

with high resolution imagery, non-traditional classification schemes 

(such as object oriented) are the preferred tools (Lennartz & Congalton, 

2004; Kristof et al., 2002). 



CHAPTER 3 

METHODOLOGY 

Study Area 

The University of Northern Iowa campus was selected as a study 
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area. The campus covers approximately 120 acres and is located in 

Cedar Falls, Iowa. This study area was chosen for several reasons. First, 

the researchers have good knowledge of the area, which removes the 

possibility of confusing portions of the study area. Second, the campus 

has a wide variety of trees. The dominant deciduous species are oak and 

maple and the dominant evergreen species are pine and spruce. 

Additionally, many of these trees are separated from each other by grassy 

areas. This makes it easier to distinguish them from nearby trees, which 

could be difficult in a more natural environment. Third, the university's 

Facilities Services office has information about each of the trees on the 

campus, which saves researchers the time it would take to identify them. 

Fourth, it is a manageable size for developing training sets for both 

classification and accuracy assessment. 



Figure 1. Overall project workflow 
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Data Used 
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LlOAR 

A wide variety of data types were utilized in this research. These data 

include a shapefile, spectrometer data collected in the field and an 

assortment of airborne multispectral and hyperspectral imagery. The 

data are summarized in Table 1. 



Table 1. 

Data types 

Collection date 

April 2003 

July 2004 

August 2004 

April2006 

October 2006 
Julv 2006 

Data type 

Multispectral 

Hyperspectral 
Field 
spectrometer 

LiDAR 

hyperspectral 
shaoefile 
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Spatial Spectral 
resolution resolution 
0.6m 
panchromatic, 4 bands 
2.4 
multispectral 
2m 23 bands 

NA 750 bands 

lm 
Discrete multi-
return 

lm 63 bands 
NA NA 

Chronologically, the first data set is a multispectral image collected in 

April 2003 by the QuickBird satellite (Figure 2). It provides two products: 

the first is a 0.6m spatial resolution panchromatic (black and white) 

image and a 2.4m spatial resolution four-band image. The panchromatic 

image represents reflectance from 445 to 900 nm. The multispectral 

image divides that same region into four bands: blue from 450-520nm, 

green from 520-600nm, red from 630-690nm and near-infrared from 

760-900nm. 
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Figure 2. April 2003 QuickBird image 

The second piece of data is a hyperspectral image (Figure 3). It was 

collected in July 2004 with the Airborne Imaging Spectroradiometer for 

Applications by the Center for Advanced Land Management Information 

Technology (CALMIT) at the University of Nebraska - Lincoln. The image 
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has 24 bands with 2-meter spatial resolution. These bands cover the 

spectral range from 430 to 900 nanometers. The near infrared spectrum 

begins at 750 nm so this image incorporates the visible spectrum and 

the beginning of the infrared. 

N 

A 
0 60 120 240 360 480 
-=:..:==---====---Meters 

Figure 3 . July 2004 hyperspectral imagery 
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Ground-based spectrometer samples were also collected August 6 

and 9, 2004. These were gathered using an ASD Hand Held field 

spectrometer. The device measures reflectance from 325nm to 1,075nm. 

The device was set to collect 25 samples and average the results. It was 

attached to a lm bar which allowed the spectrometer to be held in the 

branches of the tree. Samples were collected and reviewed before moving 

to the next tree. Ninety-two spectra were collected over the two-day 

period. The majority of the samples were of trees in the study area, but 

other objects such as grass, roads and sidewalks were collected as well 

for reference data. 

The fourth piece of data for the project was a LiDAR dataset acquired 

in the spring of 2006 by The Sanborn Mapping Company Inc. Figure 4 is 

an oblique representation of a portion of the LiDAR dataset. The sensor 

used was a Leica ALS50 with a sampling rate of 83kHz. The data was 

provided in the form of nine one-square-kilometer tiles that cover all of 

UNI campus and a good portion of the surrounding area. One of the tiles 

(Area 1 Tile 5) was sufficient to cover central campus. This is a discrete 

multiple return LiDAR data set. Each laser pulse emitted by the sensor is 

recorded as three or four return pulses. This allows for the analysis of 

more understory vegetation. The spatial resolution of this data is lm. 

Two products come from LiDAR data. First is the elevation for each point. 

The second is the intensity of the reflected laser beam. This data is not 
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as frequently used as the elevation data in most analysis; however, it can 

be useful. The intensity data is similar to traditional remote sensing 

imagery. Objects such as sidewalks reflect a greater amount of the 

infrared radiation emitted by the laser scanner than do trees. 

Figure 4. LiDAR data collected in April 2006 



Additionally, LiDAR is an active remote sensing platform so objects 

on the ground do not possess shadows. This is of great benefit in some 

data analysis processes. 
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The last piece of remote sensing data was a hyperspectral image 

gathered in October 2006 (Figure 5). This image was also gathered by 

CALMIT at the University of Nebraska - Lincoln using the AISA Eagle 

sensor. This data set consists of three strips that run east-west. It has 

lm spatial resolution and 63 bands covering the range between 400 and 

980nm. This image is of higher resolution that the previous 

hyperspectral image. It was acquired to take advantage of the fall leaf 

changes. 
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Figure 5. Hyperspectral imagery collected October 2006 
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A final, but critical, piece of data was a database produced by the UNI 

Facilities Services department. Figure 6 was created using the tree 

database and several byproducts of the LiDAR dataset processing. The 

shapefile contains every tree and shrub on the UNI campus as well as 



much of the infrastructure. It provides information about the trees on 

campus including the scientific and common names, some basic 

information about the condition of the tree and maintenance-related 

information such as when it was last pruned. This file was used as a 

reference for the project. 

Figure 6. A 3D shapefile developed from the UNI tree database 

Data Processing and Classification 
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The goal of the project is simply to identify trees. This can be 

achieved by comparing their spectral signatures with reference samples. 

Figure 7 provides some spectral signatures of selected impervious objects 

in the study area. These spectra were collected from the October 2006 

hyperspectral image. These impervious objects have fairly linear spectral 



responses. All tend to have low reflectance in the blue portion of the 

spectrum. Reflectance then grows steadily into the green, red and 

infrared. Because sidewalks are lighter in color, its sample has higher 

overall reflectance than do the other samples. However, it exhibits the 

same trend as the other impervious samples. 
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Figure 7. Spectral signatures of assorted impervious objects in the study 
area 

By contrast, Figure 8 displays the spectral signatures of vegetation 

from throughout the study area, which were also selected from the 

October 2006 hyperspectral image. Vegetation shows considerably more 

variation than do the impervious samples. These spectral signatures are 
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typical of vegetation - low reflectance in the blue, a green peak, a trough 

in the red portion of the spectrum and a high peak in the infrared. The 

differences in spectral response among different types of classes 

(vegetation, impervious) and within a type (oak, maple) are what make 

classification possible. 

