
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2017

Ash Tree Identification Based on the Integration of
Hyperspectral Imagery and High-density Lidar
Data
Haijian Liu
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Forest Management Commons, and the Geographic Information Sciences Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Liu, Haijian, "Ash Tree Identification Based on the Integration of Hyperspectral Imagery and High-density Lidar Data" (2017). Theses
and Dissertations. 1506.
https://dc.uwm.edu/etd/1506

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/92?utm_source=dc.uwm.edu%2Fetd%2F1506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=dc.uwm.edu%2Fetd%2F1506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1506?utm_source=dc.uwm.edu%2Fetd%2F1506&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


  

 
 

ASH TREE IDENTIFICATION BASED ON THE INTEGRATION 

OF HYPERSPECTRAL IMAGERY AND HIGH-DENSITY 

LIDAR DATA 

 

by 

 Haijian Liu  

 

A Dissertation Submitted in 

 Partial Fulfillment of the  

Requirements for the Degree of  

 

Doctor of Philosophy  

in Geography  

at 

The University of Wisconsin-Milwaukee 

May 2017



  

ii 
 

ABSTRACT 

ASH TREE IDENTIFICATION BASED ON THE INTEGRATION 

OF HYPERSPECTRAL IMAGERY AND HIGH-DENSITY 

LIDAR DATA 
by 

Haijian Liu 

The University of Wisconsin-Milwaukee, 2017                                                                        

Under the Supervision of Professor Changshan Wu 

 

Monitoring and management of ash trees has become particularly important in recent 

years due to the heightened risk of attack from the invasive pest, the emerald ash borer (EAB). 

However, distinguishing ash from other deciduous trees can be challenging. Both hyperspectral 

imagery and Light detection and ranging (LiDAR) data are two valuable data sources that are 

often used for tree species classification. Hyperspectral imagery measures detailed spectral 

reflectance related to the biochemical properties of vegetation, while LiDAR data measures the 

three-dimensional structure of tree crowns related to morphological characteristics. Thus, the 

accuracy of vegetation classification may be improved by combining both techniques. Therefore, 

the objective of this research is to integrate hyperspectral imagery and LiDAR data for 

improving ash tree identification. Specifically, the research aims include: 1) using LiDAR data 

for individual tree crowns segmentation; 2) using hyperspectral imagery for extraction of relative 

pure crown spectra; 3) fusing hyperspectral and LiDAR data for ash tree identification. It is 

expected that the classification accuracy of ash trees will be significantly improved with the 

integration of hyperspectral and LiDAR techniques. 

Analysis results suggest that, first, 3D crown structures of individual trees can be 

reconstructed using a set of generalized geometric models which optimally matched LiDAR-
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derived raster image, and crown widths can be further estimated using tree height and shape-

related parameters as independent variables and ground measurement of crown widths as 

dependent variables. Second, with constrained linear spectral mixture analysis method, the 

fractions of all materials within a pixel can be extracted, and relative pure crown-scale spectra 

can be further calculated using illuminated-leaf fraction as weighting factors for tree species 

classification. Third, both crown shape index (SI) and coefficient of variation (CV) can be 

extracted from LiDAR data as invariant variables in tree’s life cycle, and improve ash tree 

identification by integrating with pixel-weighted crown spectra. 

Therefore, three major contributions of this research have been made in the field of tree 

species classification:1) the automatic estimation of individual tree crown width from LiDAR 

data by combining a generalized geometric model and a regression model, 2) the computation of 

relative pure crown-scale spectral reflectance using a pixel-weighting algorithm for tree species 

classification, 3) the fusion of shape-related structural features and pixel-weighted crown-scale 

spectral features for improving of ash tree identification. 
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CHAPTER 1 INTRODUCTION 

1.1. Background 

Urban forests, simply defined as tree-dominated vegetation in urban areas, have contributed 

to the sustainability of urban ecosystems, economic development, and urban life quality (Chen 

and Wang, 2013; Konijnendijk et al., 2006). Acting as carbon sinks in the earth’s carbon cycle, 

urban forests help to mitigate climate change by removing carbon dioxide (CO2) from the 

atmosphere via photosynthesis (Deng et al., 2011; Nguyen et al., 2015).  In the United States, the 

carbon sequestered by urban forests in 2005 is estimated to be approximately 643 million tons, 

accounting for 14% of the total amount sequestered by the entire nation’s forests (Godwin et al., 

2015). Urban forests improve the liveability of cities by reducing storm-water runoff, improving 

air quality by removing air pollutant (e.g., PM 2.5), and ameliorating the heat-island effect by 

providing shade and releasing water into the atmosphere to keep it cool (Armson et al., 2012; 

Nguyen et al., 2015). Urban forests also play a critical role in reducing energy costs by reducing 

air conditioning needs and increasing property values (Mullaney et al., 2015). 

As a popular street tree species, ash trees (Fraxinus spp) are widely planted due to their 

tolerance of a wide range of soil and climate conditions in many urban areas of the United States, 

especially in the eastern and middle parts of the country (Harlow, 1991; MacFarlane and Meyer, 

2005). Ash is the common name given to various species belonging to the Fraxinus genus and 

includes white ash, green ash, and black ash, characterized by opposite and pinnately compound 

leaf arrangement (Harlow, 1991).  Ash trees are cultivated for ecological, ornamental and 

commercial purposes, as the large crown is one of the top choices of road greening; the strong 

but elastic wood is used for tool handles; baseball bats and furniture products; and their fruit 
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provides food for various animals. They are abundant in many eastern central and western cities 

of the United States. In the City of Milwaukee, a Midwestern city of the United States, the ash 

tree population is estimated to be approximately 573,000 in 2008, accounting for 17.4% of urban 

tree canopy (Sivyer, 2010).  

Ash trees are vulnerable to injury from exotic bark beetles like the emerald ash borer (Agrilus 

planipennis Fairmaire, EAB), which was introduced to North America from Asia in the 1990s 

and was first detected in metropolitan Detroit, Michigan in 2002 (Cappaert et al., 2005; Poland 

and McCullough, 2006). The EAB has spread across at least 18 states in America (Flower et al., 

2013; Pugh et al., 2011) and killed tens of millions ash trees in the United States (FAO,2013). 

Kovacs et al. (2010) predicted the EAB infestation will expand to 25 states and the cost of 

treatment, removal, and replacement of over 17 million ash trees will reach $10.7 billion by 

2019.  Previous studies suggest all ash species in eastern North American are susceptible to EAB 

due to their related genetic properties (Herms et al., 2004; MacFarlane and Meyer, 2005). The 

key damage is produced by the larvae who feed on the inner bark of ash trees and disrupt the 

transportation of water and nutrients (Castrillo et al., 2008).  After EAB infestation, mature ash 

trees will experience mortality within 3 to 5 years, but signs of EAB infestation is not obvious 

before visual symptoms occur, such as yellow leaves and dieback of fine twigs (Pontius et al., 

2008). This indicates that it is not reliable to detect EAB infestation before it affects tree health. 

Therefore, identifying healthy ash trees in urban ecosystems is critical for ash tree management 

and planning (McKenney et al., 2012). 

In comparison with time-consuming and laborious intensive ground-based inventories, 

remote sensing techniques provide an alternative mean to study urban trees with greater 

efficiency over large areas (Martin et al., 1998).  Remote sensing records the electromagnetic 
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energy emitted or reflected from an object without making direct contact with it but permits 

certain physical properties to be determined. Remote sensors can be divided into two groups: 

passive and active. Passive sensors record natural energy reflected or emitted from the Earth’s 

surface. In particular, the remote sensing systems recording energy over several separate 

wavelengths are referred to as multispectral sensors, whereas systems detecting over hundreds of 

very narrow spectral bands are called hyperspectral sensors. Multispectral imagery, such as 

Landsat Thematic Mapper (TM), have been widely used for mapping urban landscape 

heterogeneity at regional scale (Singh et al., 2012), classifying land cover at continental or 

national scales (Colditz et al., 2011), and evaluating multiple stages of tree mortality (Meddens 

et al., 2011). Hyperspectral imagery has the ability to improve land-use/land cover classification 

in comparison to multispectral images (Petropoulos et al., 2012a), and discriminate tree species 

in urban forests (Alonzo et al., 2013; Green et al., 1998), temperate forests (Heinzel and Koch, 

2012), and tropical rainforests (Clark et al., 2005). 

 In contrast, active sensors project a laser onto the Earth’s surface and record the 

backscattered energy. Light detection and ranging (LiDAR) is a promising and widely applied 

active remote sensing technology which can be used to segment individual trees (Koch et al., 

2006), measure three-dimensional distribution of a forest canopy, and estimate other canopy 

parameters, such as tree position, tree height, crown diameter (Morsdorf et al., 2004), and 

biomass (Lefsky et al., 2002). Moreover, LiDAR derived features, such as signal intensity, 

crown texture, and canopy structure, offer complementary information for species 

discrimination. As a result, the integration of optical images and LiDAR data is capable of 

improving classification performance (Lu and Weng, 2007). 
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1.2 Literature review 

Urban tree species identification remains a challenge due to the variability within a given 

species, spectral and spatial similarity among species, and high species diversity in urban 

environments (Alonzo et al., 2013). The common remote sensing data sources for tree species 

identification include LiDAR data, multispectral, and hyperspectral imagery. Among these three 

data sources, hyperspectral techniques have proven to be the most effective for tree species 

identification due to its ability to capture subtle differences in spectral signature (Martin et al., 

1998). Multispectral imagery, with several discrete bands, has limitations in tree species 

classification due to the lack of required spectral range and resolution (Clark et al., 2005). 

Further, LiDAR data can measure three-dimensional tree properties, and is capable of detecting 

individual trees, segmenting forest canopy, and estimating single tree metrics. Thus, the 

integration of hyperspectral imagery and LiDAR data are reported to be beneficial for tree 

species classification (Zhang and Qiu, 2012). 

1.2.1 Tree species classification with hyperspectral imagery 

Hyperspectral imagery is characterized by hundreds of very narrow but contiguous spectral 

bands throughout the visible and infrared portions of the electromagnetic spectrum. The fine 

bands make it possible to measure pertinent discriminatory spectral features ranging from 400 to 

2500 nm (Cochrane, 2000). Hyperspectral data can be acquired at the leaf-, pixel- and crown-

scale, with different scale data recording spectral information at different levels. Tree species 

identification using hyperspectral imagery at the pixel and crown scales has been widely applied 

in urban forest, boreal forest, and tropical forest environments (Clark et al., 2005; Dalponte et al., 

2013; Zhang and Qiu, 2012).   
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1.2.1.1 Reflectance properties at leaf, pixel, and crown scales 

Leaf scale reflectance spectra are usually measured by a hand held spectrometer in a 

controlled laboratory environment which results in a relatively high ratio of signal to noise 

(Clark et al., 2005). Leaf spectra variability is mainly determined by leaf biochemical properties 

(e.g., chlorophyll content, water, pigments) and morphology (e.g., air spaces, cuticle wax, 

mesophyll). Spectral variability in the visible range among species is low due to strong 

absorption by chlorophyll while transmittance and reflectance in the near infrared range is high 

due to photon scattering within the spongy mesophyll. Clark et al. (2005) found the leaf spectral 

variability among the seven emergent species in a tropical rain forest was significantly greater 

than that within species, and these species have been discriminated using leaf-scale reflectance 

with >89% overall accuracy. In particular, leaf-scale classification using the Linear Discriminant 

Analysis (LDA) approach and 40 optimally selected bands had 100% overall accuracy (Clark et 

al., 2005). Shang and Chisholm (2014) achieved the best result for six eucalyptus species and 

one non-eucalyptus species classification at the leaf level when compared to crown- and 

community-level classifications. Similarly, Xiao et al. (2004) mapped 22 tree species with 94% 

accuracy at the leaf-level in Modesto, California. 

Pixel-scale reflectance spectra are usually measured by airborne or spaceborne sensors. For 

trees, the shapes of pixel-scale reflectance spectra are generally similar to those of leaf-scale 

spectra, but the overall reflectance is low due to the effects of fine-scale shadows within leaves 

and branches (Clark et al., 2005).  Pixel size also affects the spectral signature. Fine spatial 

resolution can partially address the mixed-pixel problem, but generally with issues of shadows 

(Lu and Weng, 2007). 
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Crown-level (or tree-level) reflectance spectra are the aggregation of pixel spectra within a 

crown. For crown-level analysis, crown segmentation is generally conducted to cluster spectrally 

similar and spatially proximate pixels into crowns, and the resultant crown-level spectra are 

derived as the average of the spectra of individual pixels within the crown (Alonzo et al., 2014). 

In particular, Clark et al. (2005) averaged all the pixels’ spectra in a crown to create the crown-

level reflectance spectra. Dalponte et al. (2013) extracted the spectra at crown level using a pixel 

majority method. Further, Zhang and Qiu (2012) selected the spectra of the pixel at the treetop to 

represent the spectra of a crown. 

1.2.1.2 Tree species classification 

For tree species’ classification, normalized difference vegetation index (NDVI) derived from 

hyperspectral imagery has been employed to identify vegetation and non-vegetation or 

identifying different vegetation species (Xiao et al., 2004). A simple NDVI threshold method can 

differentiate the tree canopy spectra from the confounding spectral noise from other materials 

(Alonzo et al., 2013). However, the simple method cannot capture the unique spectral feature of 

specific tree species.  

As a better alternative, hyperspectral imagery has been widely used for tree species 

classification. Ustin and Xiao (2001) proved that the classification accuracy of vegetation can be 

improved with hyperspectral airborne visible/Infrared imaging Spectrometer (AVIRIS) imagery, 

when compared to the three-band SPOT imagery at the same spatial resolution. Further, Xiao et 

al. (2004) separated conifers, broadleaf deciduous, and broadleaf evergreen with the average 

accuracy of 94%, 99%, and 83% using hyperspectral imagery. This satisfactory classification 

accuracy is primarily due to the clear difference among their spectra: conifers have the lowest 

reflectance values; broadleaf deciduous have the highest reflectance values; and the reflectance 
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values of broadleaf evergreens are in the middle. Furthermore, Gong et al. (1997) confirmed the 

potential of hyperspectral data in separating six conifer species with an accuracy of 70% or 

higher. Dalponte et al. (2009) distinguished 23 broadleaf species in Mediterranean environments 

and obtained high accuracy (over 90%) for certain species. In addition, foliar chemistry derived 

from hyperspectral data can be used to classify species composition. Martin et al. (1998) 

identified 11 species compositions with an overall classification accuracy of 75% by combining 

two chemical compositions: nitrogen and lignin concentration in forest canopy foliage.  

For tree species classification, pixel-level classifications, which assign a pre-defined class to 

each individual pixel and provide qualitative assessment of tree species distributions, are often 

carried out. Pixel-level classifications can be achieved through employing supervised or 

unsupervised classifiers. In particular, George et al. (2014) applied supervised Support Vector 

Machines (SVM) and Spectral Angle Mapper (SAM) classifiers to EO-1 Hyperion imagery for 

discriminating and classifying six broadleaved evergreen and conifer tree species, and resulted in 

an overall accuracy of 82.27% with kappa statistic of 0.79 for broadleaved evergreen and overall 

accuracy of 74.68% with kappa statistics of 0.70 for conifers. Petropoulos et al. (2012a) 

combined Hyperion hyperspectral imagery with supervised SVM and Artificial Neural Networks 

(ANN) to classify ten land cover types.  Dalponte et al. (2013) evaluated VNIR and SWIR 

hyperspectral data with SVM, random forest (RF), and Gaussian maximum likelihood (GML) 

classifiers in discriminating four boreal species at the pixel level. The combination of VNIR and 

SWIR results in a similar accuracy as VNIR alone, but higher accuracy was reported with VNIR 

when compared to SWIR. In addition, SVM classifier was reported as a better approach when 

compared to RF and GML classifiers, primarily due to its insensitivity to the feature selections. 

With per-pixel classifications, the mixed pixels have been recognized as a problem that affects 
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the applications of remotely sensed data in species classification (Lu and Weng, 2004). In 

addition, the “salt and pepper” effect may also reduce the classification accuracy (Yu et al., 

2006). 

Subpixel classification approaches improve land cover classifications when compared to per-

pixel approaches, especially when dealing with mixed pixels (Lu and Weng, 2007).  Sub-pixel 

classification extracts the proportion of individual materials of interest within a pixel and results 

in a more discriminated classification than traditional per-pixel classifiers. Spectral mixture 

analysis (SMA) is a popular and effective method to derive the subpixel information from 

remotely sensed imagery.  Bai et al. (2012) employed a linear SMA to improve the estimation of 

three forest covers in a complex subtropical forest. Lu and Weng (2004) developed a new 

conceptual model to characterize urban landscape patterns using linear SMA. With five 

endmembers: shade, green vegetation, impervious surface, dry soil, and dark soil, the minimum 

noise fraction (MNF) transformed components were un-mixed into fraction images using an 

unconstrained least-squares solution. Wu (2004) developed a normalized spectral mixture 

analysis (NSMA) method to examine urban compositions. Somers et al. (2010) applied a 

weighted multiple endmember Spectral Mixture Analysis (wMESMA) to monitor the level of 

defoliation of Eucalyptus. Both NSMA and MESMA reduced endmember variability in spectral 

data and improved the results as compared to simple SMA. Somers et al. (2007) presented a 

nonlinear hyperspectral mixture for tree cover estimates which considered the multiple photo 

scattering among different surface components. The nonlinear spectral mixture analysis reduced 

the estimation error but the virtual fractions do not have physical meanings.  

Crown-level classification is increasingly demanded for providing a quantitative estimation 

of tree species (Dalponte et al., 2013), from which, the forest variables, such as number, volume, 
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and height of any species can be extracted, so crown-level classification has enhanced our ability 

to make a practical map in forest inventories. Several methods were developed for species 

classification at the crown-level. Clark et al. (2005) discriminated seven tropical rainforest tree 

species using the mean spectra from manually-delineated crown and obtained a crown-level 

classification accuracy of 90%, higher than pixel-level accuracy (85%). Dalponte et al. (2013) 

aggregated the pixels within the manually defined tree crowns and assign the tree species 

corresponding to the majority of the pixels in classifying Pine, Spruce, Birch, and other species 

in boreal forests. Alonzo et al. (2013) extracted all spectra exceeding an NDVI threshold of 0.6 

from AVIRIS imagery and mapped 15 urban tree species using the pixel majority approach, and 

resulted in an overall accuracy of 86% in classifying 15 common urban trees in Santa Barbara, 

California, United States. Xiao et al. (2014) achieved 70% accuracy in mapping 22 urban tree 

species in Modesto, CA, Unites States, and the crown-level spectra were extracted using multi-

masks based on the NDVI threshold and spectral mixture analysis (SMA) analysis with AVIRIS 

data. Zhang and Qiu (2012) developed a treetop-based classification at the crown level and 

achieved the overall classification accuracy of 69% in mapping 40 tree species using 

hyperspectral imagery in an urban forest in north Dallas, Texas, United States.  The treetop based 

classification only analyzes the hyperspectral pixel at the highest point per crown and assigns the 

identified species type of the treetop pixel to the entire tree crown, which reduces the influence 

from shadows, gaps, double-sided illuminations, and mixed pixel problems. 

1.2.2 Identification of individual tree crowns using LiDAR data 

Identification of individual tree crowns has a significant implication in forest inventories and 

management (Chen et al., 2006; Wu et al., 2016). In comparison with passive imaging, the 

discrete LiDAR has the advantage of characterizing the 3-dimensioanl (3D) structure of forests 
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as it generates 3D point data with high spatial resolution (Li et al., 2012), and therefore identify 

individual tree crowns with high accuracy and efficiency (Hu et al., 2014). Specifically, the 

transmitter system of LiDAR emits pulses of laser light ranging from 1040 nm to 1060 nm to a 

distant target on the ground at rates >100,000 pulses per sec. The LiDAR receiver system records 

the laser energy backscattered from the target (Charaniya et al., 2004).  The laser horizontal 

position is recorded by the Global Position System (GPS) on the aircraft and the vertical height is 

obtained by converting the travel time from the energy pulse transmission to reception into 

distance (Popescu, 2007).  LiDAR is classified as waveform and discrete-return systems (Lefsky 

et al., 2002). The waveform LiDAR measures the vertical vegetation profiles by digitizing the 

continuous reflected energy while the discrete-return LiDAR records either single or multiple 

returns at precisely referenced points in time and space (Gatziolis and Andersen, 2008). 

Compared with profiling LiDAR instruments, which are suitable for large-area forest 

characterization in means of sampling, the discrete-return LiDAR from airborne laser scanning 

systems are more commonly used for individual tree segmentation and structural information 

extraction (Li et al., 2012; Wulder et al., 2012). 

In areas with dense vegetation cover, LiDAR point cloud includes first returns from the 

forest canopy and last returns from the ground (Lim et al., 2003). Therefore the digital surface 

model (DSM) and the digital elevation model (DEM) can be created by interpolating the first and 

last returns to represent surface elevation and bare terrain elevation above sea level respectively. 

And further, the canopy height model (CHM), characterizing canopy height, can be created by 

subtracting the DEM from the DSM (Popescu, 2007). However, the CHM derived from the raw 

LiDAR data often exhibits many holes due to data acquisition and post-processing, which leads 

to inaccurate biophysical measurement, average tree height underestimation, and errors in 
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estimating forest biomass (Ben-Arie et al., 2009).   Therefore, it is imperative to fill the pits to 

obtain an accurate CHM for individual tree delineation and tree height estimation (Leckie et al., 

2003; Popescu and Wynne, 2004). Verma and Kumar (2011) designed a low-pass filter to 

replace the highest or lowest value within a neighborhood by its median value. The filter can 

make the canopy smooth but also changes the canopy shape to some degree.  Leckie et al. (2003) 

proposed a pre-processing attempt to remove the holes, which overlaid the 3D point cloud with a 

25 cm grid and created the DSM by interpolating the highest point in each grid.  The peak-based 

interpolation reduces the number of pits but some still remained.  Ben-Arie et al. (2009) 

presented a semi-automated algorithm to fill the holes from CHM, which detected the data pits 

by a user-defined threshold and fill them with the neighborhood value. The approach 

outperforms median, mean and Gaussian smoothing filters but it relies on users’ experience. 

Based on forest structural characteristics, a variety of techniques were developed to detect the 

individual tree crowns using discrete LiDAR data, such as valley following, edge finding, 

clustering, radiance peak filtering, and template matching (Wulder et al., 2000). Typically, the 

processes of identifying single trees include two major steps: treetop detection and crown 

delineation. 

Treetop detection is the basis for tree height extraction, crown delineation, and further tree 

species classification (Koch et al., 2006). Local maximum (LM) technique provides a way to 

locate treetops based on the assumption that the highest laser value in a spatial neighborhood 

represents the tip of a tree crown (Popescu, 2007; Popescu et al., 2003; Wulder et al., 2000). 

Popescu and Wynne (2004) operated the LM filtering with two shaped search windows: a square 

n by n window and a circular window on the CHM to detect treetops. The results indicated the 

circular window with variable size outperformed the static-size square window. Chen et al. 
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(2006) applied the LM filtering on a LiDAR-derived canopy maxima model (CMM) rather than 

the CHM to detect the treetops in a savanna woodland. With variable windows determined by the 

lower-limit of the prediction intervals of the regression model, the new method resulted in higher 

accuracy for tree isolation (54.4%) than the method with CHM (37.0%). Besides the LM filtering 

technique, Persson et al. (2002b) developed a climbing method to search for local height maxima 

in the smoothed image. The method allows every pixel to climb in the direction of the largest 

slop to reach a local maximum where all neighboring pixels had lower values, and further 

estimates the crown coverage by grouping those pixels that climbed to the same maximum. 

The correct crown delineation is a prerequisite for crown structural metric extraction, crown 

volume estimation, and tree species identification (Alonzo et al., 2014; KOCH et al., 2002). 

Several methods have been explored to segment individual trees within a forested region. Leckie 

et al. (2003) applied a valley following approach to a digital height model for individual tree 

isolation. The valley following approach was proposed by Gougeon (1995) to automatically 

delineated individual tree crowns in high spatial resolution aerial images. The potential tree 

crowns were masked out by a valley following procedure from the local minima and crown 

boundaries were detected by a rule-based approach. The crown isolation obtained using the 

valley following approach on CHM matched 75% of the ground reference trees. Chen et al. 

(2006) proposed a marker-controlled watershed segmentation into isolating individual trees in 

savanna woodland. The treetops were located as markers to improve accuracy and watershed 

ridge lines were detected to divide adjacent catchment basins in the image. Koch et al. (2006) 

developed a pouring algorithm to delineate tree crowns with a small footprint LiDAR data in 

deciduous and mixed temperate forests. Resembling water being poured onto mountains, crown 

regions extended from the local maxima to lower height values. The final crown regions were 
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obtained by merging very small segments or disjoining the tree groups with knowledge-based 

assumptions on the shape of trees. Besides LiDAR-derived CHMs, Liu et al. (2013) directly 

segmented individual trees from airborne LiDAR point clouds in human settlements. In the 

process of extraction,  the LiDAR point clouds were first segmented into point clusters by a 

surface growing algorithm, the tree points were then distinguished based on their multiple echo 

properties, and the accurate edges of each tree was extracted by employing the spoke wheel 

algorithm. Experiments showed more than 85% of trees were extracted with accuracy higher 

than 95%.  

1.2.3 Extraction of crown structural features from LiDAR data 

LiDAR data has played an important role in forestry applications (Heinzel and Koch, 2012).  

Based on isolated individual trees, the most important geometric properties including tree height 

and position can be directly derived (Popescu et al., 2002). Other properties including crown 

diameter and crown volume can be calculated (Morsdorf et al., 2003), and the specific tree 

species can be distinguished (Koch et al., 2006). Popescu and Wynne (2004) applied the LM 

filtering to measure the individual tree height on CHM and concluded the best LiDAR 

measurements explained 97 percent and 79 percent of mean height variance for dominant trees 

on pine plots and deciduous plots respectively.  Persson et al. (2002b) evaluated the accuracy of 

the tree height estimation using an airborne laser scanner in southern Sweden and small error of 

tree height measurements of the detected sample trees (0.63 m) was reported. Wang and Glenn 

(2008) designed a new linear regression method for tree canopy height estimation using LiDAR 

data. Results indicated the method produced more accurate tree canopy heights in comparison 

with the traditional local maximum filtering and multiple regression methods.  
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Crown size is another critical factor in determining canopy cover and associating tree species 

classification (Biging and Dobbertin, 1995). Popescu et al. (2003) developed a four-degree 

polynomial to fit two perpendicular profiles from the location of each tree top on the CHM, and 

calculated the individual crown diameter as the average of two values measured along two 

profiles. The accuracies of estimating crown diameters for pines and deciduous trees were 

similar with R2 values of 0.62-0.63. Persson et al. (2002b) applied the hill climbing method to 

group pixels into segments for crown segmentation. The area of the segments was used to 

calculate the crown diameter by assuming the tree crown had the shape of a circle and resulted in 

a root-mean-square error (RMSE) of 0.61 m. Moreover, Kato et al. (2009) developed a wrapped 

surface method to capture tree crown formation using airborne LiDAR data, and the crown width 

was derived with an R2 value of 0.8. 

LiDAR data points have the ability to measure the three-dimensional (3-D) position of tree 

elements, thus the foliage distribution and branching patterns can be extracted from LiDAR point 

cloud for improving forest species classification. Li et al. (2013) derived a set of horizontal and 

vertical structures including 3-D texture, foliage clustering degree, foliage clustering scale, and 

gap distribution of individual trees from LiDAR data, and successfully classified four species 

with an overall accuracy of 77.5% by combining linear discriminant analysis and these structural 

features.  Ørka et al. (2009) discriminated coniferous and deciduous tree species using laser 

height distribution and intensity features derived from airborne laser scanner data. The structure 

and intensity features resulted in 77% and 73% overall accuracy respectively, while the 

combination of them classified the species with an overall classification accuracy of 88%. The 

geometric properties of the object can also be measured by a 3-D shape signature, a probability 

distribution sampled from a shape function measuring a 3-D object.  With the shape signature, 
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the 3-D shape matching problem can be reduced to the comparison of 2-D probability 

distribution. Osada et al. (2002) proposed five shape functions, including A3, D1, D2, D3, D4, to 

compute 3D shape signature and Dong (2009) applied D2, measuring the distance distribution of 

random point pairs, to characterize Oak and Douglas fir and successfully distinguish them at the 

individual tree level. 

1.2.4 Integration of Lidar data and hyperspectral images 

Hyperspectral imagery has been employed as the primary data source for classifying urban 

tree species (Dalponte et al., 2012), but confusion occurs with similar spectral properties of 

different tree species (Liu et al., 2011). Comparatively, LiDAR data can provide a set of crown 

structural variables, such as tree height, crown base height, and LAI for tree classification, but 

LiDAR alone is not sufficient for species discrimination among large numbers of species 

(Alonzo et al., 2014). As a result, fusion of these two data sources may benefit tree species 

classification due to the integration of crown structural and biochemical information. In remote 

sensing literature, fusion is a common term which refers to the integration of multisensor data at 

the pixel, feature, or decision levels (Pohl and Van Genderen, 1998). To date, fusion of LiDAR 

and hyperspectral data are promising for tree species classification (Alonzo et al., 2014). Zhang 

and Qiu (2012) explored a simple integration of hyperspectral imagery and LiDAR data in 

northern Dallas, Texas. LiDAR data was used for treetop identification and tree crown 

delineation, and the hyperspectral features of the crowns were extracted for species 

classification. Results showed that 93.5% of trees were detected from LiDAR data and 69% of 

tree species were identified from hyperspectral imagery. 

Fusion at the pixel level adds LiDAR derived structure information into spectral bands. Jones 

et al. (2010) integrated the height and volumetric information derived from LiDAR with 
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hyperspectral Airborne Imaging Spectrometer for Applications (AISA) imagery for 11 tree 

species maps in coastal South-western Canada. The fusion resulted in an increase of producer’s 

accuracy (5.1-11.6%) and user’s accuracy (8.4-18.8%). Dalponte et al. (2008) directly added two 

LiDAR derived elevation and intensity information into the 126 bands of hyperspectral imagery 

and found that, with the LiDAR data, the classification accuracy for 5 classes (out 23) improved 

more than 5%. The in-depth fusion at the crown level integrates more spectral and spatial 

characteristics of tree crowns to improve the accuracy of tree species classification. Dalponte et 

al. (2012) selected 6 (out of 19) LiDAR features and 43 (out of 126) spectral features for seven 

tree species classification. The experimental results showed that the LiDAR contribution reached 

10% when combined with hyperspectral imagery, and the high density LiDAR data 

outperformed low density data due to the ability of additional feature extractions. Alonzo et al. 

(2014) fused high-spatial resolution (3.7 m) hyperspectral imagery and high-density (22 

pulse/m2) LiDAR data to map 29 common species in Santa Barbara, California, US. For each 

crown, 28 structural metrics were fused with multi-spectra of pixels which exceeded an NDVI 

threshold of 0.6.  The addition of LiDAR data resulted in a 4.2% increase of overall 

classification accuracy and an over 40% increase for small or morphologically unique crowns 

than hyperspectral data alone. 