Figure 8. Spectral signatures of assorted vegetation in the study area 

Figure 9 is a sample of some of the field data gathered using the ASD 

hand held spectrometer. The spectral signatures look similar to the 



signatures displayed in Figure 8. However, here the signatures have a 

more pronounced trough around 680nm. This is likely caused by 

humidity in the atmosphere absorbing light at this frequency. 

Spectral Data 

- -- ---ash basswood crabapple maple oak 
- ' ' ' . ' ' 

-pine 
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Figure 9. Spectra gathered in the field 

While LiDAR was very useful for this project on a variety of levels, it 

showed more frustrating aspects of its use. LiDAR is comparatively new 

in the remote sensing world, and it awaits fuller standardization. The 

goal of much LiDAR processing is to have the file as an image to be 

combined with other image data. In most cases, this image is a Digital 

Terrain Model (DTM). Unless specified when ordering, most LiDAR data 
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does not come in this format. The raw, unprocessed LiDAR file type is 

LAS. This is a format which contains all of the data collected by the 

sensor, including the first, second, third and fourth elevation returns, 

the intensity of the reflected laser beam for each of these returns and the 

angle of the laser when the data was collected. These files are 

approximately 800 megabytes each. Few software packages available are 

able to read this file type. An extension to ESRI ArcGIS provided by a 

third party enables the software to open the LAS files. However, 

attempting to open these files caused the program to hang or crash 

because of the sheer size of the file. Several attempts were made to clip 

the files in order to make them smaller. However, the file was also too 

large to clip. 

RSI ENVI 4.3 also has the ability to import LAS files. Exporting the 

LAS files as DEMs results in files without projection information, 

although it is available in an associated file. This meant the LiDAR and 

hyperspectral images were not aligned. 

The solution was a piece of software called QT Modeler, developed by 

the Johns Hopkins Applied Physics Laboratory. It allows the user to 

perform some basic analysis of LiDAR data such as line of sight 

calculations, but most importantly, it permits the exporting of DEMs as 

well as intensity images. The software was then used to export the first 



and last return LiDAR as well as an intensity image. These were all 

necessary for further processing. 
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After some necessary (and time consuming) formatting, the data were 

ready for the next stage of processing. Using Visual Learning Systems 

LiDAR Analyst, a bare earth model was created. Using proprietary 

algorithms, the software compares the first and last return LiDAR DEMs 

to estimate the height above sea level of the surface of the earth 

everywhere in the image. The final result should appear to accurately 

represent the grown beneath any object such as trees or buildings. In 

this instance, the image appears to be flat and featureless. This is good 

because there is little change of elevation on the campus. 

Using the Raster Calculator in ArcGIS, the bare earth elevation was 

subtracted from the first return elevation. This yielded relative heights of 

campus objects. The altitude above sea level of the campus area ranges 

between 270 and 280 meters. The goal of this operation was to create a 

file where the earth has an elevation of O meters. 

Image preprocessing 

Prior to any image processing, both hyperspectral images and the 

QuickBird image were geometrically referenced to the LiDAR imagery 

using RSI ENVI 4.3. For the October 2006 hyperspectral image, 30 

ground control points were selected and RMS error was 0.9478. There 
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were 39 ground control points for the July 2004 hyperspectral image 

with a RMS error of 2.9426. There were 44 ground control points for the 

April 2003 QuickBird image with a RMS error of 2.4494. 

Initially, raw images were used for classification. However, image 

processing was also performed on the two hyperspectral imagery using 

the hyperspectral tools in ENVI. In particular, a minimum noise fraction 

(MNF) was performed on the reflectance of both hyperspectral images. As 

Figure 10 demonstrates, the MNF transform can be useful in 

accentuating the differences between objects, as this particular 

combination of bands displays trees well. 

Figure 10. An MNF transform of the October 2006 hyperspectral data 
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The MNF transform is a method of reducing the size of the data 

utilizing principal component analysis (PCA). Successive bands of 

imagery are typically highly correlated. PCA is frequently used to reduce 

the dimensionality of the dataset by producing a new set with the same 

variance as the original data (Sousa, Martins, Ivim-Ferraz & Pereira, 

2007). The transform is achieved by calculating the mean of the data and 

then using an eigenvalue to rotate the data set orthogonally (Richards, 

1999). This maintains the variation of the entire data set while reducing 

the correlation among bands. Typically, the first band contains the 

largest amount of variance. The last bands are mostly noise. 

The minimum noise fraction is a series of principal component 

analyses performed back to back. PCA is applied to the dataset to de­

correlate and rescale the noise in the data set. A subsequent PCA is 

performed on this data (ENVI help file). As Figure 11 indicates, by the 

20th eigennumber and 20th MNF band, the eigenvalue is nearly zero. This 

indicates that much of the variation in the data set is contained in the 

first 20 bands of the resulting MNF image. As a result, only those 20 

bands were used for classification. 



Figure 11. The eigenvalue from the MNF transform of the 2006 
hyperspectral image 

Likewise in Figure 12, the eigenvalue appears to level off at number 

15. Thus the first 15 bands of the MNF were used for classifications. 

Figure 12. The eigenvalue from the MNF transform of the 2004 
hyperspectral image 
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Classification 

Classification is the defining of an object based on the rules of a class 

(Defininens, 2004). In most cases, these rules are based on the spectral 

values obtained from an image. For this research, all classification was 

performed using eCognition™ Professional 4.0 developed by Definiens 

AG. The company was founded by 1986 Physics Nobel laureate Professor 

Gerd Binning. eCognition™ treats imagery not as a mass of unrelated 

pixels, but as groups of related pixels or segments. These segments can 

then be classified not simply by spectral signature, but also by their 

relationship to other segments as well as the segment's characteristics. 

Generally, these characteristics fit into three broad classes: intrinsic 

features such as the color, texture and form of an object; topological 

features such as the location of the segment in the image; and context 

features such as semantic relationships (Definiens, 2004). 