In general, hyperspectral data has the ability to measure subtle variations in the reflectance of 

plants due to their narrow bandwidth and wide range of electromagnetic spectrum. The spectral 

reflectance, however, is influenced by other objects (e.g. branches, shades, etc.) even after 

radiometric calibration and atmospheric correction. As a result, the overall accuracy of the 

classification with hyperspectral imagery at crown level was proven to be lower than that at leaf 

level (Clark et al., 2005). On the other hand, LiDAR data offers complementary information to 
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optical data for tree species identifications (Alonzo et al., 2014; Dalponte et al., 2008; Zhang and 

Qiu, 2012). With detailed and accurate point coverages of LiDAR data, single tree delineation in 

forest stands can be reached (Brandtberg, 1999; Hyyppä and Inkinen, 1999), and individual 

structural features, including tree heights, crown sizes, and crown shape signature, can be 

extracted (Dong, 2009; Hyyppä et al., 2000; Popescu et al., 2002).Therefore, the fusion of 

hyperspectral and LiDAR data has the capability to improve species classification accuracy. 

1.3 Problems statement 

Ash accounts for a large proportion of trees in Milwaukee, and most of them are at risk of 

attack from EAB. Therefore, rapid detection of ash trees using remote sensing could benefit 

Milwaukee planners in determining the distribution of ash trees in the city and thereby help 

implement a protection program. This research focuses on the integration of hyperspectral 

imagery and LiDAR data for improving the accuracy of crown-level ash tree identification.  

Crown-level tree species classification is increasingly demanded due to the ability of 

providing quantitative estimation of tree species, but the performance of the species 

classification is affected by the performance of individual tree crown identification. Although 

manual delineations of tree crowns could result in high classification accuracies, it is time-

consuming and is limited to user experience (Clark et al., 2005; Dalponte et al., 2013). The 

treetop-based classification avoids the impacts from crown delineation errors, but the spectral 

signature of a tree extracted from only the treetop is sensitive to the accuracy of the treetop 

detection and the spectral purity of the treetop pixel (Zhang and Qiu, 2012). In addition, the 

ambiguous crown boundaries on aerial photos or canopy height model decrease the accuracy of 

crown delineation, and further negatively impact the structural feature extraction and tree species 
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classification (Van Leeuwen et al., 2010). In conclusion, accurate identification of individual tree 

crowns using LiDAR data has become challenging work. 

Crown-scale spectra can be calculated by averaging all the pixel spectra or the pixel spectra 

exceeding a specific threshold within a crown (Clark et al., 2005). However, the technique of 

linear averaging within-crown pixel spectra ignores the impact of the mixed-pixel problem and 

double-side illumination problem (Sinha et al., 2012). In complex forests, trees may intertwine 

and overlap, branches of leaves may cast shadows, and the architecture of canopies may create a 

patterning of gaps (Jonckheere et al., 2004; Noest, 1994). Therefore, the pixels within a crown 

may subsume background plant species, soil and shadows, and thereby produce mixed crown-

scale spectra (Clark et al., 2005). Due to the lack of purity of crown-scale spectra, low 

classification accuracy was observed (Gougeon et al., 1999). To minimize the classification error 

caused by pixel-mixed problems and double-side illumination problems, the generation of pure 

crown-scale spectra, with which the interfaces of non-photosynthetic vegetation and shadows 

were removed, becomes essential. 

Crown structural features extracted from LiDAR data can provide complimentary 

information to hyperspectral imagery for improving tree species classification. However, the 

contribution of the LiDAR data is dependent on the selection of structural features. For example, 

individual tree height information is limited in singularly dominant age trees. Crown volume 

information has less explanatory power in multi-structured species classes (Jones et al., 2010). 

LiDAR intensity data may contain much noise from various sources and have low separability 

depending on the reflectance properties of surface materials (Song et al., 2002). Other structural 

features, such as crown height, crown widths at selected heights, and ratios of crown heights to 

width at selected heights, may contribute to the crown-scale tree species classification, but the 
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magnitude of them varies and there is no standard rule for metric selection (Alonzo et al., 2014). 

To maximize the contribution of LiDAR data and simplify the metric selection, the extraction of 

the structural features beyond the impacts of the age, architecture, and environment becomes 

more significant. 

To identify ash trees, specific objectives of this proposed research include: (1) Using LiDAR 

data for individual tree crown identification; (2) Using hyperspectral imagery for crown-scale 

spectra extraction; (3) Extracting shape-related crown structural features from LiDAR data and 

fusing them with crown-scale spectra computed from hyperspectral imagery for ash tree 

identification. 
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CHAPTER 2 TREE CROWN WIDTH ESTIMATION 

USING DISCRETE AIRBORNE LIDAR DATA 
 

2.1 Introduction 

Light detection and ranging (LiDAR) is a promising technology for extracting forest 

biophysical parameters (Koch et al., 2006; Zhao et al., 2013). As an active remote sensing 

technology, the LiDAR system emits laser pulses to target objects and records the returned 

energy. The recorded energy from LiDAR includes the pulses reflected from the top of forest 

canopy, as well as those penetrating the top layer of the canopy to the ground, thereby resulting 

in 3-dimensional point clouds (Popescu, 2007). Once these raw points are filtered and classified 

into first and last returns, a digital surface model (DSM) and a digital elevation model (DEM) 

can be derived, respectively, and a canopy height model (CHM) can be obtained through 

subtracting DEM from DSM to characterize forest canopy structures. The unique characteristics 

of LiDAR, such as high sampling intensity, precise geolocation, accurate elevation measurement, 

and extensive areal coverage, make it essential for forest parameters estimation (Nilsson, 1996; 

Persson et al., 2002a; Popescu et al., 2003; Tao et al., 2014). 

Early LiDAR studies of forest characteristics estimation emphasized on the plot level due to 

its easiness of data processing, broad-scale coverage, and relatively low cost (Bishop et al., 

2014). Naesset (1997) measured mean tree heights of forest stands in a plot by averaging 

airborne laser height in user-defined grid cells. Similarly, Næsset and Økland (2002) estimated 

the ratio between the height measured from the ground surface to the crown base and that 

measured from the crown base to the top of trees at the plot level. In addition to height 

estimation, Maclean and Krabill (1986) and Holmgren et al. (2003) estimated the standing timber 

volumes of a plot through regressing against the cross-sectional area of the plot. Clark et al. 
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(2011) calculated the tropical rain forest aboveground biomass from plot vertical height profiles. 

Although forest biophysical parameters, such as mean height, volume, and biomass, have been 

successfully derived at the plot level, stem distributions cannot be generated (Yu et al., 2010), 

which prohibit the identification of tree species.  

To address this problem, a large number of studies have recently applied LiDAR technology 

to measure forest biophysical parameters at the individual tree level. Popescu et al. (2002) 

detected individual tree positions using a local maximum (LM) filter and estimated tree heights 

based on the single tree identification. Koch et al. (2006) delineated tree crowns in deciduous 

and mixed temperate forests by employing a knowledge-based pouring algorithm. Popescu 

(2007) estimated diameter at breast height (DBH), and assessed aboveground and component 

biomass of individual trees using linear and non-linear regression methods. Moreover, accurate 

tree parameters were measured by reconstructing the crown model. Van Leeuwen et al. (2010) 

developed a new parametric height model (PHM) to describe the shape of forest canopy, through 

which a series of cones were created to fit the raw LiDAR cloud in order to represent individual 

trees. Sheng et al. (2001) developed a hemiellipsoid model to reconstruct conifer-crown surface. 

Moreover, crown shape parameters at the individual tree level (Dong, 2009) and tree species (Li 

et al., 2013) have been successfully extracted, using LiDAR data.  

Despite the intense research efforts on forest biophysical parameters estimation, tree crown 

width estimation at the individual level, using LiDAR data, is challenging due to overlapping 

crown surfaces in urban forests (Popescu, 2007). Crown width, however, plays a critical role in 

determining canopy cover, calculating completion measures (Biging and Dobbertin, 1995), and 

estimating DBH, total volume, and biomass (Popescu, 2007; Popescu et al., 2003). In previous 

studies, crown width was usually estimated from other measurements. For example, Popescu et 
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al. (2000) indirectly computed average crown width with canopy closure and stand. Gill et al. 

(2000) estimated tree crown radius for several conifer species through developing linear and 

non-linear regression models. With these models, forest inventory variables such as DBH, tree 

height, and tree density were considered as independent variables. Further, Popescu et al. (2003) 

calculated individual crown diameters through employing the CHM. Specifically, crown 

diameters were calculated as the average distance between critical point along the 2 

perpendicular profiles centered on the identified treetop, and the regression analysis suggested 

that the correlation coefficients between the estimated and reference diameters are approximately 

0.62-0.63. 

This article discusses the development of an innovative approach to automatically extract tree 

crown width in an urban area through integrating generalized geometric models with the 

regression models. Specific aims of the work are: (1) to develop a generalized geometric model 

to optimally fit different crown surfaces such as conical, hemisphere, and half ellipsoid; and (2) 

to develop a linear regression model to predict crown width based on tree height and crown 

shape. 

 

2.2 Study area and data 

2.2.1 Study Area 

Two census blocks (216m x 206m), located in the southeastern part of the University of 

Wisconsin-Milwaukee, located in Milwaukee, Wisconsin, United States, were selected as the 

study site (Figure 1). Ground surface in the study area is flat, and the average elevation of the site 

is about 200 m above sea level. This area is dominated by ash trees (Fraxinus spp.), maples 
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(Acer spp.), and oak (Quercus spp.). Several pines can also be found in the study area. The 

heights of trees along the roads are approximately 5 to 25 m. Field measurements were operated 

and LiDAR data were collected over the study site. 

 

Figure 1 (a) Location and (b) hyperspectral imagery of the study area in Milwaukee, Wisconsin, 

United States. 

2.2.2 Dataset 

 Both LiDAR and hyperspectral imager (HSI) data were collected by a team of Native 

Communities Development Corp (NCDC) imaging and RFP Mapping LLC, simultaneously, in 

August 2008. The initial data were processed by Terra Remote Sensing and the University of 

Victoria. As a result, LiDAR data were provided in a commonly used binary LASer (LAS) lidar 

format with State Plane coordinate system of Wisconsin South (FIPS 4803) and North American 

Datum of 1927 (NAD27). The average point density is 4 points/ m2-5 points/m2.  HSI imagery 

has 366 bands with a spectral resolution of 4.7 nm and a spatial resolution of 1.0 meter. This 

image was projected to the Universal Transverse Mercator (UTM) coordinate system (Zone 16N) 
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with a datum of North American Datum of 1983 (NAD83). In addition to LiDAR and HSI, field 

data of the 135 trees identified from the LiDAR derived CHM were collected in November 2014. 

Crown widths of the trees along the road were measured by a distance tape in the field, and the 

trees’ crown widths inside private properties were carefully measured on high resolution HSI and 

were rectified using the Google Earth map. The crown radii were measured in 4 perpendicular 

directions with a tape from tree trunk to the edge. Then, the crown width was calculated as the 

average of the 4 radii. The field measurement of crown width was used to generate the linear 

regression model as dependent variables for crown size prediction. 

 

2.3 Data preprocessing  

2.3.1 LiDAR data filtering 

Because LiDAR data records returns from tree crown surface and the layers within them, the 

resultant raster image interpolated from the raw LiDAR data contains a lot of pits (as shown in 

Figure 2a), which adversely affecting the identification of crown shapes. Therefore, we 

employed the treetop height difference (THD) method developed by Liu and Dong (2014) to 

remove the first returned points under the crown surface. Following the THD method, the higher 

30% of points in the circle filter window (r=1 m) were retained. With elevation attributes of the 

filtered LiDAR points and last return points, a DSM and a DEM were created, using the inverse 

distance weighting interpolation method. Further, the object height model (OHM) representing 

the height of tree canopy and other objects such as building was obtained by subtracting the 

DEM from the DSM. The smoothed image (Figure 2b) with spatial resolution of 0.2 m has a 

better representation of the real crown shape when compared with the original image (Figure 2a).  



  

25 
 

 

Figure 2 OHMs from the (a) original LiDAR data and (b) filtered LiDAR data. 

2.3.2 Tree location detection 

For a better identification of tree locations, we employed the normalized difference 

vegetation index (NDVI), calculated by using the aerial image spectral bands to separate trees 

from other features. In order to make the consistent coordinate system, the HSI was registered to 

the gridded LiDAR data (0.2 m spatial resolution). A total of 60 control points, evenly 

distributed across the study area, were derived from the OHM to geometrically reference the 

AISA imagery. Well defined corners of buildings and intersections of roads were selected 

because they are not likely to change over time and can be clearly found on both sets of data. 

After coregistration, the average root mean square error (RMSE) was approximately 0.2 pixels. 

With the AISA imagery, the average NDVI values of manually identified trees (0.68) and other 

features (0.12) were calculated, and the mean value of 0.4 was set as the threshold to separate 

trees and other features. This threshold is also consistent with the results reported in previous 

studies (Cristiano et al., 2014). When the NDVI value of a pixel on the OHM image is equal or 

less than 0.4, the spectral value of the corresponding pixel was recorded to no value. Through 
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applying the NDVI criterion method, other features such as roads and houses were removed from 

the LiDAR raster image and a CHM was created to map tree height (see Figure 3a). With this 

vegetation-only raster layer, local maxima points were detected using a 2 m × 2 m moving 

window to identify potential locations of treetops (see Figure 3b). Further, trees that are closely 

adjacent to buildings were carefully examined and removed, and the resultant 135 trees were 

extracted for further analysis (see Figure 3b). 

 

Figure 3 (a) CHM (a) and (b ) location of identified trees. 

2.4  Methodology 

2.4.1 Crown reconstruction 

      With the location of each treetop, 3D crown surfaces were reconstructed based on a set of 

generalized geometric models. According to the shapes of crown surfaces, a number of potential 

models, such as cones, semispheres, half ellipsoids, etc., were employed. Once the models are 

determined, several essential parameters, including model radius (R), model height (H), and 
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model curvature coefficient (c), were obtained. The formula of these generalized models is 

expressed as follows: 

((𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2)c/2

𝑅c
+

(𝑧 − z0)c

𝐻c
= 1                                                                                       (1) 

where x0 and y0 are horizontal coordinates of the treetop; z0 = 0 is the vertical coordinates of the 

base of a tree identified on the CHM; x and y are the horizontal coordinates of a point on the 

crown surface; z is the height of the point on the crown surface; R is the radius of model; H is the 

height of model; and c is the crown curvature coefficient. Among these parameters, R, H, and c 

are unknown variables.  

With a variety of parameters R, H, and c, a number of shapes can be approximated using 

these generalized models. Especially, a concave shape crown can be obtained with a c value less 

than 1, a convex shape can be approximated when c is greater than 1, and a cone shape can be 

created when c is equal to 1. For convex shapes, when R equals to H, a semisphere shape can be 

obtained with a c value of 2; a shape between cone and semisphere can be obtained with the c 

value between 1 and 2; and a shape outside of semisphere can be obtained with the c value 

greater than 2. Further, when R is not equal to H, a number of crown shape scenarios (e.g. cone, 

half ellipsoid, etc.) can also be obtained (see Table 1 and Figure 4). 
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Table 1 Model shapes with different parameters 

c value R=H R≠H 

c<1 Concave shape Concave shape 

c=1 Cone Cone 

1<c<2 Between cone and semi-sphere Between cone and half- ellipsoid 

c=2 Semi-sphere Half-ellipsoid 

c>2 Outside of semi-sphere Outside of half-ellipsoid 

 

 

Figure 4 Schematic diagram of crown models. 

For each tree crown, model parameters were determined by optimally matching the crown 

surfaces with available crown shape models. In particular, using the treetops as the centers of 

circles, the morphological changes of tree crowns were examined, and the radii of circles were 

determined using sharp slopes (45°) in 8 cardinal directions. Model variables were calculated by 

using the least squares surface matching (LSSM) approach, which attempts to minimize the 
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squares of the height difference (SHD) between the modeled surface and LiDAR-derived CHM.  

For a given c, the general model equation can be simplified as equation 2 and variables can be 

resolved following the equations 3-5. 

dc ∗ 𝑋 + 𝑧c ∗ 𝑌 = 1                                                                                                           (2)                                                                                                              

Where: 

 d=((𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2)1/2 

 X=
1

𝑅c 

 Y=
1

𝐻c  

X, Y can be calculated using the following equations.  

[
𝑑1

𝑐 𝑧1
𝑐

⋮ ⋮
𝑑𝑛

𝑐 𝑧𝑛
𝑐
] ∗ [

𝑋
𝑌

] = [
1
1
1

]                                                                                                             (3) 
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When X and Y were computed, the heights and radii of crown models with a given c value were 

determined and the sum of squares of the height difference between the modeled and crown 

surface were calculated.  With a user-defined range of c for all trees, the minimum squares of 

difference can be acquired through applying an iterative computation process. In this study, the 

value of c varies from 0 to 3 with an interval of 0.1. 

2.4.2 Regression analysis 

With the tree crown shape variables derived from the crown re-construction step, we 

developed regression analysis models to examine the relationship between crown width and 

these variables. Especially, crown shape variables include LiDAR derived tree height (h), 

curvature of 3D model (H/R), and crown curvature coefficient (c). In order to analyze the 

contribution of each parameter in estimating the crown width, 3 regression models with different 

independent variables were developed. For all these models, the dependent variable was the field 

measured crown width. Model 1 has only one independent variable: LiDAR-derived tree height 

(h); Model 2 has 2 independent variables: LiDAR-derived tree height (h) and curvature (H/R) ; 

and Model 3 includes all 3 crown shape variables: LiDAR-derived tree height (h), curvature 

(H/R), and the curvature coefficient (c) in the 3D model. 

 

2.5  Results and discussion 

2.5.1 Crown reconstruction 

Through applying the optimally fitting algorithm, we created 135 geometric models, centered 

at the treetop locations on the ground (see Table 2 and Figure 5). Each tree has been modeled, 

using a different shape, and their curvatures range from 0.35 to 9.76, with smaller curvatures 
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representing lower canopy heights, and larger curvatures indicating higher canopy heights 

relative to their radii.  For example, 9 models have curvatures less than 1, indicating their heights 

are smaller than their radii. According to the curvature coefficients (see Table 2), we found that 

10 models are with cone shapes, 6 models are with half ellipsoid shapes, 38 models are with the 

shapes between cone and half ellipsoid, and 81 of them are outside of the half ellipsoid shape. 

Further, we also calculated the average square of height difference (SHD) between a model and 

the smoothed CHM, which indicates the accuracy of the model in fitting the canopy surface. In 

this case, the average SHD value is 2.24 m, with 60 of them having SHDs less than 1 meter.  

Table 2 Geometric models summary 

Curvature (H/R) Coefficient (c) SHD 

range number range number range (m) number 

<1 9 1 10 0-1 60 

1-2 42 1-2 38 1-2 20 

2-3 48 2 6 2-3 21 

3-4 21 2-3 70 3-4 13 

4-5 7 3 11 4-5 9 

>5 8   >5 12 

Note: SHD, the squares of the height difference  
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Figure 5 Comparison between (a) tree image and (b) geometric models. 

2.5.2 Regression analysis 

Through applying the regression analysis methods detailed in Section 4.2, we found that 

Model 1 explained 54.5% of the variances associated with crown width for all 135 trees, which 

was significant, F (1, 133) = 159.14, mean square of residual (MSresidual) = 1.55, p < 0.001. The 

mean absolute error (MAE) of the estimates was 0.97 m (17.60 % of dependent mean) and root 

mean squared error (RMSE) was 1.24 m (22.50% of dependent mean) for 135 trees. The result is 

consistent with previous studies which reported the tree height can be used for crown width 

estimation but the accuracy is relatively low. The differences of the species in the study site 

appear to contribute to the low predictability. Because deciduous trees with large crowns 

dominate the study area, parameters obtained from Model 1 were mainly determined to represent 

deciduous trees rather than conifers. Therefore, the predicted crown widths of conifers are much 

larger than observed ones, and the residual is relatively large (Figure 6a and 6b). 
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In Models 2 and 3, the shape related parameters were employed for crown width estimation, 

and results indicate that these 2 models provide better predictabilities when compared to Model 

1, but Model 3 slightly outperformed Model 2. The better performances of these two models 

indicate the importance of tree shape-related parameters in estimating crown width. In particular, 

the curvature (H/R) represents an essential shape parameter that represents the basic relationship 

between tree height and crown width. With the addition of the curvature parameters, Models 2 

produced higher R2 of 0.811, a value that was highly significant, F (2, 132) = 283.26, MSresidual = 

0.65, p<0.001. The MAE decreased to 0.59 m (10.7 % of dependent mean) and RMSE decreased 

to 0.8m (14.52% of dependent mean) for 135 trees. Moreover, curvature coefficient (c) in the 3D 

model records the degree of convex or concave of the crown model. With the addition of these 2 

shape-related parameters, Model 3 shows a rather intuitive and accurate behavior in crown width 

estimation for conifers and deciduous trees without obvious outliers (Figure 6e). The value of R2 

for Model 3 was 0.885, which was highly significant, F (3, 131) = 335.74, MSresidual = 0.40, 

p<0.001. The MAE and RMSE further decreased to 0.44 m (8.6 % of dependent mean) and 0.62 

m (11.25 % of dependent mean) for 135 trees, respectively.  
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Figure 6 Scatterplots of predicted versus observed crown width and standardized residual. 

 

After the construction of geometric models and accurate estimation of crown width with 

Model 3, the crown bases can be computed from the geometric models. Through visually 

comparing the crown model with LiDAR-derived raster image, we can find the boundaries of 
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each tree model well match the corresponding tree edges (Figure 7). Therefore, the forest canopy 

can be well segmented based on tree locations and their crown widths.  

The regression Model 3 has the ability to accurately estimate the crown width in a mixed 

forest, but the model relied on not only the shape-related parameters but also the ground 

measured crown width. The field work would limit the application of this LiDAR processing 

algorithm in determining a good regression model for estimating crown width using LiDAR 

 

Figure 7 Comparison between (a) tree image and (b) intercepted geometric models. 

Table 3 Linear regression results 

Model R2 MAE (m) RMSE (m) Model and significant variable (135 trees) 

1 0.545 0.97 1.24 Crown width=0.120+0.397*h 

2 0.808 0.59 0.8 Crown width=2.486 + 0.376*h - 1.035*H/R 

3 0.885 0.44 0.62 Crown width=-0.563+0.365*h - 1.305*H/R + 2.111*c 

MAE: the mean absolute; RMSE: the root mean square error 
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2.6  Conclusions 

Automatic extraction of tree parameters in a mixed forest remains a challenging problem to 

forest management. Tree boundaries on aerial photos are often blurred, and the process using 

only tree height to predict crown width neglects species differences. This research illustrates that 

LiDAR data as a valid source for rapid reconstruction of tree crowns and accurate estimation of 

crown width in a mixed forest. In addition, data preprocess steps, such as the raw LiDAR points 

filtering and treetop detection, are necessary to improve the accuracy of geometric model in 

fitting the crown surfaces. Analyses of results suggest 2 major conclusions. 

First, generalized geometric model has the ability to simulate different crown shapes, such as, 

cones, semispheres, half ellipsoids, as well as other shapes. Centered on treetop locations on the 

ground, the geometric model of each tree can be created by optimally fitting the LiDAR-derived 

CHM, using LSSM method. Based on the models, the shape-related parameters such as curvature 

and curvature coefficient can be extracted for further crown width estimation. However, the 

geometric model is limited to symmetrical crown and the irregular crown shape has negatively 

impacted on parameters extraction. 

Second, crown shapes are important characteristics of trees, as different shapes correspond to 

different tree species and the dimension of a tree crown such as ratio between tree height and 

crown size remains invariant to life stage (Alonzo et al., 2014). Results of regression analysis 

models indicate that both crown shapes and tree heights contribute to the crown width 

estimation. The regression model that employed tree height, crown curvature, and curvature 

coefficient as independent variables has significantly better predictability when compared to 

other simpler models. 
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Last but not least, the best model was identified by analyzing all of the trees detected by 

LiDAR in the study area and the crown widths of many different species, such as Ash, Maple, 

Oak, Honeylocust, Pine, and Ginkgo trees, have been accurately estimated. Thus, the model and 

the algorithm may be applied to forests of similar composition and a satisfactory accuracy 

without any ground measurement can be expected (Table 3). 
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CHAPTER 3 CROWN-LEVEL TREE SPECIES 

CLASSIFICATION FROM AISA HYPERSPECTRAL 

IMAGERY USING AN INNOVATIVE PIXEL-

WEIGHTING ALGORITHM 
 

3.1 Introduction 

Urban forests play an important role in urban ecological environments in many means, 

including moderating local climate (Deng et al., 2011), improving air quality (Nguyen et al., 

2015), reducing storm-water runoff (Armson et al., 2013), and ameliorating urban heat island 

effect (Armson et al., 2012). The contribution of urban forests, however, depends on tree species 

and their spatial distributions (Alonzo et al., 2014). As an example, walnut and poplar have high 

capacity for carbon dioxide (CO2) sequestration (Proietti et al., 2016), while holm oak is with the 

high potential for particle matter (PM) removal thanks to its evergreen nature (Blanusa et al., 

2015). Further, sugar maple is one of America’s best-loved tree species due to its delicious 

syrup, value as lumber, and amazing fall color (Whitney and Upmeyer, 2004). Ash trees are 

widely planted in North American countries due to their high tolerance to surrounding 

environments (MacFarlane and Meyer, 2005). As the diversity of tree species is a key component 

for urban forest management (Conway and Vander Vecht, 2015), accurate species mapping is 

critical for biological diversity investigation (Carlson et al., 2007), effective forest management 

(Banskota et al., 2011; Plourde et al., 2007), and physiological stress monitoring (Wu et al., 

2008).  

For mapping tree species, hyperspectral data is considered effective as it can measure subtle 

variability in spectral reflectance from leaf to crown scales, largely due to their very high spectral 

resolution and wide range of electromagnetic spectrum. As a result, hyperspectral data have been 
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widely applied in mapping tree species in urban forests (Alonzo et al., 2013; Green et al., 1998), 

temperate forests (Heinzel and Koch, 2012), tropical rainforests (Clark et al., 2005), and 

mountainous forests (George et al., 2014). Species classification has been often carried out at 

leaf, pixel, sub-pixel, and crown levels. In particular, leaf-level classification emphasizes on 

differentiating tree species based on the variations of spectral reflectance of leaf samples. Shang 

and Chisholm (2014) successfully classified seven eucalyptus species in Australia with the best 

classification accuracy of 94.7%. Clark et al. (2005) achieved 100% leaf-level classification 

accuracy in discriminating seven emergent tree species in a tropical forest by using linear 

discrimination analysis (LDA). The relatively pure leaf-level spectra can produce accurate 

classification accuracy by maximizing between-species spectral variability and minimizing 

within-species variability. Leaf-level tree species classifications, however, cannot be applied to a 

large geographic scale as they are labor intensive and time consuming.  

 In addition to leaf-level techniques, pixel-level classifications have also been employed for 

tree species classification due to its easiness for implementation and interpretation. Clark and 

Roberts (2012) classified seven tropical rainforest tree species in Costa Rica from HYperspectral 

Digital Imagery collection Experiment (HYDICE) data using random forest classifiers. George et 

al. (2014) classified six broadleaved evergreen and conifer forest tree species in western 

Himalaya using space-borne earth observation-1 (EO-1) Hyperion dataset. Jones et al. (2010) 

mapped eleven tree species in the coastal Pacific Northwest, Canada through applying a pixel-

level fusion of hyperspectral imagery, a LiDAR derived canopy height model, and a canopy 

volumetric profile. Dalponte et al. (2012) improved tree species classification in the Southern 

Alps through integrating LiDAR derived height distribution information and hyperspectral 

imagery at the pixel level.   
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Although with some success, pixel-level classification ignores the negative impact of the 

mixed pixel problem (Lu and Weng, 2004), which may lead to the “salt and pepper” effect in the 

final classification result (Yu et al., 2006). Subpixel-level classification approaches, therefore, 

improve tree species classification than traditional per-pixel approaches in dealing with mixed 

pixels (Huguenin et al., 1997). Subpixel-level classification extracts the proportion of individual 

land covers of interest within a pixel and results in a more discriminated classification. Bai et al. 

(2012) employed a linear spectral unmixing approach for forest cover estimation and obtained 

better results than conventional spectral angle mapper (SAM). Somers et al. (2009) presented a 

nonlinear spectral mixture analysis (NSMA) for tree cover estimates in orchards.  Roberts et al. 

(1998) developed multiple endmember spectral mixture analysis (MESMA) to map California 

chaparral in the Santa Monica Mountains. Further, Somers et al. (2010) applied a weighted 

multiple endmember Spectral Mixture Analysis (wMESMA) to monitor the level of defoliation 

of Eucalyptus, and achieved improved results when compared to the simple SMA.  

Besides leaf level, pixel level, and subpixel level classifications, crown-level classification is 

increasingly demanded for providing a quantitative estimation of tree species (Dalponte et al., 

2013). Several methods have been developed for crown-level species classification. Clark et al. 

(2005) linearly averaged the pixel spectra within a manually-delineated crown area as the crown-

scale spectra for tropical rain forest species classification, and the highest crown-scale 

classification accuracy of seven species reached 92% with the linear discriminant analysis (LDA) 

and 30 optimal bands. Zhang and Qiu (2012) developed a treetop-based approach for classifying 

40 species classification in an urban forest. Rather than extracting all the pixels within a crown, 

the treetop-based method identified the single highest pixel per crown for crown-scale spectra 

extraction, which resulting in an overall accuracy of 69%. Similarly, Dalponte et al. (2013) 
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conducted a pixel-majority approach for classifying four species in a boreal forest. With this 

approach, each individual tree crown was assigned to a class if the majority of the pixels with 

that crown were assigned to that particular class. Further, Alonzo et al. (2013) classified 15 urban 

forest species with only pixels with normalized different vegetation index (NDVI) values higher 

than a threshold, and reached an overall accuracy of 86%. Alonzo et al. (2014) integrated 

Hyperspectral imagery with LiDAR data for mapping 29 tree species in Santa Barbara, 

California, USA, and an overall accuracy of 83.4% was reported. 

Although numerous algorithms, including average pixel method, treetop method, and pixel-

majority method (Clark et al., 2005; Dalponte et al., 2013; Zhang and Qiu, 2012), have been 

proposed for crown-level tree species classification, their accuracies were much lower than those 

with leaf-level classifications. Leaf spectra, which are often obtained at the laboratory condition, 

are relatively pure and have proven effective in discriminating tree species (Shang and Chisholm, 

2014). Crown-scale spectra, however, have lower purity due to the interference of tree shadows, 

gaps, trunks, branches, as well as underlying objects (Clark et al., 2005; Shang and Chisholm, 

2014; Zhang and Qiu, 2012). This lower purity of crown spectra, therefore, may contribute to the 

lower classification of tree species at the crown level. In order to address this issue, we 

developed an innovative method to extract relatively pure crown-scale leaf spectra, which may 

potentially improve tree species classification accuracy. Specific aims of this paper are: 1) to 

segment individual crowns using LiDAR derived canopy height model, 2) to calculate the 

weighted crown-scale spectra from AISA hyperspectral imagery using illuminated-leaf fraction 

at each pixel as a weighting factor, 3) to classify tree species by applying SVM classifier to the 

new generated crown-scale spectra. In order to assess the improvement of the pixel-weighting 
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approach in classifying tree species, the treetop-based and pixel-majority approaches will be 

carried out for a comparative analysis. 

3.2 Study area and data 

3.2.1 Study area 

The study area is located to the southeast of the University of Wisconsin-Milwaukee 

(43.07N, 87.87W), located in the Milwaukee City, Wisconsin, United States (see Figure 8). The 

study site has a geographical area of 300 m*700 m, covering 5 street blocks. The ground surface 

is flat without significant fluctuation and the average elevation is about 200 m above sea level. 