A further benefit of eCognition™ is the ability to use all types of 

spatial data in a classification. Shapefiles and images can be combined 

in one project. The only limits are computational power and the user's 

organizational skills. The workflow of classification in eCognition™ is 

relatively straightforward. Imagery must first be segmented. 

Segmentation is a bottom up process. Each segment begins as a single 

pixel. Each iteration of the process adds another pixel to the segment 



until either marginal pixels exhibit heterogeneity or the user-defined 

scale is exceeded (Definiens, 2004). 

50 

eCognition™ requires that a class hierarchy must be created as the 

next step in classification. The software allows the creation of more 

complex structures (such as parent-child structures) than do traditional 

classification schemes. Classes for this project were buildings, sidewalks, 

roads, honey locust ( Gleditsia triacanthos), eastern white pine (Pinus 

strobus), crabapple (Malus ioensis), sugar maple (Acer saccharum), white 

spruce (Picea glauca), American basswood (Tilia americana), pin oak 

( Quercus palustris) and green ash (Fraxinus pennsylvanica). These 

classes were determined statistically. Using the UNI campus shapefile 

tree database, a frequency plot was created. Table 2 gives the outcome of 

the frequency analysis. 

Table 2. 

Most common trees in the study area 

Most common trees 

honey locust 607 

white pine 426 

crabapple 318 

sugar maple 306 

white spruce 285 
American 212 basswood 
pin oak 132 

ash 115 
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In building the class hierarchy, coniferous and deciduous were 

parent classes. Trees were grouped into their appropriate parent classes. 

Classes may be defined by user-defined membership functions 

(reflectance value for the infrared band, for example) or by what is 

referred to as "nearest neighbor'' classification, which can function in a 

multi-dimensional feature space (reflectance values in all bands). In each 

case, these are fuzzy rules. Rather than a binary, "yes or no" 

classification, each object in a fuzzy classification system is assigned a 

value between zero and one, with zero meaning it is absolutely not a 

member of the class and one being absolutely a member of the class. 

This system allows for minor variations and vagueness of remotely 

sensed data (Definiens, 2004). 

Further, eCognition™ provides two methods of supervised 

classification. The user may either train the classifier by selecting 

representatives of each class or by defining the parameters of each class 

by creating a membership function. Accurately defining the precise 

reflectance of each oak tree would of course be impossible using a hard 

classification system, because the reflectance of each oak tree varies 

slightly. Thus a soft or fuzzy classification scheme is employed. 
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One of the methods is the nearest neighbor classification scheme. For 

each class, it selects a representative sample and plots it as a vector in n­

dimensional space, where n is the number of bands in the image. Each 

segment is then compared to the class and the segment is then assigned 

to the nearest class (Definiens, 2004). 

This process is illustrated in Figure 13. Two classes are represented: 

red and blue. The red and blue dots indicate the vectors created by each 

training sample. The bold, orange vector is the segment being classified. 

Because its vector is closer to blue class, it will be classified as blue. 

feature 2 

• 

• 

Samples of class red 

• 
• 

\ 

• • 

/ 

\ 

• • 
Samples of class blue 

feature 1 

Figure 13. Nearest neighbor classification (Defineins, 2004) 
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Nearest neighbor classification was used for this project primarily 

because it provides more data on which to base the classification. 

Training samples were selected in areas where the sample objects were 

clearly distinguished from their surroundings. In many cases however, it 

was necessary to add some knowledge to manually define the parameters 

of each class. For example, rooftops and parking lots are frequently 

confused in classifications because they are made of similar materials. 

Using the relative height LiDAR file, the building class was defined as 

anything with a height greater than four meters. eCognition™ allows 

users to incorporate Boolean statements such as "and" or "or." The 

Boolean operator "and" means that only segments that meet the nearest 

neighbor and the LiDAR elevation criteria are defined as building. 

Similarly; accuracy of the grass and sidewalk classifications was 

improved by defining the elevation as anything below 2 meters. 

Figure 14 is an example of a user-defined membership function. The 

curves in the "Initialize" box determine how the membership function is 

implemented. In this case, the curve allows the rule some flexibility. The 

center point of the function is five. It will also accept any value above five 

and down to approximately 2 where the membership function value is 

0.1. These curves are adjustable and can allow nearly any range of 

values to be included. The membership function currently selected allows 
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for variations. If one of the functions with right angles in it was selected, 

then every value below five would not be a member while every value 

above it would. Membership function can be created to fit nearly any 

range of values by simply editing the shape and border of these 

functions. 

Member ship Function I'? l[RJ 

Featl.le 

Mean campus_height2.tif 

,1j y- \._l 
I LJ :0 LJ - ~7 
I 

I !DJ yJ ~ ~ a OJ 
Membership function xly 

MaJSimum 1.0 
Coordinates 

value --------~[, 
..:J 
~lo ..:J 0 
Minimum 
value 0.0 

lo 15 110 
~.!..l ~.!..l ~.!..l 
.!.eft border .Center point B.i!tit borde! 

Entire range of values: (-1 e+032 .. 1 e+032] 

Unit: !No unit ..:J 
----__,J. 

Class: deciduous 

.QK ~ancel 

Figure 14. An example of a membership function that only accepts 
objects with elevation greater than 2 meters 
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The samples were then saved as a Test or Training Area {TTA) mask. 

This allows samples to be selected regardless of the image type as long as 

they are properly geo-rectified. Further, the hierarchy was also saved. 

The combination of the two saved files allows a user to quickly perform 

classifications on different types of imagery. 

Table 3 displays the number of samples collected for each class. Tree 

samples were selected based on how distinct they were from other 

species of tree. This was done to alleviate any possibility of mixing 

spectral signatures from different species. As many samples as possible 

were collected for each class to provide good data for accuracy 

assessment. In some instances, the number of valid sample sites limited 

the number of samples available. It is important to remember even 

though a class may have a small number of samples, it is likely that each 

individual sample contains dozens of pixels. A smaller training data set 

was created based on the accuracy assessment set. The training data is 

used by the nearest neighbor classifier to determine which class each 

segment should belong in. 
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Table 3. 