This area is dominated by Ash (Fraxinus spp.), Maples (Acer spp.), Oak (Quercus spp.), and 

some other scattered species, such as Honeylocust (Gleditsia spp.) and Pine (Pinus spp.). In 

specific, ash trees are susceptible to the exotic beetle: emerald ash borer (Agrilus planipennis, 

EAB), which have killed tens of millions of native ash trees in the North America (McKenney et 

al., 2012). The heights of trees along the roads are approximately 5 to 25 m.  

 

Figure 8 (a) Study area in Milwaukee city and (b) true color image. 
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3.2.2 Dataset 

Both AISA hyperspectral imagery and LiDAR data were simultaneously collected by Terra 

Remote Sensing Inc. (TRSI) in August 2008.  Further, SRA International, Inc. (SRA) and Native 

Communities Development Corporation Imaging (NCDC) conducted initial data processing for 

AISA hyperspectral and LiDAR data respectively. For AISA imagery, geo-rectification and 

radiometric calibration were also performed. As a result, AISA imagery has 366 bands ranging 

from 409.85nm to 2,494.57nm, with bandwidth intervals of 4.6 nm in the visible and infrared 

(NIR) wavelength, and 6.26 nm in the short-wave infrared (SWIR) bands. The spatial resolution 

of these images is 1.0 meter. These images were re-projected to the Universal Transverse 

Mercator (UTM) coordinate system (Zone 16N) with a datum of North American Datum of 1983 

(NAD83). The LiDAR data were provided in an commonly used binary LASer (LAS) lidar 

format with the State Plane coordinate system of Wisconsin South (FIPS 4803) and North 

American Datum of 1927 (NAD27). The average point density is 4-5 points/m2.  In addition to 

LiDAR and hyperspectral imagery, field data were obtained in September 2015. A total of 198 

field trees were identified with the hyperspectral data and four classes were distinguished, 

including 1) ash, 2) maple, 3) oak, and other species.  

3.2.3 Data preprocess 

With the raw LiDAR derived raster images, a large number of randomly distributed dark 

holes are visible. This is also called the pit phenomenon, which is caused by the penetration 

properties of LiDAR data and the overlaying LiDAR points with different incidence angles from 

adjacent flight lines (Ben-Arie et al., 2009; Popescu and Wynne, 2004). In order to remove the 

holes under the crown surface and create a smooth canopy height model (CHM), the treetop 

height difference (THD) method developed by Liu and Dong (2014) was applied in this research. 
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Following the THD method, the highest 30 percent of points in the circle filter window with a 

radius of 1 m were selected to generate a smooth object height model (OHM) (see Figure 9). The 

smoothed image has a better representation of the crown shape.  

 

Figure 9 Object Height Model (OHM) derived from filtered LiDAR points. 

With the airborne AISA hyperspectral imagery, we performed atmospheric correction using 

the Quick Atmospheric Correction model in ENVI (Research system, Inc., Boulder, CO, USA). 

For further processing, water absorption bands (e.g. within the spectral regions of 1335.66-

1454.68 nm (bands181-200) and 1786.7-1955.84(bands 253-280)) and the noisy bands (2463.25-

2494.57(bands 361-366)) were removed. With remaining 312 bands, we generated a mosaic 

image (with 1.0 m spatial resolution) and registered it to the gridded LiDAR data (0.2 m). A total 

of 60 ground control points, such as corners of building and intersections of roads, were selected 

from the LiDAR derived OHM to geometrically reference the mosaicked AISA imagery, with a 

root mean square error (RMSE) of 0.2 pixels.   
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To reduce the interference of non-vegetation for individual tree isolation, the Normalized 

Difference Vegetation Index (NDVI) was applied to mask out non-vegetation features. As the 

NDVI values in temperate forests were estimated to range from 0.4 to 0.9 (Cristiano et al., 2014), 

we adopted the lowest value (0.4) as the threshold to separate trees (NDVI ≥ 0.4) from other 

features (NDVI < 0.4). We derived an NDVI image from the hyperspectral imagery and spatially 

overlaid with the OHM. The pixels with NDVI values less than 0.4 were assumed as non-

vegetation and therefore the corresponding values on the OHM were set as no value. Through 

applying the NDVI criterion method, other features including roads and buildings were removed 

from the OHM and the CHM was created to map tree height (see Figure 10). 

 

Figure 10 Canopy height model (CHM) map of tree heights. 

3.3 Methodology 

In this research, three steps have been applied to automatically classify tree species at the 

crown level, including 1) individual tree crown detection, 2) crown-scale spectra calculation, and 

3) tree species classification. These steps are described as follows. 
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3.3.1 Individual tree crown detection 

Individual tree crown detection was achieved with two major steps: treetop identification and 

crown delineation. Based on the assumption that the highest point in a spatial neighborhood 

represent the tip of a tree crown (Popescu, 2007), treetops were first identified from the 

smoothed CHM (Figure 10) using the local maxima (LM) technique with a circular window. The 

circular window size was determined using a linear regression model developed by Liu and Wu 

(2016) for this study area.  This method is based on the assumption that there is a positive 

relationship between the height of the trees and their crown sizes (Popescu and Wynne, 2004). 

Specifically, if a pixel corresponds to the local maximum of a circular shaped window on the 

CHM, it is marked as a treetop (Popescu and Wynne, 2004). In the second step, the circles 

centered on the detected treetops were automatically drawn to represent the circular shape of the 

tree crown observed from above (Doruska and Burkhart, 1994).The circle boundary was 

determined by the lowest points, called control points, between adjacent treetops. In order to 

reduce the spectral interference from the adjacent trees, the shortest distance between the treetop 

and its control points was defined as the radius to generate the circles for individual crown 

delineation.   

3.3.2 Crown-scale spectra calculation 

Crown-scale spectra in this study were defined as a weighted average of pixel spectra within 

a crown region. Due to the presence of mixed-pixel problems and the influence of double-side 

illuminations (Zhang and Qiu, 2012), the traditional technique of obtaining the crown-scale 

spectra (e.g. averaging the pixel spectra)  blurs within-crown variations and decreases the species 

classification accuracy (Clark et al., 2005). Therefore, for a better crown-scale tree species 

classification, pure crown-scale spectra, with which the interferences of non-photosynthetic 
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vegetation and shadows are mitigated, may improve the tree species classification accuracy. 

Although many researchers have made efforts to reduce the contamination of non-vegetation on 

crown-scale spectra using the NDVI threshold (Alonzo et al., 2014; Alonzo et al., 2013; Xiao et 

al., 2004), few studies have focused on reducing the mixed-pixel and double-side illumination 

problems in extracting the crown-scale spectra. To address these issues, we employed two 

sequential steps, including 1) extraction of illuminated-leaf fraction at each pixel using a spectral 

mixture analysis (SMA) model, and 2) calculation of crown-scale spectra using the illuminated-

leaf fractions as weights.  

SMA is an effective method to deal with the mixed-pixel problem at the pixel level. It 

calculates the fraction of a set of endmember spectra within a mixed pixel based on the 

assumption that the pixel’s spectrum is a linear or nonlinear combination of endmember spectra 

(Adams et al., 1995). When compared with the nonlinear SMA models, linear SMA models were 

typically utilized to quantify urban compositions due to intrinsic spectral variations (Wu and 

Murray, 2003). In this research, the constrained linear Spectral mixture analysis (LSMA) was 

applied to derive the fractional abundances of illuminated-leaf in each pixel for an individual tree 

crown: 

𝑅𝑖 = ∑(𝑓𝑘𝑅𝑖𝑘) + 𝜀𝑖

𝑛

𝑘=1

                                                                                        (7) 

Where Ri is the reflectance of band i for a pixel; i represents a particular spectral band, 

ranging from 1 to m; fk is the proportion of endmember k within the pixel, subject to the 

conditions of ∑ 𝑓𝑘
𝑛
𝑘=1 =1 and 𝑓𝑘 ≥ 0; and k labels a particular endmember, ranging from 1 to n; 

Rik is the reflectance of band i for endmember k; and 𝜀𝑖 represents the error for band i. In this 

research, the number of spectral bands m is set as 312, and the number of endmembers n is 4. 
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To obtain fk, we applied the least squares error estimation method. Once the endmembers are 

selected and their spectral signatures are generated, the corresponding fraction fk can be 

calculated by minimizing the sum of squared errors: 

∑ 𝜀𝑖
2

𝑚

𝑖=1

= ∑(𝑅𝑖 − 𝑟𝑖)
2

𝑚

𝑖=1

                                                                                                  (8) 

Where ε𝑖is the error for band i, m is the number of spectral bands, 𝑅𝑖 is observed reflectance 

spectra of band i, 𝑟𝑖 is the estimated reflectance spectra of band 𝑖. 

Four classes of endmembers were selected in this study for implementing the SMA model. 

The study area is mainly covered by trees, grass, buildings, and roads. However, a single tree 

crown may exhibit two different gray values on the hyperspectral imagery due to the double-

illumination problem, thus the trees were further divided into illuminated side and shaded side. 

Therefore, four endmembers include 1) illuminated-leaf (IL), 2) shaded-leaf (SL), 3) green grass 

(GG), and 4) imperious surface (IS). These endmembers were identified from hyperspectral 

imagery combined with high-spatial resolution images in Google Earth maps and field survey. IL 

was selected from the illuminated side of tree crowns and dense crown centers, while SL was 

identified from shaded side and depressed area of the studied tree crowns. GG was selected from 

grass-plots presented in front of the buildings in the study area and IS was extracted from the 

building roofs and roads. 

With the pixel values in an individual tree crown as parameters, the pure crown-scale spectra 

were calculated using a weighted average method. The illuminated-leaf fraction of each pixel 

calculated through the linear SMA method was set as the weight for each parameter, and the 

crown-scale spectra were calculated using the following equation: 
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𝐶𝑖 = ∑(𝑓𝑗𝑅𝑗)

𝑢

𝑗 =1

/ ∑ 𝑓𝑗

𝑢

𝑗 =1

                                                                                 (9) 

Where 𝐶𝑖 is crown-scale reflectance spectra of band i for a tree, 𝑓𝑗 is the illuminated-leaf 

fraction within pixel j, 𝑅𝑗 is observed spectral value of pixel j, u is the total number of pixels 

within the crown. 

3.3.3 Tree species classification 

With the crown-level pixel-weighted spectra for each crown, a support vector machine 

(SVM) classification algorithm was applied for classifying individual tree species in ENVI 

image processing environment. SVM is a supervised, non-parametric, and machine learning 

method that performs classification based on the statistical learning theory (Fauvel et al., 2008). 

It constructs an optimal separating hyperplane in a higher dimensional space to separate classes. 

The hyperplane is the decision surface to maximize the distance to the neighboring data points in 

the classes (Petropoulos et al., 2012a). Linear hyperplane is only efficient for linearly separable 

samples, and nonlinear hyperplane derived from a variety of kernel functions, such as 

polynomial, the radial basis function (RBF), and the sigmoid, can represent more complex 

shapes.  

In this research, an SVM with radial basis function (RBF) kernel was chosen as the RBF 

kernel only requires a small number of parameters but usually produces satisfactory results. 

Following the ENVI User’s Guide (2008), the gamma parameter in the kernel function was set to 

0.0032, equal to the inverse of the spectral band numbers (312) of the hyperspectral imagery; the 

penalty parameter was set to its maximum value (100), meaning that no misclassification occurs 

during the training process; the number of pyramid was set to a value of zero, forcing the AISA 
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hyperspectral imagery to be processed at the full resolution; and the classification probability 

threshold value was set to zero, forcing all pixels to be classified into one class. 

3.3.4 Accuracy assessment and comparative analysis 

3.3.4.1 Sample selection and accuracy assessment  

The classification scheme, consisted of ash, maple, oak, and others, was chosen based on our 

familiarity with the study area. The total 198 trees were divided into a training data set (around 

20%-25%) and a testing data set following the random sampling strategy (see Table 4). 

Table 4 Ground reference data in number of trees used in the classification 

Class Total number of trees Training samples Testing samples 

Ash 51 12 39 

Maple 59 12 47 

Oak 70 14 56 

Other species 18 5 13 

 

Classification accuracy was assessed based on the computation of the overall accuracy (OA), 

producer’s accuracy (PA), user’s accuracy (UA), and the Kappa (Kc) statistic (Petropoulos et al., 

2012a).  

3.3.4.2 Comparative analysis with the treetop-based and pixel-majority classifications 

In order to conduct comparative analyses, both treetop-based and pixel-majority 

classifications were carried out. With the treetop-based classification, the crown-scale spectrum 

of an individual tree was extracted from the pixel at treetop location in the crown region, and 

then an SVM classifier was applied to classify the individual tree to a particular species. For 
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pixel-majority classification, a pixel-based SVM classifier was implemented to assign a species 

to each pixel, and then an individual tree was assigned to a class if the majority of the pixels 

within the tree crown belongs to that particular class. During the process of pixel-level 

classification, six classes, including ash, maple, oak, other tree species, shaded-leaf class, and 

imperious surface areas, were chosen, with training sites carefully selected from the region. As a 

result, 800 randomly-selected training pixels were chosen from the corresponding objects for 

classes of ash, maple, oak, illuminated-leaf, shaded-leaf, and imperious surface areas, and only 

200 training pixels were selected as other species due to the limitation of sample availability.  

3.4 Results  

3.4.1 Individual tree detection 

With the local maximum algorithm, the treetops in the study area were detected based on the 

smooth CHM. The selected trees are distributed along the roads (see Figure 11).   

 

Figure 11 Location of identified trees. 
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With the shortest distance between the treetop and its control points, the minimum circles 

centered on treetops were automatically drawn as crown scales (see Figure 12). The average 

crown radius is 4.32 m, the largest crown radius is 7.28 m, and the smallest crown radius is 2.0 

m. 

 

Figure 12 Crown segmentation. 

3.4.2 Crown-scale spectra calculation 

When the four endmembers of illuminated-leaf, shaded-leaf, green grass, and impervious 

surface were selected from the hyperspectral imagery, the constrained linear SMA model was 

applied to quantify their compositions at each pixel and the fraction images were generated (see 

Figure 13). These fraction images illustrate that the fractions of illuminated-leaves are very high 

over the sun-side of tree crowns and near 100% in the dense crown center, but crown edges as 

well as sparse crowns experience low illuminated-leaf fractions (Figure 13a). Besides 

illuminated-leaf, shaded-leaf fractions also has a clear distribution pattern. The shaded leaves on 

the canopy not only appear in the back side of the sun but also spread throughout the canopy due 
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to the roughness of canopy surface (Figure 13b). Moreover, the green grass is observed and 

covered the open areas along roads, around trees, or in front of houses (figure 13c), and 

impervious surface areas (e.g. houses) are lined up on both sides of the streets (figure 13d).  

 

Figure 13 Endmember fractions from linear mixture analysis. (a) illuminated-leaf, (b) shaded-

leaf, (c) green grass, (d) impervious surface. 
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3.4.3 Tree species classification 

3.4.3.1 Pixel-weighting classification 

Using weighted spectral variables in the SVM classification resulted in an overall accuracy 

of 80.64% and kappa coefficient of 0.72. Especially, Ash tree species were identified with 

producer’s accuracy of 92.31% and user’s accuracy of 80%. Results for Maple and Oak trees 

were generally better, with the producer’s accuracies greater than or equal to 82% and user’s 

accuracy greater than or equal to 75%, but other species have the lowest producer’s accuracy 

(15.38%) but the highest user’s accuracy (100%) (see Table 5). 

Table 5 Accuracy assessment results of pixel-weighting classification 

 Ash Maple Oak Other trees Total User’s accuracy 

Ash 36 2 6 1 45 80.00 

Maple 2 39 2 1 44 88.64 

Oak 1 6 48 9 64 75.00 

Other species 0 0 0 2 2 100.00 

Total 39 47 56 13 155  

Producer’s accuracy 92.31 82.98 85.71 15.38   

Overall accuracy 80.64%, kappa statistics: 0.72 

 

3.4.3.2 Treetop-based classification 

The classification accuracy with the treetop-based classification approach is significantly 

lower (e.g. the overall accuracy is 68.38% with kappa statistics of 0.54). The three dominant 

trees were mapped with producer’s accuracies ranging from 61.54% to 80.36% and user’s 

accuracies from 67.16% to 72.73%. In specific, the producer’s accuracy of ash tree species is 
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about 61.54%, and the user’s accuracy is approximately 72.73%. Results for other species was 

also generally lower, with producer’s accuracy of 23.08% and user’s accuracy of 50% (see Table 

6).  

Table 6 Accuracy assessment of treetop-based classification 

 Ash Maple Oak Other trees total User’s accuracy 

Ash 24 2 4 3 33 72.73 

Maple 8 34 5 2 49 69.39 

Oak 7 10 45 5 67 67.16 

Other species 0 1 2 3 6 50.00 

Total 39 47 56 13 155  

Producer’s accuracy 61.54 72.34 80.36 23.08   

Overall accuracy 68.38%, kappa statistics: 0.54 

 
3.4.3.3 Pixel-majority classification 

The overall accuracy of pixel-majority classification is 72.26% and the kappa statistics is 

0.62, which are much lower than those from the pixel-weighting classification but higher than 

those from the treetop-based classification. Ash tree and maple have higher user’s accuracy 

(85.71% and 97.14% respectively) but lower producer’s accuracy (76.92% and 72.34% 

respectively). Further, the producer’s and user’s accuracy of both oak and other species are lower 

than 70% (see Table 7).  
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Table 7 Accuracy assessment of pixel-majority classification 

 Ash Maple Oak Other trees total User’s accuracy 

Ash 30 2 2 1 35 85.71 

Maple 0 34 1 0 35 97.14 

Oak 7 8 39 3 59 66.10 

Other trees 2 3 14 9 26 34.61 

Total 39 47 56 13 155  

Producer’s accuracy 76.92 72.34 69.64 69.23   

Overall accuracy 72.26%, Kappa statistics 0.62 

 

3.5 Discussion 

Mapping tree species at the crown-level is essential for urban forests management and 

physiological stress monitoring (Shang and Chisholm, 2014). As the management unit of 

practical forest inventories, crown-level tree species could be easily employed to estimate 

individual tree morality (Yao et al., 2001), analyze forest diversity (Baldeck et al., 2015), and 

calculate biomass (Mate et al., 2014). As an example, ash tree, one of the most common species 

in the Milwaukee City, is under the risk of being attacked by EAB (MacFarlane and Meyer, 

2005). Accurate identification of ash trees is essential for EAB monitoring and ash tree species 

protection (San Souci et al., 2009). However, tree species classification using hyperspectral 

imagery is still a challenge task due to the mixed-pixel problem and double-side illumination 

problem at the crown level. 
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Our study has shown that the proposed pixel-weighting classification is an effective approach 

for separating tree species in the urban area of Milwaukee (e.g. overall accuracy is 80.64%, 

kappa statistics is 0.72). For the three major species, producer’s accuracies are greater than 82% 

and user’s accuracies are greater than 75%. The pure crown-scale spectra extracted from the 

training and testing samples contributed to higher classification accuracies. For ash trees, in 

particular, the producer’s accuracy reaches 92.31% and the user’s accuracy reaches 80%. The 

other species class has lower producer’s accuracy because it contains several species with 

different reflectance, such as, honeylocust, pine, ginkgo, etc..  

The proposed pixel-weighting classification method has the following major advantages 

when compared with the treetop-based and pixel-majority approaches. First, this method has 

successfully addressed the mixed-pixel problem and mitigated the adverse effects of tree 

shadows, gaps, and other non-photosynthetic vegetation on tree species classification. That is, 

instead of merging or averaging pixels within a crown directly (Dalponte et al., 2012), this 

method applied a spectral mixture analysis (SMA) and a pixel-weighting approach to extract 

crown-scale leaf spectra, thereby decreases within-species spectral variability and between-

species spectral confusion, and further improves the accuracy of the tree species classification. 

Second, the pixel-weighting approach is less sensitive to crown delineation error and outliner 

pixels. The crown-scale spectra were derived through a weighted average of the pixels’ spectra, 

with the illuminated-lead fractions as the weights. Therefore, pixels containing gap or other 

materials around the crown boundaries have little contribution to crown-scale spectra due to their 

low weights, while pixels with higher illuminated-leaf fractions have larger contributions. As a 

result, the pixel-weighting classification is less likely to suffer from outlier pixels and crown 

delineation errors. Third, the pixel-weighting classification also benefits from the machine 
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learning algorithm (SVM) in the crown-level tree species classification. SVM can maximize the 

separation by fitting an optimal separating hyperplane and perform better than other classifiers, 

such as spectral angle mapper (SAM) and artificial neural network (ANN) (George et al., 2014; 

Petropoulos et al., 2012a).  

3.6 Conclusions and future work 

This research developed a pixel-weighting approach for crown-level tree species 

classification in urban forests. This innovative method combined the constrained LSMA model 

and weighted average algorithm to extract crown-scale spectra, and applied an SVM classifier to 

classify tree species at the crown level. The major advantages of this method include: 1) pixel-

based illuminated-leaf fraction was extracted using the constrained linear SMA model, which 

mitigated the mixed-pixel problem at the pixel level; 2) pure crown-level spectra were calculated 

using a weighted average algorithm, which mitigated the interferences of non-photosynthetic 

vegetation and shadows; and 3) tree species classification accuracies were improved by applying 

the SVM classifier. Classification results and comparative analysis suggest that pixel-weighting 

approach is effective to automatically classify four tree species at the crown level in the 

Milwaukee City. It produced an overall accuracy of 80% and the kappa statistics of 0.72 for ash, 

maple, oak, and other species, which were significantly better than those generated with treetop-

based and pixel-majority approaches. Ash species, in specific, were successfully identified with 

higher producer’s accuracy (92%) and user’s accuracy (80%). The weighted crown-scale spectra 

reduce the interference from shadow, gaps, and bare earth, and further improve the ash species 

classification.  

Although the results of crown-level tree species are satisfactory, further improvements may 

include the applications of the multiple endmember spectral mixture analysis (MESMA) for pure 
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crown-scale spectra calculation. MESMA allows the number and the types of endmembers to 

vary pixel by pixel across an image, thereby overcoming the limitations of linear SMA which 

using the same endmembers to model all image pixels (Quintano et al., 2013). Thus, MESMA 

has potential for improving pure spectra extraction. Moreover, individual crown structure 

features derived from LiDAR data, together with the developed crown-level pixel-weighted 

spectra, may have potential for further improving tree species discriminations. 
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CHAPTER 4 TREE SPECIES CLASSIFICATION BASED 

ON THE FUSION OF AISA HYPERSPECTRAL 

IMAGERY AND DISCRETE LIDAR DATA 
 

4.1 Introduction 

Urban trees play a major role in providing ecosystem services (Manes et al., 2012), such as 

mitigating heat stress, improving air quality, reducing building energy use, stabilizing ozone 

removal rate, and thereby enhancing human health (Akbari, 2002; Nowak et al., 2006; Pataki et 

al., 2011). Further, the diversity of tree species reduces the risk of catastrophic loss of trees from  

pests and diseases in comparison with genetically similar trees which have a similar 

susceptibility to biotic stress (Kendal et al., 2014). Higher levels of diversity also provide a 

greater capacity for urban forests to adapt to climate change (Alvey, 2006), including less 

sensitivity to drought and heat waves (Manes et al., 1997). Additionally, exposure to a diversity 

of species provides positive psychological and physiological effects (Cilliers, 2010; Goddard et 

al., 2010).  Given the benefits of urban biodiversity, information about the current patterns of 

tree species composition is needed for supporting management efforts (Conway and Vander 

Vecht, 2015). Tree species classification based on remote sensing techniques has been widely 

employed and provided an attractive alternative to field surveys in forest inventory due to its 

lower total cost, greater geographic coverage, and higher efficiency(Holmgren and Thuresson, 

1998; Zhang and Qiu, 2012). 

Hyperspectral imagery and LiDAR data are two favorite data sources for tree species 

classification. Hyperspectral imagery is generally composed of hundreds of relatively narrow but 

continuous spectral bands from visible to shortwave infrared parts of the electromagnetic 

spectrum (Petropoulos et al., 2012a). Thus, the vast amount of spectral information provides the 
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most valuable information for tree species classification and plant disease identification. George 

et al. (2014) employed the Earth Observation-1 (EQ-1) Hyperion hyperspectral imagery with 242 

bands to discriminate six broadleaved evergreen and conifer forest tree species in western 

Himalaya, and the best overall accuracy was 82.27% and the kappa statistic was 0.79. Xiao et al. 

(2004) utilized airborne visible/infrared imaging spectrometer (AVIRIS) imagery with 224 bands 

to map 22 urban tree species in Modesto, CA, which resulted in an average accuracy of 70%. 

Alonzo et al. (2013) also used AVIRIS imagery to identify 15 common urban tree species, and 

the overall classification accuracy reached 86%. Zhang and Qiu (2012) employed the airborne 

imaging spectrometer for application (AISA) hyperspectral images with 492 spectral bands to 

identify 40 urban species in Dallas, Texas with 69% overall accuracy. Clark et al. (2005) applied 

the HYperspectral digital imagery collection Experiment (HYDICE) data with 210 bands for the 

discrimination of seven tropical rainforest tree species. Dalponte et al. (2012) evaluated the 

potential of two high spectral and spatial resolution hyperspectral imageries (HySpex-VNIR 

1600 and HySpex-SWIR 320i) for classifying four tree species in boreal forests. The visible and 

near infrared (VNIR) hyperspectral bands were found more effective in discriminating boreal 

species than those bands in the medium infrared (SWIR) range. Although hyperspectral data has 

performed relatively well in tree species classifications, the similarity of spectral signatures of 

different tree species and the 2-dimensional (2D) properties of optical remote sensing data still 

challenge the successful tree species classification (Ghosh et al., 2014; Jones et al., 2010). 

In contrast, LiDAR data provides the vertical distribution of vegetation elements above the 

ground along with the measurement of terrain elevation. LiDAR is particularly suited to derive 

information relevant to biophysical vegetation properties such as tree height, fraction vegetation 

cover, canopy geometry, and above-ground biomass (Lefsky et al., 2002; Morsdorf et al., 2006). 
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Naesset (1997) computed the mean tree height from an airborne laser scanner using the 

arithmetic mean and the weighted mean of the canopy heights within each stand. Popescu et al. 

(2003) fitted two perpendicular profiles of a tree crown using a fourth-degree polynomial curve 

and calculated the crown diameter as the average of these two values along the profiles. Results 

suggested that approximately 62% of the variances were associated with diameter for dominant 

trees. Kato et al. (2009) not only measured tree height and crown width but also captured crown 

base height and crown volume through surface reconstruction using LiDAR data. Popescu 

(2007) estimated aboveground biomass and biomass components for individual trees using linear 

and nonlinear regression analyses, and results suggested that LiDAR derived tree height and 

diameter at breast height (dbh) proved to be particularly important for biomass prediction. 

Besides the extraction of the geometric and biophysical properties, high density airborne LiDAR 

data are also suitable for specific tree species classification. Ørka et al. (2009) discriminated 197 

Norway spruce and 180 birch trees in Norway using airborne laser scanner (ALS) derived 

structural and intensity features, which resulted in an overall classification accuracy of 88%. Li 

et al. (2013) successfully classified four tree species with an overall accuracy of 77.5% based on 

several LiDAR derived structure features, such as 3D texture, foliage clustering degree, foliage 

clustering scale, and gap distribution of individual trees. Although LiDAR provides a set of 

crown structural variables, it alone is not sufficient for species discrimination in a biodiverse 

forest with large numbers of species (Alonzo et al., 2014). 

LiDAR data can describe the geometric properties of vegetation by sampling the spatial 

dimensions, while hyperspectral imagery measures biotic properties of vegetation by sampling 

the spectral dimensions (Koetz et al., 2008), thus the synergistic use of LiDAR and hyperspectral 

data is regarded as a promising technique to enhance comprehensive canopy characterization, 
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increase the segmentation capability, and improve tree species classification (Hill and Thomson, 

2005; Voss and Sugumaran, 2008). Dalponte et al. (2008) directly joined the LiDAR derived 

height and intensity information with the 40 selected bands of AISA hyperspectral imagery in 

classifying 23 tree classes and increased the accuracy by more than 5% for 5 classes. Jones et al. 

(2010) integrated LiDAR-derived CHM and canopy volume profile (CVP) data with 

hyperspectral imagery at the pixel level in mapping 11 tree species in the Gulf Islands National 

Park Reserve, Canada, and reported improved producer’s (+5.1-11.6%) and user’s (+8.4-18.8%) 

accuracies for dominated species. Dalponte et al. (2012) generated 19 height related bands based 

on LiDAR features within each pixel (e.g. maximum, minimum, and average of height point 

within each pixel) and joined 6 optimal bands with hyperspectral imagery for tree species 

classification at different level. The results indicated the fusion of LiDAR and hyperspectral data 

increased the classification accuracies at the levels of macro classes, forest types, and forest 

species. In comparison with fusion at the pixel level, crown-level fusion has more potential for 

tree species classification due to the improvements of crown segmentation and structural metrics 

extraction from 3D LiDAR data. Zhang and Qiu (2012) simply integrated LiDAR and 

hyperspectral data for urban tree species classification. LiDAR data was used for individual tree 

detection while hyperspectral data was used for species classification. Further, Alonzo et al. 

(2014) extracted 28 structural metrics directly from 3D LiDAR point cloud and fused them with 

all spectra exceeding an NDVI threshold of 0.6 within a crown. The addition of LiDAR data 

increased 4.2% of overall accuracy compared to spectral data alone.  

Fusion of hyperspectral imagery and LiDAR data has benefit tree species classification by 

fully exploiting both spectral and spatial information. A number of researchers have integrated 

CHM, CVP, and/or LiDAR intensity information with hyperspectral imagery to increase the 
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pixel-level classification accuracy, and many studies focused on the fusion of hyperspectral 

imagery and crown attributes, such as crown height and crown width metrics, to improve the 

crown-level classification. However, these fusions have two disadvantages in tree species 

classification. First, these biophysical properties are not identical within the same tree species. 

For example, tree height increases and crown size extends as tree grows, crown volumes may 

vary with different crown architectures, and LiDAR intensity depends on many variables, such 

as local incidence angle, path length, transmit pulse energy of laser, etc. Therefore, these features 

play limited contributions in mixed forests. Second, these fusions ignore the mixed pixel 

problem in hyperspectral imagery. Shadow, gap, and other materials within a crown may 

adversely affect the spectral reflectance and decrease the tree species classification. To address 

these issues, crown shape index (SI) and coefficient of variation (CV), corresponding to height 

distribution and height dispersion, were extracted from LiDAR data as the invariant features in 

tree’s life cycle, and tree height was extracted as well for comparison purpose. In addition, both 

treetop-based and pixel-weighted spectra were extracted from hyperspectral imagery. Treetop-

based spectrum suffers less mixed-pixel problem and double-illuminated problem due to distance 

from crown boundary, while pixel-weighting spectra were calculated using illuminated leaf 

fraction within each pixel as weight factors to measure pure spectra at crown level. Finally, tree 

height, SI, and CV were fused with treetop-based and pixel weighted spectra respectively for tree 

species classification. The specific objectives include: 1) identifying individual trees from 

LiDAR data, 2) extracting structural features from LiDAR derived CHM, 3) extracting spectral 

features from AISA hyperspectral imagery, and4) fusing spectral and structural features for tree 

species classification. 
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4.2 Study area and data 

4.2.1 Study area 

The study area is located in the Upper East Side neighborhood of Milwaukee, Wisconsin 

(43.07N, 87.87W), covering a 300 m * 700 m area (see Figure 14). As the largest city in the state 

of Wisconsin, Milwaukee lies on the western shore of Lake Michigan and the humid continental 

climate supports a diverse mix of urban forest trees. The study area is dominated by several 

deciduous trees, such as ash (Fraxinus spp.), maples (Acer spp.), oak (Quercus spp.), 

honeylocust (Gleditsia spp.) and some scattered coniferous trees such as pine (Pinus spp.) and 

spruce (Picea spp). The terrain in the study area was sculpted by a glacier path. The average 

elevation of the relative flat surface is about 200 m above sea level and tree heights are 

approximately 5 to 25 m.  