Samples collected 

class number of 
samples 

American 33 
basswood 
maple 73 
pine 20 
honey locust 22 
spruce 45 
crabapple 27 
ash 65 
buildings 222 
oak 65 
grass 165 
roads 28 
sidewalks 12 

Six measures of accuracy are provided by eCognition™. These 

include overall, user, producer, Hellden, Shorts, and Cohen's Kappa 

accuracies. Overall accuracy is the proportion of all reference pixels that 

are classified correctly (Definiens, 2004). User accuracy is a measure of 

errors of commission. These errors involve placing a sample in the wrong 

category. Producer accuracy is a measure of errors of omission. These 

occur when a sample is not placed in the correct category. Helldens 

accuracy is the harmonic mean of the producer and users accuracy 

(Definiens, 2004). Short's accuracy introduces more statistical analysis 

into the equation. Generally, Short's accuracy is considered to be more 

pessimistic while Hellden's is more optimistic (Definiens, 2004). The final 
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measure of accuracy is the Cohen's Kappa (also referred to as Kappa 

Index of Agreement). It is assumed that both the reference classification 

(the TIA mask) and the classification are correct, and it provides a 

measure of how well the two classifications agree. The benefit of this is 

that kappa takes into account the possibility of chance agreement and 

corrects for it (Definiens, 2004). Overall and kappa accuracy was used for 

overall accuracy. Producer and user accuracy statistics are given for 

individual class accuracy. 



CHAPTER4 

RESULTS 

Classifications were performed on each of the images available with 

and without the aid of LiDAR. This was made possible by the 

eCognition™ workflow. The same hierarchy and samples were used for 

each classification. 

This project originated with only the July 2004 hyperspectral, and 

those results were questionable at best. Problems encountered in that 

research also surfaced in various phases of the current research. Chief 

among them were the coarse spatial resolution of the 2-meter imagery. 

Getting good separation from neighboring classes was difficult despite 

the dozens of attempts using various greenness and chlorophyll ratios, 

and a normalized difference vegetation index. 

With the LiDAR data, the classification still did not have sufficient 

accuracy. A concurrent project utilizing MNF data led to the data 

reduction, which resulted in increased accuracy. 

QuickBird 
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The first classification was performed using the QuickBird imagery 

alone. Th~ initial goal of incorporating this image into the classification 

was to develop a mask separating out the coniferous trees from the 

deciduous species. Because this image was collected in early April when 

there were no leaves on the deciduous trees, this would have been an 
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ideal situation because the only green objects in the study area were 

grass and evergreen trees. This mask could then have been incorporated 

into further classifications using imagery that had significantly more 

greenery to confuse the software. However, there was considerable 

difficulty in separating the coniferous class from the deciduous class. 

Several factors likely caused this. First, the QuickBird image provides 

limited spectral resolution. Imagery of this type is perhaps best used to 

identify broader categories of land cover. Second, the bare trees actually 

created more problems than they solved. Frequently, these bare trees 

were classified as coniferous. This is likely due to the shadows they cast 

on the grass. These created a dark green area that was apparently 

similar in hue to a conifer, and these shadows were frequently 

misclassified as conifers. Figure 15 is a portion of the classification 

attempt. Green areas depict conifers and red areas are deciduous 

species. The areas classified as coniferous are clearly not correct. 

Portions of the image classified as coniferous are clearly much larger 

than the areas which are actually coniferous. Some coniferous trees do 

appear to be correctly classified, but there are also large vaguely shaped 

areas which are more likely shadows. As a result, this image was not 

used to generate a coniferous/ deciduous mask. 



Figure 15. A preliminary QuickBird classification. Yellow portions of the 
map are grass; red are deciduous species; and green are coniferous. 
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Regardless of the difficulties encountered while working with the 

QuickBird imagery, it was utilized in a number of classifications. As can 

be seen in Figure 16, few of the objects in the final classifications look 

like trees, particularly in comparison to subsequent classifications of the 

other imagery. Many of the trees are actually larger than they should be 

as most of the segments included the shadows cast by the trees as well 

as the trees themselves. Additionally, sections of individual trees are 
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frequently classified as two separate classes (e.g. the peak of the crown is 

classified as maple and the extremities of the crown are classified as 

oak). The most common classification error appears to be placing 

deciduous trees in a coniferous class, most frequently spruce as was 

discussed previously. 

-- ~ Crabapple - Pine - = - Honey Locust - Sprue:. - • X . W -

Figure 16. QuickBird-based classification 
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Table 4 provides accuracy statistics for this classification. Overall 

accuracy was 0.64 while kappa accuracy was 0.4 7. Such low accuracy is 

to be expected as the image was collected when the deciduous species 

had no leaves, and most of the tree classes are deciduous. The pine 

class had the highest producer accuracy with 7 4%. The next closest 

classes in terms of producer accuracy were spruce with 59% and oak 

with 52%. The remaining producer accuracies are so low as to not be 

worth mentioning. The oak and ash classes had the highest user 

accuracy with 66 and 65% accuracy. Maple, pine and spruce had user 

accuracies that fell into a range between 59 and 54. High user accuracy 

means that oak trees are correctly identified as oak trees, for example. 

However, care must be taken when reviewing these statistics. One can 

easily have very high user accuracies for the oak class by classifying all 

of the image as oak. This is why user accuracy should always be 

accompanied by producer accuracy. Producer accuracy is a measure of 

misclassification. High producer accuracy for the oak class would mean 

that very few maple trees were classified as oak trees. Although ash has 

user accuracy of 65%, its producer accuracy is 26%, which leads one to 

question the accuracy of the classification. These results really are not 

surprising. The leaves are the defining characteristic for trees in terms of 

remote sensing and classification, and the imagery was collected when 

the leaves were still off the trees. 
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Table 4. 

QuickBird classification accuracy 

Class Produc User er 
oak 0.52 0.66 
maple 0.36 0.59 
Pine 0.74 0.57 
Spruce 0.59 0.54 
ash 0.26 0.65 
honey 

0.32 0.04 locust 
basswood 0.05 0.24 

crabapple 0.00 0.01 
Overall 0.64 
Kappa 0.47 

July 2004 Hyperspectral 

The next step was to determine what sorts of benefits accompany an 

increase in spectral resolution. The imagery collected July 2004 contains 

24 spectral bands and should contain more information, which should 

improve classification accuracy. One of the primary issues with 

classification of this image was that the relatively low spatial resolution 

made it difficult to segment the images accurately. It was very difficult to 

separate trees from their shadows and even more difficult to separate 

trees from neighboring trees. For an individual tree classification study, 

2-meter spatial resolution does not provide sufficiently high definition to 

allow separation of groups of trees or trees from their shadows. Although 

most trees have crowns much larger than each pixel of a 2m image, the 
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image suffers from too much pixel averaging. In this case, borders of 

trees gradually blend into the background or into neighboring trees. This 

results in segments that may include both tree crown and shadows and 

therefore the samples do not truly reflect the classes. The final 

classification (Figure 1 7) appears to be very pixilated. It is difficult to 

even identify portions of the study area. While the previous two 

classifications give the impression distinct objects on the ground, this 

image lacks much definition. It appears that at least one of the oak trees 

was not classified as a tree at all. In many cases, the issue of shadows 

being classified as conifers appears again. Many of the ash trees are not 

classified correctly and many of the oak trees were classified as ash trees 

agam. 