 

Figure 14 Study area in Milwaukee (a) and canopy height model (b). 

4.2.2 Data set 

The airborne imaging spectrometer for application (AISA) hyperspectral imagery was 

acquired by Terra Remote Sensing, Inc. (TRSI) using an AISA hyperspectral sensor in August 

2008. The imagery has a spectral range between 409.85 nm and 2494.57 nm and a total of 366 
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spectral bands. The spectral resolution in the visible and infrared (NIR) wavelength is 4.6 nm 

and the resolution in the short-wave infrared (SWIR) wavelength is 6.26 nm, while the spatial 

resolution is 1.0 meter. LiDAR data were collected by TRSI in August 2008 as well, but Native 

Communities Development Corporation Imaging (NCDC) led the LiDAR data analysis and 

provided the final LiDAR data with the coordinate system of NAD 1927 State Plane Wisconsin 

South (FIPS 4803) and mean point density of 4.5 points per m2.  Besides the remote sensing data, 

field data were collected in September 2015. In total, 198 LiDAR-detected trees along the roads 

in the study area were identified and grouped into ash, maple, oak, and other species.  

4.2.3 Data preprocess 

To remove the effects of the atmosphere on the two images spanning the study area, the 

Quick Atmospheric Correction Model in ENVI (Research system, Inc., Boulder, CO, USA) was 

first carried out for atmospheric correction. And then the water absorption bands (bands 181-200 

and bands 253-280) corresponding to the spectral regions of 1335.66-1454.68 nm and1786.7-

1955.84 nm as well as the noisy bands (bands 361-366) corresponding to the spectral region of 

2463.25-2494.57 nm were removed. Subsequently, a single image with 1.0 spatial resolution was 

generated by mosaicing the images covering the whole study area and co-registered to the 

gridded LiDAR data (0.2 m) based on 60 ground control points and nearest neighbor resampling. 

The control points were selected from corners of building and intersections of roads, and the root 

mean square error (RMSE) was 0.2 pixels.   

Due to LiDAR characteristics of penetrating through forest canopy, data pits, randomly 

distributed exceptionally lower height value in a raster, are typically distributed in canopy height 

model which was interpolated from the raw LiDAR data (Popescu and Wynne, 2004). These pits 

may adversely affect the crown segmentation, tree height estimation, and forest biomass 
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calculation (Ben-Arie et al., 2009). Therefore, extraction of LiDAR points on the crown surface 

rather than within the crown is prerequisite to create a smooth crown surface. In this research, we 

applied the treetop height difference (THD) method (Liu and Dong, 2014) to selected the highest 

30 percent points of search windows with a radius of 1 m and interpolated them into the smooth 

canopy height model (CHM) (see Figure 15).  

 

Figure 15 Smooth canopy height model (CHM). 

4.3 Methodology 

To automatically and accurately classify tree species at the crown level, the main steps of the 

process includes: 1) individual tree identification based on smooth CHM, 2) structural feature 

extraction from individual tree crowns, 3) crown-scale spectra calculation from hyperspectal 

imagery, and 4) data fusion for tree species classification. These steps are presented as follows. 
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4.3.1 Individual tree identification 

Individual trees were identified on the smooth CHM in two major steps. The locations of tree 

tops were first detected with a local maximum (LM) filtering method (Popescu and Wynne, 

2004). The LM technique operates on the assumption that the highest point in the spatial 

neighborhood represents the treetop of a tree crown, and the window size to search for the tree 

top is dependent on the strong relationship between the tree height and the crown size (Popescu, 

2007; Popescu and Wynne, 2004). Specifically, a circular shaped window moves through the 

CHM, if a given pixel is the highest than all other pixels within a search window, it is identified 

as a treetop, wherein the window radius was automatically calculated using a linear regression 

model developed by Liu and Wu (2016). Second, the tree crown delineation operated on the 

assumption that the lowest points between two crowns are the control points on the boundary to 

separate them. In response to the circular crown shape observed from above, circles were 

automatically drawn on CHM as crown scales. The centers of circles were located at treetop 

location and the circle radii were calculated as the average distance between the treetop and its 

control points.   

4.3.2 Structural feature extraction from LiDAR data 

The structure of a tree crown is defined as the distribution of all the plant elements (e.g. 

leaves, twigs, branches, etc.) and their geometric properties (e.g. size, shape) within the tree 

crown (Wang and Jarvis, 1990). The structural properties have a significant effect on radiation 

absorption, photosynthesis, and transpiration, and they can be derived from the discrete LiDAR 

data. As the most basic and intuitive attribute, tree height plays an important role in forestry and 

forest ecology (St-Onge et al., 2004), and many other features, such as the biomass and DBH, 
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were calculated dependent on it (Ørka et al., 2009). Therefore, tree heights, in this research, were 

chosen as the first structural feature for tree species classification.  

Crown shape is another feature suited to distinguish species because it is more invariant to 

life stages and can capture between-species variability in crown morphology (Alonzo et al., 

2014). And the three-dimensional (3D) shape signature was developed by Osada et al. (2002) to 

measure geometric properties of the 3D object. 3D shape signature describes the probability 

distribution samples from a shape function and therefore reduce the 3D matching problem to the 

comparison of 2D probability distribution. In this study, the shape signature measuring the 

frequency distribution of the heights at random points on a crown surface was carried out, and 

then the shape index, one-dimensional expression of shape signature in measuring geometric 

properties of the 3D object, was further calculated for tree species classification. In particular, 

when the number of random points, such as 5000, was determined, the points within a crown 

scale were randomly selected and their heights were extracted from the crown surface, and then 

the values were sorted and put into user defined histogram bins, such as 100, to show the height 

frequency. Based on the height shape signature, the shape index was calculated using the 

following equation: 

𝑆𝐼 = ∑(𝑖 ∗ 𝑏𝑖)

𝑚

𝑖=1

/ ∑ 𝑏𝑖

𝑚

𝑖 =1

                                                                                 (10) 

Where, m is the number of bin, 𝑏𝑖 is the value in bin i. 

In addition to SI, a third index, coefficient of variation (CV) describing the height dispersion 

within a crown scale, was proposed. CV is known as relative standard deviation (RSD) 

measuring the variability of a series of numbers independent of the unit (Abdi, 2007). Comparing 
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with the absolute variability of standard deviation, CV is a helpful statistic in comparing the 

degree of variation from one data series to another with considerably different means. Whereas, 

CV is defined as the ratio of the standard deviation σ to the mean E: 

 𝐶𝑉 =
𝜎

𝐸
                                                                                                                             (11) 

Where 𝐸 =
1

𝑛
∑ 𝑋𝑗

𝑛
𝑗=1  and  𝜎 = √

1

𝑛
∑ (𝑋𝑗 − 𝐸)2𝑛

𝑗=0  ; n is the number the samples, Xj is the 

value of the sample j. 

4.3.3 Spectral feature extraction from AISA hyperspectral imagery 

Crown-scale spectra were extracted with two methods: treetop-based and pixel-weighting 

approaches. Treetop-based method directly extracted the spectrum of the pixel at treetop location 

as the crown spectrum of an individual tree. Treetop pixel, located in the center of a tree crown, 

suffers less pixel mixture problems caused by gap, shadow, and other species, which usually 

occur around crown boundaries. In addition, treetop, as the highest point,  is rarely impacted by 

double-sided illumination problems, which are common on two sides of crown scales (e.g. sun-

side, shaded-side) (Zhang and Qiu, 2012). Therefore, treetop pixel is the best portion of a tree 

crown to represent the spectral signature of an individual tree and treetop-based spectra were 

extracted for tree species classification in this research. 

Pixel-weighting method calculated the weighted average of pixels’ spectra within tree 

crowns as crown-scale spectra. In this research, the pixel spectrum was assumed as a linear 

combination of four endmember spectra, including illuminated-leaf, shaded-leaf, grass, and 

impervious surface. Therefore, the proportions of the endmembers within each pixel were 

extracted by a constrained linear spectral mixture analysis model (Wu and Murray, 2003), and 
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the illuminated-leaf fraction was defined as the weighted factor for each pixel to calculate the 

crown-scale spectra. The pixel-weighting method mitigated the mixed-pixel problem and double-

side illumination problem. Thus the resulted pixel-weighted spectra have the capacity of 

measuring the pure crown-scale spectra and classifying tree species with high accuracy. 

The redundancy of full hyperspectral datasets is not efficient or reliable due to Hughes’ 

phenomenon, which arises when the ratio between the number of training samples and the 

number of features is small (Hughes, 1968). Therefore, the optimal spectral subsets are necessary 

to be selected for maximizing the discrimination of target features (Jones et al., 2010). In this 

study, a stepwise discriminant analysis based on Wilk’s lambda method was carried out using 

SPSS (ver.22) to reduce the dimensionality of the hyperspectral data. Wilk’s Lambda is a 

multivariate analysis of variance, and it corresponds to the ability of each band to separate the 

tree classes, the lesser the Wilk’s lambda, the greater the separability between the different 

classes  (George et al., 2014).  When applied the software on treetop-based and pixel-weighted 

spectra, the two corresponding sets of optimal bands were selected. 

4.3.4 Data fusion and Classification 

In order to assess the contribution of different structural features to tree species classification, 

treetop height (TH), shape index (SI), and coefficient of variation (CV) were integrated with the 

optimal treetop-based and pixel-weighted spectra respectively. Therefore, the fused datasets were 

divided into two groups: treetop-based spectra/structural dataset and pixel-weighted 

spectra/structural dataset. Each group consisted of the following four variables. 

1) Optimal hyperspectral bands (Spectral only) 

2) Optimal hyperspectral bands + tree height (Spectral + TH) 

3) Optimal hyperspectral bands + shape index (Spectral + SI) 
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4) Optimal hyperspectral bands + coefficient of variation (Spectral + CV) 

During the classification process, a non-linear support vector machine (SVM) classifier was 

applied. SVM has been proven better than conventional approaches in performing classification 

in complex environments, as it finds the hyperplane to maximize the margin between different 

classes (Petropoulos et al., 2012). Comparison with the linear hyperplane, kernel functions can 

represent more complex shapes and operated in high dimensional space. The radial basis 

function (RBF) kernel SVM was chosen in this research due to better performance and less 

number of required parameters. Based on ENVI User’s Guide (2008), the parameters of gamma γ 

and penalty C were set as 0.0032 and 100 respectively. γ is the inverse of the number of the 

spectral bands and C controls the cost of misclassification on the training data. The number of 

pyramid and the classification probability threshold were set as zero to force the imagery 

processed at full resolution and each pixel was classified into a class. 

4.4  Results and discussion 

4.4.1 Individual tree identification 

Treetops in the study area were first detected using the local maximum method on the 

LiDAR-derived canopy height model. Due to the inaccessibility of trees in private properties for 

field survey, only trees along the roads were selected for species classification accuracy analysis. 

With the average distance between the treetop and its control points as the radius, the circles 

centered on treetops were automatically drawn as crown scales. The identified treetop and crown 

scales can be seen in Figure 16.  
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Figure 16 Treetops and crown scales. 

4.4.2 Structural feature extraction from LiDAR data 

Based on the smooth CHM and crown segmentation, three structural features including tree 

height, crown shape index (SI), and coefficient of variation (CV) were extracted (see Figure 17). 

First, tree heights were obtained by directly measuring the pixel values at the treetop locations. 

The tallest tree reaches 20.62 m and the shortest one is only 5.97 m, the average height at 14.04 

m (see Figure 17a). Tree heights are mainly located and distributed between 10 m to 20 m.  

Second, shape indices were computed and varied in the range between 52.16 and 92.87, with an 

average value of 82.02 (see Figure 17b). The low value indicates the crown has a steep slope, 

while the high value represents the crown has a relatively flat surface. The large number of shape 

indices with high values is consistent with the dominance of the deciduous tree species in the 

study site. Third, coefficients of variation were calculated by dividing the standard deviation by 

the mean (see Figure 17c). They are distributed between 2.15% and 21.4% with an average of 

7.87%. The low value in our study indicate low variability of the heights within a crown.  
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(a) (b) (c) 

Figure 17 Structure features. Tree height (a), shape index (b),and  coefficient of variation (c). 

4.4.3 Spectral feature extraction from AISA hyperspectral imagery 

To reduce the dimensionality of the hyperspectral data, the stepwise spectral discriminant 

analysis (SDA) was applied to both treetop-based and pixel-weighted spectra. Based on Wilk’s 

lambda values, 6 optimal bands from the treetop-based spectra and 9 optimal bands from the 

pixel-weighted spectra were identified at a 5% level of significance. Of the 6 optimal treetop-

based bands, 1 band was from the visible region, 2 bands from VNIR, and 3 bands from SWIR. 

Of the 9 optimal pixel-weighted bands, 2 bands were from the visible region, 6 bands from 

VNIR, and 1 band from SWIR. 

To assess the lost information in selecting optimal bands, both full bands and optimal bands 

were used to classify tree species with the same samples and SVM algorithms. The results 

indicate that the classified map using 6 optimal bands matches 95.08% with the classified map 

using all 312 treetop-based bands. The 6 bands with SVM resulted in 66.45% of overall accuracy 

with 0.52 of kappa statistics, while all 312 bands with SVM resulted in 68.38% of overall 

accuracy with 0.54 of kappa statistics. Similarly, the classified map using 9 optimal bands 

matches 99.85% with the classified map using all 312 pixel-weighted bands. The overall 

accuracy using 9 optimal bands is the same as that using all 312 pixel-weighted bands (80.64%) 

and their kappa statistics were almost the same (0.7186 and 0.7197). Since optimal bands and all 
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bands produced similar classification results, 6 and 9 optimal bands were taken up for further 

treetop-based classification and pixel-weighting classification. 

4.4.4 Classification results 

The accuracies of treetop-based classification with four combined subsets were summarized 

in Table 8.  The spectral only variables resulted in an overall accuracy of 66.45% and kappa 

statistics of 0.52. The producer’s accuracies ranged from 43.59% to 78.57%, and the user’s 

accuracy are from 57.89% to 77.27%. Adding tree height information into the SVM 

classification reduced the overall accuracy to 64.52% and kappa statistics to 0.49.  The highest 

producer’s accuracy decreased to 74.36% from 78.57% and the highest user’s accuracy 

decreased to 50.00% from 77.27%. In contrast, joining crown shape index into the classification 

increased the overall accuracy to 71.61% and kappa statistics to 0.60. Furthermore, including 

coefficient of variation as classification input increased the overall accuracy to 72.90% and 

kappa statistics to 0.61. Specifically, the highest producer’s accuracy reached 82.05% for ash 

tree species and highest user’s accuracy reached 79.07% for maple tree species. 

Table 8 Accuracy comparison on treetop-based fusion 

Species Spectral only Spectral + TH Spectral + SI Spectral + CV 

Prod. 

(%) 

User 

(%) 

Prod. 

(%) 

User 

(%) 

Prod. 

(%) 

User 

(%) 

Prod. 