I .... 
I • .. .. ... .. . , __ 

.. ; 
•• 

---• • ·~,.......,.. 
• Q 

., 'Ill ... .. ..... - . ,,,_ -... • .. 
• • .> 

,- r 
# i 1i 
- "1 - ., -

.. 
ll· la 

.. ..-
- ,.,. ~ 

.. ·, -~ .. 
"'' • •• 1 -I , .,. ., 

I • 

"" .( 

.. 

~ 

American 
Basswood 

.. 
. ,.-

.. 

•• 

... 

k 

• 
• 

.. ..... 
,, __ .. 

...,. 
' • .. .. 

~ 
I ,_,__. 

• 
•• 

-i 

, , 
· .1_ . . ,~ 

,, .. . 1\!, 

t t~~ 
..l .," . ,..~ 

• 
.. . ! . 

• .. ·, ,, . - • I 

• 
r# 

Honey Locust - Spruce 

Figure 17. July 2004 hyperspectral classification 
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The accuracy assessment results are presented in Table 5. Overall 

accuracy was 0.71 and kappa accuracy was 0.54. There are few 

noteworthy individual class accuracies here . The highlight is the pine 

class with a producer accuracy of 69% and a user accuracy of 82%. The 

honey locust class provides a producer accuracy of 8% while user 



accuracy is 100%. This calls into question the usefulness of this 

classification. It is important to note again that the honey locust and 

crabapple classes which consist of the smallest trees in the study are 

also the trees with the worst accuracy of any class. The fact that both 

classes have 100% user accuracy implies that these honey locust and 

crabapple are being over-classified, which is to say that many trees 

which should not be crabapple are being classified as such. This 

classification is not useful. 

Table 5. 

July 2004 Hyperspectral classification accuracy 

2004 
Hyperspectral 

Class Producer User 
oak 0.40 0.63 
maple 0.47 0.82 
Pine 0.69 0.82 
Spruce 0.54 0.57 
ash 0.51 0.82 
honey 

0.08 1.00 locust 

basswood 0.51 0.74 

crabapple 0.35 1.00 
Overall 0.71 
Kappa 0.54 
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October 2006 Hyperspectral 

The October 2006 image provides lm spatial resolution. This image 

provides a number of benefits over the other images. First, it has 63 

bands of data. This creates a much more detailed spectral signature than 

does the 24-band hyperspectral or the four-band QuickBird image. 

Second, the October collection date highlights some of the differences 

between species as the leaves change. Additionally, its spatial resolution 

rivals that of the QuickBird image. Although the segmentation process 

and subsequent classification provide much better results than the 2004 

hyperspectral image, the classification is still questionable (Figure 18). 

Oak trees that should appear as individual trees frequently appear as 

one group when there is actually grass between them. Once again, there 

are problems with areas of shadows being classified as spruce or pine. 

There are also problems with portions of trees being classified as the 

incorrect class, such as oaks classified as maples, spruce or pine. In this 

case, parts of one tree crown will be maple and other parts will be oak. 

Most of the segments for the trees unfortunately contain the crown and 

some of the shadow associated with the tree. None of these classes have 

any particular high accuracy although there is definitely an improvement 

over the 2m, 24-band hyperspectral MNF classification with an increase 

in overall accuracy of 0.10. It should also be noted that while MNF 

reduces the dimensionality of hyperspectral data, it does not lend itself to 
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the segmentation process. It is very difficult to produce segments that 

accurately represent ground features. The first bands of an MNF image 

contain the majority of the data while latter bands contain mostly noise. 

These last bands were not used at all in the classification process. 

Several segmentations were performed usingjust the first several bands, 

which appeared to have the best definition. This did not improve the 

segmentation. 
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Figure 18. October 2006 hyperspectral classification 

Overall accuracy was 0.81 while kappa accuracy was 0.71 (Table 6). 

This classification produced moderate accuracy for nearly all of the 

classes. The oak class had the best results with producer accuracy of 

82% and user accuracy of 84%. Maple had the second highest accuracy 

with 70% producer accuracy and 79% user accuracy. The remaining 

classes share similarly low accuracy. From a mapping standpoint, only 

the oak class could be considered worth using . 
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Table 6. 

October 2006 hyperspectral classification accuracy 

2006 
Hyperspectral 

Class Producer User 
oak 0.82 0.84 
maple 0.70 0.79 
Pine 0.66 0.86 
Spruce 0.53 0.66 
ash 0.57 0.81 
honey 

0.52 0.82 locust 

basswood 0.58 0.91 

crabapple 0.52 0.75 
Overall 0.81 
Kappa 0.71 

OuickBird with LiDAR 

Although the results were poor for the QuickBird imagery, a 

classification was performed using this imagery with LiDAR. 

Expectations for this classification were not particularly high based on 

previous work with the data. However, it was easy to perform the 

classifications again. The only changes to the classification were to 

incorporate the elevation data. The difference between the QuickBird 

image with LiDAR and without LiDAR is not as significant as with other 

data. The LiDAR does appear to have aided in separating out vegetation 

and impervious objects. In Figure 19, the sidewalks were included in the 

vegetation class. Here it is evident that the buildings, sidewalks and 



other impervious surfaces have been excluded from the vegetation. 

However, in comparing this to the reference shapefile, it is easy to see 

where the classification comes up short. There are several instances in 

which oak trees are classified as both ash and basswood trees. In 

general, the number of honey locust trees is much too high. 

American 
Basswood Honey Locust - Spruce 

Figure 19. QuickBird and LiDAR classification 
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Table 7 shows the accuracy statistics for the QuickBird and LiDAR 

classification. Overall accuracy increased dramatically to 0.88 while 

kappa accuracy was 0.82 with the inclusion of LiDAR elevation and 

intensity data. All classes, with the exception of the honey locust class, 

have acceptably high accuracy. The larger trees, such as oak, maple, 

pine, spruce and ash, have high accuracy. Smaller trees such as honey 

locust, basswood and crabapple have lower accuracy. The increase in 

overall accuracy was surprising. Clearly the spectral information 

provided by the LiDAR intensity layer is contributing to the increase in 

accuracy. Additionally, spectral information from the bark of the trees 

could be providing additional information. Although the overall accuracy 

is definitely lower than any subsequent LiDAR-added classifications, it is 

fairly high. Regardless, it bodes well for future classifications with higher 

degrees of spectral resolution and leaf-on data. 