(%) 

User 

(%) 

Ash 43.59 73.91 74.36 64.44 79.49 72.09 82.05 76.19 

Maple 72.34 77.27 68.09 68.09 72.34 72.27 72.34 79.07 

Oak 78.57 57.89 66.07 62.71 71.43 67.80 75.00 66.67 

Other 61.54 66.67 15.38 50.00 46.15 66.67 38.46 71.43 

OA 66.45 64.52 71.61 72.90 

Kappa 0.52 0.49 0.60 0.61 

 

Pixel-weighting approach improved the classification results (see Table 9). With weighted 

spectra only, the overall accuracy increased to 80.64% and the kappa statistics increased to 0.72. 
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The three dominate trees: ash, maple, and oak were mapped with producer’s accuracies from 

82.98% to 89.29% and the user’s accuracies from 72.46% to 86.67%. The impacts of the three 

structural features in pixel-weighting approach are similar to those in the treetop-based approach, 

but the magnitudes of their contributions are different. The addition of the LiDAR derived tree 

height decreased the overall accuracy to 71.61% and kappa statistics to 0.59. Specific to the three 

dominate tree species, their producer’s accuracies decreased 12.83%, 17.02%, and 1.79% and the 

user’s accuracies decreased 6.84%, 19.28%, and 2.26% from using only spectral data 

respectively. However, the crown shape and height dispersion information improved the 

classification results. With shape index, the overall accuracy increased to 81.29% and kappa 

statistics increased to 0.73. In specific, increases in producer’s and user’s accuracies were 

observed for ash (84.62% and 91.67%), for maple (82.98% and 82.98%), and for oak (92.86% 

and 74.29%). Similarly, the combination of hyperspectral and CV data increased the overall 

accuracy to 81.94% and kappa statistics to 0.74.  The notable increases in producer’s and user’s 

accuracies occurred for ash (92.31% and 87.80%), maple (78.72% and 90.24%), and oak 

(89.29% and 74.63%).  

Table 9 Accuracy comparison on weighted pixel based fusion 

Species Spectral only Spectral + tree Spectral + SI Spectral + CV 

Prod. 

(%) 

User 

(%) 

Prod. 

(%) 

User 

(%) 

Prod. 

(%) 

User 

(%) 

Prod. 

(%) 

User 

(%) 

Ash 84.62 86.84 71.79 80.00 84.62 91.67 92.31 87.80 

Maple 82.98 86.67 65.96 67.39 82.98 82.98 78.72 90.24 

Oak 89.29 72.46 87.50 70.00 92.86 74.29 89.29 74.63 

Other 23.08 100.00 23.08 75.00 15.38 100.00 30.77 66.67 

OA 80.64 71.61 81.29 81.94 

Kappa 0.72 0.59 0.73 0.74 
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4.4.5 Discussion  

Data fusion, especially the fusion of hyperspectral imagery and high density LiDAR data, has 

become attractive to improve tree species classification. On one hand, the over-determined 

spectral signature of hyperspectral data measures more accurate and detailed spectral information 

related to biochemical features (Lee et al., 2004) and drives tree species classification at different 

conditions (Ghosh et al., 2014). On the other hand, LiDAR data allows for the measurement of 

crown structural properties (e.g. tree height and crown size) and provides complimentary 

information to hyperspectral imagery to mitigate the spectral similarity problem for different tree 

species (Leckie et al., 2005). However, the magnitude of LiDAR data contribution depends on 

structural feature selection. The same tree species may exhibit different biophysical properties 

while the different tree species may have similar physical dimensions. Therefore, selection the 

optimal structural feature insensitive to the tree’s life cycle and living environments is a critical 

task. 

Regarding the contributions of the three structure features, tree height decreased the 

classification accuracy, but the shape information and dispersion variables increased the 

classification results. The study area is dominated by the deciduous trees, such as ash, maple, 

oak, and honey locust. The same species may exhibit different heights at different ages, while 

different species may have similar heights. Therefore, the variation within a species is high, and 

the variation between species is relatively low (e.g. standard deviation within ash species 

(2.31m) to standard deviation between species (3.29 m)) (see Figure 18a). Therefore, the 

confusion of tree heights reduced the overall accuracies of tree species discrimination with either 

treetop-based or pixel-weighting classification. Although tree height information with treetop-

based classification increased producer’s accuracy for ash tree species (from 43.59% to 74.36%) 
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and user’s accuracy for oak species (from 57.89% to 62.71%), it decreased the producer’s and 

user’s accuracies for other species.  The absolute tree heights may provide complementary 

information for tree species classification in singularly dominant age classes, but they have little 

contributions for the classification in a forest with multiple age classes, especially for deciduous 

species, which is consistent with the results presented by Jones et al. (2010).  

In comparison with the tree height variable, the shape information provides more explanatory 

power for deciduous tree species classification. Crown shape is an important structural 

characteristic which is related to radiation absorption, photosynthesis, and transpiration (Wang 

and Jarvis, 1990). Zeide and Pfeifer (1991) further pointed out the same species have 

geometrically similar crown shapes, so incorporating tree crown shape information can improve 

classification performance (Kulikova et al., 2007). In this study, shape index is proved to be 

effective in characterizing the four species. The fusion shape index and treetop-based spectra 

raised the overall accuracy to 71.61% and kappa statistics to 0.60, while the fusion of shape 

index and pixel-weighted bands raised the overall accuracy to 81.29% and kappa statistics to 

0.73. The contribution of shape information comes from lower ratio of variations within-species 

to between-species as compared to the height information. For example, the standard deviation 

within ash species is 3.45 while the standard deviation between species is 6.58 (see Figure 18b). 

CV performs slightly better than shape index in improving the species classification. By 

integrating CV, treetop-based classification increased the overall accuracy to72.9% from that 

with treetop-based spectra only (66.45%), while the pixel-weighting classification increased the 

overall accuracy to 81.94% from that with pixel-weighted spectra only (80.64%). CV is a 

normalized measure of dispersion of the probability distribution and therefore is employed to 

compare datasets with significantly different means. Similar to shape index, lower within-species 
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variation to higher between-species variation contributes to higher accuracy of species 

classification. As an example, the standard deviation of ash species is 1.69 while the between-

species value is 3.19 (see Figure 18c). Thus, for e ash trees, adding CV into treetop-based 

classification increased producer’s accuracy to 82.05% and user’s accuracy to 76.19%, while 

including CV as classification input of pixel-weighting classification increased producer’s 

accuracy to 92.31% and user’s accuracy to 87.80%. 

   

(a) (b) (c) 

Figure 18 Distribution of tree height (a), shape index (b), and CV (c). 

From our experiment, the contribution of LiDAR data to treetop-based classification is 

higher than that to pixel-weighting classification. Since treetop spectra are still impacted by pixel 

mixture problems and exhibit spectral confusion, the spectral similarity of treetop pixels 

decreases classification accuracy. In contrast, the structural features, such as shape information 

and height dispersion within a crown, have the ability to characterize the distinct crown 

morphology. Therefore, incorporating these structure features can increase accuracy for 

classifying different species which exhibit similar spectral properties (Jones et al., 2010). 

However, pixel-weighting approach extracted the relative pure crown-scale spectra, and tree 

species have already been well characterized with the pure hyperspectral information. Thus, less 

information is needed from LiDAR data to complement the species classification.  
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4.5  Conclusion 

This research sought to improve species mapping in deciduous dominated urban forests by 

fusing hyperspectral imagery and LiDAR data. Treetop-based spectra avoid the interference from 

other materials around the overlapping crown boundaries and pixel-weighted spectra suffer less 

mixed-pixel problems, but spectral confusion still existed in a biodiverse forest. LiDAR data 

provide additional power in improving classification accuracy for tree species with distinct 

structures but similar spectral properties. Three structure features: tree height, crown shape 

index, and coefficient of variation within tree crowns were extracted and integrated with treetop-

based and pixel-weighted crown spectra respectively. Results suggest crown shape and height 

dispersion information increase the classification accuracy because they can measure the 

complex biophysical properties, but tree height decreases the accuracy due to simple information 

extraction.  

Shape signature illustrates the probability distribution of heights for random points within a 

crown and shape index further expresses the shape signature of a 3D object in one dimension 

(1D). Through extracting the shape signature and calculating the shape index from LiDAR data, 

3D shape matching problems were reduced to 2D probability distributions and further to the 

simple 1D index value. The results indicate that the shape index is efficient in computation and 

effective in representing a complex crown shape. CV refers to a standardized measure of height 

dispersion within a crown and represents the ratio of the standard derivation to the mean. Thus it 

is suitable for comparing data sets with different means and different measures. As a result, 

integrating with shape index and CV respectively, both the treetop-based and pixel-weighting 

approaches increased the classification accuracies, but CV performs better than shape index 
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because CV measures the degree of height dispersion while shape index only expresses the 

trends of height distribution. 

Pixel-weighted spectra outperform treetop-based spectra in the fusion with shape-related 

structural features for tree species classification. Treetop-based spectra exhibit spectral confusion 

due to spectral mixture problem in biodiverse forest, so the hyperspectral only resulted in lower 

classification results (66.45% overall accuracy). Adding the structural features, the overall 

accuracy increased to 71.61% with shape index and 72.90% with CV respectively. In contrast, 

relative pure crown spectra extracted using pixel-weighting approach well characterized the 

species and classified the species with high accuracy (80.64%). Moreover, the pixel-weighted 

spectra/shape index fusion increased the overall accuracy to 81.29% and the pixel-weighted 

spectra/CV fusion increased the overall accuracy to 81.94%. 

Tree species classification in deciduous forests is challenging. The spectral similarity amongst 

different species and spectral noise caused by mixed-pixel problem decrease the accuracy of tree 

species classification. However, the appropriate structural features (e.g. SI and CV) extracted 

from LiDAR data have the ability to measure unique crown biophysical properties invariable 

from life stage and mitigate the spectral problems. Therefore, the fusion of the hyperspectral 

imagery and LiDAR data can improve the tree species classification. 
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CHAPTER 5 CONCLUSIONS 

5.1 Summary 

Crown-level tree species classification in urban areas is essential for forest inventory and 

resource evaluation. Specifically, ash tree identification in Milwaukee is critical in the 

management of the pest of EAB to prevent a loss of ash canopy and associated environmental 

benefits. However, the crown-level species classification from remote sensing imagery is a 

challenging task due to spectral similarity and spatial proximity. Moreover, shadow, gaps, 

double-side illumination, and other materials in the crown area may influence the crown-scale 

spectral extraction, the age and canopy architecture may influence the crown size estimation of a 

tree species. To address these issues, this research integrated hyperspectral imagery and discrete-

return LiDAR data to improve the crown-level tree species classification. The hyperspectral 

imagery measures detailed spectral reflectance related to the biochemical properties of 

vegetation, while LiDAR data measures the three-dimensional structure of tree crowns related to 

morphological characteristics. Specifically, three new approaches have been proposed for canopy 

delineation, pure crown-scale spectral computation, and structure characteristic extraction 

respectively. First, a general geometric model was generated by optimally fitting the crown 

surface to extract the crown variables and then a regression model was developed to estimate the 

crown width for canopy delineation. Second, a pixel-weighting approach was developed to 

calculate the pure crown-scale spectra and SVM classifier was used to classify the species with 

high overall accuracy. Finally, crown shape related variables were extracted from LiDAR 

derived canopy height model and fused with spectral data for tree species classification.  
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5.2 Contributions 

The first contribution of this research is the automated delineation of individual tree crowns 

from LiDAR data by combining a generalized geometric model and a regression model. The 

canopy height model derived from LiDAR data or optical imagery can be segmented to obtain 

individual tree crowns. However, the ambiguous crown boundaries caused by overlapping 

branches and canopy gaps within a tree crown make current individual tree crown delineation 

methods work less effectively on closed canopy mixed wood forests. In contrast, the generalized 

geometric model can address these problems by optimally fitting the crown surface, as the model 

shows clear crown boundaries and distinct tops. Moreover, the generalized geometric model has 

the ability to simulate different crown shapes, such as cones, semi-spheres, half-ellipsoids as well 

as other shapes, and extract shape related parameters, such as curvature and curvature 

coefficient. Thereafter, a linear regression analysis model, using these LiDAR derived tree height 

and shape related parameters as independent variables, was designed to estimate the tree crown 

width. Statistical analysis indicates that there is a very strong relationship between the crown 

width and the variables extracted from the geometric model. Therefore, the integration of the 

generalized geometric model and linear regression model facilitates the automated crown 

segmentation. 

The second contribution of this research is the computation of the relative pure spectral 

reflectance at the crown level for the improved tree species classification. High purity of 

reflectance spectra is proved to contribute to high accuracies of tree species classifications. 

However, mixed-pixels and pixels under different illumination conditions are very common 

within crowns. Thus, the traditional method of calculating the crown-scale spectra, averaging 

pixel spectra within a crown, blurs within-crown variations and further decreases the species 
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classification accuracy. To address this issue, the pixel-weighting algorithm was developed in 

this research to extract the relative pure crown-scale spectra. Specifically, the illuminated-leaf 

fraction of each pixel was first extracted using a constrained linear SMA, and then the pure 

crown-scale spectra was calculated by weighted averaging all pixel spectra within the crown area 

using their illuminated-leaf fractions as weights. The pixel-weighted spectra not only measure 

the unique spectral characteristic of a species at the individual tree level, but also resist the 

impacts from crown delineation error and spectral outliers. Working with the SVM classifier, 

pixel-weighted crown-scale spectra produced higher classification accuracies than treetop-based 

classification and pixel-majority classification.  

The third contribution of this research is the extraction of shaped-related structural features 

as well as fusion of the structural and spectral features for tree species classification. Urban 

forests are dynamic and complicated ecosystems due to the constant tree growth and species 

diversity. Thus the canopy height model and simple height metric have the limitation in 

displaying the crown structural features. In contrast, the shape-related structural features are 

basically consistent to life stages and able to capture between species variability in crown 

morphology. Therefore, both shape index and coefficient of variation were extracted from 

LiDAR derived CHM to express the height distribution and height dispersion within a crown. 

These two indices avoid the influence of absolute tree heights and canopy architectures, so they 

have the potential to represent the unique crown structural characteristics of tree species and play 

an important role in tree species classification. 

When crown-scale spectra were extracted from the hyperspectral imagery and structural 

metrics were extracted from LiDAR data, these two spatial and spectral features were integrated 

for ash tree identification. The relative pure crown-scale spectra capture subtle differences in 
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spectral characteristics while the LiDAR features including shape index and CV describe the 

unique crown structural characteristics. Therefore, the integration of LiDAR data and 

hyperspectral imagery at the individual tree level is effective in improving tree species 

identification. 

5.3 Future research 

Future research will be focusing on two aspects. The first is the generation of a Triangular 

Irregular Networks (TIN) based model of forest canopy for crown segmentation and shape 

variables extraction. Grid models like CHM are the most frequently used model in forest study 

due to their ease of storage and manipulate, fast computation, and smooth appearance of the 

canopy surface. However, the fixed-resolution in the grid system does not adapt to the variability 

of terrain, and the grid values do not reflect the actual measurements due to the absence of source 

data in the interpolation process. In contrast, TINs are vector-based representations of a surface 

as a set of continuous and non-overlapping triangles. The detailed relief information of a 

complex surface can be captured because the variable-resolution is adapted to the variability of 

terrain. Moreover, there is no information lost because source data is maintained as part of 

triangulation. Therefore, with the TIN-based model, the accurate crown segmentation can be 

conducted and correct shape variables can be extracted. The second aspect is the application of 

the phenology to assist hyperspectral species classification. The tree species classification using 

hyperspectral imagery is a challenge due to the similar spectral reflectance between different tree 

species. However, the different vegetation can be characterized by different features of growth 

trajectory and phenology. The tree species with similar phenological characteristics from green-

up to senescence can be considered as the same ones. Therefore, multi-temporal images provide 

the potential of classifying the tree species using time series of spectral variable.  
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