73 

Table 7. 

QuickBird and LiDAR classification accuracy 

2003 QuickBird 
Class Producer User 
oak 0.92 0.96 
maple 0.93 0.87 
Pine 0.93 0.90 
Spruce 0.88 0.89 
ash 0.90 0.97 
honey 0.71 0.14 
locust 
basswood 0.87 0.95 
crabapple 0.87 0.70 
Overall 0.88 
Kappa 0.82 

July 2004 Hyperspectral and LiDAR 

Many of the issues encountered with the July 2004 hyperspectral 

image were resolved with the inclusion of LiDAR into the classification 

process. LiDAR was used to segment objects and it was also used as a 

membership function to increase overall accuracy. The final image 

(Figure 20) provides remarkable contrast in comparison to the same 

image without LiDAR. Here trees are sharply defined and it is much 

easier to identify objects. It is also much more difficult to spot obvious 

errors in the classification. There are some smaller errors in classification 

between the honey locust and crabapple classes. In addition, there are a 

few small errors with regard to the classification of oak trees. In the 



crowns of several of the oaks, there are portions which have been 

classified as either spruce or pine. 
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Table 8 provides the accuracy statistics for this classification. Overall 

accuracy improved to 0.92 and kappa accuracy improved to 0.88. This is 

once again a very significant increase in overall accuracy. Although the 

honey locust class in this classification appears to be problematic, all of 

the other classes have high accuracy. Classes that can be mapped with 

very high accuracy are oak, maple, basswood and pine. Each of these 

classes has user and producer accuracies that are above 90%. Trees 

that may be identified with good accuracy are spruce, ash and crabapple. 

These classes had accuracies ranging between 70 and 80%. The honey 

locust class was the only class with poor accuracy, having producer 

accuracy of 46% and a user accuracy of 60%. Overall, this classification 

lends much credence to the concept that LiDAR can increase overall 

accuracy. 
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Table 8. 

July 2 004 hyperspectral and LiDAR classification accuracy 

2004 
Hyperspectra l 

Class Producer User 
oak 0 .96 0.92 
maple 0.96 0 .94 
Pine 0 .95 0 .96 
Spruce 0 .83 0.93 
a sh 0.93 0 .74 
honey 

0.46 0.60 
locust 
ba sswoo 

0 .90 0.99 
d 
crabapp 

0 .77 0 .82 
le 
Overall 0 .92 
Kappa 0.88 

October 2006 Hyperspectral with LiDAR 

The final classification was the combination of the LiDAR and the 

October 2006 hyperspectral data. The same classification h ierarchy and 

classification rules were used for this data as was used for all of the 

previous classifications. Overall, this appears to be the most realistic 

classification of all (Figure 21). As with the other LiDAR-based 

classifications, each tree is well-defined. With this image, it is more 

difficult to find a misclassified tree. This classification appears to have 

sufficient resolution to allow clusters of trees to be identified correctly . 

For example, areas where pine trees and maple trees are intermingled 

a re correctly classified . Further, the recurring problem where portions of 



tree crowns being incorrectly classified appears to be significantly 

reduced. The same oak trees that previously had been classified as oak 

and pine and maple in other classifications are now correctly oak. 
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As one might expect, this provided the best accuracy of all (Table 9). 

Overall accuracy is 0.93 and kappa accuracy is 0.90. Individual class 

accuracies are all quite high. Oak, maple, ash, honey locust and 

basswood all have very high accuracy with user and producer accuracies 

in the 90s and upper 80s. Pine, spruce and crabapple still have good 

accuracy with producer and user accuracy in the 60 to 80 range. The 

crabapple class continues to be troubling with producer accuracy of 87% 

and user accuracy of 66%. 

Table 9. 

2006 hyperspectral and LiDAR classification accuracy 

2006 Hyperspectral 
Class Producer User 
oak 0.96 0.89 
maple 0.98 0.98 
Pine 0.94 0.83 
Spruce 0.87 0.72 
ash 0.95 0.96 
honey 0.94 0.97 
locust 
basswood 0.95 1.00 
crabapple 0.87 0.66 
Overall 0.93 
Kappa 0.90 
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2004 and 2006 Hyperspectral with LiDAR 

In theory, the combination of the two images should provide the most 

information and therefore produce the most accurate classification. 

Using the same rules as the previous classifications, both images were 

combined and evaluated. The resulting image (Figure 22) actually bears 

more resemblance to the 2004 hyperspectral than to the 2006 

hyperspectral. It appears as though there are several instances in which 

the crowns of trees are classified as more than one species. For example, 

part of an oak tree is classified as a honey locust. This is fairly common 

in this image. Again the LiDAR has created shapes that are fairly 

reminiscent of trees, and many of the trees appear to be classified 

correctly. It appears that the smaller classes such as crabapple and 

honey locust are not classified correctly. In some instances, trees that 

should be in those classes are not classified at all or are assigned to the 

wrong class. 
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Figure 22. The 2004 and 2006 hyperspectral and LiDAR classification 

Overall accuracy is nearly the same as the 2004 hyperspectral and 

LiDAR-based classification (Table 10). Overall accuracy is 92% and 

kappa accuracy is 88%. These figures are the same as the 2004 

hyperspectral overall and kappa accuracy results. Class accuracies are 

also similar to the 2004 hyperspectral classification. The oak, maple, 

pine and ash classes have very high producer and user accuracies with 
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all accuracies above 90%. Spruce has high producer accuracy, however, 

user accuracy falls to 7 4%. The basswood class has good accuracy with 

85% producer accuracy and 98% user accuracy. The honey locust and 

crabapple classes have producer accuracies in the mid-40% range while 

user accuracy is very high. 

Table 10. 

2004 and 2006 combined accuracy 

Combined 
hyperspectral 

Class Producer User 
oak 0.96 0.92 
maple 0.94 0.98 
Pine 0.91 1.00 
Spruce 0.93 0.74 
ash 0.91 0.97 
honey 
locust 0.46 0.97 
basswood 0.85 0.98 
crab apple 0.47 0.98 
Overall 
Accuracy 0.92 
KIA 0.89 

These figures are similar to the 2004 hyperspectral-LiDAR 

classification, however more over-classification is occurring with the 

combined imagery. Combining the two hyperspectral images in a single 

classification did not result in any significant changes in overall accuracy 

and changes in individual class accuracies were varied. 



Comparison 

Table 11 lists the differences in accuracy between classifications 

performed with LiDAR and classifications performed without LiDAR. 

Overall, the LiDAR resulted in an improvement of 24% for QuickBird, 

21 % with the July 2004 hyperspectral and 12% with the October 2006 

hyperspectral image. 

Table 11. 

Differences in accuracy between LiDAR and non-LiDAR classifications 

2006 2004 
2003 QuickBird Hvperspectral Hyperspectral 

Producer User Producer User Producer User 
oak 0.14 0.05 0.56 0.29 0.40 0.30 
maple 0.28 0.19 0.49 0.12 0.56 0.28 
Pine 0.28 -0.02 0.25 0.13 0.19 0.32 
Spruce 0.34 0.06 0.30 0.36 0.29 0.35 
ash 0.39 0.16 0.42 -0.08 0.64 0.31 
honey 

0.42 0.15 0.38 -0.40 0.39 0.10 
locust 
basswood 0.37 0.09 0.39 0.24 0.82 0.71 

crabapple 0.34 -0.09 0.42 -0.17 0.87 0.69 

Overall 0.12 0.21 0.24 
Kappa 0.19 0.34 0.36 
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Improvements in individual class accuracies are more dramatic. The 

largest class accuracy improvements occur with the QuickBird image. 
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This stands to reason as most of the classes are deciduous and the 

LiDAR adds some leaf reflectance data. The highest improvement in 

producer accuracy comes with the crabapple class with 87% and the 

basswood class with 82%. User accuracies did not provide such large 

increases. The basswood and crabapple classes had improvements of 71 

and 69% respectively. In this image, the smallest improvements occur 

with the coniferous pine and spruce classes. The pine and spruce classes 

do not change nearly so significantly with the seasons as do the 

deciduous classes. With the July 2004 hyperspectral image, individual 

class accuracies with LiDAR also show significant improvements over the 

classification with imagery alone. The oak and maple classes had the 

greatest producer accuracy improvement with an increase of 56% and 

49%. Other class producer accuracies increased by 25 to 42%. User 

accuracy increases were comparatively small. The exceptions to this were 

the honey locust class which actually had a 40 percentage point decrease 

in user accuracy with the addition of LiDAR. Spruce had an increase in 

user accuracy of 36 percentage points. Other classes typically had 

increases in user accuracy in the teens. 

The 2006 hyperspectral saw smaller increases with the addition of 

LiDAR. The largest increase in producer accuracy was the honey locusts 

which improved 42 percentage points. This class saw similar 
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improvements for each classification. Oak had the smallest increase with 

a 14 percentage point increase in producer accuracy. User accuracy 

increases were less significant and were mostly in the single digits and 

teens. 



CHAPTERS 

CONCLUSION 
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Overall, this research answers the questions set forth in the 

introduction. These questions were: what accuracy can hyperspectral 

imagery in combination with object-oriented classification provide when 

classifying trees at the species level? What benefits are gained, in terms 

of classification accuracy, by incorporating multiple images collected at 

different times of the year? What contributions to overall accuracy can 

elevation data, such as LiDAR, provide? And finally, can individual tree 

species be accurately mapped using remotely sensed imagery? 

Hyperspectral imagery and object-oriented classification make it 

possible to classify individual tree species in an urban setting. The 

majority of the tree species were classified with an accuracy of greater 

80% which is a standard for forest managers (Lennartz & Congalton, 

2004). The 2006 hyperspectral classification achieved this in all but the 

spruce and crabapple classes. 

There were not any noticeable improvements in overall accuracy by 

incorporating multiple collection dates into the classification. The overall 

accuracy of the classification with the combined hyperspectral images 

was roughly equivalent to the classification with the hyperspectral image 

with the lowest spectral and spatial resolution. 
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LiDAR proved to be the source of a significant increase in overall 

classification accuracy. The addition of LiDAR to a classification led to an 

increase in overall accuracy of at least 12 percentage points. It proved to 

be significant particularly in classes with smaller objects such as 

crabapple trees. This led to increases of class accuracies of 30 percentage 

points or greater. 

Individual tree species can be mapped using remote sensing data. 

Oak, maple, pine, ash, honey locust and basswood can be mapped with 

greater than 90% accuracy in this study. The spruce and crabapple 

classes had accuracies that fell below the 80% mark. 

The overall accuracy is dependent on several factors: spatial and 

spectral resolution, seasonal variations and additional information, in 

this case, elevation. 

The QuickBird image, which had the lowest overall accuracy, suffers 

mostly from lack of spectral resolution. With only four bands, it was not 

possible to separate coniferous species from areas of shadow near 

deciduous species. Additionally, its early spring collection date made it 

nearly impossible to classify individual deciduous species. 

The 2004 hyperspectral without LiDAR classification results were in 

the middle of the pack in terms of overall accuracy. It has moderately 

high spectral resolution with 24 bands, but not the 63 bands provided by 

the 2006 image. It matches the individu~l class accuracy of the 2006 



hyperspectral classification in some classes. However, it appears that it 

suffers from a lack of spatial resolution. This is made evident in poor 

performance when classifying smaller trees. Additionally, during the 

period in which the image was collected trees are most likely to be 

suffering heat or moisture stress (Birky, 2001). This can lead to 

decreased chlorophyll production and lower variability among species. 

Whether this or the spatial resolution attributed to the overall accuracy 

is difficult to tell. 
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The 2006 hyperspectral without LiDAR provided the best overall 

accuracy, which approached the accuracy standards Lennartz and 

Congalton (2004) refer to. This image provides high spectral resolution 

and high spatial resolution and was collected in a time when chlorophyll 

production should be high. However, class accuracies are very low, with 

the exception of the oak class. This may be partially attributed to the 

difficulty that was had in segmenting the image properly. Shadows can 

play a significant role in segmenting an image. 

The accuracy of the classification is dependent on several factors: 

spatial and spectral resolution, seasonal variations and additional 

information, in this case, elevation. LiDAR proved to be a significant 

factor in classification accuracy. The two contributions made by LiDAR 

are providing elevation data that can be used as a classification mask 

and providing high-resolution, shadow-free imagery for the segmentation 



process. While all other factors remained equal, overall accuracy of the 

October 2006 image went from 0.81 to 0.93. Kappa accuracy improved 

from 0.71 to 0.90. Other images saw an increase in overall accuracy of 

0.21 for the July 2004 hyperspectral image and 0.24 for the QuickBird 

image. From an inspection of the individual class accuracies, it appears 

that LiDAR reduces over-classification. Producer accuracies generally 

improved much more than did user accuracies. 
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The fact that a shadow-less image was utilized to create the segments 

was perhaps most important of all. This allowed for the creation of 

segments that allowed pure samples to be identified for each class. In all 

of the non-LiDAR classifications, the segments for most of the samples 

contained both the tree crown as well as a portion of the tree's shadow, 

whether it fell on the ground or on a nearby tree. 

Elevation data also helped improve accuracy. One of the greatest 

problems in this project was the misclassification of shadows on grass as 

either a spruce or pine. Adding an elevation component to the 

classification criteria for all classes helped eliminate this confusion. 

Although it does not relate to the outcome of this study, an excellent 

example is the classification of building rooftops and parking lots. These 

two surfaces are composed of tar and small rocks, and they are 

frequently confused as can be seen in Figure 3, for example. By 

incorporating an elevation component to the classification, the confusion 
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can be eliminated. How well this works depends largely on the quality of 

the bald earth layer. In this classification, several areas that should have 

had an elevation of 0 did not. In these cases, the rules fail and 

classification errors occur. 

Spectral resolution also played a key in the overall accuracy. The 

QuickBird image with its four bands has the lowest overall classification 

accuracy (0.64). The 2004 hyperspectral image has 24 bands and it 

provided overall accuracy of 0.71. The 2006 hyperspectral image with its 

63 bands showed further improvement with an overall accuracy of 0.81. 

Each of these images provides spectral information from 400nm to 

900nm, but this information is provided in increasingly high levels of 

resolution. 

The spatial resolution appears also to have improved classification 

accuracy. Although overall accuracy is quite high in both of the LiDAR­

aided hyperspectral classifications, accuracy of smaller trees such as 

honey locust and crabapple increased by 0.4 and 0.1 respectively. With 

smaller trees, pixels representing the trees are more likely to be a 

combination of shadow and tree with a 2-meter image than with a lm 

image. 

These results appear to compare favorably to those found by other 

researchers. Huguenin et al. (1997) were able to classify two classes -

cypress and tupelo trees - with 89% and 91 % accuracy respectively. 
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Meyer et al. ( 1997) classified pine, spruce, fir and beech trees with 80% 

overall accuracy. Key et al. (2001) achieved overall accuracy of 76% when 

they identified four trees in West Virginia. In classifying a wetland area 

near a river in Germany, Ehlers et al. (2003) achieved 95% accuracy in 

their vegetation classes. Collins et al. (2004) were able to identify four 

tree species with 72% accuracy using LiDAR and multispectral data. 

Holmgren and Persson (2004) used LiDAR to identify pine and spruce 

trees with 95% accuracy. Greiwe and Ehlers (2004) were able to classify 

landcover in a German city with 73% accuracy. Lennartz and Congalton 

(2004) used QuickBird multispectral data to achieve 17% accuracy. This 

accuracy was improved to 31 % when object-oriented classification was 

applied. Carleer and Wolff (2004) used IKONOS data to classify seven 

tree classes with 86% accuracy. Hajek (2005) attained 90% accuracy 

with coniferous classes, while deciduous classes had 70% accuracy. 

While it is difficult to compare accuracy assessment results among 

studies due to the broad number of variables affecting the outcome, the 

results of this study are as good, or better, than those obtained by 

studies in the literature review. This methodology is promising and 

perhaps further development could improve overall accuracy, and in 

particular, the accuracy of some of the smaller classes. 
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Limitations 

Although, the LiDAR did improve classification accuracy as was 

indicated in the Chapter 4, it also created some problems. As was 

discussed in the Methodology section, rules were established that each 

segment was required to meet before it could be included in each class. 

For the deciduous and coniferous classes, the elevation of the segment 

had to be greater than 2.5 meters, otherwise it would not be included in 

the class. In certain instances, trees were small enough that they did not 

have an elevation high enough to qualify according to the elevation file. 

There are three possible causes for this: the laser missing the tree 

entirely, the laser striking more of the ground than the tree, or as many 

of the trees affected were coniferous, the laser hitting the tree at an area 

other than its apex. The last two are more likely as it is a high density 

LiDAR data set. Regardless, this resulted in the tree being forced into a 

category in which it did not belong because it failed to meet the elevation 

rule. 

Georectification can also be problematic. In the case of the July 2004 

image, it is very difficult to find a definite, crisp point to use as a 

reference point. This means that it is quite possible that the LiDAR layer 

and the July 2004 image do not line up as precisely as they could have. 

This, of course, would reduce the overall accuracy of the classification 

because segments based on the LiDAR needed to line up exactly with the 



imagery of the trees. These segments had great influence on the quality 

of the samples as well as the samples used for accuracy assessment. 
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Finally, the LiDAR was collected in the spring before the trees had 

fully leafed-out. Some of the deciduous trees do not have returns that 

were as strong as the coniferous trees. The evergreens have clearly 

defined shape, while the deciduous trees have spikes from areas where 

the LiDAR passed directly through the trees. This could have affected the 

shapes of the segments and these shapes (or texture) could have been 

used to refine the classification. 

Future Directions 

With the wide variety of data available, there are several possibilities 

for continued research. Most projects using hyperspectral data utilize 

some sort of band reduction to eliminate unnecessary data that may 

confuse classification schemes as well as to speed up classification 

times. One of the methods of band reduction is called Classification And 

Regression Tree. Based on samples of desired classes, CART statistically 

selects the bands that need to be kept for classification and creates a 

regression tree for classification. A future direction is to combine CART 

with eCognition™ and its object oriented classification scheme to 

perhaps increase classification accuracy. 

Additionally, the current classification utilizes on the first and last 

returns of the LiDAR. Holmgren and Persson (2004) noted that pine trees 
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had a more conical shape than other conifers. Using all the returns, a 

three-dimensional shape can be developed. It may be possible to identify 

tree species by their shape alone, or at least the shape can be used to 

increase classification accuracy. 

As part of the LiDAR analysis in LiDAR analyst, a shapefile is created 

that contains the estimated location of each tree as well as estimates of 

tree crown diameter, trunk diameter and other dimensions. This data 

should be incorporated in classification as well. 

Finally, statistical analysis on the spectrometer data may yield some 

interesting results. 
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